Debugging Support for Reactive
Programming with RxJS

Manuel Alabor

A summative thesis presented for the degree of
Master of Science FHO in Engineering

| FHO
OST Fachhochschule Ostschweiz
Eastern Switzerland . .

University of Applied Sciences

Supervisor Prof. Dr. Markus Stolze
External Examiner Johannes Rieken

Computer Science
Eastern Switzerland University of Applied Sciences
Switzerland
15 January 2022

v1.0.1

Declaration of Authorship

I, Manuel Alabor, declare that this thesis titled, “Debugging Support for Reactive
Programming with RxJS” and the work presented in it are my own work. I
confirm that:

e This work was done wholly or mainly while in candidature for a research
degree at the Fastern Switzerland University of Applied Sciences.

e Where any part of this thesis has previously been submitted for a degree
or any other qualification at the Eastern Switzerland University of Applied
Sciences or any other institution, this has been clearly stated.

e Where I have consulted the published work of others, this is always clearly
attributed.

e Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

e I have acknowledged all main sources of help.

e Where the thesis is based on work done by myself jointly with others, I
have clarified what others did and what I have contributed myself.

Manuel Alabor, 15 January 2022

©@@® This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Abstract

Software engineers use numerous software tools in their daily working routine.
These tools help them to streamline complex and repetitive tasks. Integrated
development environments bundle such utilities ready-to-hand. This way, engi-
neers benefit from a seamless developer experience where every tool feels and
looks like a part of its host application and is only a keypress away. Of course,
debuggers are a vital component of this toolset.

Debuggers built into contemporary development environments are tailored to
work best with programs following an imperative programming style. However,
when used with different programming paradigms, such as reactive programming,
these tools do not adequately assist the engineers. This is why software engineers
resort to more simple debugging techniques like manual print statements instead.

This summative thesis documents the debugging techniques engineers employ to
debug programs implemented using RxJS, a popular library providing reactive
programming functionality for JavaScript. First, it reveals why engineers abstain
from using specialized reactive debugging tools by identifying a critical success
factor for such utilities: A reactive debugger must be ready-to-hand, integrating
with the engineers’ overall developer experience. Subsequently, the thesis illus-
trates the iterative research and development process of a ready-to-hand reactive
debugger for Microsoft Visual Studio Code. “RxJS Debugging for Visual Studio
Code” provides with Operator Log Points a novel reactive debugging utility.
To my knowledge, this is the first reactive debugger that allows engineers to
inspect RxJS applications’ runtime behavior without leaving their development
environment or adding manual print statements.

ii

Acknowledgments

First and foremost, I would like to thank my supervisor Prof. Dr. Markus Stolze
for many hours of inspiring discussions, his sincere feedback, and his constant
support for my endeavors leading to this thesis. Thank you for sparking my
enthusiasm for empirical research.

My further gratitude goes to all people who helped me during my research in
any way. Thank you to all study participants, proofreaders, and everyone else 1
might have forgotten about.

Thank you to my wife and my daughter. You make all the things count.

iii

Contents

Declaration of Authorship

Abstract

Acknowledgments

1

Introduction

1.1 Relevant Programming Paradigms
1.2 Reactive Programming with RxJS
1.3 Debugging Challenges of Reactive Programming

Related Work

2.1 Reactive Debugging
2.2 Debugging as a Process 0.
2.3 Developer Experience

Research Process

3.1 Exploration

3.2 Proof Of Concept

3.3 Prototype
3.3.1 Communication with Node.js
3.3.2 Moderated Remote Usability Test

3.4 Distribution
3.4.1 Community Reception
3.4.2 ISSTA ‘22 Research Paper

Future Work

4.1 Empirical Software Engineering
4.1.1 OpenScience

4.2 0pen Source e
4.2.1 User Onboarding after Installation (Issue #58)
4.2.2 Log Point History (Issue #44)

Conclusion

Research Papers

A.1 Debugging of RxJS-Based Applications

A.2 Debugging Support for Reactive Programming
A21 Paper
A.2.2 Supplementary Material

B Comparative User Journey

C RxJS Debugging for vscode

C.1 Major Release Milestone Plan
C.2 Feature Backlog
C.3 Release Tweet Stats
C.4 Visual Studio Marketplace
C.5 ANALYTICS.md

iv

ii

iii

ENCR R

SO

12
12
13
13
13
13

14

16
16
27
27
36

54

https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/58
https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/44

C.6 CONTRIBUTING.md
C.7 CODE_OF_CONDUCT.md
C.8 ARCHITECTURE.md
C.9 CHANGELOG.md
C.10 Analytics Dashboard

D vscode-js-debug Pull Request: Reuse CDP Connection
E Marble Diagram Syntax

F Open Science

List of Figures

List of Listings

List of Tables

References

88

90

92

92

92

93

1 Introduction

Debugging is an essential part of a software engineer’s daily job. Various
techniques, some better suited for the task than others, help engineers explore
the functionality of an unknown or malfunctioning program. Rather traditional
debugging is done by interpreting memory dumps or the analysis of log entries.
Sophisticated debugging solutions hook into a program at runtime and allow
more detailed inspection and control [1,13].

