

Bachelor Thesis Green Routing

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Spring Term 2022

Authors: Jonas Hauser, Pascal Schlumpf

Advisor: Prof. Laurent Metzger

Co-Advisor: Julian Klaiber

Project Partner: Cisco Systems represented by Francois Clad

External Co-Examiner: Laurent Billas

Internal Co-Examiner: Prof. Stefan Keller

Green Routing Bachelor Thesis

ii

Abstract

Traditional routing protocols and techniques are often used in today's networks, and their basics were

generally established before the millennium. In recent years, the network area has not experienced the

same level of fast transformation as other IT industries. With the development of the digital world and the

introduction of new industries and technologies like 5G and cloud computing, the volume of data

transferred through networks today is massive and will continue to expand in the future. Modern networks

must not only deal with an unprecedented amount of data transmissions, but many new requirements

have emerged in order to meet client demands. In our time with climate change a new requirement on the

energy efficiency of routing has emerged.

The latest estimates for the ICT sector indicate emissions of around 1.4Gt of CO2 per year. Internet

backbone networks are responsible for six percent of this ecological footprint. The growing bandwidth

creates new opportunities to consider other metrics and aspects in addition to the traditional ones which

mostly only tend to use more and more bandwidths.

This thesis is to look for a solution to implement a green routing approach, where in a network the most

ecological paths are to be computed. The solution should be able to compute paths efficiently underlying a

defined green index based on sensor data from routers as well as external factors like the source of

electricity or the cooling used in the datacenter. It should be possible to view the network over a simple

web interface and compare different scenarios. Additionally, it should be possible to deploy the calculated

green route on the network.

The application can be accessed over a frontend where the synchronized network is displayed, and the

calculation of a green route can be executed. It is possible to select the metrics used for the green index

beforehand. The underlying calculation of the best paths based on the green index has been implemented

by a Green SR-App software in form of a REST-API. This backend API, which is written in modern GoLang,

can synchronize all network data via the Jalapeño API Gateway. It can react on topology changes, process

and store the received data for future statistical analysis and then calculate the best paths over a

predefined period of sensor data based on Yen’s k-shortest paths algorithm. If desired, the generated green

route can then be deployed on the network. The software is designed to be very performant despite very

large networks of up to 1000 routers with many times more links in between. It is also possible to calculate

the fastest route over the network, which can then be used to compare the greenest path to the fastest

path and their metrics.

Green Routing Bachelor Thesis

iii

Management Summary

Initial Situation

With the growing urgency to act against climate change and simultaneously growing demand of bandwidth

and throughput a new mindset regarding routing protocols needs to develop. It should be possible to route

packets with a different metric than just IGP link costs. With the new segment routing protocol in

combination with a SR-App it is possible to route packets with any algorithm and therefore allows to

explore new use cases. To get back to climate change, it is now possible to take any metric as a basis for a

route calculation. With this new possibility it would be useful if you could route packets along the path with

the least environmental impact. Especially in situations where high-speed networking is not needed certain

customers would choose a greener path over the fastest path. This is the idea behind this thesis which is a

follow-up thesis from the Green Routing thesis written in the autumn term of 2021.

This thesis is to extend the prototype of a green routing approach, in which the most ecological paths in a

network are computed. The solution should be able to compute paths efficiently by using a defined green

index based on sensor data from routers as well as other metrics such as the efficiency of the datacenter or

the source of the electricity.

Figure A.1: Network with Green Route compared to Fastest Route [1]

Procedures and Technology

For the project inception we met with our supervisor and his team to discuss the next steps as well as the

expectations they have for the product at the end of our bachelor thesis. Based on this meeting we

expanded the use cases and created the product backlog.

In the elaboration phase we researched the best way to implement multiple equally viable paths, what kind

of metrics we could use and how to create a green index based on these metrics. One option was to switch

all graph data to a separate ArangoDB which allows us to calculate k-shortest paths on the data. However,

this idea was rejected, and we decided to use an existing library which offered Yen’s k-shortest path

algorithm. This approach was leaner and posed a smaller risk than the switch of the whole database. Some

proof of concepts were also undertaken during the elaboration phase. Namely for the frontend, for the

configuration of the routers as well as for the usage of the subscription service.

Green Routing Bachelor Thesis

iv

In the construction phase the project was continued on the foundation of the project thesis. The

continuation went flawlessly, and progress was achieved swiftly. The main new functionality developed

were the frontend, the calculation of multiple green routes with multiple metrics, and the configuration of

the network.

Results

We were able to fulfill all the mandatory use cases, which includes the ability to calculate multiple green

routes based on the synchronized data from the Jalapeño API Gateway. If desired, it is possible to use the

subscription service from the Jalapeño API Gateway to react on topology (? Font) changes. A user is able to

individually choose the metrics used for the next calculation. To prove that the green route takes a

different route, we developed not only the green route calculation but also the fastest route calculation. On

average, for a network with 1000 nodes and 25000 links, the calculation is still completed in less than 2.5

seconds. It is then possible to deploy the SR-Policy created from the green route to the necessary routers

over SSH. We built a frontend with a view in which the selected green route and the selected fastest route

can be displayed.

Figure A.2: View of topology with highlighted paths in the frontend [1]

We extended our mocks of the data access layers per domain to be able to write integration tests without

having an in-memory or local database running. We achieved a test coverage of over 80%. An additional

aspect is the deployment to the Kubernetes cluster of the INS which allow for an easy setup of our

application.

Outlook

The first steps to improve the application would be to fix the various shortcomings of the Jalapeño API

Gateway and some bugs of Jalapeño itself. This would make the code a lot leaner and more easily

maintainable. One thing which was not possible until now, is to test the application with a real network and

observe how it behaves. Regarding the configuration it would be preferable if the process could be

switched over to gRPC with Yang Models instead of multiple SSH commands. Not only would this be faster

but also easier to maintain with a clearly defined interface.

Green Routing Bachelor Thesis

v

Acknowledgments

We'd like to express our appreciation to the people listed below for their assistance and/or supervision

during our bachelor thesis.

Laurent Metzger is the person who came up with the idea for this project and gave us the chance to

continue our term project work. We thank him for his constant helpfulness and the always very pleasant

meetings.

Julian Klaiber who was co-supervisor of Laurent Metzger and supported us with valuable feedback and

ideas. He was also always open to support us in areas where our knowledge was limited.

Michel Bongard who was co-supervisor until the project week four and supported us with valuable

feedback and ideas during the initial project time.

Severin Dellsperger who is a member at the INS and has big knowledge in Segment Routing. He supported

us with feedback and was always available for questions and help.

Matteias Collet who was proofreader of our documentation and also gave useful feedback on the content.

Green Routing Bachelor Thesis

vi

Contents

A. Technical Report .. 1

1. Introduction .. 4

2. Results and Discussion ... 15

3. Conclusion ... 26

B. Project Documentation .. 38

1. Requirement specification ... 43

2. Project Management ... 54

3. Development ... 68

4. Domain analysis ... 76

5. Architecture and design specifications .. 79

C. Appendix ... 105

1. System test .. 107

2. Meeting minutes ... 121

3. Project related configurations .. 132

Green Routing Bachelor Thesis

1

A. Technical Report

Change history

Version Date Changes Responsible

1.0 24.06.2022 Finished the final technical report. Jonas H. and Pascal S.

Green Routing Bachelor Thesis

2

Contents

A. Technical Report .. 1

1. Introduction .. 4

1.1 Thesis composition... 4

1.1.1 Technical report ... 4

1.1.2 Project documentation .. 4

1.1.3 Appendix .. 4

1.2 Existing Research.. 5

1.2.1 Standby mode .. 5

1.2.2 Load spreading ... 5

1.2.3 Green routing ... 5

1.3 Techniques ... 5

1.3.1 Segment Routing over IPv6 .. 5

1.3.2 SR-Apps .. 9

1.3.3 Telemetry data ... 9

1.3.4 Ecological aspects of datacenters .. 10

1.3.5 Jalapeño ... 12

1.3.6 Jalapeño API Gateway .. 12

1.4 Goals and tasks .. 13

1.4.1 Problem .. 13

1.4.2 Solution .. 14

2. Results and Discussion ... 15

2.1 Accomplishments ... 15

2.1.1 CRUD greenest route ... 15

2.1.2 Calculate paths ... 15

2.1.3 Define stable route .. 16

2.1.4 Define green index ... 16

2.1.5 Get structured data .. 18

2.1.6 Deploy SR-TE policy .. 18

2.1.7 View routes .. 18

2.1.8 Compare scenarios ... 18

2.1.9 Gather statistics ... 18

2.1.10 Miscellaneous .. 19

Green Routing Bachelor Thesis

3

2.2 Implementation ... 19

2.2.1 Backend .. 19

2.2.2 Calculation .. 23

2.2.3 Testing .. 23

2.2.4 Frontend ... 23

3. Conclusion ... 26

3.1 Requirements revisited .. 26

3.2 Learnings .. 28

3.3 Next steps... 29

3.3.1 Improvements .. 29

3.3.2 Innovations ... 30

Green Routing Bachelor Thesis

4

1. Introduction

This document is intended for engineers in the field of computer science. A basic understanding of

networking and software engineering is required.

The progress of this thesis was built on the results of the project term of the autumn term 2021. Continuing

on the previous achievements enabled us to expand and improve the already existing code and use cases.

[1]

1.1 Thesis composition

This thesis follows the guidelines set by the Eastern University of Applied Sciences and is organized into

three main parts.

1.1.1 Technical report

There are three chapters in the technical report.

The first chapter (part A) gives a brief summary and introduction to the work. If any techniques were

employed, they are described. The goals and tasks are determined by the problem definition and solution,

as well as the methods employed. The outcome of this project is described in the results and discussion

chapter, and the implementation is reflected in rudimentary form. Important sections for the conclusion

can be found in the third and final chapter. For each section of this thesis, the experiences and lessons

learned are examined. In addition, possible next steps are outlined, as well as potential enhancements and

an outlook into the future.

1.1.2 Project documentation

The second chapter of the report (part B) covers the entire study, including how the results were achieved.

The requirements are specified in the first chapter as use cases and divided into functional and non-

functional objectives. The second chapter covers all aspects regarding project management. The methods

employed, as well as their important data, are detailed, including milestones, schedules, meetings,

responsibilities, risk management, and other elements. It is discussed how we intend to build this thesis

after the project management chapter. The principles, version control, quality metrics, error handling,

development environment, and continuous integration and delivery (CI/CD) are all described. These

measures should help the team during the development. The architecture and design specifications, as well

as a domain analysis, are described in the following chapter.

The declaration of independence, the terms of use of this work, and a reference to the meeting minutes are

all located in the last three chapters.

1.1.3 Appendix

In the appendix (part C), supporting documents and figures can be found.

Green Routing Bachelor Thesis

5

1.2 Existing Research

In the last few years, a lot of research has been done in the area of segment routing, especially in regard to

increasing the efficiency of datacenters.

The research can broadly be grouped into the following three topics:

1.2.1 Standby mode

Multiple studies performed some research with the goal to increase the efficiency of a datacenter by

turning off parts of a network to save power. This way there is only ever so much capacity as needed and a

lot of power can be saved. This is achieved with segment routing by only utilizing a subset of nodes and

edges to be able to put the remaining ones into a sleep mode [2–5]

1.2.2 Load spreading

Other studies approached the topic from a different angle by preventing overloading certain links and

therefore wasting energy. This is also achieved with segment routing, although they still use label-based

routing. With their method, traffic is spread over a bigger area to achieve a better overall capacity

utilization, leading to a lower overall power consumption. [3, 4]

1.2.3 Green routing

In our research we only found one other study going into a similar direction as our thesis. In that study the

author also defined what a green router is and how to route traffic along the greenest path. The routing is

still done with MPLS and not with the newer IPv6 segment routing possibilities. [6]

1.3 Techniques

In this chapter we describe different technologies and systems we encountered or used during our thesis.

We will explain from a high-level perspective how these different techniques work and how they helped us

achieve our goal.

1.3.1 Segment Routing over IPv6

The term green routing is used in various sectors to indicate a greener alternative to the current standard.

In networking this has been lacking so far. The reason being, that the existing routing protocols couldn’t

provide the needed flexibility to allow for such routing algorithms. This has been changed with the

introduction of segment routing (SR). Specifically, SR over the Multi Protocol Label Switching (MPLS) plane

and SR over the Internet Protocol Version 6 (IPv6) plane, also called SRv6. In this section we will focus only

on the latter, namely SRv6. We explain how this protocol is designed and how it all works. The explanations

are based on the following RFCs from the IETF:

1. RFC 8402: Segment Routing Architecture [7]

2. RFC 8986: Segment Routing over IPv6 (SRv6) Network Programming [8]

3. IETF Segment Routing Policy Architecture draft-ietf-spring-segment-routing-policy-22 [9]

Green Routing Bachelor Thesis

6

Concept

SRv6 SID Format

SRv6 segments are identified using segment identifiers (SIDs) encoded as IPv6 addresses. An SRv6 SID

consists of three parts expressed in the Locator:Function:Args format as seen in Figure 1.1

Locator identifies a node and is used to route packets through the network. It needs to be distributed in

the network to guarantee connectivity

Function identifies an instruction bound to the node that generates the SRv6 SID

Arguments occupies the least significant bits of the IPv6 address and can be used to define packet flow and

service information

The maximum length of a SID is, equal to a standard IPv6 address, 128 bits. It is not necessary to use all the

bits and the arguments are also optional.

Figure 1.1: SRv6 SID [10]

Segment Routing Header

IPv6 packets are made up of an IPv6 header, 0 to N (N ≥ 1) extension headers, and a payload. The Segment

Routing header (SRH) [11] is an extension header that is added to IPv6 packets in order to implement

Segment Routing IPv6 (SRv6) using the IPv6 forwarding plane. It specifies an IPv6 explicit path and stores

IPv6 segment lists that function similarly to SR-MPLS segment lists. The ingress appends an SRH to each

IPv6 packet, allowing transit nodes to forward the packets based on the SRH's path information. You can

see the details of the head in Figure 1.2 [8, 11].

Green Routing Bachelor Thesis

7

Figure 1.2: Segment Routing header [11]

The processing of a packet, which is routed through a Segment Routing Domain, can be cut down as

follows: The header contains the various Segments that must be completed during the path traversal in the

Segment List. Hereby the last Segment List entry corresponds to the Segment that should be executed first.

In addition, the header contains the Segments Left field, which indicates how many instructions remain to

be executed. This field refers to the last Segment List entry at the start. This value is reduced by one as soon

as the first Segment is done. Therefore, the field refers to the next Segment to be processed. During the

next step, the Active Segment is copied into the IPv6 header's destination address field. The packet is then

sent on its way to the next appropriate node based on the destination address information. If the packet

reaches an intermediate node, which is not part of the segment routing domain or does not match the

destination address, it is redirected based on its routing entries. The instruction can be defined as

completed as soon as the packet reaches the node responsible for the Active Segment. This process will

now be repeated for each entry in the segment list until it reaches the egress node, where the packet

leaves the segment routing domain. This way it is possible to define any path through a network based on a

self-defined algorithm, which is then documented and executed through the Segment Routing Header.

Example

To get a better idea how the whole process works, it is illustrated in Figure 1.3. The currently active

segment id is marked in orange. In the top right corner, the field Segments Left can be found, starting with

three. The whole series of events is started the moment a packet enters the segment routing domain via

the ingress node. Said node appends the segment routing header with the segment id list to the packet and

Green Routing Bachelor Thesis

8

sends it to the first destination according to the list, which is R3. After the arrival of the packet at R3 the

index is moved down by one and the new SID is written into the destination address field. After passing R6

it takes the shortest path to R10 which leads via R7 and R8, which themselves just route the packet

according to the destination address field. At the final destination, the segment routing header is removed

and the packet leaves the segment routing domain via the egress node.

Figure 1.3: Example Segment Routing SRv6 [10]

SR-Policies

An SRv6 Policy is a collection of paths comprised of a segment list. Each SID list defines a point-to-point

path from the source to the destination, instructing a device to use the defined path rather than the

shortest path computed by an IGP to forward traffic. The header of a packet directed to an SRv6 Policy is

extended with an ordered list of segments associated with that SRv6 Policy, allowing other network devices

to execute the instructions encapsulated in the list. In other words, a SR-Policy is a configuration that

ensures that packets with the same parameters are assigned to the correct Segments.

A SR Policy is identified by three elements [9]:

• headend is the IPv4 or IPv6 address of the node where the policy is instantiated (the ingress router)

• color is a numeric value to differentiate between different policies with the same endpoint

• endpoint is the IPv4 or IPv6 address of the destination of the policy (the egress router)

By utilizing this technique, individual packets can be treated differently based on their characteristics. As a

result of the introduced tuple (headend, color, endpoint), each policy is distinct. Figure 1.4 demonstrates

two distinct policies with separate meanings. Both policies are implemented on the R1 headend. The red

policy should direct packets to the destination node R10 at the lowest possible cost. The tuple (R1, 10, R10)

uniquely identifies this policy, with the 10 representing the numeric value for the policy of minimal cost.

The green policy is distinguished by its distinct tuple (R1, 20, R10). Its purpose is to direct traffic to the

destination router R10 via the green route, i.e. the path with the lowest environmental impact.

Green Routing Bachelor Thesis

9

Figure 1.4: Example SR-Policy [10]

Explicit Path

From the many ways to steer traffic, the simplest one is also the most crucial in our thesis. We are talking

about explicit path routing. On the headend, a configuration is applied that specifies which explicit

Segments should be applied to a packet. As a result, the router includes this information in the

corresponding packets. This method has the advantage of allowing an externally calculated path to be

configured on the headend. At this point, the router is unaware of the policy's intent. It simply executes the

instructions associated with it.

To ensure that only the greenest path is traversed, each node must be declared explicitly. This can be seen

in Figure 1.5. At the ingress node all the SIDs are added to route the packet from ingress to egress. This

leaves no wiggle room and it is therefore guaranteed that the path is the one previously calculated. This

way we can give a reliable value for the environmental impact of this route.

Figure 1.5: Example explicit path [10]

1.3.2 SR-Apps

The Institute for Network Solutions began developing applications that make use of the new possibilities

that segment routing opens up shortly after the first draft of segment routing was released. The majority of

these new applications are based on the idea that you can change the path packets take based on network

metrics or characteristics. Another factor in common is the requirement that all apps must be cloud-native

and scalable in a Kubernetes cluster.

1.3.3 Telemetry data

Our app heavily relies on telemetry data collection and utilization. In our case, we focus on Cisco ASR 9000

routers with IOS-XR software, which makes selecting the required resources very easy. The concept used by

Cisco for sensor data selection is known as yang models [12], and it is a descriptive way to group sensor

Green Routing Bachelor Thesis

10

data and request it over a path. If the path is resolved, it sends one or more groups of sensor data in a

predefined time interval.

As an example, we would like to receive data on power consumption. The path Cisco-IOS-XR-sysadmin-

asr9k-envmon-ui is required for the ASR 9000 router with version 7.5.1. This path contains not only power

data, but also sensor groups which we don’t require. As a result, we specify the container that we want,

which is a different name for group in the yang world. Other containers can be contained within a

container. In our case, we want the container oper contained within the container environment to obtain

our power data. Cisco-IOS-XRsysadmin-asr9k-envmon-ui:environment/oper is the entire path we need to

configure. The router now understands what we want and begins delivering the configured telemetry data

to the specified network address. There the data can be collected and stored in a time series database

optimized for telemetry data.

1.3.4 Ecological aspects of datacenters

During our research we looked into the various measurements one can apply to rate the ecological aspect

of a datacenter.

