
OSM Monitoring Tool
Samuel Lemmenmeier, Tim Wisotzki

Examiner: Prof. Stefan F. Keller

Bachelor Thesis - FS 2022 OST in collaboration with Schutz & Rettung Zurich

created: March 14, 2022

last revision: June 17, 2022

titlepicture: card extract from OSM

Samuel Lemmenmeier, Tim Wisotzki

Bachelor Thesis, Spring Semester 2022 at OST

https://www.openstreetmap.org/#map=10/47.1636/8.5556
https://www.ost.ch/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Abstract
The search & rescue organization Schutz & Rettung Zurich are taking different resources into
account, when preparing an operation. One of these resources is OpenStreetMap which is openly
licensed. Therefore Schutz & Rettung Zurich has to ensure the correctness of the analysed data.
To efficiently track and monitor the data integrity a tool is needed to list and filter changesets in
Switzerland. Changesets are grouped modifications with a time-stamp whenever the data of OSM is
edited.

Schutz & Rettung Zurich requested a tool to track and monitor changesets with the possibility to
filter for specific features, called tags, directly on the underlying data of OSM.

“OSM Monitoring Tool” is a full stack web application and consists of three parts: The first part
is the front-end (Javascript, Quasar) which enables the user to interact with the application. The
second part is a PostgreSQL database for storing all the required data such as application specific
information, as well as the complete history of the changeset data of OSM of Switzerland (tables
changesets, users) and its underlying objects (tables nodes, ways, relations). The database gets
updated with the newest modifications on a regular basis. The third part of the application is the
business layer (Python, Django). The business layer is responsible for handling all requests from
the front-end, processing the data and gathering the necessary information from the database. For
an easy deployment every part of the application runs in separate Docker container and the entire
application can be started with a couple commands.

Schutz & Rettung Zurich has announced that their data curators will be using OpenStreetMap in
their daily work in the near future.

Page 2

https://www.stadt-zuerich.ch/pd/de/index/schutz_u_rettung_zuerich.html
https://www.openstreetmap.org/
https://quasar.dev/
https://www.postgresql.org/
https://www.djangoproject.com/
https://www.docker.com/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Management summary
Initial situation
The search & rescue organization Schutz & Rettung Zurich are taking different resources into
account, when preparing an operation. One of these resources is OpenStreetMap which is openly
licensed and an alternative to the well-known Google Maps.
For planning a rescue mission SRZ has to rely on the correctness of the underlying data of OSM. To
efficiently track and monitor data changes a tool is needed to list and filter changesets in Switzerland.
Changesets are grouped modifications with a time-stamp whenever the data of OSM is edited.

There exist many quality management tools in OSM but none of these are able to filter for specific
features, called tags, directly on the data of OSM.1 This is a major requirement and is genuinely
needed by SRZ during their daily work of maintaining the integrity of their material. Some tools
already in use by SRZ are “Targeted Monitoring Tool” and OSMCha, as well as many others. The
main focus of our bachelor thesis is on a rewrite of the TMT without the dependency of OSMCha
and adding the required tags filter.

To do a BT at the end of the bachelor studies at the OST is the last step to finish the studies and
to earn the bachelor degree in computer science. Besides the mandatory necessity to write a BT
it is a huge opportunity to apply and show what we have learned in the past few years. A huge
motivation were also to gain some insights in the fields of big data and OSM by contributing to a
real world problem. Finally it is nice to know that the final product is requested by a third party
and the codebase will be available open-source.

Figure 1: Control room of Schutz & Rettung Zurich, from where all emergency operations are
planned, monitored and supported.

1While finishing the Bachelor Thesis an article reported OSMCha implemented recently exactly that highly
requested feature (Willie Marcel 2022).

Page 3

https://www.stadt-zuerich.ch/pd/de/index/schutz_u_rettung_zuerich.html
https://www.openstreetmap.org/
https://srzedi.srz.borsnet.ch/
https://osmcha.org/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Approach
First we analysed existing tools, like one which has been created in a previous term thesis at
OST as well as other popular tools like OpenStreetMap Changeset Analyzer. In order to deliver
a well-rounded product, we drew inspiration from these tools and were able to incorporate some
ideas into the final project. After considering all the available information, we started with a new
greenfield implementation. The main focus was to create a tool which fulfills the requirements, has
an extendable architecture and consists of state-of-the-art technologies.

First we spend some time to get into the subject of big data and OSM. At the start of the BT we
needed a lot of time to familiarize with the technologies to build OMT. Internally in the team we
worked in a agile way with the help of scrum. This was a huge advantage because some requirements
regarding the functionality changed over time and so we were easily able to adopt to it.

Technology
Our project “OSM Monitoring Tool” consists of a full stack web application and is split into three
parts: The first part is the front-end (Javascript, Quasar) which enables the user to interact with
the application. The second part is a PostgreSQL database for storing all the required data such
as application specific information, as well as the complete history of the changeset data of OSM
of Switzerland (tables changesets, users) and its underlying objects (tables nodes, ways, relations).
The database gets updated with the newest modifications on a regular basis. The third part of the
application is the business layer (Python, Django). The business layer is responsible for handling all
requests from the front-end, processing the data and gathering the necessary information from the
database. The provided API is created with Django Ninja which is a fast Django REST Framework.
For an easy deployment every part of the application runs in separate Docker container and the
entire application can be started with a couple commands.

Figure 2: An overview of the application architecture, consisting of a front- and back-end as well as
a database, all in Docker.

Result
As a result of our work, we have developed an application called “OSM Monitoring Tool”, which
allows monitoring changes in OSM in user defined ways. It consists of a web application with a map
in the main window and links to some well-known external editors and tools. In a panel to the left a
list of changesets is being displayed with their processing status (open, in process, closed) and which

Page 4

https://quasar.dev/
https://www.postgresql.org/
https://www.djangoproject.com/
https://django-ninja.rest-framework.com/
https://www.docker.com/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

can be sorted chronologically or according to priority. A user can create named custom filters. A
filter typically consists of a list of tags. Other filter criteria are user name, creation/modification date,
processing status, and geographic location, which can be defined by drawing a free-form geometry
on a map. One of the unique functions of our OMT is, that it acts on the underlying OSM objects -
not only on the changesets. This allows a detailed filtering and increases the usability significantly.
It is open source and the web design (color, logo) of the front-end can be easily customized.

The front-end is clearly laid out to simplify as requested from SRZ. One of the main requirements
is being independent from OSMCha, this allows to have more control over the map and what
will be displayed on it. In general the code structure is build in a modular way to allow further
implementations of functionality. The SRZ has announced that their data curators will be using
OMT in their daily work in the near future.

Figure 3: An example of our application in use, which shows some of the different components and
functions it supports.

Outlook
During the project we had to tackle a lot of hurdles, but all solved minor and major problems led to
a bigger learning process. We learned new technologies, working on a bigger project as well as a lot
about time management. It was a great experience to do such a project from start to end.

The code is build in a modular way and can therefor be easily extended. Possible improvements in
the future could comprise more filter settings or displaying more information about a changeset on
the map. Of course, as with every software project, the overall robustness and speed of the code
could also be further improved.

Page 5

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Contents
Abstract 2

Management summary 3
Initial situation . 3
Approach . 4
Technology . 4
Result . 4
Outlook . 5

Task description (translated to English) 8
Rough problem description . 8

Main “technical” properties: . 8
Must-haves at start of project: . 8
Optional: . 8
Changes regarding the must-haves during the project: 8
Further requirements: . 8
Existing tools for changesets: . 8
Existing papers: . 8

*** Part I technical report 10
Introduction . 10
Task setting and vision . 10
Goals . 10
Approach . 10
State of the art (existing solutions) . 10

OSMCha . 11
Design . 14

Architecture . 14
C4 model system context . 15
C4 model container . 15
C4 model component . 16
C4 model code, classes, object and functions . 18

Implementation . 21
Approach of implementation . 21
Main technologies used . 22
Front-end layer . 22
Business layer . 22
Database layer . 22
Sequence diagram . 23
UI design . 24
API provided by back-end . 25
Testing . 31

Results . 31
Completeness . 32
Comparison . 32

*** Part II project-documentation 33
Introduction . 33

Page 6

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Vision . 33
Requirement specification . 33

Functional requirements . 33
Non-functional requirements . 34

General conditions, limitations . 34
No external dependencies . 34
Time . 35
Technologies . 35
Knowledge . 35

Use cases . 36
Use case diagram . 36
Use cases detailed description . 36

Organisation . 37
Stakeholders . 37
Roles and responsibilities . 37
Work approach . 37
Milestones . 38
Project phases . 38
Risks . 39

Results and further development . 40
Further development . 40
Possible approach . 40
Personal reviews . 41
Acknowledgements and thanks . 41

Software documentation 42
Installation . 42
Some examples . 42
Component overview and description . 45
Warnings . 50

Appendix A 51
Glossary . 51
Links . 51

Appendix B 52
Table of figures . 52

Figure sources . 52
Table of tables . 53
Bibliography . 53
Other sources . 53
Other documents . 53

Final time report . 53
Architecture drafts . 57
API as JSON . 58
Meeting protocols . 66

Page 7

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Task description (translated to English)
Goal Rewrite of TMT but independent of OSMCha.

Rough problem description
Functionality of TMT but without any special dependency e.g. OSMCha

Main “technical” properties:

1. Parsing and persisting relevant OSM data like changes and changesets
2. Notify users in case of changes on watched objects
3. Register of observable objects

Must-haves at start of project:

• Define changesets “watcher”
– restrictable on area of map
– restrictable on tags, predefined categories for better UX
– restrictable on single nodes/ways
– saving user settings
– sharing (or public/private)

• Login via OSM
• Notifications (mail or alternative)

Optional:

• Selecting predefined regions for observation (on start of application or via environment variable),
e.g. Switzerland, canton of Zurich, Germany, etc; restricts the size of the DB and allows using
OMT in e.g. Africa.

• “History Slider” for changesets (jump function to display changes on changesets).

Changes regarding the must-haves during the project:

• No user management and no notifications needed
• Optional ranking with QRank
• Range based date filter

Further requirements:

• GUI: Responsive: especially desktop but also mobile tablet (if applicable mouse and touch)

Existing tools for changesets:

• https://github.com/ToeBee/ChangesetMD
• https://github.com/zhm/osmchanges-postgres

Existing papers:

• SA Nadine Sennhauser and Denis Nauli, Herbstsemester 2020/2021, SABA-HS202-Slot-2-
Aufgabenstellung and https://eprints.ost.ch/916/ .

Page 8

https://pypi.org/project/QRankGWAS/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

• Targeted Monitoring Tool (TMT). Webapp https://srzedi.srz.borsnet.ch/ . Repo
https://github.com/Schutz-Rettung-Zurich/srz-edi . This implementation , does only work
correct if user-names are “watched”. Selecting tags as a filter criterion works not correctly, it
does return more changesets than expected.

• “Project of the Month (PotM) CH”: Example https://potm.osm.ch/superset/dashboard/17/ ,
Repo “OSM History DB of Switzerland” (osmhistorydb-ch) https://github.com/sosm/osmhistorydb-
ch

Page 9

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

*** Part I technical report
Introduction
The following text documents the bachelor thesis “OSM Monitoring Tool”.

Part one of the documentation contains the technical report, which focuses mainly on the implemen-
tation and surrounding technologies. For more general aspects of the project you can refer to Part
II.

Task setting and vision
As described in part twos chapter Vision the main task of the project was to build a well working
web application that is tailored specifically for the needs of monitoring changes in OSM, without
any major dependencies.

Goals
The main goal of the project was build a web application that can be used to monitor the constantly
evolving map-data from OSM to verify its correctness. The initial requirements and goals are stated
in the task description, which are described again in the following paragraph:

The main goal of the project is to redesign the existing TMT tool without any external dependencies.
Throughout the existing functionality should be maintained and where ever possible improved to
better suit the workflow at SRZ and increase the usability. Furthermore the application should be
supplemented with additional features that can enhance the experience.

Approach
As described in part II the project was structured into different phases, during which we worked in
a sprint by sprint basis. All decisions were done as a group, during regular meetings. Additionally
an exchange with our advisors confirmed major points during the project.

In the early stages of the project the main focus was on researching all necessary information in
order to make well informed decisions about how to approach the development. During that process
we also started to form a rough overview about the architecture and its different components. With
more research then the individual components were planned in more detail and decisions about
technologies and interfaces were formed.

