
Debugging Support for Reactive
Programming with RxJS

Manuel Alabor

A summative thesis presented for the degree of
Master of Science FHO in Engineering

Supervisor Prof. Dr. Markus Stolze
External Examiner Johannes Rieken

Computer Science
Eastern Switzerland University of Applied Sciences

Switzerland
15 January 2022

v1.0.1

Declaration of Authorship
I, Manuel Alabor, declare that this thesis titled, “Debugging Support for Reactive
Programming with RxJS” and the work presented in it are my own work. I
confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at the Eastern Switzerland University of Applied Sciences.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at the Eastern Switzerland University of Applied
Sciences or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have clarified what others did and what I have contributed myself.

Manuel Alabor, 15 January 2022

cb This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

i

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Abstract
Software engineers use numerous software tools in their daily working routine.
These tools help them to streamline complex and repetitive tasks. Integrated
development environments bundle such utilities ready-to-hand. This way, engi-
neers benefit from a seamless developer experience where every tool feels and
looks like a part of its host application and is only a keypress away. Of course,
debuggers are a vital component of this toolset.

Debuggers built into contemporary development environments are tailored to
work best with programs following an imperative programming style. However,
when used with different programming paradigms, such as reactive programming,
these tools do not adequately assist the engineers. This is why software engineers
resort to more simple debugging techniques like manual print statements instead.

This summative thesis documents the debugging techniques engineers employ to
debug programs implemented using RxJS, a popular library providing reactive
programming functionality for JavaScript. First, it reveals why engineers abstain
from using specialized reactive debugging tools by identifying a critical success
factor for such utilities: A reactive debugger must be ready-to-hand, integrating
with the engineers’ overall developer experience. Subsequently, the thesis illus-
trates the iterative research and development process of a ready-to-hand reactive
debugger for Microsoft Visual Studio Code. “RxJS Debugging for Visual Studio
Code” provides with Operator Log Points a novel reactive debugging utility.
To my knowledge, this is the first reactive debugger that allows engineers to
inspect RxJS applications’ runtime behavior without leaving their development
environment or adding manual print statements.

ii

Acknowledgments
First and foremost, I would like to thank my supervisor Prof. Dr. Markus Stolze
for many hours of inspiring discussions, his sincere feedback, and his constant
support for my endeavors leading to this thesis. Thank you for sparking my
enthusiasm for empirical research.

My further gratitude goes to all people who helped me during my research in
any way. Thank you to all study participants, proofreaders, and everyone else I
might have forgotten about.

Thank you to my wife and my daughter. You make all the things count.

iii

Contents
Declaration of Authorship i

Abstract ii

Acknowledgments iii

1 Introduction 1
1.1 Relevant Programming Paradigms 2
1.2 Reactive Programming with RxJS 3
1.3 Debugging Challenges of Reactive Programming 4

2 Related Work 6
2.1 Reactive Debugging . 6
2.2 Debugging as a Process . 6
2.3 Developer Experience . 6

3 Research Process 7
3.1 Exploration . 7
3.2 Proof Of Concept . 8
3.3 Prototype . 9

3.3.1 Communication with Node.js 10
3.3.2 Moderated Remote Usability Test 11

3.4 Distribution . 11
3.4.1 Community Reception . 11
3.4.2 ISSTA ‘22 Research Paper 12

4 Future Work 12
4.1 Empirical Software Engineering 12

4.1.1 Open Science . 13
4.2 Open Source . 13

4.2.1 User Onboarding after Installation (Issue #58) 13
4.2.2 Log Point History (Issue #44) 13

5 Conclusion 14

A Research Papers 16
A.1 Debugging of RxJS-Based Applications 16
A.2 Debugging Support for Reactive Programming 27

A.2.1 Paper . 27
A.2.2 Supplementary Material 36

B Comparative User Journey 54

C RxJS Debugging for vscode 62
C.1 Major Release Milestone Plan 62
C.2 Feature Backlog . 64
C.3 Release Tweet Stats . 66
C.4 Visual Studio Marketplace . 68
C.5 ANALYTICS.md . 71

iv

https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/58
https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/44

C.6 CONTRIBUTING.md . 74
C.7 CODE_OF_CONDUCT.md . 76
C.8 ARCHITECTURE.md . 78
C.9 CHANGELOG.md . 81
C.10 Analytics Dashboard . 83

D vscode-js-debug Pull Request: Reuse CDP Connection 85

E Marble Diagram Syntax 88

F Open Science 90

List of Figures 92

List of Listings 92

List of Tables 92

References 93

v

1 Introduction
Debugging is an essential part of a software engineer’s daily job. Various
techniques, some better suited for the task than others, help engineers explore
the functionality of an unknown or malfunctioning program. Rather traditional
debugging is done by interpreting memory dumps or the analysis of log entries.
Sophisticated debugging solutions hook into a program at runtime and allow
more detailed inspection and control [1,13].

Imperative programming languages like Java, C#, and Python dominated the
mainstream software engineering industry over the last decades [6,16]. Because
of the prevalence of imperative programming languages, integrated development
environments like Eclipse, the JetBrains platform, or Microsoft Visual Studio
provide specialized debugging utilities specifically tailored to imperative pro-
gramming languages. This results in an excellent, fully integrated developer
experience, where tool-supported debugging is only a keypress away.

The developer experience degrades rapidly when software engineers use program-
ming languages and tools based on different programming paradigms such as
reactive programming. Because of this, engineers tend to use simpler, less adept
debugging techniques instead.

During my master studies research, I examined the necessity of paradigm-specific
debugging utilities when software engineers debug programs based on RxJS1, a
library for reactive programming in JavaScript. During my research, I explored
how professionals debug RxJS programs, what tools and techniques they employ,
and why they prefer to use print statements instead of specialized debugging
utilities requiring them to switch contexts. In doing so, I identified a key factor
for the success of a debugging tool: It needs to be ready-to-hand, or its users
will not use it at all.

Based on the premise of readiness-to-hand, I designed and implemented a novel
debugging utility for reactive programming. Operator Log Points are available
as an extension for Microsoft Visual Studio Code and provide the, to my knowl-
edge, first fully integrated debugging utility for RxJS. Using Human-Computer
Interaction methods, I examined the developer experience of operator log points.
I successfully verified that the new utility replaces manual print statements
and does not require engineers to change context. Thereby I proof that a
ready-to-hand debugger for reactive programming is feasible.

This summative thesis contextualizes my research results documented in two
research papers. I will complete this introduction with an overview of relevant
programming paradigms, reactive programming with RxJS, and the challenges
reactive programming provides for debuggers tailored to imperative programming.
Relevant work will be discussed in Section 2, followed by a synopsis of the
complete research process and its results in Section 3. Section 4 presents a list
of opportunities for future work and highlights provisions taken to ensure the
sustainability of the demonstrated results. Before the reader is left with the
study of two research papers in the Appendix A, I will wrap up on the topic of
debugging support for reactive programming with RxJS in Section 5.

1https://rxjs.dev/

1

1.1 Relevant Programming Paradigms

Programming Paradigms

Imperative Declarative

Functional (FP) Data-Flow (DFP)

Reactive (RP)

Figure 1: Taxonomy of relevant programming paradigms

On the way of producing the output for a given input, an imperatively imple-
mented program keeps intermediate and final computational results in its state.
The key concept of imperative programming languages like Java and C# is the
assignment command. The assignment command modifies the programs state
by changing the value assigned to a variable. Execution flow control commands,
e.g., if and while, allow conditional and repeated execution of commands [26].

With a declarative programming language, computational results are carried
explicitly from one program unit to the next instead of keeping them in extraneous
state [11]. The source code of a declaratively implemented program is the
blueprint of what the program is expected to accomplish eventually. In contrast,
its imperative sibling resembles the precise step-by-step instruction on how the
expected result must be achieved.

The Functional (FP) as well as the Data-Flow Programming (DFP) paradigm
belongs to the family of declarative languages.

FP languages (e.g., Haskell and Erlang) are based on the concept of function
and expression evaluation: Flow control statements are replaced with recursive
function calls and conditional expressions [11,26]. Thus, a program’s outcome
results from its complete evaluation rather than its implicit state. With DFP,
programs are modeled as directed graphs where a node represents an instruction
of the program. The graph’s edges describe how the data flows between its nodes
[12]. Examples for DFP can be found in visual programming environments like
Node-RED2.

Reactive Programming (RP) combines FP and DFP. With RP, software engineers
describe time-changing values and how they depend on each other using a Domain
Specific Language (DSL) [23]. By doing so, they model a data-flow graph. A
runtime environment interprets this graph and establishes a deterministic system
state by executing necessary (re-)computations [2,3]. RP is usually not part of
programming languages themselves. Instead, libraries and language extensions
(e.g., Reactive for Haskell and REScala for Scala) provide RP features to their
respective host programming language [7,22].

2https://nodered.org/

2

1.2 Reactive Programming with RxJS
RxJS provides RP features for JavaScript and TypeScript. It is an implementa-
tion of the ReactiveX API specification, where the Observable, “[..] a combination
of the best ideas from the Observer pattern, the Iterator pattern, and functional
programming” [20], is the core concept.

Event Subscriptions

With the Observer pattern [8], observers subscribe to the notifications of a subject.
Subscribers of an RxJS observable subscribe to the events of an observable
likewise. Observables produce the following three event types:

1. next events carry produced values, e.g., the result of an HTTP request
2. complete events indicate that the observable finished its work and will

not emit any further events in the future
3. error events notify subscribers about an error that occurred and that the

observable will not emit any more events

Observables are push-based; they actively call the callback handler of their
subscribers3.

Operator Functions

An operator function subscribes to a source observable, modifies its events, and
projects them to a target observable. Operator functions are the most powerful,
yet most complex tool when working with observables. Listing 1 demonstrates
how two simple operators filter and map values provided by a source observable.
More complex operators allow for sophisticated constructions: E.g., mergeMap4

composes higher-order observables to a new observable, or retryWhen5 recovers
an observable after it emitted an error event.

Listing 1 An observable emitting integers 1...8. Two operators process the
integers before they are handed to the subscriber, which prints them to the
console.
import { of, map, filter } from 'rxjs'

of(1, 2, 3, 4, 5, 6, 7, 8).pipe(
filter(i => i % 2 === 0), // Skip odd Integers
map(i => i + 1), // Add 1 to Integer

).subscribe(i => console.log(i)); // Logs: 3, 5, 7, 9

Visualizing Observables with Marble Diagrams

Marble diagrams visualize observables graphically. Such diagrams help to under-
stand the runtime behavior of an observable and its operators. Thus they are
extensively used in the RxJS documentation.

3The Iterator pattern is pull-based, thus a counterexample to the push-based observable:
The consumer has to actively poll (i.e., pull) the iterators next function to fetch a value [8].

4https://rxjs.dev/api/operators/mergeMap
5https://rxjs.dev/api/operators/retryWhen

3

Figure 2 shows the marble diagram for the observable implemented in Listing 1.
Please refer to Appendix E for an in-depth look at the marble diagram syntax.

1 2 3 4 5 6 7 8

filter(i => i % 2 === 0)

2 4 6 8

map(i => i + 1)

3 5 7 9

Figure 2: The marble diagram for Listing 1 shows three observables from top
to bottom: The input observable emitting integers from 1 to 8, the intermediate
result observable of the filter operator emitting only even integers, and the
output observable emitting the even integers “plus 1”. The two operators are
shown in between the observables. The vertical line through the last marble
of the input observable indicates that the input observable completed. Both
operators forwarded this event to the output accordingly.

1.3 Debugging Challenges of Reactive Programming
Listing 2 shows a reimplementation of Listing 1 using an imperative program-
ming style. Software engineers use the debuggers built-in to their Integrated
Development Environments (IDE) to follow the program’s execution path. They
pause the program’s execution at a specific point of interest using breakpoints.
Every time the debugger pauses program execution, the stack frame inspector
provides details on what function calls lead to the execution of the current stack
frame. Further, the values of all variables belonging to a stack frame are shown.
Using the step controls, the engineers handle further program execution manually
or resume “normal” execution eventually.

Listing 2 JavaScript program replicating Listing 1 using an imperative pro-
gramming style.
for (let i = 1; i < 9; i++) {

if (i % 2 === 0) {
console.log(i + 1); // Logs: 3, 5, 7, 9

}
}

Software engineers use the same imperative debugging techniques to debug RP
programs like the one shown before in Listing 1: E.g., they add a breakpoint

4

to the anonymous function passed to the map operator on Line 5 and run the
program.

Again, the debugger provides a stack trace once program execution halts. Figure 3
depicts the debugger’s major shortcoming when used with an RP program: The
stack trace does not match the model of the data-flow graph described with
the DSL. Instead, it reveals the inner, imperative implementation of RxJS’ RP
runtime. The debugger’s step controls are ineffective since they operate on the
imperative level as well. In this example, stepping to the following statement
does not result in the debugger halting at Line 6. Instead, it leads the engineer
to the internal implementation of RxJS.

Figure 3: The stack trace provided by the Microsoft Visual Studio Code
debugger, after pausing program execution within the anonymous function on
Line 5 in Listing 1.

A common practice to overcome this problem is the manual augmentation of
the source code with print statements, as shown in Listing 3. This technique is
often the last resort to debug RxJS programs. However, it is also regarded as a
cumbersome and time consuming practice [2].

Listing 3 RxJS-based program from Listing 1 manually augmented with print
statements.
import { of, filter, map, tap } from 'rxjs';

of(1, 2, 3, 4, 5, 6, 7, 8).pipe(
tap(i => console.log(`A: ${i}`)), // <-- Added
filter(i => i % 2 === 0),
tap(i => console.log(`B: ${i}`)), // <-- Added
map(i => i + 1),
tap(i => console.log(`C: ${i}`)) // <-- Added

).subscribe(i => console.log(i));

5

2 Related Work
2.1 Reactive Debugging
The problem of imperative debuggers interpreting RP source code using the wrong
model was subject to research efforts before. Salvaneschi et al. [24] coined the
term Reactive Debugging and described a debugging utility specifically tailored
to work with RP programs for the first time in their work. They provided the
first implementation of such a debugger named Reactive Inspector for REScala.

Banken et al. [4] transferred former findings to RxJS. RxFiddle is a browser-
based visualizer that takes a piece of isolated RxJS source code and displays its
runtime behavior in two dimensions: A flow-graph shows all observables that
get created and how they depend on each other. Additionally, the utility uses
marble diagrams to show what events get emitted by an observable over time.

2.2 Debugging as a Process
Layman et al. [13] looked into how engineers debug programs. They formalized
an iterative process model for the activity of debugging. During this process,
engineers define and refine a hypothesis on the cause that triggered an unexpected
behavior in a program. Ultimately, the process tries to validate that hypothesis.
The debugging process after Layman et al. consists of three steps: Engineers start
to (i) collect context information on the current situation (e.g., which particular
program statements might be involved or what input caused the failure). This
information then allows the software engineers to formulate a hypothesis on how
the failure situation might be resolved. Next, they (ii) instrument the program,
e.g., by adding breakpoints or modifying source code. They then (iii) test the
instrumented program to validate their hypothesis. Step iii either proves their
hypothesis correct, ending the debugging process, or yields new information for
another iteration of hypothesis refinement and testing.

2.3 Developer Experience
Human-Computer Interaction (HCI) is the scientific examination of the interface
between people and computers. HCI employs empirical research methods to
review and verify the design of such interfaces [14].

While HCI is an academic research discipline, User Experience (UX) design
is a more practice-oriented subject and draws from many tools originated in
HCI. The International Organization for Standardization (ISO) defines UX as
“a person’s perceptions and responses that result from the use or anticipated use
of a product, system or service” [25].

Developer Experience (DX) is the umbrella term for the application of UX design
principles and methodologies like User-Centered Design (UCD) [10] specifically
for developers and software engineers [9,17].

6

3 Research Process

Exploration Proof of Concept Prototype Distribution

Figure 4: Research process in four phases

The research process is structured in four phases: (i) Exploration, (ii) Proof of
Concept (PoC), (iii) Prototype, and (iv) Distribution. Methods originated in
the fields of empirical software engineering [28] and HCI helped to verify the
main artifacts listed in Table 1. The following four subsections highlight the
most important results and deliveries of each project stage.

Table 1: Overview of all artifacts delivered per process phase.

Phase Artifact
Exploration Research Paper (Appendix A.1)
Proof of Concept Cognitive Walkthrough (Appendix A.2.2)

Comparative User Journey (Appendix B)
PoC for RxJS Debugging Utility

Prototype Usability Test Report (Appendix A.2.2)
Minor Release “RxJS Debugging for vscode”

Distribution Research Paper (Appendix A.2)
Major Release “RxJS Debugging for vscode”

3.1 Exploration
I started with an analysis of what debugging tools and techniques software
engineers use in their daily jobs. Data from five informal interviews and five
written “war story” reports allowed me to build a first intuition in these regards.
To verify the collected data, I set up a remote observational study with four
subjects. In the study, two malfunctioning RxJS programs were presented and
the subjects were asked to locate and fix the problems in the applications source
code. To do so, they should use the debugging utilities they would use in their
daily jobs as well. Figure 5 summarizes the results. All subjects used manual
code modifications (i.e., print statements) to understand the behavior of the
presented problems. Over half of them tried to use the imperative debugger of
their IDE. The most pivotal insight was that, even though two subjects stated
to know about specialized RxJS debugging tools, none of them used such during
the study.

7

0 1 2 3 4

Additional Tools

Manuel Print Statements

Built-In Debugger

0

4

2

2

4

3

of subjects typically use
of subjects were observed using

Figure 5: Comparison of what debugging techniques subjects stated to usually
use, and what they were observed actually using during the observational study.

The results of the interviews, the analysis of the war story reports, and the
interpretation of the observed behaviors during the observational study lead to
the following two key take-aways:

1. The most significant challenge software engineers face when debugging
RxJS-based programs is to know when they should apply what tool to
resolve a problem the best way

2. Since engineers abstained from using specific RxJS debuggers, how can
such utilities be provided without requiring them to switch context, thus
be ready-to-hand?

I documented these results in the research paper “Debugging of RxJS-Based
Applications” together with Markus Stolze [2]. The paper was published with
the proceedings of the 7th ACM SIGPLAN International Workshop on Reactive
and Event-Based Languages and Systems (REBLS’ 20), where I also presented
my findings. Furthermore, the published paper is available in Appendix A.1.

3.2 Proof Of Concept
Based on the learnings from the first phase, I started to compile ideas to help
software engineers debug RxJS programs. It was essential that a potential
solution:

1. Integrates seamlessly with an IDE
2. Is ready-to-hand, i.e. requires minimal to no effort from its users to get

started with debugging

McDirmid [15] proposed with the concept of “probes” for live programming
environments a way to trace variable values during runtime directly in the source
code editor. Similarly, imperative debuggers provide log points, a special type of
“breakpoint.” Instead of halting the program, they print an arbitrary log entry
to the debugging console. Using the debugging process by Layman et al. [13]
as a mental model, I combined the two concepts and transferred them to the

8

world of RP debugging: The operator log point6 shows the events emitted by an
operator during program execution in realtime.

After establishing the PoC for operator log points as an extension for Microsoft
Visual Studio Code (vscode), I used the cognitive walkthrough method [14,27] to
verify the utility. Its results, available as part of Appendix A.2.2, demonstrated
that the proposed debugging utility replaces manual print statements in a
scenario where engineers debug RxJS programs.