Imperative programming languages like Java, C#, and Python dominated the
mainstream software engineering industry over the last decades [6,16]. Because
of the prevalence of imperative programming languages, integrated development
environments like Eclipse, the JetBrains platform, or Microsoft Visual Studio
provide specialized debugging utilities specifically tailored to imperative pro-
gramming languages. This results in an excellent, fully integrated developer
experience, where tool-supported debugging is only a keypress away.

The developer experience degrades rapidly when software engineers use program-
ming languages and tools based on different programming paradigms such as
reactive programming. Because of this, engineers tend to use simpler, less adept
debugging techniques instead.

During my master studies research, I examined the necessity of paradigm-specific
debugging utilities when software engineers debug programs based on RxJS!, a
library for reactive programming in JavaScript. During my research, I explored
how professionals debug RxJS programs, what tools and techniques they employ,
and why they prefer to use print statements instead of specialized debugging
utilities requiring them to switch contexts. In doing so, I identified a key factor
for the success of a debugging tool: It needs to be ready-to-hand, or its users
will not use it at all.

Based on the premise of readiness-to-hand, I designed and implemented a novel
debugging utility for reactive programming. Operator Log Points are available
as an extension for Microsoft Visual Studio Code and provide the, to my knowl-
edge, first fully integrated debugging utility for RxJS. Using Human-Computer
Interaction methods, I examined the developer experience of operator log points.
I successfully verified that the new utility replaces manual print statements
and does not require engineers to change context. Thereby I proof that a
ready-to-hand debugger for reactive programming is feasible.

This summative thesis contextualizes my research results documented in two
research papers. I will complete this introduction with an overview of relevant
programming paradigms, reactive programming with RxJS, and the challenges
reactive programming provides for debuggers tailored to imperative programming.
Relevant work will be discussed in Section 2, followed by a synopsis of the
complete research process and its results in Section 3. Section 4 presents a list
of opportunities for future work and highlights provisions taken to ensure the
sustainability of the demonstrated results. Before the reader is left with the
study of two research papers in the Appendix A, I will wrap up on the topic of
debugging support for reactive programming with RxJS in Section 5.

Thttps:/ /rxjs.dev/

1.1 Relevant Programming Paradigms

T Programming Paradigms T
Imperative F Declarative j

Functional (FP) Data-Flow (DFP)

L> Reactive (RP) J

Figure 1: Taxonomy of relevant programming paradigms

On the way of producing the output for a given input, an imperatively imple-
mented program keeps intermediate and final computational results in its state.
The key concept of imperative programming languages like Java and C# is the
assignment command. The assignment command modifies the programs state
by changing the value assigned to a variable. Execution flow control commands,
e.g., if and while, allow conditional and repeated execution of commands [26].

With a declarative programming language, computational results are carried
explicitly from one program unit to the next instead of keeping them in extraneous
state [11]. The source code of a declaratively implemented program is the
blueprint of what the program is expected to accomplish eventually. In contrast,
its imperative sibling resembles the precise step-by-step instruction on how the
expected result must be achieved.

The Functional (FP) as well as the Data-Flow Programming (DFP) paradigm
belongs to the family of declarative languages.

FP languages (e.g., Haskell and Erlang) are based on the concept of function
and expression evaluation: Flow control statements are replaced with recursive
function calls and conditional expressions [11,26]. Thus, a program’s outcome
results from its complete evaluation rather than its implicit state. With DFP,
programs are modeled as directed graphs where a node represents an instruction
of the program. The graph’s edges describe how the data flows between its nodes
[12]. Examples for DFP can be found in visual programming environments like
Node-RED?.

Reactive Programming (RP) combines FP and DFP. With RP, software engineers
describe time-changing values and how they depend on each other using a Domain
Specific Language (DSL) [23]. By doing so, they model a data-flow graph. A
runtime environment interprets this graph and establishes a deterministic system
state by executing necessary (re-)computations [2,3]. RP is usually not part of
programming languages themselves. Instead, libraries and language extensions
(e.g., Reactive for Haskell and REScala for Scala) provide RP features to their
respective host programming language [7,22].

2https://nodered.org/

1.2 Reactive Programming with RxJS

RxJS provides RP features for JavaScript and TypeScript. It is an implementa-
tion of the ReactiveX API specification, where the Observable, “[..] a combination
of the best ideas from the Observer pattern, the Iterator pattern, and functional
programming” [20], is the core concept.

Event Subscriptions

With the Observer pattern [8], observers subscribe to the notifications of a subject.
Subscribers of an RxJS observable subscribe to the events of an observable
likewise. Observables produce the following three event types:

1. next events carry produced values, e.g., the result of an HTTP request

2. complete events indicate that the observable finished its work and will
not emit any further events in the future

3. error events notify subscribers about an error that occurred and that the
observable will not emit any more events

Observables are push-based; they actively call the callback handler of their
subscribers?.