Starting with the development the different components were build as individual prototypes. This
was mainly done to gather some experience with the technologies and would not be necessary when
there is already some familiarity with them. Continuously the different components were connected
and containerized until a basic prototype was achieved.

Finally the prototype was further extended in order to improve its functionality and meet all
requirements.

State of the art (existing solutions)
There are already a couple different solutions available. Some have more, some have less features
and the target problem is slightly different for all of them.

The closest to our OMT is certainly the previous work of the TMT which is currently deployed and
running. Since this project is a direct reimplementation of the TMT, there are by design many

Page 10

https://srzedi.srz.borsnet.ch/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

similarities. However the TMT has some significant drawbacks which makes it not fully usable for
its current purpose:

• TMT is not able to filter for tags on nodes, ways or relations.
• TMT dependents on OSMCha.

The best solution out there is OSMCha, which offers a wide range of possibilities, but still has its
limitations. Since it is the closest to our end goal the following chapter will take a closer look at it.

Besides two solutions above there is also the “project of the month” with which does not have the
same goal, but shares some similarities regarding the DB.

OSMCha2

What is OSMCha

OSMCha stands for OSM Changeset Analyzer and is an existing web tool for validating changesets.
It is designed to analyze and review data changes to OSM. Changes in OSM are collected in
changesets and after setting some filter criteria a selection of them are displayed to the user.

What is possible with OSMCha

Validating changesets and it’s underlying data. The general workflow with OSMCha will be regarding
changesets: Filter -> Select -> View -> Validate

General

• login with OSM account
• view changeset list with many order options
• set filters for filtering changeset list and save/share filters
• view results for a changeset on map
• different hyperlinks to view changeset, OSM elements etc on OSM or other webpages
• create/modify account settings, filters, mapping team, trusted user-list, user watch-list etc.

Filter options for changesets

• basic
– date range
– keyword in changeset comment
– location by polygon drawing or predefined rudimentary polygon boundaries, a positive

result is generated when the search area intersects with the bounding box of the changeset
– bounding box location coordinates and size

• flagged
– flag boolean or reason

• review
– status from verifying a changeset
– review date
– by reviewer
– tags of a changeset

• user & teams
– user-name or user-id
– trusted/watch users, mapping team search options

2Wiki OSMCha (2022); Webpage OSMCha (2022)

Page 11

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

• changeset details
– by changeset id
– any metadata not settable by other filter options but only regarding the changeset data
– created range
– of OSM elements created/modifies/deleted
– of comments
– source imagery used
– specific editor based: Null island edits, Edit count based search, Using multiple filters on

OSMCha
– order by can be set for specific filter

Options for single selected changeset

• view changes of changeset on map
• view changeset details: user, time-tamp, # of created/modified/deleted OSM element, change-

set comment, other metadata
• view flagged OSM elements or flag them like: node, way, relation
• view tag changes: all tags altered (in this changeset) regarding OSM elements (key=value)

and in which version
• view geometry changes on map
• view other features: created/modified/deleted OSM elements
• start discussion with user for that changeset
• view user details: also tag user as trusted or put on watch list
• control map view for that changeset: on/off added/modified/deleted OSM elements or on/off

OSM elements
• control map view: different map styles
• verify changeset: good/bad

Is OSMCha always reliable

Not always does OSMCha return a valid result for the desired filter settings even if it works
sometimes. The error message suggests checking filter settings or network connection. In such cases
no or the default list of changesets are returned. Such an example is illustrated below.

The search on OSMCha with filter settings: keyword “Defi” and Zurich as the search area should
return only changesets containing the search string “Defi” inside it’s comment and the bounding box
should intersect with the search area. This is obviously not the case because none of the changesets
in the list on the image below does contain “Defi” inside it’s comment. And a valid result could be
expected because e.g. changeset with id: 122352053 would fulfill the search criteria.

Page 12

https://www.openstreetmap.org/changeset/122352053#map=17/47.34258/8.52196

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 4: Tested OSMCha with the following filter settings: keyword "Defi" inside the comment and
Zurich as the search area. Result list does not contain the requested changesets.

What can OSMCha not do

At the start of this project OSMCha was not able to filter for tags belonging to OSM elements like
node, ways or relations. But recently OSMCha implemented this highly requested feature (Willie
Marcel 2022).

Page 13

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Design
Architecture

The architecture of OMT follows a monolithic 3-layer-architecture, where each layer is deployed in a
separate Docker container. Since each layer runs in a separate Docker container the communication
between them is protocol dependent.

The 3 layers are:

• front-end (client layer)
• back-end (business layer)
• database (database layer)

This 3-layer-architecture yields some advantages like:

• each layer has a certain purpose
• each layer could get scaled independently of the others
• each layer could get replaced

This advantages are generated through a loose coupling between the layers and a tight cohesion
inside each layer (Hansruedi Tremp 2021).

Figure 5: This simple architecture overview shows the 3 layers and the communication between
them.

Page 14

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

C4 model system context

Figure 6: C4 Model Level 1

C4 model container

Figure 7: C4 model level 2

Page 15

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

C4 model component

Front-end container

Figure 8: C4 model level 3 front-end

Page 16

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Backend container

Figure 9: C4 model level 3 back-end / business layer

Page 17

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Database container

Figure 10: C4 model level 3 back-end / database layer

C4 model code, classes, object and functions

The code and the structure of each layer is described in a separate subchapter. Each subchapter has
a different structure because each layer is build with a different technology and needs therefor a
different treatment.

Front-end

The front-end layer is build with Quasar which uses Vue3 underneath (Quasar 2022). This layer
contains many JS functions and vue components. The most relevant ones are listed below. A Vue3
application consists of components and each component has it’s own lifecycle (Vue3 Lifecycle Hooks
2022). This allows building applications in a quite modular manner.

The MainLayout component dictates the overall visual structure of OMT. Inside the MainLayout
are different vue components embedded like the ChangesetComponent, MapComponent, FilterCom-
ponent and the AboutComponent. In OMT every vue component is a SFC (Vue3 SFC 2022).

Page 18

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Important source files and their functions are described below. Of course each of these components
uses in addition the provided lifecycle hooks of Vue3. The components are build with the Composition
Api (Vue3 Composition API 2022).

Main layout

Is responsible for the main structure of the webpage, like the header bar and the position of the main
content. It also acts like a mount point for the other Quasar pages respectively Quasar components.

Changeset page

This Quasar page contains the Vue ChangesetComponent. This component is responsible for
representation of the list of changesets. It also handles user interactions regarding a changeset. Some
important functions inside this component are:

• setup: Initial function of the vue lifecycle, responsible for the setup. All the other functions
and variables are defined and called inside the setup function.

• updateStatus: Resets the status of an individual changeset.
• deactivateAllFilters: resets all attributes of the applied filter.
• loadData: Does trigger the API call for loading the changesets.
• clickingOnChangeset: saves all relevant data of a changeset inside the changeset Pinia store.
• sort: Does contain the sorting logic for the sort functionality of the changeset list.
• onBeforeUnmount: Helps to clean up and reset some variables.

Map page

This Quasar page contains the Vue MapComponent. The map inside this component is responsible
for displaying the bounding box of a changeset. This component is also one of the key parts of the
whole application. Some important functions inside this component are:

• setup
• onMounted: Used to mount and create the map when the component is loaded for the first

time.
• onBeforeUpdate: Does call createGeojson if the user clicks on a changeset.
• createGeojson: Does create the geojson of the bounding box of a changeset.

Filter page

This Quasar page contains the Vue FilterComponent. This component contains all the logic related
with the filers. Some important functions inside this component are:

• setup
• editFilter: Gets called whenever a user clicks on the edit icon of a filter.
• saveFilter: Is responsible for initiating the saving process for a changeset.
• removeFilter: Deletes a filter.
• clickingOnFilter: A filter gets applied.
• checkDate: Checks the validity of a date while the user types or selects a date in the

corresponding filter section.
• onMounted: Handles the initial mounting of the map, the layers and the drawing tools.
• onBeforeUnmount
• tagsToString: This is a helper function it helps to pre-process the tags into a certain string

format. It does recognize different input formats because pattern matching is in place due to
regex.

Page 19

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

About page

This Quasar page contains the Vue AboutComponent.

Error not found page

Will be displayed if a default page is not found. This should not happen when everything works like
intended.

Map

The maps are created with the Leaflet library. This is an open-source JS library and well suited for
OMT (Leaflet 2022). To bring the drawing tools for drawing, editing and deleting a rectangle or
polygon on the map the Leaflet Draw API is used (Leaflet Draw 2022).

Pinia

Pinia is used to save the state of components. Whenever data has to be send to the DB a certain
procedure takes place. First the data gets stored temporarily inside the responsible Pinia store and
from inside the store an API call gets triggered via so called actions. Whenever Pinia is used many
stores can be created (Pinia 2022).

Important stores implemented are:

• filters: This store saves all current filters. Whenever a filter changes, gets defined or deleted,
an action inside the store triggers the corresponding API call to update the DB.

• filterObject: This store saves the attributes of the applied filter. It does trigger the loading of
filtered changesets.

• changeset: All relevant data of a clicked changeset are stored temporarily inside this store.

Business layer

The business layer is a Django project (osm_monitoring_tool) which contains a Django app (app
app_changeset).

Django does provide an API for the communication between Django and Quasar. This API is
documented here with Swagger. Django has some classes for the models and some for the schemas.
The models are in the Django application and the schemas and provided API is in the Django
application defined.

The model classes are:

• ChangesetModel: Represents a changeset from the DB. Does contain for each field of in the
DB a corresponding attribute.

• FilterModel: Represents a filter from the DB

This classes are used to capture and check the loaded changesets or filters object from the DB.

The schema classes are:

• ChangesetSchema
• FilterAppliedSchema
• FilterInSchema
• FilterOutSchema
• StatusInSchema

Page 20

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

This classes are used in the provided Django Ninja API. With this schemas Django does automatically
check if the right attributes with the correct types are received or send by Django.

Database layer

It is a PostgreSQL DB.

Table 1: The table below shows all relevant relations stored in the
osmhistory DB.

Schema Name Type Owner
public app_changeset_filtermodel table hello_django
public nodes table hello_django
public osm_changeset table hello_django
public osm_changeset_comment table hello_django
public osm_changeset_state table hello_django
public relations table hello_django
public users table hello_django
public ways table hello_django

Implementation
Approach of implementation

After familiarized with the subject of our BT it was time to choose the right technology for the right
problem. Definitely not an easy task. But we were kind of lucky because our tutor and the IFS at
OST had some preferences.

First we familiarized ourself with Django and PostgreSQL by running them locally and independent.
After that we connected these two layers successfully and later on we dockerized them as well. Of
course this was not quite as easy and consumed some time.

After that we added Quasar in a separate Docker container to the project. After again having tried
it locally and independent first.

The general procedure was to always have a working prototype and extend it little by little until a
cut through all layers was accomplished.

At the beginning only some test data was stored in the DB. This provided a good initial setup since
it was easy to verify, that the entire data was loaded correctly. After the initial setup a few real
changesets were added to the DB. A major achievement was having a running and working DB with
all changesets and the complete history of all nodes, ways and relations from Switzerland. This was
possible by integrating osmhistorydb-ch into our project. Unfortunately this was not as easy as it
looked in the beginning:

The entire toolstack was build on Python 2, which is no longer supported nor recommended. With
that many of the dependencies and libraries had outdated versions as well. In order to use the
setup we first had to convert it to Python 3, which in itself was not that difficult. However not all
of the dependencies were available for Python 3, which made the entire upgrade of the toolstack
quite challenging. Additionally it was designed to be run directly on the system, not inside of a
container, which posed even more difficulties during the integration. Having a running DB with all
the necessary data was quite demanding and time consuming.

Page 21

https://github.com/sosm/osmhistorydb-ch

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Main technologies used

Since each layer runs in a separate Docker container each layer can and is build with a different
technology. For that reason it makes sense to inspect each layer in more detail. All containers get
instantiated from a so called image which itself is build from a Dockerfile. For that reason the main
components in the Dockerfile are mentioned in the corresponding layer below.

Front-end layer

Image for the container is based on a node.js image. Besides that Quasar and NGINX are installed
too.