To convey the achieved improvement through operator log points effectively, I
created a “comparative user journey.” A basic user journey maps the touchpoints
of a user with a product [21]. In my comparative journey, I correlate how a
software engineer would solve a typical RxJS debugging task with an imperative
debugger compared to an engineer having operator log points at their disposal.
The result is available in Appendix B.

3.3 Prototype
Certain that operator log points satisfy all requirements defined in the previous
stage of the process, I started with the actual implementation work for a
production-ready vscode extension. Eventually, I released version 0.1.0 of “RxJS
Debugging for vscode.”

Figure 6: A screenshot of the debugger extension prototype. Line 8 shows an
enabled operator log point including a logged event. Operator log points are
managed by hovering a log point suggestion with the cursor.

The prototype of the extension enabled engineers to debug RxJS-based appli-
cations running with Node.js. After they installed the extension, the debugger
started to suggest operator log points with a small, diamond-shaped icon next
to the respective operator. Next, the engineer launched their application using
vscode’s built-in JavaScript debugger. The RP debugger automatically aug-
mented RxJS so it started to send event telemetry to vscode. The extension then

6Inspired by McDirmid [15], operator log points were called probes in the PoC and the
early prototype of the extension. This name caused confusion with the test subjects in a later
usability test. I renamed the utility based on the received feedback in turn.

9

displayed events (e.g., “Next: 4” in Figure 6 at the end of Line 8) for enabled
operator log points in-line with the respective operator in the source code editor.

There were various challenges and tasks to solve during the Prototype phase.
The following two sections present two highlights.

3.3.1 Communication with Node.js

One of the biggest challenges in implementing the prototype was to build a
reliable way to communicate with RxJS running inside the Node.js process. I
initially used a WebSocket to exchange messages with the JavaScript runtime.
However, this proved to be prone to problems in numerous ways. E.g.:

• How should the extension discover the WebSocket server running in the
other process?

• What if the network infrastructure prevents vscode from connecting to the
WebSocket in the first place?

• Would a WebSocket-based solution work at all, when RxJS is running in a
browser?

I decided to replace the WebSocket-based communication with something more
suitable eventually.

With the intent to build a debugger that integrates with the IDE seamlessly, I
looked into how vscode’s built-in JavaScript debugger, vscode-js-debug7, com-
municates with the runtime environment. As it turned out, vscode-js-debug
uses the Chrome DevTools Protocol8 (CDP) to communicate with arbitrary
JavaScript runtimes. Unfortunately, the debugger did not offer its CDP connec-
tion for reuse to other extensions. I reached out to the project maintainer and
contributed this particular functionality as a new feature (Appendix D). By the
time my contribution was released in April 2021, I had replaced the previous
WebSocket-based communication channel with CDP. Furthermore, I had now
a future-proof solution, which not only worked with RxJS running inside of a
Node.js process, but also in any other JavaScript virtual machine that supports
CDP (e.g., web browsers like Mozilla Firefox and Google Chrome).

Figure 7 depicts all relevant components involved in an RxJS RP debugging
session. More details to the extensions architecture is available in Appendix C.8.

DAP CDP

vscode

vscode-js-debug
Extension

RxJS Debugger
Extension

vscode-js-debug
Adapter

Node.js

RxJS Program

Telemetry

Figure 7: The Telemetry component instruments the RxJS Program (right).
The RxJS Debugger Extension runs inside of the vscode process. The components
communicate via a CDP channel established by vscode-js-debug.

7https://github.com/microsoft/vscode-js-debug
8https://chromedevtools.github.io/devtools-protocol/

10

3.3.2 Moderated Remote Usability Test

Once the main elements of the prototype were working sufficiently, I conducted
a remote usability test [5,14,18,19] with three subjects. The goals of this study
were:

1. To verify that operator log points can replace manual print statements in
an actual programming scenario

2. To identify usability issues not detected during development
3. To collect unstructured feedback on prototype and gather ideas for its

further development

Unfortunately, one subject could not get the extension prototype running on
their machine. With the other two subjects left, I was able to verify the first two
goals nonetheless. None of the participants used manual print statements during
the usability test. Additionally, the evaluation of the test sessions revealed ten
usability issues. Four of them prevailed for both subjects, hence I classified them
as major. The complete list of identified usability issues is part of Appendix
A.2.2.

I triaged the feedback from all three subjects and created items in the feature
backlog for the upcoming Distribution phase accordingly. With this, the last
goal was reached as well.

3.4 Distribution
The last process phase had two overarching goals:

1. To finalize the RP debugger prototype and release it to the community
2. To publish another research paper documenting the feasibility of a ready-

to-hand, and fully IDE-integrated RP debugger

To get started, I defined the roadmap for the extensions 1.0.0 release, which is
available in Appendix C.1. The following list contains three of its highlights:

• Support for the latest RxJS 7.x versions (only 6.6.7 was supported with
the prototype)

• Debugging of web applications bundled with Webpack (only the Node.js
virtual machine was supported so far)

• Resolve the four major usability issues identified during the Prototype
stage

Version 1.0.0 of “RxJS Debugging for vscode” was finally released on the 2nd of
December 2021 and was followed by three minor bugfix releases within six days.

3.4.1 Community Reception

On the day of release, I announced the debugger extension via its own Twitter
account @rxjsdebugging. Until the 30th of December 2021, the tweet reached
77k impressions (Appendix C.3).

11

https://twitter.com/rxjsdebugging

Further, the extension was downloaded 954 times (Appendix C.4), counted 51
unique users (Appendices C.5, C.10), and was featured in a live stream on
Twitch9.

Based on the results of the studies conducted before, I concluded that there was a
real need for an integrated RP debugger for RxJS. The overall positive reception
on RxJS Debugging for vscode was overwhelming nonetheless. However, the
major release also revealed bugs and feature gaps in the extension. I resolved the
most critical problems within a few days (see the changelog in Appendix C.9).
In addition, I processed feedback using GitHub Discussions10 and the feature
backlog (Appendix C.2).

3.4.2 ISSTA ‘22 Research Paper

In contrast to the delivered practical effort, I wrote another research paper with
Markus Stolze. The paper documents the latest advancements on the feasibility
of an RP debugger that is ready-to-hand and fully integrated with an IDE. The
latest version of this paper was submitted to the technical papers track of the
31st ACM SIGSOFT International Symposium on Software Testing and Analysis
2022 (ISSTA ‘22) at the time of publishing this thesis. The submitted paper
includes revisions based on the feedback of a double-blind review with three
reviewers and is available in Appendix A.2.

4 Future Work
4.1 Empirical Software Engineering

... Validation

Figure 8: Empirical validation as the next step in a future follow-up.

RxJS Debugging for vscode provides a practical solution to the problems identified
throughout the presented research process, and further empirical validation can
now be carried out.

Operator log points were successfully tested using HCI methods during their
development. However, a formal verification using empirical methods will yield
useful insight into the presented debugging utility. The most important research
question to answer in these regards is, how effectively operator log points can
replace existing debugging tools (i.e., manual print statements and the built-in,
imperative debugger tools).

With its major release, the debugging extension asks its users to opt-in for the
anonymized collection of user behavior data. This data is available for further
analysis as described in Appendix C.5. The accumulated data points allow

9David Müllerchen aka @webdave_de, a Google Developer Expert specialized on Angular
development, hosted the live reaction stream on Twitch. Unfortunately, the recording of the
stream is unavailable at this time.

10https://github.com/swissmanu/rxjs-debugging-for-vscode/discussions

12

https://twitter.com/webdave_de

conclusions on how software engineers use the extension. The data set might be
evaluated on its own to derive improvements for the presented debugging utility
or provide supportive arguments for a broader study as proposed above.

4.1.1 Open Science

All conducted studies (interviews, observational study, cognitive walkthrough
and moderated remote usability test) and their results are documented in
the respective research papers and their supplementary material available in
Appendices A.1, A.2, B to encourage future research on RP debugging. In
addition, a list of URLs leading to various GitHub repositories containing
relevant artifacts and data sets is available in Appendix F.

4.2 Open Source
I developed the presented RxJS debugging extension with the intention to
establish a sustainable open source project.

Three guides introduce new contributors to the project and to the extension’s
implementation and code organization details (Appendices C.6, C.7, C.8). The
transparent project governance is built around the GitHub platform: The feature
backlog and bug-tracking is based on GitHub Issues, Discussions help triage
inquiries from users. Unit and integration tests, automatically executed using
GitHub Actions, help keep the extension’s main branch stable.

The feature backlog in Appendix C.2 contains ideas for practical-oriented future
work. I present two features from this backlog in the following.

4.2.1 User Onboarding after Installation (Issue #58)

After an engineer installed the extension, they are left on their own to get
started with debugging. Even though the readme file provides information to
some extent, the onboarding experience for new users can be improved. With
this feature, ways to enhance that experience should be explored and suitable
measures be implemented eventually.

A contributor needs to understand the vscode extension API. However, profound
knowledge of the extension’s own source code is not required.

4.2.2 Log Point History (Issue #44)

Instead of showing only the latest emitted event from an enabled operator
log point, the debugger should display all previously emitted events. This
functionality would allow engineers to reconstruct the behavior of an operator
without over and over replaying the failure scenario using the live system.

A contributor may start simply by implementing a list to display historical events
in textual form. The list might then be gradually improved towards a graphical
representation of the events using marble diagrams (Appendix E).

This feature requires a good understanding of the vscode extension API and
in-depth knowledge of the debugging extensions codebase. However, all event

13

https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/58
https://github.com/swissmanu/rxjs-debugging-for-vscode/issues/44

data to populate a historical view is already present, and contributors can focus
on implementing the best possible DX.

5 Conclusion
In this summative thesis, I presented the condensed results of my research on
reactive debugging for programs based on RxJS, a popular library for reactive
programming with JavaScript.

The results of interviews, war story reports, and an observational study revealed
the major shortcoming of previously available RxJS debugging utilities. Even
though software engineers might know them, they abstain from using them
because they are not “ready-to-hand,” i.e., not integrated with the development
environment they are working in and accustomed to. Instead, they use manual
print statements.

With the concept of “readiness-to-hand” as a guiding light, I built a proof of
concept implementation for a novel debugging utility to find relief from this
problem: Operator log points debug RxJS operators without requiring the
engineer to leave Microsoft Visual Studio Code. While refining the debugger
iteratively, I employed a cognitive walkthrough, a comparative user journey,
and a usability test at different stages of development to validate the utility’s
capability of solving the problem of ready-to-hand reactive debugging.

I documented the results of my research together with Markus Stolze in two
research papers: The first paper was published with the proceedings of the
ACM REBLS ’20 workshop. The second report is in review for the technical
papers track of the ACM ISSTA ’22 conference when publishing this thesis.
Furthermore, I released “RxJS Debugging for Visual Studio Code,” the, to my
knowledge, first RxJS-specific debugger that fully integrates with a development
environment at the end of 2021.

By providing open access to all relevant material (studies, results, papers, source
code, and project governance), academical- and practical-oriented future work is
encouraged. To further facilitate potential contributions, I suggested concrete
topics for researchers and engineers likewise.

14

A Research Papers
A.1 Debugging of RxJS-Based Applications
This paper was published with the proceedings of the 7th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and Systems
(REBLS ’20), 16th November 2020.

16

Debugging of RxJS-Based Applications
Manuel Alabor

Eastern Switzerland University of Applied Sciences
Rapperswil, Switzerland
manuel.alabor@ost.ch

Markus Stolze
Eastern Switzerland University of Applied Sciences

Rapperswil, Switzerland
markus.stolze@ost.ch

Abstract
RxJS is a popular library to implement data-flow-oriented
applications with JavaScript using reactive programming
principles. This way of programming bears new challenges
for traditional debuggers: Their focus on imperative program-
ming limits their applicability to problems originated in the
declarative programming paradigm. The goals of this paper
are: (i) to understand how software engineers debug RxJS-
based applications, what tools do they use, what techniques
they apply; (ii) to understand what are the most prevalent
challenges they face while doing so; and (iii) to provide a
course of action to resolve these challenges in a future itera-
tion on the topic. We learned about the debugging habits of
ten professionals using interviews, and hands-on war story
reports. Based on this data, we designed and executed an ob-
servational study with four subjects to verify that engineers
predominantly augment source code with manual trace logs
instead of using specialized debugging utilities. In the end,
we identified the lack of fully integrated RxJS-specific debug-
ging solutions in existing development environments as the
most significant reason why engineers do not make use of
such tools. We decided to elaborate on how to resolve this
situation in our future work.

CCS Concepts: • Software and its engineering;

Keywords: reactive programming, debugging, empirical soft-
ware engineering

ACM Reference Format:
Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-Based
Applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems (RE-
BLS ’20), November 16, 2020, Virtual, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3427763.3428313

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
REBLS ’20, November 16, 2020, Virtual, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-8188-8/20/11. . . $15.00
https://doi.org/10.1145/3427763.3428313

User

System

UI

Interaction

Update Data Flow Interaction Data Flow

Figure 1. Basic data-flows in a UI Application.

1 Introduction
The (graphical) user interface (UI or GUI) of an application
handles two constant flows of data: External user input (e.g.
mouse, touch, or keyboard interaction) is interpreted and
forwarded to the system. Once the system processed an inter-
action and updated its internal state accordingly, it notifies
the UI about these changes, which are relayed to the user.

To implement the data-flows as shown in Figure 1 to drive
a UI, the Observer design pattern[7] is often used and varia-
tions of the pattern are omnipresent today[4].
The Observer design pattern has its roots in the Object

Oriented Programming paradigm (OOP), hence relies on
imperative code constructs to handle a data-flow. Reactive
Programming (RP) is another approach to realize such flows:
It inherits the declarative way of implementing functional-
ity from Functional Programming (FP), i.e., data-flows are
described rather than implemented step by step[5]. RP func-
tionality is usually available in the form of a library providing
necessary abstractions, for imperative as well as declarative
programming languages.

According to the IEEE Standard Glossary of Software En-
gineering, debugging is an activity “to detect, locate, and
correct faults in a computer program.”[1] From interpreting
memory dumps, manually adding log statements to trace
program execution up to the point where specialized debug-
ging programs can interrupt a running process and interact
with it on a low level, debugging utilities took different forms
over time.

15

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

Modern IDEs and internet browsers ship with their own
set of debugging tools. These debuggers are specialized in
working with imperative, control-flow-oriented program
code. The following example helps us to illustrate the impli-
cations of this: Assuming an engineer is inspecting a piece
of code and wants to know which part of the program was
executed right before. For a program implemented using the
imperative paradigm, the call stack gives a clear answer to
this question. Hence the stack frames represent each point
in the program execution. In a data-flow-oriented program
implemented using RP, the stack trace for a transformation
function in the flow will not point to its logical predeces-
sor. Instead, the stack frames lead to the internals of the RP
runtime environment.

This example demonstrates the limits of a traditional control-
flow oriented debugger, which cannot interpret RP abstrac-
tions. As a result, these debuggers are not able to give the
correct answer to a data-flow-specific inquiry. There have
been numerous efforts to provide engineers with improved
debugging utilities for RP [17] [18] [6]. However, none of
these have seen broad adoption by practitioners yet. To gain
a better understanding of the underlying root causes, we
conducted interviews with several software engineers and
collected “war stories” about the challenges they face in
their day-to-day jobs when using RP. Based on this collected
evidence, we will validate their statements in an observa-
tional study using RxJS and search for an answer to our first
research question:

• RQ1: What challenges do software engineers face when
debugging RxJS-based applications?

In response to this, we are going to present a concept on
how to resolve previously identified challenges and answer
the second research question:

• RQ2: How can the experience of software engineers dur-
ing the debugging process of RxJS-based applications be
improved?

The implementation and validation of these proposals
lead to our third and last research question, which will be
investigated in our future research:

• RQ3: What is the impact of proposed solutions on the
debugging experience of software engineers?

We will conclude this introductory section with the clar-
ification of important terms and a view on known RP de-
bugging utilities. Section 2 gives an overview of the insights
from the conducted interviews and the collected war story
reports. We present our observational study intended to val-
idate results from the interviews and reports in Section 3,
which allow us to answer RQ1. Before our final conclusion,
we will answer RQ2 in Section 4 “Future Work” and review
the threats to validity regarding our study in Section 5.

1.1 Reactive Programming
RP is a declarative programming paradigm that is strongly
influenced by FP. While engineers use imperative program-
ming languages to specify every step how a program has to
do something, declarative languages allow to describe what
the program should achieve ultimately. A runtime system
then figures out away to satisfy that description and executes
it. RP functionality is usually provided in form of a language
extension for a specific programming language (e.g. REScala
for Scala[17]) or as a library (e.g. RxJS for JavaScript[15])

Either way, both usually provide a (i) domain specific lan-
guage (DSL) to describe data-flow graphs, how they depend
on each other and how data flowing through should be trans-
formed. At program execution, a (ii) runtime environment
evaluates these descriptions and creates a representation
of the specified graphs. It then takes care that values are
processed and propagated correctly through them as well as
that a consistent system state[5] is always maintained.

1.2 ReactiveX and RxJS
“Reactive Extensions” (ReactiveX) is an open-source project.
Its members and contributors created a generic description
of a RP API. They further provide reference implementations
of this API along with RP language extensions for various
programming languages like Java, C#, or JavaScript1. Reac-
tiveX summarizes the API as “. . . a combination of the best
ideas from the Observer pattern, the Iterator pattern, and
functional programming”[14]. The core concept of the API
specification is the Observable2: An observable can be com-
posed with other observables to form a data-flow graph.
Once an observable gets subscribed, it might push (“emit”)
an arbitrary number of values to the subscriber until it either
completes, fails, or gets unsubscribed again. There is a multi-
tude of operator functions available which allow the transfor-
mation of values and composition with other (higher-order3)
observables. The mechanism of subscribing to an observable
is closely related to the Observer design patterns attach
method.

RxJS[15] is the reference implementation of the ReactiveX
API specification for JavaScript. Its current major version 6 is
implemented using TypeScript and is used by large projects
like Angular[8]. Listing 1 shows an example of RP using RxJS
in TypeScript.
The RxJS community uses marble diagrams as shown in

Figure 2 to document [19] the runtime behavior of an ob-
servable visually. Unit test libraries[16] use this abstraction
to encode the behavior of mocked observables or to describe
assertions.
1http://reactivex.io/languages.html
2There is no known relation between ReactiveX’ concept of the Observable
and the deprecated Java class java.util.Observable.
3An observable emitted by another observable is considered a Higher-Order
observable. This naming is related to the concept of higher-order functions
in mathematics and computer science.

16

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

1 import { of } from 'rxjs';
2 import { filter , map } from 'rxjs/operators';
3

4 of (0, 1, 2, 3, 4). pipe(// Create observable
5 filter (i => i < 4), // Omit integers >= 4
6 map(i => i ∗ 2) // Multiply int. by 2
7). subscribe (console . log) // Logs: 0, 2, 4, 6

Listing 1. Basic RxJS example creating an observable
emitting four integers. Each integer is processed by two
operators and finally written to the console.

0 2 4 6

Figure 2. A Marble Diagram visualizing the observable in
Listing 1. From left to right, each marble represents an emit-
ted value. The vertical line at the last marble indicates that
the observable completed after emitting 6.

Gather
Context

Instrument
Hypothesis

Test
Hypothesis

Hypothesis to test

Modified system

Information

Figure 3. Debugging Process Model after Layman et al. [10]

1.3 Debugging Process Model
Layman et al. [10] use the debugging process model, an
iterative hypothesis refinement process, to formalize the
general activity of debugging a computer program in their
paper.

