
 

 

 

 

 

 

 

 

Visual OO Debugger 
 

 

Bachelor Thesis 
Department of Computer Science 

OST – University of Applied Sciences 

Campus Rapperswil-Jona 

 

Spring Term 2022 
 

 

 

Author(s): Gino Cardillo, Alexandre Lagadec, Pascal Schürmann 

Advisor: Prof. Mirko Stocker 

Project Partner: Institute for Software 

External Co-Examiner: Leo Büttiker 

Internal Co-Examiner: Prof. Frank Koch 

  



 

 

 

Visual OO Debugger Page | 1 17.06.2022 

Abstract 

Object-oriented programming can be a challenge for unexperienced or new developers. The 

relations between objects, variables, and the concept of call-by-reference in methods is difficult to 

comprehend for a lot of people, sometimes even for more experienced developers. Teaching object-

oriented programming can be just as challenging as learning it. One of the best ways to teach this 

topic is to visualize the relations between objects and variables. In the autumn term of 2021, as our 

term project, we created the VS Code extension Visual OO Debugger, VOOD for short, whose goal it 

was to ease the process of learning and teaching the concepts of object-oriented programming. It 

achieves this by using debugger information at runtime to visualize objects and variables in a graph. 

The goal of this project is to extend VOOD with more useful features, as well as adapt the code to 

facilitate further extension. The current library used for visualization, vis.js, is a great starting point, 

but it has its limitations. Thus, the main feature of this project is to add the option to change the 

visualization style. Currently, only Java is supported by VOOD. While the support of other languages 

is out of scope, it should be possible to add support for them. Since the Java-specific parts are 

intertwined with the rest of the debugger, the code must be refactored to separate them. 

The result was a new version of VOOD with many new features and improvements. As for the main 

feature, a new visualization was added, utilizing the library JointJS. JointJS was already evaluated in 

the term project and was deemed fit as an alternate visualization. It offered more flexibility for 

customization but at the cost of more complexity. Another new feature was the option to choose a 

stack frame of the call stack in a dropdown and visualize it. Hitherto, the topmost stack frame was 

always used for the visualization and other stack frames were discarded. With the growth of the 

graph, it becomes more and more confusing and polluted with information, which the user might not 

want. Two features were added to counteract this problem. By clicking on a node, it collapses with 

its referenced nodes, and they form a cluster. Those clusters can be opened either by clicking on 

them separately or by clicking the left button in the upper right-hand corner to open all clusters at 

once. The second feature involves the right button in the upper right-hand corner. By dragging a 

node or cluster of nodes over this button, they can be hidden completely from the visualization. And 

by clicking that button, all hidden nodes and clusters are displayed again. These are just a fraction 

of the features and improvements implemented in this project. 

 

Figure 1 JointJS visualization 



 

 

 

Visual OO Debugger Page | 2 17.06.2022 

Table of Contents 

Introduction .................................................................................................................................................. 4 

Requirements and Constraints ................................................................................................................... 5 

1 Requirements ........................................................................................................................................ 5 

1.1 Requirements Overview ................................................................................................................ 5 

1.2 Stakeholders ................................................................................................................................ 10 

1.3 Existing comparable products .................................................................................................... 14 

2 Constraints .......................................................................................................................................... 16 

3 Quality Requirements ......................................................................................................................... 17 

3.1 Quality Goals ................................................................................................................................ 17 

3.2 Quality Tree .................................................................................................................................. 19 

3.3 Quality Scenarios ......................................................................................................................... 20 

4 Solution Strategy ................................................................................................................................ 25 

5 Risks and Technical Debts ................................................................................................................. 27 

5.1 Risk Assessment ......................................................................................................................... 28 

5.2 Risk Matrix.................................................................................................................................... 29 

Initial Solution ............................................................................................................................................ 30 

6 Cross-cutting Concepts...................................................................................................................... 30 

6.1 User Experience concepts (UX) .................................................................................................. 30 

6.2 Development Concepts ............................................................................................................... 31 

7 Deployment View ................................................................................................................................ 32 

8 System Scope and Context ................................................................................................................ 33 

8.1 Business Context ......................................................................................................................... 33 

8.2 Technical Context ........................................................................................................................ 34 

9 Building Block View ............................................................................................................................ 36 

9.1 Whitebox Overall System ............................................................................................................ 36 

9.2 Level 2 .......................................................................................................................................... 38 

9.3 Level 3 .......................................................................................................................................... 40 

Development .............................................................................................................................................. 43 

10 Implemented Requirements ............................................................................................................ 44 

10.1 REQ-BA:5 Visualization of the individual stack frames with parameters/local variables and 

references to the heap. ...................................................................................................................... 44 

10.2 REQ-BA:6 Alternative visualization with JointJS. .................................................................... 47 

10.3 REQ-BA:7 Show objects that are no longer referenced. ......................................................... 54 

10.4 REQ-BA:8 Connection with the editor: Click on the variable in the visualization, the variable 

is highlighted in the source code. ..................................................................................................... 55 



 

 

 

Visual OO Debugger Page | 3 17.06.2022 

10.5 REQ-SA:3.5 Usability [of the system]........................................................................................ 56 

10.6 REQ-SA:4.3 Source code that is open to extensions. ............................................................. 60 

10.7 R:6 API Deprecations by VS Code ............................................................................................ 62 

10.8 R:7 Incompatible 3rd party extensions .................................................................................... 62 

11 Conclusion ........................................................................................................................................ 63 

11.1 Overview of Changes for the BA ............................................................................................... 63 

11.2 Usability Test ............................................................................................................................. 65 

11.3 Target Achievement .................................................................................................................. 66 

11.4 Outlook ....................................................................................................................................... 67 

Indices ........................................................................................................................................................ 68 

12 Glossary ............................................................................................................................................ 68 

13 List of Figures ................................................................................................................................... 69 

14 List of Tables .................................................................................................................................... 70 

15 Bibliography ...................................................................................................................................... 71 

 

  



 

 

 

Visual OO Debugger Page | 4 17.06.2022 

Introduction 
This document describes the development process and the results of the project “Visual OO 

Debugger”, short “VOOD”. The document is divided into three main parts. 

The part “Requirements and Constraints” discusses the requirements and constraints of the project. 

The part “Initial Solution” provides an overview of the implemented solution of the SA. The part 

“Development” consists of a detailed description of features that were implemented during the BA. 

The first two parts were created based on the SA report of the previous semester. The text provides 

enough information to distinguish which passages are adopted from the SA and which are newly 

created for the BA. 

This document is based on the arc421-template and was modified to better differentiate between 

the work done in the SA and the BA. 

  

 

1 (arc42, 2022) 



 

 

 

Visual OO Debugger Page | 5 17.06.2022 

Requirements and Constraints 
This part discusses the requirements and constraints of the project. 

1 Requirements 

In this chapter, an overview of the requirements of this project is given. Furthermore, the main 

quality goals and stakeholders are listed. 

1.1 Requirements Overview 

Our requirements-engineering methodology is loosely based on the principles of the Sophist group2. 

Partial requirements are derived by syntactically and semantically breaking down higher-level 

requirement descriptions. Parent items are italicized in tables and have dotted borders in mind map 

diagrams. The index indicates the relative position and nesting level in the hierarchy. 

We have adopted the first set of requirements from the SA. These requirements can be found in the 

SA Requirements sub-section. The second set of requirements is specific to the BA. These 

requirements can be found in the BA Requirements sub-section. 

1.1.1 SA Requirements 

From the initial SA assignment, we inherited the following set of requirements (see Figure 2 and 

Table 1). All requirements were derived from the assignment with the exception of the requirement 

REQ-SA:4@1.0.0-final and its sub-requirements, which were derived from the stakeholder analysis 

(see section 1.2.2). For the BA the requirements were categorized in functional requirements, 

constraints, and quality requirements. 

ID Description 

REQ-SA@1.0.0-final A visual debugger for Java is to be created for teaching object-
oriented programming. The aim is to visualize objects and variables 
graphically and to run a program step by step inside the debugger in 
order to better understand how objects and variables change over the 
course of the program. 

Other goals of the project are to make it as easy as possible to get 
started (setup and import of the program as simple as possible), 
universal use, e.g., as a Visual Studio Code extension or in the 
browser (e.g., with GitPod) and usability. 

[Well documented and maintainable source code that is open to 
extensions. (from stakeholder analysis)] 

REQ-SA:1@1.0.0-final A visual debugger for Java is to be created for teaching object-
oriented programming. 

REQ-SA:1.1@1.0.0-final The visual debugger is intended to facilitate the teaching of object-
oriented programming. 

REQ-SA:1.1.1@1.0.0-final The visual debugger is intended to support teachers in object-oriented 
programming. 

 

2 (Sophist GmbH, 2022) 



 

 

 

Visual OO Debugger Page | 6 17.06.2022 

REQ-SA:1.1.2@1.0.0-final The visual debugger is intended to support students in object-oriented 
programming. 

REQ-SA:1.2@1.0.0-final A visual debugger for Java should be created. 

REQ-SA:2@1.0.0-final The aim is to visualize objects and variables graphically and to run a 
program step by step inside the debugger in order to better 
understand how objects and variables change over the course of the 
program. 

REQ-SA:2.1@1.0.0-final The aim is to visualize objects and variables graphically and to run a 
program step by step inside the debugger. 

REQ-SA:2.1.1@1.0.0-final The aim is to visualize objects and variables graphically. 

REQ-SA:2.1.1.1@1.0.0-final The aim is to visualize objects graphically. 

REQ-SA:2.1.1.2@1.0.0-final The aim is to visualize variables graphically. 

REQ-SA:2.1.2@1.0.0-final The aim is to run a program step by step inside the debugger. 

REQ-SA:2.2@1.0.0-final The visual debugger should make it possible to understand how 
objects and variables change over the course of the program. 

REQ-SA:2.2.1@1.0.0-final The visual debugger should make it possible to understand how 
objects change over the course of the program. 

REQ-SA:2.2.2@1.0.0-final The visual debugger should make it possible to understand how 
variables change over the course of the program. 

REQ-SA:3@1.0.0-final Other goals of the project are to make it as easy as possible to get 
started (setup and import of the program as simple as possible), 
universal use, e.g., as a Visual Studio Code extension or in the 
browser (e.g., with GitPod ) and usability. 

REQ-SA:3.1@1.0.0-final Another goal of the project is to make the setup [of the system] as 
simple as possible. 

REQ-SA:3.2@1.0.0-final Another goal of the project is to make the import of the program as 
simple as possible. 

REQ-SA:3.3@1.0.0-final Another goal of the project is to be used as a Visual Studio Code 
extension. 

REQ-SA:3.4@1.0.0-final Another goal of the project is to be used in GitPod. 

REQ-SA:3.5@1.0.0-final Another goal of the project is usability [of the system]. 