Inside the front-end following settings, libraries and technologies are used:

• Quasar
– Vue3 with Composition Api
– Webpack for having PWA support
– Babel as the JS compiler
– Leaflet for integrating a map
– Leaflet Draw for having draw support on the map
– Axios: Promise based HTTP client for the browser and node.js
– Pinia: for state management

• Poetry for package dependency management

Business layer

The main component of this container is a Python image. It is combined with many libraries and
Poetry for package management. A script checks if the DB is already running and if this is the case
it starts the setup for a successful communication.

Inside the business layer following settings, libraries and technologies are used:

• Django
– ORM of Django: Simplifies access to DB
– Django Ninja API

∗ helps to serialize result of query
– GEOSGeometry: Simplifies working with geometry objects of the PostGis extension
– HStoreField: Extension for saving the tags in the DB
– psycopg2: For DB communication
– osmviews: For QRanking

This layer defines both the API for the front-end and the SQL query for requesting data from the
DB.The query is comprised of different parts to dynamically gather all relevant data. The extend of
the query is dictated by the number and types of the attributes of an applied filter. Finally the
query joins and filters the DB tables and returns the result to the business layer. Django then
transforms the result list into a further processable format and finally sends it to the front-end.

Database layer

The basis of this container is a PostgresQL image with the integrated PostGis and hstore extension.
PostGis enables the DB to handle geographic and geometry related objects. An extra script defines
the DB properties and is the starting point to load all OSM relevant data into to DB.

Page 22

https://www.nginx.com/
https://postgis.net/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

The DB setup is inspired by osmhistorydb-ch. One of the main projects depending on this DB setup
is Project of the Month as well as many others. To use this setup some additions, updates and
major changes to it, regarding dependencies and versions had to be done.

Sequence diagram

This subchapter visualizes the data flow between the layer from a rough perspective. Whenever a
request is generated from the user, the front-end will send the request to the business layer. The
business layer checks the data structure of the payload and handles it appropriately. After that the
request will be redirected to the database layer. The response from the database is checked again
for data structure in the business layer before it is returned to the front-end. This procedure is valid
for any kind of request the user can generate in the front-end. For that reason two possible requests
are visualized in the figures below.

A major use case is saving or editing a filter. The sequence diagram below shows exactly that
procedure.

Figure 11: Sequence diagram of saving a filter

Page 23

https://github.com/sosm/osmhistorydb-ch
https://wiki.openstreetmap.org/wiki/DE:Project_of_the_month_Switzerland

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Another major use case which results from the one above, is applying a filter. The sequence diagram
below shows how filtered changesets are requested.

Figure 12: sequence diagram of filtering changesets

UI design

One of the more important aspects for the usability of any service is the interface between user and
the program. Our goal was to create a user experience that is as intuitive as possible. Additionally
it should be very simple and efficient to perform any tasks, which means that a balance between a
clean, uncluttered layout and an accessibility of a few clicks for all features needs to be found.

To achieve the best result in this regard the user-interface is inspired by the existing TMT, as well
as OSMCha. This insures that operators that are already familiar with either one don’t need to get
used to a new layout and immediately can start working. Of course the layout was further refined
in order to provide an elegant, but strait-forward design.

Simplicity is key to reach the goals above. This is reflected thought the interface. The colors are kept
modest and are inspired by the SRZ. Through their contrast important parts are easy to spot when
highlighted. An example is the selected changeset, which clearly stands out of the list, without being

Page 24

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

to intrusive. The entire list of changesets is always shown, since it’s the key part of the application
(for mobile devices with smaller screens it can be hidden), and important for the user to see the
current list at a glance, regardless of the current page. With the pages the logical functions are
separated, which keeps the interface focused. Still there is a connection over the common changeset
area, so the user always knows what is going on.

Because of the simple structure we used icons to mark most fields and buttons. This avoids
unnecessary distractions through text and makes it easier for people that might not speak the
language. Together the interface should be intuitive for a wide range of users. The layout is also
responsive in order to cater to a wide range of screens.

API provided by back-end

The API provided by the back-end is created with the Django Ninja API framework (Django Ninja
2022). API description in JSON is in the appendix.

This are the API endpoints:

Figure 13: API overview

Page 25

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 14: API poast /api/filters

Figure 15: API get /api/filters

Page 26

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 16: API put /api/filters/{filter-name}

Figure 17: API delete /api/filters/{filter-name}

Page 27

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 18: API put /api/changesets/{changeset-id}

Page 28

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 19: API post /api/changesets

This are the schemas used by the API endpoints to validate the payloads of the requests and
response:

Figure 20: API filter in schema

Page 29

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 21: API filter out schema

Figure 22: API status in schema

Figure 23: API changeset schema

Page 30

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Figure 24: API filter applied schema

Testing

In every software project, testing is an important part of the development process. But like the
variety of different solutions that can be implemented, there is a number of different approaches to
testing. From very specific unit tests, all the way to fully-featured acceptance tests, an appropriate
mix of test-cases and scenarios needs to be chosen in order to achieve the best balance between
verification and costs.

Contrary to many other applications this project does not contain a lot logic components, but the
main difficulties are in the processing of the large data amounts. To verify the correct processing
multiple tests were done at distinct stages of the development.

Because of the limited business logic and major data flow between the different application layers,
we opted to mainly perform manual testing. Especially for bigger integration test the effort to create
automated tests would have outweighed their benefit. The majority of tests were however conducted
on multiple instances and by different people to insure, that no human error resulted in misleading
results.

Whenever new components were introduced extensive integration tests were performed. Additionally
the individual parts were analysed according to their respective tasks.

As an additional safety layer we defined in- and output schemas in Django, which always acts as an
intermediate level between the database and the front-end. Therefor the flow of data is checked for
correct types every time it passes through.

Results
The result of the project is a full-stack, single page web-application replacing the existing TMT tool.
A detailed description of the OSM monitoring tool can be found in the software documentation.

For thoughts on further development and useful extensions compare results and further development
in part II.

Page 31

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Completeness

Analysing the requirements and comparing them to the finished result the success is judged critically:

• Maintain functionality of TMT tool: Or project
• Remove any special dependencies: In our OMT we do not have any major dependencies. There

are some libraries like leaflet, which are used, but the big external tools, mainly OSMCha und
mapbox are removed.

• Filter changesets by region: A bounding box or a more specific polygon can be defined and
will refine the number of changeset displayed. Since a lot of data is checked this can take a
little longer if many changesets need to be verified.

• Filter changesets by tags: Changesets can be filtered by tags by defining a key-value pair. It
is also possible to filter by multiple tags at the same time.

• Filter changesets by nodes/ways: The new application is able to filter tags on the included
objects of any changeset, which includes nodes, ways and relations. When multiple tags on a
high number of changesets is filtered the process might take a moment.

• Filter by date: It works well to filter the changesets according to date.
• Track progress: Every changeset has a status assigned which can be used to monitor if it has

not been looked at (open), is “in progress” or already finished.
• Responsive GUI: The user interface of the OMT is able to handle a wide range of display

sizes. All contents are adapted responsively. Only when the screen-area get too narrow (for
example for smartphones) the application is no longer optimised and will at some point lose
its elegance.

From the nice to have requirements a couple were implemented as well:

• Introduce ranking: The Qrank system from IFS was integrated into the application to sort
the changesets by their assigned priority.

• Predefined regions for observation: The application is not able to do this distinction.
• History slider: The application is not able to do this, but an external Page like OSM can be

used to see history data.
• Add users + notifications: During the project this was determined not to be that great of a

benefit and was therefor not implemented.

Comparison

This chapter compares our application to the previous solutions. It highlights the most relevant
similarities and differences.

Our project is by design quite similar to the TMT, since that was one of the given requirements.
However we were able to provide provide a more targeted selection of functionality and at least in
our opinion a more sleek interface. - TMT uses OSMCha for a majority of their features, which was
removed as a dependency from our project. Without the external dependencies there is much more
freedom of what to display. - Through our own solution the features are much more targeted and
specific for the use-cases of SRZ compared to OSMCha in the TMT - Contrary to the TMT in our
application it is possible to filter by tags. It is even possible to filter by tags on the internal objects
of a changeset, which is a key distinguishing factor. - OSMCha uses mapbox as a dependency, which
is also no longer in the application. The map part is done with the leaflet library instead. - The
database is its own instance, which allows the operator to independently control their data.

Page 32

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

*** Part II project-documentation
Introduction
One of our goals was to work on a project that will have some sort of real world use and therefor
benefit society or a group of people. With this project that is certainly the case. Not only does it
directly help with a specific problem at SRZ, but will indirectly help many more people by helping
to maintain the open-source card material from OSM. Additionally there is the benefit of optimising
the work at the emergency dispatch which frees resources for other important tasks.

The project is also quite interesting from a more technical side, enabling us to work with all parts of
a modern web application. Developing it as a greenfield project a lot of great changes for creativity,
skill and learning are guaranteed.

This part of the documentation focuses on the project itself, not the produced product. It contains
the overall approach of the project and all general aspects that are not part of the technical report.

Vision
The main goal of this project was to provide a software solution that supports data curators with
their job of monitoring changes on OSM. In order to best assist with their task the application
should be simple to use and provide an versatile and flexible set of features. Currently there are
no solutions available that ideally allow a user to ascertain all changes while being able to filter
them according to a specific set of attributes. Our vision is to enable users to inspect all changes for
specific targets in a smooth and transparent way.

Requirement specification
In pursuance of the projects vision the following requirements were determined. They are split
into functional and non-functional ones. Furthermore they are separated by their importance into
necessary and additional ones.

Since the project was developed with an agile approach the requirements were continuously adapted,
while to project progressed. Through discussions with the involved stakeholders and especially the
representatives from SRZ the actual usage and needs were further analysed, which resulted in an
adaptation of the requirements.

Functional requirements

Functional requirements specify what the product should be able to do. The following points
represent the requirements set during the initial task description as well as later additions during
the course of the project.

• Maintain functionality of TMT tool: All features and the basic layout and structure of the
existing TMT tool should persist after the re-implementation of the solution.

• Remove any special dependencies: The dependence on external sources should be removed,
mainly the use of OSMCha. Together with the first point this is the core task of the project
and therefore an important requirement for the project.

• Filter changesets by region: This builds a dominant urge for the SRZ and their usage of the
tool.

• Filter changesets by tags: Also a key value for the usability the sorting by tags should be
possible.

Page 33

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

• Filter changesets by nodes/ways: It should be somehow possible to not only filter depending
on attributes on the changeset itself, but it’s contained objects like nodes and ways.

• Filter by date: Again the selection of a fitting time frame for which to get changesets returned
is a request in order to improve the ability of the tool.

• Track progress: It should be possible to keep track of the progress done and what changesets
are processed.

• Responsive GUI: The user interface should be responsive to support a wide range of devices.

Nice to haves

The following requirements are not compulsory but it would still be nice if they could be implemented
in the application:

• Introduce ranking: Some sort of ranking function in order to sort the changesets by priority.
• Predefined regions for observation: It would be nice if a predefined area (i.e. Switzerland)

could be selected at the start of the application which would then only contain changes from
the selected region.

• History slider for changesets: This would enable the curators to directly see a history of
any changed objects in the application, which would allow them to more easily track any
modifications and their validity.

• Add users + notifications: Currently not of major concern, but that would allow a more per-
sonalized experience and possibly an automated monitoring that only requires user interaction
if certain rules are triggered.

Non-functional requirements

Non-functional requirements are requirements that define how the product should do its tasks. They
usually apply to the overall project and are generally applicable.

Performance is one of the most popular non-functional requirements for obvious reasons. If the
application is to underpowered it lowers its usability significantly. Unfortunately performance is
very hard to quantify, since many factors are involved, starting from the hardware it is deployed on
to the amount of data and users involved.

As previously mentioned the usability is an other important requirement. Being rather subjective
to a certain degree it is still critical that for the targeted audience the handling of most functions
should be possible in an easy and intuitive fashion.

A key feature of long-term successful applications is that they will have be taken care of. To allow
this to take place in an officiant and simple matter, it is important that the program has a good
maintainability. Additionally it should be possible to extend the application effectively.

General conditions, limitations
From the initial requirements and surroundings of the project the following limitations were given:

No external dependencies

No external dependencies should be present in the project, which can lead to additional design and
implementation efforts, but insures that the project can be maintained without relying on third
parties.

Page 34

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Time

The project has a strict time limit posed by a deadline. In addition the time budget during the
project was limited too, since the number of developers was fixed and the time commitment was
limited to a part-time involvement, limited by the regulations of the thesis.