Operator Functions

An operator function subscribes to a source observable, modifies its events, and
projects them to a target observable. Operator functions are the most powerful,
yet most complex tool when working with observables. Listing 1 demonstrates
how two simple operators filter and map values provided by a source observable.
More complex operators allow for sophisticated constructions: E.g., mergeMap*
composes higher-order observables to a new observable, or retryWhen® recovers
an observable after it emitted an error event.

Listing 1 An observable emitting integers 1...8. Two operators process the
integers before they are handed to the subscriber, which prints them to the
console.

import { of, map, filter } from 'rxjs'

of (1, 2, 3, 4, 5, 6, 7, 8).pipe(
filter(i => i % 2 === 0), // Skip odd Integers
map(i => i + 1), // Add 1 to Integer
) .subscribe(i => comsole.log(i)); // Logs: 3, 5, 7, 9

Visualizing Observables with Marble Diagrams

Marble diagrams visualize observables graphically. Such diagrams help to under-
stand the runtime behavior of an observable and its operators. Thus they are
extensively used in the RxJS documentation.

3The Iterator pattern is pull-based, thus a counterexample to the push-based observable:
The consumer has to actively poll (i.e., pull) the iterators next function to fetch a value [8].

4https:/ /rxjs.dev/api/operators/mergeMap

Shttps://rxjs.dev/api/operators/retry When

Figure 2 shows the marble diagram for the observable implemented in Listing 1.
Please refer to Appendix E for an in-depth look at the marble diagram syntax.

.

map(i=>1i+1)

O—O
D, D,

Figure 2: The marble diagram for Listing 1 shows three observables from top
to bottom: The input observable emitting integers from 1 to 8, the intermediate
result observable of the filter operator emitting only even integers, and the
output observable emitting the even integers “plus 1”. The two operators are
shown in between the observables. The vertical line through the last marble
of the input observable indicates that the input observable completed. Both
operators forwarded this event to the output accordingly.

o

1.3 Debugging Challenges of Reactive Programming

Listing 2 shows a reimplementation of Listing 1 using an imperative program-
ming style. Software engineers use the debuggers built-in to their Integrated
Development Environments (IDE) to follow the program’s execution path. They
pause the program’s execution at a specific point of interest using breakpoints.
Every time the debugger pauses program execution, the stack frame inspector
provides details on what function calls lead to the execution of the current stack
frame. Further, the values of all variables belonging to a stack frame are shown.
Using the step controls, the engineers handle further program execution manually
or resume “normal” execution eventually.

Listing 2 JavaScript program replicating Listing 1 using an imperative pro-
gramming style.
for (let i = 1; i < 9; i++) {
if (1% 2 ===0) {
console.log(i + 1);

}

}

Software engineers use the same imperative debugging techniques to debug RP
programs like the one shown before in Listing 1: E.g., they add a breakpoint

to the anonymous function passed to the map operator on Line 5 and run the
program.

Again, the debugger provides a stack trace once program execution halts. Figure 3
depicts the debugger’s major shortcoming when used with an RP program: The
stack trace does not match the model of the data-flow graph described with
the DSL. Instead, it reveals the inner, imperative implementation of RxJS’ RP
runtime. The debugger’s step controls are ineffective since they operate on the
imperative level as well. In this example, stepping to the following statement
does not result in the debugger halting at Line 6. Instead, it leads the engineer
to the internal implementation of RxJS.

v CALL STACK

~ {f Launch Program: index.mjs [7613] PAUSED ON BREAKPOINT

<anonymous> 5:13
<anonymous> 10:37
OperatorSubscriber._this._next

Subscriber.next

<anonymous>

OperatorSubscriber._this._next

Subscriber.next

<anonymous>

Observable._trySubscribe

Figure 3: The stack trace provided by the Microsoft Visual Studio Code
debugger, after pausing program execution within the anonymous function on
Line 5 in Listing 1.

A common practice to overcome this problem is the manual augmentation of
the source code with print statements, as shown in Listing 3. This technique is
often the last resort to debug RxJS programs. However, it is also regarded as a
cumbersome and time consuming practice [2].

Listing 3 RxJS-based program from Listing 1 manually augmented with print
statements.
import { of, filter, map, tap } from 'rxjs';

of(1, 2, 3, 4, 5, 6, 7, 8).pipe(
tap(i => console.log(A: ${i})), // <—- Added
filter(i => i % 2 === 0),
tap(i => comsole.log("B: ${i} ")), // <-- Added
map(i => i + 1),
tap(i => console.log("C: ${i} ")) // <-- Added
) .subscribe(i => console.log(i));

2 Related Work

2.1 Reactive Debugging

The problem of imperative debuggers interpreting RP source code using the wrong
model was subject to research efforts before. Salvaneschi et al. [24] coined the
term Reactive Debugging and described a debugging utility specifically tailored
to work with RP programs for the first time in their work. They provided the
first implementation of such a debugger named Reactive Inspector for REScala.