REQ-SA:4@1.0.0-final Well documented and maintainable source code that is open to 
extensions. 

REQ-SA:4.1@1.0.0-final Well documented source code. 

REQ-SA:4.2@1.0.0-final Maintainable source code. 

REQ-SA:4.3@1.0.0-final Source code that is open to extensions. 

Table 1 SA requirements 



 

 

 

Visual OO Debugger Page | 7 17.06.2022 

 

Figure 2 Mind map of the SA requirements



 

 

 

Visual OO Debugger Page | 8 17.06.2022 

1.1.2 BA Requirements 

For the current BA assignment, we received the following additional set of requirements (see Figure 3 and Table 2): 

ID Description 

REQ-BA@1.0.0-final The project is now to be continued based on the work of the previous semester. 

The following goals are to be achieved: 

- Visualization of the individual stack frames with parameters/local variables and references to the heap 
- Alternative visualization with JointJS3 

Additional desirable features that could be worked on are: 

Show objects that are no longer referenced 

- Connection with the editor: On click on the variable in the visualization, the variable is highlighted in the source code. 
- Animations, e.g., of changed references or changes to values 

REQ-BA:5@1.0.0-final Visualization of the individual stack frames with parameters/local variables and references to the heap. 

REQ-BA:6@1.0.0-final Alternative visualization with JointJS3. 

REQ-BA:7@1.0.0-final Show objects that are no longer referenced. 

REQ-BA:8@1.0.0-final Connection with the editor: Click on the variable in the visualization, the variable is highlighted in the source code. 

REQ-BA:9@1.0.0-final Animations, e.g., of changed references or changes to values. 

REQ-BA:9.1@1.0.0-final Animations of changed references. 

REQ-BA:9.2@1.0.0-final Animations of changes to values. 

Table 2 BA requirements 

 

3 (JointJS, 2022) 



 

 

 

Visual OO Debugger Page | 9 17.06.2022 

 

Figure 3 Mind map of the BA requirements 



 

 

 

Visual OO Debugger Page | 10 17.06.2022 

1.2 Stakeholders 

The initial stakeholder analysis was conducted in the beginning of the SA project. For the BA, 

this analysis was revisited and updated. 

The stakeholders were initially conducted to gain a better understanding of the expectations 

of VOOD. Some of these expectations were added as additional requirements for VOOD. 

The analysis consists of an identification of the stakeholders (Table 3), the stakeholder 

analysis (Table 4) and the relation map (Table 5). 

The analysis shows that there are multiple parties with high influence and motivation for this 

project. There are multiple parties that can contribute feedback and ideas to the project. 

Especially during the initial phases of VOOD project, where students of OO lectures were 

observed to gain ideas for the first design. 

Notable changes to the stakeholder analysis for the BA are: 

‐ The addition of Frank Koch and Leo Büttiker as co-examiners. As external examiners they 
expect an easy to read and well-structured report, which results in more time and effort 
put into the creation of the documentation compared to the SA. 

‐ The addition of the English lecturer AnneMarie O’Neill as proof-reader. 
‐ The students of OO have completed their course in the previous semester. They can still 

provide valuable feedback, but they cannot offer the perspective of a student visiting OO 
for the first time anymore. A new course would be offered again in the following 
semester. It is therefore difficult to gain first-hand user experience during the BA.



 

 

 

Visual OO Debugger Page | 11 17.06.2022 

1.2.1 List of Stakeholders 

Group Contact Goals Role(s) Expectations 

OO lecturers: 

Mirko Stocker 

mirko.stocker@ost.ch Successful completion of the 
project 

Adviser 

Product 
Owner 

Lecturer 

MVP as a basis for further development. 

A tool for his students to study the runtime 
behaviour of OO programs easily. 

Initial developers: 

Gino Cardillo 

Pascal Schürmann 

Alexandre Lagadec 

gino.cardillo@ost.ch 

pascal.schuermann@ost.ch 

alexandre.lagadec@ost.ch 

Successful completion of the 
project 

Developer 

Student 

To gain experience. 

To gain reputation. 

FOSS community 
 

To gain experience. 

To gain reputation. 

Developers Well-documented and maintainable source 
code that is open to extensions. 

Lecturers in OO-
related subjects: 

Thomas Letsch (AD) 

Silvan Gehrig (PF) 

thomas.letsch@ost.ch 

silvan.gehrig@ost.ch 

To demonstrate the runtime 
behaviour of high-level OO 
concepts. 

Lecturer To have a tool with which one can 
demonstrate the runtime behaviour of high-
level OO concepts. 

Students of OO and 
related subjects: 

Patrick Schürmann 

Alexandre Lagadec 

patrick.schuermann@ost.ch 

alexandre.lagadec@ost.ch 

To gain a deeper understanding 
of OO in general. 

To gain a deeper understanding 
of concepts that build on OO. 

Student To have a tool with which one can study the 
runtime behaviour of OO programs in general. 

To have a tool with which one can study the 
runtime behaviour of high-level OO concepts. 

English lecturers: 

AnneMarie O’Neill 

annemarie.oneill@ost.ch  Ensure linguistic quality of 
thesis in English at OST 

Lecturer A solid thesis report in English that reflects 
the high quality of English courses at OST 

Co-examiners: 

Frank Koch 

Leo Büttiker 

frank.koch@ost.ch  

leo@buettiker.org  

Examine thesis as an unbiased 
individual 

Additional 
thesis 
examiner 

An easy to read (well-structured and 
comprehensible) and interesting thesis report 

Table 3 List of Stakeholders 

mailto:mirko.stocker@ost.ch
mailto:gino.cardillo@ost.ch
mailto:pascal.schuermann@ost.ch
mailto:alexandre.lagadec@ost.ch
mailto:thomas.letsch@ost.ch
mailto:silvan.gehrig@ost.ch
mailto:patrick.schuermann@ost.ch
mailto:alexandre.lagadec@ost.ch
mailto:annemarie.oneill@ost.ch
mailto:frank.koch@ost.ch
mailto:leo@buettiker.org


 

 

 

Visual OO Debugger Page | 12 17.06.2022 

1.2.2 Stakeholder Analysis 

Group Cooperation Influence Motivation (s) 

OO lecturers Very Positive Very High Very High 

Initial developers Very Positive Very High Very High 

FOSS community Positive 

There is a vast amount of 
FOSS projects. Those who 
choose to contribute to our 
project are likely to be 
supportive. 

None 

The project is not accepting contributions by 
the broad public yet. 

Medium  

There is a vast amount of FOSS 
projects. Those who choose to 
contribute to our project are likely to be 
motivated to provide at least simple 
feature requests or bug reports. 

Lecturers in OO-related 
subjects 

Positive Very High 

Lecturers in OO-related subjects can provide 
valuable insights on what makes learning 
high-level OO concepts and OO in general 
challenging 

High 

Lecturers in OO-related subjects would 
probably like to demonstrate the 
runtime behaviour of high-level OO 
concepts. 

Students of OO and 
related concepts 

Positive High 

Students of OO and related subjects can 
provide raw feedback on what makes 
learning high-level OO concepts and OO in 
general challenging 

High 

Students of OO and related subjects 
would probably like to study the runtime 
behaviour of high-level OO concepts 
and OO in general. 

English lecturers Very positive High 

The linguistic quality of written thesis report 
has a significant influence on the final grade 

High 

AnneMarie O’Neill offered to proof-read 
our thesis report 

Co-examiners None 

A co-examiner will probably try 
to challenge the project team 
during the thesis presentation 

High 

The final grade will be influenced by the co-
examiner 

High 

Academic interest 

 

Table 4 Stakeholder analysis 



 

 

 

Visual OO Debugger Page | 13 17.06.2022 

1.2.3 Relation map 

 OO lecturers Initial developers FOSS 
community 

Lecturers in OO-
related subjects 

Students of OO and 
related concepts 

English Lecturers Co-
examiners 

OO lecturers - Very Good 

Successful kick-
off meeting 

Weekly meetings 
planned 

Unknown  Good 

Silvan and Mirko 
even share 
some lectures 

Default 

Patrick attended OO 
lecture 

Unknown Unknown 

Initial developers - - None  Default 

Alexandre 
attended AD 
and PF lectures; 
no active 
discussion yet 

Good 

Patrick is Pascal’s 
brother 

Good 

The project team and 
the English lecturers 
enjoyed the shared 
English classes at OST 

Unknown 

FOSS community - - - Unknown Unknown Unknown Unknown 

Lecturers in OO-
related subjects 

- - - - Default 

Alexandre attended 
AD and PF lectures; 
no use case yet 

Unknown Unknown 

Students of OO 
and related 
concepts 

- - - - - Unknown Unknown 

English Lecturers - - - - - - Unknown 

Co-examiners - - - - - - - 

Table 5 Relation map of the stakeholders



 

 

 

Visual OO Debugger Page | 14 17.06.2022 

1.3 Existing comparable products  

One of the initial tasks done for VOOD was to test different products that also offer 

visualizations of a program during debugging. This was done to understand what possible 

visualization techniques already exist and what features VOOD could provide. 

The result of this research is listed in Table 6. Based on this research the following features 

were aimed to be included in the final solution: 

- Dynamic rendering 
- Plant UML export 
- Back-stepper function 

During the mid-term presentation of the BA, the learning IDE BlueJ4 was briefly discussed. 

The IDE was further analysed by the team, but no tangible ideas were adopted from it. 

 

 

4 (BlueJ, 2022) 



 

 

 

Visual OO Debugger Page | 15 17.06.2022 

 

Title Authors Organization Category Features References 

Visual Tracing for 
the Eclipse Java 
Debugger 

- Bilal Alcala 
- Peter Bodesinsky 
- Alexander Gruber 
- Silvia Miksch 

TU Wien Eclipse 
plug-in 

- Tracking 
- Temporal 

scaling 
- Search for 

variables 

Paper (TU Wien) 

Paper (IEEE) 

Paper (Research gate) 

YouTube 

Mirur Visual 
Debugger 

Brandon Borkholder Brandon 
Borkholder 

Eclipse 
plug-in 

- Plots for 
numeric 
arrays 

Eclipse Marketplace 

JIVE Support: 

- Demian Lessa - Lead JIVE Developer 
- Jeffrey K. Czyz - Eclipse/JIVE Developer 
- Paul V. Gestwicki - Stand-alone JIVE 

Developer 
- J. Swaminathan - JIVE Plug-in Developer 

University at 
Buffalo 

Eclipse 
plug-in 

- ‘Reverse 
stepping’ 

- Based on 
UML model 

-  

University at Buffalo 

OCL-based Runtime 
Monitoring of JVM 
hosted Applications 

Lars Hamann (H-Man2), Martin Gogolla, 
Mirco Kuhlmann 

Universität 
Bremen 

Stand-
alone? 