Technologies

Although there were not hard regulations on the utilized technologies it was strongly suggested to
work with already present technologies within the department and advisory team. Additionally the
customer had to be familiar with the development as well, which limited the number of choices
significantly.

Knowledge

Contrary to the others the existing knowledge is a little harder to define and changes the most
throughout the project. But the lack of experience with different aspects of the project certainly
limits the progress and scope of it. Depending on the amount and complexity of new technologies
and skills necessary, the acquisition of the necessary knowledge can take a significant amount of
resources.

Page 35

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Use cases
Use case diagram

Figure 25: Use case diagram

Use cases detailed description

1. Watch list of the most recent changesets with status “open” or “in progress”
2. Sort the list on date, emphasis, status and watch it
3. Filter all changesets on specific filter criteria like OSM user, tags, data, region

• see if a filter is selected
• unselect all filters
• date from or to or in combination possible

Page 36

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

• multiple tags possible
• 3 different map layers
• region definable as rectangle or polygon on map
• shape is editable

4. Set new status on an individual changeset
5. Define, save or delete a filter
6. Check or edit a filter

• change filter in general e.g.
– add tags
– redraw or modify shape
– reset a filter property

7. Watch boundary box of a changeset on map
• also with zooming map
• or changing map layer between OSM Default, OSM Swiss Style, Satellite swissImage

8. Watch changeset data on specific editor by clicking OSM, OSMCha, Achavi, JOSM, iD

Organisation
Stakeholders

The project stakeholders consists of the team members, advisors and external partner.

• Team members: Tim Wisotzki & Samuel Lemmenmeier
• Tutor: Nicola Jordan
• Advisor: Prof. Stefan Keller, Institut für Software OST
• External partner: Christian Nüssli, Schutz & Rettung Zurich

Roles and responsibilities

The team consists of two equal members, therefore it was decided not to assign any fixed roles. All
major decisions are made in a group decisions. Individual tasks are defined on a sprint by sprint
bases and assigned to best fit the current needs.

Work approach

We choose to work in an agile approach. As we were already familiar with the concept and have
successfully used it before we used a combination of the Rational Unified Process as well as Scrum.

According to the RUP we defined the project phases, which are listed in the chapter of the same
name. They were set to to get an overall structure and were not strictly followed. The more specific
planning for each week was done in the sprint planing. We used a sprint duration of a week, for
which the sprint-backlog was set in the opening meeting which also acted as primary base to discuss
general project organisations. Since the work only happened on a part time schedule we did not do
daily scrums, nevertheless we keep a fairly regular meeting schedule of at least a couple times per
week in order to stay up to date and exchange any noteworthy information.

Tools

As described in the first part we used different technologies during the development. Since part
of the project goals was the deployment via docker containers we already utilised this to create a
mostly operating independent running environment for the project. Regarding development tools

Page 37

https://www.scrum.org/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

we adapted a command-line focused approach which allowed a quite flexible environment for both
developers. We both used vim as primary editor and different browsers and their dev-tools.

For version control and code collaboration we used git and the OSTs internal instance of gitlab.
Meetings were held mostly via teams and occasionally in person.

Milestones

The project contains of different landmark events. These mark important turns in the advancement
of the project.

Initially during the exploration of the technologies the connection of the different application parts
pose smaller wayposts. Being able to send data from one to the other one is an important step
towards a proper prototype.

Milestone I

The first major milestone is the connection of all application parts with the ability to communicate
with each other. This proves the rough concept and builds the base for all following steps.

Milestone II

The next and most important milestone is the complete prototype. At this stage all primary functions
are at least partially working. After this break through moment the focus shifts on improving the
different aspects and features.

Milestone III

The last milestone is concluded with the final application. By then all developed features will be
working properly and the requirements are fulfilled.

Project phases

• Inception: 21.2.2022 - 27.2.2022
• Elaboration: 28.2.2022 - 13.3.2022
• Construction: 14.3.2022 - 28.5.2022
• Transition: 29.5.2022 - 11.6.2022

Page 38

https://gitlab.ost.ch/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Weekly overview

We created the following weekly plan at the beginning of the project in order to keep a rough
schedule throughout the project. Through our agile approach none of those dates (except the final
deadline) are fixed though and the actual weekly plan will be determined during the weekly sprint
meetings.

• 1st Week - getting into the project
• 2nd Week - project-plan, define rough architecture components (06.03.)
• 3rd Week - rough architecture
• 4th Week - prototype of architecture + starting a first prototype (20.03.)
• 5th Week - work out details of architecture + first prototype (27.03.)
• 6th Week - implementation
• 7th Week - implementation
• 8th Week - implementation
• 9th Week - implementation MVP
• 10th Week - implementation MVP
• 11th Week - implementation
• 13th Week - final touches + documentation
• 14th Week - buffer
• 15th Week - finish project documentation

Some other relevant dates for the duration of the program are the following:

• spring-holidays no work (11-18.04)
• planned end of coding in order and switch to documentation (end of may)
• deadline to hand in project (17.06.)

Risks

As with every project there are a number of risks. Over the course of the project those risks will be
reduced continuously because of more knowledge, proven decisions and finished parts.

Table 2: risks at the beginning of the project

risk description prob. damage risk risk aversion
mistakes in architecture 0.2 100h 20 reviews
unforeseen knowledge gaps 0.05 20h 1 detailed planing
hidden complexities 0.1 50h 5 plan well
software outages 0.5 10h 5 have alternatives
API change 0.1 30h 3 -
implementation difficulties 0.5 40h 20 initial familiarization with tools
sickness project member 0.1 20h 2 -
misinterpretation of requirements 0.4 50h 20 early and continuous feedback
loss of work 0.01 100h 1 backups

During the project we were able to minimise most of the risks, although some cannot be reduced. For
example software problems of external services cannot be influenced by us. One of those instances
is gitlab, which had to be used, even though the instance at OST is not the most reliable and we
experienced multiple outages. Since we had anticipated those interruptions we were still able to
collaborate and share code over a separate repository.

Page 39

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Results and further development
The results of the project can be found in part I results and the software documentation.

Further development

As with every project there is always more work to be done. The following list of things would be
options of what to approach next.

Smaller improvements

Some of the smaller improvements that could be done are the following: - Show the last time the
changesets were loaded. This would give the user an indication of how current his page is. - Include
the tags of deleted osm-elements. Since OSM does not retain them for deleted objects it would be
necessary to analyse the history of the individual contained objects in order to regenerate its tags.
However it would make the search for tags complete. - Optimise the database queries. Especially
if a lot of data has to be processed the requests on the database tend not to be that fast. By
optimising the queries a little more some improvement might be possible. - Add production settings
to the application. Currently only development settings are available. - Limit the map extract to
Switzerland when the Satellite map is chosen. Because the gathered data for the areal view is only
available for Switzerland. - Add support for small devices like smartphones, even it the usage on
such a small screen probably isn’t that efficient and most work will be done on a regular desktop
machine.

Major additions

Besides the smaller improvements, there are some additional features that would extend the
application nicely: - as mentioned in the comparison to the requirements adding users is not a major
factor at the moment, but would certainly open the door for some interesting further possibilities.
A login via OAuth with an OSM account would be the ideal - The exact last working state could
be retained and returned to the next time the application is opened. - Custom filters could be
kept private or shared with other users. - Some sort of notification system for example in case an
accordingly modified filter detects a change that fulfills the necessary criteria a notification can be
sent to the user or a group of users. - Especially if the software would be utilized in other areas as
well, a switch at the start or simply during the installation would be nice, where the area that should
be tracked can be determined. This would reduce the size of the database while still providing the
option of an international deployment. However some features like the satellite map provider would
have to be changed dynamically which might not be trivial in all regions. - Similarly it would be
nice to introduce some internationalisation in order to support more languages besides German. -
Introduce more information about the changeset directly in the application, like data about the
history of the current objects would allow user to make decisions about the changeset faster. - Even
more advanced filtering of the changesets for example with a full-text search would further extend
the options of limiting the number of entires to the most relevant. This might also include a search
function for the already filtered list of changesets. - To make the application faster and reduce the
capacity needed it would be nice to reduce the size of the database. This might require more data to
be loaded externally and certainly requires some major changes in the entire changeset processing,
but would pose an interesting and efficient change to the current state.

Possible approach

The options above are in no particular order. Here we quickly discuss some possible approaches. Of
course they might vary depending on the motivation with which the project is extended. It should

Page 40

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

also be noted that the best approach strongly depends on the future needs of a potential client.

If no particular features are urgently requested, it would make most sense to first improve the current
features. This can consists of making them more robust, improving performance or to extend them
with new options.

When after this there are still resources available a new feature or functionality can be implemented.
The list in above is not prioritised in any way and it has to be determined for the specific occasion
which addition is the most useful to develop.

Personal reviews

Samuel

To do such an extended project is a valuable experience. During the software development process I
acquired and strengthen some skills which will be applicable in my future occupation as a software
developer. I liked it a lot to develop and being part of a process from start to end. A really nice
side effect were having the possibility to dive into new areas like OpenStreetMap. Learning and
applying new technologies like Quasar and Django as well as using Docker in an extended way is
really precious. It was not always easy and sometimes even a bit frustrating but even more satisfying
and rewarding at the end having a working product.

Tim

The bachelor thesis is a final opportunity to showcase our acquired skills and knowledge. Besides
that I wanted to work on a project, that has some sort of bigger purpose, providing some form of
benefit beyond the conclusion of the project. With the project we were able to do all of those goals
were fulfilled, which confirms the subject choice.

From the beginning of the project, the main task was quite clear, but since it was developed from
scratch there were still many unknowns ahead. This allowed us to work on all major development
stages, which was great to gather more experience and knowledge along the way. The fact that
we mainly used previously unknown technologies posed some difficulties, forcing us to spend some
time getting to know them, but overall was a great way to extend our abilities. Our step-by-step
approach and regular meetings proved to be successful and worked well for our small team. It also
allowed both to be involved in all aspects of the project without loosing efficiency. An other benefit
was the ability to mutually support each other, particularly when things did not work as planned or
were frustrating.

The project consistent of a wide range of challenges and experiences: From changing requirements, to
outdated dependencies, to entirely new demands, the project always had a surprise ready. However
we were able to deal with all of them, producing a working project, that satisfy the goals and learned
a lot in the process.

Acknowledgements and thanks

We would like to say thanks to our advisors and other people that supported us along the way:

• Prof. Stefan Keller
• Nicola Jordan
• Christian Nüssli and his team at SRZ
• Lukas Buchli

Page 41

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Software documentation
The following chapters are designed to give some insight to the final application and provide an
overview over its components. They also include some guidance and suggestions about the intended
usage, as well as present the different options available for the end-user.

Installation

The installation process can be split into three parts. During the preparation it is insured that all
necessary requirements are met. Then the actual setup takes place, which is followed by some final
touches.

Prerequisites

In order to run the application successfully a system with sufficient power and capacity is required.
Further the following programs need to be available:

• the docker container engine
• docker-compose for orchestrating the container management

It should also be insured, that there are no existing docker images or containers that will interfere
with the new setup. Similarly none of the necessary ports should be in use already. Finally the
system needs a running internet connection during the installation and usage.

Run installation

1. pull repo
2. download osm-data
3. download osh into directory
4. copy files to database directory in the project as changesets.osm.bz2 and

switzerland-internal.osh.pbf respectively.
5. update sequence file (see here)
6. docker-compose up --build
7. enter container docker exec -it prototype_db_1 /bin/bash
8. execute script /app/scripts/init.sh
9. add */10 * * * * bash cd /app/osmhistorydb-ch/OSM_Objects/ && ./insert_expanded.sh

to chrontab
10. restart docker-containers

Some examples

Here some use cases are shown, for more detailed information refer to component overview and
description

Page 42

https://gitlab.ost.ch/tim.wisotzki/monitoring-tool
https://planet.osm.org/planet/changesets-latest.osm.bz2
https://osm-internal.download.geofabrik.de/europe/switzerland-internal.osh.pbf
https://github.com/ToeBee/ChangesetMD#replication

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Analyse basic changeset

Figure 26: application after a changeset was selected

On the left side of the screen you can see the list of changesets. The currently selected one is
highlighted in yellow. On the changeset you can see its id, followed by the user that created it.
Below that the changeset comment is displayed, below which is the created date is shown. Just
underneath the yellow part you can see and change the current processing status.