Banken et al. [4] transferred former findings to RxJS. RxFiddle is a browser-
based visualizer that takes a piece of isolated RxJS source code and displays its
runtime behavior in two dimensions: A flow-graph shows all observables that
get created and how they depend on each other. Additionally, the utility uses
marble diagrams to show what events get emitted by an observable over time.

2.2 Debugging as a Process

Layman et al. [13] looked into how engineers debug programs. They formalized
an iterative process model for the activity of debugging. During this process,
engineers define and refine a hypothesis on the cause that triggered an unexpected
behavior in a program. Ultimately, the process tries to validate that hypothesis.
The debugging process after Layman et al. consists of three steps: Engineers start
to (i) collect context information on the current situation (e.g., which particular
program statements might be involved or what input caused the failure). This
information then allows the software engineers to formulate a hypothesis on how
the failure situation might be resolved. Next, they (ii) instrument the program,
e.g., by adding breakpoints or modifying source code. They then (iii) test the
instrumented program to validate their hypothesis. Step iii either proves their
hypothesis correct, ending the debugging process, or yields new information for
another iteration of hypothesis refinement and testing.

2.3 Developer Experience

Human-Computer Interaction (HCI) is the scientific examination of the interface
between people and computers. HCI employs empirical research methods to
review and verify the design of such interfaces [14].

While HCT is an academic research discipline, User Experience (UX) design
is a more practice-oriented subject and draws from many tools originated in
HCI. The International Organization for Standardization (ISO) defines UX as
“a person’s perceptions and responses that result from the use or anticipated use
of a product, system or service” [25].

Developer Experience (DX) is the umbrella term for the application of UX design
principles and methodologies like User-Centered Design (UCD) [10] specifically
for developers and software engineers [9,17].

3 Research Process

Exploration >> Proof of Concept >> Prototype >> Distribution

Figure 4: Research process in four phases

The research process is structured in four phases: (i) Exploration, (ii) Proof of
Concept (PoC), (iii) Prototype, and (iv) Distribution. Methods originated in
the fields of empirical software engineering [28] and HCT helped to verify the
main artifacts listed in Table 1. The following four subsections highlight the
most important results and deliveries of each project stage.

Table 1: Overview of all artifacts delivered per process phase.

Phase Artifact
Exploration Research Paper (Appendix A.1)

Proof of Concept Cognitive Walkthrough (Appendix A.2.2)
Comparative User Journey (Appendix B)
PoC for RxJS Debugging Utility

Prototype Usability Test Report (Appendix A.2.2)
Minor Release “RxJS Debugging for vscode”
Distribution Research Paper (Appendix A.2)

Major Release “RxJS Debugging for vscode”

3.1 Exploration

I started with an analysis of what debugging tools and techniques software
engineers use in their daily jobs. Data from five informal interviews and five
written “war story” reports allowed me to build a first intuition in these regards.
To verify the collected data, I set up a remote observational study with four
subjects. In the study, two malfunctioning RxJS programs were presented and
the subjects were asked to locate and fix the problems in the applications source
code. To do so, they should use the debugging utilities they would use in their
daily jobs as well. Figure 5 summarizes the results. All subjects used manual
code modifications (i.e., print statements) to understand the behavior of the
presented problems. Over half of them tried to use the imperative debugger of
their IDE. The most pivotal insight was that, even though two subjects stated
to know about specialized RxJS debugging tools, none of them used such during
the study.

74

Mouel Print Statements *_ i

73

Built-In Debugger *_ 2

12

Additional Tools

0 1 2 3 4

=7 of subjects typically use
= # of subjects were observed using

Figure 5: Comparison of what debugging techniques subjects stated to usually
use, and what they were observed actually using during the observational study.

The results of the interviews, the analysis of the war story reports, and the
interpretation of the observed behaviors during the observational study lead to
the following two key take-aways:

1. The most significant challenge software engineers face when debugging
RxJS-based programs is to know when they should apply what tool to
resolve a problem the best way

2. Since engineers abstained from using specific RxJS debuggers, how can
such utilities be provided without requiring them to switch context, thus
be ready-to-hand?

I documented these results in the research paper “Debugging of RxJS-Based
Applications” together with Markus Stolze [2]. The paper was published with
the proceedings of the 7th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS’ 20), where I also presented
my findings. Furthermore, the published paper is available in Appendix A.1.

3.2 Proof Of Concept

Based on the learnings from the first phase, I started to compile ideas to help
software engineers debug RxJS programs. It was essential that a potential
solution:

1. Integrates seamlessly with an IDE
2. Is ready-to-hand, i.e. requires minimal to no effort from its users to get
started with debugging

McDirmid [15] proposed with the concept of “probes” for live programming
environments a way to trace variable values during runtime directly in the source
code editor. Similarly, imperative debuggers provide log points, a special type of
“breakpoint.” Instead of halting the program, they print an arbitrary log entry
to the debugging console. Using the debugging process by Layman et al. [13]
as a mental model, I combined the two concepts and transferred them to the

world of RP debugging: The operator log pointS shows the events emitted by an
operator during program execution in realtime.

