
Debugging Support for Reactive Programming
Feasibility of a Ready-to-hand Debugger for RxJS

Manuel Alabor
Eastern Switzerland University of Applied Sciences

Rapperswil, Switzerland
manuel.alabor@ost.ch

Markus Stolze
Eastern Switzerland University of Applied Sciences

Rapperswil, Switzerland
markus.stolze@ost.ch

ABSTRACT
Debugging reactive data-flow-oriented applications is a cum-
bersome task. Unfortunately, modern development environ-
ments provide only suitable tools to debug control-flow-
oriented programs. As a result, software engineers utiliz-
ing RxJS, a popular library for reactive programming in
JavaScript, use inapt debugging tools, utilities outside of
their accustomed IDE, or antiquated debugging practices like
manual print statements. This paper presents two contribu-
tions to reactive debugging: (i) Operator log points, a novel
debugging utility for reactive programming, make manual
print statements obsolete. We implement them for RxJS as an
extension for Microsoft Visual Studio Code. By doing so, we
integrate the utility with the workflow of software engineers
seamlessly, thus (ii) proof the feasibility of a ready-to-hand
debugging utility for reactive programming by existence.

CCS CONCEPTS
• Software and its engineering → Software testing
and debugging; Data flow languages; Software maintenance
tools; • Human-centered computing → Human computer
interaction (HCI); User centered design.

KEYWORDS
reactive programming, reactive debugging, human computer
interaction, user centered design

1 INTRODUCTION
When software engineers look at the source code of an existing
application, they want to understand how the program was
implemented technically. They do this either because they
want to get themselves acquainted with a new code base they
never worked with before (e.g., during onboarding of a new
team member) or, more often, because someone reported an
unexpected application behavior (e.g., the program crashed).
Inspecting source code at runtime is commonly known as
“debugging” [1]. Layman et al. [6] formalized an iterative
process model (see Figure 1) by dividing the broader task
of debugging into three steps: The engineer uses (i) gath-
ered context information to build a hypothesis on what the
problem at hand might be. They then (ii) instrument the
program using appropriate techniques to prove their hypoth-
esis. Eventually, they (iii) test the instrumented program. If
the outcome proves the hypothesis to be correct, the process
ends. Otherwise, the engineer uses gained insight as input
for the next iteration.

(i)
Gather
Context

(ii)
Instrument

(iii)
Test

Figure 1: Iterative Debugging Process after Layman
et al.: Gather context to formalize hypothesis, instru-
ment and test system to prove hypothesis, resulting
in a new iteration or a confirmed hypothesis.

The most basic debugging technique for instrumentation
and testing is manually adding print statements to the source
code: They generate execution logs when placed across the
program’s code and allow to reconstruct its runtime behavior.
However, the number of generated log entries increases, the
required amount of work to analyze the logs gets out of hand
quickly. This is why specialized debugging utilities provide
tools to interact with a program at runtime: After interrupt-
ing program execution with a breakpoint, they allow engineers
to inspect stack frames, inspect and modify variables, step
through successive source code statements, or resume pro-
gram execution eventually. These utilities work best with
imperative or control-flow-oriented programming languages
since they interact with statements and stack frames of the
debugged program.

Modern IDEs enable software engineers to debug programs,
no matter what programming language they are implemented
with, using one generalized user interface (UI). The result is
a unified user experience (UX) where debugging support is
only a click away.

However, by adopting control-flow-oriented debugging util-
ities into their workflows, software engineers face a new prob-
lem when working with reactive programming (RP). Sal-
vaneschi et al. [16] described this shortcoming of traditional
debuggers when confronted with RP and coined the concept
of RP Debugging. Later, Banken et al. [3] proposed a solution
for debugging RxJS RP programs in an external visualizer
utility.