- Based on 
UML model 

Stack overflow 

TU Berlin 

SourceForge 

Visual Debugger Tim Kräuter - IntelliJ 
plug-in 

- Uses native 
IntelliJ 
debugger as 
data source 

Tim Kräuters Webseite 

JetBrains Marketplace 

Visual Debugger GitHub 

UI GitHub 

Debug Visualizer Henning Dieterichs Microsoft 
(VS Code) 

VS Code 
plug-in 

- Dynamic 
rendering 

Visual Studio Marketplace 

GitHub 

Table 6 Existing comparable products 

https://publik.tuwien.ac.at/files/PubDat_207587.pdf
https://ieeexplore.ieee.org/document/6178940
https://www.researchgate.net/publication/230753899_Visual_Tracing_for_the_Eclipse_Java_Debugger
https://www.youtube.com/watch?v=GNuRbPrhvrw
https://marketplace.eclipse.org/content/mirur-visual-debugger
https://cse.buffalo.edu/jive/support.html
https://cse.buffalo.edu/jive/
https://stackoverflow.com/users/43814/h-man2
https://stackoverflow.com/a/8209486
https://journal.ub.tu-berlin.de/eceasst/article/view/623
https://sourceforge.net/projects/useocl/
https://timkraeuter.com/visual-debugger/
https://plugins.jetbrains.com/plugin/16851-visual-debugger
https://github.com/timKraeuter/VisualDebugger
https://github.com/timKraeuter/object-diagram-modeler/tree/master/debugger
https://marketplace.visualstudio.com/items?itemName=hediet.debug-visualizer
https://github.com/hediet/vscode-debug-visualizer


 

 

 

Visual OO Debugger Page | 16 17.06.2022 

2 Constraints  

The following requirements are considered to add a constraint in the freedom of the design of 

VOOD. 

ID Constraint Consequences 

REQ-SA:1.2@1.0.0-final A visual debugger for 
Java should be 
created. 

 

REQ-SA:3.3@1.0.0-final Another goal of the 
project is for it to be 
used as a Visual Studio 
Code extension. 

The constraints and guidelines for VS Code 
extensions apply for the entire project. 

VS Code must be used for testing. 

REQ-SA:3.4@1.0.0-final Another goal of the 
project is for it to be 
used in GitPod. 

 

REQ-BA:6@1.0.0-final Alternative 
visualization with 
JointJS. 

- JointJS5 must be integrated as an 
alternative visualization to vis.js6. 

- The user must be able to switch the 
visualization dynamically. 

- The underlying view model must be 
enhanced. 

Table 7 Constraints 

  

 

5 (JointJS, 2022) 
6 (vis.js, 2022) 



 

 

 

Visual OO Debugger Page | 17 17.06.2022 

3 Quality Requirements 

This chapter contains a list of all quality requirements. These quality requirements were further 

grouped in a quality tree and then specified in quality scenarios. 

3.1 Quality Goals 

We adapted all given quality requirements as quality goals. All quality requirements were found in 

the initial SA requirements set. During the BA the initial requirements where revisited and further 

developed. 

We assigned ISO/IEC 25010 quality (sub-)characteristics7 to each of these goals (see Table 8). 

Requirement ID Description ISO/IEC 25010 quality 
characteristic 

REQ-
SA:1.1@1.0.0-
final 

The visual debugger is intended to facilitate 
the teaching of object-oriented 
programming. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:1.1.1@1.0.0-
final 

The visual debugger is intended to support 
teachers in object-oriented programming. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:1.1.2@1.0.0-
final 

The visual debugger is intended to support 
students in object-oriented programming. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:2.2@1.0.0-
final 

The visual debugger should make it 
possible to understand how objects and 
variables change over the course of the 
program. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:2.2.1@1.0.0-
final 

The visual debugger should make it 
possible to understand how objects change 
over the course of the program. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:2.2.2@1.0.0-
final 

The visual debugger should make it 
possible to understand how variables 
change over the course of the program. 

Functional Suitability :: Functional 
appropriateness 

REQ-
SA:3.1@1.0.0-
final 

Another goal of the project is to make the 
setup [of the system] as simple as possible. 

Portability :: Installability 

REQ-
SA:3.2@1.0.0-
final 

Another goal of the project is to make the 
import of the program as simple as 
possible. 

Usability :: Operability 

REQ-
SA:3.5@1.0.0-
final 

Another goal of the project is good usability 
[of the system]. 

Usability 

 

7 (ISO 25000 Portal, 2022) 



 

 

 

Visual OO Debugger Page | 18 17.06.2022 

REQ-SA:4@1.0.0-
final 

Well documented and maintainable source 
code that is open to extensions. 

Maintainability 

REQ-
SA:4.1@1.0.0-
final 

Well documented source code. Maintainability :: Analysability 

REQ-
SA:4.2@1.0.0-
final 

Maintainable source code. Maintainability 

REQ-
SA:4.3@1.0.0-
final 

Source code that is open to extensions. Maintainability :: Reusability 

Table 8 Quality goals derived from quality requirements 

  



 

 

 

Visual OO Debugger Page | 19 17.06.2022 

3.2 Quality Tree  

A quality tree was created as a visual reference for the quality goals (Figure 4). 

 

Figure 4 Quality tree 



 

 

 

Visual OO Debugger Page | 20 17.06.2022 

3.3 Quality Scenarios  

This section further defines the quality requirements using scenarios. 

3.3.1 REQ-SA:1.1.1 

Scenario OO lecturer prepares a course for a semester. 

Business Goals The visual debugger is intended to support teachers in teaching object-oriented 
programming. 

Relevant Quality 
attributes 

Functional suitability 

Scenario 
Components 

Stimulus OO lecturer runs VOOD with codes samples for the OO 
lecture. 

Stimulus Source OO lecturer 

Environment VOOD is installed as an extension in VS Code. The OO 
lecturer has opened the demo code for the lecture. 

Artifact Export functions, PanelView 

Response The debugger visualizes the demo code in a way that it 
could be used for an explanation during the lecture. 

Response Measure The lecturer can include exported slides in the 
presentation without having to edit the export. 

Table 9 Quality scenario: OO lecturer prepares a course for a semester 

3.3.2 REQ-SA:1.1.2 

Scenario Students analysing a sample code for the OO course. 

Business Goals The visual debugger is intended to support students in object-oriented 
programming. 

Relevant Quality 
attributes 

Functional Suitability 

Scenario 
Components 

Stimulus Student has opened a sample project in VS Code. 

Stimulus Source Students of OO and related concepts 

Environment VOOD is installed as an extension in VS Code. 

Artifact PanelView 

Response The student can run the sample in the debugger. VOOD 
visualizes the output of the debugger in a way that helps 
the user to gain a deeper understanding of the code. 

Response Measure The student feels that the visualization of VOOD helped 
him to understand the sample  

Table 10 Quality scenario: Students analysing a sample code for the OO course 

  



 

 

 

Visual OO Debugger Page | 21 17.06.2022 

3.3.3 REQ-SA:2.2.1 

Scenario Student uses VOOD during an OO exercise. 

Business Goals Functional Suitability 

Relevant Quality 
attributes 

The visual debugger should make it possible to understand how objects change 
over the course of the program. 

Scenario 
Components 

Stimulus Student runs extension during an OO exercise. 

Stimulus Source Students of OO and related concepts 

Environment VOOD is installed as an extension in VS Code. The OO 
exercise is opened in VS Code and the debugger was 
started. 

Artifact PanelView 

Response The system visualizes the debugging steps to help the 
user understand the mechanics of objects. 

Response Measure The student feels that VOOD helped him understand the 
OO exercise. 

Table 11 Quality scenario: Student uses VOOD during an OO exercise 

3.3.4 REQ-SA:2.2.2 

Scenario Student uses VOOD during an OO exercise. 

Business Goals VOOD should make it possible to understand how variables change over the 
course of the program. 

Relevant Quality 
attributes 

Functional Suitability 

Scenario 
Components 

Stimulus Student runs extension during an OO exercise. 

Stimulus Source Students of OO and related concepts 

Environment VOOD is installed as an extension in VS Code. The OO 
exercise is opened in VS Code and the debugger was 
started. 

Artifact PanelView 

Response The system visualizes the debugging steps to help the 
user understand how objects are assigned to variables. 

Response Measure The student feels that VOOD helped him understand the 
OO exercise. 

Table 12 Quality scenario: Student uses VOOD during an OO exercise 

  



 

 

 

Visual OO Debugger Page | 22 17.06.2022 

3.3.5 REQ-SA:3.1 

Scenario Student participates in their first exercise of the OO course and has no IDE 
installed for developing Java. 

Business Goals Another goal of the project is to make the setup [of the system] as simple as 
possible. 

Relevant Quality 
attributes 

Installability 

Scenario 
Components 

Stimulus Student wants to use VOOD. 

Stimulus Source Students of OO and related concepts 

Environment VS Code is not installed locally on the Computer of the 
Student. 

Artifact Installation 

Response VS Code and VOOD can easily be installed or used in a 
web browser with GitPod. 

Response Measure Student can get a running version of VS Code with VOOD 
with a short instruction text in under 15 minutes. 

Table 13 Quality scenario: Student participates in their first exercise of the OO course and has no IDE installed for 
developing Java 

3.3.6 REQ-SA:3.2 

Scenario User installs VOOD. 

Business Goals Another goal of the project is to make the import of the program as simple as 
possible. 

Relevant Quality 
attributes 

Operability 

Scenario 
Components 

Stimulus VOOD is installed and started for the first time in VS 
Code. 

Stimulus Source Students of OO and related concepts 

Environment A published version of VOOD available on the VS 
marketplace. 

Artifact - 

Response VOOD can be installed from the VS marketplace. The 
introductory text on the VS marketplace page should 
instruct the user on how they can work with the 
extension. 

Response Measure The user can install and use VOOD within reasonable 
time. 

Table 14 Quality scenario: User installs VOOD 

  



 

 

 

Visual OO Debugger Page | 23 17.06.2022 

3.3.7 REQ-SA:3.5 

Scenario User uses system to debug a simple solution. 

Business Goals Another goal of the project is usability [of the system]. 

Relevant Quality 
attributes 

Usability 

Scenario 
Components 

Stimulus User runs command “VOOD: Open debugger view” and 
starts debugging. 

Stimulus Source Users in General 

Environment VOOD is installed as extension in VS Code. The user has 
read the VS marketplace page. 

Artifact PanelView, Settings 

Response The system visualizes the debugging steps in a way that 
is understandable for the user. 

Response Measure The user can use the functions of the extension without 
a problem after they read the VS marketplace page. 

Table 15 Quality scenario: User uses system to debug a simple solution 

3.3.8 REQ-SA:4.1 

Scenario New developers want to contribute to VOOD extension. 

Business Goals Well documented source code 

Relevant Quality 
attributes 

Analysability 

Scenario 
Components 

Stimulus A new developer wants to contribute to VOOD and 
therefore needs to understand how VOOD works. 