Power Usage Effectiveness (PUE)

Data center operators use power usage effectiveness (PUE) to measure

efficiency. A PUE value of 2.0 means that for every watt used to power

IT equipment, another watt must be used to cool the IT equipment and

distribute power. The closer the PUE approaches a value of 1.0, the

more energy is spent on the computing activity itself. [13]

In Figure 1.6 you can see all the losses Google takes into account to calculate its PUE. Interestingly, only the

green boxes are the IT components, while the red boxes are all counted as overhead needed to run the IT

components. With all this, Google achieves a PUE of 1.10 which is quite good. [13]

Green Routing Bachelor Thesis

11

Figure 1.6: PUE measurement points of Google [13]

Figure 1.7: PUE formula of Google [13]

In Figure 1.7 you see the formula Google uses to determine their PUE based on the different measurements

of Figure .

Carbone Usage Effectiveness (CUE)

“Carbon usage effectiveness (CUE) is a metric for measuring the carbon

gas a data center emits on a daily basis. The metric was developed by

the non-profit consortium, The Green Grid.” [14]

The CUE can be calculated by taking the amount of electricity a datacenter consumes and multiply it with

the local carbon factor, which is dependent on the power mix of the local electricity provider. The best

score is 0.0 if you only receive power from renewable sources.

Water Usage Effectiveness (WUE)

The Green Grid defines a sustainability metric as "the amount of

water used on-site for data center operations, including

humidification and on-site evaporation for cooling or energy

production." WUE is calculated by dividing 'annual water usage' by

Green Routing Bachelor Thesis

12

'IT computing equipment energy consumption.' WUE is measured in

liters per kilowatt-hour (L/kWh). [15]

One aspect that may have been overlooked for a while was the amount of water tech companies consume

to cool their carbon neutral datacenters located in the desert. A 15-megawatt datacenter can use up to 1.6

million liters of water per day. [15] So it makes only sense to also include this metric into the whole green

path calculation.

1.3.5 Jalapeño

We discussed telemetry data in the previous chapter, which is sent to a specific address where it is

collected, processed, and stored. Cisco's Jalapeño software is one solution for this. It is made up of an

InfluxDB time series database as well as a Graph database, for storing topology data, called ArangoDB.

Figure 1.8: Architecture Jalapeño [16]

Data is delivered from the network to two processors, as shown in Figure 1.8: Architecture Jalapeño [16].

Telegraf is used for telemetry data, and a Cisco plugin is used to decode the data received from the routers.

Jalapeño processes the received data for topology data using GoBMP. Both processors send their output to

Kafka, which subsequently generates topics to which consumers can subscribe. One of the consumers is

another Telegraf processor that prepares the data for InfluxDB. The second processor, the one consuming

data from Kafka, is the Topology processor, which does the same thing for ArangoDB.

1.3.6 Jalapeño API Gateway

Once the data has been stored in both databases, it has to be obtainable. To assist with this, the INS began

work on the Jalapeño API Gateway, which provides a well-defined interface for SR-Apps to access the

collected data. The API Gateway offers two primary services. One is the request service, which allows you

to request data on demand. The other service is the subscription service, to which one can subscribe to in

order to be notified of topology changes.

SR-Apps can then request time ranges from the time series database and be notified when the topology

changes, allowing them to recalculate the path based on the new information.

Green Routing Bachelor Thesis

13

Figure 1.9: Architecture Jalapeño API Gateway and Jalapeño [16]

1.4 Goals and tasks

1.4.1 Problem

Every contribution counts in our world, in which we are fighting climate change. The network sector alone

accounts for approximately 6% of total global CO2 emissions. To be more precise, we're talking about the

ever-expanding backbone networks that handle our daily traffic. With an annual CO2 output of

approximately 1.4Gt, it is worthwhile to investigate potential improvements [17]. One suggestion was to

manage traffic over these networks using the newly developed capabilities of segment routing. This allows

one to analyze the power consumption of routers in a network over time and then route traffic through the

routers that require the least amount of electrical energy in relation to their throughput. In general, the

newer the router the more efficient it is. When a router from a decade ago is compared to a new router

from today, the consumed power per Gbps is reduced by 95% [18]. Keeping this in mind, it should be

possible to identify the most efficient router per Gbps and route vast quantities of traffic through these

routers. In the best-case scenario, you would consider the source of the energy, prioritizing routers

powered by renewable energy.

Green Routing Bachelor Thesis

14

1.4.2 Solution

In a first step we need to define what a green router is and how we can measure that. We need to gather

useful metrics and figure out a system to represent a node with a single green score. We need to read the

possible sensor data from the router and gather the other metrics by hand.

The second step is to design an algorithm which takes the router ratings and applies a K-shortest paths

algorithm on it. This results in one or more green routes with a cumulated green score, which allows us to

compare different paths for their environmental impact.

The green route can then be deployed. For this a SR-Policy needs to be created and a way needs to be

found to configure the devices in the network. The SID list will then be configured on the ingress node and

the packets should follow the calculated path.

To present the results in a meaningful way, a frontend needs to be designed which can display the network,

calculate new green routes and display the results. To compare them to the fastest path, a way to compare

both paths should be implemented.

To achieve an easy access for the INS, the application will then be deployed on the Kubernetes cluster of

the INS.

Green Routing Bachelor Thesis

15

2. Results and Discussion

The outcomes of our thesis are presented in this chapter. We showcase what we achieved while also

providing information on the hidden features we implemented. We describe our successes in the chapter

Accomplishments. Additionally, we describe how the outcomes have been achieved in the chapter on

implementation.

2.1 Accomplishments

The backend API from the term project was significantly improved and expanded in this thesis. The

underlying green index was expanded using various green metrics and thus improves the significance of

how thorough a route actually is. In addition to the backend, a frontend was developed to illustrate the

results from the backend for demonstration purposes.

All of the defined use cases were accomplished, as well as one additional use case.

2.1.1 CRUD greenest route

By using the HTTP POST method on the green routes API endpoint, a user can request the calculation of a

new green route. To begin a new computation, they must provide both the ingress and egress node key.

They in turn receive a JSON object containing the green route which includes the overall green score, each

link that makes up the route, a segment identifier list consisting of all segments (as well as their SID’s) and a

defined SR-Policy for the deployment. A query parameter can be used to specify whether the SR policy

should be configured directly in the network. The same is possible retroactively by deleting a green route,

through which all associated data is deleted, and the route is deprovisioned completely from the network.

In addition, the user has the option of requesting all past computations for any given green route, all green

routes collectively, or a single green route by either its id or its accompanying ingress or egress node, each

of which is recognized by its own unique node key.

2.1.2 Calculate paths

During the inception phase, multiple variants were evaluated for the second version of the green route

calculation. The goal was to calculate multiple routes who may be equally green. Basically, there were four

different possibilities to solve this requirement.

1. Develop an implementation based on Yen’s k-shortest paths ourselves

2. Use an existing go math library which has a proven and widely used Yen’s k-shortest paths

algorithm

3. Use an existing go library with a K-Star implementation with only a small community

4. Switch the database from MariaDB to ArangoDB and use the database graph function k shortest

paths

The decision was made for the second variant. The reasons were that it is an already tested and performant

implementation which saved valuable time. The other solutions were either more work or more risk to

implement. The decision for Yen’s k-shortest paths algorithm was made because it performed better than

other algorithms for our use case.

As soon as the backend receives the request for a new calculation, it first synchronizes the latest telemetry

data and processes it to get an accurate result of the currently most ecological route. Subsequently, the

Green Routing Bachelor Thesis

16

individual green scores per node are calculated on a weighted basis, which is then used as the link cost so

that the Yen’s k-shortest path algorithm can calculate the best path or paths.

2.1.3 Define stable route

We included an environment variable that governs the interval in which telemetry data is acquired, with

which the average power consumption together with the throughput value is computed. This prevents

routes from changing too rapidly. The variable’s default value is set to 10 minutes. Spikes in power

consumption will have less of an impact in this interval, since the node's long-term measurement will be

the more interesting indicator.

In addition, a frequency can be defined in which the generated green routes are recalculated and optionally

automatically redeployed to the network.

2.1.4 Define green index

With this thesis, we have revised the approach to the definition of the green index from the term project. In

the process, we were able to work out many possible metrics, both for the routers themselves as well as for

the environment of the routers in data centers. The possible metrics are weighed individually and added up

to a resulting green score. The weighing was roughly estimated and therefore is only a proposal without

extended research backing it. This green score has a value between 1 and 100, where lower means more

ecological and therefore better. The green metrics listed below were be found, but only the first four of

them are actually utilized in the Green SR app for simplicity. Though it is very easy to manually add new

green metrics and specify values for them. Only the power consumption and data throughput of the

routers are obtained as telemetry data from the devices. All other data is determined manually, since there

is currently no possibility to obtain it dynamically, but also because in many cases the data does not exist

yet.

Name Description/comment Units Weighting

Throughput per watt Ratio between data throughput and power

consumption. The higher the ratio the

better.

Throughput: Mbit/s

Watts: watt

8

Not renewable

power source

Percentage indication of how much

electricity does not come from renewable

sources.

Percent 6

PUE A measure of how effectively a data center

utilizes energy, precisely how much energy is

consumed by the computing equipment,

called Power Consumption Effectiveness (in

comparison to cooling and other operational

overhead that supports the data center).

The resulting value is normalized to the

green score scale.[19]

Points 6

Green Routing Bachelor Thesis

17

CUE The Green Grid created the Carbon Usage

Effectiveness metric to quantify the carbon

emissions-related sustainability of data

centers. CUE is the ratio of the energy

consumption of IT equipment to the total

CO2 emissions produced by all data center

energy use.

The resulting value is normalized to the

green score scale.[14]

Points 6

Cooling system How efficient the cooling system is and

whether it uses sustainable resources to

operate.

Points 4

Climate

compensation

How high the climate compensation of a

data center is. Classified according to the

fixed values from the following scale.

1: highly positive

20: low positive

40: climate neutral

80: climate negative

100: highly climate negative

Points 3

Datacenter place /

landscaping

Where the data center is geographically

located. Also considering how good the

connection to the necessary resources is. As

an example: A data center in the desert most

likely performs worse.

Points 3

Construction

without sustainable

materials

Percentage of unsustainable materials used

in construction of the data center.

Percent 3

Sustainability of

scalability

Possibility to expand or extend the data

center in a resource-saving way.

Points 1

Emergency setup

sustainability

How sustainable the whole system is for

emergency operation during a power

outage.

Points 2

Efficiency of logistics

and work processes

Basic efficient logistics and work processes.

Certain certifications already exist for this.

Points 2

Table 2.1: Green metrics for the green index [20]

Green Routing Bachelor Thesis

18

2.1.5 Get structured data

We must transform the data into our own entity types after retrieving the topology and telemetry data

from the Jalapeño API Gateway service. The generated information is saved in a database for further use. In

this thesis, a live synchronization of the network data via JAGW was implemented in order to always have

the latest network status ready. Therefore, it is not needed anymore to sync the whole network before

each calculation request. Besides that, the synchronization on demand as implemented in the term project

is still possible. Due to limitations of the current Jalapeño API gateway version, certain connection options

between nodes are still synchronized on demand, but the logical links and node information are completely

synchronized live.

2.1.6 Deploy SR-TE policy

After a green route has been successfully calculated, it is deployed in the network according to a defined SR

policy. Unfortunately, the configuration could not be done as planned via gRPC with Yang Models, because

a certain field for SRv6 is missing in the currently available Yang Models. The alternative solution now works

classically via direct commands via SSH on the routers. This unfortunately has some disadvantages, but

there was no other viable option.

It is possible to make the configuration directly after the calculation, or to skip it and request it later

separately. The SR-Policies API endpoint allows to retrieve all policies generated so far, filter them by id or

associated green route, deploy them and also delete them, including the deprovisioning on the routers.

2.1.7 View routes

A frontend was implemented to display the network as a graph and to highlight calculated green routes.

The user interface is capable of displaying the nodes dynamically in user-friendly way, so that the view is

well-structured and there is no unnecessary overlapping of the links between the nodes. The algorithm is

very likely to get an optimal arranging of the nodes on the first try, but sometimes the result may be not

useful, and the calculation has to be started again manually. As soon as a green route is marked, the green

scores are displayed for all links of the path with the total average green score of the selected green route.

It is also possible to highlight individual nodes and their connections by hovering over a node.

The user interface also allows the generation of new green routes via a pop-up window. Additionally, all

available green metrics can be enabled or disabled individually.

2.1.8 Compare scenarios

In order to show a comprehensible comparison between the green and the fastest path, it is also possible

to calculate the fastest route via the frontend. The fastest route can then be compared with the greenest

route, either in a split view with one graph per path or a combined view with different colors for each

individual route.

2.1.9 Gather statistics

For research purposes, having some statistical data over time of a node's or an entire network's power

usage and throughput rate is useful. The introduction of the node power consumption and node

throughput entities, which hold all the determined values of all nodes along with the timestamp of their

retrieval and or calculation, solved this problem.

Green Routing Bachelor Thesis

19

2.1.10 Miscellaneous

To enable the deployment of the frontend and backend applications with their services, a Kubernetes

deployment configuration had to be created. Since a manual configuration through a Kubernetes

configuration file is time-consuming and more difficult to maintain, it was decided to create a Helm chart

instead. Helm helps to define, manage, install, and upgrade Kubernetes applications. In addition, there are

already Helm charts templates in a registry. A MariaDB template chart was used to deploy the required

database for the backend. The Helm chart definition of the entire deployment is stored in its own

repository, allowing quick deployment anywhere.

In order to be able to test the backend API easily, the API client Insomnia was used as mentioned in part B

of the documentation. In order for everyone involved to have easy access to all requests available from the

SR-App, an additional repository was created, where the latest configuration of Insomnia is always available

and synchronized.

As already noticed in the term project, the use of multistage docker builds would be useful to keep the size

of the final docker images as small as possible and to perform the CI/CD pipeline process faster.

Over the course of this project, we successfully switched to multistage builds. The first stages work as

before with all the required steps for building and quality checking, but in the final images small

distributionless images are used, which only have a size of Mbyte in the low two-digit range.

2.2 Implementation

This chapter explains how the solutions were achieved. Important decisions and considerations made for

the final product are described in detail.

2.2.1 Backend

The backend, which manages all requests, network synchronizations, and path calculations, is the most

crucial part of the system. It delivers uniform and condensed responses for each situation and responsible

for validating the inputs.

For the API, we continued to use the Gin Web Framework as in the term project. It worked flawlessly and

delivers on its promises regarding performance. Additionally, the documentation is comprehensive

measured by Go standards and the community is relatively large. [21]

The controller package defines each endpoint. All endpoints are registered in Gin's api package upon

application startup so that it can handle incoming requests with its API router. Our backend offers the

endpoints listed below.

The base endpoint delivers a welcome message along with the URL to the OpenAPI standard

documentation with Swagger.

Figure 2.1: Endpoint base [10]

Green Routing Bachelor Thesis

20

Using the following endpoints for the green metric types, the currently available ones can be listed and

their activation status can be adjusted. The green route calculation algorithm always only uses the

activated green metrics as a basis.

Figure 2.2: Endpoint green-metrics-types [10]

By providing both the ingress node key and the egress node key, the green route endpoints enable the

calculation of a new green route. After first requests have been made, it is possible to obtain the previously

established green routes if any computations have been performed.

This has not changed compared to the term project, except that the SR-Policies are now additionally

generated in the background and deployed to the network. This is managed by the respective separate

endpoints more extensively. Furthermore, green routes can now be deleted via the API.

Figure 2.3: Endpoint green-routes [10]

In addition to the calculation for the green routes, it is now possible to calculate the fastest traditional

routes, for which the path is added up using the IGP link metric. This is required to compare the scenarios in

the frontend, as described in chapter 2.2.4.

Figure 2.4: Endpoint fastest-routes [10]

For each green route, SR policies are required, which are either created automatically after the calculation

or generated and deployed separately via endpoints following in the Figure 2.5.

In addition, all previously created SR-Policies can be queried with filter options, e.g. based on the green

Green Routing Bachelor Thesis

21

route or the id. A separate deletion of the SR-Policy only is also possible, which subsequently triggers the

deprovisioning on the routers in the background.

Figure 2.5: Endpoint SR-Policies [10]

The Jalapeño endpoints offer a simple method for getting a list of all nodes, links, node-edges, prefixes or

srv6-sids from the network that is connected. All data is obtained through JAGW, except for the prefixes,

which have to be fetched directly from the Jalapeño database because JAGW does not provide them. A

fresh synchronization of the topology data on demand can also be requested. Additionally, by supplying the

name of the desired node, different telemetry data for that node can be requested.

Green Routing Bachelor Thesis

22

Figure 2.6: Endpoint jalapeno [10]

The node endpoint is used for statistical analysis and gives the consumer access to a history table of the

calculated power consumptions and synced data throughputs over time.

In this project, nodes can now be deleted to simulate a network change. Though this is only possible in the

mocked data mode of the Green SR app. The delete request is otherwise rejected by the API.

Figure 2.7: Endpoint nodes [10]

2.2.1.1 Architecture

The architecture we created was influenced by the two key factors defined in the term project. Building a

cloud-native application was a prerequisite and choosing to use the domain driven design paradigm was

another.

Green Routing Bachelor Thesis

23

The application has to be created using the Twelve-Factors methodology in order to be able to deploy it to

the INS's Kubernetes cluster. [22] Due to this, it was decided to simply store the topology in the database in

order to save complexity and avoid having to use a cache. Essentially, this means that all instances of the

application share the same data without synchronization.

Compared to the term project, nothing was changed in the architecture, since the Domain Driven Design

approach had proven itself and a change would have taken up unnecessary time.

The DDD approach also helped to maintain a clean project structure and to present the business logic in a

comprehensible way. The separation of layers could be consistently maintained and helps the now again

significantly grown software to remain maintainable.

Furthermore, the use of transfer objects and entities to define both the data sources and the database at

the same time has proven itself to the end.

The repository layer is still completely replaceable in case of a future switch to another database service.

The strategy of consistent layer separation and DDD has yet again proven itself here.

Furthermore, no changes were made to the architecture compared to the base project.

2.2.2 Calculation

Since it is part of the business logic, the greenest route is calculated in the service package. There is no

need to sync the topology data on each request anymore since we have implemented a way to perform live

updates via a subscription to network changes. This saves a lot of resources for the calculation and

therefore the calculation itself also becomes much more performant, especially for very large networks.

2.2.3 Testing

Our project required a significant amount of testing, particularly automated integration tests. As already

defined in the term project, we decided against test-driven development and kept that choice for this

project.

We were again able to mock the repository layer as well as the service layer component for all new

introduced code. As a result, we were able to achieve a test coverage of more than 80%, which is an

improvement of around 15% in comparison to the term project.

2.2.4 Frontend

The frontend was implemented in the TypeScript programming language using the React framework,

supported by the Material UI framework. Material UI, also called MUI, provides a grid layout system,

prebuilt CSS classes and components that facilitate frontend development. The graphical user interface

consists of several components, each of which has a specific task. The heart of it is the component

displaying the network graph and routes. This component was implemented utilizing Sigma.js, with

underlying the graphology library. Graphology handles the graph data model and the algorithms. Sigma.js

itself takes care of the graph rendering and interactions. To be able to use Sigma.js better in a React

environment, the library react-sigma v2 was used, which already provides various React components,

hooks and contexts for the use of Sigma.js. [23, 24]

For all http requests the library Axios is used, which also handles all error handling based on the http status

codes. Axios is a promise-based HTTP client for both the browser and Node.js. [25]

Green Routing Bachelor Thesis

24

To compare the routes optimally, a combined view was implemented in which both paths can be

superimposed. However, it is optionally possible to display the greenest and fastest route in a separate

graph and compare them this way.