After establishing the PoC for operator log points as an extension for Microsoft
Visual Studio Code (vscode), I used the cognitive walkthrough method [14,27] to
verify the utility. Its results, available as part of Appendix A.2.2, demonstrated
that the proposed debugging utility replaces manual print statements in a
scenario where engineers debug RxJS programs.

To convey the achieved improvement through operator log points effectively, I
created a “comparative user journey.” A basic user journey maps the touchpoints
of a user with a product [21]. In my comparative journey, I correlate how a
software engineer would solve a typical RxJS debugging task with an imperative
debugger compared to an engineer having operator log points at their disposal.
The result is available in Appendix B.

3.3 Prototype

Certain that operator log points satisfy all requirements defined in the previous
stage of the process, I started with the actual implementation work for a
production-ready vscode extension. Eventually, I released version 0.1.0 of “RxJS
Debugging for vscode.”

®) index.ts — samples

Ed index.ts U X &) 00 oo

src > I8 index.ts > ...

import

import

import (alias) filter<number>(predicate: (value: number, index:
number) = boolean, thisArg?: any):

£ RxJS: Add Operator Log Point

1

2

3

4

5 of(@, | MonoTypeOperatorFunction<number> (+1 overload)
6 .pip import filter

7 O filter((i) = i < 4),

8 ®nap((i) = i * 2)

9)

0
1

.subscribe(reportVvalue);

J> masterr ® ®0AO0 g Launch NodeJS (samples) + typescript |+ index.ts TypeScript 4.3.5 Prettier [)

Figure 6: A screenshot of the debugger extension prototype. Line 8 shows an
enabled operator log point including a logged event. Operator log points are
managed by hovering a log point suggestion with the cursor.

The prototype of the extension enabled engineers to debug RxJS-based appli-
cations running with Node.js. After they installed the extension, the debugger
started to suggest operator log points with a small, diamond-shaped icon next
to the respective operator. Next, the engineer launched their application using
vscode’s built-in JavaScript debugger. The RP debugger automatically aug-
mented RxJS so it started to send event telemetry to vscode. The extension then

6Inspired by McDirmid [15], operator log points were called probes in the PoC and the
early prototype of the extension. This name caused confusion with the test subjects in a later
usability test. I renamed the utility based on the received feedback in turn.

displayed events (e.g., “Next: 4” in Figure 6 at the end of Line 8) for enabled
operator log points in-line with the respective operator in the source code editor.

There were various challenges and tasks to solve during the Prototype phase.
The following two sections present two highlights.

3.3.1 Communication with Node.js

One of the biggest challenges in implementing the prototype was to build a
reliable way to communicate with RxJS running inside the Node.js process. I
initially used a WebSocket to exchange messages with the JavaScript runtime.
However, this proved to be prone to problems in numerous ways. E.g.:

e How should the extension discover the WebSocket server running in the
other process?

e What if the network infrastructure prevents vscode from connecting to the
WebSocket in the first place?

o Would a WebSocket-based solution work at all, when RxJS is running in a
browser?

I decided to replace the WebSocket-based communication with something more
suitable eventually.

With the intent to build a debugger that integrates with the IDE seamlessly, I
looked into how vscode’s built-in JavaScript debugger, vscode-js-debug”, com-
municates with the runtime environment. As it turned out, vscode-js-debug
uses the Chrome DevTools Protocol® (CDP) to communicate with arbitrary
JavaScript runtimes. Unfortunately, the debugger did not offer its CDP connec-
tion for reuse to other extensions. I reached out to the project maintainer and
contributed this particular functionality as a new feature (Appendix D). By the
time my contribution was released in April 2021, I had replaced the previous
WebSocket-based communication channel with CDP. Furthermore, I had now
a future-proof solution, which not only worked with RxJS running inside of a
Node.js process, but also in any other JavaScript virtual machine that supports
CDP (e.g., web browsers like Mozilla Firefox and Google Chrome).

Figure 7 depicts all relevant components involved in an RxJS RP debugging
session. More details to the extensions architecture is available in Appendix C.8.

vscode Node.js
vscode—js—fiebug | o | vscode-js-debug P N ’ RxJS Program ‘
Extension - Adapter _———- A

W

- - ﬁ Telemetry ‘

RxJS Debugger A
Extension

Figure 7: The Telemetry component instruments the RxJS Program (right).
The RzJS Debugger Extension runs inside of the vscode process. The components
communicate via a CDP channel established by wvscode-js-debug.