Towards the right side of the screen a map is visible. It contains the bounding box of the selected
changeset. In order to get more information about the changeset and to see its history you can open
it in one of the following external pages. The links are located above the map on the right-hand
side. As an example the changeset with id: 122380948 is used. The link for JOSM requires that
JOSM is running on the same machine from where the request originates. This are the links:

• OSM
• OSMCHa
• Achavi
• JOSM
• id

Page 43

https://www.openstreetmap.org/changeset/122380948
https://osmcha.org/changesets/122380948
https://overpass-api.de/achavi/?changeset=122380948
http://127.0.0.1:8111/import?url=https://www.openstreetmap.org/api/0.6/changeset/122380948/download
https://preview.ideditor.com/release/#background=Bing&disable_features=boundaries&map=18/47.35712/8.53623

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Define simple filter

Figure 27: extract from filter page with "swiss" filter selected

Since there are many changesets created on a daily basis, it can be useful to filter the results in
order to only see a relevant selection. To access the filter page you need to use the filter button on
the top right-hand side of the screen. There you can create a new filter, by entering a filter name
and selecting one or multiple of the following attributes:

• user-name (only shows changesets created by the entered user)
• tags (compare define filter tags
• date (only shows changesets in the selected timespan)
• status (only shows changesets with the selected status)
• region (compare define geo-filter)

After saving the filter it can then be applied by clicking on the filter name on the top of the filter
page. This will automatically trigger the changesets to be filtered accordingly. To select a different
filter you can simply choose the next one out of the list, or create a new filter. To remove any
selected filter and get back to the unfiltered list you can press the little filter icon just above the
list of changesets, slightly to the right of the sorting buttons. Filters can not only be created and
deleted but also be edited.

Define filter tags

Figure 28: extract from filter page showing multiple tags set in filter

To define a more specific filter the tag field can be used. You can enter a custom key-value pair
against which the tags on the changeset will be compared. Additionally the tags will also be checked
on the objects included in the changeset, like on a modified street. The list of changesets is then
filtered so only changesets that are tagged accordingly or contain objects that correspond to the tag
are displayed. Further more it is possible to enter multiple tags in order to further narrow down the
results. This enables a powerful and quite targeted selection of the desired changesets.

Page 44

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Define geo-filter

Figure 29: define a geographic filter with a custom polygon

The application also contains the option to define geographic filters. This allows the user to specify
an area on the map, with which the bounding box of the changesets needs to intersect.

There are two options to select an area. The first is to draw a simple rectangle onto the map, which
is great for quickly selecting a rough area to track. In case it is required to track a more oddly
shaped region it is possible to draw a polygon which can take any shape and therefor allows a very
flexible selection. Both approaches can still be edited later on in case the relevant area changes or
needs to be further refined.

Depending on the deployed resources the geographic filters might take a moment to load, since the
amount of data verified might be rather large.

Component overview and description

The application can be split into different parts, which are explained in the following chapters.

Page 45

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Overview front-end

Figure 30: overview of the entire application after startup

The front-end is separated into three major areas. Firstly there is the header bar, which also includes
the buttons for page navigation on its right-hand side. Below the central header-bar the page is
split into the list of changesets on the left and a changeable area on the right. The later contains
either the default map, the filter, or an about page. To Navigate between the different sites the
buttons in the header can be used. If a changeset on the left is selected the application switches
automatically to the map page, regardless of the previously displayed page.

Page 46

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Changesets

Figure 31: overview over the changeset-list

On the left side of the screen there is the list of current changesets. Per default all not yet done
changesets are displayed in chronological order. At the top of the list there are three buttons. The
first two can be used to sort the displayed changesets according to ascending or descending order
based on their date or priority. Next is an icon, that indicates if any filters are currently active. It
can also be used to remove any filters to get back to the initial list. For more information about
filters refer to the filter page.

The changesets itself show their id, the user that created it, the date and the comment set during
its creation. Information about the location can be found on the map page. Below the information
of each changeset, there are three buttons to select the current processing status of the changeset.
Initially all changesets are set to “open”, which means they have not been processed yet. When a
curator starts analysing one of them, the status can be set to “in progress”, so other users don’t
start to work on the same ones. When all processing is one the changeset can be set to “done”. The
status can be changed again, but the next time the changesets are reloaded (i.e. when a new filter is
selected) all finished changesets will be removed from the list.

Page 47

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Header bar

Figure 32: header bar on a mobile device (with toggle switch) with the map page selected

The header builds the top of the application and houses the navigation buttons on the right-hand
side. In case a mobile device is used to access the application, it also houses a toggle switch, that
allows the user to hide the list of changesets. This setting is intended to provide an option to use
the space more efficiently if needed on smaller displays.

Map page (default)

Figure 33: map page, showing the area of an example changeset

The main part of the website is the map page, which as the name predicts prominently features
a big map. When any changeset is selected the map page is automatically loaded and the area
of the selected changeset is marked on the map. This can range from a single point to a larger
area, depending on the objects included in the changeset. Just above the map there are different
quick-links that allow the user to directly switch to an external service, where the current changeset
and map settings are preserved.

Page 48

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Of course it is possible to move and zoom the provided map in order to get more information if
necessary. Additionally it is possible to change the provided card material between the standard
OSM map, the Swiss version of OSM as well as a satellite view. For more information about the
card sources and information a correlating copyright notice is automatically updated in the right
bottom corner.

Filter page

Figure 34: filter page, during the creation of a new filter with multiple options

The filter page allows the user to filter the results in order to only see the relevant changesets at any
given time. There is a variety of different attributes that can be used and combined in order to get
the desired specificity:

User-name filters according to any entered user-name. Tags (compare define filter tags), include
key-value pairs that will be tested on the changeset itself as well as all its containing objects, which
makes it a very valuable tool for filtering. It is also possible to list multiple tags in order to narrow
down the selection even more. A date-range lets you select changesets from a limited time-frame.
The Status is per default set to show open and in progress changesets, but can be set to exclusively
show one or the other. Finally the geographic filter (compare define geo-filter) allows the selection
of specific regions. These can be defined as a simple rectangle or quite advanced polygons to truly
select any fitting shape.

Page 49

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Tags are set as a key-value pair. These can be entered in different notations which can be freely
chosen. Below are some examples of possible notations:

• key=value
• key:value
• key1=value1; key2=value2
• key1:value1, key2:value2

After saving the filter it can then be applied by clicking on the filter name on the top of the filter
page. This will automatically trigger the changesets to be filtered accordingly. To select a different
filter you can simply choose the next one out of the list, or create a new filter. To remove any
selected filter and get back to the unfiltered list you can press the little filter icon just above the
list of changesets, slightly to the right of the sorting buttons. Filters can not only be created and
deleted but also be edited.

About page

The about page includes some information about the project and involved parties.

Warnings

The application includes a couple warning and error messages. They are displayed in yellow and red
respectively at the top and center of the page.

• “Changesets können nicht geladen werden!”
– The application can not load the chagnesets.
– Most likely there will be a network connection issue.
– Or a problem in the database.

• “Dieses Changeset hat keine Koordinaten!”
– The changeset does not contain any geography information.
– Probably there was an error during the initial loading of the changeset and there are

already no information in the database.
• “Längere Filterzeit möglich!”

– This message is displayed if a geographic region is defined in the corresponding filter.
Such a query has to handle a large amount of data.

• “Status konnte nicht gespeichert werden!”
– Most likely there will be a network connection issue.
– Or a problem in the database.

Page 50

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Appendix A
Glossary

Table 3: Glossary

abbreviation meaning
API Application Programming Interface
APP Application
BA / BT Bachelor thesis
CRUD Create Read Update Delete
CSS Cascading Style Sheets
DB Database
GIS Geographic Information System
HTML Hyper Text Markup Language
HW Hardware
IFS Institut for Software
JS Java Script
OMT Open Street Map Monitoring Tool
OPE OSM-PostgreSQL-Experiments
ORM Object-relational mapping
OSM Open Street Map
PWA Progressive Web Application
REST Representational state transfer
RUP Rational Unified Process
SA / TT Term thesis
SFC Single-File Component
SQL Structured Query Language
SRZ Schutz & Rettung Zurich
SW Software
TMT Targeted Monitoring Tool
UX User Experience
VCS Version Control System

Links
• Task description
• Code repository
• OST Wiki

Page 51

https://wiki.ost.ch/display/~stefan.keller@ost.ch/BA_FS22_Aufgabenstellung_Monitoring_Tool
https://gitlab.ost.ch/tim.wisotzki/monitoring-tool
https://wiki.openstreetmap.org/wiki/OSM_Monitoring_Tool

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Appendix B
Table of figures

1 Control room of Schutz & Rettung Zurich, from where all emergency operations are
planned, monitored and supported. 3

2 An overview of the application architecture, consisting of a front- and back-end as
well as a database, all in Docker. 4

3 An example of our application in use, which shows some of the different components
and functions it supports. 5

4 test . 13
5 This simple architecture overview shows the 3 layers and the communication between

them. 14
6 C4 Model Level 1 . 15
7 C4 model level 2 . 15
8 C4 model level 3 front-end . 16
9 C4 model level 3 back-end / business layer . 17
10 C4 model level 3 back-end / database layer . 18
11 Sequence diagram of saving a filter . 23
12 sequence diagram of filtering changesets . 24
13 API overview . 25
14 API poast /api/filters . 26
15 API get /api/filters . 26
16 API put /api/filters/{filter-name} . 27
17 API delete /api/filters/{filter-name} . 27
18 API put /api/changesets/{changeset-id} . 28
19 API post /api/changesets . 29
20 API filter in schema . 29
21 API filter out schema . 30
22 API status in schema . 30
23 API changeset schema . 30
24 API filter applied schema . 31
25 Use case diagram . 36
26 application after a changeset was selected . 43
27 extract from filter page with "swiss" filter selected . 44
28 extract from filter page showing multiple tags set in filter 44
29 define a geographic filter with a custom polygon . 45
30 overview of the entire application after startup . 46
31 overview over the changeset-list . 47
32 header bar on a mobile device (with toggle switch) with the map page selected . . . 48
33 map page, showing the area of an example changeset 48
34 filter page, during the creation of a new filter with multiple options 49

Figure sources

• titlepicture: openstreetmap.org (last accessed 14 June 2022)
• figure 1: gvz.ch (last accessed 14 June 2022)
• figure 4: osmcha.org (last accessed 14 June 2022)

Page 52

https://www.openstreetmap.org/#map=10/47.1636/8.5556
https://www.gvz.ch/_file/426/_r1140x600cc/alarmierung-3.jpg
https://osmcha.org/filters?filters=%7B%22date__gte%22%3A%5B%7B%22label%22%3A%22%22%2C%22value%22%3A%22%22%7D%5D%2C%22comment%22%3A%5B%7B%22label%22%3A%22Defi%22%2C%22value%22%3A%22Defi%22%7D%5D%2C%22geometry%22%3A%5B%7B%22label%22%3A%7B%22type%22%3A%22Polygon%22%2C%22coordinates%22%3A%5B%5B%5B8.448006%2C47.380249%5D%2C%5B8.497727%2C47.345207%5D%2C%5B8.503172%2C47.32022%5D%2C%5B8.625441%2C47.354665%5D%2C%5B8.583159%2C47.388307%5D%2C%5B8.597279%2C47.406309%5D%2C%5B8.543108%2C47.432884%5D%2C%5B8.485792%2C47.431027%5D%2C%5B8.469131%2C47.416927%5D%2C%5B8.47301%2C47.395064%5D%2C%5B8.448006%2C47.380249%5D%5D%5D%7D%2C%22value%22%3A%7B%22type%22%3A%22Polygon%22%2C%22coordinates%22%3A%5B%5B%5B8.448006%2C47.380249%5D%2C%5B8.497727%2C47.345207%5D%2C%5B8.503172%2C47.32022%5D%2C%5B8.625441%2C47.354665%5D%2C%5B8.583159%2C47.388307%5D%2C%5B8.597279%2C47.406309%5D%2C%5B8.543108%2C47.432884%5D%2C%5B8.485792%2C47.431027%5D%2C%5B8.469131%2C47.416927%5D%2C%5B8.47301%2C47.395064%5D%2C%5B8.448006%2C47.380249%5D%5D%5D%7D%7D%5D%7D

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Table of tables

1 The table below shows all relevant relations stored in the osmhistory DB. 21
2 risks at the beginning of the project . 39
3 Glossary . 51

Bibliography
Django Ninja. 2022. “Django Ninja - Fast Django REST Framework.” https://django-ninja.rest-

framework.com/.
Hansruedi Tremp. 2021. Architekturen Verteilter Softwaresysteme. Springer.
Leaflet. 2022. “Leaflet Documentation.” https://leafletjs.com/reference.html.
Leaflet Draw. 2022. “Leaflet Draw API Reference.” https://leaflet.github.io/Leaflet.draw/docs/leaf

let-draw-latest.html.
Pinia. 2022. “Pinia Documentation.” https://pinia.vuejs.org/introduction.html.
Quasar. 2022. “Quasar Framework.” https://quasar.dev/.
Vue3 Composition API. 2022. “Vue3 Composition API Setup.” https://vuejs.org/api/composition-

api-setup.html.
Vue3 Lifecycle Hooks. 2022. “Vue3 Lifecycle Hooks.” https://vuejs.org/guide/essentials/lifecycle.h

tml.
Vue3 SFC. 2022. “Vue3 Single File Component.” https://vuejs.org/guide/scaling-up/sfc.html.
Webpage OSMCha. 2022. “OSMCha.” https://osmcha.org/.
Wiki OSMCha. 2022. “OSMCha.” https://wiki.openstreetmap.org/wiki/OSMCha.
Willie Marcel. 2022. “An Even More Powerful OSMCha.” https://developmentseed.org/blog/2022-

05-31-more-powerful-osmcha.