Figure 2.8 shows the complete frontend with the highlighted calculated green and fastest routes. The two

buttons at the top can be used to request new routes. The 3 outlined buttons below are (from left to right)

the button to switch from the combined to the single view of the routes, the button to open the pop-up to

adjust the green metric activation status and on the far right a button to display a guide for the colors in the

graph. At the bottom of the screen is the centerpiece: The network graph with the selected routes. In the

upper right corner of the network graph, you can search for nodes and in the lower right corner there are

additional options to customize the graph (e.g. full screen mode or changing the display algorithm).

Figure 2.8: Green SR-App frontend [10]

Green Routing Bachelor Thesis

25

To analyze the nodes with their connections more easily, you can hover over a node to highlight the

surrounding links and nodes, as shown in Figure 2.9.

Figure 2.9: Green SR-App frontend – hovering over node [10]

Green Routing Bachelor Thesis

26

3. Conclusion

In this chapter, we go over each use case and describe whether or not it was achieved and why. A blue

color identifies the mandatory use cases. Additionally, the optional use cases are identified by a brown

color .

3.1 Requirements revisited

UC01: CRUD greenest route

“As a User, I can get the greenest route over an API, so that I can lower my energy consumption.”

This use case is fully satisfied. The user can calculate a new green route and retrieve or delete

already calculated routes. No HTTP request matching the update in CRUD, since this is achieved by

creating a new calculation with the same ingress and egress node, which subsequently updates

the green route.

It is also possible to trigger a network data synchronization with Jalapeño API Gateway. In normal

circumstances, however, this is not necessary because the network data is updated continuously

via the subscription service.

UC02: Calculate paths

“The Green SR-App can calculate the greenest (most energy efficient) route through a network.”

This use case was already completed during the term project. Nevertheless, in this bachelor thesis,

the underlying algorithm was replaced by Yen's k-shortest path algorithm, so that the requirement

for calculating one or multiple routes at once can be met. In a network with 1000 nodes and many

more links in between, the calculation finds a path in less than one second on average. A more

than double as fast handling for calculation was achieved compared to the term project, since no

full network synchronization has to be completed in advance. Only the telemetry data is

synchronized before each request, since all other data is updated continuously via JAGW

subscriptions.

UC03: Define stable route

“As a User, I expect that the calculated most efficient path stays stable for the duration I define.”

This use case was completed. As in the term project, a time period can be specified over which the

telemetry data is obtained for which the average is calculated. Furthermore, the user can define

an interval in which the calculated green routes should be renewed, including the subsequent

automatic deployment in the network. The data required for the calculation is obtained

continuously and only the only operation performed each time the interval elapses is to

recalculate the path.

Green Routing Bachelor Thesis

27

UC04: Define green index

“As a User, I want to combine different metrics to a green index, which can be used to calculate the

greenest path(s).”

This use case was also successfully completed. An unlimited number of metrics can be entered in

the system and activated or deactivated at runtime depending on the requirements. For each

calculation, the activated green metrics are either synchronized (telemetry data) or taken from a

manually created data set, which is normalized and individually weighed to a total value. The

telemetry-based metrics are automatically synchronized from JAGW while manually supplied data

sets are auto-generated and then saved in the database. Currently, four such green metrics are

used in the application. Extending the application with manual metrics is made easy for the

operator.

UC05: Get structured data

“The algorithm needs the necessary fields from the Jalapeño API Gateway to calculate the most

efficient route.”

Since UC02 would not have been possible without this use case, this one is implicitly fulfilled. The

entire topology data may be synchronized on demand or via the live subscription, with the results

being stored in a database. The synchronization runs entirely through JAWG, except for the

information for the prefixes, which is obtained directly from ArangoDB from Jalapeño. To meet

the use case’s requirements, the latest telemetry data is completely synchronized before every

green route calculation to have the latest available data ready for calculations.

UC06: Deploy SR-TE Policy

“As a User, I can deploy the generated SR-TE Policy on the routers to steer traffic according to

the defined rules.”

UC2 was fully met, but not entirely as planned. With each calculation, the SR policy is

automatically generated and then the network is configured for the green route. These steps can

also be disabled via a request of the calculation and then triggered manually. After configuration,

the network uses the new green route. The configuration is correct on the ingress and the egress

router, but it could not be tested whether this route is indeed being used now.

Unfortunately, it was not possible to configure the routers as planned with the help of Yang

Models via gRPC, as already outlined previously. Instead, the router configuration is done with

direct commands to the router via SSH.

Green Routing Bachelor Thesis

28

UC07: View routes

“As a User, I want a simple web interface to see the chosen path(s) and be able to

recalculate the routes.”

UC07 is fully completed. A frontend has been realized, which pulls data from the backend to

dynamically display the complete network graph. Green routes can be requested via the frontend

and are subsequently highlighted in the displayed network graph. All previously created green

routes can be selected via a dropdown.

Additionally, it is possible to display the green metrics and adjust their activation status.

UC08: Compare scenarios

“As a User, I want to demonstrate the power savings of the greenest route(s) compared to

the fastest route(s).”

This use case has been completed. In addition to calculating green routes, it is also possible to

calculate fastest routes via the frontend. They are used to compare traditional routes with the

new green routes as well as to demonstrate the possibilities of segment routing. For the

highlighted routes, the green scores and IGP link metrics per node are displayed to give the user

an idea of how the routes perform in general. In addition, the total and cumulative values for both

routes are displayed in the dropdown selection.

UC09: Gather statistics

“As a User, I want historical statistics to understand the system and how it behaves.”

This additional use case was completed. The application keeps track of each node's calculated

metrics after each calculation. Additionally, each synchronization stores an entry in the history

with the power consumption and data throughput values from each node. This makes it possible

to track how this metrics changes over time.

3.2 Learnings

In this chapter, we outline our experiences and discuss the things we would change if we could go back in

time.

In order to develop more efficiently and not to reach a dead end in the implementation, it would be better

in the future if the functionality of the JAGW is tested more extensively in the elaboration phase. In many

cases, strategies for implementation had to be adapted because the API gateway unexpectedly returned

errors, of which some were more serious.

In general, the bachelor thesis taught us once again that software parallelization is a double-edged sword.

Always parallelizing everything as much as possible does not necessarily mean that it is the best solution. It

is always important to validate which parallelization factor is optimal. In addition, a second very important

Green Routing Bachelor Thesis

29

point is to use fully synchronized data structures where needed to avoid data inconsistencies, which are

usually very difficult to detect and analyze. Fortunately, Go natively offers a very good parallelization

capability and provides the necessary synchronized data types.

As both team members are used to invest a lot in the quality of a software application, it was still

sometimes difficult for us to focus more on new features rather than further improving the quality of the

existing ones. This held us back from time to time and slowed down development to some extent. In the

end, however, we think that we have found a healthy balance between introducing new features and the

enhancement of quality.

In addition to the learnings mentioned, it is noticeable that we as a team have previously learned a lot from

the term project, which is why there were basically no further measurable learnings.

3.3 Next steps

In this chapter, we'll go through the aspects of the implementation that could be improved. In the forecast,

we'll look at the features we wish to add or improve upon, as well as provide some insight into the long-

term plans.

3.3.1 Improvements

There is still a modest number of things to improve in the application. Some are dependent on external

Services and cannot be fixed in the application itself. Others require a refactoring or rethinking of the code

structure, for which there was not enough time during the project.

Jalapeño API Gateway / Jalapeño

One external task is to implement the subscription service of JAGW not only for nodes and links, but also

for the important node edges needed to link the other two collections. For now, it is only possible to get

this data on demand.

The data received from JAGW is not acceptable in its original form. Various keys and IDs do not match and

there are many inconsistencies, which makes everything more complex. This led to the consideration of

many special cases only to handle the data inconsistencies. If these problems were fixed at the source, a lot

of logic could be omitted in the application.

Currently, if the application runs in the subscription mode, the connection is terminated after five minutes

by JAWG. This, in its current form, is not an acceptable behavior. There is no easy to implement and

maintainable way through which this problem can be fixed on the client side.

In the current release the application directly accesses the ArangoDB in Jalapeño to get data from the

l3vpn_v4_prefix table. It would be much cleaner if this table would also be included into JAGW and

therefore be accessible via its subscription/request service.

When the application requests all active nodes from the request service, it receives not only the existing

nodes but also the deleted ones. This is another case where a special handling had to be included to handle

this scenario.

Green Routing Bachelor Thesis

30

Network configuration

A second part which needs a change from outside of the application is the fact that the newest yang

models for traffic engineering lack the SRv6 capabilities and only offer MPLS. As long as this field is missing

it is not possible to improve the network configuration. It would be cleaner if the whole configuration

process could be handled per gRPC and the Yang models. This way one could generate the data structure

for Go and would have established processes. This would implicitly improve the time to configurate the

devices massively since only one message with alle the information would have to be sent, instead of the

multiple SSH commands which need to wait for a response from the router.

Router changes handling

In the current version, SR-Policies are deployed to the network, but changes cannot be acted upon because

the Green SR-App does not receive any information about them. If, for example, a configuration is adjusted

manually on a router, the backend does not know this change and therefore has an inconsistent status in

relation to the connected network.

In addition, configured green routes can be deprovisioned, but the router loses the configuration where it

should route traffic for the deleted path. Here it would be necessary to save a backup of the current path

routing settings before provisioning the green routes, so that this can be restored when deprovisioning.

Multiple paths

Right now, it is possible to calculate multiple best paths. But the new won possibilities are not yet used.

One potential future use case would be to take the next best path in case the currently used path goes

down, e.g. because a node has gone offline. This way there would be a smooth transition without the need

of calculating a new path.

Strict separation of service and repository layer

Over the whole development time, the line between service layer and repository layer has become very

blurry for some services. For longevity it would be beneficial to prune the service packages of repository

tasks and the repository packages of service tasks. In the same step it would also be useful if all services

had the same processes for the same tasks with a set of standardized functions in each service who have

the same responsibilities. Only those standard functions would be allowed to access the repository layer.

3.3.2 Innovations

There are not only possible improvements but also new ideas which could be employed to improve the

user experience even more.

The first step would be to increase the number of metrics available to the calculation. Possible candidates

can be seen in Table 2.1. With a broader spectrum of metrics, it is possible to create a better balanced

environment for the green operators and punish the bad ones more. So the result in the end will be even

more accurate.

One upgrade would be to analyze the paths for equally green paths with different routes. If some sections

could be parallelized it would spread the traffic over multiple nodes and implicitly also increase stability by

preventing new calculations in case a node goes down.

Green Routing Bachelor Thesis

31

To give the user a better understanding what routes are currently deployed on the network it would be a

good feature to read the traffic engineering configuration from router. This way the application could

provide information for each router on the frontend, including their configured routes as well as some

other statistics such as the values of the metrics used in the calculation.

Another feature on the frontend would be the possibility to display certain statistics. For example, a graph

plotting the power consumption of certain nodes, green routes or the whole network over the last 24

hours, the last week, and the last month. The same could also be done for the throughput in absolute

values as well as in percent of their max capacity. This way the user can get a better understanding on the

behavior of the network and where to potentially achieve the biggest improvements.

Green Routing Bachelor Thesis

32

List of Figures

FIGURE A.1: NETWORK WITH GREEN ROUTE COMPARED TO FASTEST ROUTE [1] ... III

FIGURE A.2: VIEW OF TOPOLOGY WITH HIGHLIGHTED PATHS IN THE FRONTEND [1] ... IV

FIGURE 1.1: SRV6 SID [10] .. 6

FIGURE 1.2: SEGMENT ROUTING HEADER [11] .. 7

FIGURE 1.3: EXAMPLE SEGMENT ROUTING SRV6 [10] ... 8

FIGURE 1.4: EXAMPLE SR-POLICY [10] .. 9

FIGURE 1.5: EXAMPLE EXPLICIT PATH [10] ... 9

FIGURE 1.6: PUE MEASUREMENT POINTS OF GOOGLE [13] .. 11

FIGURE 1.7: PUE FORMULA OF GOOGLE [13] ... 11

FIGURE 1.8: ARCHITECTURE JALAPEÑO [16] ... 12

FIGURE 1.9: ARCHITECTURE JALAPEÑO API GATEWAY AND JALAPEÑO [16] ... 13

FIGURE 2.1: ENDPOINT BASE [10] ... 19

FIGURE 2.2: ENDPOINT GREEN-METRICS-TYPES [10] ... 20

FIGURE 2.3: ENDPOINT GREEN-ROUTES [10].. 20

FIGURE 2.4: ENDPOINT FASTEST-ROUTES [10] ... 20

FIGURE 2.5: ENDPOINT SR-POLICIES [10] ... 21

FIGURE 2.6: ENDPOINT JALAPENO [10] .. 22

FIGURE 2.7: ENDPOINT NODES [10] ... 22

FIGURE 2.8: GREEN SR-APP FRONTEND [10] .. 24

FIGURE 2.9: GREEN SR-APP FRONTEND – HOVERING OVER NODE [10] ... 25

List of Tables

TABLE 2.1: GREEN METRICS FOR THE GREEN INDEX [20] ... 17

Green Routing Bachelor Thesis

33

Glossary

ArangoDB ArangoDB is a free and native open-source database system with multiple

models. It supports three data models (key/value, documents, and graphs) with

a database core and a unified query language called AQL (ArangoDB Query

Language).

Data transfer object A data transfer object (DTO) is an object that carries data between processes

and application layers.

Domain driven design Domain driven design is an approach to modelling complex software. The

modelling of the software is significantly influenced by the technicalities to be

implemented in the application domain.

Envoy Proxy Envoy is an open-source edge and service proxy, designed for cloud-native

applications.

Gin Gin Web Framework is an API framework for Go.

GoBMP Is basically an implementation of Open BMP (RFC 7854) protocol's collector in

Golang.

Green index The green index contains all green scores and ranks all routers by their

ecological aspects. It is the measurement data basis for the green route

calculation.

Green score A green score is a numeric value between 1 and 100, where 1 is better and 100

worse in sense of how ecological something is. It is merged by multiple metrics

which measure ecological aspects.

gRPC gRPC is a modern open-source high performance Remote Procedure Call (RPC)

framework that can run in different environments. It can efficiently connect

services for multiple purposes.

Helm Helm charts help define, install, and upgrade Kubernetes applications and is

basically a package manager for Kubernetes.

IGP link metric Interior Gateway Protocol link metric is an edge/path cost value for a link from

one node to another.

Interior Gateway

Protocol

An autonomic system's internal network information exchange protocol type.

Jalapeño System developed by Cisco, which collects and processes data from attached

networks, including telemetry data.

Kafka Kafka, developed by Apache, is an open-source distributed event streaming

platform used for high-performance data pipelines, streaming analytics, data

integration, and mission-critical applications.

Green Routing Bachelor Thesis

34

Kubernetes Kubernetes is a portable, extensible, open-source platform for managing

containerized workloads and services, that facilitates both declarative

configuration and automation.

Metric A standard of measurement.

OpenAPI specification Defines a standard interface to RESTful APIs for both humans and computers

React React is a JavaScript software library that provides a basic framework for

outputting user interface components of web pages.

Redis Is an open source, in-memory data structure store, used as a database, cache

and message broker.

Request for comments Request for comments documents contain technical specifications and

organizational notes for the Internet. RFCs produced by the Internet

Engineering Task Force (IETF) cover many aspects of computer networking.

Yen’s k-shortest path The shortest routes between two nodes are calculated using Yen's Shortest

Path technique. The algorithm supports weighted graphs with positive

relationship weights.

Green Routing Bachelor Thesis

35

Acronyms

DDD Domain driven design

Glossary: Domain driven design

DTO Data transfer object

Glossary: Data transfer object

Go Golang

Glossary: Golang

IETF Internet Engineering Task Force

IGP Interior Gateway Protocol

Glossary: Interior Gateway Protocol

INS Institute for Networked Solutions at the Eastern Switzerland University of Applied Sciences

JAGW Jalapeño API Gateway developed by the INS

MPLS Multi-Protocol Label Switching

RFC Request for comments

Glossary: Request for comments

SID Segment ID

SR Segment Routing

SR-App Segment Routing Application

SRv6 Segment Routing with IPv6 Addresses

Green Routing Bachelor Thesis

36

References

[1] J. Hauser and P. Schlumpf, “Term project Green Routing: Autumn Term 2021,” Term project, Institute

for network solutions, OST – University of Applied Sciences, Rapperswil, 2021.

[2] F. Dabaghi, Z. Movahedi, and R. Langar, “A survey on green routing protocols using sleep-scheduling in

wired networks,” Journal of Network and Computer Applications, vol. 77, pp. 106–122, 2017, doi:

10.1016/j.jnca.2016.10.005.

[3] K. S. Ghuman and A. Nayak, “Per-packet based energy aware segment routing approach for Data

Center Networks with SDN,” in 2017 24th International Conference on Telecommunications (ICT),

Limassol, Cyprus, 2017, pp. 1–6.

[4] B. Balakiruthiga, P. Deepalakshmi, S. N. Mohanty, D. Gupta, P. Pavan Kumar, and K. Shankar, “Segment

routing based energy aware routing for software defined data center,” Cognitive Systems Research,

vol. 64, pp. 146–163, 2020, doi: 10.1016/j.cogsys.2020.08.009.

[5] R. Carpa, O. Gluck, and L. Lefevre, “Segment routing based traffic engineering for energy efficient

backbone networks,” in 2014 IEEE International Conference on Advanced Networks and

Telecommuncations Systems (ANTS), New Delhi, India, 2014, pp. 1–6.

[6] S.-K. Jo, “TOWARD A GREENER INTERNET - Design and evaluation of green IP and content routing for

sustainable communication networks,” UNSPECIFIED, 2021.

[7] Segment Routing Architecture, IETF RFC8402, Internet Engineering Task Force (IETF). [Online].

Available: https://datatracker.ietf.org/doc/html/rfc8402

[8] Segment Routing over IPv6 (SRv6) Network Programming, IETF RFC8986, Internet Engineering Task

Force (IETF). [Online]. Available: https: //datatracker.ietf.org/doc/html/rfc8986

[9] Segment Routing Policy Architecture draft-ietf-spring-segment-routing-policy-22, Internet Engineering

Task Force (IETF). [Online]. Available: https://datatracker.ietf.org/doc/html/draft-ietf-spring-segment-

routing-policy-22

[10] J. Hauser and P. Schlumpf, “Bachelor thesis Green Routing: Spring Term 2021,” Bachelor thesis,

Institute for network solutions, OST – University of Applied Sciences, Rapperswil, 2022.

[11] IPv6 Segment Routing Header (SRH), IETF RFC8754. [Online]. Available: https://datatracker.ietf.

org/doc/html/rfc8754

[12] YangModels, YangModels. [Online]. Available: https://github.com/YangModels/yang (accessed: Dec.

21 2021).

[13] Google, Efficiency. [Online]. Available: https://www.google.com/about/datacenters/efficiency/

#measuring-efficiency

[14] E. Watkins, Carbon usage effectiveness (CUE). [Online]. Available: https://www.techtarget.com/

searchdatacenter/definition/carbon-usage-effectiveness-CUE

[15] R. Miller, Data Center Water Use Moves to the Forefront. [Online]. Available: https://

www.datacenterknowledge.com/archives/2012/08/14/data-center-water-use-moves-to-center-stage

[16] M. Bongard, Jalapeño API Gateway: A simple, light-weight, cloud-native API Gateway for Jalapeño.

[Online]. Available: https://jalapeno-api-gateway.github.io/jagw-docs (accessed: Dec. 21 2022).

[17] Global e-Sustainability Initiative, Smart 2020: Enabling the low carbon economy in the information

age. [Online]. Available: https://gesi.org/research/download/7 (accessed: Jun. 22 2022).

[18] Cisco SP Routing Team, Optimize Power Consumption. [Online]. Available: https://xrdocs.io/asr9k/

blogs/2018-09-06-power (accessed: Dec. 21 2021).

