
Debugging Support for Reactive Programming
Supplementary Material

Manuel Alabor Markus Stolze

1

Contents
Introduction 3

Cognitive Walkthrough 4
Persona “Frank Flow” . 4

Profile . 4
Goals . 4
Frustrations . 4

Setup . 5
Context . 5
User . 5
Task . 5
Environment . 5

Walkthrough . 5
Open File . 5
Navigate to Operator . 5
Open Code Actions . 6
Create Probe for Operator . 6
Open Observable Probe Monitor 8
Launch Application . 8
Interact with Application . 8
Interpret Runtime Behavior . 10

Failure Stories . 13

Usability Test 14
Observed Issues . 14

Marketplace Presence 15

References 17

2

Introduction
This document complements the research paper “Debugging Support for Reactive
Programming: Feasibility of a Ready-to-hand Debugger for RxJS.”

3

Cognitive Walkthrough
The cognitive walkthrough report formally follows the guide by Wharton et
al. [2]. Further, the report refers to “operator log points” as “probes.” This is
because we called the log point concept differently during the proof of concept
phase and later transitioned to the more intuitive name, based on usability test
results.

Persona “Frank Flow”
Profile

• Age: 29 years

• Gender: Male

• Education: BSc in Computer Science

• Occupation: Frontend Software Engineer at ReactiBank

Frank started to work for ReactiBank 2 years ago as a frontend software engineer.
As part of a small, interdisciplinary team of 7 people, Frank’ and his team
are responsible for developing and maintaining a trading application. This
application relies heavily on real-time data, so the group decided to use reactive
programming principles throughout the application. Frank knows traditional
programming paradigms and the related debugging tools from his studies and
personal experiences. He built up knowledge on RP and RxJS for the frontend
part of their application after joining the team quickly, however.

Today, Frank uses RxJS efficiently to build new features. He can solve simple
problems reported by the product owner on his own. Working on more com-
plicated issues is still something Frank struggles with: He often feels like his
knowledge of traditional programming techniques and its debugging utilities
are not enough. These tools feel “out of place” to him and do not provide the
answers he is looking for. Frank does not like that, eventually, he has to consult
one of his colleagues who have experience in RxJS for a longer time.

Goals

• Make complex business domains simple and easy to use for everyone

• Build beautiful, responsive and easy-to-use user interfaces

• Be a fully productive member of the team

• Understand RxJS in complex setups better and deepen knowledge on it

Frustrations

• Known debugging utilities seem unfit to provide answers regarding RP
code

4

Setup
Context

This cognitive walkthrough is based on the first problem given to subjects during
the observational study of Alabor et al. [1].

User

See Section “Persona Frank Flow”.

Task

After I started the “Problem 1” application and inspected its UI, I was able
to observe multiple, unexpected updates rendered in quick succession after I
clicked the reset button. Based on this evidence, I formulate my first debugging
hypothesis: I suspect that the flatMap operator on Line 18 in the file index.ts
does create multiple observables, which do not get unsubscribed when the reset
button is clicked. This results in the observed behavior eventually. To proof
my hypothesis, I want to inspect the life cycle events of the created observables
more closely.

Environment

Visual Studio Code with enabled TypeScript support is installed. The prototype
of the RxJS debugging extension is installed as well. The source code of
“Problem 1” [1] is present. Further, an internet browser (e.g. Mozilla Firefox or
Google Chrome) is present.

Walkthrough
Open File

Open index.ts in Visual Studio Code.

• Visual Studio Code: Shows contents of index.ts file.

• Success story:

– We can expect the user to open index.ts since he already suspects
a problem within this file as stated in the original task.

Navigate to Operator

Move cursor the flatMap operator on Line 18.

• Visual Studio Code: Shows code actions icon in front of Line 18.

• Success story:

5

Figure 1: Visual Studio Code after opening the index.ts file.

– The original task clearly describes the hypothesis regarding this
line/piece of source code. Hence, navigating here seems the natural
course of action for the user.

Open Code Actions

Open the code actions menu by clicking the yellow light bulb icon.

• Visual Studio Code: Shows available code actions.

• Failure story:

– Will the user know that the correct action is available?

∗ The user might know code actions for providing options to refactor
a piece of code or quick fixes for code linting problems. It is
questionable if he will expect functionality to inspect parts of a
data flow graph here.

Create Probe for Operator

Select “Probe Observable...” code action from the related menu.

• Visual Studio Code: Adds flatMap operator on Line 18 to “Observables”
list in debugging view.

• Failure story:

6

Figure 2: Visual Studio Code after navigating cursor to the flatMap operator
on Line 18.

Figure 3: Visual Studio Code indicating available code actions on Line 18 using
a yellow light bulb icon.

7

– If the correct action is taken, will the user see that things are going
ok?

∗ The “Observables” list is part of the debugging view of Visual
Studio Code. The user will not get any feedback that his action
“Probe Observable...” was successful without changing the view
manually to debugging and expanding the “Observables” panel
in the lower left.

Open Observable Probe Monitor

Open the “Observable Probe Monitor” view using command palette.

• Visual Studio Code: Shows empty “Observable Probe Monitor” view

• Failure story:

– Will the user know that the correct action is available?

∗ The user might not be aware that the “Observable Probe Monitor”
view is hidden within the command palette. Hence, they might
feel lost after adding the observable probe in the previous step.

– If the correct action is taken, will the user see that things are going
ok?

∗ The user might get confused by the “Observable Probe Monitor”
being blank by default.