Stimulus Source Future developer of VOOD 

Environment VOOD is available on a public repository. 

Artifact  

Response New developers should get an understanding of the inner 
workings of VOOD within a reasonable amount of time. 

Response Measure The source code is self-explanatory. The 
CONTRIBUTING.md file exists.  

Table 16 Quality scenario: New developers want to contribute to VOOD extension 

  



 

 

 

Visual OO Debugger Page | 24 17.06.2022 

3.3.9 REQ-SA:4.2 

Scenario After the BA is finished, a feature of VS Code used by VOOD is no longer 
supported. A new developer is tasked with fixing the issue. 

Business Goals Maintainable source code 

Relevant Quality 
attributes 

Maintainability 

Scenario 
Components 

Stimulus A new developer needs to fix an issue of VOOD. 

Stimulus Source Future developer of VOOD 

Environment VOOD is available on a public repository. 

Artifact  

Response The developer should be able to fix the issue and replace 
deprecated components with ease. 

Response Measure The components of VOOD are well documented. The 
architecture allows for logical components to be 
replaced. 

Table 17 Quality scenario: After the BA is finished, a feature of VS Code used by VOOD is no longer supported. A new 
developer is tasked with fixing the issue 

3.3.10 REQ-SA:4.3 

Scenario After the bachelor thesis is finished, the need for a new visualization option 
arises. 

Business Goals Source code that is open to extensions 

Relevant Quality 
attributes 

Reusability 

Scenario 
Components 

Stimulus A new developer needs to add a visualization for VOOD. 

Stimulus Source Future developer of VOOD 

Environment VOOD is available on a public repository. 

Artifact  

Response The developer should be able to extend the 
functionalities of VOOD. 

Response Measure The architecture of VOOD should allow for new 
components to be added. 

Table 18 Quality scenario: After the bachelor thesis is finished, the need for a new visualization option arises 

  



 

 

 

Visual OO Debugger Page | 25 17.06.2022 

4 Solution Strategy  

To outline our solution strategy, we first mapped goals (based on fine-grained requirements) to 

solution approaches. 

Goal/Requirement Description Solution approach 

REQ-
SA:1.1.1@1.0.0-
final 

The visual debugger is intended to 
support teachers in object-oriented 
programming. 

The visualization can be exported as a 
PNG, animated GIF, PlantUML or 
GraphViz for further use in teaching. 

REQ-
SA:1.1.2@1.0.0-
final 

The visual debugger is intended to 
support students in object-oriented 
programming. 

The dynamic and highly interactive 
visualization of object graphs allows 
for playful exploration and learning. 

REQ-SA:1.2@1.0.0-
final 

A visual debugger for Java should be 
created. 

The outputs of a Java debugger 
extension are captured and 
visualized. 

REQ-
SA:2.1.1.1@1.0.0-
final 

The aim is to visualize objects 
graphically. 

External matured graphics libraries 
will be used for visualization. Various 
common formats will be used for 
exports. 

REQ-
SA:2.1.1.2@1.0.0-
final 

The aim is to visualize variables 
graphically. 

External matured graphics libraries 
will be used for visualization. Various 
common formats will be used for 
exports. 

REQ-
SA:2.1.2@1.0.0-
final 

The aim is to run a program step by 
step inside the debugger. 

The history of the visualizations is 
saved and made navigable. 

REQ-
SA:2.2.1@1.0.0-
final 

The visual debugger should make it 
possible to understand how objects 
change over the course of the 
program. 

Transitions between object states are 
animated in the view. 

REQ-
SA:2.2.2@1.0.0-
final 

The visual debugger should make it 
possible to understand how variables 
change over the course of the 
program. 

Transitions between variable states 
are animated in the view. 

REQ-SA:3.1@1.0.0-
final 

Another goal of the project is to make 
the setup [of the system] as simple as 
possible. 

The finished extension will be made 
available on the VS marketplace. 

REQ-SA:3.2@1.0.0-
final 

Another goal of the project is to make 
the import of the program as simple 
as possible. 

This is done by VS Code. 

REQ-SA:3.3@1.0.0-
final 

Another goal of the project is to be 
used as a Visual Studio Code 
extension. 

The extension will be written in 
TypeScript and will adhere to best 
practices of VS Code extension 
development. 



 

 

 

Visual OO Debugger Page | 26 17.06.2022 

REQ-SA:3.4@1.0.0-
final 

Another goal of the project is for it to 
be used in GitPod. 

As a VS Code extension, the product 
will be usable by GitPod as well. 

REQ-SA:3.5@1.0.0-
final 

Another goal of the project is usability 
[of the system]. 

Various quality-of-life improvements 
increase usability. 

- Clustering of nodes 
- Hiding of nodes 
- Customizable colours 
- Visual improvements 
- Easier access to exports 

REQ-SA:4.1@1.0.0-
final 

Well documented source code. The source code is kept as simple as 
possible, and comments are added 
where necessary. 

REQ-SA:4.2@1.0.0-
final 

Maintainable source code. The source code is well structured. 

REQ-SA:4.3@1.0.0-
final 

Source code that is open to 
extensions. 

The source code is modular, which 
allows for easier extensions. 

REQ-BA:5@1.0.0-
final 

Visualization of the individual stack 
frames with parameters/local 
variables and references to the heap. 

The stack frame is selectable via a 
dropdown. 

REQ-BA:6@1.0.0-
final 

Alternative visualization with JointJS. Use the JointJS8 library to add an 
alternative visualization. 

REQ-BA:7@1.0.0-
final 

Show objects that are no longer 
referenced. 

Not to be implemented. See section 
10.3. 

REQ-BA:8@1.0.0-
final 

Connection with the editor: Click on 
the variable in the visualization, the 
variable is highlighted in the source 
code. 

Make a connection between the 
clicked variable and its position in the 
source code. Then move the cursor to 
that location. 

REQ-BA:9.1@1.0.0-
final 

Animations of changed references. Newly added and changed references 
between debugging steps use a 
configurable, dedicated colour set 
(background colour, border colour, 
and font colour) across all dynamic 
visualizations. 

REQ-BA:9.2@1.0.0-
final 

Animations of changes to values. Newly added nodes and nodes with 
changed values between debugging 
steps use a configurable, dedicated 
colour set (background colour, border 
colour, and font colour) across all 
dynamic visualizations. 

Table 19 Solution strategy 

 

8 (JointJS, 2022) 



 

 

 

Visual OO Debugger Page | 27 17.06.2022 

5 Risks and Technical Debts 

The following risks were identified for the bachelor thesis: 

ID Category Title Description Expected effects Prevention Behaviour on entry 

R1 PM Bad work 
package 
ordering 

The order in which work packages 
are processed is causing the project 
to stall. 

Delays Analyse inter-package 
dependencies during 
planning. 

Assign all available team 
members to blocking work 
packages. 

R2 PM Poor 
requirements 
analysis 

Requirements are not properly 
understood, approved, and 
prioritized. 

Delays Regular validation of the 
requirements internally 
and with stakeholders. 

Re-evaluate erroneous 
requirements with 
stakeholders. 

R3 CI/CD Blocking build 
failure 

A build failure in the CI/CD pipeline 
blocks the project. 

Delays Developer guidelines: 
wait for CI / CD results 
every day before 
finishing work. 

Responsible developers fix 
build problems 
immediately and notify all 
blocked team members. 

R4 Dev Poor plug-in 
development 

Functionalities and best practices 
related to the chosen plug-in 
framework are unknown, leading to 
unnecessary efforts and/or delays. 

Delays, 
unnecessary 
complexity 

Study plug-in 
development tutorials. 

Perform design reviews on 
a regular basis and 
maintain a knowledge base 
for key insights. 

R5 Team Illness Team members are not able to work 
at full capacity due to illness. 

Delays - - 

R6 Tech API 
deprecations 
by VS Code 

VS Code core APIs are suddenly 
deprecated, requiring 
implementation changes. 

Loss of 
functionality 

- Re-implement critical parts. 

R7 Tech Incompatible 
3rd party 
extensions 

Third-party extensions suddenly 
behave differently (version pinning 
is not available), requiring 
implementation changes. 

Loss of 
functionality 

- Re-implement critical parts. 

Table 20 Risk identification and management plan 



 

 

 

Visual OO Debugger Page | 28 17.06.2022 

5.1 Risk Assessment 

All parameters and calculation methods are based on vague estimates and negotiations within the project team. 

Risks are defined as weighted damages. A weight is calculated as the probability of occurrence divided by the probability of detection (a similar 

approach is used to calculate the so-called risk priority number in the failure mode and effects the analysis process). 

The bachelor thesis does not have to satisfy a monetary budget, but a time budget. Damages are therefore quantified using time units instead of 

monetary units. The maximal damages are calculated as the product of the following factors: 

‐ Estimated number of team members blocked 
‐ Estimated maximal time to resolution in sprints 
‐ Individual mean time budget per sprint (22.5h) 

ID Category Title Blocked team 
members 
(max.) 

Time to resolution 
(max.) 
[sprints] 

Damage 
(max.) 
[h] 

Prob. of 
occurrence 
[1] 

Prob. of 
detection 
[1] 

Weight 
 
[1] 

Risk 
 
[h] 

R1 PM Bad work package ordering 3 1 67.5 5% 50% 10% 6.75 

R2 PM Poor requirements analysis 3 2 135 10% 25% 40% 54 

R3 CI/CD Blocking build failure 3 1 67.5 5% 100% 5% 3.375 

R4 Dev Poor plug-in development 3 2 135 20% 25% 80% 108 

R5 Team Illness 1 1 22.5 20% 100% 20% 4.5 

R6 Tech API deprecations by VS Code 1 2 45 10% 50% 20% 9 

R7 Tech Incompatible 3rd party extensions 1 0.5 11.25 5% 25% 20% 2.25 

Sum 187.875 

Table 21 Simplified risk list 

After planning risk prevention and containment, we were able to reduce all identified risks to an acceptable level. 

The weighted damage adds up to 187.875 hours, which is 17.40% of the time budget of 1080 hours. To save time for dealing with the expected 

risks, we have increased our time estimates accordingly by roughly 20% during the sprint planning.



 

 

 

Visual OO Debugger Page | 29 17.06.2022 

5.2 Risk Matrix 

All identified risks are still within acceptable limits (taking into account planned risk prevention and 

treatment measures) as shown in the Risk matrix figure: 

 

Figure 5 Risk matrix 

  



 

 

 

Visual OO Debugger Page | 30 17.06.2022 

Initial Solution 
This part provides an overview of the fundamental architecture of the SA version of VOOD. The goal 

of this part is to give an understanding on how the SA version was constructed to provide a basis for 

the next part “Development”. 

This part consists of an overview of the cross-cutting concepts for the solution followed by a 

description of the system using the C4 model9. 