Green Routing Bachelor Thesis

37

[19] The Green Grid, PUE: A COMPREHENSIVE EXAMINATION OF THE METRIC. [Online]. Available: https://

www.thegreengrid.org/en/resources/library-and-tools/20-PUE:-A-Comprehensive-Examination-of-

the-Metric

[20] U. Weibel, Ökologie von Swisscom Rechenzentren. Interview mit einem Swisscom Mitarbeiter. Online.

[21] Gin Team, Gin Web Framework. [Online]. Available: https://gin-gonic.com/ (accessed: Jun. 22 2022).

[22] A. Wiggins, The Twelve-Factor App. [Online]. Available: https://12factor.net/ (accessed: Sep. 29 2021).

[23] OuestWare, React Sigma: A list of react components to display graph with sigma.js. [Online]. Available:

https://sim51.github.io/react-sigma/ (accessed: Jun. 23 2022).

[24] Sciences-Po médialab and OuestWare, Sigma.js: a JavaScript library aimed at visualizing graphs of

thousands of nodes and edges. [Online]. Available: https://www.sigmajs.org/ (accessed: Jun. 23 2022).

[25] M. Zabriskie, Axios: Promise based HTTP client for the browser and node.js. [Online]. Available: https://

axios-http.com/ (accessed: Jun. 23 2022).

Green Routing Bachelor Thesis

38

B. Project Documentation

Change history

Version Date Changes Responsible

1.0 06.03.2022 Finished initial project plan (chapter 2) Jonas H. and Pascal S.

1.1 13.03.2022 Finished requirements specification (chapter 1)

and make small construction milestones changes in

the project plan.

Jonas H. and Pascal S.

1.2 20.03.2022 Finished development concept and most parts of

architecture and design specifications.

Jonas H. and Pascal S.

1.3 29.03.2022 Revalidated and updated risks and risk graph. Risk

Ri10, Ri12 and Ri4 are considered as occurred.

Pascal S.

1.4 17.04.2022 Risks Ri9 have been eliminated or can no longer

occur.

Jonas H.

1.5 02.05.2022 Risk Ri1 is considered as occurred. Jonas H.

1.6 17.05.2022 Updated timetable, milestone dates and important

dates due to project end postponement.

Jonas H.

1.7 21.06.2022 Update development concept, backend

architecture, Domain Model and 12-Factor

Methodology.

Create API documentation, entity relationship

diagram, SonarQube quality gate status parts and

small other parts.

Jonas H. and Pascal S.

1.8 22.06.2022 Final small changes due to proofreading. Jonas H. and Pascal S.

Green Routing Bachelor Thesis

39

Contents

1. Requirement specification ... 43

1.1 Use Cases ... 43

1.1.1 Actors ... 43

1.1.2 Use Case diagram ... 44

1.1.3 Use Case description .. 44

1.2 Product Backlog ... 51

1.3 Non-Functional Requirements ... 51

1.3.1 Functionality... 51

1.3.2 Usability .. 52

1.3.3 Reliability .. 52

1.3.4 Performance ... 52

1.3.5 Scalability ... 52

1.3.6 Maintainability ... 53

2. Project Management ... 54

2.1 Used Methods .. 54

2.2 Organization ... 54

2.2.1 Project internal... 54

2.2.2 Stakeholders ... 54

2.3 Scheduling .. 55

2.3.1 Important dates ... 55

2.3.2 Iterations / Sprints ... 55

2.3.3 Estimation and time spent ... 56

2.3.4 Timetable ... 57

2.4 Milestones .. 58

2.5 Responsibilities .. 60

2.6 Meetings .. 60

2.6.1 Scrum ceremonies .. 60

2.6.2 Weekly exchange ... 61

2.7 Risk management ... 61

2.7.1 Risk overview ... 63

2.7.2 Dealing with risks ... 63

2.7.3 Occurred risks .. 66

Green Routing Bachelor Thesis

40

2.8 Tooling .. 67

2.9 Meeting minutes .. 67

3. Development ... 68

3.1 Version Management ... 68

3.1.1 Main branches.. 68

3.1.2 Supporting branches .. 68

3.2 Principles .. 69

3.3 Quality .. 69

3.3.1 Definition of Done .. 69

3.3.2 Code Reviews ... 70

3.3.3 Testing .. 70

3.3.4 Static code analysis .. 70

3.3.5 Coding conventions .. 72

3.3.6 Continuous Integration and Deployment .. 73

3.4 Error Handling .. 74

3.4.1 Input validation and output sanitization.. 74

3.4.2 HTTP status .. 74

3.4.3 Logging ... 74

3.5 Development Tools .. 74

4. Domain analysis ... 76

4.1 Domain Model diagram ... 76

4.2 Domain Model explanation.. 76

4.2.1 Node ... 76

4.2.2 VRF ... 76

4.2.3 L3VPNv4Prefix .. 77

4.2.4 NodePowerConsumption ... 77

4.2.5 NodeDataThroughput .. 77

4.2.6 Segment ... 77

4.2.7 LogicalLink .. 77

4.2.8 GreenRoute .. 77

4.2.9 GreenRouteMetric ... 77

4.2.10 SRPolicy .. 77

4.2.11 Network.. 78

Green Routing Bachelor Thesis

41

5. Architecture and design specification ... 79

5.1 System overview .. 79

5.1.1 Jalapeño API Gateway .. 80

5.1.2 Jalapeño ... 80

5.1.3 Network.. 80

5.1.4 Frontend ... 80

5.1.5 Backend .. 81

5.1.6 Database .. 81

5.2 Twelve-factor app methodology .. 81

5.2.1 Codebase .. 81

5.2.2 Dependencies ... 81

5.2.3 Config ... 82

5.2.4 Backing services ... 82

5.2.5 Build, release, run .. 82

5.2.6 Processes .. 83

5.2.7 Port binding .. 83

5.2.8 Concurrency ... 83

5.2.9 Disposability ... 83

5.2.10 Dev/prod parity .. 84

5.2.11 Logs .. 84

5.2.12 Admin processes .. 84

5.3 Technologies .. 85

5.3.1 Frontend ... 85

5.3.2 Backend .. 85

5.3.3 Programming Language ... 86

5.3.4 Web Framework ... 86

5.3.5 Storage ... 86

5.3.6 Development support .. 86

5.4 Backend Architecture ... 87

5.4.1 Backend .. 88

5.4.2 Internal Database ... 90

5.4.3 Jalapeño ... 90

5.5 REST API ... 90

5.5.1 API responses ... 90

Green Routing Bachelor Thesis

42

5.6 Entity relationship diagram .. 92

5.7 Infrastructure ... 93

5.7.1 INS virtual Lab .. 93

Green Routing Bachelor Thesis

43

1. Requirement specification

1.1 Use Cases

This chapter covers the requirement specification defined during the project's inception and early

elaboration phases. The functional requirements were defined in the form of use cases and user stories.

Non-functional requirements are addressed further in the chapter.

We divided the use cases and user stories into mandatory and additional ones.

The purple color marks the use cases which are expected to be developed.

The pink color marks the additional use cases.

1.1.1 Actors

In Table 1.1: Use case actors we listed all the different actors and their role in the context of our

application. An actor can be a human or an additional software system which interacts with the system.

Actor Description

User A user can read, start new calculations and deploy new SR-TE policies. It is

assumed that the user is already authorized for access since they are on a

secure network.

Jalapeño API Gateway The API Gateway is the provider of parts of the data the application needs. It

can notify the subscribed services whenever the topology has changed.

Jalapeño Jalapeño is the data collector system from the network and used by the API

Gateway as data source.

Table 1.1: Use case actors

Green Routing Bachelor Thesis

44

1.1.2 Use Case diagram

The use case diagram in Figure 1.1: Use case diagram [1] gives an overview over the relation between the

different use cases. An include indicates, that a previous use case must be fulfilled before the next use case

can be accomplished. Whereas an extend indicates an optional extension of the existing use case, whereby

the latter doesn’t depend on the extension to perform its task.

Figure 1.1: Use case diagram [1]

1.1.3 Use Case description

We will keep the format of our project thesis in which we specified a user story for each use case. The user

stories follow the Connextra template, stated below.

"As a <role> I can <capability>, so that <receive benefit>"

Whereas the "so that" clause is optional and is only included if it adds value. By adhering to the template,

all user stories follow the same pattern and provide a fast overview in an easy-to-read format.

We chose to use fully dressed use cases according to Larman for the more complex use cases. [2] This style

was also taught at the Eastern Swiss University of Applied Sciences. We only used the fields that we

considered to provide a benefit. We excluded the following fields from Larman's description: Scope, Level,

Success Guarantee, Special Requirements, Technology and Data Variations List, and Miscellaneous.

Green Routing Bachelor Thesis

45

The list numbering in the extensions sections always refers to the corresponding identifier of respective

step in the Main Success Scenario.

UC01: CRUD greenest route

“As a User, I can get the greenest route over an API, so that I can lower my energy consumption.”

Primary Actor User

Overview The User can access the Green SR-App over an API and request the

greenest route by providing the ingress and egress node.

Stakeholders and Interests The User wants an easy access over an API.

Preconditions The Jalapeño API Gateway is delivering necessary source data.

Main Success Scenario Create:

1. The User wants to create a new green route.

2. The User starts a new path calculation (detailed covered in

UC02).

3. One or more green route(s) have been created.

Read:

1. The User wants to access the available green routes.

2. The User performs a HTTP GET request with optional

parameters.

3. The User receives a JSON list with one, multiple or all green

routes.

Update:

1. The User wants to update a current green route.

2. The User starts a new path calculation the same way as in the

Create scenario.

Delete:

1. The User wants to delete a green route.

2. The User performs a HTTP DELETE request with the id of the

green route to be deleted.

3. The User receives a success response.

For more details in general consult the API specification.

Extensions Read:

1a. The User wants to access one specific green route.

2a. The User performs a HTTP GET request with a parameter which

does not exist or could not be found.

Green Routing Bachelor Thesis

46

Table 1.2: UC01 CRUD greenest route – Fully dressed use case

UC02: Calculate paths

“The Green SR-App can calculate the greenest (most energy efficient) route through a network.”

Primary Actor User

Overview The path calculations take ingress and egress node as parameters and

calculate the most energy efficient path between those two nodes.

Stakeholders and Interests User wants to use the most energy efficient route.

Preconditions The Jalapeño API Gateway is delivering necessary source data.

Main Success Scenario 1. The two parameters ingress node and egress node have been

received.

2. Based on the k shortest paths algorithm, one or more greenest

paths are calculated.

3. If one or more paths have been found, they will be returned.

Extensions 1a. If one or both parameters do not exist, an error is returned.

3a. If multiple equivalent paths have been found, all equal paths

will be returned.

Frequency of Occurrence The user-specified frequency or else when the green route

regeneration interval time has been reached.

Table 1.3: UC02 Calculate paths – Fully dressed use case

UC3: Define stable route

“As a User, I expect that the calculated most efficient path stays stable for the duration I define.”

Primary Actor User

Overview The User can specify at which frequency the paths are recalculated.

The data is collected continuously but the paths will be calculated after

the specified time has passed.

3a. The User receives a meaningful error message.

Delete:

1a. The User wants to delete a green route which does not exists.

3a. The User receives a proper error message.

Frequency of Occurrence As often as required.

Green Routing Bachelor Thesis

47

Stakeholders and Interests The User relies on a certain stability of the routes. Additionally, if the

paths change frequently, the overhead for calculation of manually

triggering the recalculation will be too much.

Preconditions The frequency must be specified. The data must be ready for

consumption.

Main Success Scenario 1. After an event has been triggered the (re-)calculation of the

greenest path is executed.

2. The result is logged into a storage service.

3. If the specified interval has passed, or if the topology has

changed, the active path is updated.

Table 1.4: UC03 Define stable route – Fully dressed use case

UC04: Define green index

“As a User, I want to combine different metrics to a green index, which can be used to calculate the

greenest path(s).”

Primary Actor User

Overview Before the greenest path can be calculated, it is necessary to choose

the metrics, which should to be considered in the calculation. The so-

called green index can now be composed by including those metrics.

Stakeholders and Interests The User wants to have a green index based on at least three different

metrics.

Preconditions The data for the metrics is available.

Main Success Scenario 1. The metrics to be used are set at least by environment

variables in the backend.

2. The selected metrics are considered in the next calculation of

the green index, which in turn will result in a single number

whereas a lower value is better.

Extensions 2a. One or more selected metrics have no data available and won’t

be considered in the calculation of the green index.

Table 1.5: UC04 Define green index – Fully dressed use case

UC05: Get structured data

“The algorithm needs the necessary fields from the Jalapeño API Gateway to calculate the most

efficient route.”

Primary Actor Jalapeño API Gateway and Jalapeño

Green Routing Bachelor Thesis

48

Overview Get all the metrics over the Jalapeño API Gateway to calculate the best

route.

Main Success Scenario All the data regarding the topology and the available router sensors

has been received by the Jalapeño API Gateway and the backend can

calculate a green index.

Frequency of Occurrence Topology: On demand or if the topology changes

Telemetry data: On each new green route calculation

Table 1.6: UC05 Get structured data – Fully dressed use case

UC06: Deploy SR-TE Policy

“As a User, I can deploy the generated SR-TE Policy on the routers to steer traffic according to

the defined rules.”

Primary Actor User

Overview The User can configure and deploy the generated segment list(s) from

UC02 to the ingress node to steer traffic along the greenest path.

Stakeholders and Interests With the deployment and the previous use cases the network traffic

saves energy by taking the greenest path.

Preconditions UC02 was successful.

Main Success Scenario 1. The result of UC02 is a segment list of all the instructions

required to follow the chosen path, which can be based on any

metric.

2. The corresponding Yang Model is populated with the necessary

data and is subsequently sent over gRPC to the ingress node.

3. The router receives the message and configures the policy to

route the packets according to the chosen path.

Frequency of Occurrence On every calculation of the path.

Table 1.7: UC07 Deploy SR-TE Policy – Fully dressed use case

UC07: View routes

“As a User, I want a simple web interface to see the chosen path(s) and be able to

recalculate the routes.”

Primary Actor User

Green Routing Bachelor Thesis

49

Overview A web interface for the User to calculate the path(s) and view the

ecological results. It displays the topology as well as the currently

configured path.

Stakeholders and Interests The User can present the possibilities of segment routing and the

potential reduction of carbon emissions. For potential customers it’s

also possible to illustrate that it is possible to configure multiple routes

for different groups of clients.

As an ISP you can provide a green route for your customers who want

to decrease their carbon footprint the same way as there are power

plans based on renewables only.

Preconditions All previous use cases are completed. The API is running, and the

connection is established.

Main Success Scenario 1. The User connects to the frontend and sees the topology.

2. The User selects the available options based on the

requirements and starts a calculation.

3. After the path has been configured, the now active path as

well as a climate score and other metrics of the current path

are displayed.

Table 1.8: UC07 View routes – Fully dressed use case

UC08: Compare scenarios

“As a User, I want to demonstrate the power savings of the greenest route(s) compared to

the fastest route(s).”

Primary Actor User

Overview The interface must provide the possibility to showcase different

scenarios by comparing e.g. the environmental impact of a green route

with the path with least delay. It should be possible to calculate the

green route as well as the fastest path in a network by clicking a

button.

Stakeholders and Interests By comparing different metrics the usefulness can be proven. If you

compare the greenest route with the fastest route and you can show a

significant difference in the climate impact, it is a viable product for

ISPs to incorporate into their portfolio.

Preconditions All previous use cases are completed. The API is running, and the

connection is established.

Main Success Scenario 1. All steps from the main success scenario in UC07.

2. The User pins the result of step 1.

Green Routing Bachelor Thesis

50

3. The calculation with different metrics is conducted.

4. The results of steps 1 and 3 can be compared with each other.

Table 1.9: UC08 Compare scenarios – Fully dressed use case

UC09: Gather statistics

“As a User, I want historical statistics to understand the system and how it behaves.”

Primary Actor User

Overview The User can generate reports based on the data the Green SR-App

gathers and produces. This enables the User to observe the change of

paths or how much power the system consumes at any point in time.

Stakeholders and Interests The User can make further research and decisions based on the results

of the reports.

Preconditions To draw a graph with the variety, the path calculation must have been

run a few times with realistic network data.

Main Success Scenario 1. Every time the greenest path is calculated, the result is stored

in the database.

2. The telemetry data is collected continuously. The service

reduces it to the relevant fields and enriches the data with

some calculated information before it is written to the

database or the caching service.

Frequency of Occurrence Every time a green route is calculated.

Table 1.10: UC09 Gather statistics – Fully dressed use case

Green Routing Bachelor Thesis

51

1.2 Product Backlog

Complementary to the use cases and NF requirements we use a product backlog which is ordered by

priority. In each sprint planning we consider the items with the highest priority first and work down the list

iteratively until we are either finished or run out of time.

Since the Green SR-App is primarily intended for demo purposes, we put our focus on new functionalities,

rather than achieving the highest quality.

ID and priority Description

1 Fully implement segments for SR into our SR-App.

1a Prerequisite: Update to Jalapeño API Gateway version 1.3.

2 Switch from Jalapeño API Gateway requests (on demand) to JAGW subscriptions (live),

through which our app receives notifications on topology changes.

2a Only load the topology on changes instead of synchronizing them with every

calculation.

3 Greenest path calculation algorithm version 2:

a) Have the possibility to calculate multiple equal paths.

b) Base the calculation on the watt per Mbit metric, instead of only the watt
metric.

c) Include at least three additional metrics into the path calculations.

4 Provide a graphical user interface to display the topology as well as the current path.

4a Include the possibility to compare the environmental impact of different scenarios

with different metrics and display the different routes taken.

5 Configure the network to steer the traffic along the calculated green route.

6 Deploy the application to the Kubernetes cluster from the INS.

7 Various optimizations of the current CI/CD pipeline.

Table 1.11: Product Backlog

1.3 Non-Functional Requirements

The non-functional requirements were defined according to the FURPS+ model. [3, pp. 56-57] The majority

of the requirements were taken from the project thesis with a few adjustments and extensions.

1.3.1 Functionality

Security

Since the program will not be reachable from the internet, it is protected by the private network's existing

security measures. There is no need to implement additional security measures.

Green Routing Bachelor Thesis

52

Interoperability

The Green SR-App must interact with the Jalapeño API Gateway, which delivers the data required for the

calculations. As long as the version upgrades do not imply any limitations, the most recent version will be

used. If such limitations are discovered, the previously used version will continue to be used for future

development and use. Additionally, the Green SR-App will configure the network to route the traffic along

the green path, which will be tested on the newest version of the IOS-XR software with version 7.5.1. This

enables us to use YANG models via gRPC to configure the router instead of using NETCONF or direct

commands over SSH.

1.3.2 Usability

Understandability

The user should understand how the path was calculated. This will be achieved with statistics over

the network and visual components in the web interface.

Operability

The system should behave in a predictable and secure way to prevent invalid configurations, which

could lead to a breakdown of the network.

1.3.3 Reliability

Availability

Since this product mainly will be for demo purposes, no special measures will be taken to ensure a high

availability. However, a big focus will be put on the fact that it should always run if it needs to run for demo

purposes.

Recoverability

The application should be developed with the Cloud Native Standard in mind, which includes a

simple redeployment, besides other guidelines, as described in chapter 5.2. [4]

1.3.4 Performance

Capacity

The application should be able to calculate paths in a network of up to 1000 nodes.

Time behavior

A new calculation of the greenest path should not take more than 10 seconds. This includes the

configuration of the network as well as displaying the new route in the frontend. This is important for demo

purposes, to prevent superfluous processing times while demonstrating the application to an audience.

1.3.5 Scalability

The backend should be scalable and agnostic to its hosting environment.

Green Routing Bachelor Thesis

53

1.3.6 Maintainability

Analyzability

It must be possible to change the log level of the application. If the log level is set to debug mode,

the application must write information about useful debugging events to the standard output.