The process consists of three steps and includes a feedback
loop: After the engineer (i) gathered sufficient context infor-
mation (e.g. ways to reproduce the failure or details about
external factors) and understands the situation satisfactory,
they generate a hypothesis on the origins of the bug or what
impact a change made to the program might have. With the

intent to proof their hypothesis, the engineer then (ii) instru-
ments the defective program using suitable tools (e.g. adding
log statements, setting breakpoints or removing code parts).
Finally, the instrumented system gets (iii) challenged against
the formed hypothesis. E.g., code statements are executed
step by step using a debugger or trace logs are analyzed and
compared against expected behavior. If the hypothesis turns
out to be correct, the debugging process stops. If not, the
newly gained knowledge about the problem is used to build
a refined hypothesis and start a new iteration.

1.4 Debugger Concepts
Software engineers have many tools and utilities at hand,
which help them to interact with and gain insight on the
behavior of a defective program. Tools range from the instru-
mentation of source code with trace log statements (manu-
ally or automated) to specialized utilities allowing them to
directly interact with a program at runtime.

Many of these specialized utilities differentiate themselves
fundamentally in regards of the concepts they are built upon.
We identified and will use the following three categories to
structure them:
Traditional (i) imperative-focused debuggers provide the

functionality to interact with programs at runtime: Once
a breakpoint pauses the program execution, they provide
access to the current call stack and the values assigned to
variables of a given stack frame. Manual control of the pro-
gram execution allows inspecting its behavior step by step
as well as assigning new values to variables “on-the-fly.”
RP provides its own set of challenges to debuggers: Call

stacks expose internal invocations of the RP runtime system
rather than, e.g., the predecessor transformation according
to the data-flow graph. Further, breakpoints can only be
used on the imperative parts of transformations and lack the
functionality of interrupting execution when the RP runtime
hits a specific node within the graph. A (ii) reactive debugger
can interpret the underlying graph model of a RP runtime
system. It leverages on it and provides specialized tools e.g.,
to navigate, visualize or instrument the data-flow graph [18]
[6] [3].
Traditional, as well as reactive debuggers work with the

current state of a program’s execution only. They lack in-
formation about what happened before or what is going to
happen in the future. This shortcoming is tedious, especially
when debugging a problem depending on many complex
circumstances in a system. An (iii) omniscient debugger [13]
[12] does not interact with the executed program directly.
Instead, it records runtime telemetry and provides an inter-
face for later inspection. Engineers can “time travel” back
and forth through the program execution trace without the
hassle of reconstructing a given failure situation over and
over again.

17

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

1.5 RxJS Debugging Utilities
1.5.1 rxjs-spy. rxjs-spy[2] is a logging library specialized
on RxJS observables. Once an observable is tagged with
an arbitrary string identifier, a monitor can generate trace
logs whenever a value is emitted as well as when individual
life cycle events occur (i.e. subscribe, unsubscribe, complete
and error). Ideally, tagged observables are created during
development when the data-flows are composed for the first
time. Like tap4, the tag operator in Listing 2 is completely
transparent to the actual data-flow.

1 import { create } from 'rxjs-spy';
2 import { tag } from 'rxjs-spy/operators';
3

4 const spy = create (); // Create monitor
5 spy. log (/ multiply /); // Log tags matching
6 // RegEx /multiply/
7 interval (1000). pipe(
8 map(i => i ∗ 2),
9 tag ('multiply'), // Tag with "multiply"
10 map(i => i − 1),
11 tag ('subtract') // Tag with "subtract"
12 take (2)
13). subscribe ();

Listing 2. Application of rxjs-spy using its tag operator
on Line 9 and 11.

The data-flow configuration in Listing 2 will produce a
trace log as shown in Listing 3 eventually.

1 Tag = multiply ; notification = subscribe
2 Tag = multiply ; notification = next ; value = 0
3 Tag = multiply ; notification = next ; value = 2
4 Tag = multiply ; notification = unsubscribe

Listing 3. rxjs-spy execution trace log generated by de-
fault monitor in Listing 2 on Line 4.

Additional features are available through the library’s
console interface. E.g., a tagged observable can be paused, so
values get collected rather than being emitted immediately.
The engineer can then emitted these values one after another
manually or resume all of them at once.

1.5.2 rxfiddle. rxfiddle, as proposed by Banken et al.[6] is
the first reference implementation of their RP debugger ar-
chitecture for the ReactiveX API specification. They describe
a software design consisting of two independent compo-
nents: The (i) host instrumentation augments a ReactiveX
API implementation to emit events at runtime (e.g., emitting
4RxJS’ tap operator is used to execute a side effect whenever an observable
emits a value. It cannot modify or influence the emitted value nor the
observable in any way.

a value or life cycle events) and forwards them to the second
component. The (ii) visualizer interprets the events and dis-
plays them along two dimensions: The StoryFlow graph[11]
shows when an observable is created and how it interacts
with other observables, whereas a marble diagram visualizes
the values emitted over time for every observable.

The reference implementation supports event processing
for the (outdated) RxJS major versions 4 and 5 only and
is available as an online application5. A proof-of-concept
implementation working on a local computer is available
through the projects Git repository6.

1.5.3 RxViz. RxViz is a visualizer utility available online7.
It is an “animated playground for Rx observables”[3] and
allows the visualization of RxJS observables using marble
diagrams. Engineers implement or copy-paste data-flows
in an editor window using JavaScript. A diagram is gener-
ated based on this code over a configurable time interval.
The diagrams are rendered immediately and are available as
downloadable SVG files.

1.5.4 rxjs-playground. Building on the basic concept of
marble diagrams, rxjs-playground8 is a sophisticated sandbox
to simulate and visualize RxJS observables interactively in
the browser. Users define editable and computed observables,
represented as vertical marble diagrams: Values emitted by
an editable observable can be created and modified either
by interacting with its marble diagram directly or using a
simple JSON syntax. The behavior of a computed observable
is controlled by implementing functionality with TypeScript
in the provided editor.
rxjs-playground renders the values and life cycle events

for all observables in real-time, allowing quick iterations on
a specific piece of code.

2 Interviews and War Stories
On the way of finding our interview partners and war stories
reporters, we noticed it to be a challenge to find people who
understand themselves as users of RP and related technolo-
gies. E.g., even though Angular makes heavy use of RxJS, we
will see that many engineers do not directly interact with its
abstractions when building “basic” UIs. In the end, we were
able to conduct interviews with five engineers and collect
reports on hands-on experiences from another five.

2.1 Interviews
We organized informal interviews, which allowed us to gain
insight into how software engineers work with RP in their
daily jobs. We talked to five engineers (following identified
using the codes I1 through I5) and asked them about the

5https://rxfiddle.net/
6https://github.com/hermanbanken/RxFiddle
7https://rxviz.com/
8https://hediet.github.io/rxjs-playground

18

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

technologies they use, what their personal experience with
RP was, what they most liked and most disliked about it.
We used video chat to conduct all interviews remotely. The
interview with I4 was done in English, all others in Swiss-
German. Therefore, quotes by I1, I2, I3, and I5 are translated
statements.
Our first three interview partners I1 to I3 stated to work

currently or more recently have worked with RxJS in con-
junction with Angular and ngrx9 to develop frontend web
applications. I4 was a proficient RxJS user. Our fifth interview
partner I5 was a backend engineer who used akka-streams10
in Scala to model data-flows for a WebSocket-based11, reac-
tive API layer serving a web frontend application.
All interview partners pointed out that they like RP be-

cause it provides them with “[. . .] a good way for composing
multiple data sources” (I1) and, combined with “[. . .] a stat-
ically typed language, RP guarantees some kind of basic
formal correctness of a program” (I5). Hence a significant
strength of RP seems to be the ability to describe complex
data-flow constructs using a specialized DSL. However, they
also pointed to current challenges: The learning curve can
be steep for a novice engineer: “Being challenged with new
abstractions [of Angular and ngrx] already, I experienced
RxJS concepts and operators to be hard to convey” stated I3,
giving lectures in frontend web application development.
It was interesting to hear that, especially in the area of

developing web applications using Angular, our partners
seemed not to have to work with pure RxJS code often. E.g.,
when using ngrx for state management, “The framework
hides observables from its main API surface carefully, so
you do not have to interact with them directly” (I2). As soon
as our interviewees had to extend built-in functionalities
with own features, e.g., a new effect12, I1 and I2 valued the
possibility to interact with underlying observables though.
When asked explicitly about what they dislike the most

about RP, all interview partners, with no exception, empha-
sized the debugging process of an RP program as unsatisfac-
tory. The fact that our interviewees remembered the search
for a bug as something negative did not surprise, hence a
bug is commonly something negative afflicted. It was re-
markable though that statements like “In 99% of all cases, I
add console.log statements manually and run the program
over and over again, trying to understand what is happening”
(I1) were prevalent and showed why our partners dislike RP
debugging in particular. I1 to I3 mentioned the Redux Dev-
Tools13 as particular helpful when debugging Angular/ngrx
applications nonetheless. Further, I1 noted marble diagrams
as valuable in order to understand how an RxJS observable
works, whether during development or debugging.
9https://ngrx.io/
10https://akka.io/
11https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
12https://ngrx.io/guide/effects
13https://chrome.google.com/webstore/detail/redux-devtools

2.2 War Stories
After we built an intuition for how software engineers work
with RP by evaluating the interviews, we were interested
in more RxJS-specific, hands-on experiences. We asked the
engineering community via Twitter14 about their personal,
most recent RxJS debugging war story and sent out various
emails with the same request. After reaching out, we were
able to collect five responses in English: One by an RxJS core
team member (R1), two from Angular Google Developer
Experts (R2/3) and another set of reports by two software
engineers (R4/5) building web and mobile applications using
React and RxJS, which includes the author of this paper.
In their report, R3 focused on how they built code with

improved testability because of recent changes in RxJS: “[. . .]
in the beginning, it was very hard to write asynchronous
tests [. . .]. I really disliked [. . .] you were forced to pass a
TestScheduler”. Allowing to pass the scheduler explicitly as
parameter forced them to introduce code, which was only
necessary for testing reasons they stated further. With its
current major version, RxJS 6 improved profoundly on the
TestScheduler. The runtime environment itself can be aug-
mented with the scheduler now, which results in cleaner
code.

Even though the share of non-productive, testing-related
code necessary to build mature RxJS-based applications was
mentioned to have decreased today, R2 as well as R4 and R5
commented on the common practice of manually modifying
production code during debugging sessions, hence confirm-
ing earlier statements from our interview partners. R5 de-
scribed a specific scenario where they suspected a problem
within a complex observable composition: Having multiple
asynchronous, remote data sources, they used observables
to model the dependencies between them and implemented
computations on their results as operators. On top, each
data source could re-emit updated versions of previously re-
quested information at any time. After a week in production,
though tested thoroughly, the first of many bugs got re-
ported: “Displayed numbers kept changing where we did not
expected them to. In other places, they were not rerendered
where they were supposed to, e.g. after we changed them
in the system,” they told us. The browser’s debugger tools
and its breakpoints did not help much since the operators
were executed several times. Other parts of the stream were
impossible to get a handle upon, even with conditional break-
points. “I started to inspect the flow [. . .] with console.logs
and later also using tags from rxjs-spy which exposed more
detailed life cycle information.” After a time-consuming log
analysis, they finally were able to resolve all bugs. The log
statements added were removed in the aftermath, though
the rxjs-spy-related code was left in the observable stream
in case they might be needed again in the future.

14https://twitter.com/swissmanu/status/1242429409208029185

19

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

In a related war story, R2 discloses similar invasive prac-
tices using an external tool when they implemented logic
to request and cache batches of a remote resource: “It took
quite some time to get it right and one of the most invalu-
able tools proved to be Stackblitz15 which gave us the ability
to quickly create smaller working examples and iterate on
them.” This sandboxed setting allowed them to run, debug,
and iterate on selected pieces of a larger observable stream.
Even though the final result had to be integrated back into
the actual application, the extra effort was worth the result
the engineer concluded in their report.

A final story describes yet another way of utilizing an ex-
ternal tool: Rather than using a dedicated sandbox to develop
pieces of a more complex system, R5 used Rx Visualizer, an
online visualization utility to generate marble diagrams from
real code. Like in the report before, it was necessary to ex-
tract parts from the codebase of the actual application. Once
done, the visualizations helped to understand when values
got emitted, when subscriptions changed and when observ-
ables completed: “Marble diagrams were a huge help in order
to understand detailed runtime and life cycle behaviors of
the observable.”

2.3 Insights
Software engineers value how they can describe data-flows
using a RP DSL, even though the learning curve was per-
ceived as steep. We heard some interesting reports on how
RxJS is applied in a daily development environment: Mar-
ble diagrams help to understand an observables behavior
and are useful to implement tests. Large frameworks like
Angular hide some of the complexity of RxJS but allow en-
gineers to make use of its full power once the pre-provided
functionality needs to be extended.
Most participants considered a statically typed language

like TypeScript, a fundamental necessity allowing them to
implement data-flow graphs with minimal, formal correct-
ness, as we heard in the interviews. When the engineers
needed to interact with data-flow graphs at runtime, e.g. to
debug the behavior of a specific part of a stream, we noticed
throughout most reports that they were not 100% satisfied
with the feature set they were provided by traditional debug-
ging tools. Almost all of the reporters referred to the practice
of modifying their source code manually and adding trace
log statements where they assumed a problem to overcome
the feature gaps in traditional debuggers. Listing 4 exempli-
fies two challenges when debugging a stream of observables
with imperative-focused debugging tools.

Where a breakpoint can easily be added to Line 2 within
the arrow function, this is impossible for take on Line 3. One
would need to place the breakpoint within the operator’s
internal implementation instead, which can be cumbersome

15Stackblitz is a full JavaScript development environment available online
https://stackblitz.com/

1 interval (1000). pipe(
2 map(i => i ∗ 2),
3 take (4),
4 tap(console . log)
5). subscribe (showValue); // Emits: 0, 2, 4, 6

Listing 4. An observable emitting a sequence of increas-
ing integers every second. Traditional breakpoints are
possible inside the arrow function on Line 2. Though a
breakpoint can be added on Line 3, it will never be hit
during the actual execution of the take operator. Line 4
shows a manually introduced trace log statement using
the tap side effect operator.

in case the operator is used in a different stream as well.
Once the breakpoint on Line 2 interrupts the execution of
the program, we will notice another shortcoming related
to this circumstance: Rather than representing the logical
flow implemented using the DSL, the call stack as shown
in Listing 5 points deep into RxJS’ internal implementation.
That is why a traditional debugger’s step controls cannot
operate on the data-flow graph; It just can not interpret this
level of abstraction.

1 <anonymous> RxJS
2 rxjs 6.5.2/ internal / operators /map.js :49
3 rxjs 6.5.2/ internal / Subscriber . js :66
4 rxjs 6.5.2/ internal /observable / interval . js :23
5 // ...

Listing 5. A call stack showing the internal RxJS exe-
cution stack for a breakpoint in the arrow function on
Line 2 in Listing 4.

We learned that simple trace augmentation, like on Line 4
in Listing 4, logs emitted values only. Such trace logsmight be
helpful when debugging simple graph compositions. Though,
they lack life cycle information of the underlying observables
completely. The importance of such information was em-
phasized by R5 describing their usage of rxjs-spy: To know,
when an observable gets subscribed and unsubscribed, when
it completes or fails, helped them to solve complex problems
multiple times. When dealing with higher-order observables,
they value this information even as indispensable.

Finally, we understood that if a problem is hard to replicate
within the actual application, the engineers use external
sandbox development environments to isolate specific parts
of an observable composition. These allow them to iterate
on it faster than it would be possible otherwise.

After the evaluation of all reports and interviews, we spec-
ulate that software engineers truly lack, but also seldomly
use debugging tools that can handle RP concepts provided
by RxJS. Even though traditional debuggers might help to

20

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

some extent, they do not provide all the information an en-
gineer requires in a particular situation. Instead, they turn
to manual trace log augmentation and extraction of source
code as we saw repeatedly.

3 Validation
Almost all participants from our interviews and war story
reports showed a tendency to manually modify source code
with trace logs during the hypothesis instrumentation phase
when debugging RxJS code. This practice is often not per-
ceived as efficient since the evaluation and interpretation of
trace information tends to be cumbersome and very time-
consuming. Also, removing log statements after a successful
debugging process might leave new bugs in production code
if not done carefully. Like Banken et al. [6] before, we identi-
fied this technique as one of the primary debugging practices
when software engineers work with RxJS-based code.

That is why we saw demand in validating this statement
and previous findings about manual code modification for
debugging reasons with an observational study. Our study
sought to validate the following hypothesis:

• Hypothesis: If software engineers must solve an RxJS-
based problem, then they will instrument the code man-
ually in order to understand its behavior.

3.1 Study Design
The subjects for our study were required to have experi-
ence in developing applications with RxJS. We recruited four
subjects willing to participate in our experiment. We were
interested in seeing how the subjects apply debugging tech-
niques they would use in everyday situations in their jobs.
Hence we decided to conduct the experiment in a somewhat
uncontrolled environment where the subjects used their own
devices with their development environments of personal
preference. Our objective for the experiment was communi-
cated as broad as possible to prevent bias: “We are interested
in how you debug a problem” did not mention our hypothesis
by intention.
We planned to have a one-hour session for the actual ex-

periment with each subject, followed-up by an unattended
after-action survey. We executed the experiment in two con-
secutive blocks of 25 minutes each. We provided a ZIP file16
containing the source code for two frontend web applica-
tions implemented using TypeScript and RxJS along with a
Jest test suite at the start of a session. Each of these appli-
cations was rigged with two to three bugs, which we asked
the subjects to identify and fix using whatever debugging
techniques they prefer and commonly use. Where the first
application required less complicated intervention to resolve
the contained bugs, the second application demanded sub-
stantial modifications in the data-flow as it made heavy use
of higher-order observables. The provided test suite allowed
16https://github.com/swissmanu/mse-pa1-experiment/archive/v1.0.2.zip

the subjects to understand the functional requirements of
each application as well as to quickly verify their changes to
be successful (or not).
A block was considered as complete once the test suite

signaled all bugs as resolved, or the 25 minutes expired. We
asked our subjects to act like in a pair programming situation
where they “think out loud” their thought process. Though
we refrained from answering any question related to the
“where” a bug has to be expected.

We sent out the participant briefing document to all of
our subjects a week before the experiment. We outlined the
course of action and provided them with an example ZIP file.
This file contained the same setup as the file provided at the
experiment and allowed the subjects to get accustomed to
things like starting the web applications or running the test
suites.
We decided to monitor our subjects’ progress remotely

using voice chat and screen sharing due to the COVID-19
situation at the time of our study. Furthermore, this allowed
us to record the sessions with relatively low technical effort
for later evaluation.
The after-action survey17 was provided within 24 hours

after a subject’s participation in the main part of the study.
We asked the subjects about (Q1) if they currently use RxJS
on or off their jobs, the (Q2) number of years they have
experience with RxJS, in (Q3) which field (like frontend,
backend or others) they use RxJS and finally (Q4) which
tools and techniques they use to debug RxJS-based code. The
respective answers allowed us to put the observed actions
into perspective and detect potential irregularities in case
a subject acted differently as they would have in a “real”
situation.