6 Cross-cutting Concepts 

This chapter describes overall principal regulations and solution ideas that were relevant in multiple 

parts of the system. 

6.1 User Experience concepts (UX)  

The UI of the extension was designed in a way that is intuitive for the user and gives enough options 

to freely visualize the current debugging step. 

VS Code offers different UI elements for extensions. But the usage of these elements is regulated by 

the extension guidelines of Visual Studio. 

For the Visual OO Debugger, it was assumed that basic commands were sufficient. It was thought 

that too many options would clutter the UI. 

For rendering the visualization, a WebView was used. This approach gave the most flexibility and 

allowed the use of external visualization libraries. 

 

Figure 6 Wireframe of VS Code integration 

 

9 (C4 model, 2021) 



 

 

 

Visual OO Debugger Page | 31 17.06.2022 

6.2 Development Concepts 

This chapter describes concepts that were used during development, with focus on code quality. 

These concepts implemented during the SA were reused for the BA. 

6.2.1 Code Review 

For maintaining and developing the code, GitHub10 was used. New changes to the code will be 

developed in feature branches. To merge a feature branch into the master branch, a pull request will 

be created. Only if at least one other team members approves, will they be merged into the master 

branch. 

6.2.2 Code Guidelines 

To ensure a coherent code style, prettier will be used. 

To ensure a certain degree of code quality, ESLint11 and SonarCloud12 will be used. 

 

Figure 7 SonarCloud summary 

  

 

10 (GitHub, 2022) 
11 (ESLint, 2022) 
12 (SonarCloud, 2022) 



 

 

 

Visual OO Debugger Page | 32 17.06.2022 

7 Deployment View 

The project makes use of GitHub Actions to enable Continuous Deployment. Three workflows are 

defined. 

 

Figure 8 GitHub workflow overview 

Pull Request CI 

The Pull Request CI workflow is executed whenever a pull request is created or updated. This 

workflow does a checkout of the code and then runs linting checks, formatting checks, unit tests 

and integration tests. Only if all those tasks succeed, can the pull request be merged. 

Master CI 

The Master CI workflow is triggered on every commit to the master branch. First it does the same 

checks as the Pull Request CI workflow. If that succeeds, another job is started which uses a GitHub 

action to create a repository dispatch event. This dispatch event will then trigger the Continuous 

Deployment workflow. 

Continuous Deployment 

The Continuous Deployment workflow can only be triggered by a repository dispatch event. This 

workflow only has one job for the deployment, which is executed on the production environment. 

Any workflows that operate on the production environment must be reviewed before the jobs can 

start. If approved, the job does a checkout of the code on the master branch, builds it, and publishes 

it to the VS Marketplace. 

  



 

 

 

Visual OO Debugger Page | 33 17.06.2022 

8 System Scope and Context 

This chapter describes the delimitations of the system from all its communication partners. The 

visualization is based on the system context diagram of the C4 model.13 

8.1 Business Context 

The business context describes the surrounding system of the solution for VOOD. That includes the 

User, Visual Studio Code, and the Debug Adapter. The relationships of these components are 

depicted in the following figure and table. 

 

Figure 9 Context diagram 

Partner Communication 

User The user can influence the Visual OO Debugger, either by sending commands 
or by adjusting the visualization. The user can also export the current 
visualization. 

Visual Studio Code Besides being the environment for the Visual OO Debugger, Visual Studio 
Code provides the Visual OO Debugger with: 

- Redirected user commands 
- Settings, set by the user 
- Debugger information 

Debug Adapter  The debug adapter manages the communication with the debugger. The 
debug adapter provides the Visual OO Debugger with the debugging data. 

Table 22 Description of the business context 

 

13 (C4 model, 2021) 



 

 

 

Visual OO Debugger Page | 34 17.06.2022 

8.2 Technical Context 

From the business context, two technical contexts can be derived. VS Code and the Debug Adapter. 

The Visual OO Debugger requires the following API’s and protocols to communicate in these 

contexts. 

API Definition 

(VS Code API, 2022) https://code.visualstudio.com/api/references/vscode-api  

(Debug Adapter Protocol, 2022) https://microsoft.github.io/debug-adapter-protocol/specification  

Table 23 Required API's and protocols 

VS Code API 

The VS Code API allows the Visual OO Debugger to access the functionality and data of VS Code. 

The following VS Code API features are relevant for the visual OO debugger: 

Feature Description 

commands For registering and listening to commands 

Debug Provides functionalities for accessing the debugger. 

DebugSession Provides access to the current debug session. 

ExtensionContext Provides a collection of utilities private to the extension. 

Uri A universal resource identifier for representing a resource 

ViewColumn To specify a location of a window inside VS Code 

Webview To display html content inside VS Code 

WebviewPanel For handling a window containing a Webview 

window Namespace of the currently active window 

workspace Gives access to the current workspace. 

Table 24 Used VS Code API features 

  

https://code.visualstudio.com/api/references/vscode-api
https://microsoft.github.io/debug-adapter-protocol/specification


 

 

 

Visual OO Debugger Page | 35 17.06.2022 

Debug Adapter Protocol 

Visual Studio Code communicates with the debugger through the debug adapter. The debug adapter 

is an intermediate component that normalizes the access to different debuggers. It is possible for 

the Visual OO Debugger to send requests to the debug adapter using the debug adapter protocol. 

These requests allow access to the following resources: 

 

Figure 10 Class diagram of debug adapter protocol models 

  



 

 

 

Visual OO Debugger Page | 36 17.06.2022 

9 Building Block View 

The building block view shows the static decomposition of the system into building blocks as well 

as their dependencies. To illustrate the building blocks, the “Container” Diagram of the C4 model 

was used. This decomposition shows the initial architectural decision taken for the SA project. 

9.1 Whitebox Overall System 

 

Figure 11 Class diagram of debug adapter protocol models 

 

The Visual OO Debugger can be roughly divided in two parts, the debug backend and the webview. 

This split was made to separate the logic for visualizing the data and retrieving and processing the 

debugging data. Furthermore, this solution simplified the distribution of work inside the project 

team. 

  



 

 

 

Visual OO Debugger Page | 37 17.06.2022 

9.1.1 Debug Backend 

Responsibility 

The debug backend handles the communication with the debug adapter of VS Code. This goal can 

be split into three separated tasks: 

‐ Handling debugging events 
‐ Retrieving the data from the external debug adapter 
‐ Process the received debugging data for the webview 

Interfaces 

‐ The debug backend communicates with the debug adapter via the debug adapter protocol. 
‐ The debug backend is given an instance of a webview class which is called whenever a 

debugging event is triggered. 

9.1.2 Webview 

Responsibility 

The webview is responsible for rendering the visualization of the debugging data. Besides the 

visualization, the webview handles user interactions. This includes: 

‐ User interactions using commands 
‐ User interactions with the visualization, either by repositioning elements or by using the back-

stepper function 

Interfaces 

‐ The user can send commands to the Visual OO Debugger to open the webview panel. 
‐ The user can trigger an export by sending a command. 
‐ The user can interact with the visualization on the webview panel. 
‐ An instance of a webview object is given to the debug backend. When the debug backend 

detects a debug event, an update function will be triggered. 

  



 

 

 

Visual OO Debugger Page | 38 17.06.2022 

9.2 Level 2 

Level 2 specifies the inner structure of the building blocks in the overall system utilizing the 

“Components” diagram of the C4 model. 

9.2.1 White Box Debug Backend 

 

Figure 12 Component diagram of debug backend 

 

The debug backend consists of two components, the debug session proxy, and the debug event 

manager. 

The debugSessionProxy handles the communication with the debug adapter and receives 

debugging data. 

The debugEventManager handles the debugging events. If the debugEventManager detects that the 

debugger has stopped, it will request the debugging data from the debugSessionProxy. The 

debugging data received by the debugSessionProxy will then be processed before it is sent to the 

webview for the visualization. 



 

 

 

Visual OO Debugger Page | 39 17.06.2022 

9.2.2 White Box Webview 

 

 

Figure 13 Component diagram of webview 

 

The webview can be split into two basic components, the debuggerPanel and the panelView. 

The debuggerPanel creates the view panel and handles incoming commands for the visualization. 

The panelView renders the visualization, provides the possibility for the user to reposition elements 

and handles the export of a diagram. 



 

 

 

Visual OO Debugger Page | 40 17.06.2022 

9.3 Level 3 

Level 3 specifies the inner structure of the building blocks in level 2. 

9.3.1 White Box DebugEventManager 

 

Figure 14 Class diagram of DebugEventManager 

 

The DebugEventManager is a single class with a DebugSessionProxy instance to load the debug 

data. 

The DebugEventManager creates the event handler for when the debugger stopped in his 

constructor. In this case, the event handler uses the debug session proxy to load all current 

variables. These variables are then processed and made into PanelViewInputs for the webview to 

visualize. 

  



 

 

 

Visual OO Debugger Page | 41 17.06.2022 

9.3.2 White Box PanelView 

 

Figure 15 Class diagram of PanelView 

 

The PanelView is an implementation of the interface PanelViewProxy. VisjsPanelView is one of 

these concrete implementations which renders the debug data as a vis.js diagram. The 

visjsPanelView reads an html file, where the rendering of the diagram takes place. The 

communication between the Visual OO Debugger and the html page is handled with 

PanelViewCommands. 

This html page is rendered in a webview panel, which the DebuggerPanel constructs and manages. 



 

 

 

Visual OO Debugger Page | 42 17.06.2022 

9.3.3 Panel View Variable 

 

Figure 16 Class diagram of PanelView variables 

 

The DebugEventManager prepares the variables for the webview as PanelView variables. 

  



 

 

 

Visual OO Debugger Page | 43 17.06.2022 

Development 
In this part, all the changes made during the BA are listed in detail. The changes are ordered by their 

corresponding requirement or risk. For each requirement, there will be a brief explanation of the 

context of the requirement and what limitations of the environment had to be overcome. A 

description on how these features were implemented in VOOD will be given. 

This part ends with a comparison of the BA version and SA version of VOOD, where further 

conclusions and an outlook of the VOOD project is given. 

  



 

 

 

Visual OO Debugger Page | 44 17.06.2022 

10 Implemented Requirements 

In this chapter, we go over every requirement and describe how it was implemented or explain why it 

was not implemented. 

10.1 REQ-BA:5 Visualization of the individual stack frames with 

parameters/local variables and references to the heap. 

The debug process for a single thread application can be thought of as a series of debug steps. 

Each debug step has call stack consisting of stack frames. 

 

Figure 17 Visualization of the call stack over time 

The SA version of VOOD saves the current stack frame (bold outline) in the history, every time the 

debugging process stops. Otherwise, the data is discarded (dotted outline). The user can then use 

the back-stepper function to navigate between the saved frames. To fulfil the requirement, an option 

should be implemented for the user to also navigate through the other stack frames of the call stack 

for each saved debugging step (normal outline). 