Thttps://github.com/microsoft /vscode-js-debug
8https://chromedevtools.github.io/devtools-protocol /

10

3.3.2 Moderated Remote Usability Test

Once the main elements of the prototype were working sufficiently, I conducted
a remote usability test [5,14,18,19] with three subjects. The goals of this study
were:

1. To verify that operator log points can replace manual print statements in

an actual programming scenario

To identify usability issues not detected during development

3. To collect unstructured feedback on prototype and gather ideas for its
further development

o

Unfortunately, one subject could not get the extension prototype running on
their machine. With the other two subjects left, I was able to verify the first two
goals nonetheless. None of the participants used manual print statements during
the usability test. Additionally, the evaluation of the test sessions revealed ten
usability issues. Four of them prevailed for both subjects, hence I classified them
as major. The complete list of identified usability issues is part of Appendix
A.2.2.

I triaged the feedback from all three subjects and created items in the feature
backlog for the upcoming Distribution phase accordingly. With this, the last
goal was reached as well.

3.4 Distribution

The last process phase had two overarching goals:

1. To finalize the RP debugger prototype and release it to the community
2. To publish another research paper documenting the feasibility of a ready-
to-hand, and fully IDE-integrated RP debugger

To get started, I defined the roadmap for the extensions 1.0.0 release, which is
available in Appendix C.1. The following list contains three of its highlights:

e Support for the latest RxJS 7.x versions (only 6.6.7 was supported with
the prototype)

o Debugging of web applications bundled with Webpack (only the Node.js
virtual machine was supported so far)

e Resolve the four major usability issues identified during the Prototype
stage

Version 1.0.0 of “RxJS Debugging for vscode” was finally released on the 2nd of
December 2021 and was followed by three minor bugfix releases within six days.
3.4.1 Community Reception

On the day of release, I announced the debugger extension via its own Twitter
account @rxjsdebugging. Until the 30th of December 2021, the tweet reached
77k impressions (Appendix C.3).

11

https://twitter.com/rxjsdebugging

Further, the extension was downloaded 954 times (Appendix C.4), counted 51
unique users (Appendices C.5, C.10), and was featured in a live stream on
Twitch®.

Based on the results of the studies conducted before, I concluded that there was a
real need for an integrated RP debugger for RxJS. The overall positive reception
on RxJS Debugging for vscode was overwhelming nonetheless. However, the
major release also revealed bugs and feature gaps in the extension. I resolved the
most critical problems within a few days (see the changelog in Appendix C.9).
In addition, I processed feedback using GitHub Discussions'? and the feature
backlog (Appendix C.2).

3.4.2 ISSTA ‘22 Research Paper

In contrast to the delivered practical effort, I wrote another research paper with
Markus Stolze. The paper documents the latest advancements on the feasibility
of an RP debugger that is ready-to-hand and fully integrated with an IDE. The
latest version of this paper was submitted to the technical papers track of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis
2022 (ISSTA ‘22) at the time of publishing this thesis. The submitted paper
includes revisions based on the feedback of a double-blind review with three
reviewers and is available in Appendix A.2.

4 Future Work

4.1 Empirical Software Engineering

> Validation

Figure 8: Empirical validation as the next step in a future follow-up.

RxJS Debugging for vscode provides a practical solution to the problems identified
throughout the presented research process, and further empirical validation can
now be carried out.

Operator log points were successfully tested using HCI methods during their
development. However, a formal verification using empirical methods will yield
useful insight into the presented debugging utility. The most important research
question to answer in these regards is, how effectively operator log points can
replace existing debugging tools (i.e., manual print statements and the built-in,
imperative debugger tools).

With its major release, the debugging extension asks its users to opt-in for the
anonymized collection of user behavior data. This data is available for further
analysis as described in Appendix C.5. The accumulated data points allow

9David Miillerchen aka @webdave_de, a Google Developer Expert specialized on Angular
development, hosted the live reaction stream on Twitch. Unfortunately, the recording of the
stream is unavailable at this time.

Ohttps://github.com/swissmanu/rxjs-debugging-for-vscode/discussions

12

https://twitter.com/webdave_de

conclusions on how software engineers use the extension. The data set might be
evaluated on its own to derive improvements for the presented debugging utility
or provide supportive arguments for a broader study as proposed above.

4.1.1 Open Science

All conducted studies (interviews, observational study, cognitive walkthrough
and moderated remote usability test) and their results are documented in
the respective research papers and their supplementary material available in
Appendices A.1, A.2, B to encourage future research on RP debugging. In
addition, a list of URLs leading to various GitHub repositories containing
relevant artifacts and data sets is available in Appendix F.

4.2 Open Source

I developed the presented RxJS debugging extension with the intention to
establish a sustainable open source project.

Three guides introduce new contributors to the project and to the extension’s
implementation and code organization details (Appendices C.6, C.7, C.8). The
transparent project governance is built around the GitHub platform: The feature
backlog and bug-tracking is based on GitHub Issues, Discussions help triage
inquiries from users. Unit and integration tests, automatically executed using
GitHub Actions, help keep the extension’s main branch stable.