3.2 Study Execution and Results
After the subjects got themselves accustomed to the applica-
tion provided and understood its purpose, all of them used
the test suite to gather context about what features do not
work as expected initially. Further, all of them tried to recre-
ate the failing behavior in the UI manually. We could not
observe any of the subjects using external tools, e.g. RxViz,
to inspect specific code parts in isolation in later iterations
of the debugging process. Though, S4 noted that they would
have usually started to decompose the problem into smaller
pieces and observe their behavior in specific after the 25
minutes of the second block expired.
While all subjects added manual trace log statements to

existing arrow functions or by adding tap operators in the
instrument hypothesis phase, none of them used additional
libraries like rxjs-spy for doing so. S2 and S4 used the tradi-
tional debugging tools provided by their browser or IDE to

17https://github.com/swissmanu/mse-pa1-experiment/blob/
f70102885be86fb2323b9516005e1d6dfeb9795b/after-action-survey-
questions.md

21

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

Table 1. Observed practices and tool usage per subject.

Subject Trace Logs Debugger Add. Tools

S1 X

S2 X X

S3 X

S4 X X Next step

Table 2. Results per subject for each presented problem.

Subject Problem 1 Problem 2

S1 Time expired Time expired

S2 Time expired Time expired

S3 Time expired Time expired

S4 Solved Time expired

add breakpoints. Both of them commented on the inability of
stack traces to interpret RP abstractions as unsatisfying. We
could further observe a “trail-and-error” approach in later
iterations of the debugging process. The subjects started to
introduce modifications to the system, which they immedi-
ately tested against their latest hypothesis. Table 1 provides
an overview on the complete collected data regarding used
techniques and tools.

Only S4 was able to solve the first problem given, as shown
in Table 2. None of the subjects was able to successfully
identify and fix the bugs hidden in the second problemwithin
time.

The survey responses available in Table 3 showed that S2,
S3 and S4 had two or more years of experience with RxJS.
Where all of them use RxJS to develop frontend applications,
S4 declared having used RxJS for backend development as
well. When asked what tools they usually use for debug-
ging, S2, S3 and S4 stated to use the traditional debugger of
their IDE. S1 and S3 leverage additional tracing functional-
ity of rxjs-spy, and all four of our subjects use manual log
statements.

3.3 Interpretation
We were able to observe how all subjects predominantly
used manual source code augmentation by adding trace logs.
Two of the subjects used traditional debugging utilities in
order to inspect the program’s state at runtime in addition.
All subjects used the new information gained to refine their
hypothesis about underlying problems before starting a new
iteration in the debugging process. We could not observe
the extraction to and reintegration from an external tool.
All subjects exhibited the debugging behavior described in

Table 3. After-action survey responses per subject.

Subject Q1 Q2 Q3 Q4

S1 Yes 1 year Frontend Trace Logs, rxjs-
spy

S2 No > 3 years Frontend Debugger, Trace
Logs

S3 Yes 2 years Frontend Debugger, Trace
Logs, rxjs-spy

S4 No 2 years Frontend,
Backend

Debugger, Trace
Logs

our hypothesis. Further, we could verify previous results by
Banken et al. [6] successfully as well.

Even though S1 and S3 stated in the after-action survey to
regularly use rxjs-spy for debugging RxJS programs, neither
of them made use of this library during the experiment part
of the study.
Interviewing professionals, consolidating RxJS hands-on

experiences from the war stories, and evaluating the results
from our observational study showed us that software engi-
neers use a variety of practices, tools and utilities to debug
RP programs. Beside the habit of adding trace logs manually,
we saw them evidently trying to answer their debugging
hypotheses using traditional, imperative-focused debugger
utilities. The later way of debugging was repeatedly com-
mented as unsatisfying as these utilities cannot handle RP
constructs, and with this, cannot help to detect problems lo-
cated within these at all. The former way, the introduction of
manual log statements, was both described as the prevalent
way of debugging RxJS or as “the last resort” when no other
debugging technique helped before.
We heard further how engineers isolate specific observ-

ables from bigger data-flows and how they inspect those in
sandboxed environments and visualizers. This helps them
understanding the observable life cycle and value emitting
behaviors better and iterate faster in order to resolve prob-
lems.

More than 50% of our 14 peers throughout the interviews,
war story reports and the experiments after-action survey
stated to know about specific RxJS RP debugging tools. It
was apparent that all subjects during the observational study
refrained from using any of them, though. It is our specu-
lation that the subjects knowing about specific tools held
themselves back from using them because they perceived
the effort of setting them up (e.g., installing and configuring
rxjs-spy) as too time-consuming. Not having the “right” tool
available without significant additional effort is also what
we interpret from the statement by S4: Though they would
have started to extract parts of the data-flow and inspect it
with other tools, they would have done so only after the 25

22

Debugging of RxJS-Based Applications REBLS ’20, November 16, 2020, Virtual, USA

minutes of the block expired; Hence a more accessible way
allowing such analyses would have influenced the behavior
of the subject.

The best RP debugging tools are useless if either the hur-
dle to use them is too high, or engineers do not understand
which particular part of the debugging process they can
benefit from them. Salvaneschi et al. [18] provided in their
previous study on the Reactive Inspector for REScala evidence
on the effectiveness of a fully integrated RP debugging solu-
tion, which supports developers in their daily work using the
Eclipse IDE. Hence, we can postulate an answer to our first
research question RQ1: The most significant challenge soft-
ware engineers face when debugging RxJS-based programs
is to know when they should apply what tool to resolve their
current problem in the most efficient way.

4 Future Work
We see the biggest shortcoming of current RxJS-oriented
debugging solutions like rxjs-spy, RxFiddle, or RxViz in fact
that they are not integrated in established development en-
vironments (e.g., IDEs or internet browser developer tools).
This leads to the practice of manually augmenting code itself
rather then working with it in a less obtrusive, fully inte-
grated way as we were able to proof in our observational
study. Using specialized utilities is an extra effort an engi-
neer has to invest every time they want to debug a data-flow:
Either tagging an observable for rxjs-spy or extracting parts
of it to an external environment, all of these practices require
engineers to “go the extra mile” in order to inspect the run-
time behavior of an RxJS-based application. The additional
effort might be neglectable when treating a rather complex
data-flow composition. However, it holds back engineers
from applying the tools to simple observables like in the first
block of the experiment we conducted.

The observation that two out of four of our study subjects
tried to debug an RP application with traditional, imperative-
centric debugger utilities, as well as related statements from
the interviews and war stories, strengthened our assumption
regarding tool integration. Engineers expect the debugging
tools they know and rely on to give correct insight on every
program, no matter the paradigm (imperative or declarative)
with which it got implemented.

This leads us to the answer to our second research ques-
tion RQ2: We want to improve the experience of debugging
RxJS-based applications by providing RP specific debugging
utilities where software engineers expect them the most:
Fully integrated with the traditional debugger they know
from their IDE or browser developer tools18.
18A positive example of such a seamless integration is the debugger of
the Google Chrome developer tools: It combines call stack frames of asyn-
chronously executed functions[9] seamlessly with those of synchronously
executed code. This provides software engineers with a better understand-
ing about which part of the program triggered the statement they currently
inspect.

The answer on which RP debugging tool exactly (e.g., a
full reactive debugger or a visualizer using marble diagrams)
we are going to integrate, how such integration will look
like in detail, how it will support engineers in a particular
step of the debugging process, as well as the answer on RQ3
will be part of our future work on the topic of “Debugging
RxJS-based Applications”.

5 Threats to Validity
This study is subject to the following threats and limitations:

5.1 External Validity
The data we collected from interviews, war story reports,
and the observational study is based on a sample population
with 14 individuals. Hence, the results we conveyed in this
paper are not representative and are not transferable to the
entire software engineering population.

5.2 Internal Validity
The observational study was executed in an uncontrolled
environment. All subjects used their personal computers,
running their own software development environments. We
have no comparative data to measure how this design in-
fluenced the observed outcome, assuming that this setup
diminishes the reproducibility of the experiment.
We noticed that the subjects needed time to understand

the intention of the applications they were provided with
before they were able to start with the actual debugging
process. Since the amount of required time was different
from subject to subject, we suspect it influenced the result
of the experiment.

5.3 Construct Validity
The time limit of 25 minutes per experiment block bears the
potential to put the subjects under time pressure. This risk
might explain why we could not observe any more time-
consuming debugging techniques (e.g., installing additional
utilities like rxjs-spy) during the study.

6 Conclusion
In this paper, we have explored how software engineers de-
bug data-flow-oriented programs implemented using RxJS.
We presented an observational study to validate a hypothesis
based on the outcome of ten individual interviews and hands-
on experience reports from software engineering profession-
als. More than 50% of the 14 engineers we worked with
during our research told us that they know of the existence
of specific debugging tools for RP with RxJS. Nonetheless,
the experiment conducted with four participants allowed us
to prove that engineers augment source code manually with
trace logs instead of using such specialized utilities.
We identified the fact that RxJS specific debugging tools

are not tightly integrated with existing, traditional debug-
gers in IDEs and the developer tools of internet browsers as

23

REBLS ’20, November 16, 2020, Virtual, USA Manuel Alabor and Markus Stolze

the main reason why software engineers do not use them
more often. In order to lower the effort necessary to use
specialized RP debugging tools for engineers, we declared
the integration of such as the matter for our own future
research.

Acknowledgments
We want to thank the engineers who participated in our
study for their time.

References
[1] 1990. IEEE Standard Glossary of Software Engineering Terminology.

https://doi.org/10.1109/IEEESTD.1990.101064
[2] 2019. An example using the console API | rxjs-spy. Re-

trieved 17-May-2020 from https://cartant.github.io/rxjs-spy/
Versioned as https://github.com/cartant/rxjs-spy/tree/
2bffdee2d5f712d70583ef48297446bd31a9a6f4.

[3] 2020. RxViz - Animated playground for Rx Observables. Retrieved
16-May-2020 from https://rxviz.com/ Versioned as https://github.com/
moroshko/rxviz/tree/51a737717a27f15b68f907b2329f7b0b6b11cb2b.

[4] Manuel Alabor. 2019. Reactive Applications in Frontend Engineering
Today. (2019). https://github.com/swissmanu/mse-seminar-reactive-
applications-in-frontend-engineering-today/releases/tag/v1.0.1.

[5] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A Survey on Reac-
tive Programming. ACM Comput. Surv. 45, 4, Article 52 (Aug. 2013),
34 pages. https://doi.org/10.1145/2501654.2501666

[6] Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging
Data Flows in Reactive Programs. In Proceedings of the 40th Interna-
tional Conference on Software Engineering (Gothenburg, Sweden) (ICSE
âĂŹ18). Association for Computing Machinery, New York, NY, USA,
752âĂŞ763. https://doi.org/10.1145/3180155.3180156

[7] Ralph Johnson Erich Gamma, Richard Helm and John Vlissides. 1995.
Design patterns: elements of reusable object-oriented software. Pearson
Education India.

[8] Google. 2020. Angular - Observables in Angular. Retrieved 24-
Apr-2020 from https://angular.io/guide/observables-in-angular
Versioned as https://github.com/angular/angular/blob/
64ac1062489bbc97a0d4b95af5ce9566091fe044/aio/content/guide/
observables-in-angular.md.

[9] Google. 2020. JavaScript Debugging Reference. Retrieved 16-Aug-
2020 from https://developers.google.com/web/tools/chrome-
devtools/javascript/reference#call-stack Versioned as
https://web.archive.org/web/20200713153259/https://developers.
google.com/web/tools/chrome-devtools/javascript/reference.

[10] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer,
Robert Deline, and Gina Venolia. 2013. Debugging Revisited: To-
ward Understanding the Debugging Needs of Contemporary Soft-
ware Developers. In 2013 ACM / IEEE International Symposium on
Empirical Software Engineering and Measurement. IEEE, 383âĂŞ392.
https://doi.org/10.1109/ESEM.2013.43

[11] Shixia Liu, Yingcai Wu, Enxun Wei, Mengchen Liu, and Yang Liu. 2013.
StoryFlow: Tracking the Evolution of Stories. IEEE Transactions on
Visualization and Computer Graphics (Proceedings of IEEE InfoVis 2013)
19, 12 (2013), 2436–2445.

[12] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert
Noll, and Nimrod Partush. 2017. Engineering Record And Replay For
Deployability: Extended Technical Report. CoRR abs/1705.05937 (2017).
arXiv:1705.05937 http://arxiv.org/abs/1705.05937

[13] G. Pothier and E. Tanter. 2009. Back to the Future: Omniscient Debug-
ging. IEEE Software 26, 6 (2009), 78–85.

[14] ReactiveX. 2020. ReactiveX. Retrieved 24-Apr-2020 from
http://reactivex.io/ Versioned as https://web.archive.org/web/
20200419004415/http://reactivex.io/.

[15] ReactiveX. 2020. RxJS - Introduction. Retrieved 15-Aug-2020 from
https://rxjs.dev/guide/overview Versioned as https://github.com/
ReactiveX/rxjs/blob/46e35f71b02d02c5a7d7f426e78eadd625c1a67a/
docs_app/content/guide/overview.md.

[16] ReactiveX. 2020. RxJS - Testing RxJS Code with Marble Diagrams.
Retrieved 16-May-2020 from https://rxjs-dev.firebaseapp.com/guide/
testing/marble-testing Version 6.5.5-local+sha.7e4589a1.

[17] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
Bridging between Object-Oriented and Functional Style in Reactive
Applications. In Proceedings of the 13th International Conference on
Modularity (Lugano, Switzerland) (MODULARITY âĂŹ14). Association
for Computing Machinery, New York, NY, USA, 25âĂŞ36. https:
//doi.org/10.1145/2577080.2577083

[18] Guido Salvaneschi and Mira Mezini. 2016. Debugging for Reactive
Programming. In Proceedings of the 38th International Conference on
Software Engineering (Austin, Texas) (ICSE âĂŹ16). Association for
Computing Machinery, New York, NY, USA, 796âĂŞ807. https://doi.
org/10.1145/2884781.2884815

[19] Andre Staltz and Contributors. 2019. RxJS Marbles. Retrieved 16-May-
2020 from https://rxmarbles.com

24

A.2 Debugging Support for Reactive Programming
The review version of this paper (Appendix A.2.1) and its supplementary material
(Appendix A.2.2) were submitted to the Technical Papers track at the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis 2022
(ISSTA ’22).

A.2.1 Paper

27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Debugging Support for Reactive Programming
Feasibility of a Ready-to-hand Debugger for RxJS

Anonymous Author(s)

ABSTRACT
Debugging reactive data-flow-oriented applications is a cum-
bersome task. Unfortunately, modern development environ-
ments provide only suitable tools to debug control-flow-
oriented programs. As a result, software engineers utiliz-
ing RxJS, a popular library for reactive programming in
JavaScript, use inapt debugging tools, utilities outside of
their accustomed IDE, or antiquated debugging practices like
manual print statements. This paper presents two contribu-
tions to reactive debugging: (i) Operator log points, a novel
debugging utility for reactive programming, make manual
print statements obsolete. We implement them for RxJS as an
extension for Microsoft Visual Studio Code. By doing so, we
integrate the utility with the workflow of software engineers
seamlessly, thus (ii) proof the feasibility of a ready-to-hand
debugging utility for reactive programming by existence.

CCS CONCEPTS
• Software and its engineering → Software testing
and debugging; Data flow languages; Software maintenance
tools; • Human-centered computing → Human computer
interaction (HCI); User centered design.

KEYWORDS
reactive programming, reactive debugging, human computer
interaction, user centered design

ACM Reference Format:
Anonymous Author(s). 2022. Debugging Support for Reactive
Programming: Feasibility of a Ready-to-hand Debugger for RxJS.
In Proceedings of ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2022). ACM, New York,
NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
When software engineers look at the source code of an existing
application, they want to understand how the program was
implemented technically. They do this either because they
want to get themselves acquainted with a new code base they
never worked with before (e.g., during onboarding of a new

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea
© 2022 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

team member) or, more often, because someone reported an
unexpected application behavior (e.g., the program crashed).
Inspecting source code at runtime is commonly known as
“debugging” [1]. Layman et al. [6] formalized an iterative
process model (see Figure 1) by dividing the broader task
of debugging into three steps: The engineer uses (i) gath-
ered context information to build a hypothesis on what the
problem at hand might be. They then (ii) instrument the
program using appropriate techniques to prove their hypoth-
esis. Eventually, they (iii) test the instrumented program. If
the outcome proves the hypothesis to be correct, the process
ends. Otherwise, the engineer uses gained insight as input
for the next iteration.

(i)
Gather
Context

(ii)
Instrument

(iii)
Test

Figure 1: Iterative Debugging Process after Layman
et al.: Gather context to formalize hypothesis, instru-
ment and test system to prove hypothesis, resulting
in a new iteration or a confirmed hypothesis.

The most basic debugging technique for instrumentation
and testing is manually adding print statements to the source
code: They generate execution logs when placed across the
program’s code and allow to reconstruct its runtime behavior.
However, the number of generated log entries increases, the
required amount of work to analyze the logs gets out of hand
quickly. This is why specialized debugging utilities provide
tools to interact with a program at runtime: After interrupt-
ing program execution with a breakpoint, they allow engineers
to inspect stack frames, inspect and modify variables, step
through successive source code statements, or resume pro-
gram execution eventually. These utilities work best with
imperative or control-flow-oriented programming languages
since they interact with statements and stack frames of the
debugged program.

Modern IDEs enable software engineers to debug programs,
no matter what programming language they are implemented
with, using one generalized user interface (UI). The result is
a unified user experience (UX) where debugging support is
only a click away.

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

However, by adopting control-flow-oriented debugging util-
ities into their workflows, software engineers face a new prob-
lem when working with reactive programming (RP). Sal-
vaneschi et al. [16] described this shortcoming of traditional
debuggers when confronted with RP and coined the concept
of RP Debugging. Later, Banken et al. [3] proposed a solution
for debugging RxJS RP programs in an external visualizer
utility.

Alabor et al. [2] examined the RP debugging habits of
software engineers in an observational study. They replicated
the observation by Salvaneschi et al. and observed that even
engineers aware of RP debugging tools did not use them.
Instead, these engineers used manual print statements.

Within this paper, we are going to present two contribu-
tions to the field of RP debugging:

1. Operator log points are a novel utility for debugging
RP programs. They make manual print statements
obsolete by providing specialized log points for RP
applications.

2. By implementing operator log points in RxJS De-
bugging for Visual Studio Code, an extension for Mi-
crosoft Visual Studio Code1 (vscode), we provide a
proof by existence for the feasibility of a ready-to-
hand RP debugging utility. Software engineers can
debug RxJS programs without learning new UX pat-
terns or additional setup effort.

Before we do a deep-dive on the functionality of operator
log points in Section 4, we present an example for the primary
challenge of RP debugging in Section 2 and discuss related
work in Section 3. Next, we give an overview of performed
usability inspections and validations in Section 5. Finally, we
consider threats to validity regarding the usability tests in
Section 6 and introduce topics for future work in Section 7.

2 RP DEBUGGING: THE HARD WAY
A primary characteristic of RP is the paradigm shift away
from imperatively formulated, control-flow-oriented code (see
Listing 1) to declarative, data-flow-focused source code [16].
Instead of instructing the computer how to do what, i.e., one
step after another, we use RP abstractions to describe the
transformation of a continuous flow of data.

RxJS implements reactive sources with Observables. An
observable generates five types of life cycle events: Once
a consumer (i) subscribes to an observable, the observable
starts to (ii) emit values, (iii) completes (e.g., when a network
request has been completed), fails with an (iv) error, or may
get (v) unsubscribed. Engineers use Operators to transform
these events on their way through the data-flow graph. An
operator modifies values, composes other observables, or
changes how life cycle events get forwarded (e.g., catch an
error and emit an empty value instead). Listing 2 shows

1https://code.visualstudio.com

1 import reportValue from './reporter';
2

3 for (let i = 0; i < 5; i++) {
4 if (i < 4) {
5 reportValue(i ∗ 2);
6 }
7 }

Listing 1: Basic example of imperative-style/control-
flow-oriented programming in JavaScript: Multiply
integers between 0 and 4 for every value that is
smaller than 4 and call reportValue with the result.