Alabor et al. [2] examined the RP debugging habits of
software engineers in an observational study. They replicated

Manuel Alabor and Markus Stolze

1 import reportValue from './reporter';
2

3 for (let i = 0; i < 5; i++) {
4 if (i < 4) {
5 reportValue(i ∗ 2);
6 }
7 }

Listing 1: Basic example of imperative-style/control-
flow-oriented programming in JavaScript: Multiply
integers between 0 and 4 for every value that is
smaller than 4 and call reportValue with the result.

the observation by Salvaneschi et al. and observed that even
engineers aware of RP debugging tools did not use them.
Instead, these engineers used manual print statements.

Within this paper, we are going to present two contribu-
tions to the field of RP debugging:

1. Operator log points are a novel utility for debugging
RP programs. They make manual print statements
obsolete by providing specialized log points for RP
applications.

2. By implementing operator log points in RxJS De-
bugging for Visual Studio Code, an extension for Mi-
crosoft Visual Studio Code1 (vscode), we provide a
proof by existence for the feasibility of a ready-to-
hand RP debugging utility. Software engineers can
debug RxJS programs without learning new UX pat-
terns or additional setup effort.

Before we do a deep-dive on the functionality of operator
log points in Section 4, we present an example for the primary
challenge of RP debugging in Section 2 and discuss related
work in Section 3. Next, we give an overview of performed
usability inspections and validations in Section 5. Finally, we
consider threats to validity regarding the usability tests in
Section 6 and introduce topics for future work in Section 7.

2 RP DEBUGGING: THE HARD WAY
A primary characteristic of RP is the paradigm shift away
from imperatively formulated, control-flow-oriented code (see
Listing 1) to declarative, data-flow-focused source code [16].
Instead of instructing the computer how to do what, i.e., one
step after another, we use RP abstractions to describe the
transformation of a continuous flow of data.

RxJS implements reactive sources with Observables. An
observable generates five types of life cycle events: Once
a consumer (i) subscribes to an observable, the observable
starts to (ii) emit values, (iii) completes (e.g., when a network
request has been completed), fails with an (iv) error, or may
get (v) unsubscribed. Engineers use Operators to transform
these events on their way through the data-flow graph. An
operator modifies values, composes other observables, or
changes how life cycle events get forwarded (e.g., catch an

1https://code.visualstudio.com

1 import reportValue from './reporter';
2 import { of } from 'rxjs';
3 import { filter , map } from 'rxjs/operators';
4

5 of (0, 1, 2, 3, 4).pipe(// Observable with ints 0..4
6 filter (i => i < 4), // Operator omitting 4
7 map(i => i ∗ 2), // Operator multiplying by 2
8). subscribe(reportValue)

Listing 2: Basic RP example implemented with RxJS
in JavaScript: Generate a data-flow of integers from
0 to 4, skip values equal or larger then 4, multiply
these values by 2 and call reportValue with each
resulting value.

1 import reportValue from './reporter';
2 import { of } from 'rxjs';
3 import { filter , map, tap } from 'rxjs/operators';
4

5 of (0, 1, 2, 3, 4).pipe(
6 tap(console. log), // <-- Print Statement
7 filter (i => i < 4),
8 tap(console. log), // <-- Print Statement
9 map(i => i ∗ 2),

10 tap(console. log), // <-- Print Statement
11). subscribe(reportValue)

Listing 3: Manually added print statements on Lines
6, 8 and 10 to debug a data-flow implemented with
RxJS in JavaScript.

error and emit an empty value instead). Listing 2 shows
an example of a source observable, two operators, and one
consumer.

Traditional debuggers reach their limitations when facing
data-flow-oriented code: While we can navigate through the
successive iterations of the for loop in Listing 1 using the step
controls of the debugger, this is not possible for the transfor-
mations described in Listing 2. Assuming we set a breakpoint
within the lambda function passed to filter on Line 6, step-
ping over to the next statement will not lead to the lambda
of map on Line 7 as one might expect. Instead, the debugger
continues in the internal implementations of filter, part of
the RxJS RP runtime. With a deeper understanding of the
difference between control- and data-flow-oriented program-
ming, this might look plausible. However, previous research
[2,3,16] revealed that software engineers expect different be-
havior from the debugging tools they have at hand. As a
direct consequence, engineers fall back to the problematic
debugging technique of adding manual print statements, as
exemplified in Listing 3 on the next page.