  



 

 

 

Visual OO Debugger Page | 45 17.06.2022 

10.1.1 Limitations 

The Debug Adapter Protocol, which VOOD uses to access the data for each debug step, does not 

provide an id for a stack frame, and it is unlikely that this feature will be added soon. It is possible to 

differentiate stack frames by their name and by their position on the call stack, but these are not 

unique properties. 

Therefore, it is not possible for the back-stepper function to navigate with certainty back to a 

specific stack frame. For example, an implementation where the user chooses a stack frame and 

then navigates back to an earlier version would not be possible. 

10.1.2 Decision 

The decision was made that the stack frame can only be changed for the most recent debugging 

step. When the user steps backward only the topmost stack frame will be rendered. 

To change the stack frame on the current debugging step a dropdown will be added to the toolbar of 

VOOD. 

 

Figure 18 Wireframe for stack frame dropdown 

  



 

 

 

Visual OO Debugger Page | 46 17.06.2022 

10.1.3 Implementation 

The solution implemented the dropdown of the wireframe. Initially, the dropdown was set between 

the step forward and the step back buttons, with the intention that the dropdown controls the 

“height” of the view, but this idea was dropped, and the dropdown was implemented as a standalone 

element. 

 

Figure 19 Implemented stack frame dropdown 

The debugAdapter class already provides the call stack for a debugging step. Therefore, to implant 

this feature, only the UI had to be updated. There were no major changes in the architecture of the 

extension. 

During the implementation of the dropdown the WebView UI toolkit was installed. This toolkit adds 

VS Code specific elements and styles to the WebView and ensures a more consistent look inside VS 

Code. Other components, such as the back/forward buttons were updated to use the new styles. 

  



 

 

 

Visual OO Debugger Page | 47 17.06.2022 

10.2 REQ-BA:6 Alternative visualization with JointJS. 

Already during the term project, JointJS was considered a promising alternate visualization 

framework to vis.js. While the vis.js framework provides a highly interactive experience that 

encourages exploration, it lacks the capabilities to display tabular data layouts for stack frame and 

object fields in a compact manner. Instead, elements that could be rendered as tabular entries are 

put in separate nodes, which can result in larger-span graphs. This issue has been addressed by the 

recent addition of node hiding and clustering capabilities. 

 

Figure 20 A vis.js-based graph 

The markup exports offered a more tabular, but static representation of object diagrams. While a 

minor code improvement has resulted in a more balanced graph layout for PlantUML exports in 

general, both types of markup exports (PlantUML and GraphViz) often exhibited undesirable layout 

trade-offs. Some of these shortcomings are frustrating in that a human editor could easily solve 

most problems if only the chart elements could be rearranged. Furthermore, the mark-up formats 

offer only limited post-processing support, particularly the PlantUML format. 



 

 

 

Visual OO Debugger Page | 48 17.06.2022 

 

Figure 21 PlantUML export: Good symmetry, but inconsistent arrow directions 

The GraphViz export offers similar symmetry and more consistent arrow orientations from the 

egress ports on the right but suffers even more from low angles between incoming edges and 

frequent edge crossings. 

 

Figure 22 GraphViz export: Good symmetry, consistent arrow orientation, but more edge crossings 

                

                  

           

         

    

           

           

          

      

    

    

   

        

           

      

            

  

         

         

        

         

        

        

         

              

        

    

         

          

         

          

      

          

      

         

              

        

    

         

          

         

          

       

          

       

          

         

             

                  

           

           

               

           

    

           

 

 

 

                

         

   

          

          

                

         

   

          

        

                

     

   

          

              

         

                             

            

             

           

     

 

 

         

           

           

                

                  

           

         

    

           

           

          

      

    

    

   

        

           

      

            

  

         

         

        

         

        

        

         

              

        

    

         

         

              

        

    

         

          

         

             

                  

           

           

               

           

    

           

 

 

 

         

                             

            

             

           

     

 

 

          

         

          

      

          

      

          

         

          

       

          

       

                

         

   

                

         

   

                

     

   

          

          

          

        

          

              

         

           

           



 

 

 

Visual OO Debugger Page | 49 17.06.2022 

The UML class diagram example for JointJS14 demonstrates pre-defined shapes that can be 

modified and re-used as building blocks for an object diagram. 

 

Figure 23 JointJS-based UML class diagram 

The directed graph layout example for JointJS15 demonstrates configurable layout optimization 

parameters. Such parameters could be useful to address layout flaws that are specific to certain 

kinds of topologies in the future. 

The question-answer dialog generator example for JointJS16 demonstrates, among other aspects, 

the dynamic addition and removal of ports and text entries on the same level. This capability should 

be useful to render stack frame structures that grow and shrink over the course of navigation back 

and forth through debugging breakpoints. 

 

14 https://resources.jointjs.com/demos/umlcd 
15 https://resources.jointjs.com/demos/directed-graph 
16 https://resources.jointjs.com/demos/qad 

https://resources.jointjs.com/demos/umlcd
https://resources.jointjs.com/demos/directed-graph
https://resources.jointjs.com/demos/qad


 

 

 

Visual OO Debugger Page | 50 17.06.2022 

 

Figure 24 JointJS question-answer dialog generator example 

 

Figure 25 JointJS directed graph example with configurable layout optimization parameters 



 

 

 

Visual OO Debugger Page | 51 17.06.2022 

Among the features advertised on the official JointJS website the following were considered the 

most relevant and compelling by the project team: 

Feature and Description JointJS JointJS+ Assessment 

Custom Shapes 

Define custom and interactive shapes 
using a combination of SVG and 
JointJS/JointJS+ APIs that ease 
creation of these shapes (elements 
or links with optional labels). 

✓ ✓ We assume that some adjustments will 

be necessary or at least useful. For 

example, we might want to hide the 

methods section of the UML built-in 

class shape to show a stack frame or 

object structure. 

Built-In Shapes 

Ready-to-use set of built-in shapes for 
most popular diagrams (rectangles, 
ovals, lines, ERD, state machines, 
logic, ORG, …). Use them as-is or 
customize to suit your need. 

✓ ✓ Some of the built-in shapes (such as 

the UML Class diagram class) could 

probably be used with minor 

modifications. 

Support for Ports 

Easy API for adding, removing, 
updating, and connecting ports. Ports 
can be added to any shape. 

✓ ✓ We want to use a dedicated ingress 

port per structure and an egress port 

for each structure field to achieve a 

good level of readability (see Figure 22 

and Figure 24). 

Geometry Math 

Geometry API, providing a rich set of 
functions that deal with math in 2D 
space (rectangles, lines, curves, 
ovals, points, …). 

✓ ✓ Some more complex calculations are 

probably needed to replace features 

missing in the free JointJS version. 

Interactive Diagrams 

Interactive shapes and links (moving, 
rotation, linking, …). 

✓ ✓ We need a high level of interactivity in 

order to enable manual post-

processing by the users of our tool. 

Rich Set of Events 

React on anything that happens in 
your diagrams (movement, property 
changes, structural changes, …) and 
run custom code. 

✓ ✓ A rich set of events is highly welcome 

as we would like to achieve a level of 

interaction like the vis.js-based 

debugger panel. 

Automatic Layouts 

Automatically layout your diagrams in 
a tree, grid or any directed or 
undirected graph. 

✗ ✓ We can use the dagre17 library to work 

around this problem. 

Zoom and Pan 

Zoom and pan your diagrams using 
animation transitions. 

✗ ✓ Zooming and panning can be 

recreated manually. 

Table 25 The most relevant and compelling JointJS features and their coverage by JointJS and JointJS+ 

 

17 (dagre GitHub, 2022) 



 

 

 

Visual OO Debugger Page | 52 17.06.2022 

10.2.1 Limitations 

‐ Not all operations can be executed by the JointJS debugger panel. GIF and WebM recordings 
usually involve a canvas element that can be recorded. JointJS uses SVG elements for 
rendering. 

‐ While the features offered by JointJS+ are very attractive, the licensing fees are too high for this 
open-source project. The lowest price is € 2,963.85 for 3 years. 

10.2.2 Decision 

‐ Get the most out of JointJS. 
‐ Use dagre to arrange structures properly. After some trial and error, we decided to use the 

following parameters (among others) for maximum readability and minimum edge crossings: 

Parameter Value Description Interpretation 

layout.DirectedGraph.LayoutOptions.align 'UL' Alignment Upper-left 

layout.DirectedGraph.LayoutOptions.rankDir 'TB' Rank 
direction 

Top-to-bottom 

layout.DirectedGraph.LayoutOptions.ranker 'network-

simplex' 
Ranker type Network-

simplex 
ranking 
algorithm 

dia.Link.GenericAttributes.router.name 'manhattan' Router type Manhattan-
style routing 
algorithm 

routers.ManhattanRouterArguments.excludeEnds ['source', 

'target'] 
Ends to be 
excluded 
from routing 

Preserves start 
and end 
directions 

routers.ManhattanRouterArguments.startDirections ['right'] Egress 
connection 
direction 

Egress 
connections 
go to the right 

routers.ManhattanRouterArguments.endDirections ['top'] Ingress 
connection 
direction 

Ingress 
connections 
come from the 
top 

dia.Link.GenericAttributes.connector.name 'rounded' Connector 
type 

Rounded (but 
orthogonal) 
connectors 

Table 26 Layout, router and connector parameters 

10.2.3 Implementation 

‐ The built-in UML class shape is extended and used to visualize objects and stack frames. 
‐ The dagre library is used to arrange structures properly. The layout, router and connector 

parameters were used according to our decision. 



 

 

 

Visual OO Debugger Page | 53 17.06.2022 

 

Figure 26 JointJS visualization 

  



 

 

 

Visual OO Debugger Page | 54 17.06.2022 

10.3 REQ-BA:7 Show objects that are no longer referenced. 

In the SA version of VOOD, objects are not rendered when they are no longer referenced. A feature 

should be implemented so these objects stay visible. 

10.3.1 Limitations 

The Debug Adapter Protocol provides us with the necessary data for the diagrams but does not 

deliver objects without a reference. It would be possible to save an object without references locally 

and render them in the diagram. But without access to the garbage collector, it would be impossible 

to know how long this object should be shown in the diagram. 

10.3.2 Decision 

This feature will not be implemented. 

  



 

 

 

Visual OO Debugger Page | 55 17.06.2022 

10.4 REQ-BA:8 Connection with the editor: Click on the variable in 

the visualization, the variable is highlighted in the source code. 

To help students mentally link the rendered diagram with the corresponding source code, a feature 

was requested where a user could click on variables in the diagram which is then highlighted in the 

code. 

10.4.1 Limitations 

This feature depends on values which need to be provided by the underlying Java environment. 