1 import reportValue from './reporter';
2 import { of } from 'rxjs';
3 import { filter , map } from 'rxjs/operators';
4

5 of (0, 1, 2, 3, 4).pipe(// Observable with ints 0..4
6 filter (i => i < 4), // Operator omitting 4
7 map(i => i ∗ 2), // Operator multiplying by 2
8). subscribe(reportValue)

Listing 2: Basic RP example implemented with RxJS
in JavaScript: Generate a data-flow of integers from
0 to 4, skip values equal or larger then 4, multiply
these values by 2 and call reportValue with each
resulting value.

an example of a source observable, two operators, and one
consumer.

Traditional debuggers reach their limitations when facing
data-flow-oriented code: While we can navigate through the
successive iterations of the for loop in Listing 1 using the step
controls of the debugger, this is not possible for the transfor-
mations described in Listing 2. Assuming we set a breakpoint
within the lambda function passed to filter on Line 6, step-
ping over to the next statement will not lead to the lambda
of map on Line 7 as one might expect. Instead, the debugger
continues in the internal implementations of filter, part of
the RxJS RP runtime. With a deeper understanding of the
difference between control- and data-flow-oriented program-
ming, this might look plausible. However, previous research
[2,3,16] revealed that software engineers expect different be-
havior from the debugging tools they have at hand. As a
direct consequence, engineers fall back to the problematic
debugging technique of adding manual print statements, as
exemplified in Listing 3 on the next page.

3 RELATED WORK
Salvaneschi et al. [16] identified the divergence between a
control-flow-oriented debugger’s expected and actual behav-
ior as one of their key motivations for RP debugging. The
stack-based runtime model of control-flow-oriented debuggers
does not match the software engineers’ data-flow-oriented
mental model of the program they are debugging. Because
the debugger has a “lack of abstraction,” it cannot interpret

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Debugging Support for Reactive Programming ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

1 import reportValue from './reporter';
2 import { of } from 'rxjs';
3 import { filter , map, tap } from 'rxjs/operators';
4

5 of (0, 1, 2, 3, 4).pipe(
6 tap(console. log), // <-- Print Statement
7 filter (i => i < 4),
8 tap(console. log), // <-- Print Statement
9 map(i => i ∗ 2),

10 tap(console. log), // <-- Print Statement
11). subscribe(reportValue)

Listing 3: Manually added print statements on Lines
6, 8 and 10 to debug a data-flow implemented with
RxJS in JavaScript.

high-level RP abstractions and works on the low-level imple-
mentations of the RP runtime extension instead. Salvaneschi
et al. proposed Reactive Inspector [15], the first specialized
RP debugging solution for RP programs implemented with
REScala, an RP extension for the Scala programming lan-
guage. Integrated with the Eclipse IDE, the utility provides a
wide range of RP debugging functionalities like the visualiza-
tion of data-flow graphs and the information that traverses
through them. Reactive breakpoints allow to interrupt pro-
gram execution once a graph node reevaluates its value.

Since then, RP has gained more traction across various
fields of software engineering. With a shared vision on how to
surface RP abstractions at the API level, ReactiveX 2 consoli-
dated numerous projects under one open-source organization.
Together, its members provide RP extensions for many of to-
day’s mainstream programming languages like Java, C#, and
Swift. For the development of JavaScript-based applications,
software engineers can rely on RxJS3. Angular by Google is
one of the more popular adopters of this library and uses
RxJS to model asynchronous operations like fetching data in
web frontend applications.

Two years after Salvaneschi et al. proposed RP Debugging,
Banken et al. [3] showed that debugging RxJS-based RP pro-
grams is quite similar to REScala-based ones. They were able
to categorize the debugging motivations of their study par-
ticipants into four main, overarching themes. These directly
correlate with the debugging issues identified by Salvaneschi
et al. earlier, as we show in Table 1.

Banken et al. provided a debugger in the form of an isolated
visualizer: RxFiddle. The browser-based application visualizes
the runtime behavior of an RxJS program in two dimensions:
A central (i) data-flow graph shows which elements in the
graph interact with each other, and a dynamic (ii) marble
diagram4 represents the processed values over time.

2http://reactivex.io/
3https://rxjs.dev
4Marble diagrams are a visualization technique used throughout the Re-
activeX community to graphically describe the behavior of observable-
based data-flow graphs. A marble represents a life cycle event, e.g., an
emitted value. Multiple marbles are arranged on a thread from left to
right, indicating the point in time when the respective life cycle event
happened. See https://rxmarbles.com/ for examples.

Table 1: Correlation of debugging issues identified/-
solved by Salvaneschi et al. with overarching debug-
ging motivations by Banken et al.

Salvaneschi et al. Banken et al.

Missing dependencies Understanding dependencies
between observables

Bugs in signal expressions Finding bugs and issues in re-
active behavior

Understanding RP programs Comprehending behavior of
operators in existing code

Gaining high-level overview of
the reactive structure

Performance Bugs -

Memory and Time Leaks -

Both Salvaneschi et al. and Banken et al. suggested techni-
cal architectures for RP debugging systems. Both suggestions
can be summarized as distributed systems consisting of two
main components: The (i) RP runtime is instrumented to
produce debugging-relevant events (e.g., value emitted or
graph node created). These events get processed by the (ii)
debugger, which provides a UI to inspect the RP program’s
state.

Another two years after Banken et al. published their work,
Alabor et al. [2] examined the state of RxJS RP debugging.
Software engineers still struggled to use appropriate tools
to debug RxJS programs according to the interviews they
conducted. The authors performed an observational study
and found instances of engineers who knew about RP-specific
debugging tools but abstained from using them during the ex-
periment. They credited this circumstance to the fact that the
IDEs of their subjects did not provide suitable RP debugging
utilities ready-to-hand.

Alabor et al. conclude that knowing the correct RP de-
bugging utility (e.g., RxFiddle) is not enough. The barrier
to using such utilities must be minimized. I.e., RP debug-
ging utilities must be fully integrated into the IDE to live
up to their full potential, so using them is ideally only an
engineer’s keypress away and adheres to accustomed, known
UX patterns.

4 AN RXJS DEBUGGER
READY-TO-HAND

We translated these findings into the central principle for
the design of our RP debugger for RxJS: Ready-to-hand.
Software engineers should always have the proper debugging
tool available, no matter what programming paradigm they
are currently working with. Further, this tool should integrate
with the engineer’s workflow seamlessly.

4.1 Operator Log Points
Operator log points combine the concept of log points as
known from control-flow-oriented debuggers with live probes,

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

formerly proposed by McDirmid [7]5 for RP programs. They
display life cycle events produced by an RxJS operator di-
rectly within the source code editor.

Possible operator log points are suggested ready-to-hand
through an icon annotation within the code editor, next to the
respective operator. While the software engineer instruments
the source code to prove their debugging hypothesis, they
can enable a log point by hovering the mouse pointer over
its associated annotation and selecting the Add Operator
Log Point action (see Figure 2). When ready to test their
hypothesis, the engineer starts the RxJS program using the
built-in JavaScript debugger; no extra effort is required. Once
the program is running, each enabled operator log point
displays the life cycle events together with the source code
that produced them. Engineers are free to enable or disable
additional log points during the debugging session; the life
cycle event display will adapt accordingly.

Once finished debugging, the software engineer stops the
program. Contrary to manual print statements, no clean-up
work is necessary afterward since operator log points do not
require any code modifications.

Figure 2: RxJS Debugging for vscode used to debug
code from Listing 2. A diamond icon indicates opera-
tor log points: A grey outline represents a suggested
log point (Line 7), a filled, red diamond an enabled
log point (Line 8). The source code editor shows life
cycle events at the end of the respective line (Line
8, “Unsubscribe”). Log points are managed by hover-
ing the respective icon and selecting the appropriate
action.

4.2 Suggesting a Log Point
Log points for operators are automatically suggested while the
software engineer edits the source code of an RxJS program.
To interpret the programs code semantically, the debugger ex-
tension leverages on the TypeScript6 programming language
toolchain.

We use the TypeScript parser to continuously evaluate
source code, which results in an abstract syntax tree (AST).
5As a matter of fact, operator log points were originally called operator
probes, but got renamed after initial confusion with our test users.
6TypeScript is a strongly typed programming language that compiles
to JavaScript https://www.typescriptlang.org/

Along with the semantical structure of the program, the AST
contains type and positional information for every parsed
token. The extension processes the type information to de-
tect all present RxJS operator functions. For every operator
function found, the positional information allows to annotate
the relevant source code in the editor with an icon.

4.3 Architecture
The technical architecture of RxJS Debugging for vscode (see
Figure 4) is a refined version of the system proposed by
Banken et al. [3].

DAP CDP

vscode

js-debug
Extension

RxJS
Debugger
Extension

js-debug
Adapter

Node.js

RxJS
Program

Telemetry

Figure 3: The Telemetry component instruments the
RxJS program (right). The RxJS Debugger Exten-
sion runs inside of the vscode process. The two com-
ponents communicate with each other by reusing
the CDP communication channel established by the
generic vscode JavaScript debugger called js-debug.

JavaScript virtual machines (VM) like V8 (used in Google
Chrome or Node.js) or SpiderMonkey (used in Mozilla Fire-
fox) implement the Chrome DevTools Protocol (CDP)7. De-
bugging tools like vscode’s built-in JavaScript debugger use
CDP to connect and debug JavaScript programs. RxFiddle
by Banken et al. [3] uses WebSockets to exchange relevant
data. We leverage the CDP connection established by the vs-
code’s JavaScript debugger, making the system more robust
since we do not need to maintain an additional channel for
debugger communication.

5 USABILITY INSPECTION AND
VALIDATION

We followed a User-Centered Design (UCD) [5] approach in
three iterations to conceptualize and implement our debug-
ging utility. The relevant methods we applied helped us to
keep our efforts aligned with our main goal: To establish a
debugging utility that is ready to hand and does not requiry
any extra learning or setup procedures.

After sketching a rough proof of concept (PoC) in the first
step, we performed a cognitive walkthrough [17] to validate
our idea of replacing manual print statements with operator
log points. The resulting data helped us to build a prototype
of the extension. Next, we used this prototype to conduct
a moderated remote usability test with three subjects. This
allowed us to uncover pitfalls in the UX concept and find
7https://chromedevtools.github.io/devtools-protocol/

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Debugging Support for Reactive Programming ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 2: Cognitive walkthrough action sequence with
eight steps.

Step Task

1 Open File

2 Navigate to Operator

3 Open Code Actions

4 Create Operator Log Point

5 Open Operator Log Point Monitor

6 Launch Application

7 Interact with Application

8 Interpret Runtime Behavior

misconceptions early in the development process. Finally, we
used the results of these sessions for further refinement. We
completed the first minor version of the RxJS RP debugger,
which we released to the Visual Studio Marketplace in May
20218.

We used the test cases created by Alabor et al. [2] for both
the cognitive walkthrough and the remote usability test.

5.1 Cognitive Walkthrough
We concluded the first iteration of our development process
with a PoC demonstrating the basic concept of operator log
points.

Looking for an informal, expert-driven usability inspection
method [8], we found the cognitive walkthrough [17] to be
a good fit in this early stage of development. We prepared
the profile of a typical user for the RP debugger as input
to the inspection. Based on this profile and the debugging
process by Layman et al. [6], we created the action sequence
available in Table 2. We performed the walkthrough using
the Problem 1 web application by Alabor et al. [2].

The cognitive walkthrough revealed six usability issues, as
summarized in Table 3. The full inspection report, including
the complete user profile, is available on Github9.

5.2 Moderated Remote Usability Test
After the initial validation using the cognitive walkthrough,
we completed the development of the refined prototype, ready
to test with real users.

5.2.1 Study Design. “Think aloud” tests for high functional-
ity systems benefit from at least five test subjects or more [9].
The feature spectrum of the RP debugger prototype is small;
hence the probability of finding major usability issues with a
smaller subject population is high. Therefore, we decided to
work with three individual subjects for our study.

Participants, recruited via Twitter, were required to have
worked with RxJS during the past year and use vscode as
their primary IDE. We sent out a PDF containing a short
8An anonymized excerpt of the extensions Marketplace presence is
available in the supplementary material.
9The report is available in the supplementary material.

Table 3: UX issues identified using cognitive walk-
through inspection.

Step Issue

3

The user might know code actions, indicated through
the yellow light bulb icon, for providing refactoring
and quick fix options. It is questionable if they would
expect operator log point options in here as well.

4

When enabling an operator log point, the user does not
get any confirmation that this action was successful.
Exception: The list of enabled operator log points in
the debugging view is visible.

5
The monitoring pane, showing logs for enabled operator
log points, must be opened manually. The user might
not be aware of this after enabling a log point.

5 The monitoring pane is empty initially. Users might
not know what to do next after opening it.

7
The user might not interact with the RP program in
the opened default browser in order to get live feedback
in the monitoring pane.

7
The opened default browser might overlay the monitor
pane in vscode. Because of this, the user might miss
on the live trace of values and life cycle events.

briefing and a prototype description a week before the actual
test session. The briefing contained information about soft-
ware requirements (Zoom, Node.js, npm/Yarn, and vscode)
and details on what the subjects might encounter during
their test session. Here, we emphasized the importance of
“think aloud” [4,11], the practice of continuously verbalizing
thoughts without reasoning about them.

5.2.2 Study Execution. At the start of a test session, we
provided each participant with a ZIP file10 containing the
Problem 2 web application by Alabor et al. [2] and the pack-
aged version of the debugger extension prototype11. While the
subject prepared their development environment, we started
the video, screen, and audio recording with their consent.
Also, we gave a scripted introduction to the code base they
just received.

The participants had 25 minutes to resolve as many bugs as
possible using the debugger prototype. Rather than tracking
each subject’s success rate of fixed defects, we emphasized
detecting usability issues in their workflow instead.

5.2.3 Study Evaluation. One participant could not get the
prototype extension up and running on their system, which
means we had only two valid data sets for further evaluation
after study execution. We categorized the observed usabil-
ity issues by debugging process phase (i.e., gather context,
instrument hypothesis, and test hypothesis) and task (e.g.,
“Setup Environment,” “Manage Log Points,” or “Interpret
Log”). From a total of 10 issues, we observed four being a
10This link might reveal the author(s) identity/identities
https://github.com/ANONYMOUS
11This link might reveal the author(s) identity/identities
https://github.com/ANONYMOUS

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Major UX issues observed during usability
test sessions.

Phase Task Issue

Instru. Setup
Participant starts the application in de-
bugging mode, even though they have
started it before.

Instru. Manage Participant unable to find log point list
in debugging view.

Test Interpret
Participant has difficulties to make a con-
nection from a log point to the generated
log entry.

Test Interpret Participant interprets logged value as the
“input” of the instrumented operator.

problem for both remaining study subjects. Thus we pri-
oritized them as “major.” The full usability issue report is
available on Github12. Table 4 presents the four major issues.

5.3 Utilization
5.3.1 Application of Results. We applied the results from the
cognitive walkthrough and the usability tests to refine and
complete the RxJS RP debugger presented in Section 4. For
example, both the PoC and the prototype had an extra view
for displaying the output of a log point, visually disconnect-
ing them from each other. We classified this circumstance
as prone to confuse the user during the walkthrough but
did not change the prototype yet. The usability tests with
real subjects confirmed our suspicion, however. Because of
this, we changed the UI for the final, current version and
introduced the inline display for log point output directly
in the code editor. Another example of an improvement is
how the debugger suggests operator log points: The subjects
were unaware that suggested log points were available via
the code action menu, even though this is an established UX
pattern in vscode. Therefore, we removed the suggestions
from this menu and introduced the diamond-shaped indicator
icon, which is always visible.

5.3.2 Concept Verification. The applied inspection and ver-
ification methods, in combination with the practical imple-
mentation of the debugger, deliver the existence proof for
the feasibility of a ready-to-hand RP debugging utility. Even
though the usability test revealed four major usability issues,
we successfully verified that operator log points resolve the
problems previously identified by Alabor et al. [2].

6 THREATS TO VALIDITY
The results of the usability test are subject to the following
threats and limitations:

6.1 Internal Validity
We performed the usability test in an uncontrolled, remote
environment, and all participants used their own computers
12The report is available in the supplementary material.

and software installations. The downside of this is the early
failure of one subject, which could not get the prototype
extension running on their system resulting in an invalid
data set. Even though we could have prevented this situation
in a controlled lab environment, we consciously decided to
take this risk and, in turn, get more realistic results from
users working in the context of their accustomed development
environment.

6.2 External Validity
Due to the circumstance that one study participant could
not set up the prototype extension, we ended up having
only two valid data sets after the remote usability test. Two
test subjects should have allowed us to find around 50% of
all usability issues present [10]. Because the two remaining
subjects share four of 10 issues, we are confident that we
identified the most critical usability problems nonetheless.

6.3 Construct Validity
We carefully moderated the test session once test subjects fell
silent for more than 10 seconds and reminded them to “think
aloud.” Even though the participants told us that “speaking
to themselves” created an unfamiliar environment for them,
we expect the moderation techniques used [4] to minimize
any influences on the results.

7 FUTURE WORK
There are several ways how future work can contribute to
the efforts presented in this paper.

7.1 Field Test
Version 0.1.2 of RxJS Debugging for vscode can debug RxJS
programs running in the Node.js JavaScript VM. The major
release 1.0.0 generalizes this solution further and brings oper-
ator log points to RxJS applications running in web browsers.
Thus, we expect installations of the debugger to increase
further since more software engineers can benefit from its
features.

We see the opportunity for a comprehensive field test
on how engineers use the novel RP debugger once its next
iteration is available. Usage statistics provided through the
planned analytics reporting module will prove helpful in these
regards.

7.2 Visualizer Component
Banken et al. [3] proposed visualization techniques for RxJS
data-flow graphs in RxFiddle. The debugging utility we pre-
sented in this paper benefits from the integration of such
a visualizer. The graphical representation of an observable
graph helps novice engineers to understand RxJS concepts
better, and experienced engineers get a new angle on the
composition of multiple observables when debugging.

7.3 Record and Replay
A software engineer can record the behavior of a RP program
and replay that data independently as many times as they

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Debugging Support for Reactive Programming ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

wish later [12]. Such a function would allow two things: During
debugging, the engineer can rerun a recorded failure scenario
without depending on external systems like remote APIs.
Further, recorded data might be used for regression testing
to verify that a modified program still works as expected
[13].

7.4 Time Travel Debugging
Contrary to regular control-flow-oriented debuggers, omni-
scient [14], or time travel debuggers cannot only step for-
ward but also backward in time. This is because they rely
on recorded data rather than a currently running program.
Once there is a way to record, store and replay debugging
data as suggested before, time travel debugging is a possible
next step. Software engineers can then manually navigate
through recorded data and observe how individual system
parts react to the stimuli.

8 CONCLUSION
We presented operator log points as a novel debugging utility
for programs implemented using reactive programming in this
paper. With RxJS Debugging for vscode, we demonstrated
how operator log points replace manual print statements for
RxJS-based programs. We developed the debugger using a
user-centered design process facilitating usability inspection
and validation methods, which allowed us to identify and
resolve four major usability issues. In addition, we successfully
verified that the proposed utility fulfills the requirement of
readiness-to-hand, i.e., that it integrates seamlessly with
software engineers’ daily workflows and does not require
additional learning or setup effort.