3 RELATED WORK
Salvaneschi et al. [16] identified the divergence between a
control-flow-oriented debugger’s expected and actual behav-
ior as one of their key motivations for RP debugging. The
stack-based runtime model of control-flow-oriented debuggers
does not match the software engineers’ data-flow-oriented

https://code.visualstudio.com

Debugging Support for Reactive Programming

Table 1: Correlation of debugging issues identified/-
solved by Salvaneschi et al. with overarching debug-
ging motivations by Banken et al.

Salvaneschi et al. Banken et al.

Missing dependencies Understanding dependencies
between observables

Bugs in signal expressions Finding bugs and issues in re-
active behavior

Understanding RP programs Comprehending behavior of
operators in existing code

Gaining high-level overview of
the reactive structure

Performance Bugs -

Memory and Time Leaks -

mental model of the program they are debugging. Because
the debugger has a “lack of abstraction,” it cannot interpret
high-level RP abstractions and works on the low-level imple-
mentations of the RP runtime extension instead. Salvaneschi
et al. proposed Reactive Inspector [15], the first specialized
RP debugging solution for RP programs implemented with
REScala, an RP extension for the Scala programming lan-
guage. Integrated with the Eclipse IDE, the utility provides a
wide range of RP debugging functionalities like the visualiza-
tion of data-flow graphs and the information that traverses
through them. Reactive breakpoints allow to interrupt pro-
gram execution once a graph node reevaluates its value.

Since then, RP has gained more traction across various
fields of software engineering. With a shared vision on how to
surface RP abstractions at the API level, ReactiveX 2 consoli-
dated numerous projects under one open-source organization.
Together, its members provide RP extensions for many of to-
day’s mainstream programming languages like Java, C#, and
Swift. For the development of JavaScript-based applications,
software engineers can rely on RxJS3. Angular by Google is
one of the more popular adopters of this library and uses
RxJS to model asynchronous operations like fetching data in
web frontend applications.

Two years after Salvaneschi et al. proposed RP Debugging,
Banken et al. [3] showed that debugging RxJS-based RP pro-
grams is quite similar to REScala-based ones. They were able
to categorize the debugging motivations of their study par-
ticipants into four main, overarching themes. These directly
correlate with the debugging issues identified by Salvaneschi
et al. earlier, as we show in Table 1.

Banken et al. provided a debugger in the form of an isolated
visualizer: RxFiddle. The browser-based application visualizes
the runtime behavior of an RxJS program in two dimensions:
A central (i) data-flow graph shows which elements in the

2http://reactivex.io/
3https://rxjs.dev

graph interact with each other, and a dynamic (ii) marble
diagram4 represents the processed values over time.

Both Salvaneschi et al. and Banken et al. suggested techni-
cal architectures for RP debugging systems. Both suggestions
can be summarized as distributed systems consisting of two
main components: The (i) RP runtime is instrumented to
produce debugging-relevant events (e.g., value emitted or
graph node created). These events get processed by the (ii)
debugger, which provides a UI to inspect the RP program’s
state.

Another two years after Banken et al. published their work,
Alabor et al. [2] examined the state of RxJS RP debugging.
Software engineers still struggled to use appropriate tools
to debug RxJS programs according to the interviews they
conducted. The authors performed an observational study
and found instances of engineers who knew about RP-specific
debugging tools but abstained from using them during the ex-
periment. They credited this circumstance to the fact that the
IDEs of their subjects did not provide suitable RP debugging
utilities ready-to-hand.

Alabor et al. conclude that knowing the correct RP de-
bugging utility (e.g., RxFiddle) is not enough. The barrier
to using such utilities must be minimized. I.e., RP debug-
ging utilities must be fully integrated into the IDE to live
up to their full potential, so using them is ideally only an
engineer’s keypress away and adheres to accustomed, known
UX patterns.