Green Routing Bachelor Thesis

54

2. Project Management

In this chapter we elaborate our project management methods, the involved stakeholders, how we planned

our project time and which supporting tools we used. The milestones give a rough overview over our

planned objectives. Later in the chapter assess the risks which could hinder our progress and define our

mitigation methods and actions in the event of the hazard occurring.

2.1 Used Methods

The Rational Unified Process, shortly RUP, which is comprised of the four project phases: inception,

elaboration, construction, and transition, is utilized as the basis project management method for our

project.

The inception phase forms the start of the project and the definition of all project conditions. The first

rough research and decisions are made to work out the initial project plan.

During the elaboration phase additional research is done to define the basic concepts as well as the

software architecture and design.

The effective implementation takes place during the construction phase. The project begins to grow into a

real product size and all the necessary features are implemented.

Finally, during the last phase, the transition phase, the product is introduced and delivered. This also

includes the biggest part of writing this documentation.

We will also utilize Scrum with its iterations, especially due to the fact that during the construction phase

iterative deliverable results are to be achieved. At Eastern University of Applied Sciences, the combination

of RUP and Scrum is known as Scrum+, and it is intended to combine the benefits of the agile methods

provided by Scrum with the classic approach of individual phases and milestones to effectively plan and

execute the whole project.

2.2 Organization

The next two chapters list all team members and key stakeholders, including their contact information.

2.2.1 Project internal

Name Profession Email

Pascal Schlumpf Software Developer pascal.schlumpf@ost.ch

Jonas Hauser Software Developer jonas.hauser@ost.ch

Table 2.1: Project internal organization

2.2.2 Stakeholders

Name Position or function Email

Prof. Laurent Metzger Supervisor laurent.metzger@ost.ch

Julian Klaiber Co-Supervisor julian.klaiber@ost.ch

mailto:pascal.schlumpf@ost.ch
mailto:jonas.hauser@ost.ch
mailto:laurent.metzger@ost.ch
mailto:julian.klaiber@ost.ch

Green Routing Bachelor Thesis

55

Michel Bongard Co-Supervisor (until project week four)

Developer of the Jalapeño API Gateway

michel.bongard@ost.ch

Severin Dellsperger INS staff severin.dellsperger@ost.ch

Francois Clad Cisco Systems contact fclad@cisco.com

Table 2.2: Stakeholders

2.3 Scheduling

The bachelor thesis consists of twelve ECTS – an equivalent of 360 hours work time per person and thus

720 hours as total project time. By following the agile approach approximately the entire time is utilized.

Due to various vacations during the spring semester at OST, the semester lasts 16 weeks. For this project,

two additional weeks are intended, resulting in a total time budget of 18 project weeks.

During the first 17 weeks 20 hours per person will be spent for the project and, in the 18th week, twice as

much (40 hours), due to it being a block week intended to work on this thesis and to achieve the total

project time.

It is to be mentioned here that the duration during the project was extended by one week to compensate

for a two-week absence from a student due to illness.

2.3.1 Important dates

Date Definition

21. February 2022 Start of bachelor thesis and project kick-off

20. May 2022 Project interim presentation

13. June 2022 Deliver the abstract via the online tool

17. June 2022 Bachelor thesis exhibition at the OST

24. June 2022 End of bachelor thesis and project delivery

24. June 2022 Final presentation of bachelor thesis

Table 2.3: Important dates

2.3.2 Iterations / Sprints

For this project, two-week sprints are used, since reasonably large work packages are created this way and

positive experiences have been made with this in the term project. The exception to this is the block week,

in which twice as much work is done. The last sprint therefore only lasts one week.

Each sprint generally ends on the respective Sunday and the following one starts on Monday, unless the

team defines another exceptional timeslot due to absences or work limitations. All necessary Scrum

meetings are defined in chapter 2.6.

mailto:michel.bongard@ost.ch
mailto:severin.dellsperger@ost.ch
mailto:fclad@cisco.com

Green Routing Bachelor Thesis

56

2.3.3 Estimation and time spent

We estimate the workload for each work item and record it on the tickets in YouTrack during the sprint

planning. The estimate is first made in relative units in the form of common clothing sizes (e.g. M) and then

divided into absolute values by number of hours based on the time available for the sprint (e.g. 3 hours per

task).

The time spent on the tickets is recorded according to the categories on the timetable in chapter 2.3.4,

providing a clear picture of how many hours were spent on certain types of tasks.

Figure 2.1: YouTrack estimation and time spent [5]

A team member works ordinarily, between 16 and 24 hours per week, depending on the workload and

other factors which influence the weekly required effort.

Green Routing Bachelor Thesis

57

2.3.4 Timetable

Based on the project's characteristics, six categories of task types were defined. An approximate time estimate was made for each category to provide an

overview, which can then be tracked on YouTrack using the time booked. In addition, a ten percent buffer was included in each sprint to absorb project

volatility.

The defined milestones are explained in more detail in chapter 2.4.

Figure 2.2: Timetable [1]

Green Routing Bachelor Thesis

58

2.3.4.1 Project management time composition

The following time boxes for project management related meetings have been defined and must be strictly

followed under normal conditions.

Description Effort (hours) Total effort (hours)

Scrum ceremonies (meetings) 2.5 5

Meeting with supervisors 2 4

Additional meetings and administration 1.5 3

Total per sprint 6 12

Table 2.4: Project management time composition

2.4 Milestones

The seven milestones are defined in the following Table 2.5, along with the respective key objectives that

go with them. The milestones were defined during the inception phase, meaning there may still occur

changes based on the result of the requirements worked out up to M2 and the upcoming elaboration

phase. The upcoming alterations will be indicated in a change history at the beginning of the project

management section.

ID Date Title Objectives

M1 06. March 2022 End of Inception Definition of the initial project plan and the first

specification of the development concept.

All necessary tools for project management

(YouTrack, Microsoft Teams and OneNote) are set

up.

Creation of a documentation template with the

format and layout specifications as well as

predefined chapters that will be covered.

M2 13. March 2022 Requirements Finalization of requirements in the form of fully

dressed use cases as well as functional and non-

functional requirements.

In addition a use case diagram is constructed which

expands and builds up on the term project's use

cases.

Completion of the Product Backlog list with

prioritized work packages.

M3 20. March 2022 End of Elaboration Focus on research, decision making and first base

concepts on the following topics:

• Updating to the latest JAGW version

• Implementation of segments

• JAGW static requests to subscriptions

migration

• Definition of the green index v2

Green Routing Bachelor Thesis

59

• Conception for the most ecological path

calculation algorithm v2 implementation

• First PoC on how to present the results of

our backend in a meaningful and easy to

understand manner (intended for

demonstration purposes)

• Configuration of real network based on

greenest path calculations

And in addition, the ongoing continuation of this

documentation based on the newly gained

theoretical findings.

M4 17. April 2022 Features: Segments,

JAGW subscriptions

and algorithm v2

Based on the defined product backlog1 with work

packages sorted by priority (descending), the

highest prioritized ones are picked and must be

finished in a minimum beta version. This consists of

the following:

• Complete upgrading to the latest JAGW

version and updating all other application

dependencies

• Full implementation of the capability to

work with segments (segment routing)

• Change the JAGW requests to subscriptions

including a solution to live update and

maintain our data from the connected

network

• Implementation of the greenest path

calculation algorithm as a version 2 with

new metrics involved

• Optional: Optimization of our CI/CD

pipeline

• Optional: Deployment to our Server

(Kubernetes)

M5 22. May 2022 Features: Digital

presentation of

produced results and

configure network

The work items immediately following the highest

priority ones mentioned in M4 are defined as

objectives to reach a minimum beta state. This

consists of the following:

• Digital presentation of all produced results

in a meaningful and easy to understand

manner (intended for demonstration

purposes)

1 The product backlog is based on the requirements engineering in chapter 1

Green Routing Bachelor Thesis

60

• Possibility to configure the network to steer

the traffic along the calculated green route

• Capability to deploy the application to the

Kubernetes cluster from the INS

• Optional: Further steps for router telemetry

data mocker

M6 19. June 2022 Green SR-App v1

release

The previously developed beta features must be

worked out in detail so that they can be released as

finalized version. Besides, several maintenance

tasks and refactoring’s are necessary to make the

whole SR-App available as first full version v1.0.0.

M7 24. June 2022 Project delivery The primary objective is to finish the whole project

and deliver all necessary products. All

documentations must be completed and in a final

state.

Table 2.5: Project milestones

2.5 Responsibilities

Both students are equally empowered for this project from a general point of view and have contributed

equally much to the project. Medium and large decisions are made by consulting with the other party.

However, in order to increase efficiency and avoid work collisions or redundancies, everyone assumes

different areas of responsibility as listed in the next table.

Team member Responsibilities

Jonas Hauser
• Project management and meeting moderation

• Lead for development concept

• Web-API architecture and design

• DevOps and infrastructure

Pascal Schlumpf
• Requirements management

• Lead for research

• Mocking and testing

• Database design

Table 2.6: Team intern responsibilities

2.6 Meetings

Due to both students studying part-time besides working for other companies, the meetings will usually

take place online via Microsoft Teams.

2.6.1 Scrum ceremonies

The following ceremonies will be held on Sunday evenings according to the timetable to close a Sprint

(Sprint Review and Retrospective) and to start the next Sprint (Backlog Refinement and Sprint Planning).

Green Routing Bachelor Thesis

61

Scrum Event Sprint timing Timeboxing

Sprint Review End 0.75 hours

Sprint Retrospective End 0.25 hours

Backlog Refinement Start 0.25 hours

Sprint Planning Start 1.25 hours

Table 2.7: Scrum ceremonies

2.6.2 Weekly exchange

Together with the whole project team, including the stakeholders defined in chapter 2.2.2, everyone is

meeting weekly on Thursday at 10 a.m. to discuss the current work progress, clarify questions and discuss

challenges. There is always at least one supervisor or co-supervisor present as well as one student. The

industry partner is invited by the supervisor to join on demand to get insights and give feedback.

If necessary, additional meetings will be held with the INS staff on an individual basis.

2.7 Risk management

In this chapter, potential risks for the project are documented and classified. For each risk both preventive

and reactive actions are assessed. After each sprint, the risks are reassessed and, if required, reclassified or

removed if they have been eliminated completely.

The maximum damage potential is estimated based on the minimum resolution of half working days (four

hours) in order to achieve realistic values in relation to ordinary working times. The probability of

occurrence is classically estimated by percentages.

To reach the resulting weighted damage potential, the following calculation is performed for each risk and

then rounded up to the next natural number:

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑑𝑎𝑚𝑎𝑔𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝐷𝑎𝑚𝑎𝑔𝑒 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒

ID Description Damage

potential

Probability of

occurrence

Weighted damage

potential

Ri1 A student absence due to

illness or an accident.

40 hours 15 percent

30 percent

12 hours

Ri2 Connecting to the necessary

network components at the

INS or Swisscom Lab is not

possible.

60 hours 10 percent 6 hours

Ri3 The GitLab platform and or the

CI/CD runners from INS are not

or only partially available or

overloaded. This risk is based

16 hours 50 percent 8 hours

Green Routing Bachelor Thesis

62

on experiences made in the

term project.

Ri4 The Jalapeño API Gateway

from INS has unexpected bugs

or limited use of

functionalities.

20 hours 20 percent 4 hours

Ri5 It is not possible to configure a

network with ASR 9000 routers

as conceptualized in the

elaboration phase.

40 hours 30 percent 12 hours

Ri6 We cannot implement the

segment routing approach into

our SR-App as conceptualized

in the term project.

40 hours 10 percent 4 hours

Ri7 Throughput or other new

metrics cannot be included as

expected in the term project as

metric for the second version

of the greenest route

calculation algorithm.

40 hours 30 percent

10 percent

12 hours

4 hours

Ri8 The deployment to the

Kubernetes environment from

INS takes longer than

expected.

8 hours 20 percent 2 hours

Ri9 Bad project planning and

organization of the project.

40 hours 10 percent 4 hours

Ri10 One of Microsoft's

collaborative work products

(i.e. Word) has synchronization

issues, resulting in data loss.

8 hours 5 percent 1 hour

Ri11 The new IOS XR image for the

virtual lab will need a bigger

time investment as expected to

implement the router

configurations.

20 hours 20 percent 4 hours

Ri12 One or more JAGW collections

which are needed for the

algorithm are missing.

8 hours 75 percent 6 hours

Table 2.8: Risk definitions

Green Routing Bachelor Thesis

63

Adjustments after elaboration phase:

Ri7 Through extensive research during the elaboration phase, we gathered many possible metrics as

well as ways to implement them. Therefore, it was possible to reduce the probability of the risk.

Ri12 After the discovery of missing collections in the JAGW we added the new risk.

2.7.1 Risk overview

Figure 2.3: Risk overview [1]

2.7.2 Dealing with risks

As announced in the chapter introduction, for every risk some preventions and actions upon occurrence are

carefully chosen and will reduce each risk significantly.

ID Prevention Behavior upon occurrence

Ri1 The students always follow the measures to

prevent infection with the coronavirus

based on the current regulations in

Switzerland.

The hygienic actions are implemented in

the best viable way.

If a student is absent for a prolonged, interfering

time, the next steps for the project will be

discussed with the supervisors. Depending on the

length of the absence due to illness, the project

scope is shortened, or the time extended.

Ri2 The same tools as used in the term project

are used to connect to the according

network services. The tools have proven

We will always implement mocking layers for every

dependency outside the application. This allows us

to operate all the time, even in the event of an

Green Routing Bachelor Thesis

64

their usefulness.

Another measure is to use direct and

transparent communication channels to

both INS and Swisscom so that system

failures can be addressed quickly.

outage of required services (e.g. Swisscom Lab or

the virtual network of INS).

Ri3 The mentioned platforms will be used as

little as possible and replicated as close as

possible locally (e.g. CI/CD build and check

stages) to be less dependent.

Git is a decentralized version control

system, which means that the repositories

are always completely mirrored at the

individual nodes (including the personal

devices). This allows complete temporary

work without GitLab.

From experiences in the term project, overloads of

the mentioned platforms often occur at specific

times (approximately around 10 p.m.). If severe

limitations occur in the same manner, work for

which these services are needed is scheduled at

off-peak times.

Ri4 The close and transparent contact with the

developers from JAGW is a preventive

measure in order to be able to solve

occurring problems as quickly as possible.

The first step is to try to work around the bug

without further ado or not to use the faulty part

for the time being.

In urgent cases, time from this project is invested

to address fixes together with the INS.

Ri5 To minimize this risk early on, a minimal

PoC is developed in the elaboration phase

to test the most important and critical

components in realistic terms.

Furthermore, two networks are available to

provide the necessary configuration and

test possibilities. One is the virtual network

from INS and the other is the Swisscom Lab.

The components are built in such a way that

highly functionality relevant parts can be

mocked as fast as possible.

As already mentioned in the section on prevention,

a brief amount of time is required to switch to the

other network until the main test network is

operational again.

The second behavior is to finish and continue

mocking all used components completely.

Ri6 The implemented domain model and entity

relation concept will be reviewed again in

the elaboration phase to confirm whether

segments can be implemented on this basis.

If discrepancies are found, the necessary

modifications are conceptualized and

planned at the earliest stage possible to

avoid experiencing problems at a later point

in time.

The necessary parts are rebuilt for the unexpected

new demands via the simplest, yet appropriate

way.

If absolutely necessary, it is weighed whether the

metric can be mocked in the SR-App or omitted

entirely.

Green Routing Bachelor Thesis

65

Ri7 In the upcoming elaboration phase, there

will be a deliberate focus on the throughput

metric in order to minimize the likelihood of

mismatch as much as possible before the

start of implementation.

Furthermore, it is planned from the start to

completely mock this metric to allow for

isolated testing.

The extent to which this metric can be avoided, as

well as the next most appropriate metric as an

alternative, are evaluated.

Ri8 A know-how check is made with parties

from INS as well as other students working

on a thesis in the same environment. This

way it can be ensured that potentially

needed experience reports and other help

can be found quickly.

Based on the prevention mentioned on the left,

help is requested as promptly as possible to invest

as less time as possible to deploy the app with all

needed services.

Ri9 For this bachelor thesis, a very explicit

structure for planning is used from the

beginning, based on experience from the

term project, previous projects, and

guidelines. Work steps and planned

activities are reviewed with the supervisors

at regular intervals and an open feedback

culture is encouraged. Solid project

management experience from the students

work environment is incorporated.

The project plan is adjusted and validated in detail

to get the project back on track for success as

quickly as possible. The organization is constantly

improved as soon as individual difficulties arise,

both internally and with the stakeholders.

Ri10 OneDrive and Word must be checked at

regular intervals to ensure the automatic

synchronization is still running.

In addition, the documents and the

notebook should be closed consistently

when not in use, to reduce the chance of

data loss.

In the case of data loss attempts are made to

restore the necessary parts using Microsoft's

restoring functionalities, depending on the volume

of data lost. This must be done relatively quickly

since the automatic temporary data backups have

a short retention period.

Ri11 We will stay in close contact with the INS

team to profit from their knowledge of the

topic. Additionally, we will gather valuable

information in a small PoC to mitigate the

risks associated.

If all measures fail, we will go back to the earlier

version of the image and continue working with

that.

Ri12 We monitor the collections in JAGW to

detect missing ones as soon as possible.

This way they may be added in a later stage.

We will connect directly to the Jalapeño Arango

database via the go connector for ArangoDB.

Table 2.9: Dealing with risks

Green Routing Bachelor Thesis

66

2.7.3 Occurred risks

All occurred risks are beside the list below also highlighted with font color red in the risk overview in

chapter 2.7.1.

ID Extent of occurrence Reaction and further

steps

Real damage Time of

occurrence

Ri10 About 3 hours of

documentation work was lost

because parts in the document

as well as the version history

were overwritten during the

device change between Jonas'

devices. The exact cause is

unfortunately not known but

can be avoided by more

consistent checks of the

synchronization in the future.

The lost content in the

documentation has been

rewritten.

3 hours 02.03.2022

Ri12 The collection

“l3vpn_v4_prefix” is not

available in the JAGW.

We implemented our

own database connection

with our own queries to

access the needed data

from Jalapeño.

4 hours 17.03.2022

Ri4 The JAGW does not send any

events if one subscribes to

LsNodeEdges and any

connection to the subscription

service gets closed after 5

minutes.

Additionally, there seems to be

a problem with the new

caching service, since the data

returned by the request and

the subscription service is

inconsistent.

A lot of time had to be

invested, to handle the

missing events, to ensure

that there is a connection

active to receive events

and other faulty

behaviors.

16 hours (most

likely more, but

uncountable)

28.03.2022 and

further on

during the

project

Ri1 Pascal took two weeks off

during this work due to his

acute illness. This resulted in a

temporary time loss of 40

hours.

The bachelor thesis was

extended by one week

with 40 hours of work to

compensate for the lost

time.

0 hours

(because the

project was

extended by

one week)

02.05.2022

Table 2.10: Occurred risks

Green Routing Bachelor Thesis

67

2.8 Tooling

We use the JetBrains product YouTrack for planning, coordination and tracking of work, though primarily

only the functionality for Scrum Boards and time tracking. Positive experiences with this project

management tool were made during the term project. Nevertheless, some trivial configuration

improvements were implemented before the start of this project to brush away the last unpleasantness’s.

In the Scrum Board, estimations for each ticket can be recorded directly and the working time can be

entered optimally according to the predefined categories, as visualized in the figure below.

Figure 2.4: YouTrack Scrum Board [5]

Microsoft Teams is used for all communication, including its OneDrive and OneNote integration. OneDrive

serves as data storage for project management and documentation belongings and enables a suitable

environment for collaborative work in documents.