Other sources
• OpenStreetMap
• Quasar
• Django

Other documents
Below are different artifacts and reports that were generated during the project or summarize its
course:

Final time report

Time statistics

• total estimate:

• total spent: 96d 50m

• spent: 96d 50m

• samuel.lemmenmeier: 48d 1h 25m

• tim.wisotzki: 47d 7h 25m

Page 53

https://django-ninja.rest-framework.com/
https://django-ninja.rest-framework.com/
https://leafletjs.com/reference.html
https://leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html
https://leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html
https://pinia.vuejs.org/introduction.html
https://quasar.dev/
https://vuejs.org/api/composition-api-setup.html
https://vuejs.org/api/composition-api-setup.html
https://vuejs.org/guide/essentials/lifecycle.html
https://vuejs.org/guide/essentials/lifecycle.html
https://vuejs.org/guide/scaling-up/sfc.html
https://osmcha.org/
https://wiki.openstreetmap.org/wiki/OSMCha
https://developmentseed.org/blog/2022-05-31-more-powerful-osmcha
https://developmentseed.org/blog/2022-05-31-more-powerful-osmcha
https://www.openstreetmap.org/
https://quasar.dev/
https://www.djangoproject.com/

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Issues

iid title spent
total
estimate

time
tim.wisotzki

time
samuel.lemmenmeier

94 fix & test db 7h 7h
93 doc summaries 7h 3h 4h
92 meeting sprint16 1d 4h 6h 6h
91 documentation setup 7h 7h
90 check ; wherever possible 30m 30m
89 account page raus 30m 30m
87 check and finnish links 2h 2h
85 abstand bei changesets (margin in div) 15m 15m
84 evtl. fuer kleinere bildschirme anpassen 2h 2h
82 litzens 30m 30m
81 evtl. about seite stylen 30m 30m
80 about seite (teams,

ba-osm-monitoring-tool team) link
hinzufuegen

15m 15m

79 code aufräumen 2h
30m

1h 30m 1h

78 filter status 3h 3h
77 frontend: map-attribution-links 5h 5h
76 meeting spring15 5h 2h 30m 2h 30m
75 changeset status 2d 6h 2d 3h 3h
73 DOKU requirements, todos, use-cases 1h

30m
30m 1h

72 meeting spring14 6h 3h 3h
70 filter shape query 6h 6h
69 development filter 1d 1h 2h 7h
67 filter datum 4h 4h
66 development - map 1d 4h 1d 4h
65 meeting spring13 1h

40m
50m 50m

64 meeting sprint12 1d 4h 4h
63 layout 6h 2h 4h
61 tag filter 1d 2h 6h
60 cron job 3h 3h
59 rating system einbauen 4h 4h
58 meeting sprint11 1d 4h 6h 6h
57 improve db 2d 7h 2d 7h
56 documentation 12d

1h
7d 5h 4d 4h

55 meeting sprint10 1d
40m

4h 20m 4h 20m

54 prototype - map - filter 4d 7h 4d 7h
53 meeting sprint9 7h

30m
3h 45m 3h 45m

52 meeting sprint8 4h
30m

2h 15m 2h 15m

51 prototype - quasar 1d 4h 1d 4h

Page 54

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

iid title spent
total
estimate

time
tim.wisotzki

time
samuel.lemmenmeier

50 meeting sprint7 1d 1h 4h 30m 4h 30m
49 prototype - quasar - map 2d 6h 2d 6h
48 prototype - django 2d 7h 2h 2d 5h
47 prototype - docker - allgemein 2d 1h 1d 7h 2h
46 prototype - allgemein 1d 5h 3h 1d 2h
45 prototype - quasar 3d 4h 1d 2h 2d 2h
44 prototype - ninja api 6h 6h
43 prototype - docker - quasar 4h 4h
42 prototype - docker - postgres 7d 6d 4h 4h
41 meeting sprint6 1d 3h 5h 30m 5h 30m
40 osmcha app testen, code anschauen und

DOKU
1d 1h 4h 5h

38 Zwischenpräsentation mit Laurent
Metzger

1h 30m 30m

37 db-laden 2d 4h 2d 4h
36 django_rest-api einarbeiten 4h 4h
35 meeting sprint 5 1d 1h 4h 5h
34 prototype erstellen 1d 5h

30m
5h 1d 30m

33 osmhistorydb einarbeiten 6h
30m

5h 1h 30m

32 DOKU Generelles 2h
15m

1h 15m 1h

31 db schema überlegen 5h 3h 2h
30 meeting sprint 4 4h

40m
2h 20m 2h 20m

29 python einarbeiten 3h
30m

3h 30m

27 daten ziehen mit django 1d 2h 1d 2h
26 architektur mit docker erstellen 1d

30m
1d 30m

25 meeting sprint 3 3h
40m

1h 50m 1h 50m

24 quasar einarbeiten 1d 7h 6h 1d 1h
23 repo sharen 15m 15m
22 meeting sprint 2 4h

10m
1h 50m 2h 20m

21 general administration sprint 1 1h 1h
20 overview links 30m 30m
19 time-tracking vorbereiten 1h 1h
18 grobe architektur festlegen 1d

15m
6h 15m 2h

17 Server bestellen 15m 15m
16 DOKU Risiko 30m 30m
15 meeting sprint 1 4h

30m
2h 15m 2h 15m

Page 55

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

iid title spent
total
estimate

time
tim.wisotzki

time
samuel.lemmenmeier

14 Docker einarbeiten 2d
30m

7h 1d 1h 30m

13 Leitfaden BA, Struktur BA beachten 2h
15m

1h 1h 15m

12 DOKU funktionsweise projekt beschreiben 4h 4h
11 DOKU aufgabenstellung ueberpruefen 1h 30m 30m
10 DOKU dokumentation vorbereiten 1h

30m
1h 30m

9 django einarbeiten 1d
30m

3h 5h 30m

8 postgres DB einarbeiten 7h 3h 4h
7 OSM, changeset, tagging etc. anschauen 3d 1h

30m
1d 7h 1d 2h 30m

6 DOKU groben projektplan erstellen 1h 1h
5 DOKU Requirements aufschreiben 30m 30m
4 einarbeiten bestehende arbeit (alte SA) 2d 7h

30m
1d 7h 1d 30m

3 DOKU projekt vorgehensweise / sprints
bestimmen

30m 30m

2 Frontend recherchieren / festlegen 2h 2h
1 Gitlab einrichten 15m 15m

Page 56

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Architecture drafts

Page 57

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

API as JSON

{
"openapi": "3.0.2",
"info": {

"title": "NinjaAPI",
"version": "1.0.0",
"description": ""

},
"paths": {

"/api/filters": {
"post": {

"operationId": "osm_monitoring_tool_api_create_filter",
"summary": "Create Filter",
"parameters": [],
"responses": {

"200": {
"description": "OK"

}
},
"requestBody": {

"content": {
"application/json": {

"schema": {
"$ref": "#/components/schemas/FilterInSchema"

}
}

},
"required": true

}
},
"get": {

"operationId": "osm_monitoring_tool_api_list_filters",
"summary": "List Filters",
"parameters": [],
"responses": {

"200": {
"description": "OK",
"content": {

"application/json": {
"schema": {

"title": "Response",
"type": "array",
"items": {

"$ref": "#/components/schemas/FilterOutSchema"
}

}
}

}
}

Page 58

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

}
}

},
"/api/filters/{filter_name}": {

"put": {
"operationId": "osm_monitoring_tool_api_update_filter",
"summary": "Update Filter",
"parameters": [

{
"in": "path",
"name": "filter_name",
"schema": {

"title": "Filter Name",
"type": "string"

},
"required": true

}
],
"responses": {

"200": {
"description": "OK"

}
},
"requestBody": {

"content": {
"application/json": {

"schema": {
"$ref": "#/components/schemas/FilterInSchema"

}
}

},
"required": true

}
},
"delete": {

"operationId": "osm_monitoring_tool_api_delete_filter",
"summary": "Delete Filter",
"parameters": [

{
"in": "path",
"name": "filter_name",
"schema": {

"title": "Filter Name",
"type": "string"

},
"required": true

}
],
"responses": {

"200": {

Page 59

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

"description": "OK"
}

}
}

},
"/api/changesets/{changeset_id}": {

"put": {
"operationId": "osm_monitoring_tool_api_update_status",
"summary": "Update Status",
"parameters": [

{
"in": "path",
"name": "changeset_id",
"schema": {

"title": "Changeset Id",
"type": "integer"

},
"required": true

}
],
"responses": {

"200": {
"description": "OK"

}
},
"requestBody": {

"content": {
"application/json": {

"schema": {
"$ref": "#/components/schemas/StatusInSchema"

}
}

},
"required": true

}
}

},
"/api/changesets": {

"post": {
"operationId": "osm_monitoring_tool_api_changesets",
"summary": "Changesets",
"parameters": [],
"responses": {

"200": {
"description": "OK",
"content": {

"application/json": {
"schema": {

"title": "Response",
"type": "array",

Page 60

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

"items": {
"$ref": "#/components/schemas/ChangesetSchema"

}
}

}
}

}
},
"requestBody": {

"content": {
"application/json": {

"schema": {
"$ref": "#/components/schemas/FilterAppliedSchema"

}
}

},
"required": true

}
}

}
},
"components": {

"schemas": {
"FilterInSchema": {

"title": "FilterInSchema",
"type": "object",
"properties": {

"name": {
"title": "Name",
"type": "string"

},
"user": {

"title": "User",
"type": "string"

},
"poly": {

"title": "Poly",
"type": "string"

},
"isRectangle": {

"title": "Isrectangle",
"default": false,
"type": "boolean"

},
"tags": {

"title": "Tags",
"type": "string"

},
"dateFrom": {

"title": "Datefrom",

Page 61

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

"type": "string"
},
"dateTo": {

"title": "Dateto",
"type": "string"

},
"changesetStatus": {

"title": "Changesetstatus",
"type": "string"

}
}

},
"FilterOutSchema": {

"title": "FilterOutSchema",
"type": "object",
"properties": {

"id": {
"title": "Id",
"type": "integer"

},
"name": {

"title": "Name",
"type": "string"

},
"user": {

"title": "User",
"type": "string"

},
"shape": {

"title": "Shape",
"type": "string"

},
"isRectangle": {

"title": "Isrectangle",
"default": false,
"type": "boolean"

},
"tags": {

"title": "Tags",
"type": "string"

},
"dateFrom": {

"title": "Datefrom",
"type": "string",
"format": "date"

},
"dateTo": {

"title": "Dateto",
"type": "string",
"format": "date"

Page 62

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

},
"changesetStatus": {

"title": "Changesetstatus",
"type": "string"

}
},
"required": [

"id"
]

},
"StatusInSchema": {

"title": "StatusInSchema",
"type": "object",
"properties": {

"status": {
"title": "Status",
"type": "string"

}
},
"required": [

"status"
]

},
"ChangesetSchema": {

"title": "ChangesetSchema",
"type": "object",
"properties": {

"id": {
"title": "Id",
"type": "integer"

},
"user_id": {

"title": "User Id",
"type": "integer"