4 AN RXJS DEBUGGER
READY-TO-HAND

We translated these findings into the central principle for
the design of our RP debugger for RxJS: Ready-to-hand.
Software engineers should always have the proper debugging
tool available, no matter what programming paradigm they
are currently working with. Further, this tool should integrate
with the engineer’s workflow seamlessly.

4.1 Operator Log Points
Operator log points combine the concept of log points as
known from control-flow-oriented debuggers with live probes,
formerly proposed by McDirmid [7]5 for RP programs. They
display life cycle events produced by an RxJS operator di-
rectly within the source code editor.

Possible operator log points are suggested ready-to-hand
through an icon annotation within the code editor, next to the
respective operator. While the software engineer instruments
the source code to prove their debugging hypothesis, they
can enable a log point by hovering the mouse pointer over
its associated annotation and selecting the Add Operator

4Marble diagrams are a visualization technique used throughout the Re-
activeX community to graphically describe the behavior of observable-
based data-flow graphs. A marble represents a life cycle event, e.g., an
emitted value. Multiple marbles are arranged on a thread from left to
right, indicating the point in time when the respective life cycle event
happened. See https://rxmarbles.com/ for examples.
5As a matter of fact, operator log points were originally called operator
probes, but got renamed after initial confusion with our test users.

http://reactivex.io/
https://rxjs.dev

Manuel Alabor and Markus Stolze

Log Point action (see Figure 2). When ready to test their
hypothesis, the engineer starts the RxJS program using the
built-in JavaScript debugger; no extra effort is required. Once
the program is running, each enabled operator log point
displays the life cycle events together with the source code
that produced them. Engineers are free to enable or disable
additional log points during the debugging session; the life
cycle event display will adapt accordingly.

Once finished debugging, the software engineer stops the
program. Contrary to manual print statements, no clean-up
work is necessary afterward since operator log points do not
require any code modifications.

Figure 2: RxJS Debugging for vscode used to debug
code from Listing 2. A diamond icon indicates opera-
tor log points: A grey outline represents a suggested
log point (Line 7), a filled, red diamond an enabled
log point (Line 8). The source code editor shows life
cycle events at the end of the respective line (Line
8, “Unsubscribe”). Log points are managed by hover-
ing the respective icon and selecting the appropriate
action.

4.2 Suggesting a Log Point
Log points for operators are automatically suggested while the
software engineer edits the source code of an RxJS program.
To interpret the programs code semantically, the debugger ex-
tension leverages on the TypeScript6 programming language
toolchain.

We use the TypeScript parser to continuously evaluate
source code, which results in an abstract syntax tree (AST).
Along with the semantical structure of the program, the AST
contains type and positional information for every parsed
token. The extension processes the type information to de-
tect all present RxJS operator functions. For every operator
function found, the positional information allows to annotate
the relevant source code in the editor with an icon.

4.3 Architecture
The technical architecture of RxJS Debugging for vscode (see
Figure 4) is a refined version of the system proposed by
Banken et al. [3].
6TypeScript is a strongly typed programming language that compiles
to JavaScript https://www.typescriptlang.org/

DAP CDP

vscode

js-debug
Extension

RxJS
Debugger
Extension

js-debug
Adapter

Node.js

RxJS
Program

Telemetry

Figure 3: The Telemetry component instruments the
RxJS program (right). The RxJS Debugger Exten-
sion runs inside of the vscode process. The two com-
ponents communicate with each other by reusing
the CDP communication channel established by the
generic vscode JavaScript debugger called js-debug.

JavaScript virtual machines (VM) like V8 (used in Google
Chrome or Node.js) or SpiderMonkey (used in Mozilla Fire-
fox) implement the Chrome DevTools Protocol (CDP)7. De-
bugging tools like vscode’s built-in JavaScript debugger use
CDP to connect and debug JavaScript programs. RxFiddle
by Banken et al. [3] uses WebSockets to exchange relevant
data. We leverage the CDP connection established by the vs-
code’s JavaScript debugger, making the system more robust
since we do not need to maintain an additional channel for
debugger communication.