OneNote is used for various quick-living notes and as a knowledge base. Among other things, meeting

minutes, raw data from research and a decision log can be found in this notebook.

To be able to work and especially develop efficiently the team members have their own powerful mobile

and stationary work equipment with the necessary professional peripherals and tools installed.

2.9 Meeting minutes

We take brief minutes in German for each meeting with the topics defined in the following list. The date is

not listed, since it is included next to the respective chapter title.

• Time

• Participants

• Agenda

• Notes on each agenda item discussed

As agreed by the supervisors, the minutes are generally not sent to the meeting attendees after it took

place. If requested by a participant, access to a written protocol for a meeting held in the past could be

granted. All minutes are listed in the appendix in part C.

Green Routing Bachelor Thesis

68

3. Development

3.1 Version Management

We utilize GitLab, which is hosted by the OST, to exchange source code and application documentations, as

well as the provided CI/CD solution. We have established a set of rules for working with Git in order to

ensure a professional and efficient collaboration in the software development process within the team.

The branches are created and used according to the concepts of Git Flow (AVH Edition) [6]. In the two

chapters below, we listed all the main and supporting branches used in the project and their respective

purpose.

All branches are labelled in kebab-case, except for the release and hotfix branches which are written in

semantic version numbers without a prefix. [7]

All commits must follow the Conventional Commits [8] guidelines. This ensures that the commit messages

are uniform, describe the extensions and adjustments exactly, and that the change history is quickly

traceable.

In addition, we use a code review strategy as described in detail in chapter 3.3.2.

3.1.1 Main branches

Branch name Purpose

Develop The primary branch in which the source code always reflects a state with the latest

development changes for the next release.

Master The productive branch in which the source code always reflects the current

production state, tagged through the latest release version.

Table 3.1: Git main branches

3.1.2 Supporting branches

Branch name Purpose Base source Merge destination

Feature Used to develop new features for the upcoming

or a distant future release.

Develop Develop

Bugfix The same as hotfix branches but it will be merged

into the develop branch instead and is used to fix

bugs made from feature branches.

Develop Develop

Release Support preparation of a new production release.

It allows for minor prerelease fixes and preparing

meta-data for a release (version number, build

dates, etc.).

Develop Master

Hotfix Similar to release branches in that they are used

to prepare for a new production release, however

Master Master

Green Routing Bachelor Thesis

69

an unplanned one. They always use the master

branch as the base.

Table 3.2: Git supporting branches

We do not utilize support branches in this project.

3.2 Principles

Common software engineering best practices and concepts are always taken into account to ensure the

maintainability and quality of the code base.

Furthermore, we generally and if reasonable follow the principles of the clean code principles.

3.3 Quality

3.3.1 Definition of Done

To achieve a better quality overall we integrated the use of DoD’s with their easy-to-follow checklist to

ensure that no important step has been forgotten.

3.3.1.1 Backend

• Coding Conventions (chapter 3.3.5) were respected

• No linter errors

• New potential integration and or unit tests introduced

• All integration and unit tests passed successfully

• Continuous Integration (chapter 3.3.6) went through without errors

• All findings from the code review (chapter 3.3.2) have been fixed

• The documentation was expanded or adapted if necessary

3.3.1.2 Frontend

• Coding Conventions (chapter 3.3.5) were respected

• No linter errors

Acronym Description

KISS Keep It Simple and Stupid

YAGNI You Aren’t Gonna Need It

DRY Don’t Repeat Yourself

S.O.L.I.D Single-responsibility principle

Open-closed principle

Liskov substitution principle

Interface segregation principle

Dependency inversion principle

Table 3.3: Software engineering principles

Green Routing Bachelor Thesis

70

• Continuous Integration (chapter 3.3.6) went through without errors

• All findings from the code review (chapter 3.3.2) have been fixed

• The documentation was expanded or adapted if necessary

3.3.2 Code Reviews

There are no modifications in the Git repositories that have not been approved during a review by at least

one additional team member. The only exceptions are minor configuration changes and bug fixes, which

must be implemented right away and don't introduce a potential risk. Via a pull request, the other team

member is notified to review the respective change. We always work with supporting branches and only

merge to a main development branch after a thorough code review.

A complete system test is be performed near the end of the construction phase as a second test strategy,

the results are listed in the appendix of this document.

In addition to the two test strategies, manual tests are run repeatedly during the development process to

ensure that the automated tests are working properly.

3.3.3 Testing

For our backend application and its potential surrounding systems, integration and unit tests are used as a

first test strategy. Unit tests are a standard approach to test an application's functionality using various

scenarios and can be conveniently integrated into the continuous integration process (chapter 3.3.6).

Besides that, we use integration tests in some scenarios to reduce the count of unit tests and test the

functionality of our SR-App from A to Z through all important components.

3.3.4 Static code analysis

A SonarQube instance was set up at the INS to be able to scan our static code. SonarQube can analyze code

in a variety of programming languages and find errors, weaknesses, and bad practices, all of which may be

viewed on a dashboard. This tool is also integrated into our continuous integration pipeline, allowing for

automatic code analysis throughout the development process.

In the next chapter, we'll go over the code metrics we utilize and our reasoning behind them.

3.3.4.1 Code Metrics

We limit the SonarQube scanning procedure to the most relevant metrics that it employs. The primary

metrics are detailed here, along with our goals for each.

Name Explanation Goal

Bugs Bugs are errors in the code that may cause the application to

stop working or behave undesirably.

0

Vulnerabilities An application vulnerability is a flaw or weakness in the system

that can be exploited.

0

Security Hotspots Code which needs manual checks to ensure that there are no

security flaws.

0

Code Smells Parts in the code which are hard to read and understand. 0

Green Routing Bachelor Thesis

71

Test coverage Defines the percentage of how much code is tested by

integration and unit tests.

min. 80%

Duplications Defines the percentage of how many lines of code are duplicated

over the whole application.

max. 1%

Table 3.4: Quality code metrics

Frontend

The next screenshot shows the final quality gate status from SonarQube for the frontend. Due to the

complexity of the network graph components which uses Sigma.js to view the graphs, certain components

could not be reused, causing a duplication statistic of around 8.2%.

Figure 3.1: SonarQube frontend quality gate status [1]

Backend

The next screenshot shows the final quality gate status from SonarQube for the backend. We’ve reached a

total coverage of 82.5%, which is an improvement of around 15% in comparison to the term project.

Unfortunately, there are ten code smells remaining because SonarQube does not yet fully support our used

Go version 1.18. All files that use generics cannot be parsed properly and were falsely detected as Code

Smell.

Green Routing Bachelor Thesis

72

Figure 3.2: SonarQube backend quality gate status [1]

3.3.5 Coding conventions

3.3.5.1 Frontend

For the frontend, we did not include any special coding conventions. We instead follow the common best

practices for TypeScript and the React framework.

To format files, Prettier is used, which is widely used code formatting tool in the JavaScript ecosystem. [9]

In addition, the compliance with structuring rules is ensured by the linter ESLint. ESLint is configured for the

use of TypeScript and React along with the standard checking rules. [10]

3.3.5.2 Backend

We follow the coding conventions of the CockroachDB, which define a wide range of distinct requirements

for styling, performance, and best practices for Golang, which is the primary programming language used in

our project. [11]

These best practices are complemented by two tools. The first one is golangci-lint [12] which applies a large

set of rules through different single linters every time a file is saved. These rules need to be followed strictly

and are enforced at Git commit time. Some default rules were deactivated because they hindered the

progress while not providing enough benefits.

As an additional quality increasing measure, we also make use of gofmt which formats an entire source file

according to standard formatting rules every time it is saved. [13] Thanks to better readability it is easier to

spot errors and prevent future bugs.

Green Routing Bachelor Thesis

73

3.3.6 Continuous Integration and Deployment

For our continuous integration and deployment, we utilize the GitLab integrated CI/CD feature with the

runners provided by INS. Those runners provide us with faster run times, since we do not need to share the

runners with the other users of the OST.

There are three Docker image strategies in the pipeline. A build-only image containing the source code and

configurations is used for linting, testing, and SonarQube scanner. The other two strategies are for

development and production deployment builds only, do not contain source code (just the executable), and

are reduced to a reasonably small size.

In the following table all stages are listed and described chronologically. The frontend and backend

pipelines are comprised of the same stages, except that the frontend doesn’t have a test stage as it does

not include any automated tests.

Stage Description Fail level Execution Target

build Builds the backend based on the build

only image2 and tags it with the latest

commit hash.

Build failure Every commit

lint Executes the entire linting process for

the build image and displays the

results.

Linting errors (not

warnings or info’s)

Develop, release,

hotfix, and merge

requests

test Executes all integration and unit tests. If at least one test fails Develop, release,

hotfix, and merge

requests

sonar-scanner Executes the SonarQube check via

sonar-scanner.

If a code metric does not

pass the quality gate

(described in chapter

3.3.4.1)

Develop, release,

hotfix, and merge

requests

registry-

cleanup

Removes the previously created build

only image3 from the container registry

to keep it minimal in size.

No directly associated

fail level

Develop, release,

hotfix, and merge

requests

build-dev Builds and tags the development

deployment build image4 with

“develop”.

No directly associated

fail level

Develop

build-prod Builds and tags the production

deployment build image5 with “latest”

No directly associated

fail level

Master (implicit

only tags)

2 Dockerfile name: «Dockerfile»
3 Dockerfile name: «Dockerfile»
4 Dockerfile name: «Dockerfile.deploy»
5 Dockerfile name: «Dockerfile.deploy»

Green Routing Bachelor Thesis

74

and the respective version of the

application (semantic version).

Table 3.5: CI/CD stages

The deployment is performed manually with a predefined Helm chart using the required image and other

services. The integration of the deployment into the pipeline itself would have been beyond the scope of

this work due to various challenges of the infrastructure used and was therefore not implemented.

3.4 Error Handling

3.4.1 Input validation and output sanitization

To avoid potential errors within the application, all data objects for creation or updating via API endpoints

are validated using properly specified data fields and data types on predefined data transfer objects (DTOs).

The API only interacts with DTOs for ingress and egress data; therefore, app internal entities will never

leave the interface. This prevents the exposure of internal data over the API that is not meant to be

accessible via the API.

3.4.2 HTTP status

Whenever possible, the backend replies with an appropriate HTTP status code and/or error message. In

unusual behaviors, extraordinary errors respond with the code 500 for Internal Server Error. Only fatal

errors cause the program to stop working altogether. All other failures that are not specifically handled, as

well as so-called Go panics, are handled automatically by the Gin Web Framework without crashing the

application.

In the table below you will find a basic example about the previously described criteria.

Request Response Header Response Body

GET /node/8 HTTP 404 Not Found

Content-Type: application/json

Content-Length: 28

{

 "error": "element(s) not found"

 "identifier": "8"

}

Table 3.6: HTTP response sample

3.4.3 Logging

To satisfy the eleventh point of the Twelve-Factor Methodology and to have a solid logging capability, an

extended logger was implemented instead utilizing Go’s default logger and registered as the main logger on

all other included frameworks and libraries. This logger offers seven log levels, ranging from most serious to

least serious: fatal, panic, dpanic, error, warn, info, debug. Only serious problems will force the program to

terminate, as mentioned in the previous section 3.4.2. The log service writes its output directly to the

operating system's standard output. The target log level can be adjusted by environment variables at

program start.

3.5 Development Tools

The following table lists the main tools used for development and briefly describes their purpose.

Green Routing Bachelor Thesis

75

Tool name Purpose

JetBrains GoLand Integrated development environment which is specialized for Golang

development. Extended by several plugins from the JetBrains marketplace.

JetBrains WebStorm Integrated development environment which is specialized for web

development with HTML, CSS and JavaScript/TypeScript. Extended by several

plugins from the JetBrains marketplace.

Insomnia Modern open-source API client to test endpoints.

Docker Provides a standardized and stateless toolchain to easily set up environments

in form of containers. Extended by docker-compose for interconnecting tools

and services.

Git Bash or WSL Bash emulator or full virtualized Linux environment to execute and test

binaries and have a production like operating system.

GitLab A remote version control system with extra functionalities like GitLab CI/CD,

merge requests, integrations with Kubernetes, integrations with YouTrack and

other DevOps tools.

Table 3.7: Development tools

Green Routing Bachelor Thesis

76

4. Domain analysis

4.1 Domain Model diagram

Figure 4.1: Domain Model diagram [1]

4.2 Domain Model explanation

4.2.1 Node

A Node is an ASR 9000 router in the segment routing domain which actively participates in segment

routing. For this thesis we limit the scope to the ASR 9000 router from Cisco with the IOS-XR software. Each

node has green metrics which are either directly read from the device over sensors or collected manually.

This is solved over the GreenRouteMetrics, which handles all metrics as well as the

NodePowerConsumption and NodeDataThroughput, which represent the data which has been read from

the device sensors.

Each Node has multiple ingress and egress links to other nodes which are contained in the LogicalLinks. To

create the segment list used in segment routing each node has one Segment entity.

4.2.2 VRF

VRF or Virtual Routing and Forwarding is a technology where multiple routing tables co-exist to enable

separated routes for each customer group. This works by importing export tags, which each router exports,

Green Routing Bachelor Thesis

77

as import tags by another router used in the VRF. Each separate route has its own route distinguisher which

enables the exported routes to be recognized.

4.2.3 L3VPNv4Prefix

L3 VPN is a VPN which lives on the OSI Layer 3. It utilizes IPv6 and VRFs to create and manage user data. It

usually is used in backend VPN infrastructures, e.g. for connections between datacenters or back offices.

The L3VPNv4Prefix table on the ArangoDB in Jalapeño contains information on the connected customer

networks for each node as well as the used VRF. This information is required in the configuration of the

calculated green routes on the router.

4.2.4 NodePowerConsumption

The NodePowerConsumption contains the measured power consumption of the nodes in watt. Each Node

has a history of all measured values gathered since the application started to fulfill the purpose of

collection statistical data.

4.2.5 NodeDataThroughput

The NodeDataThroughput contains the measured throughput of the nodes in Mbit/s. Each Node has a

history of all measured values gathered since the application started to fulfill the purpose of collection

statistical data.

4.2.6 Segment

The Segment is composed of the IPv6 address of the Node as well the Node’s type. It is used in the segment

list required for the segment routing configuration.

4.2.7 LogicalLink

Each LogicalLink has a source (“from”) node and a destination (“to”) node and is therefore directed. For the

calculation of the green route as well as the fastest route the combined value of all the metrics from the

destination node will be saved in the energy metric field. This value represents the edge weight for the Yen

K-shortest paths algorithm. Klicken oder tippen Sie hier, um Text einzugeben.

4.2.8 GreenRoute

On the GreenRoute the ingress node and the egress node for each calculation will be stored. The resulting

list of LogicalLinks and segment list can also be found on the green route. This is the basis for the SR-Policy

which is required for the configuration. Each GreenRoute contains also the sum of all green scores to

compare the different GreenRoutes.

4.2.9 GreenRouteMetric

For each node there exist one or more GreenRouteMetrics. These have a value, a weighing factor and a

normalization factor to adjust the values to the same order of magnitude. Each metric can be turned on or

off. All metrics of a node combined result in the green score for the specific router.

4.2.10 SRPolicy

The SRPolicy combines all the calculated and acquired data for an ingress node and egress node pair. It is

the central entity to configure the route on the router. If multiple green routes have been calculated, each

Green Routing Bachelor Thesis

78

one gets its own SRPolicy. Additionally, a separate policy is created for each VRF. Thus, if two equal routes

have been calculated and there are two VRFs, then four SRPolicies will be generated.

4.2.11 Network

The Network entity provides the IP address for the configuration via SSH. It contains the IPv4 address and

the respective subnet. The IP address is required to build up the connection to the router.

Green Routing Bachelor Thesis

79

5. Architecture and design specification

5.1 System overview

To give the readers a visual overview over the existing software and the further developed app, several

diagrams according to the C4 model were created.

Due to the API Gateway notifying the Green SR-App on topology changes and new telemetry data, the

Green SR-App does not need a special cache to handle the current data. It is possible to request the

necessary data and process it on demand. This way it is possible for multiple instances to have the same

results for the calculation since all instances request and receive the same data.

The following C4 system context diagram shows the user, as well as the developed Green SR-App and the

Jalapeño API Gateway which accesses Jalapeño from Cisco Systems.

Figure 5.1: C4 model system overview [1]

The following C4 container diagram shows how the different containers interact with each other and which

protocols are used. In addition, the diagram shows how the user communicates with the software system.

The external systems Jalapeño API Gateway and Jalapeño are not visualized in detail, since we only use

their provided services.

Green Routing Bachelor Thesis

80

Figure 5.2: C4 model container system overview [1]

5.1.1 Jalapeño API Gateway

The Jalapeño API Gateway enables the backend to access the stored date of Jalapeño in an easy and

standardized way over a gRPC API. Additionally, the Gateway API notifies the backend on changes in the

topology or on new telemetry data. This way the application can react to changes and can calculate a new

path if necessary.

5.1.2 Jalapeño

Jalapeño is a software from Cisco which collects and processes telemetry data and topology data of the

connected network and stores them in an InfluxDB for telemetry data and in an ArangoDB for topology

data.

5.1.3 Network

The network is the real connected computer network, which has multiple routers and routes packages, and

generates telemetry data.

5.1.4 Frontend

A user who uses the Green SR-App will access the app via the frontend, in which it is possible to view the

calculated route representing the most energy efficient way. For comparison, it is also possible to calculate

Green Routing Bachelor Thesis

81

and display the fastest route. The user can trigger a new calculation if necessary. In the settings there is an

option through which the user can define which metrics should be used to calculate the green route.

5.1.5 Backend

The backend is the heart piece of the whole application. Here, the data from the API Gateway is evaluated

and prepared for path calculation. When the data is in the required form, the path calculation is executed,

and the most efficient path(s) are evaluated. The result will be consumed by the frontend and stored in the

database for later statistical analysis.

If the user wants to apply the route to the network, it is possible to deploy it. The path calculation gets

triggered when the defined retention duration has passed. To keep energy costs low, the calculation is only

executed when needed. To get a fair measurement of the efficiency of the router not only the power

consumption is considered but also the throughput. This way newer and more efficient routers perform

better in the benchmark even if they consume more electricity.

5.1.6 Database

In the database the calculated routes will be stored for future statistical analysis. In addition, the

application stores other potentially interesting metrics to create reports on. The reports will not be part of

this thesis. It was decided to use a MariaDB because it offers the possibility to store graph data as well as

relational data. It works well with Go and it is possible to run it in memory if we need the performance

boost. This way we can store the chosen route as a graph and the power data in a relational table.

5.2 Twelve-factor app methodology

The frontend and backend applications are designed following the 12-factor methodology in order to be

entirely cloud native standard compliant. [4] In the next subchapters, this methodology is used to analyze

the complete applications, including its environments and services, step by step.

5.2.1 Codebase

“One codebase tracked in revision control, many deploys” [4]

The version control system used is GitLab, which also enables for direct integration of CI/CD and connects

to YouTrack. The backend and the frontend are developed in separate repositories with completely

separate code and building process to a fully distinct development and production environment purpose.

No direct staging environment is used because the development environment performs similarly.

The backend and the frontend could each be verified completely independently using the 12-factor

methodologies.

Evaluation: fulfilled

5.2.2 Dependencies

“Explicitly declare and isolate dependencies” [4]

With version 1.12, Go added a new dependency management system that documents each dependency

and its peer dependencies in a file called go.mod. This file also contains definitions for which version to use,

as well as peer dependencies. With version 1.12, they added the ability to create modules, which we utilize

in the backend to isolate the code clearly and logically.

Green Routing Bachelor Thesis

82

In the frontend, the NPM ecosystem is typically used to manage dependencies. However, not the NPM

tooling itself is used, but the alternative Yarn.