 

Figure 27 Underlying Java environment 

The system consists of multiple Java components that run the source code. The “Eclipse JDT 

language Server” provides the LSP protocol, which is used by the “Language Support for Java” VS 

Code extension to offer the use of Java in VS Code. An extension of the “Eclipse JDT language 

Server” is the “Java Debug Server”. It implements the DAP, which is used by VOOD and the 

“Debugger for Java” extension. 

To implement the requested feature, a reference from a variable to the source code is needed. The 

DAP has an optional field that could contain such a value, but it is left undefined by the Java Debug 

Server.  

The LSP, on the other hand, was developed to offer support for new languages. Microsoft advises 

against the use for minor features. 

“…In general, it is advised that LSP language server extensions be used for providing new language 

experiences, not extending existing ones.”18 

10.4.2 Decision 

Because of the limitation of the provided protocols, it was decided not to implement this feature. 

  

 

18 (Microsoft, 2022) 



 

 

 

Visual OO Debugger Page | 56 17.06.2022 

10.5 REQ-SA:3.5 Usability [of the system]. 

In the SA version of VOOD, the vis.js visualization was rather static. The user could change the 

position of the rendered nodes and step back to older states, but it was not possible, for example, to 

hide certain nodes.  

During testing of the vis.js visualization it became clear that some additional features, to customize 

the vis.js graph, would increase the usability of the extension. 

This chapter also includes the requirements REQ-BA:9.1 and REQ-BA:9.2 both of which are also 

concerned with improving the usability of the vis.js solution. These requests are rather minor and 

are therefore bundled here together under “Change visualization for variables” 

10.5.1 Limitations 

The features are mostly concerned about the visualization. Therefore, they depend on features 

provided by the vis.js library. 

10.5.2 Decision 

The following features were implemented to give the user more control over the visualization. 

Customizable colours 

To make it easier to use an exported graph in other documents, the colours used in the graph should 

be customizable. The following settings should therefore be added: 

‐ Default node colour 
‐ Default variable colour 
‐ Changed node colour 
‐ Changed variable colour 

The other colours used, for example the font colour or the border colour, will be calculated using the 

user selected colours. 

Make PNG and GIF exports accessible via editor menu 

To make it easier to access the GIF export and the PNG export, they were added to the editor menu. 

Expand/Collapse nodes 

The possibility to group certain nodes in the diagram was already discussed during the SA. 

 

Figure 28 Expand/collapse nodes wireframe 

When a node is clicked, all child nodes should be hidden and the node itself is visually marked with a 

bold border. If the node is clicked again, all nodes become visible again. 



 

 

 

Visual OO Debugger Page | 57 17.06.2022 

Hide Nodes/Edges for export 

A feature was requested to remove nodes from the visualization. 

Change visualization for variables 

Variables and objects are rendered similarly in the SA version of VOOD. To better highlight the 

difference of these two elements, it was requested that variables have a different colour then 

objects. 

10.5.3 Implementation 

All those features were implemented. 

Customizable colours 

Options to set the required colours were added to the settings of the extension. The PanelView 

proxy interface was extended to use these new colours. New functions were implemented to 

incorporate the rendering in the vis.js visualization. 

 

Figure 29 Customizable colors 

  



 

 

 

Visual OO Debugger Page | 58 17.06.2022 

Make PNG and GIF exports accessible via editor menu 

The new commands where registered in the package.json of the extension to instruct VS Code to 

offer these options in the editor menu. 

 

Figure 30 Editor menu with export options 

Expand/Collapse nodes 

The feature was implemented according to the wireframe. An additional icon was added to give the 

user the option to open all clusters at once. 

When a user clicks a node, a cluster node is created with the same content as the original node. The 

id of the cluster is prefixed to differentiate normal nodes from clusters. The cluster contains all 

referenced nodes of the original nodes as well as their referenced nodes and so on. All nodes, that 

are contained in the cluster, are removed. 

To visually differentiate the clusters from normal nodes, clusters have an increased border width 

and references to a cluster have a dashed arrow. 

 

Figure 31 Collapsed node “(Rectangle)” 



 

 

 

Visual OO Debugger Page | 59 17.06.2022 

Hide Nodes/Edges for export 

The hide function is controlled by the new eye icon in the toolbar. If a node or cluster is dragged 

onto the icon, it will be removed from the visualization. When the eye icon is clicked, it will reveal all 

the hidden nodes and clusters. 

 

Figure 32 Hide nodes 

Hidden clusters will not be opened by the button to open all clusters. 

Change visualization for variables 

A new colour was introduced to better distinguish between variables and objects. Furthermore, 

when an existing variable is assigned to a new object the variable node will be marked as changed. 

Previously only the corresponding edge was marked. 

 

Figure 33 Visualization of changed references for old and new version of VOOD 

  



 

 

 

Visual OO Debugger Page | 60 17.06.2022 

10.6 REQ-SA:4.3 Source code that is open to extensions. 

To make it possible to extend VOOD, certain changes to the code were necessary. 

Additionally, since VOOD will be an open-source project, information and guidance for new 

contributors were added. 

10.6.1 Limitations 

There were no limitations for these changes. 

10.6.2 Decision 

The following decisions were made to make the code more open to extensions. 

Add Contribution Information 

Information on how to contribute to the project and guidelines need to be in place and documented. 

Extract Java specific parts 

The current version of VOOD only supports Java, and Java specific code is intertwined with the rest 

of the debugger. These specific parts include: 

‐ Information on which are the primitive types 
‐ What the name of the string class is (in Java it is “String”, in other languages it is “string”) since 

strings receive special treatment 
‐ How to convert the debugger information into our intermediate data structure 

This change is necessary to support more languages in the future. 

10.6.3 Implementation 

This section describes how those decisions were implemented. 

Add Contribution Information 

A contributing.md was added to the repository, as well as a code-of-conduct.md. 

The contributing.md contains all the necessary information to contribute to the project. This 

includes information on how to ... 

‐ create an issue, 
‐ open a pull request, 
‐ set up the IDE, 
‐ add and run tests, 
‐ ensure a high code quality by using our code quality tools, 
‐ document changes. 

We also added templates for bug and feature request issues and templates for pull requests to 

further assist a contributor. 

As the code of conduct, we used the well-known Contributor Covenant Code of Conduct19. 

  

 

19 (Contributor Covenant Code of Conduct, 2022) 



 

 

 

Visual OO Debugger Page | 61 17.06.2022 

Extract Java specific parts 

Implementing the strategy design pattern, we created the AbstractDataExtractor and its 

specification for Java, the JavaDataExtractor. 

 

Figure 34 Data extractor class diagram 

At the start of a debugging session, the DebugEventManager identifies the language of the 

application and uses the corresponding data extractor. If the language is anything other than Java, 

the extension will throw an error. 

  



 

 

 

Visual OO Debugger Page | 62 17.06.2022 

10.7 R:6 API Deprecations by VS Code 

As stated in the risk analysis, VOOD is susceptible to changes in VS Code. 

During the BA this risk occurred once. VS Code changed the web views so that SharedArrayBuffer is 

no longer supported. This change was addressed in the issue 116715 of the VS Code GitHub page20. 

The FFmpeg21 library, used for the GIF export, relies on the SharedArrayBuffer and is therefore no 

longer working. 

10.7.1 Decision 

To fix the GIF export it was decided to use a different library. The original GIF export records a 

WebM file and converts it to a GIF after the recording. 

10.7.2 Implementation 

The reimplementation of this feature was time consuming because of the limitation of the webview 

environment and limitations of the potential replacement libraries. Many libraries were evaluated. 

The export was reimplemented using the gif-encoder-222 library.  

An additional option for the WebM export was added. 

10.8 R:7 Incompatible 3rd party extensions 

Changes to the Debugger for Java extension led to an error in the visualization of objects. Primitive 

values were not included in the object but rendered as separate nodes in the graph. 

10.8.1 Implementation 

The error could be fixed with some minor changes in the DebugEventManager. 

  

 

20 (VS Code community, 2022) 
21 (FFmpeg, 2022) 
22 (gif-encoder-2, 2022) 



 

 

 

Visual OO Debugger Page | 63 17.06.2022 

11 Conclusion 

This chapter contains an evaluation of the project as well as an outlook for further work on the 

Visual OO Debugger. 

11.1 Overview of Changes for the BA  

The overall structure of the BA as depicted in the Chapters 9.1 and 9.2 hasn’t changed. But there 

were substantial changes inside each building block to facilitate the new functionalities and improve 

the overall code quality. 

11.1.1 White Box DebugEventManager 

The biggest change since the SA is the separation of Java specific code, which led to the addition of 

the abstract class “AbstractDataExtractor” and the corresponding implementation for Java in 

“JavaDataExtractor”. Another notable change is the new function getStackFrameData in the 

DebugEventManager class to load data for specific stack frames, as required by REQ-BA:5. 

 

Figure 35 Class diagram of DebugEventManager after BA 



 

 

 

Visual OO Debugger Page | 64 17.06.2022 

11.1.2 White Box PanelView 

A new abstract class was created for the PanelViewProxy. This was done to separate the vis.js 

specific code from more general implementations. It is noticeable that all classes received 

additional functions to provide the new functionalities added during the BA.  

 

Figure 36 Class diagram of PanelViewProxy after BA 

  



 

 

 

Visual OO Debugger Page | 65 17.06.2022 

11.2 Usability Test 

Some quality goals for VOOD are dependent on the subjective perception of a regular user. 

Especially the following requirements can only be judged by an average user. 

‐ REQ-SA 1.1.2 The visual debugger is intended to support students in object-oriented 
programming. 

‐ REQ SA 2.2.1 The visual debugger should make it possible to understand how objects change 
over the course of the program 

‐ REQ SA 2.2.2 The VOOD should make it possible to understand how variables change over the 
course of the program. 

‐ REQ SA 3.5 Another goal of the project is usability [of the system]. 

To confirm that these quality goals are met, a usability test was conducted. 

The test consisted of one user that was tasked to solve exercises from OOP1 and a custom-made 

exercise which involved analysing an existing project. An examiner observed how VOOD is used for 

debugging and understanding the given project during the exercise. 

The key findings of the test were: 

‐ VOOD is helpful for debugging and understanding existing code. 
‐ VOOD is easy to use and quickly adopted by a new user 
‐ Some minor hurdles in the UI were found. It was noticed that, especially during the start-up of 

VOOD, more guidance was needed. 
‐ The user wished for more connectiveness between the diagram and the code. For example, it 

was wished that variables could be changed in the diagram and then automatically updated in 
the code. 

These findings led to the inclusion of additional help texts in VOOD. The wish for more connectivity 

between the diagram and the code was already discussed for requirement REQ-BA:8. 

  



 

 

 

Visual OO Debugger Page | 66 17.06.2022 

11.3 Target Achievement 

The target achievement is evaluated by looking at each of the requirements defined in section 1.1. 