The feature backlog in Appendix C.2 contains ideas for practical-oriented future
work. I present two features from this backlog in the following.

4.2.1 User Onboarding after Installation (Issue #58)

After an engineer installed the extension, they are left on their own to get
started with debugging. Even though the readme file provides information to
some extent, the onboarding experience for new users can be improved. With
this feature, ways to enhance that experience should be explored and suitable
measures be implemented eventually.

A contributor needs to understand the vscode extension API. However, profound
knowledge of the extension’s own source code is not required.

4.2.2 Log Point History (Issue #44)

Instead of showing only the latest emitted event from an enabled operator
log point, the debugger should display all previously emitted events. This
functionality would allow engineers to reconstruct the behavior of an operator
without over and over replaying the failure scenario using the live system.

A contributor may start simply by implementing a list to display historical events
in textual form. The list might then be gradually improved towards a graphical
representation of the events using marble diagrams (Appendix E).

This feature requires a good understanding of the vscode extension API and
in-depth knowledge of the debugging extensions codebase. However, all event

13

https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/58
https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/44

data to populate a historical view is already present, and contributors can focus
on implementing the best possible DX.

5 Conclusion

In this summative thesis, I presented the condensed results of my research on
reactive debugging for programs based on RxJS, a popular library for reactive
programming with JavaScript.

The results of interviews, war story reports, and an observational study revealed
the major shortcoming of previously available RxJS debugging utilities. Even
though software engineers might know them, they abstain from using them
because they are not “ready-to-hand,” i.e., not integrated with the development
environment they are working in and accustomed to. Instead, they use manual
print statements.

With the concept of “readiness-to-hand” as a guiding light, I built a proof of
concept implementation for a novel debugging utility to find relief from this
problem: Operator log points debug RxJS operators without requiring the
engineer to leave Microsoft Visual Studio Code. While refining the debugger
iteratively, I employed a cognitive walkthrough, a comparative user journey,
and a usability test at different stages of development to validate the utility’s
capability of solving the problem of ready-to-hand reactive debugging.

I documented the results of my research together with Markus Stolze in two
research papers: The first paper was published with the proceedings of the
ACM REBLS ’20 workshop. The second report is in review for the technical
papers track of the ACM ISSTA ’22 conference when publishing this thesis.
Furthermore, I released “RxJS Debugging for Visual Studio Code,” the, to my
knowledge, first RxJS-specific debugger that fully integrates with a development
environment at the end of 2021.

By providing open access to all relevant material (studies, results, papers, source
code, and project governance), academical- and practical-oriented future work is
encouraged. To further facilitate potential contributions, I suggested concrete
topics for researchers and engineers likewise.

14

A Research Papers

A.1 Debugging of RxJS-Based Applications

This paper was published with the proceedings of the 7th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and Systems
(REBLS ’20), 16th November 2020.

16

Debugging of RxJS-Based Applications

Manuel Alabor
Eastern Switzerland University of Applied Sciences
Rapperswil, Switzerland
manuel.alabor@ost.ch

Abstract

Rx]JS is a popular library to implement data-flow-oriented
applications with JavaScript using reactive programming
principles. This way of programming bears new challenges
for traditional debuggers: Their focus on imperative program-
ming limits their applicability to problems originated in the
declarative programming paradigm. The goals of this paper
are: (i) to understand how software engineers debug RxJS-
based applications, what tools do they use, what techniques
they apply; (ii) to understand what are the most prevalent
challenges they face while doing so; and (iii) to provide a
course of action to resolve these challenges in a future itera-
tion on the topic. We learned about the debugging habits of
ten professionals using interviews, and hands-on war story
reports. Based on this data, we designed and executed an ob-
servational study with four subjects to verify that engineers
predominantly augment source code with manual trace logs
instead of using specialized debugging utilities. In the end,
we identified the lack of fully integrated RxJS-specific debug-
ging solutions in existing development environments as the
most significant reason why engineers do not make use of
such tools. We decided to elaborate on how to resolve this
situation in our future work.

CCS Concepts: » Software and its engineering;

Keywords: reactive programming, debugging, empirical soft-
ware engineering

ACM Reference Format:

Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-Based
Applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems (RE-
BLS °20), November 16, 2020, Virtual, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3427763.3428313

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS °20, November 16, 2020, Virtual, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-8188-8/20/11...$15.00
https://doi.org/10.1145/3427763.3428313

15

Markus Stolze
Eastern Switzerland University of Applied Sciences
Rapperswil, Switzerland
markus.stolze@ost.ch

User

Interaction

Ul

Interaction Data Flow

Figure 1. Basic data-flows in a UI Application.

Update Data Flow

1 Introduction

The (graphical) user interface (UI or GUI) of an application
handles two constant flows of data: External user input (e.g.
mouse, touch, or keyboard interaction) is interpreted and
forwarded to the system. Once the system processed an inter-
action and updated its internal state accordingly, it notifies
the UI about these changes, which are relayed to the user.