Evaluation: fulfilled

5.2.3 Config

“Store config in the environment” [4]

All static configurations for the frontend and backend are defined via environment variables. They're

configured locally by the developer using preset environment files, and then injected in the Helm chart

deployment using system environment variables.

In the Golang context, the library GoDotEnv is utilized to fully achieve this. Every dynamic variable that

varies between environments is either set locally via an .env file or injected via the Helm chart definition for

the needed environment. On launch, the application loads the environment variables, which may

afterwards be used by the application.

In the JavaScript context, all environment variables are provided by default via the JavaScript inbuilt

process.env context. Just as in the backend, an .env file can be used for the required variables or via the

Helm chart for other environments.

Evaluation: fulfilled

5.2.4 Backing services

“Treat backing services as attached resources” [4]

MariaDB is accessed by a URL that is made up of different values from the environment file. As long as the

underlying database is still a MySQL database provider, it is possible to replace it. If necessary, the entire

repository layer can be replaced to use a different type of database. There are no code modifications

required if you want to utilize a different MySQL provider.

Evaluation: fulfilled

5.2.5 Build, release, run

“Strictly separate build and run stages” [4]

The backend CI/CD is divided into seven distinct stages. They are covered in detail in the 3.3.6. In summary,

there is one build step for checking, three quality stages consisting of linting, unit testing, and static code

analysis and two build stages for development and production. The deployment is done manually based on

needs for each environment separately. The pipeline clearly distinguishes build, release, and run, and

traversing the path the other way is either impossible or unforeseeable when following the right workflow.

The three key stages of GitLab, GitLab CI, and Kubernetes deployment result in a well-defined path. The

first is for version control, while the second is for continuous integration and deployment. The operating

portion is then performed on the server using Kubernetes.

Evaluation: fulfilled

Green Routing Bachelor Thesis

83

5.2.6 Processes

“Execute the app as one or more stateless processes” [4]

The app must operate in a stateless mode. This means that it must not preserve any states during runtime,

except when saving for a brief amount of time, such as when data is being processed further. Data saved

for a limited period of time, on the other hand, should never be meant for a future request. All data that

has to be kept for an extended period of time must be kept in linked services such as databases.

The program is fully stateless since we always perform calculations based on the telemetry data that

Jalapeño currently provides. This may be one or more telemetry entries based on the time range provided

or the network uptime up to this point. The relational and synchronized database stores all data intended

for long-term storage. Short-term data is only kept on a per-request basis.

Evaluation: fulfilled

5.2.7 Port binding

“Export services via port binding” [4]

Each service provided must be tied to a port by rule. It must not rely on webserver runtime injection. The

web app must provide HTTP as a service by binding a port and listening on that port for ingress traffic.

This is accomplished in Go by direct port binding, which is also fully supported by the Gin Web Framework.

For HTTP traffic, the app just requires one port. The same is true for the frontend with React.

Evaluation: fulfilled

5.2.8 Concurrency

“Scale out via the process model” [4]

One or more processes represent each running program. Web applications can use a variety of distinct

types of process execution.

The computationally intensive operations, which includes the synchronization of Jalapeño and the following

computation of the green route with required steps in between, was accomplished by parallelization using

semaphores and mutexes. Go includes built-in parallelization features that are quite elaborate. All other

sections of the program, even with excessively big volumes of data, are already fast enough without

parallelization. Go also supports vertical scaling of processors, which is compatible with the Green SR-App.

Evaluation: fulfilled

5.2.9 Disposability

“Maximize robustness with fast startup and graceful shutdown” [4]

App processes should be discardable. This implies they must be able to start and stop in a brief period of

time. Furthermore, the program must be able to be turned off gracefully.

The processes were designed to be streamlined and lightweight, allowing for rapid startup and shutdown.

When a shutdown request is received, it is not guaranteed that all continuing queries and computations

Green Routing Bachelor Thesis

84

have been finished. In addition, it is not possible to deprovision the configurations made on the network

and restore them to their previous configuration. To achieve this, time resources were lacking in this thesis.

Evaluation: partly fulfilled

5.2.10 Dev/prod parity

“Keep development, staging, and production as similar as possible” [4]

This rule demands that the environments be as comparable as possible. The environments local,

development and production are utilized in this project.

The following table compares traditionally produced applications to twelve factor apps, with an extra

assessment for the Green SR-App developed in this thesis.

 Traditional app Twelve-factor app Green SR-App

Time between deploys Weeks Hours Hours to days

Code authors versus code

deployers

Different people Same people Same people

Development versus

production environment

Divergent As similar as possible As similar as possible

Table 5.1: Dev/prod parity comparison

The dependent services, such as databases, are retained and the differences in building and creation are

reduced to a minimum.

Evaluation: fulfilled

5.2.11 Logs

“Treat logs as event streams” [4]

A twelve-factor app should never be in charge of sending or storing produced logs. Every running process

must transmit its logs straight to the standard output as event streams, with no intermediate steps.

Without any intermediate steps, the backend publishes all logging information straight to the output

stream (including standard output and standard error). The log level can be changed using environment

variables.

The frontend interacts in the browser and publishes possible errors via the browser console.

Evaluation: fulfilled

5.2.12 Admin processes

“Run admin/management tasks as one-off processes“ [4]

It is about single tasks that must be executed on the productive system, such as starting database

migrations. These activities must always be carried out on as similar systems as feasible.

Green Routing Bachelor Thesis

85

Such tasks are reduced by utilizing containers for all application components. The container can be simply

redeployed in the case of changes or adaptations. Migration scripts are occasionally required for particular

services; however, they are always tested first in the development system, which is as close to the

production environment as possible.

Evaluation: fulfilled

5.3 Technologies

In the next two chapters, the most important technologies used in the frontend and backend are listed and

categorized. It should be noted that smaller, less important libraries/extensions have been omitted

deliberately, as the listing of these is not relevant.

5.3.1 Frontend

Component Technologies and Frameworks Libraries/Extensions

Frontend • TypeScript

• React

• Material UI

• React-sigma v2 (underlying Sigma.js)

• Graphology

• Axios

• Classnames

• Sass

• Faker

Frontend development

support

 • EsLint

• Prettier

• Commitlint

Table 5.2: Used frontend technologies

5.3.2 Backend

Component Technologies and Frameworks Libraries/Extensions

Backend • Golang

• Gin Web Framework

• Gonum Numerical

Packages

• Jalapeño API Gateway

• Gin-contrib/zap

• Gin-contrib/cors

• Jinzhu/Copier

• Joho/GoDotEnv

• Stretchr/Testify

• Swaggo

• Zap

• gRPC and protobuf

• Zapgorm2

Internal database • MariaDB • Gorm

• Gorm MySQL driver

External database • ArangoDB • AragoDB Go driver

Green Routing Bachelor Thesis

86

Backend development

support

• Golang

• Docker and Docker

Compose

• Go run, build, fmt, test, clean, install,

get, mod

• Joho/GoDotEnv

• Golangci-lint

• Swaggo

Table 5.3: Used backend technologies

5.3.3 Programming Language

In the preceding term project, it was decided to use Go as our programming language for the backend. We

were quite satisfied with the performance and native concurrency of Go. Therefore, and the fact that a

change would cost too much of time, we keep the programming language.

On the frontend side, there is less freedom to choose the programming language since there is one big

player. To follow the most modern standards, TypeScript was used rather than JavaScript, which is also

widely used in combination with the React framework.

5.3.4 Web Framework

Gin Web Framework is a Go framework that uses a Martini-like API but is up to 40 times faster than

Martini. Gin is appropriate for APIs when performance is critical. Furthermore, this web framework

provides middleware and a crash-free API. As a result, it can detect and recover from panics in the Go

context. As a result, the server is as much as possible accessible. Gin, in addition to the previously described

features, can quickly verify JSON and improve routes.

5.3.5 Storage

MariaDB was already used as a persistent storage in the term project. With the continuation of the project

through this bachelor thesis, the change to a real graph database was considered and extensively analyzed

in the elaboration phase.

The decision was made to not change anything regarding the persistent storage, since the risks for an

unreasonably high additional effort outweigh the advantageous aspects. MariaDB can also still meet all

requirements for this thesis in a sufficiently performant manner.

The use of Gorm has proven itself and no major or unsolvable problems have ever been encountered with

this ORM. Due to the positive experiences through the term project, Gorm will continue to be used.

5.3.6 Development support

5.3.6.1 Linter’s runner

There are several linters for Go, each of which covers a specific portion or serves a certain purpose. The

golangci-lint Go linters runner is used in this project so that they do not all have to be integrated and

executed separately. This linters runner allows you to run all available linters and customize them

separately if necessary. [12]

All Go cli inbuilt linters and useful recommended linters are utilized at least. The complete list of linters and

checkers used can be found in the appendix.

Green Routing Bachelor Thesis

87

5.3.6.2 Testing

Since the unit tests are not run by the linter's runner, they must be run individually. The Go command "go

test" is used to accomplish this. Additionally, a library called Testify is used to make the definition of unit

tests easier. Testify mostly benefits from wounding assertion checks, which are commonly used in unit

tests. [14]

5.3.6.3 OpenAPI specification

To document the API, Swagger is used, which follows the OpenAPI standard. Since version 3 of this

standard is not yet fully supported by Go, version 2 was used. A CLI tool allows to automatically generate

the API documentation using annotations as comments in the code.

5.3.6.4 Container virtualization

To provide the code as an image and to replicate the pipeline functionality locally, docker is used with in

conjunction with with docker-compose.

5.4 Backend Architecture

This chapter provides an overview of the backend architecture and illustrates the links between the various

components. We distinguish between the frontend, which we do not go into depth about, the backend,

which entails the business logic and APIs, and the database.

With the three layers of application, domain model, and infrastructure, we follow the domain driven

development paradigm. Our controllers, which make up the API, are located in the application layer. We

handle the models in the domain in various entity files, as well as the data transfer objects (DTO). Finally,

there is an infrastructure layer, which contains the services with the business logic and the repository.

We also put the logger and the environment (config) in the infrastructure layer. We have a Go specific cmd

container that serves as the application's entry point.

The common container handles migrations and seeds that are not utilized during regular runtime but rather

to manage database changes and offer a set of default data in the database.

The frontend received the necessary data via the API. The API obtains the required data from the services

using data transfer objects.

Any configuration data is delivered through environment files, and all containers that utilize configuration

data must consequently contact the environment container. The same is true for the logger. The logger is

accessible to all containers that need to log information.

Green Routing Bachelor Thesis

88

Figure 5.3: Backend architecture [1]

5.4.1 Backend

The API, domain, infrastructure, and common sub-modules form the Green SR-App backend. Each of these

sub-modules contains at least one, if not numerous, packages. The sub-modules and their packages are

explained in the following chapters.

5.4.1.1 API

The sub-module API consists of a single package in which all application controllers are defined as a single

file per HTTP endpoint.

Controllers are the initial point of contact for an incoming request. They also specify what endpoints look

like and what functions and operations they provide. They are also in charge of managing the input and

output, as well as validating the input. HTTP error codes are also defined here based on service results and

other characteristics.

Green Routing Bachelor Thesis

89

5.4.1.2 Domain

The package DTO includes all data transfer objects that are utilized as transfer data objects by controllers

and services. These DTOs are basically objects that exist between the layers and transmit their created data

between them.

Models is a package containing multiple entities. Entities describe what data for persistent storage should

look like. They also indirectly specify the database schema's appearance.

5.4.1.3 Infrastructure

The infrastructure sub-module contains the majority of the packages discussed thus far. There are five

packages in the setup, most of which are exclusively for the internal application part.

The most essential package, services, includes all of the business logic for each service. The services receive

controller requests and return the calculated result. Communication with repositories is almost always

required in order to access persistent data. They oftentimes do not pass on the data directly, but rather

include the relevant business logic, including any necessary computations. Individually utilized mock

services implement the same logic as regular services, but with realistic mock data.

The repositories package is probably the second most essential package in this sub-module after the

services package. The repositories handle direct database queries. They are provided by the ORM library by

default and provide the most important CRUD queries to the database without any extra definition. When

non-standard specified queries are required, new repository definition files containing raw queries or query

languages are developed. Individually utilized mock repositories implement the same logic as regular

repositories, but with realistic mock data.

The third package, database, initiates and configures the database connection. It provides the repositories

with an active database connection.

The fourth package in the bundle is named environment, and it is responsible for loading and delivering

environment variables defined in an environment file or directly from the system's environment variables.

Finally, the package logger serves as the main logging service of the application. It handles the whole

logging of the program into standard output and standard error. It provides several log levels for various

purposes and environments. An environment variable can be used to specify the log level.

5.4.1.4 Cmd

This sub-module contains no directly existing packages. In Go projects it is typical to store the application's

start in a package named cmd. Since this package contains no further program logic, it is sometimes

referred to as the "main"-function in other programming languages.

5.4.1.5 Common

All packages that do not belong in the Domain Driven Design context and are not utilized in the usual

runtime are placed in this container. The migration manages database schema changes, whereas the seed

populates the database with initial or test data in a test or development environment. It is likely that

further packages will be added in the future.

Green Routing Bachelor Thesis

90

5.4.2 Internal Database

The internal database, which is a relational MariaDB, is housed in this container. It saves all computed

pathways as well as other statistical information. It is accessible by Gorm, which is a Go ORM library found

in the repositories package.

5.4.3 Jalapeño

Jalapeño is addressed directly as an external database, because the Jalapeño API gateway does not offer all

required data sets. Therefore, in special cases, a direct data relationship must be applied.

5.5 REST API

The API was designed in accordance with API development standards and best practices and does not

diverge from them. Because both developers are familiar with these standards and best practices, no other

external sources were consulted to complete the API specification. Making the API endpoints as practical

and easy as possible was a primary focus during development.

The specification of the POST requests for calculating the greenest and fastest paths, generating SR-Policies

and deploying them deserves special attention. The developers purposefully chose to indicate the resource

to be generated in the request path. The alternative of passing information via the body was dismissed

since the data to be created is entirely computed by the backend rather than by the user making the

request.

5.5.1 API responses

All of the API's potential responses are explained in detail in the table after the rough list of DTO’s below. In

the default success scenario, the requested resources are returned as data transfer objects, although in

some instances, an empty answer is acceptable.

Individual DTO items are offered as follows:

• BaseDTO

• FastestLogicalLinkDTO

• FastestRouteDTO

• GreenLogicalLinkDTO

• GreenRouteDTO

• GreenMetricTypeDTO

• GreenMetricTypeUpdateDTO

• L3VPNv4PrefixDTO

• LogicalLinkDTO

• NetworkDTO

• NodeDTO

• NodePowerConsumptionDTO

• RouteDTO

• SegmentDTO

• SrPolicyDTO

Green Routing Bachelor Thesis

91

For more detailed information the source code of the Green SR-App backend should be

consolidated.

Definition Status type HTTP status

code

Response object with fields

Default Success 200 Individual DTO

or empty response

Base Success 200 BaseResponse

• Message6 (string)

• OpenAPIDocs path (string)

Telemetry data Success 200 TelemetryDataResponse

• FakedData (bool)

• TelemetryData (PowerTelemetry or

ThroughputTelemetry object)

Not found Failure 404 NotFoundResponse

• Error7 (string)

• Identifier (string)

Internal Server

Error

Failure 500 ErrorResponse

• Error (string)

Not Implemented Failure 501 ErrorResponse

• Error8 (string)

Table 5.4: API responses

6 Response text: «Hello from the Green-SR App API»
7 Response text: «element(s) not found»
8 Response text: «Not supported due to FAKE_ALL_DATA activated»

Green Routing Bachelor Thesis

92

5.6 Entity relationship diagram

Figure 5.4: Entity relationship diagram [1]

Green Routing Bachelor Thesis

93

5.7 Infrastructure

5.7.1 INS virtual Lab

Kubernetes was used to create up a server on the INS network, which provides the necessary services for

this project via multiple Kubernetes pods. The following environment has been set up, as specified in the

technical report in part A:

• Webserver (Nginx)

• Jalapeño API Gateway

o Request and subscription service

o Cache and cache service (Redis)

o Proxy (Envoy proxy)

• Jalapeño

o Time Series database (InfluxDB)

o Graph database (ArangoDB)

o Telemetry collector and processor (Telegraf)

o Topology collector and processor (Gobmp)

o Event streaming (Kafka)

o Observability platform (Grafana)

o Configuration management (ZooKeeper)

The latest versions of the new Green SR-App are also always deployed to this server.

The INS put up a virtual lab to obtain the routers (Cisco ASR 9000) and the necessary data required for this

study. Using SSH over port 22 provides access to all devices. In the next table, you'll find the virtual devices

that form the lab.

Name Type Intended use

XR-1 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

XR-2 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

XR-3 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

XR-4 Router reflector Special ASR 9000 like router reflector which listens on all

other router updates. Main data source for Jalapeño.

XR-5 Router reflector Special ASR 9000 like router reflector which listens on all

other router updates. Main data source for Jalapeño.

XR-6 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

XR-7 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

Green Routing Bachelor Thesis

94

XR-8 Router Base ASR 9000 like router that routes traffic on the

network with segment routing.

Cust-A-ZRH Customer Network entry Sample private customer network on one side of the

whole network.

Cust-B-ZRH Customer Network entry Sample private customer network on one side of the

whole network.

Cust-A-BSL Customer Network entry Sample private customer network on one side of the

whole network.

Cust-B-BSL Customer Network entry Sample private customer network on one side of the

whole network.

Cust-A-ZRH-PC1 Customer PC (Ubuntu) Computer within the customer's private network. Its

main purpose is to generate traffic on the network.

Cust-B-ZRH-PC1 Customer PC (Ubuntu) Computer within the customer's private network. Its

main purpose is to generate traffic on the network.

Cust-A-BSL-PC1 Customer PC (Ubuntu) Computer within the customer's private network. Its

main purpose is to generate traffic on the network.

Cust-B-BSL-PC1 Customer PC (Ubuntu) Computer within the customer's private network. Its

main purpose is to generate traffic on the network.

Table 5.5: INS virtual Lab equipment

Green Routing Bachelor Thesis

95

Declaration of Independence

I hereby declare,

• that I have carried out the present work myself and without outside help, except for that which is

explicitly mentioned in the assignment or agreed upon in writing with the supervisor.

• that I have mentioned all sources used and cited them correctly according to common scientific

rules of citation.

• that I have not used any material protected by copyright in this work in an unauthorized way.

Pascal Schlumpf Jonas Hauser

Place and Date:

Place and Date:

Signature:

Signature:

Green Routing Bachelor Thesis

96

Rights of use

Agreement

Subject

This agreement regulates the rights over the use and further development of the results of the bachelor

thesis Green Routing by Jonas Hauser and Pascal Schlumpf under the supervision of Prof. Laurent Metzger.

Copyrights

The student is entitled to the copyrights.

Usage

The results of the work may be used and further developed by both of the students, the OST and Cisco

Systems after completion of the work.