5 USABILITY INSPECTION AND
VALIDATION

We followed a User-Centered Design (UCD) [5] approach in
three iterations to conceptualize and implement our debug-
ging utility. The relevant methods we applied helped us to
keep our efforts aligned with our main goal: To establish a
debugging utility that is ready to hand and does not requiry
any extra learning or setup procedures.

After sketching a rough proof of concept (PoC) in the first
step, we performed a cognitive walkthrough [17] to validate
our idea of replacing manual print statements with operator
log points. The resulting data helped us to build a prototype
of the extension. Next, we used this prototype to conduct
a moderated remote usability test with three subjects. This
allowed us to uncover pitfalls in the UX concept and find
misconceptions early in the development process. Finally, we
used the results of these sessions for further refinement. We
completed the first minor version of the RxJS RP debugger,
which we released to the Visual Studio Marketplace in May
20218.

We used the test cases created by Alabor et al. [2] for both
the cognitive walkthrough and the remote usability test.

7https://chromedevtools.github.io/devtools-protocol/
8https://marketplace.visualstudio.com/items?itemName=manuelalabor.rxjs-
debugging-for-vs-code

https://www.typescriptlang.org/
https://chromedevtools.github.io/devtools-protocol/

Debugging Support for Reactive Programming

Table 2: Cognitive walkthrough action sequence with
eight steps.

Step Task

1 Open File

2 Navigate to Operator

3 Open Code Actions

4 Create Operator Log Point

5 Open Operator Log Point Monitor

6 Launch Application

7 Interact with Application

8 Interpret Runtime Behavior

5.1 Cognitive Walkthrough
We concluded the first iteration of our development process
with a PoC demonstrating the basic concept of operator log
points.

Looking for an informal, expert-driven usability inspection
method [8], we found the cognitive walkthrough [17] to be
a good fit in this early stage of development. We prepared
the profile of a typical user for the RP debugger as input
to the inspection. Based on this profile and the debugging
process by Layman et al. [6], we created the action sequence
available in Table 2. We performed the walkthrough using
the Problem 1 web application by Alabor et al. [2].

The cognitive walkthrough revealed six usability issues, as
summarized in Table 3. The full inspection report, including
the complete user profile, is available on Github9.

5.2 Moderated Remote Usability Test
After the initial validation using the cognitive walkthrough,
we completed the development of the refined prototype, ready
to test with real users.

5.2.1 Study Design. “Think aloud” tests for high functional-
ity systems benefit from at least five test subjects or more [9].
The feature spectrum of the RP debugger prototype is small;
hence the probability of finding major usability issues with a
smaller subject population is high. Therefore, we decided to
work with three individual subjects for our study.

Participants, recruited via Twitter, were required to have
worked with RxJS during the past year and use vscode as
their primary IDE. We sent out a PDF containing a short
briefing and a prototype description a week before the actual
test session. The briefing contained information about soft-
ware requirements (Zoom, Node.js, npm/Yarn, and vscode)
and details on what the subjects might encounter during
their test session. Here, we emphasized the importance of
“think aloud” [4,11], the practice of continuously verbalizing
thoughts without reasoning about them.

9https://github.com/swissmanu/mse-paper-rxjs-debugger

Table 3: UX issues identified using cognitive walk-
through inspection.

Step Issue

3

The user might know code actions, indicated through
the yellow light bulb icon, for providing refactoring
and quick fix options. It is questionable if they would
expect operator log point options in here as well.

4

When enabling an operator log point, the user does not
get any confirmation that this action was successful.
Exception: The list of enabled operator log points in
the debugging view is visible.

5
The monitoring pane, showing logs for enabled operator
log points, must be opened manually. The user might
not be aware of this after enabling a log point.

5 The monitoring pane is empty initially. Users might
not know what to do next after opening it.

7
The user might not interact with the RP program in
the opened default browser in order to get live feedback
in the monitoring pane.

7
The opened default browser might overlay the monitor
pane in vscode. Because of this, the user might miss
on the live trace of values and life cycle events.