Launch Application

Execute “Problem 1” launch configuration

• Visual Studio Code: Opens default browser showing “Problem 1”

• Default Browser: Shows “Problem 1” UI

• Success story:

– The users previous experience with Visual Studio Code launch config-
uration allows assuming this the natural course of action in order to
prepare himself for further inspection of the application.

Interact with Application

Interact with “Problem 1” in the default browser.

• Visual Studio Code: “Observable Probe Monitor” provides live telemetry
information about values and life cycle events produced by the flatMap
operator.

• Failure story:

8

Figure 4: Visual Studio Codes command palette menu showing the “Observable
Probe Monitor” command.

Figure 5: Visual Studio Code showing the empty Observable Probe Monitor on
the right pane.

9

Figure 6: Visual Studio Code showing the debugging view after launching
“Problem 1.”

– Will the user know that the correct action will achieve the desired
effect?

∗ The user might not be aware that he is expected to interact with
“Problem 1” in the default browser in order to get live feedback
in the “Observable Probe Monitor.”

– If the correct action is taken, will the user see that things are going
ok?

∗ The default browser might overlay Visual Studio Code and the
“Observable Probe Monitor” view. This is why the user might
miss the live trace of values and life cycle events displayed in the
“Observable Probe Monitor.”

Interpret Runtime Behavior

Interpret the live trace of emitted values and life cycle events in the “Observable
Probe Monitor” view

• Visual Studio Code: Provides detail information to a traced item

• Success story:

– The original task states that the user is interested in more close
information regarding the flatMap operator. Since the “Observable

10

Figure 7: Google Chrome displaying the user interface of “Problem 1” ready to
receive interactions.

11

Probe Monitor” provide such information in real-time, we can expect
the user to use this information accordingly.

Figure 8: Visual Studio Code showing live telemetry in the “Observable Probe
Monitor.”

12

Failure Stories
This is a summary of all failure stories identified during the cognitive walkthrough.

Step Failure Story
Open Code
Actions

The user might know code actions for providing options to refactor a piece of code or quick fixes for code linting
problems. It is questionable if he will expect functionality to inspect parts of a data flow graph here.

Create
Probe for
Operator

The “Observables” list is part of the debugging view of Visual Studio Code. The user will not get any feedback
that his action “Probe Observable...” was successful without changing the view manually to debugging and
expanding the “Observables” panel in the lower left.

Open
Observable
Probe
Monitor

The user might not be aware that the “Observable Probe Monitor” view is hidden within the command palette.
Hence, they might feel lost after adding the observable probe in the previous step.

Open
Observable
Probe
Monitor

The user might get confused by the “Observable Probe Monitor” being blank by default.

Interact
with
Application

The user might not be aware that he is expected to interact with “Problem 1” in the default browser in order to
get live feedback in the “Observable Probe Monitor.”

Interact
with
Application

The default browser might overlay Visual Studio Code and the “Observable Probe Monitor” view. This is why
the user might miss the live trace of values and life cycle events displayed in the “Observable Probe Monitor.”

13

Usability Test
Observed Issues
These are all usability issues identified during the usability test sessions.

Participant(s)Phase Task Problem
P2, P3 Instrument

Hypothesis
Environment
Setup

Subject starts the application in debugging mode, even though they have
started it before already.

P2, P3 Instrument
Hypothesis

Manage Log
Points

Subject unable to find log point list in debugging view.

P2 Instrument
Hypothesis

Manage Log
Points

Subject unable to identify already defined log points.

P2 Instrument
Hypothesis

Interpret
Log

Subject cannot find “Clear” button to clear the log before starting a new
debugging iteration.

P3 Instrument
Hypothesis

Manage Log
Points

Subject cannot add log point to an observable.

P3 Instrument
Hypothesis

Manage Log
Points

Subject cannot add log point by clicking the editors gutter.(Regular break points
are added here)

P2, P3 Test
Hypothesis

Interpret
Log

Subject has difficulties to make a connection from a log point to the generated
log entry.

P2, P3 Test
Hypothesis

Interpret
Log

Subject interprets logged value as the “input” of the instrumented operator.

P2 Test
Hypothesis

Interpret
Log

Subject is overwhelmed by multiple log entries generated by multiple log points.

P3 Test
Hypothesis

Interpret
Log

Subject does not see log entries when running the unit test suite.

14

Marketplace Presence
The next page shows an excerpt of the Visual Studio Marketplace presence of
the “RxJS Debugging for Visual Studio Code” extension as of 2021-12-23.

15

References
[1] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-

based applications. In Proceedings of the 7th ACM SIGPLAN in-
ternational workshop on reactive and event-based languages and sys-
tems (REBLS 2020), Association for Computing Machinery, 15–24.
DOI:https://doi.org/10.1145/3427763.3428313

[2] Cathleen Wharton, John Rieman, Lewis Clayton, and Peter Polson. 1994.
The cognitive walkthrough: A practitioner’s guide. Institute of Cognitive
Science, University of Colorado.

17

https://doi.org/10.1145/3427763.3428313

	Introduction
	Cognitive Walkthrough
	Persona “Frank Flow”
	Profile
	Goals
	Frustrations

	Setup
	Context
	User
	Task
	Environment

	Walkthrough
	Open File
	Navigate to Operator
	Open Code Actions
	Create Probe for Operator
	Open Observable Probe Monitor
	Launch Application
	Interact with Application
	Interpret Runtime Behavior

	Failure Stories

	Usability Test
	Observed Issues

	Marketplace Presence
	References