REFERENCES
[1] 1990. IEEE standard glossary of soft-

ware engineering terminology. IEEE.
DOI:https://doi.org/10.1109/IEEESTD.1990.101064

[2] Manuel Alabor and Markus Stolze. 2020. Debugging
of RxJS-based applications. In Proceedings of the
7th ACM SIGPLAN international workshop on reac-
tive and event-based languages and systems (REBLS
2020), Association for Computing Machinery, 15–24.
DOI:https://doi.org/10.1145/3427763.3428313

[3] Herman Banken, Erik Meijer, and Georgios Gousios.
2018. Debugging data flows in reactive programs.
In Proceedings of the 40th international con-
ference on software engineering, ACM, 752–763.
DOI:https://doi.org/10.1145/3180155.3180156

[4] T. Boren and J. Ramey. 2000. Thinking aloud: Reconcil-
ing theory and practice. IEEE Transactions on Profes-
sional Communication 43, 3 (September 2000), 261–278.
DOI:https://doi.org/10.1109/47.867942

[5] Kim Goodwin. 2009. Designing for the digital age: How to
create human-centered products and services. Wiley Pub.

[6] Lucas Layman, Madeline Diep, Meiyappan Nagappan,
Janice Singer, Robert Deline, and Gina Venolia. 2013.
Debugging revisited: Toward understanding the debug-
ging needs of contemporary software developers. In 2013
ACM / IEEE international symposium on empirical
software engineering and measurement, IEEE, 383–392.
DOI:https://doi.org/10.1109/ESEM.2013.43

[7] Sean McDirmid. 2013. Usable live programming. In Pro-
ceedings of the 2013 ACM international symposium on
new ideas, new paradigms, and reflections on program-
ming & software - onward! ’13, ACM Press, 53–62.
DOI:https://doi.org/10.1145/2509578.2509585

[8] Jakob Nielsen. 1994. Usability inspection methods. In
Conference companion on human factors in computing
systems, 413–414.

[9] Jakob Nielsen. 1994. Estimating the number of subjects
needed for a thinking aloud test. International Journal
of Human-Computer Studies 41, 3 (September 1994),
385–397. DOI:https://doi.org/10.1006/ijhc.1994.1065

[10] Jakob Nielsen and Thomas K. Landauer. 1993. A math-
ematical model of the finding of usability problems. In
Proceedings of the SIGCHI conference on human factors
in computing systems - CHI ’93, ACM Press, 206–213.
DOI:https://doi.org/10.1145/169059.169166

[11] Mie Nørgaard and Kasper Hornbæk. 2006. What
do usability evaluators do in practice?: An ex-
plorative study of think-aloud testing. In Proceed-
ings of the 6th ACM conference on designing in-
teractive systems - DIS ’06, ACM Press, 209.
DOI:https://doi.org/10.1145/1142405.1142439

[12] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. 2017. Engineer-
ing record and replay for deployability: Extended technical
report. arXiv:1705.05937 [cs] (May 2017). Retrieved from
http://arxiv.org/abs/1705.05937

[13] Ivan Perez and Henrik Nilsson. 2017. Testing and debug-
ging functional reactive programming. Proceedings of the
ACM on Programming Languages 1, ICFP (August 2017),
1–27. DOI:https://doi.org/10.1145/3110246

[14] Guillaume Pothier and Éric Tanter. 2009.
Back to the future: Omniscient debugging.
IEEE Software 26, 6 (November 2009), 78–85.
DOI:https://doi.org/10.1109/MS.2009.169

[15] Guido Salvaneschi, Gerold Hintz, and Mira Mezini.
2014. REScala: Bridging between object-oriented and
functional style in reactive applications. In Proceed-
ings of the 13th international conference on mod-
ularity - MODULARITY ’14, ACM Press, 25–36.
DOI:https://doi.org/10.1145/2577080.2577083

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ISSTA 2022, 18-22 July, 2022, Daejeon, South Korea Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

[16] Guido Salvaneschi and Mira Mezini. 2016. Debug-
ging for reactive programming. In Proceedings
of the 38th international conference on software
engineering - ICSE ’16, ACM Press, 796–807.
DOI:https://doi.org/10.1145/2884781.2884815

[17] Cathleen Wharton, John Rieman, Lewis Clayton, and
Peter Polson. 1994. The cognitive walkthrough: A practi-
tioner’s guide. Institute of Cognitive Science, University
of Colorado.

8

A.2.2 Supplementary Material

36

Debugging Support for Reactive Programming
Supplementary Material

Anonymous Author(s)

1

Contents
Introduction 3

Cognitive Walkthrough 4
Persona “Frank Flow” . 4

Profile . 4
Goals . 4
Frustrations . 4

Setup . 5
Context . 5
User . 5
Task . 5
Environment . 5

Walkthrough . 5
Open File . 5
Navigate to Operator . 5
Open Code Actions . 6
Create Probe for Operator . 6
Open Observable Probe Monitor 8
Launch Application . 8
Interact with Application . 8
Interpret Runtime Behavior . 10

Failure Stories . 13

Usability Test 14
Observed Issues . 14

Marketplace Presence 15

References 17

2

Introduction
This document complements the research paper “Debugging Support for Reactive
Programming: Feasibility of a Ready-to-hand Debugger for RxJS” during the
double-blind review process.

3

Cognitive Walkthrough
The cognitive walkthrough report formally follows the guide by Wharton et
al. [2]. Further, the report refers to “operator log points” as “probes.” This is
because we called the log point concept differently during the proof of concept
phase and later transitioned to the more intuitive name, based on usability test
results.

Persona “Frank Flow”
Profile

• Age: 29 years

• Gender: Male

• Education: BSc in Computer Science

• Occupation: Frontend Software Engineer at ReactiBank

Frank started to work for ReactiBank 2 years ago as a frontend software engineer.
As part of a small, interdisciplinary team of 7 people, Frank’ and his team
are responsible for developing and maintaining a trading application. This
application relies heavily on real-time data, so the group decided to use reactive
programming principles throughout the application. Frank knows traditional
programming paradigms and the related debugging tools from his studies and
personal experiences. He built up knowledge on RP and RxJS for the frontend
part of their application after joining the team quickly, however.

Today, Frank uses RxJS efficiently to build new features. He can solve simple
problems reported by the product owner on his own. Working on more com-
plicated issues is still something Frank struggles with: He often feels like his
knowledge of traditional programming techniques and its debugging utilities
are not enough. These tools feel “out of place” to him and do not provide the
answers he is looking for. Frank does not like that, eventually, he has to consult
one of his colleagues who have experience in RxJS for a longer time.

Goals

• Make complex business domains simple and easy to use for everyone

• Build beautiful, responsive and easy-to-use user interfaces

• Be a fully productive member of the team

• Understand RxJS in complex setups better and deepen knowledge on it

Frustrations

• Known debugging utilities seem unfit to provide answers regarding RP
code

4

Setup
Context

This cognitive walkthrough is based on the first problem given to subjects during
the observational study of Alabor et al. [1].

User

See Section “Persona Frank Flow”.

Task

After I started the “Problem 1” application and inspected its UI, I was able
to observe multiple, unexpected updates rendered in quick succession after I
clicked the reset button. Based on this evidence, I formulate my first debugging
hypothesis: I suspect that the flatMap operator on Line 18 in the file index.ts
does create multiple observables, which do not get unsubscribed when the reset
button is clicked. This results in the observed behavior eventually. To proof
my hypothesis, I want to inspect the life cycle events of the created observables
more closely.

Environment

Visual Studio Code with enabled TypeScript support is installed. The prototype
of the RxJS debugging extension is installed as well. The source code of
“Problem 1” [1] is present. Further, an internet browser (e.g. Mozilla Firefox or
Google Chrome) is present.

Walkthrough
Open File

Open index.ts in Visual Studio Code.

• Visual Studio Code: Shows contents of index.ts file.

• Success story:

– We can expect the user to open index.ts since he already suspects
a problem within this file as stated in the original task.

Navigate to Operator

Move cursor the flatMap operator on Line 18.

• Visual Studio Code: Shows code actions icon in front of Line 18.

• Success story:

5

Figure 1: Visual Studio Code after opening the index.ts file.

– The original task clearly describes the hypothesis regarding this
line/piece of source code. Hence, navigating here seems the natural
course of action for the user.

Open Code Actions

Open the code actions menu by clicking the yellow light bulb icon.

• Visual Studio Code: Shows available code actions.

• Failure story:

– Will the user know that the correct action is available?

∗ The user might know code actions for providing options to refactor
a piece of code or quick fixes for code linting problems. It is
questionable if he will expect functionality to inspect parts of a
data flow graph here.

Create Probe for Operator

Select “Probe Observable...” code action from the related menu.

• Visual Studio Code: Adds flatMap operator on Line 18 to “Observables”
list in debugging view.

• Failure story:

6

Figure 2: Visual Studio Code after navigating cursor to the flatMap operator
on Line 18.

Figure 3: Visual Studio Code indicating available code actions on Line 18 using
a yellow light bulb icon.

7

– If the correct action is taken, will the user see that things are going
ok?

∗ The “Observables” list is part of the debugging view of Visual
Studio Code. The user will not get any feedback that his action
“Probe Observable...” was successful without changing the view
manually to debugging and expanding the “Observables” panel
in the lower left.

Open Observable Probe Monitor

Open the “Observable Probe Monitor” view using command palette.

• Visual Studio Code: Shows empty “Observable Probe Monitor” view

• Failure story:

– Will the user know that the correct action is available?

∗ The user might not be aware that the “Observable Probe Monitor”
view is hidden within the command palette. Hence, they might
feel lost after adding the observable probe in the previous step.

– If the correct action is taken, will the user see that things are going
ok?

∗ The user might get confused by the “Observable Probe Monitor”
being blank by default.

Launch Application

Execute “Problem 1” launch configuration

• Visual Studio Code: Opens default browser showing “Problem 1”

• Default Browser: Shows “Problem 1” UI

• Success story:

– The users previous experience with Visual Studio Code launch config-
uration allows assuming this the natural course of action in order to
prepare himself for further inspection of the application.

Interact with Application

Interact with “Problem 1” in the default browser.

• Visual Studio Code: “Observable Probe Monitor” provides live telemetry
information about values and life cycle events produced by the flatMap
operator.

• Failure story:

8

Figure 4: Visual Studio Codes command palette menu showing the “Observable
Probe Monitor” command.

Figure 5: Visual Studio Code showing the empty Observable Probe Monitor on
the right pane.

9

Figure 6: Visual Studio Code showing the debugging view after launching
“Problem 1.”

– Will the user know that the correct action will achieve the desired
effect?

∗ The user might not be aware that he is expected to interact with
“Problem 1” in the default browser in order to get live feedback
in the “Observable Probe Monitor.”

– If the correct action is taken, will the user see that things are going
ok?

∗ The default browser might overlay Visual Studio Code and the
“Observable Probe Monitor” view. This is why the user might
miss the live trace of values and life cycle events displayed in the
“Observable Probe Monitor.”

Interpret Runtime Behavior

Interpret the live trace of emitted values and life cycle events in the “Observable
Probe Monitor” view

• Visual Studio Code: Provides detail information to a traced item

• Success story:

– The original task states that the user is interested in more close
information regarding the flatMap operator. Since the “Observable

10

Figure 7: Google Chrome displaying the user interface of “Problem 1” ready to
receive interactions.

11

Probe Monitor” provide such information in real-time, we can expect
the user to use this information accordingly.

Figure 8: Visual Studio Code showing live telemetry in the “Observable Probe
Monitor.”

12

Failure Stories
This is a summary of all failure stories identified during the cognitive walkthrough.

Step Failure Story
Open Code Actions The user might know code actions for providing options to refactor a piece of code

or quick fixes for code linting problems. It is questionable if he will expect
functionality to inspect parts of a data flow graph here.

Create Probe for Operator The “Observables” list is part of the debugging view of Visual Studio Code. The
user will not get any feedback that his action “Probe Observable...” was successful
without changing the view manually to debugging and expanding the “Observables”
panel in the lower left.

Open Observable Probe Monitor The user might not be aware that the “Observable Probe Monitor” view is hidden
within the command palette. Hence, they might feel lost after adding the
observable probe in the previous step.

Open Observable Probe Monitor The user might get confused by the “Observable Probe Monitor” being blank by
default.

Interact with Application The user might not be aware that he is expected to interact with “Problem 1” in
the default browser in order to get live feedback in the “Observable Probe Monitor.”

Interact with Application The default browser might overlay Visual Studio Code and the “Observable Probe
Monitor” view. This is why the user might miss the live trace of values and life
cycle events displayed in the “Observable Probe Monitor.”

13

Usability Test
Observed Issues
These are all usability issues identified during the usability test sessions.

Participant(s) Phase Task Problem
P2, P3 Instrument Hypothesis Environment

Setup
Subject starts the application in debugging mode, even though
they have started it before already.

P2, P3 Instrument Hypothesis Manage Log
Points

Subject unable to find log point list in debugging view.

P2 Instrument Hypothesis Manage Log
Points

Subject unable to identify already defined log points.

P2 Instrument Hypothesis Interpret Log Subject cannot find “Clear” button to clear the log before
starting a new debugging iteration.

P3 Instrument Hypothesis Manage Log
Points

Subject cannot add log point to an observable.

P3 Instrument Hypothesis Manage Log
Points

Subject cannot add log point by clicking the editors
gutter.(Regular break points are added here)

P2, P3 Test Hypothesis Interpret Log Subject has difficulties to make a connection from a log point to
the generated log entry.

P2, P3 Test Hypothesis Interpret Log Subject interprets logged value as the “input” of the
instrumented operator.

P2 Test Hypothesis Interpret Log Subject is overwhelmed by multiple log entries generated by
multiple log points.

P3 Test Hypothesis Interpret Log Subject does not see log entries when running the unit test suite.

14

Marketplace Presence
The next page shows an excerpt of the Visual Studio Marketplace presence of
the “RxJS Debugging for Visual Studio Code” extension as of 2021-12-23.

15

References
[1] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-

based applications. In Proceedings of the 7th ACM SIGPLAN in-
ternational workshop on reactive and event-based languages and sys-
tems (REBLS 2020), Association for Computing Machinery, 15–24.
DOI:https://doi.org/10.1145/3427763.3428313

[2] Cathleen Wharton, John Rieman, Lewis Clayton, and Peter Polson. 1994.
The cognitive walkthrough: A practitioner’s guide. Institute of Cognitive
Science, University of Colorado.

17

B Comparative User Journey
The Comparative User Journey is publicly accessible on alabor.me and GitHub:

• https://alabor.me/research/user-journey-debugging-of -rxjs-based-
applications/

• https://github.com/swissmanu/alabor.me/tree/master/research/user-
journey-debugging-of-rxjs-based-applications

54

https://alabor.me/research/user-journey-debugging-of-rxjs-based-applications/
https://alabor.me/research/user-journey-debugging-of-rxjs-based-applications/
https://github.com/swissmanu/alabor.me/tree/master/research/user-journey-debugging-of-rxjs-based-applications
https://github.com/swissmanu/alabor.me/tree/master/research/user-journey-debugging-of-rxjs-based-applications

User Journey: Debugging of RxJS-Based
Applications
Manuel Alabor
Eastern Switzerland University of Applied Sciences
manuel.alabor@ost.ch

This document describes two user journeys of Frank Flow, a software engineer working
on an application implemented using RxJS. The application has a web-based user
interface and was part of a study by Alabor et al. [1]. Frank will use different debugging
techniques and utilities to solve the task given to him. The journeys follow the
debugging process model proposed by Layman et al. [2].

Actor
Frank Flow started to work for ReactiBank 2 years ago as a frontend software engineer.
As part of a small, interdisciplinary team of 7 people, Frank' and his team are
responsible for developing and maintaining a trading application. This application relies
heavily on real-time data, so the group decided to use reactive programming principles
throughout the application. Frank knows traditional programming paradigms and the
related debugging tools from his studies and personal experiences. He built up
knowledge on RP and RxJS for the frontend part of their application after joining the
team quickly, however.

Today, Frank uses RxJS efficiently to build new features. He can solve simple problems
reported by the product owner on his own. Working on more complicated issues is still
something Frank struggles with: He often feels like his knowledge of traditional
programming techniques and its debugging utilities are not enough. These tools feel
"out of place" to him. All to often, they do not provide any helpful insights and turn out
to be time-sink. Frank does not like that, eventually, he has to consult one of his
colleagues who have experience in RxJS for a longer time.

Context
Frank participates in a study about RxJS-specific debugging techniques. He is asked to
work on an application allowing a user to change and display a value. The user can
achieve a change of the value either by two buttons to increase and decrease a numeric
value or by entering an arbitrary text in an input field. The two buttons get disabled
once a text is entered. There is a third button labeled "Reset", which clears all user
input and reverts the application to its initial state.

Goal
Frank receives a bug report for the application: Once a user had clicked the reset
button, the application started to behave strangely by showing multiple values in quick
succession when the increase or decrease button was clicked. It is Franks task to
analyse the bug and find a solution.

User Journey
Beginning from the same point, we are going to present two distinct user journeys in
which Frank uses different tools to achieve his goal:

Branch A on the left describes a debugging session using traditional debugging
techniques and practices as described by Alabor et al. [1]. Frank will use imperative
debugging utilities built-in to Visual Studio Code and manual code modification to reach
his goal.

Branch B on the right describes how Frank uses the prototype of an extension for
Visual Studio Code providing a less invasive debugging technique for RxJS-based
source code.

Step 1 Build Hypothesis

After Frank recreated the behavior
reported in the bug report, he starts
analyzing the source code of the
application. In this process, he
formulates his first hypothesis about
what could cause the unexpected
behavior: Frank suspects the
flatMap operator in Line 19 to be
responsible.

Frank wants to have a closer look on
the operators runtime behavior,
which is why he decides to use
debugging utilities.

Step 2.A Instrument Hypothesis

Using the built-in debugger of Visual
Studio Code, Frank adds a
breakpoint to Line 19 where the
flatMap operator is called with the
intention to stop the program
execution every time a values "flows"
through the operator.

Step 2.B Instrument Hypothesis

Frank navigates to the flatMap
operator in Line 19 and selects the
"Add Log Point to Operator..." code
action provided by the Visual Studio
Code extension.

Step 3.A Test Hypothesis

Frank launches the application.
Before the web browser can display
anything, the debugger in Visual
Studio Code halts the program
execution at the breakpoint in Line
19.

Contrary to Franks expectation, the
application was already paused
during the creation of the flatMap
operator rather than when a value
was processed by it.

Frank resumes the program
execution, though the breakpoint
never pauses the application again.

Step 3.B Test Hypothesis

Frank launches the application. While
reproducing the reported bug in the
browser, the extension produces a
log of all events detected at the
flatMap operator in Line 19.

Frank recognizes a peculiar pattern:
After the reset button was clicked,
the log point reports multiple values
emitted for each click on the
increase/decrease button.

This confirms Franks hypothesis
about the flatMap operator: After
the user clicked the reset button, the
operator emits multiple values.

Step 4.A Instrument Hypothesis

After Franks first failed
instrumentation attempt using
breakpoints, he decides to add trace
log statements using the tap
operator manually. He adds multiple
of them on Lines 19, 24, 28, and 32.

Step 4.B Resolve Bug

After researching the RxJS
documentation, Frank realizes that
the flatMap operator [3] does not
unsubscribe observables it created
earlier. This sounds like a reasonable
explanation for the observed
behavior.

Frank replaces the faulty operator
with the switchMap [4] operator.