5.2.2 Study Execution. At the start of a test session, we
provided each participant with a ZIP file10 containing the
Problem 2 web application by Alabor et al. [2] and the pack-
aged version of the debugger extension prototype11. While the
subject prepared their development environment, we started
the video, screen, and audio recording with their consent.
Also, we gave a scripted introduction to the code base they
just received.

The participants had 25 minutes to resolve as many bugs as
possible using the debugger prototype. Rather than tracking
each subject’s success rate of fixed defects, we emphasized
detecting usability issues in their workflow instead.

5.2.3 Study Evaluation. One participant could not get the
prototype extension up and running on their system, which
means we had only two valid data sets for further evaluation
after study execution. We categorized the observed usabil-
ity issues by debugging process phase (i.e., gather context,
instrument hypothesis, and test hypothesis) and task (e.g.,
“Setup Environment,” “Manage Log Points,” or “Interpret
Log”). From a total of 10 issues, we observed four being a
problem for both remaining study subjects. Thus we pri-
oritized them as “major.” The full usability issue report is
available on Github12. Table 4 presents the four major issues.

5.3 Utilization
5.3.1 Application of Results. We applied the results from the
cognitive walkthrough and the usability tests to refine and
complete the RxJS RP debugger presented in Section 4. For
10https://github.com/swissmanu/mse-pa2-usability-test
11https://github.com/swissmanu/mse-pa2-spike-vscode
12https://github.com/swissmanu/mse-paper-rxjs-debugger

https://github.com/swissmanu/mse-pa2-usability-test
https://github.com/swissmanu/mse-pa2-spike-vscode

Manuel Alabor and Markus Stolze

Table 4: Major UX issues observed during usability
test sessions.

Phase Task Issue

Instru. Setup
Participant starts the application in de-
bugging mode, even though they have
started it before.

Instru. Manage Participant unable to find log point list
in debugging view.

Test Interpret
Participant has difficulties to make a con-
nection from a log point to the generated
log entry.

Test Interpret Participant interprets logged value as the
“input” of the instrumented operator.

example, both the PoC and the prototype had an extra view
for displaying the output of a log point, visually disconnect-
ing them from each other. We classified this circumstance
as prone to confuse the user during the walkthrough but
did not change the prototype yet. The usability tests with
real subjects confirmed our suspicion, however. Because of
this, we changed the UI for the final, current version and
introduced the inline display for log point output directly
in the code editor. Another example of an improvement is
how the debugger suggests operator log points: The subjects
were unaware that suggested log points were available via
the code action menu, even though this is an established UX
pattern in vscode. Therefore, we removed the suggestions
from this menu and introduced the diamond-shaped indicator
icon, which is always visible.

5.3.2 Concept Verification. The applied inspection and ver-
ification methods, in combination with the practical imple-
mentation of the debugger, deliver the existence proof for
the feasibility of a ready-to-hand RP debugging utility. Even
though the usability test revealed four major usability issues,
we successfully verified that operator log points resolve the
problems previously identified by Alabor et al. [2].

6 THREATS TO VALIDITY
The results of the usability test are subject to the following
threats and limitations:

6.1 Internal Validity
We performed the usability test in an uncontrolled, remote
environment, and all participants used their own computers
and software installations. The downside of this is the early
failure of one subject, which could not get the prototype
extension running on their system resulting in an invalid
data set. Even though we could have prevented this situation
in a controlled lab environment, we consciously decided to
take this risk and, in turn, get more realistic results from
users working in the context of their accustomed development
environment.

6.2 External Validity
Due to the circumstance that one study participant could
not set up the prototype extension, we ended up having
only two valid data sets after the remote usability test. Two
test subjects should have allowed us to find around 50% of
all usability issues present [10]. Because the two remaining
subjects share four of 10 issues, we are confident that we
identified the most critical usability problems nonetheless.

6.3 Construct Validity
We carefully moderated the test session once test subjects fell
silent for more than 10 seconds and reminded them to “think
aloud.” Even though the participants told us that “speaking
to themselves” created an unfamiliar environment for them,
we expect the moderation techniques used [4] to minimize
any influences on the results.