To implement the data-flows as shown in Figure 1 to drive
a UL the Observer design pattern[7] is often used and varia-
tions of the pattern are omnipresent today{4].

The Observer design pattern has its roots in the Object
Oriented Programming paradigm (OOP), hence relies on
imperative code constructs to handle a data-flow. Reactive
Programming (RP) is another approach to realize such flows:
It inherits the declarative way of implementing functional-
ity from Functional Programming (FP), i.e., data-flows are
described rather than implemented step by step[5]. RP func-
tionality is usually available in the form of a library providing
necessary abstractions, for imperative as well as declarative
programming languages.

According to the IEEE Standard Glossary of Software En-
gineering, debugging is an activity “to detect, locate, and
correct faults in a computer program.”[1] From interpreting
memory dumps, manually adding log statements to trace
program execution up to the point where specialized debug-
ging programs can interrupt a running process and interact
with it on a low level, debugging utilities took different forms
over time.

REBLS ’20, November 16, 2020, Virtual, USA

Modern IDEs and internet browsers ship with their own
set of debugging tools. These debuggers are specialized in
working with imperative, control-flow-oriented program
code. The following example helps us to illustrate the impli-
cations of this: Assuming an engineer is inspecting a piece
of code and wants to know which part of the program was
executed right before. For a program implemented using the
imperative paradigm, the call stack gives a clear answer to
this question. Hence the stack frames represent each point
in the program execution. In a data-flow-oriented program
implemented using RP, the stack trace for a transformation
function in the flow will not point to its logical predeces-
sor. Instead, the stack frames lead to the internals of the RP
runtime environment.

This example demonstrates the limits of a traditional control-
flow oriented debugger, which cannot interpret RP abstrac-
tions. As a result, these debuggers are not able to give the
correct answer to a data-flow-specific inquiry. There have
been numerous efforts to provide engineers with improved
debugging utilities for RP [17] [18] [6]. However, none of
these have seen broad adoption by practitioners yet. To gain
a better understanding of the underlying root causes, we
conducted interviews with several software engineers and
collected “war stories” about the challenges they face in
their day-to-day jobs when using RP. Based on this collected
evidence, we will validate their statements in an observa-
tional study using Rx]JS and search for an answer to our first
research question:

e RQI: What challenges do software engineers face when
debugging RxJS-based applications?

In response to this, we are going to present a concept on
how to resolve previously identified challenges and answer
the second research question:

e RQ2: How can the experience of software engineers dur-
ing the debugging process of RxJS-based applications be
improved?

The implementation and validation of these proposals
lead to our third and last research question, which will be
investigated in our future research:

e RQ3: What is the impact of proposed solutions on the
debugging experience of software engineers?

We will conclude this introductory section with the clar-
ification of important terms and a view on known RP de-
bugging utilities. Section 2 gives an overview of the insights
from the conducted interviews and the collected war story
reports. We present our observational study intended to val-
idate results from the interviews and reports in Section 3,
which allow us to answer RQ1. Before our final conclusion,
we will answer RQ2 in Section 4 “Future Work” and review
the threats to validity regarding our study in Section 5.

16

Manuel Alabor and Markus Stolze

1.1 Reactive Programming

RP is a declarative programming paradigm that is strongly
influenced by FP. While engineers use imperative program-
ming languages to specify every step how a program has to
do something, declarative languages allow to describe what
the program should achieve ultimately. A runtime system
then figures out a way to satisfy that description and executes
it. RP functionality is usually provided in form of a language
extension for a specific programming language (e.g. REScala
for Scala[17]) or as a library (e.g. RxJS for JavaScript[15])

Either way, both usually provide a (i) domain specific lan-
guage (DSL) to describe data-flow graphs, how they depend
on each other and how data flowing through should be trans-
formed. At program execution, a (ii) runtime environment
evaluates these descriptions and creates a representation
of the specified graphs. It then takes care that values are
processed and propagated correctly through them as well as
that a consistent system state[5] is always maintained.

1.2 ReactiveX and Rx]JS

“Reactive Extensions” (ReactiveX) is an open-source project.
Its members and contributors created a generic description
of a RP APL They further provide reference implementations
of this API along with RP language extensions for various
programming languages like Java, C#, or JavaScript'. Reac-
tiveX summarizes the AP as “...a combination of the best
ideas from the Observer pattern, the Iterator pattern, and
functional programming”[14]. The core concept of the API
specification is the Observable?: An observable can be com-
posed with other observables to form a data-flow graph.
Once an observable gets subscribed, it might push (“emit”)
an arbitrary number of values to the subscriber until it either
completes, fails, or gets unsubscribed again. There is a multi-
tude of operator functions available which allow the transfor-
mation of values and composition with other (higher-order?)
observables. The mechanism of subscribing to an observable
is closely related to the Observer design patterns attach
method.

RxJS[15] is the reference implementation of