Step 5.A Test Hypothesis

Frank launches the application again.
The manually added code generates
the expected trace log in the
debuggers console as Frank
executes the steps necessary to
recreate the reported bug.

Once the application produced
enough logs, Frank starts to analyse
them. Even though it is hard to
reassign a log entry to a piece of
code and a related action, Frank
recognizes a peculiar pattern after
some time: After the reset button
was clicked, the log statement on
Line 32 is executed multiple times,
even though the increase/decrease
button gets clicked only once.

This confirms Franks hypothesis
about the flatMap operator: After
the user clicked the reset button, the
operator emits multiple values.

Step 5.B Verify

Frank launches the application again
and repeats the steps necessary to
reproduce the reported bug.

The application appears to work
correctly now. A quick look at the log
point monitor confirms that the
previously observed behavior of
multiple values emitted is fixed.

Frank has reached his goal
successfully.

Step 6.A Resolve Bug

After researching the RxJS
documentation, Frank knows that the
flatMap operator [3] does not
unsubscribe observables it created
earlier. This sounds like a reasonable
explanation for the observed
behavior.

Frank replaces the faulty operator
with the switchMap [4] operator.

Step 7.A Verify

Frank launches the application again
and repeats the steps necessary to
reproduce the reported bug.

The application appears to work
correctly now. A look at the trace log
confirms that the previously
observed behavior of multiple values
emitted is gone.

Step 8.A Revert Hypothesis

Instrumentation

Frank removes all tap operators he
added solely for the trace log
generation, except the one in Line
24.

Another engineer notices this
leftover during the code review,
fortunately. Frank removes the
forgotten statement afterwards.

Finally, Frank has reached his goal.

References
1. Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-based applications. In

Proceedings of the 7th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems (REBLS 2020). Association for Computing Machinery,
New York, NY, USA, 15–24. DOI: https://doi.org/10.1145/3427763.3428313

2. L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline and G. Venolia, "Debugging
Revisited: Toward Understanding the Debugging Needs of Contemporary Software
Developers," 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement, Baltimore, MD, 2013, pp. 383-392, doi:
10.1109/ESEM.2013.43 .

3. ReactiveX. 2020. RxJS - flatMap. Retrieved 05-December-2020 from https://rxjs.dev
/api/operators/flatMap. Version cbc77213e97ecc00d90a65ecf18707b76ebfe7fc.

4. ReactiveX. 2020. RxJS - switchMap. Retrieved 05-December-2020 from https://rxjs.dev
/api/operators/switchMap. Version cbc77213e97ecc00d90a65ecf18707b76ebfe7fc.

C RxJS Debugging for vscode
C.1 Major Release Milestone Plan
The following screenshot was created at the 31th of December 2021, 10:00 CET.
The milestone plan is publicly accessible on GitHub:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/milestone/2?c
losed=1

62

https://github.com/swissmanu/rxjs-debugging-for-vscode/milestone/2?closed=1
https://github.com/swissmanu/rxjs-debugging-for-vscode/milestone/2?closed=1

swissmanu / rxjs-debugging-for-vscode Public

Code Issues 19 Pull requests 11 Discussions Actions Projects

v1.0.0

No due date 100% complete

 Labels Edit milestone New issue

 0 Open 9 Closed

Update README for v1.0.0 Release
#115 by swissmanu was closed 29 days ago 2 tasks

documentation

Rework Testing & Improve Coverage
#49 by swissmanu was closed 29 days ago 2 of 5 tasks

1improvement

Operator Log Point Decorations change Line Height

#118 by swissmanu was closed 29 days ago

bug

Support RxJS 7
#52 by swissmanu was closed on 25 Nov

feature improvement 1

Open Analytics on Extension Usage
#63 by swissmanu was closed on 20 Nov

feature 1

Add ARCHITECTURE.md
#48 by swissmanu was closed on 12 Nov

documentation

Enabled Log Point stays where it was enabled once

#102 by swissmanu was closed on 12 Nov

bug

1

Improve Display of Suggested Log Points
#64 by swissmanu was closed on 7 Nov

improvement

Support Debugging of Browser-based Applications

#43 by swissmanu was closed on 29 Oct

1

feature

 Milestones

C.2 Feature Backlog
The following document was created at the 31th of December 2021, 10:00 CET.
The most current feature backlog is publicly accessible on GitHub:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/issues?q=is%
3Aopen+is%3Aissue+label%3Afeature%2Cimprovement

64

https://github.com/swissmanu/rxjs-debugging-for-vscode/issues?q=is%3Aopen+is%3Aissue+label%3Afeature%2Cimprovement
https://github.com/swissmanu/rxjs-debugging-for-vscode/issues?q=is%3Aopen+is%3Aissue+label%3Afeature%2Cimprovement

swissmanu / rxjs-debugging-for-vscode Public

Code Issues 19 Pull requests 11 Discussions Actions Projects

 Clear current search query, filters, and sorts

 10 Open 6 Closed

Filters is:open is:issue label:feature,improvement

 Labels Milestones New

Author Label Assignee Sort

Provide ESModule Loader for NodeJS when using
ESModules

#128 opened 27 days ago by swissmanu

improvement

Toggle Focused Operator Log Point with a Command

#120 opened 29 days ago by swissmanu

improvement

Time Travel Debugging

#62 opened on 15 Aug by swissmanu

draft feature

Last emitted value is not shown

#56 opened on 18 May by dzhavat

2

improvement

Record and Replay Observables

#51 opened on 15 May by swissmanu

draft feature

Visualize Data Flow Graph

#50 opened on 15 May by swissmanu

draft feature

Use vscodes TypeScript Language Server to Recommend
Log Points

#47 opened on 15 May by swissmanu

1

improvement

ProTip! Notify someone on an issue with a mention, like: @swissmanu.

Log Points for Observables

#46 opened on 15 May by swissmanu

feature

List all Enabled Log Points

#45 opened on 15 May by swissmanu

feature

Log Point History

#44 opened on 15 May by swissmanu

1

feature

C.3 Release Tweet Stats
The following screenshot was taken at the 30th of December 2021, 19:00 CET.
The publicly accessible tweet is available on Twitter:

• https://twitter.com/rxjsdebugging/status/1466439953731182599

66

https://twitter.com/rxjsdebugging/status/1466439953731182599

C.4 Visual Studio Marketplace
The following screenshots were taken at the 30th of December, 19:00 CET. The
most current version of the Marketplace page is available here:

• https://marketplace.visualstudio.com/items?itemName=manuelalabor.r
xjs-debugging-for-vs-code

68

https://marketplace.visualstudio.com/items?itemName=manuelalabor.rxjs-debugging-for-vs-code
https://marketplace.visualstudio.com/items?itemName=manuelalabor.rxjs-debugging-for-vs-code

New to Visual Studio Code? Get it now.

Overview Version History Q & A Rating & Review

| Marketplace

Visual Studio Code > Debuggers > RxJS Debugging for Visual Studio Code

RxJS Debugging for Visual Studio Code
Manuel Alabor | ! 954 installs | (1) | Free

Add non-intrusive debugging capabilities for RxJS applications to Visual Studio Code.

Trouble Installing?"

Categories

Debuggers

Tags

javascript javascriptreact typescript typescriptreact

Works with

Universal

Resources

Issues

Repository

Homepage

License

Changelog

Project Details

swissmanu/rxjs-debugging-for-vscode
$ Last Commit: 3 weeks ago
% 11 Pull Requests
& 19 Open Issues

More Info

Version 1.1.1

Released on 17/05/2021, 15:58:57

Last updated 08/12/2021, 15:30:44

Publisher Manuel Alabor

Unique Identifier manuelalabor.rxjs-debugging-for-vs-code

Report Report Abuse

Sign in

Install

 RxJS Debugging for Visual Studio Code

VS Marketplace v1.1.1 Follow @rxjsdebuggung

Never, ever use tap(console.log) again.

Add non-intrusive debugging capabilities for RxJS applications to Visual Studio Code.

Features

!"RxJS debugging, fully integrated with Visual Studio Code

!"Works with RxJS 6.6.7 and newer

!"Support for Node.js and Webpack-based RxJS applications

Requirements

!"Visual Studio Code 1.61 or newer

!"RxJS 6.6.7 or newer

!"To debug NodeJS-based applications:

#"Node.js 12 or newer

!"To debug Webpack-based web applications:

#"Webpack 5.60.0 or newer

#"The latest @rxjs-debugging/runtime-webpack Webpack plugin (see here for setup instructions)

Usage

Operator Log Points

Operator log points make manually added console.log statements a thing of the past: RxJS Debugger detects

operators automatically and recommends a log point. Hover the mouse cursor on the operator to add or remove a

log point to the respective operator:

Download Extension

Once you launch your application with the JavaScript debugger built-in to Visual Studio Code, enabled log points

display events of interest inline in the editor:

!"Subscribe

!"Emitted values (next, error, complete)

!"Unsubscribe

By default, RxJS Debugger clears logged events from the editor after you stop the JavaScript debugger. You can

customize this behavior in the settings.

Finally, you can toggle gutter indicators for recommended log points via the command palette:

Roadmap & Future Development

Refer to the milestones overview for planned, future iterations. The issue list provides an overview on all open

development topics.

Contributing

"RxJS Debugging for Visual Studio Code" welcomes any type of contribution! ❤ Have a look at CONTRIBUTING.md

for further details.

Playground

© 2021 Microsoft

Contact us Jobs Privacy Manage cookies Terms of use Trademarks

Jump right in and explore, how "RxJS Debugging for Visual Studio Code" can improve your RxJS debugging

workflow:

https://github.com/swissmanu/playground-rxjs-debugging-for-vscode

Analytics Data

The "RxJS Debugging for Visual Studio Code" extension collects usage analytics data from users who opt-in. See

ANALYTICS.md for more information on what data is collected and why.

Research

This extension is based on research by Manuel Alabor. See RESEARCH.md for more information.

! Visual Studio | Marketplace Manuel Alabor (manuel@alabor.me) Sign out ""

!Manuel Alabor RxJS Debugging for Visual Studio Code last 90 days " # Export

Acquisition Rating & Reviews Manage

Total Acquisition

Conversion Funnel

519
Last 90 Days

975
Till Date

100% (407)
Page views

127.52% (519)
Acquisition

Acquisition Trend

Pa
ge

 v
ie

w
s

Ac
qu

is
iti

on

Install from VSCode Download from Marketplace Page views

1
Oct

14 27 9
Nov

22 5
Dec

18 31
0

12

24

36

48

0

20

40

60

80

C.5 ANALYTICS.md
The following document is a snapshot of the ANALYTICS.md file from the Git
repository of RxJS Debugging for vscode:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1bb1c2
0cbf3633ef45cf0df16aacb3c3ea8a8c8c/ANALYTICS.md

71

https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1bb1c20cbf3633ef45cf0df16aacb3c3ea8a8c8c/ANALYTICS.md
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1bb1c20cbf3633ef45cf0df16aacb3c3ea8a8c8c/ANALYTICS.md

Extension Usage Analytics

🥽

 For Science!

The initial version of "RxJS Debugging for Visual Studio Code" resulted from a research
project. Doing (serious) research relies on empirical data. Thus, "RxJS Debugging for Visual
Studio Code" asks its users to opt-in to collecting user behavior analytics data on its first
activation.

It is essential for us that our users understand what data we collect and why we do it. This
document gives full disclosure on every event and data point we collect. We reveal further
where and how information is stored and how you can access it for your research work or
contribution to the extension itself.

Tracked Events
If analytics is enabled, the extension tracks user behavior at events detailed below. Each
event consists of an anonymized machine identifier provided by Visual Studio Code and a
set of event-specific data points.

All data points are carefully crafted to protect the users' privacy while providing empirical
evidence for future research work. The machine identifier DOES NOT reveal the identity of
users accordingly. Its sole purpose is the consolidation of events that belong together over
time.

We discard IP addresses before storing any tracking event. This makes it impossible to
reconstruct or estimate your geographical location later.

The following list documents all tracked analytic events. Feel free to review their
implementation directly in the source code: packages/extension/src/analytics.

Extension Started

Data
Point

Reason
Example
Values

Visual
Studio
Code
Version

The version of your Visual Studio Code installation
This data point helps us to understand which versions of
Visual Studio Code are relevant for our users It allows us
to decide on if we can stop supporting outdated versions
of Visual Studio Code or not

1.61.0

Visual
Studio
Code
Language

The preferred language of your Visual Studio Code
installation
This data point allows us to prioritze the languages for
which we might translate "RxJS Debugging for Visual
Studio Code" next

en-US 
de-CH 
fr  

Extension
Version

Identifies the version of "RxJS Debugging for Visual Studio
Code" currently installed on your machine
This data point helps us understand how our users install
updates of our extension after release

1.0.0

Data
Point

Reason
Example
Values

Runtime
Type

The runtime type declares how the RxJS debugger
connects to your application
This data point helps us to understand what kind of RxJS
applications (eg backend or frontend) our users debug
most

nodejs 
webpack

Debug Session Started

Debug Session Stopped
This event does not include any additional data points.

Operator Log Point Enabled/Disabled

Data
Point

Reason
Example
Values

Operator
Name

Identifies built-in operators for which you enable/disable a
log point We will NOT track the name of a custom
operator nor anything else related to your source code
(line numbers structure etc)
This data point helps us to understand which operators are
the most problematic ones for our users Thus it helps us
to build better debugging tools in the future accordingly

map 
flatMap 


Data Transmission and Storage
All analytic events are securely transmitted over an HTTPS connection.

Usage analytics data is collected using Posthog. It runs on the premises of the Eastern
Switzerland University of Applied Sciences (OST) where all data ist stored as well.

Open Source, Open Research and Open Data
Posthog does not allow the creation of read-only users at the time of writing this
document.

🙏

 Please create an issue using the appropriate template if you want to access
to the collected analytics data for your own research project or contribution to the
extension. We happily assist you either with an export of a data set or grant you access to
Posthog itself if required.

C.6 CONTRIBUTING.md
The following document is a snapshot of the CONTRIBUTING.md file from the Git
repository of RxJS Debugging for vscode:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/2da72e
21a733c99522633d8477892f3b5b48113c/CONTRIBUTING.md

74

https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/2da72e21a733c99522633d8477892f3b5b48113c/CONTRIBUTING.md
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/2da72e21a733c99522633d8477892f3b5b48113c/CONTRIBUTING.md

Contributing
This project welcomes any type of contribution!

❤

 Opening an issue to document a
problem you encountered or suggesting a new feature is always a good start.

Before you submit a pull request, please discuss potential changes with the maintainer
either in an issue, using GitHub Discussions or via email.

Development
Get Started
To get started with development, follow these four steps:

 Clone the repo and run yarn to install all dependencies.

 Open workspace.code-workspace with Visual Studio Code.

 Run the "extension: Build and Watch" task, which will continuously (re-)build the
extension.

 Run the "Testbench: NodeJS" launch configuration to open a new Visual Studio Code
window, which:

loads the RxJS debugging extension in development mode, so you can use the
debugger in the original Visual Studio Code window.
uses packages/testbench-nodejs as workspace, so you can test the RxJS
debugging extension with a real example.

Repository Structure
This repository is organized as monorepo. We use nx and lerna to streamline tasks.

Following packages can be found in the packages directory:

extension : The main package containing the debugging extension for Visual Studio
Code.
telemetry : TypeScript types and helper functions used for communication between
runtime and debugging extension.
runtime : Contains rudimentary utilities to augment RxJS in an arbitrary runtime
environment.
runtime-nodejs : NodeJS specific augmentation functionalities.
runtime-webpack : Webpack plugin, published as @rxjs-debugging/runtime-
webpack , providing runtime augmentation for web applications built with Webpack.
extension-integrationtest : An integration test suite verifying various aspects of

the extension.
testbench-* : Test environments simulating various scenarios to test the debugger.

Run Test Suites
Unit and integration tests are automatically executed once changes are pushed to Github.
You can run them locally using the following commands:

Unit tests:

Integration tests:

Architecture Concepts
The ARCHITECTURE.md file gives an overview on the most important architectural
concepts.

yarn nx run-many "--target=test "--all "--parallel1

yarn nx run extension-integrationtest:integrationtest "--
configuration=test

1

C.7 CODE_OF_CONDUCT.md
The following document is a snapshot of the CODE_OF_CONDUCT.md file from the
Git repository of RxJS Debugging for vscode:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/e82688
2151e2767daa95c1f68b4ba4b1c0c2db8f/CODE_OF_CONDUCT.md

76

https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/e826882151e2767daa95c1f68b4ba4b1c0c2db8f/CODE_OF_CONDUCT.md
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/e826882151e2767daa95c1f68b4ba4b1c0c2db8f/CODE_OF_CONDUCT.md

Code of Conduct
Rules
To keep it simple, we only have three basic rules:

 Don't panic
 Don't be evil
 Don't feed the trolls

Examples
The following non-exhaustive list provides specific guidelines and examples:

Be respectful, be responsible, be kind
Avoid asking for deadlines
Don't feel entitled to free support, advice, or features if you are not a contributor
If you have a general question, don't use GitHub Issues
If you are having a bad day and want to offend someone, please go somewhere else

Reporting
We encourage all community members to resolve problems on their own whenever possible. Instances of
abusive, harassing, or otherwise unacceptable behavior may be reported to us.

Enforcement
Any violation may be punished with a snarky comment and finally a "plonk", which means that we ignore
you according to rule #3.

This Code of Conduct was adapted from PhotoPrism. Thank you for a great product

!

C.8 ARCHITECTURE.md
The following document is a snapshot of the ARCHITECTURE.md file from the Git
repository of RxJS Debugging for vscode:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/50ca1b
93427bd87e6af1a7466b46d1bf669cce6c/ARCHITECTURE.md

78

https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/50ca1b93427bd87e6af1a7466b46d1bf669cce6c/ARCHITECTURE.md
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/50ca1b93427bd87e6af1a7466b46d1bf669cce6c/ARCHITECTURE.md

Architecture
Glossary

CDP: Chrome DevTools Protocol. https://chromedevtools.github.io/devtools-protocol/
DAP: Debug Adapter Protocol. https://microsoft.github.io/debug-adapter-protocol/ove
rview
VM: Virtual Machine

Components
Visual Studio Code JavaScript VM

DAP
js-debug
Extension

RxJS Debugging
Extension

RxJS Program

Telemetry Data

Debugging
Runtime

CDPjs-debug
Adapter

RxJS-specific debugging reuses debugging sessions started by Visual Studio Codes built-
in JavaScript debugging extension (js-debug). The RxJS Debugging Extension
communicates through js-debug using CDP with the Debugging Runtime. The Debugging
Runtime interacts with the RxJS Program, running in the JavaScript VM (e.g., Node.JS or
browsers like Google Chrome).

RxJS Debugging Extension
The RxJS Debugging Extension integrates with Visual Studio Code using its extension API
and provides relevant user interfaces and functionalities. It allows developers to use RxJS
debugging features like operator log points.

Furthermore, it ensures that, once a js-debug debugging session is started, essential
hooks are registered in the JavaScript VM using CDP Bindings.

The communication protocol to exchange data with the Debugging Runtime is implemented
in the extension's TelemetryBridge.

Name Payload Notes

rxJsDebuggerRuntimeReady None
A Debugging Runtime is expected to
call this binding once it is ready to
debug an RxJS Program

sendRxJsDebuggerTelemetry string
Sends a JSON-encoded
TelemetryEvent to the RxJS Debugging
Extension

Debugging Runtime
A Debugging Runtime interfaces with the live RxJS Program and forwards relevant
Telemetry Data (e.g. a value emitted by an Observable) to the RxJS Debugging Extension.
A Debugging Runtime runs in the same process as the RxJS Program.