7 FUTURE WORK
There are several ways how future work can contribute to
the efforts presented in this paper.

7.1 Field Test
Version 0.1.2 of RxJS Debugging for vscode can debug RxJS
programs running in the Node.js JavaScript VM. The major
release 1.0.0 generalizes this solution further and brings oper-
ator log points to RxJS applications running in web browsers.
Thus, we expect installations of the debugger to increase
further since more software engineers can benefit from its
features.

We see the opportunity for a comprehensive field test
on how engineers use the novel RP debugger once its next
iteration is available. Usage statistics provided through the
planned analytics reporting module will prove helpful in these
regards.

7.2 Visualizer Component
Banken et al. [3] proposed visualization techniques for RxJS
data-flow graphs in RxFiddle. The debugging utility we pre-
sented in this paper benefits from the integration of such
a visualizer. The graphical representation of an observable
graph helps novice engineers to understand RxJS concepts
better, and experienced engineers get a new angle on the
composition of multiple observables when debugging.

7.3 Record and Replay
A software engineer can record the behavior of a RP program
and replay that data independently as many times as they
wish later [12]. Such a function would allow two things: During
debugging, the engineer can rerun a recorded failure scenario
without depending on external systems like remote APIs.
Further, recorded data might be used for regression testing
to verify that a modified program still works as expected
[13].

Debugging Support for Reactive Programming

7.4 Time Travel Debugging
Contrary to regular control-flow-oriented debuggers, omni-
scient [14], or time travel debuggers cannot only step for-
ward but also backward in time. This is because they rely
on recorded data rather than a currently running program.
Once there is a way to record, store and replay debugging
data as suggested before, time travel debugging is a possible
next step. Software engineers can then manually navigate
through recorded data and observe how individual system
parts react to the stimuli.

8 CONCLUSION
We presented operator log points as a novel debugging utility
for programs implemented using reactive programming in this
paper. With RxJS Debugging for vscode, we demonstrated
how operator log points replace manual print statements for
RxJS-based programs. We developed the debugger using a
user-centered design process facilitating usability inspection
and validation methods, which allowed us to identify and
resolve four major usability issues. In addition, we successfully
verified that the proposed utility fulfills the requirement of
readiness-to-hand, i.e., that it integrates seamlessly with
software engineers’ daily workflows and does not require
additional learning or setup effort.

REFERENCES
[1] 1990. IEEE standard glossary of soft-

ware engineering terminology. IEEE.
DOI:https://doi.org/10.1109/IEEESTD.1990.101064

[2] Manuel Alabor and Markus Stolze. 2020. Debugging
of RxJS-based applications. In Proceedings of the
7th ACM SIGPLAN international workshop on reac-
tive and event-based languages and systems (REBLS
2020), Association for Computing Machinery, 15–24.
DOI:https://doi.org/10.1145/3427763.3428313

[3] Herman Banken, Erik Meijer, and Georgios Gousios.
2018. Debugging data flows in reactive programs.
In Proceedings of the 40th international con-
ference on software engineering, ACM, 752–763.
DOI:https://doi.org/10.1145/3180155.3180156

[4] T. Boren and J. Ramey. 2000. Thinking aloud: Reconcil-
ing theory and practice. IEEE Transactions on Profes-
sional Communication 43, 3 (September 2000), 261–278.
DOI:https://doi.org/10.1109/47.867942

[5] Kim Goodwin. 2009. Designing for the digital age: How to
create human-centered products and services. Wiley Pub.

[6] Lucas Layman, Madeline Diep, Meiyappan Nagappan,
Janice Singer, Robert Deline, and Gina Venolia. 2013.
Debugging revisited: Toward understanding the debug-
ging needs of contemporary software developers. In 2013
ACM / IEEE international symposium on empirical
software engineering and measurement, IEEE, 383–392.
DOI:https://doi.org/10.1109/ESEM.2013.43

[7] Sean McDirmid. 2013. Usable live programming. In Pro-
ceedings of the 2013 ACM international symposium on
new ideas, new paradigms, and reflections on program-
ming & software - onward! ’13, ACM Press, 53–62.
DOI:https://doi.org/10.1145/2509578.2509585

[8] Jakob Nielsen. 1994. Usability inspection methods. In
Conference companion on human factors in computing
systems, 413–414.