},
"user_name": {

"title": "User Name",
"type": "string"

},
"num_changes": {

"title": "Num Changes",
"type": "integer"

},
"min_lat": {

"title": "Min Lat",
"type": "number"

},
"max_lat": {

"title": "Max Lat",
"type": "number"

Page 63

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

},
"min_lon": {

"title": "Min Lon",
"type": "number"

},
"max_lon": {

"title": "Max Lon",
"type": "number"

},
"created_at": {

"title": "Created At",
"type": "string",
"format": "date-time"

},
"created_at_format_converted": {

"title": "Created At Format Converted",
"type": "string"

},
"closed_at": {

"title": "Closed At",
"type": "string"

},
"open": {

"title": "Open",
"type": "boolean"

},
"tags": {

"title": "Tags",
"type": "object"

},
"geom": {

"title": "Geom",
"type": "string"

},
"status": {

"title": "Status",
"type": "string"

},
"priority": {

"title": "Priority",
"type": "number"

}
},
"required": [

"id",
"created_at",
"created_at_format_converted",
"closed_at",
"open",
"tags",

Page 64

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

"geom",
"status"

]
},
"FilterAppliedSchema": {

"title": "FilterAppliedSchema",
"type": "object",
"properties": {

"name": {
"title": "Name",
"type": "string"

},
"user": {

"title": "User",
"type": "string"

},
"shape": {

"title": "Shape",
"type": "string"

},
"tags": {

"title": "Tags",
"type": "string"

},
"dateFrom": {

"title": "Datefrom",
"type": "string"

},
"dateTo": {

"title": "Dateto",
"type": "string"

},
"changesetStatus": {

"title": "Changesetstatus",
"type": "string"

}
}

}
}

}
}

Page 65

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Meeting protocols

Meeting notes 09.02.22

Kickoff arbeit

- Leitfaden von Claudia Furrer beachten
- Tipps in pdf von Ihnen sehen: SABAPAMA_Tipps_15d.pdf

-> vorher gedanken ueber kapitel machen

- Fragen gerne sofort (Teams ist bevorzugt) (gerne immer gleich)

OSM:
- vorherige + aenderungen = neu (changesets) ist sehr wichtig
- tagging system (ebenfalls relevant)

Technologien:
- docker muss eingesetzt werden
- offen mit Python oder Go
- Gitlab / Gitlab-CI

aufgabe:
- tool das feststellt wenn aenderungen passieren (aufgrund changeset)

- transparent abspeichern (nutzerbasiert oder geshared)
- frontend (mit Python/Django / anderes moeglich (Nicola mit Vue.js bevorzugt))

Admin:
- alte arbeit
- andere tools
- was sind changesets / tagging
- technologie festlegen (django, vue, ...)
- docu art
- sitzungsrythmus bestimmen
- repo etc. aufsetzen
- aufgabenstellung ergaenzen falls inputs noetig
- postgres
- frontend bestimmen

OSM account erstellen
- borsnet (bestehendes tool), etwas mit rumspielen

keller im hintergrund dabei -> nicola betreut
von aussen gab es viele positive intressensmeldungen (Berlin stammtisch /

NRW verkehrsverbund)

schutz und rettung hat software von Mentz GmbH -> taeglich daten aus OSM abziehen
und in Infosystem

verarbeiten (dann von S&R genutzt)

Page 66

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

- routing von einsatzfahrzeugen werden aufgrund von OSM routing dispached
- Unfallort kann eingegeben werden

bei fragen zum backend steht nicola zur verfuegung

SRZ Kloten anschauen gehen

Kompletter rewrite von bosnet.ch (bestehende dependency von OSMCha rauswerfen)

dashboard potm.osm.ch

Filter definieren
- Name, Tags (amenity=hospital), Kanton,

--> zurzeit kann es nur nach user filtern

Geonick (Prof. Keller) useraccount

MVP -> filtern nach user+tags als "Gruene wiese"

Filterfreigabe

Technische Fragen sicher an Nicola

Ideen:
alle changesets zusammenfassen und in DB -> dann querien

anderes Team mit aehnlichem Technologie-stack (evtl. austausch)

osm-data-pipeline

Aufgabe:
- Datenbank erstellen mit jeweils aktuellen (changesets)
- von Webapp (zuweisung User auf abgeschlossen)
- update DB with changes

Login mit Django und OAuth (gleicher user wie OSM)

ein prozess laedt aenderungn
der zweite updated map

dokumentation englisch/deutsch egal (60-100 seiten umfang)
-> im pdf stehen tips zur dokumentation (muessen nicht alle benutzt werden)
-> ca. 50% der Zeit geht fuer Dokumentation drauf

OST erwartet Abstrakt:
1) Abstract gemaess eprints / monitoring (eprints.ost.ch/id/eprint/916)

Page 67

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

2) Broschuerenabstract (management-summary gekuerzt)

Management Summary (3 Seiten mit 2-3 Grafiken (ausgangslagen fuer Broschueschen-
abstract)

In mitte von Arbeit gibt es review von (anderem Professor)
Schlusspresentation (muendlich) (Experte: Claude Eisenhut (extern))

Es gibt eine fixe anzahl stunden, alles andere ist nicht so relevant

Lukas Buchli Ibuchli (bei fragen zu OSM History DB / Pipeline)

Erstes meeting: 14:00 - 15:00

meeting notes 04.03.22

technologies that will probably be used
- docker compose
- quasar
- postgres

things to do next
- schweizer datenbank mit user anschauen
- werden daten aufbereitet, resp. sind diese besser nutzbar als offizielle
- grobe architektur document erstellen
- tag von node bestimmen

next meeting
- Mo: 11:00

meeting notes 11.03.22

what we did:
- setup gitlab, OSM accounts, etc.
- general project preparation (read requirements, etc.)
- get to know technologies (OSM, django, quasar, etc.)
- rough project outline
- prepare documentation

questions
- what are the drawbacks of OSMCha and why should it be removed as a

dependencies?
- according to chapter 4.2 of the "Leitfaden fuer Bachelor und Studienarbeiten"

the Task-description should include an overview about the scope as well as
the start
and end dates, which are currently missing.

Page 68

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

- which db for changesets? osmhistorydb-ch just for the beginning?
planet.osm.org?

- which tags should be available as filter, maybe mapping needed?
- elements related to changeset
- is it possible to get an account for the existing application?
- what other tools can be used or should it be from scratch?

notes
was sind die naechste schritte

wie weit sind wir gekommen

vor dem meeting (1-2 h, oder 1 tag vorher)
- grober stand
- protokoll (was haben wir geschaft, wo stehen wir, was wollen wir erreichen)

hauptziel:
- rewrite ohne OSMCha
- genaue richtung danach ist offen (wir entscheiden was wollen wir, was macht

sinn)
- alle "Must" sind zwingend

- fuer development hat nicola je noch einen test-server wo nur mail konfi-
guriert werden muss

- probleme OSMCha diverse:
- uralte django version (python eingeschraenkt)
- ideen klauen, aber nicht projekt selbst

- kein Django projekt verwenden
- Muss sicher mit docker laufen
-

- bei problemen koennen wir uns immer an nicola wenden

- sicher ziemlich allgemein filterbar -> groesseres interesse an (Spitaeler etc.)
- einige dinge vordefiniert + selbst definierbar

- es gibt sicher tools die gewisse sachen machen -> nicht alles selber schreiben
- basiert auf osmchange (minutely updates, etc.) nicht changesets

- hauptanwendungsfall ist schweiz
- moeglich umzuwandeln auf anderes
- [schweiz](https://planet.osm.ch/replication/)
- sicher configurierbar

- repo mit Nicola teilen
- wichtigste [tags](https://github.com/Schutz-Rettung-Zurich/srz-edi/blob/main/

critical_nodes.md)

- bestehendes [tool](https://srzedi.srz.borsnet.ch/)

Page 69

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

- wenn wir neu schreiben, dass es gut beschrieben ist wie man es instaliert etc.
- minimal dokumentiert in README

- [C4](https://c4model.com/) -> zum beschreiben vom groben ins feine
- muss nicht genutzt werden, aber evtl. hilfreich

- frontend + backend im gleichen
- doku mit drinn ist gut

- koennen uns jederzeit bei ihm melden
- architektur"durchstich" moeglichst schnell

-> schnell anfangen mit coden
- grundsaetzlich sind wir verantwortlich, er stoppt falls es gar nicht passt

- wenn noetig greift er korrigierend ein
-

- 13:00 Uhr meeting am Donnerstag
- fragen + protokoll im Teams channel

TODO:
- repo teilen
- grobes protokoll
- projektplan ausarbeiten
- wenn moeglich alles klein schreiben, nicht gross, kleinschreibung mischen

meeting notes 24.03.22

current work
- prototype

problems
- zusammenfuegen den komponenten
- lokal funktioniert einiges
- das zusa

- lokal funktioniert einiges, aber zusammenfuegen ist nicht ganz einfach
- verschiedene komponenten
- viele kleine sachen
-

- aktueller stand jeweils auf branch machen
-

Django fragen an Nicola (hat entsprechendes wissen)

Page 70

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

das production dockerfile vom project ist etwas ueberkomplizierter

--> vorzugsweise mit django env -> vereinfacht das anapssen etc.

empfehlung alles mit docker zu machen -> sonst laeuft man spaeter in config-sachen

Quasar
- webpack ist sicher gut (default)
- packet manager ist voellig egal (npm)
- store ist nicht relevant aber default ist sicher nicht so schlecht

- axios ist gut, nicola nutzt sonst fetch (ist nicht so relevant)
- axios ist grundsaetzlich gut und etwas vereinfachtes AJAX (etwas verschoen-

erte variante von AJAX)
- es gibt vorlagen fuer login, CSRF token, etc. fuer axios online

- Django-REST weggekommmen -> Django Ninja rest framework ist evtl. intuitiver
- decoding encoding etc. ist wahrscheinlich mit ninja einfacher
- "twelve factor" anschauen (was soll es machen, was soll es nicht machen)

- Zwischenpraesentation mit Gegenleser Laurent Metzger noetig
--> bilateral einen termin ausmachen (7.-8. SW)
- stand arbeiten und aufgabenstellung praesentieren
- keine folien notwendig (aber moeglich)

OSMChar nochmal genauer anschauen ob es moeglich waere dies anzuwenden

fuer 144 ist die kantonsgrenze wichtig

erwartet abstraktere definition was als filterkriterum angegeben werden kann
(zurzeit implizit via gui definiert)

next meeting at tuesday at 11:00 -> Samuel laedt ein "BA Lemmenmeier Wisotzki"
serie bis 9.Juni)

meeting notes 31.03.22

- fuer naechste meetings -> kleine Demo (besonders wenn Keller anwesend)

naechste schritte:
- DB ganz fuellen
- Karte einfuegen
- environments / variabeln erstellen

caddy file / nginx als reverse proxy fuer ganzes programm
- fuer moment im moment nicht wichtig, solange funktionalitaet funktioniert
- Nicola kann fuer dies etwas bereitstellen

Page 71

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

alpine enhaelt ein package nicht, was zu problemen fuehren kann
- bei Python mit Python:3.9 (macht nichts wenn es groesser ist)
- fuer alles andere ist es egal

viel zeit fuer docker verwendet:
- evtl. Nicola drueberschauen
- beim ersten aufstarten daten reinziehen
- einen separaten container um aktuell zu halten
- evtl. Beispeiel von Nicola

- bei datenbank kann zumindest im dev. auch manuell angefasst werden

- Nicola & Lukas upgraden den [toolstack](https://github.com/sosm/osmhistorydb-
ch) auf python3

- Map mit "Leavelett"?? als "Gruene Wiese" projekt verwenden
- Map mit OSMcha kann verwendet werden, aber darf keine logos drin haben.
- Kein MapBox logo drin -> soll austauschbar sein mit eigenen karten (bspw.

mit swisstopo karten)

- schrittweise vorgehen:
- die karte soll auf den jeweiligen kartenbereich anzeigen

- bounding box anzeigen
- "Goudy" die OSM Elemente anzeigen

- als standard: swisstopo und osm karten bereitstellen
- mit link auf openstreetmap (mit richtigen koordinaten)

- overpass api
- Kein Django-leaflet nicht anschauen -> bringt nichts
- anschauen [vue-leaflet](https://github.com/vue-leaflet/vue-leaflet) fuer karte

yaml referenzen
&referenz

<<: *referenz
--> vgl. script in chat

[openlayers](openlayers.org) oder leaflet

Lukas fragen bezueglich dump von HistoryDB -> egal wie alt, aber dass struktur
passt