Specific JavaScript VMs require specific Debugging Runtimes. E.g., runtime-nodejs enables
debugging of RxJS Programs executed in Node.JS. Web application bundled with Webpack
require the runtime-webpack plugin likewise.

Independently from "how" a Debugging Runtime finds its way to the JavaScript VM, all of
them fulfil following tasks:

Use hooks registered using CDP Bindings to establish communication with the RxJS
Debugging Extension
Patch RxJS to provide required Telemetry Data
Communicate with the RxJS Debugging Extension using the runtimes TelemetryBridge

CDP Bindings
A binding is a function available in a JavaScript VM global scope. It is created using the
Runtime.addBinding function of a CDP client (i.e. the RxJS Debugging Extension). Once the
Binding function is called, a callback in the CDP client is executed.

RxJS Debugging for Visual Studio Code uses this form of remote procedure calls (RPC) to
communicate with the Debugging Runtime in a JavaScript VM.

Once the RxJS Debugging Extension detects a new js-debug debugging session, following
bindings are registered:

Both the RxJS Debugging Extension as well as the Debugging Runtime use a well defined
communication protocol implemented by their respective telemetry bridges.

Example System Interaction
Based on testbench-nodejs, the following sequence diagram shows typical interactions
between the presented system components.

The JavaScript VM component is omitted for clarity.

User vscode js-debug RxJS Debugging Extension RxJS Program Debugging Runtime

Open observable.tsOpen observable.ts

Show observable.tsShow observable.ts

Opened observable.tsOpened observable.ts

Recommend Operator Log PointsRecommend Operator Log Points

Update Operator Log Point DecorationsUpdate Operator Log Point Decorations

Show Operator Log Point DecorationsShow Operator Log Point Decorations

Enable Operator Log PointEnable Operator Log Point

Enable Operator Log PointEnable Operator Log Point

Update Operator Log Point DecorationsUpdate Operator Log Point Decorations

Show Operator Log Point DecorationsShow Operator Log Point Decorations

Start DebugStart Debug

Start Debug SessionStart Debug Session

Will Start Debug SessionWill Start Debug Session

Customize Debug Session with Debugging RuntimeCustomize Debug Session with Debugging Runtime

Launch and inject Debugging RuntimeLaunch and inject Debugging Runtime

Patch RxJSPatch RxJS

Call Binding "rxJsDebuggerRuntimeReady"Call Binding "rxJsDebuggerRuntimeReady"

updateOperatorLogPoints()updateOperatorLogPoints()

Telemetry DataTelemetry Data

Telemetry DataTelemetry Data

Update Live Log Decoration for observable.tsUpdate Live Log Decoration for observable.ts

Show Live Log DecorationShow Live Log Decoration

loop

Process exitedProcess exited

Debug Session terminatedDebug Session terminated

Debug Session terminatedDebug Session terminated

Clear Live Log DecorationClear Live Log Decoration

Hide Live Log DecorationHide Live Log Decoration

User vscode js-debug RxJS Debugging Extension RxJS Program Debugging Runtime

C.9 CHANGELOG.md
The following document is a snapshot of the CHANGELOG.md file from the Git
repository of RxJS Debugging for vscode:

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1cdb15
79b872243a10747c94d9c623759dfa83f0/CHANGELOG.md

81

https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1cdb1579b872243a10747c94d9c623759dfa83f0/CHANGELOG.md
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/1cdb1579b872243a10747c94d9c623759dfa83f0/CHANGELOG.md

Change Log
Install the latest version from the Visual Studio Marketplace.

1.1.1
Bugfix: RxJS is not detected on Windows Systems #139

1.1.0
Improvement: Support for Plain JavaScript #126

1.0.1
Bugfix: Live Logs from Previous Debug Session shown again in a new Debug Session
#123

1.0.0
Feature: Support RxJS 7 #52
Bugfix: Operator Log Point Decorations change Line Height #118

0.9.0
Feature: Support Debugging of Browser-based Applications #43
Feature: Collect Analytics Data on Opt-In #63
Improvement: Add Integration Test for Operator Log Points #49
Bugfix: Enabled Log Point stays where it was enabled once #102

0.1.2
Fix: Log Point Events not displayed #54
Improvement: Support for pwa-node launch configurations

0.1.1
Add Icon for Visual Studio Code Extension Marketplace.

🦉

0.1.0
Feature: Operator Log Points
Feature: NodeJS Support

C.10 Analytics Dashboard
The following screenshot was taken at the 30th of December 2021, 19:00 CET.

Appendix C.5 describes relevant steps to get access to this data set.

83

D vscode-js-debug Pull Request: Reuse CDP
Connection

The following document was created at the 31th of December 2021, 10:00 CET
and is publicly accessible:

• https://github.com/microsoft/vscode-js-debug/pull/964

Involved Parties
• Connor Peet (connor4312)

• Manuel Alabor (swissmanu)

85

https://github.com/microsoft/vscode-js-debug/pull/964
https://github.com/connor4312
https://github.com/swissmanu

microsoft / vscode-js-debug Public

Code Issues 64 Pull requests 7 Actions Security Insights

Jump to bottom

CDP Proxy: Allows Other Extensions to Reuse CDP
Connection #964

 Merged

connor4312merged 4 commits into
 from
 on 7 Apr

Conversation
 7 Commits
 4 Checks
 7 Files changed
 12

New issue

microsoft:main swissmanu:cdp-proxy

swissmanu commented
on 6 Apr

Extends js-debug to expose its internal CDP connection to other extensions.

This pull request resolves #893.

Overview

A new command requestCDPProxy returns websocket connection details to connect to the CDP

proxy.

If requestCDPProxy is called the first time, the proxy is created

Otherwise connection details for the previously created proxy are returned

The debug adapter holds an instance of the CDP proxy and ensures forwarding of any

communication between proxy clients and the CDP connection.

The proxy and its clients use a basic JSON communication protocol described here:

https://github.com/swissmanu/vscode-js-debug-cdp-proxy-api

microsoft-cla bot commented
on 6 Apr •

CLACLA signedsigned

All CLA requirements met.

edited

swissmanumentioned this pull request
on 6 Apr

Expose (some) CDP commands
#893

 Closed

swissmanu added 4 commits
9 months ago

Add requestCDPProxy Request to DAP Custom Requests addb5c3

Add requestCDPProxy Command to Extension 8439f9c

Implement Empty CDPProxy in Adapter db5cb1b

Implement CDPProxy e77f62f

swissmanu commented
on 6 Apr

Would it make sense to expose the underlying error here https://github.com/microsoft/vscode-js-

debug/blob/main/src/cdp/connection.ts#L271, instead of masking it with undefined ? This way, users

of the CDP proxy could get a concise error message as well.

connor4312 commented
on 6 Apr

Yea, the error should be exposed. I'll play around with it. I would prefer to throw/reject with errors, but

we depend on omitting the error in so many places throughout js-debug that changing this would be

quite risky.

connor4312 commented
on 7 Apr

@swissmanu can you give me permission to push to your fork please? 🙂

connor4312 commented
on 7 Apr •

In the meantime I've pushed my changes onto a branch in 0c6bd3f . As referenced in the commit, I

moved the protocol to CDP with a js-debug extension. This simplifies things but it might still be worth

publishing a typings package for the js-debug namespace -- right now this is just the single

subscribe method but might become more in the future.

Also, now that it's 'just CDP', maybe I should finally look at making js-debug's CDP transports and

mechanisms their own package...

edited

swissmanu commented
on 7 Apr

@swissmanu can you give me permission to push to your fork please? 🙂

Assignees

No one assigned

Labels

None yet

Projects

None yet

Milestone

April 2021

Linked issues

Successfully merging this pull request may close these issues.

Expose (some) CDP commands

2 participants

I ticked the "Allow edits by maintainers" checkbox on this pull request only. Permissions to the fork

should be work by now. Sorry for the delay.

I moved the protocol to CDP with a js-debug extension.

I like like your removal of the additonal protocol layer. Makes things straight forward.

connor4312merged commit e77f62f into
 on 7 Apr
3 of 8 checks passed

View detailsmicrosoft:main

connor4312 commented
on 7 Apr

🚀 Thank you for your work on this!

👍 1

connor4312 added this to the April 2021 milestone
on 3 May

Reviewers

No reviews

E Marble Diagram Syntax
Observables
In a marble diagram, a horizontal arrow pointing from left to right represents
the timeline of an observable. Such a timeline uses following depictions to show
when the observable emitted an event:

• A marble v indicates a next event carrying the displayed value v

• A vertical bar shows a complete event

• next and complete can take place at the same time, thus are shown as
the combination of a marble and a vertical bar: v

• Finally, the cross indicates that an error occurred

Operators
Operators are depicted using a rectangular box operator labeled with the opera-
tors name.

An event consumed by an operator is indicated with a vertical arrow pointing
from the source observable to the operator.

An event projected to the target observable is shown using a vertical arrow
pointing from the operator to the target observable.

Examples
One Observable

A simple observable emitting integers from 1 through 4 that completes eventually.

1 2 3 4

88

Operator

A marble diagram showing a source observable emitting the integers from 1
through 6. The source completes immediately after its last value was emitted.
The take11 operator projects the first four values and then completes the target
observable.

1 2 3 4 5 6

take(4)

1 2 3 4

Error

The following marble diagrams shows an observable that failed with an error
event after it emitted the integers 1 and 2.

1 2

11https://rxjs.dev/api/operators/take

89

https://rxjs.dev/api/operators/take

F Open Science
This Thesis

• https://github.com/swissmanu/mse-thesis
(publicly accessible after May 2022)

Research Papers
• Debugging of RxJS-based Applications

https://github.com/swissmanu/mse-paper-debugging-of-rxjs-based-
applications

• Debugging Support for Reactive Programming: Feasibility of a Ready-to-
hand Debugger for RxJS
https://github.com/swissmanu/mse-paper-rxjs-debugger
(publicly accessible after May 2022)

Studies
• Observational study

https://github.com/swissmanu/mse-pa1-experiment

• Usability test
https://github.com/swissmanu/mse-pa2-usability-test

User Behavior Data “RxJS Debugging for vscode”
As noted in Appendix C.5, user behavior data is available on request. Please
follow the steps described there or on the linked page below to get access to the
user behavior data set.

• https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/main/A
NALYTICS.md#open-source-open-research-and-open-data

90

https://github.com/swissmanu/mse-thesis
https://github.com/swissmanu/mse-paper-debugging-of-rxjs-based-applications
https://github.com/swissmanu/mse-paper-debugging-of-rxjs-based-applications
https://github.com/swissmanu/mse-paper-rxjs-debugger
https://github.com/swissmanu/mse-pa1-experiment
https://github.com/swissmanu/mse-pa2-usability-test
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/main/ANALYTICS.md#open-source-open-research-and-open-data
https://github.com/swissmanu/rxjs-debugging-for-vscode/blob/main/ANALYTICS.md#open-source-open-research-and-open-data

List of Figures
1 Taxonomy of relevant programming paradigms 2
2 Marble diagram visualizing an observable 4
3 RxJS stack trace . 5
4 Research process in four phases 7
5 Debugging techniques . 8
6 Screenshot RxJS Debugging for vscode Prototype 9
7 System architecture . 10
8 Empirical validation as the next step in a future follow-up. . . . 12

List of Listings
1 An observable emitting integers 1...8. Two operators process the

integers before they are handed to the subscriber, which prints
them to the console. 3

2 JavaScript program replicating Listing 1 using an imperative
programming style. 4

3 RxJS-based program from Listing 1 manually augmented with
print statements. 5

List of Tables
1 Overview of all artifacts delivered per process phase. 7

92

References
[1] 1990. IEEE standard glossary of software engineering terminology. IEEE.

DOI:https://doi.org/10.1109/IEEESTD.1990.101064

[2] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-
based applications. In Proceedings of the 7th ACM SIGPLAN in-
ternational workshop on reactive and event-based languages and sys-
tems (REBLS 2020), Association for Computing Machinery, 15–24.
DOI:https://doi.org/10.1145/3427763.3428313

[3] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem,
Stijn Mostinckx, and Wolfgang de Meuter. 2013. A survey on reactive
programming. ACM Computing Surveys 45, 4 (August 2013), 1–34.
DOI:https://doi.org/10.1145/2501654.2501666

[4] Herman Banken, Erik Meijer, and Georgios Gousios. 2018. De-
bugging data flows in reactive programs. In Proceedings of the
40th international conference on software engineering, ACM, 752–763.
DOI:https://doi.org/10.1145/3180155.3180156

[5] T. Boren and J. Ramey. 2000. Thinking aloud: Reconciling theory
and practice. IEEE Transactions on Professional Communication 43, 3
(September 2000), 261–278. DOI:https://doi.org/10.1109/47.867942

[6] Yaofei Chen, R. Dios, A. Mili, Lan Wu, and Kefei Wang. 2005. An
empirical study of programming language trends. IEEE Software 22, 3
(May 2005), 72–78. DOI:https://doi.org/10.1109/MS.2005.55

[7] Conal M. Elliott. 2009. Push-pull functional reactive programming. In
Proceedings of the 2nd ACM SIGPLAN symposium on haskell - haskell
’09, ACM Press, 25. DOI:https://doi.org/10.1145/1596638.1596643

[8] Ralph Johnson Erich Gamma Richard Helm and John Vlissides. 1995.
Design patterns: Elements of reusable object-oriented software. Pearson
Education India.

[9] Fabian Fagerholm and Jurgen Munch. 2012. Developer ex-
perience: Concept and definition. In 2012 international con-
ference on software and system process (ICSSP), IEEE, 73–77.
DOI:https://doi.org/10.1109/ICSSP.2012.6225984

[10] Kim Goodwin. 2009. Designing for the digital age: How to create human-
centered products and services. Wiley Pub.

[11] Paul Hudak. 1989. Conception, evolution, and application of functional
programming languages. ACM Computing Surveys 21, 3 (September
1989), 359–411. DOI:https://doi.org/10.1145/72551.72554

[12] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. 2004.
Advances in dataflow programming languages. ACM Computing Surveys
36, 1 (March 2004), 1–34. DOI:https://doi.org/10.1145/1013208.1013209

93

https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.1145/3180155.3180156
https://doi.org/10.1109/47.867942
https://doi.org/10.1109/MS.2005.55
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1109/ICSSP.2012.6225984
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/1013208.1013209

[13] Lucas Layman, Madeline Diep, Meiyappan Nagappan, Janice Singer,
Robert Deline, and Gina Venolia. 2013. Debugging revisited:
Toward understanding the debugging needs of contemporary soft-
ware developers. In 2013 ACM / IEEE international symposium
on empirical software engineering and measurement, IEEE, 383–392.
DOI:https://doi.org/10.1109/ESEM.2013.43

[14] Jonathan Lazar, Jinjuan Feng, and Harry Hochheiser. 2017. Research
methods in human-computer interaction (2nd ed.). Elsevier: Morgan
Kaufmann Publishers, an imprint of Elsevier.

[15] Sean McDirmid. 2013. Usable live programming. In Proceedings of the
2013 ACM international symposium on new ideas, new paradigms, and
reflections on programming & software - onward! ’13, ACM Press, 53–62.
DOI:https://doi.org/10.1145/2509578.2509585

[16] Leo A. Meyerovich and Ariel S. Rabkin. 2013. Empirical analysis of pro-
gramming language adoption. ACM SIGPLAN Notices 48, 10 (November
2013), 1–18. DOI:https://doi.org/10.1145/2544173.2509515

[17] Ayman Nadeem. 2021. Human-centered approach to static-analysis-
driven developer tools: The future depends on good HCI. Queue 19, 4
(2021), 68–95.

[18] Jakob Nielsen. 1994. Estimating the number of subjects needed for a think-
ing aloud test. International Journal of Human-Computer Studies 41, 3
(September 1994), 385–397. DOI:https://doi.org/10.1006/ijhc.1994.1065

[19] Mie Nørgaard and Kasper Hornbæk. 2006. What do usability evaluators
do in practice?: An explorative study of think-aloud testing. In Proceed-
ings of the 6th ACM conference on designing interactive systems - DIS
’06, ACM Press, 209. DOI:https://doi.org/10.1145/1142405.1142439

[20] ReactiveX. 2021. ReactiveX. Retrieved from http://reactivex.io/

[21] Adam Richardson. 2010. Using customer journey maps to improve
customer experience. Harvard business review 15, 1 (2010), 2–5.

[22] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
Bridging between object-oriented and functional style in reactive
applications. In Proceedings of the 13th international confer-
ence on modularity - MODULARITY ’14, ACM Press, 25–36.
DOI:https://doi.org/10.1145/2577080.2577083

[23] Guido Salvaneschi and Mira Mezini. 2016. Debugging for reac-
tive programming. In Proceedings of the 38th international con-
ference on software engineering - ICSE ’16, ACM Press, 796–807.
DOI:https://doi.org/10.1145/2884781.2884815

94

https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1145/2544173.2509515
https://doi.org/10.1006/ijhc.1994.1065
https://doi.org/10.1145/1142405.1142439
http://reactivex.io/
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2884781.2884815

[24] Guido Salvaneschi, Sebastian Proksch, Sven Amann, Sarah Nadi, and
Mira Mezini. 2017. On the positive effect of reactive program-
ming on software comprehension: An empirical study. IEEE Trans-
actions on Software Engineering 43, 12 (December 2017), 1125–1143.
DOI:https://doi.org/10.1109/TSE.2017.2655524

[25] International Organisation for Standardization (ISO). 2010. Ergonomics
of human-system interaction - part 210: Human-centered design for
interactive systems. ISO 9241-210:2010. (2010).

[26] David A. Watt, William Findlay, and John Hughes. 1990. Programming
language concepts and paradigms. Prentice Hall.

[27] Cathleen Wharton, John Rieman, Lewis Clayton, and Peter Polson. 1994.
The cognitive walkthrough: A practitioner’s guide. Institute of Cognitive
Science, University of Colorado.

[28] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Reg-
nell, and Anders Wesslén. 2012. Experimentation in software engineering.
Springer Science & Business Media.

95

https://doi.org/10.1109/TSE.2017.2655524

	Declaration of Authorship
	Abstract
	Acknowledgments
	Introduction
	Relevant Programming Paradigms
	Reactive Programming with RxJS
	Debugging Challenges of Reactive Programming

	Related Work
	Reactive Debugging
	Debugging as a Process
	Developer Experience

	Research Process
	Exploration
	Proof Of Concept
	Prototype
	Communication with Node.js
	Moderated Remote Usability Test

	Distribution
	Community Reception
	ISSTA `22 Research Paper

	Future Work
	Empirical Software Engineering
	Open Science

	Open Source
	User Onboarding after Installation (Issue #58)
	Log Point History (Issue #44)

	Conclusion
	Research Papers
	Debugging of RxJS-Based Applications
	Debugging Support for Reactive Programming
	Paper
	Supplementary Material

	Comparative User Journey
	RxJS Debugging for vscode
	Major Release Milestone Plan
	Feature Backlog
	Release Tweet Stats
	Visual Studio Marketplace
	ANALYTICS.md
	CONTRIBUTING.md
	CODE_OF_CONDUCT.md
	ARCHITECTURE.md
	CHANGELOG.md
	Analytics Dashboard

	vscode-js-debug Pull Request: Reuse CDP Connection
	Marble Diagram Syntax
	Open Science
	List of Figures
	List of Listings
	List of Tables
	References