The evaluation states if the requirement was achieved and on how the fulfilment of the requirement 

was verified. 

Requirement Achieved Verified by 

REQ-SA:1.1.1 ✓ Mirko Stocker as Product Owner and OO-lecturer tested the 
application during the development and provided feedback. 

REQ-SA:1.1.2 ✓ The Usability test conducted during the BA confirmed the fulfilment 
of this requirement. 

REQ-SA:1.2 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-SA:2.1.1.1 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-SA:2.1.1.2 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-SA:2.1.2 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-SA:2.2.1 ✓ The Usability test conducted during the BA confirmed the fulfilment 
of this requirement. 

REQ-SA:2.2.2 ✓ The Usability test conducted during the BA confirmed the fulfilment 
of this requirement 

REQ-SA:3.1 ✓ The Visual OO Debugger is a VS Code extension which requires no 
further setup other than installing it. Since GitPod also uses VS Code 
extensions, it is also possible to use VOOD with GitPod. 

REQ-SA:3.2 ✓ The import of a program depends on the IDE in use. In the case of VS 
Code, the code needs to be on the file system and can be easily 
imported using VS Code. In the case of GitPod, a program can be 
imported by creating a connection to a git repository. 

REQ-SA:3.3 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-SA:3.4 ✓ Since GitPod uses the same extensions as VS Code, the Visual OO 
Debugger can be use with GitPod as well. 

REQ-SA:3.5 ✓ The usability test conducted during the BA confirmed the fulfilment 
of this requirement 

REQ-SA:4.1 ✓ The source code is kept as simple as possible, and comments are 
added where necessary. 

REQ-SA:4.2 ✓ The source code is well structured. 

REQ-SA:4.3 ✓ The source code is modular, which allows for easier extensions. 

REQ-BA:5 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 



 

 

 

Visual OO Debugger Page | 67 17.06.2022 

REQ-BA:6 ✓ As a functional requirement is the fulfilment given when it is 
implemented. 

REQ-BA:7 × This requirement was dropped after it was deemed impossible to 
implement. 

REQ-BA:8 × This requirement was dropped after it was deemed impossible to 
implement. 

REQ-BA:9.1 ✓ As a functional requirement, the fulfilment is given when it is 
implemented. 

REQ-BA:9.2 ✓ As a functional requirement, the fulfilment is given when it is 
implemented. 

Table 27 Target Achievement 

11.4 Outlook 

The development of the Visual OO Debugger is far from over. It will be continued as an open-source 

project. Soon after the bachelor thesis, the GitHub repository will be transferred to an organization 

managed by OST. This is necessary because the repository is currently owned by a team member, 

who will not have access to the account anymore after his studies. 

As part of the bachelor thesis, preparations were made to support other languages, in addition to 

Java. Support for additional languages is planned soon. 

  



 

 

 

Visual OO Debugger Page | 68 17.06.2022 

Indices 
Indices over the tables and images are contained within this part. 

12 Glossary 

Term Definition 

AD Algorithms and Data structures (a course at OST) 

API Application Programming Interface 

BA Bachelorarbeit (bachelor thesis) 

CI/CD Continuous Integration/Continuous Deployment 

FOSS Free and Open-Source Software 

IDE Integrated Development Environment 

MVP Minimum Viable Product 

OO Object-Oriented 

OOP1 Object-Oriented Programming 1 (a course at OST) 

OST Ostschweizer Fachhochschule 

PF Patterns and Frameworks (a course at OST) 

SA Studienarbeit (term project) 

VOOD Visual OO Debugger 

VS Code Visual Studio Code 

Table 28 Glossary 

  

https://www.ost.ch/


 

 

 

Visual OO Debugger Page | 69 17.06.2022 

13 List of Figures 

Figure 1 JointJS visualization..................................................................................................................... 1 

Figure 2 Mind map of the SA requirements ............................................................................................... 7 

Figure 3 Mind map of the BA requirements............................................................................................... 9 

Figure 4 Quality tree .................................................................................................................................. 19 

Figure 5 Risk matrix ................................................................................................................................... 29 

Figure 6 Wireframe of VS Code integration ............................................................................................. 30 

Figure 7 SonarCloud summary ................................................................................................................. 31 

Figure 8 GitHub workflow overview ......................................................................................................... 32 

Figure 9 Context diagram ......................................................................................................................... 33 

Figure 10 Class diagram of debug adapter protocol models................................................................. 35 

Figure 11 Class diagram of debug adapter protocol models................................................................. 36 

Figure 12 Component diagram of debug backend ................................................................................. 38 

Figure 13 Component diagram of webview ............................................................................................. 39 

Figure 14 Class diagram of DebugEventManager .................................................................................. 40 

Figure 15 Class diagram of PanelView .................................................................................................... 41 

Figure 16 Class diagram of PanelView variables .................................................................................... 42 

Figure 17 Visualization of the call stack over time ................................................................................. 44 

Figure 18 Wireframe for stack frame dropdown ..................................................................................... 45 

Figure 19 Implemented stack frame dropdown ...................................................................................... 46 

Figure 20 A vis.js-based graph ................................................................................................................. 47 

Figure 21 PlantUML export: Good symmetry, but inconsistent arrow directions ................................. 48 

Figure 22 GraphViz export: Good symmetry, consistent arrow orientation, but more edge crossings

 .................................................................................................................................................................... 48 

Figure 23 JointJS-based UML class diagram ......................................................................................... 49 

Figure 24 JointJS question-answer dialog generator example ............................................................. 50 

Figure 25 JointJS directed graph example with configurable layout optimization parameters.......... 50 

Figure 26 JointJS visualization ................................................................................................................ 53 

Figure 27 Underlying Java environment .................................................................................................. 55 

Figure 28 Expand/collapse nodes wireframe .......................................................................................... 56 

Figure 29 Customizable colors ................................................................................................................. 57 

Figure 30 Editor menu with export options ............................................................................................. 58 

Figure 31 Collapsed node “(Rectangle)” .................................................................................................. 58 

Figure 32 Hide nodes ................................................................................................................................ 59 

Figure 33 Visualization of changed references for old and new version of VOOD ............................... 59 

Figure 34 Data extractor class diagram................................................................................................... 61 

Figure 35 Class diagram of DebugEventManager after BA .................................................................... 63 

Figure 36 Class diagram of PanelViewProxy after BA ............................................................................ 64 

 

  



 

 

 

Visual OO Debugger Page | 70 17.06.2022 

14 List of Tables 

Table 1 SA requirements ............................................................................................................................. 6 

Table 2 BA requirements ............................................................................................................................ 8 

Table 3 List of Stakeholders ..................................................................................................................... 11 

Table 4 Stakeholder analysis .................................................................................................................... 12 

Table 5 Relation map of the stakeholders ............................................................................................... 13 

Table 6 Existing comparable products .................................................................................................... 15 

Table 7 Constraints ................................................................................................................................... 16 

Table 8 Quality goals derived from quality requirements ....................................................................... 18 

Table 9 Quality scenario: OO lecturer prepares a course for a semester.............................................. 20 

Table 10 Quality scenario: Students analysing a sample code for the OO course ............................... 20 

Table 11 Quality scenario: Student uses VOOD during an OO exercise ................................................ 21 

Table 12 Quality scenario: Student uses VOOD during an OO exercise ................................................ 21 

Table 13 Quality scenario: Student participates in their first exercise of the OO course and has no 

IDE installed for developing Java ............................................................................................................. 22 

Table 14 Quality scenario: User installs VOOD........................................................................................ 22 

Table 15 Quality scenario: User uses system to debug a simple solution ............................................ 23 

Table 16 Quality scenario: New developers want to contribute to VOOD extension ............................ 23 

Table 17 Quality scenario: After the BA is finished, a feature of VS Code used by VOOD is no longer 

supported. A new developer is tasked with fixing the issue .................................................................. 24 

Table 18 Quality scenario: After the bachelor thesis is finished, the need for a new visualization 

option arises .............................................................................................................................................. 24 

Table 19 Solution strategy ........................................................................................................................ 26 

Table 20 Risk identification and management plan ............................................................................... 27 

Table 21 Simplified risk list ....................................................................................................................... 28 

Table 22 Description of the business context ......................................................................................... 33 

Table 23 Required API's and protocols .................................................................................................... 34 

Table 24 Used VS Code API features ....................................................................................................... 34 

Table 25 The most relevant and compelling JointJS features and their coverage by JointJS and 

JointJS+ ..................................................................................................................................................... 51 

Table 26 Layout, router and connector parameters................................................................................ 52 

Table 27 Target Achievement................................................................................................................... 67 

Table 28 Glossary ...................................................................................................................................... 68 

 

  



 

 

 

Visual OO Debugger Page | 71 17.06.2022 

15 Bibliography 

arc42. (2022). Retrieved from https://www.arc42.de/ 

Balsamiq. (2022). Retrieved from https://balsamiq.com/ 

BlueJ. (2022). Retrieved from https://www.bluej.org/ 

C4 model. (2021). Retrieved from https://c4model.com/ 

Cardillo, G., Lagadec, A., & Schürmann, P. (2022). VOOD Term Project Documentation at OST.  

Contributor Covenant Code of Conduct. (2022). Retrieved from https://www.contributor-

covenant.org/version/1/4/code-of-conduct/ 

dagre GitHub. (2022). Retrieved from https://github.com/dagrejs/dagre 

Debug Adapter Protocol. (2022). Retrieved from https://microsoft.github.io/debug-adapter-

protocol/specification 

ESLint. (2022). Retrieved from https://eslint.org/ 

FFmpeg. (2022). Retrieved from https://ffmpeg.org/ 

gif-encoder-2. (2022). Retrieved from https://www.npmjs.com/package/gif-encoder-2 

GitHub. (2022). Retrieved from https://github.com/ 

GitPod. (2022). Retrieved from https://www.gitpod.io/ 

ISO 25000 Portal. (2022). Retrieved from https://iso25000.com 

JointJS. (2022). Retrieved from https://www.jointjs.com/ 

Microsoft. (2022). Add a Language Server Protocol extension. Retrieved from 

https://docs.microsoft.com/en-us/visualstudio/extensibility/adding-an-lsp-

extension?view=vs-2022 

OST - Ostschweizer Fachhochschule. (2022). Retrieved from https://www.ost.ch/ 

SonarCloud. (2022). Retrieved from https://sonarcloud.io/ 

Sophist GmbH. (2022). sophist.de. Retrieved from https://www.sophist.de/ 

vis.js. (2022). Retrieved from https://almende.github.io/vis/ 

Visual Studio Code. (2022). Retrieved from https://code.visualstudio.com/ 

VS Code API. (2022). Retrieved from https://code.visualstudio.com/api/references/vscode-api 

VS Code community. (2022). github.com. Retrieved from 

https://github.com/microsoft/vscode/issues/116715 

 

 