[9] Jakob Nielsen. 1994. Estimating the number of subjects
needed for a thinking aloud test. International Journal
of Human-Computer Studies 41, 3 (September 1994),
385–397. DOI:https://doi.org/10.1006/ijhc.1994.1065

[10] Jakob Nielsen and Thomas K. Landauer. 1993. A math-
ematical model of the finding of usability problems. In
Proceedings of the SIGCHI conference on human factors
in computing systems - CHI ’93, ACM Press, 206–213.
DOI:https://doi.org/10.1145/169059.169166

[11] Mie Nørgaard and Kasper Hornbæk. 2006. What
do usability evaluators do in practice?: An ex-
plorative study of think-aloud testing. In Proceed-
ings of the 6th ACM conference on designing in-
teractive systems - DIS ’06, ACM Press, 209.
DOI:https://doi.org/10.1145/1142405.1142439

[12] Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle
Huey, Albert Noll, and Nimrod Partush. 2017. Engineer-
ing record and replay for deployability: Extended technical
report. arXiv:1705.05937 [cs] (May 2017). Retrieved from
http://arxiv.org/abs/1705.05937

[13] Ivan Perez and Henrik Nilsson. 2017. Testing and debug-
ging functional reactive programming. Proceedings of the
ACM on Programming Languages 1, ICFP (August 2017),
1–27. DOI:https://doi.org/10.1145/3110246

[14] Guillaume Pothier and Éric Tanter. 2009.
Back to the future: Omniscient debugging.
IEEE Software 26, 6 (November 2009), 78–85.
DOI:https://doi.org/10.1109/MS.2009.169

[15] Guido Salvaneschi, Gerold Hintz, and Mira Mezini.
2014. REScala: Bridging between object-oriented and
functional style in reactive applications. In Proceed-
ings of the 13th international conference on mod-
ularity - MODULARITY ’14, ACM Press, 25–36.
DOI:https://doi.org/10.1145/2577080.2577083

[16] Guido Salvaneschi and Mira Mezini. 2016. Debug-
ging for reactive programming. In Proceedings
of the 38th international conference on software
engineering - ICSE ’16, ACM Press, 796–807.
DOI:https://doi.org/10.1145/2884781.2884815

[17] Cathleen Wharton, John Rieman, Lewis Clayton, and
Peter Polson. 1994. The cognitive walkthrough: A practi-
tioner’s guide. Institute of Cognitive Science, University
of Colorado.

https://doi.org/10.1109/IEEESTD.1990.101064
https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/3180155.3180156
https://doi.org/10.1109/47.867942
https://doi.org/10.1109/ESEM.2013.43
https://doi.org/10.1145/2509578.2509585
https://doi.org/10.1006/ijhc.1994.1065
https://doi.org/10.1145/169059.169166
https://doi.org/10.1145/1142405.1142439
http://arxiv.org/abs/1705.05937
https://doi.org/10.1145/3110246
https://doi.org/10.1109/MS.2009.169
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/2884781.2884815

	Abstract
	1 Introduction
	2 RP Debugging: The Hard Way
	3 Related Work
	4 An RxJS Debugger Ready-to-Hand
	4.1 Operator Log Points
	4.2 Suggesting a Log Point
	4.3 Architecture

	5 Usability Inspection and Validation
	5.1 Cognitive Walkthrough
	5.2 Moderated Remote Usability Test
	5.3 Utilization

	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity
	6.3 Construct Validity

	7 Future Work
	7.1 Field Test
	7.2 Visualizer Component
	7.3 Record and Replay
	7.4 Time Travel Debugging

	8 Conclusion
	References