Page 72

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

[overpass](overpass-turbo.osm.ch)

meeting notes 07.04.22

meeting with Chrisitan Nuessli and Michael Schmid from SRZ

hauptziel:
- osm-history from project of the month auf etablierten stand bringen
- zusaetzlich frontend mit entsprechenden filtern

christian nuessli:
- applikations verantwortlich in SRZ notrufzentrale (Zurich, schwyz,

schaffhausen)
- qualitaetsmonitoring tool zusammen mit michael schmid verantwortlich

osm-applikation is kleiner teil von tools

michael schmid:
- fuer geodaten zustaenden
- gebaeude etc. register zustaendig
- hausadresse ist am wichtigsten in einsatz
- spital, schulen etc. werden aus osm bezogen

spezialfaelle werden noch nicht gut abgedeckt
-> ziel: wissen wann altersheim oder spital geaendert werden

Aufgabenstellung neu
Ziel ist die Überwachung von Änderungen an der OSM-Datenbank in einer Region
(Bbox, Polygon) auf Grundlage einer Liste geänderter Tags. Diese Filter werden
einem Datenkuratoren zugeordnet. Eine Änderung hat einen Status zugeordnet
(erledigt) und verlinkt auf OSM (bzw. Editoren). Beispiele: Überwachung der
Fahrradinfrastruktur in einer Region. Auflistung aller Änderungen an Objekten,
die den Schlüssel highway=cycleway (und andere) enthalten. Überwachen von Bäumen
in einer Region. Auflistung von Änderungen an Objekten, bei denen "natural=tree"
geändert wurde (die gefällt werden konnten und daher jetzt als natural=tree_stump
gekennzeichnet sind).

current pain-points SRZ
- datensetz werden nicht regional genug angezeigt
- eingegrenzt auf Kantone

--> changesets die zu grossflaechig sind

- wenn filter auf region gesetzt werden, sollen diese angewant werden
-> moeglichst nur hochqualitative changesets anzeigen

Page 73

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Q-rank ranking (von extern) die liste priorisieren

Fuer einsatzplanung wird [rescuetrack](https://apps.rescuetrack.com/de-de/)
verwendet

Staten
- offen
- in Bearbeitung
- abgeschlossen -> aus liste entfernen

Einstuffung
- Hoch / Mittel --> ist im Moment unklar wie genau und wird nicht gebraucht

bei verdaechtigen:
- link zu OSM
- link JOSM
- link ID

-> tool sollte ausgeben was geaendert hat -> sonst muss selbst recherchiert werden

hauptfokus:
- kantonsfilter sollen funktionieren
- evtl. auch fuer Staete

meeting notes 22.04.22

leaflet
http://leaflet.github.io/Leaflet.draw/docs/leaflet-draw-latest.html
leaflet-draw library um drawing tools und Polygon zeichnen einzubinden
- .js in import
- .css als style importieren (global in app.vue zum testen) aber nicht als style

scoped
leaflet-toolbar & leaflet-draw-toolbar werden nicht gebraucht, kann man selber

machen (draw start event)

db
komplette historydb innerhalb docker ist noch in Arbeit. Ziel: so schnell wie
möglich fertig!
- queries auf vorhandener historydb Instanz ausprobieren z.B. alle Spitäler in ZH

Metzger
hat sich noch nicht gemeldet, wir versuchen aber einen Termin zu finden

Aufgabenstellung

Page 74

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

siehe wiki vom IFS, ist gültig so

Frontend
Grobstruktur wie bis jetzt ok
- grundsätzlich an vorhandener SA und OsmCha orientieren

Features
- logo srz
- sortieren von changesets: neuste, priorität QRanking (code snippet kommt noch),

status

map page
- link in map auf osm spezifische Koordinaten
- Kartenauswahl: OSM.ch, OSM.org Standard, Satellit Swisstopo
- links unterhalb Karte: OSM, OSMCha, Achavi, JOSM, iD

notifications (error etc)
- via notify quasar plugin lösen

responsive
Fokus ist nicht mobile tauglich, wichtiger ist Grundfunktionalität
- changeset Liste als z.B. drawer ab tablet Grösse

meeting notes 28.04.22

- wichtig, die arbeit ist wesentlicher bestandteil der Arbeit
--> sollte nicht auf der strecke bleiben
- links zu papers
- auf was basiert es

- schauen wieviel zeit braucht es fuer doku -> wichtig

- manual steps during installation are ok

- Frontend:
- karte sollte moeglichst ganze seite fuellen
- auswahl kartenbaterial als "OSM Standart" + "Luftbild"
- Raender rausnehmen
- API fuer SwissTopo wird von Herr Keller bereitgestellt
- oben Logo + Text in Header anzeigen
- Buttons auf Deutsch und in "CamelCase" -> "Karte, Filter, Benutzer" /

"Offen, in Bearbeitung, Fertig"
- alles auf Deutsch (wie semesterarbeit)

- Changesets evtl. etwas schmaler machen -> changeset kommentar laenge median
auswerten
- 2 Zeilen danach mit ...

- Development mailserver siehe message nicola:

Page 75

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Django Settings:
EMAIL SETTINGS
EMAIL_CONFIG = env.email(
'DJANGO_EMAIL_URL', default='smtp://user:password@localhost:25'
)
vars().update(EMAIL_CONFIG)
im env file oder docker environment:
https://django-environ.readthedocs.io/en/latest/types.html
DJANGO_EMAIL_URL: smtp://user:password@maildev:1025
maildev:
image: djfarrelly/maildev
command: >-
bin/maildev --base-pathname /maildev -w 8001 -s 1025 --incoming-user
user --incoming-pass password
ports:
- 8001
localhost:8001/maildev

meeting notes 05.05.22

offizielles logo vgl. [link](https://github.com/Schutz-Rettung-Zurich/srz-ed i/
blob/main/logo_SRZ.png)

evtl. Seite hinzufuegen mit akredirungen
- arbeit zusammenarbeit mit OST und SRZ
- namen Tim, Samuel
- evlt. betreuer etc.

frontend favicon anpassen -> von alter arbeit
-> eigene loesung ist auch ok

evtl. direkt Sascha fragen -> Nicola vermittelt

documentation auch machen
-> bericht ist etwa 35 - 40%
-> umsetzung ist auch teilweise im bericht enthalten

--> laut Keller ist docu und app etwa gleichgewichtet

buttons wieder nach rechts
alle floats auf 7 stellen runden (oder kuerzer)
name von karten (osm standard, satelit, etc.)
kanten wechsel in standardkarte

Meeting notes 12.05.22

Nuessli war anwesend in ersten 20min

Page 76

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Demo und Anmerkungen

- weitere moegliche Filter:
- vordefinierte bounding boxen
- range datum oder oder z.B. last 3 month

- sharen filter oder filter für alle gültig
- filter evtl global anstatt sharen

- Internationalisierung: lieber deutsch
- name tool: Osm Monitoring

Weiteres Meeting ohne Nuessli
- footer: nicht nötig wenn scrollbar weg ist
- border weg von allen pages

- changeset: id (fett) mit/ohne icon und user (fett) mit icon
icon comment
icon datum
evtl. sources, hashtag (aber noch nicht implementieren)

fragen meeting
- geodjango: Ist gute Wahl und noetig fuer postgis mit django

gdal: version 3.9 nehmen oder 3.10 und dann ubuntu jammy base image gdal
- wie koordinaten speichern: polygon type bez. geography wenn moeglich sonst

geometry

- status Problem:
- Extra Tabelle mit update Funktion

Meeting notes 19.05.22

Demo und Anmerkungen
- aktiver Filter anzeigen
- Kartenmaterial besprochen
- status ist in Vorbereitung
- 3 Pixel bei unterem Rand ist dies korrekt
- copyright für alle 3 Karten abhängig von Kartenmaterial neben SRZ link

- 3 Namen für Karten und links sowie copyright links etc bekommen wir noch über!

- icon material Design, Copyright und Datenherkunft erwähnen, mindestens in Doku

Protokoll durchgegangen

- was wir gemacht haben
- Frage wurde bereits in Demo besprochen
- Nächste Schritte: was wir in den nächsten 1-2 Wochen vorhaben

- status
- ranking

Page 77

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

Allgemeines
TODO's für nächstes Meeting
- Liste für gute/mögliche Erweiterungen gewünscht
- Inhaltsverzeichnis der Doku
- Liste mit must-haves und nice-to-have

Mögliche Erweiturungen
- datum range
- bounding box vordefiniert
- Ranking

Meeting notes 02.06.22

- many small things and improvements

- grundsaetzlich ist es ein

TODO:
- compare to [changesetMD](https://github.com/geometalab/ChangesetMD/tree/

python3-compat)

Nicola macht code review (dienstag)
-> aktuellen stand auf main branch

Kartenmaterial
- standard, swiss-style ok
- luftbuild -> unten mit Swisstopo nicht cogis
--> keller schickt korrekte attribution

srz in attribution ganz weglassen

evtl. Status button raus nehmen
- alaternativ nur offene oder nur in bearbeitung anzeigen

das rauszoomen beim sateliten ist egal

abgabe:
- 1x ausgedruckt (ohne spezielle bindung)
- poststempel am 17. reicht

Page 78

OSM Monitoring Tool S.Lemmenmeier, T.Wisotzki

am 9. ist das letzte meeting

- 1. management summary mit 3 bildern
- 2. abstract in tool (zusammengefasst) (broschueren abstract)
- 3. abstract aus arbeit als txt an herr spielmann fuer eprints

(wissentschaftlicher abstract)

aufgabenstellung ist angepasst

Meeting notes 09.06.22

code review
- python code looks generally quite good

Review 09.6.22
Python:
* jinja2 template satt string concatenation fur raw query
* auto_generated_models.py scheint ungultig, wird das nicht verwendet
(`db_table = 'spatial_ref_sys# python manage.py inspectdb`?
Quasar:
* pinia -> API-Interaction dorthin verschieben (https://pinia.vuejs.org/core-
concepts/actions.html#actions)
* Zu grobgranulare components, Untercomponents sinnvoller
* Stile-Mix (zB imports mit `;` und ohne)
* Magic strings, zB const api = axios.create({ baseURL: 'http://localhost:
8000/api/' })
* Das ist fur spateres deployen sehr schlecht, da es nie localhost sein
wird. Besser: `{ baseURL: '/api/' }`.

Kleinigkeiten
* Schreibfehler: Contributers -> Contributors

other notes
- the code can also be improved after the project is handed in (documentation

is fix)
- the abstract should be started very soon -> needs to be final by the 13th

software improvements
- titel: "OSM Monitoring Tool" in bold
- trennstrich ueber status buttons noch rausnehmen

- evtl. noch filtern nach substrings in comment

Page 79

	Abstract
	Management summary
	Initial situation
	Approach
	Technology
	Result
	Outlook

	Task description (translated to English)
	Rough problem description
	Main “technical” properties:
	Must-haves at start of project:
	Optional:
	Changes regarding the must-haves during the project:
	Further requirements:
	Existing tools for changesets:
	Existing papers:

	*** Part I technical report
	Introduction
	Task setting and vision
	Goals
	Approach
	State of the art (existing solutions)
	OSMCha

	Design
	Architecture
	C4 model system context
	C4 model container
	C4 model component
	C4 model code, classes, object and functions

	Implementation
	Approach of implementation
	Main technologies used
	Front-end layer
	Business layer
	Database layer
	Sequence diagram
	UI design
	API provided by back-end
	Testing

	Results
	Completeness
	Comparison

	*** Part II project-documentation
	Introduction
	Vision
	Requirement specification
	Functional requirements
	Non-functional requirements

	General conditions, limitations
	No external dependencies
	Time
	Technologies
	Knowledge

	Use cases
	Use case diagram
	Use cases detailed description

	Organisation
	Stakeholders
	Roles and responsibilities
	Work approach
	Milestones
	Project phases
	Risks

	Results and further development
	Further development
	Possible approach
	Personal reviews
	Acknowledgements and thanks

	Software documentation
	Installation
	Some examples
	Component overview and description
	Warnings

	Appendix A
	Glossary
	Links

	Appendix B
	Table of figures
	Figure sources

	Table of tables
	Bibliography
	Other sources
	Other documents
	Final time report
	Architecture drafts
	API as JSON
	Meeting protocols