Student

Pascal Schlumpf

Student

Jonas Hauser

Supervisor

Prof. Laurent Metzger

Place and Date:

Place and Date:

Place and Date:

Signature:

Signature:

Signature:

Green Routing Bachelor Thesis

97

List of Figures

FIGURE 1.1: USE CASE DIAGRAM [1] .. 44

FIGURE 2.1: YOUTRACK ESTIMATION AND TIME SPENT [5] ... 56

FIGURE 2.2: TIMETABLE [1] ... 57

FIGURE 2.3: RISK OVERVIEW [1] ... 63

FIGURE 2.4: YOUTRACK SCRUM BOARD [5] .. 67

FIGURE 3.1: SONARQUBE FRONTEND QUALITY GATE STATUS [1] ... 71

FIGURE 3.2: SONARQUBE BACKEND QUALITY GATE STATUS [1] .. 72

FIGURE 4.1: DOMAIN MODEL DIAGRAM [1] ... 76

FIGURE 5.1: C4 MODEL SYSTEM OVERVIEW [1] ... 79

FIGURE 5.2: C4 MODEL CONTAINER SYSTEM OVERVIEW [1] ... 80

FIGURE 5.3: BACKEND ARCHITECTURE [1] .. 88

FIGURE 5.4: ENTITY RELATIONSHIP DIAGRAM [1] .. 92

https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/BA-Green-Routing_Hauser_Schlumpf_B_Project_Documentation.docx#_Toc106898461
https://ostch.sharepoint.com/teams/TS-SA-Green-Routing/Freigegebene%20Dokumente/General/BA-Green-Routing_Hauser_Schlumpf_B_Project_Documentation.docx#_Toc106898470

Green Routing Bachelor Thesis

98

List of Tables

TABLE 1.1: USE CASE ACTORS ... 43

TABLE 1.2: UC01 CRUD GREENEST ROUTE – FULLY DRESSED USE CASE .. 46

TABLE 1.3: UC02 CALCULATE PATHS – FULLY DRESSED USE CASE ... 46

TABLE 1.4: UC03 DEFINE STABLE ROUTE – FULLY DRESSED USE CASE ... 47

TABLE 1.5: UC04 DEFINE GREEN INDEX – FULLY DRESSED USE CASE ... 47

TABLE 1.6: UC05 GET STRUCTURED DATA – FULLY DRESSED USE CASE ... 48

TABLE 1.7: UC07 DEPLOY SR-TE POLICY – FULLY DRESSED USE CASE... 48

TABLE 1.8: UC07 VIEW ROUTES – FULLY DRESSED USE CASE ... 49

TABLE 1.9: UC08 COMPARE SCENARIOS – FULLY DRESSED USE CASE .. 50

TABLE 1.10: UC09 GATHER STATISTICS – FULLY DRESSED USE CASE .. 50

TABLE 1.11: PRODUCT BACKLOG .. 51

TABLE 2.1: PROJECT INTERNAL ORGANIZATION ... 54

TABLE 2.2: STAKEHOLDERS ... 55

TABLE 2.3: IMPORTANT DATES ... 55

TABLE 2.4: PROJECT MANAGEMENT TIME COMPOSITION... 58

TABLE 2.5: PROJECT MILESTONES .. 60

TABLE 2.6: TEAM INTERN RESPONSIBILITIES .. 60

TABLE 2.7: SCRUM CEREMONIES .. 61

TABLE 2.8: RISK DEFINITIONS.. 62

TABLE 2.9: DEALING WITH RISKS .. 65

TABLE 2.10: OCCURRED RISKS .. 66

TABLE 3.1: GIT MAIN BRANCHES .. 68

TABLE 3.2: GIT SUPPORTING BRANCHES .. 69

TABLE 3.3: SOFTWARE ENGINEERING PRINCIPLES ... 69

TABLE 3.4: QUALITY CODE METRICS ... 71

TABLE 3.5: CI/CD STAGES .. 74

TABLE 3.6: HTTP RESPONSE SAMPLE .. 74

TABLE 3.7: DEVELOPMENT TOOLS .. 75

TABLE 5.1: DEV/PROD PARITY COMPARISON ... 84

TABLE 5.2: USED FRONTEND TECHNOLOGIES .. 85

TABLE 5.3: USED BACKEND TECHNOLOGIES ... 86

TABLE 5.4: API RESPONSES ... 91

TABLE 5.5: INS VIRTUAL LAB EQUIPMENT .. 94

Green Routing Bachelor Thesis

99

Glossary

ArangoDB ArangoDB is a free and native open-source database system with multiple

models. It supports three data models (key/value, documents and graphs) with

a database core and a unified query language called AQL (ArangoDB Query

Language).

Container Processes running on the host system or hypervisor, but in a strictly delimited

context. Often used in the context of Docker or Kubernetes.

Data transfer object A data transfer object (DTO) is an object that carries data between processes

and application layers.

Docker Docker is free software for isolating applications using container virtualization.

Domain driven design Domain driven design is an approach to modelling complex software. The

modelling of the software is significantly influenced by the technicalities to be

implemented in the application domain.

ECTS European Credit Transfer System to accumulate study achievements.

ESLint ESLint statically analyzes JavaScript and TypeScript code to quickly find

problems.

Gin Gin Web Framework is an API framework for Go.

GoBMP Is basically an implementation of Open BMP (RFC 7854) protocol's collector in

Golang.

Golang A statically typed, compiled programming language designed at Google.

Gorm An Object Relation Mapper for Go.

Graph Database A graph database is a database that uses graphs to represent and store heavily

interconnected information.

Green index The green index contains all green scores and ranks all routers by their

ecological aspects. It is the measurement data basis for the green route

calculation.

Green score A green score is a numeric value between 1 and 100, where 1 is better and 100

worse in sense of how ecological something is. It is merged by multiple metrics

which measure ecological aspects.

gRPC gRPC is a modern open-source high performance Remote Procedure Call (RPC)

framework that can run in different environments. It can efficiently connect

services for multiple purposes.

Helm Helm charts help define, install, and upgrade Kubernetes applications and is

basically a package manager for Kubernetes.

Green Routing Bachelor Thesis

100

InfluxDB InfluxDB is an open-source database management system, specifically for time

series concepted. It is developed and distributed by the company InfluxData.

Insomnia Simple and open-source API Client. Insomnia is an alternative for the well-

known tool Postman, which is also an API client.

Jalapeño System developed by Cisco, which collects and processes data from attached

networks, including telemetry data.

JetBrains YouTrack Issue tracking and project management system from the manufacturer

JetBrains. Alternative for other brands like Atlassian Jira.

Kafka Kafka, developed by Apache, is an open-source distributed event streaming

platform used for high-performance data pipelines, streaming analytics, data

integration, and mission-critical applications.

Kaniko Kaniko is a tool to build container images from a Dockerfile.

Kubernetes Is a professional open-source system for automating the deployment, scaling

and management of container applications.

Martini API Martini creates standards-compliant APIs with native OpenAPI 3.0 support to

improve API discoverability and management. Basically, it is a set of tools to

build and consume web APIs for this standard.

Merge Request Also known as Pull Request. Workflow in a version control system to make

source code changes and review them.

Metric A standard of measurement.

Network Topology Describes the arrangement of systems on a computer network.

Object-relational

mapping

Object-relational mapping (ORM) is a programming technique for converting

data between incompatible type systems using object-oriented programming

languages.

OpenAPI specification Defines a standard interface to RESTful APIs for both humans and computers

Panic In Golang, panic is just like an exception in other known languages. It arises at

runtime. In other words, panic means an unexpected condition occurred in a Go

program due to which the execution of the program is terminated.

Protocol A protocol is a standard set of rules that allow electronic devices to

communicate with each other.

Rational Unified

Process

Procedure model for software development projects divided in four main

phases.

Redis Is an open source, in-memory data structure store, used as a database, cache

and message broker.

Green Routing Bachelor Thesis

101

Scrum Board Is one of the tools used when applying the Scrum project method. Basically, a

board filled with work items.

SonarQube SonarQube is a platform for static analysis and evaluation of source code

quality. It analyzes the source code regarding various quality areas and presents

the results rated in quality gates via a dashboard.

Sigma.js Sigma.js is a modern JavaScript framework that allows you to see and interact

with network graphs in your browser. It interacts with graphology, a

multifunctional graph manipulation package, in a symbiotic manner.

Standard Error Stream Via standard error a program can output error data via error stream. This is

often used to display error logs in a command line interface.

Standard Output

Stream

Via standard output a program can output data via data stream. This is often

used to display logs in a command line interface.

Statis Code Analysis Static code analysis (SAST) is a static software testing procedure performed at

translation time of software. The source code is subjected to a series of formal

checks that can detect certain types of errors.

Swagger Widely used documentation method and user interface for Web API

documentations. Supports multiple versions of the OpenAPI Standard.

Telegraf Telegraf is a plugin-driven server agent for collecting and sending metrics and

events from databases, systems, and sensors.

Time Series Database A time series database (TSDB) is a database optimized for storing and analysing

time series such as sensor or telemetry data.

TypeScript TypeScript is a JavaScript-based strictly typed programming language that

provides improved tools at any level in comparison to plain JavaScript.

Green Routing Bachelor Thesis

102

Acronyms

DDD Domain driven design

Glossary: Domain driven design

DTO Data transfer object

Glossary: Data transfer object

DoD Definition of Done

Go Golang

Glossary: Golang

INS Institute for Networked Solutions at the Eastern Switzerland University of Applied

Sciences

JAGW Japapeno API Gateway developed by the INS

K8s Kubernetes

Glossary: Kubernetes

KISS Keep it simple stupid

OR Object relation

ORM Object-relational mapping

Glossary: Object-relational mapping

OST Short form for the Eastern Switzerland University of Applied Sciences

PR / MR Pull Request / Merge Request

Glossary: Merge Request

PoC Proof of concept

RUP Rational Unified Process

Glossary: Rational Unified Process

S.O.L.I.D

S - Single-responsibility principle

O - Open-closed principle

L - Liskov substitution principle

I - Interface segregation principle

D - Dependency Inversion Principle

SR Segment Routing

SR-App Segment Routing Application

Stderr Standard Error Stream

Glossary: Standard Error Stream

Green Routing Bachelor Thesis

103

Stdout Standard Output Stream

Glossary: Standard Output Stream

TSDB Time series database

Glossary: Time series database

YAGNI You aren’t gonna need it

Green Routing Bachelor Thesis

104

References

[1] J. Hauser and P. Schlumpf, “Bachelor thesis Green Routing: Spring Term 2021,” Bachelor thesis,

Institute for network solutions, OST – University of Applied Sciences, Rapperswil, 2022.

[2] C. Larman, Applying UML and patterns: An introduction to object-oriented analysis and design and

iterative development, 3rd ed. Upper Saddle River, NJ: Pearson; Prentice Hall, 2005.

[3] REFSQ; International Working Conference on Requirements Engineering: Foundation for Software

Quality, Requirements engineering: foundation for software quality: 22nd International Working

Conference, REFSQ 2016, Gothenburg, Sweden, March 14-17, 2016 : proceedings. Cham, s.l.: Springer

International Publishing, 2016.

[4] A. Wiggins, The Twelve-Factor App. [Online]. Available: https://12factor.net/ (accessed: Sep. 29 2021).

[5] J. Hauser and P. Schlumpf, “Term project Green Routing: Autumn Term 2021,” Term project, Institute

for network solutions, OST – University of Applied Sciences, Rapperswil, 2021.

[6] D. Vincent, A successful Git branching model. [Online]. Available: https://nvie.com/posts/a-successful-

git-branching-model/ (accessed: Oct. 12 2021).

[7] T. Preston-Werner, Semantic Versioning 2.0.0. [Online]. Available: https://semver.org/ (accessed: Jun.

21 2022).

[8] Conventional Commits. [Online]. Available: https://www.conventionalcommits.org/en/v1.0.0/

(accessed: Oct. 12 2021).

[9] Prettier. [Online]. Available: https://prettier.io/ (accessed: Jun. 21 2022).

[10] OpenJS Foundation, ESLint. [Online]. Available: https://eslint.org/ (accessed: Jun. 21 2022).

[11] Raphael 'kena' Poss, Go (Golang) conding guidelines. [Online]. Available: https://wiki.crdb.io/wiki/

spaces/CRDB/pages/181371303/Go+Golang+coding+guidelines (accessed: Nov. 1 2021).

[12] Golangci-lint is a Go linters aggregator. [Online]. Available: https://golangci-lint.run/ (accessed: Oct.

31 2021).

[13] Code formatting and naming convention tools in Golang. [Online]. Available: https://

www.golangprograms.com/code-formatting-and-naming-conventions-in-golang.html (accessed: Oct. 6

2021).

[14] Stretchr, Inc., Testify - Thou Shalt Write Tests. [Online]. Available: https://github.com/stretchr/testify

(accessed: Oct. 31 2021).

Green Routing Bachelor Thesis

105

C. Appendix

Change history

Version Date Changes Responsible

1.0 24.06.2022 Finished the final appendix. Jonas H. and Pascal S.

Green Routing Bachelor Thesis

106

Contents

1. System test .. 107

1.1 For functional requirements .. 107

1.1.1 Backend .. 107

1.1.2 Frontend ... 114

1.2 For non-functional requirements ... 118

1.2.1 Functionality... 118

1.2.2 Usability .. 118

1.2.3 Reliability .. 119

1.2.4 Performance ... 119

1.2.5 Scalability ... 120

1.2.6 Maintainability ... 120

2. Meeting minutes ... 121

24.02.2022, Project kick-off... 121

03.03.2022, Weekly exchange ... 121

10.03.2022, Weekly exchange ... 123

17.03.2022, Weekly exchange ... 124

31.03.2022, Weekly exchange ... 125

14.04.2022, Weekly exchange ... 126

21.04.2022, Weekly exchange ... 128

28.04.2022, Weekly exchange ... 128

05.05.2022, Weekly exchange ... 129

20.05.2022, Bachelor thesis interim presentation .. 130

09.06.2022, Weekly exchange ... 131

3. Project related configurations .. 132

3.1 Golangci-lint linters .. 132

Green Routing Bachelor Thesis

107

1. System test

During the end of the projects construction phase, the system was tested manually using the open-source

API client Insomnia9. Requests templates for all API endpoints and methods, which are entirely suitable for

system test requirements, were continuously produced during development. For the frontend, manual

tests are performed directly on the website for all general functionalities.

The test requires that the whole Jalapeño system, particularly the Jalapeño API Gateway request service, is

operational and that the network data is consistent. A system test is not possible without this perquisite.

The test was run on one of the developers powerful machines. The program performed exactly as it would

have if it had been installed on a real server and connected to the Jalapeño API Gateway in the provided

INS virtual Lab. Non-functional requirement tests, on the other hand, were performed using a large

collection of mock data supplied from a network specification file. Because no real data was available at the

time this system test took place, all telemetry data for the power consumptions and throughputs of the

nodes was mocked.

1.1 For functional requirements

All system tests for functional requirements are based on the use cases specified in the requirements

definition (part B).

1.1.1 Backend

1.1.1.1 Jalapeño data

ID Request Expected result Fulfilled

T-F-1 GET /jalapeno/sync

Base tests are JD-1-A up to E. Processing and

storing data:

• Calculating average power consumption

for every node

• Syncing throughput for every node

• Setting node links based on node edges

• Storing all received and processed data

into the database

Http status code: 200

Body: empty

Yes

T-F-1-A GET /jalapeno/nodes

Receiving all nodes from Jalapeño

Http status code: 200

Body: nodes array

Yes

9 Website: https://insomnia.rest/

https://insomnia.rest/

Green Routing Bachelor Thesis

108

T-F-1-B GET /jalapeno/links

Receiving all links from Jalapeño

Http status code: 200

Body: links array

Yes

T-F-1-C GET /jalapeno/node-edges

Receiving all node edges from Jalapeño

Http status code: 200

Body: node edges array

Yes

T-F-1-D GET /jalapeno/telemetry/

power/:name

Parameter name with a specific

node name identifier

Receiving power consumption telemetry data

from Jalapeño about the specified node

Http status code: 200

Body: telemetry data

Yes

T-F-1-E GET /jalapeno/telemetry/

throughput/:name

Parameter name with a specific

node name identifier

Receiving throughput telemetry data from

Jalapeño about the specified node

Http status code: 200

Body: telemetry data

Yes

T-F-2 GET /jalapeno/prefixes Receiving all prefixes from Jalapeño

Http status code: 200

Body: prefixes array

Yes

T-F-3 GET /jalapeno/srv6-sids Receiving all SRv6 SIDs from Jalapeño

Http status code: 200

Body: SRv6 SIDs array

Yes

1.1.1.2 Green routes

ID Request Expected result Fulfilled

T-F-4 GET /green-routes All previously calculated green routes for all

nodes available

Http status code: 200

Body: green routes array

Yes

T-F-5 GET /green-routes?:nodeKey

Query nodeKey with a specific

node key identifier

All previously calculated green routes for the

specified node (ingress or egress)

Http status code: 200

Body: green routes array

Yes

T-F-6 GET /green-routes/:id Get calculated green route by a specific identifier Yes

Green Routing Bachelor Thesis

109

Parameter id with a specific

previously calculated green

route identifier

Http status code: 200

Body: green route

T-F-7 POST /green-routes/calculate/

:ingressNodeKey/:egressNodeKey

Parameters with specific node

key identifiers

Syncing latest telemetry data, calculating the

greenest route and generating and deploying the

SR-Policy accordingly.

The green route must be calculated based on the

currently activated green metrics.

Http status code: 200

Body: green route

Yes

T-F-8 DELETE /green-routes/:id

Parameter id with a specific

previously calculated green

route identifier

Deleting a previously calculated green route by id

with the associated SR-Policy (including

deprovisioning of the SR-Policy)

Http status code: 200

Body: green route

Yes

1.1.1.3 Fastest routes

ID Request Expected result Fulfilled

T-F-9 GET /fastest-routes All previously calculated fastest routes for all

nodes available

Http status code: 200

Body: green routes array

Yes

T-F-10 GET /fastest-routes?:nodeKey

Query nodeKey with a specific

node key identifier

All previously calculated fastest routes for the

specific node (ingress or egress)

Http status code: 200

Body: green routes array

Yes

T-F-11 GET /fastest-routes/:id

Parameter id with a specific

previously calculated fastest

route identifier

Get calculated fastest route by a specific identifier

Http status code: 200

Body: green route

Yes

T-F-12 POST /fastest-routes/calculate/

:ingressNodeKey/:egressNodeKey

Parameters with specific node

key identifiers

Calculating the fastest route.

Http status code: 200

Body: green route

Yes

Green Routing Bachelor Thesis

110

1.1.1.4 Statistical purposes

ID Request Expected result Fulfilled

T-F-13 GET /nodes

All previously received nodes from Jalapeño

with a power consumption and throughput

history

Http status code: 200

Body: nodes array

Yes

T-F-14 GET /nodes/:nodeKey

Parameter nodeKey for a specific

node key identifier

Get received node from Jalapeño with a power

consumption and throughput history

Http status code: 200

Body: node

Yes

T-F-15 DELETE /nodes/:nodeKey

Parameter nodeKey for a specific

node key identifier

Deleting a node by key. This includes all

associated data linked (green routes, fastest

routes, SR-policies and logical links)

Http status code: 200

Body: node

Yes

1.1.1.5 Green metrics

ID Request Expected result Fulfilled

T-F-16 GET /green-metric-types

Receiving all green metrics types

Http status code: 200

Body: green metric types array

Yes

T-F-17 PATCH /green-metric-types

Body: array with id of the green

metric type and activated value

to be updated

Patching the activated state of all some or all

green metric types

Http status code: 200

Body: green metric types array

Yes

Green Routing Bachelor Thesis

111

1.1.1.6 SR-Policies

ID Request Expected result Fulfilled

T-F-18 GET /sr-policies

Receiving all generated SR-Policies

Http status code: 200

Body: SR-policies array

Yes

T-F-19 GET /sr-policies

?greenRouteId

Query greenRouteId for a specific

green route identifier

Receiving all generated SR-Policies for a specific

green route

Http status code: 200

Body: SR-policies array

Yes

T-F-20 GET /sr-policies/:id

Parameter id with a specific

previously generated SR-Policy

identifier

Get generated SR-Policy by its id

Http status code: 200

Body: SR-policy

Yes

T-F-21 GET /sr-policies/generate/

:greenRouteId

Parameter greenRouteId with a

specific previously calculated

green route identifier

Generating SR-Policies for a specific previously

calculated green route

Http status code: 200

Body: SR-policies array

T-F-22 GET /sr-policies/deploy/

:srPolicyId

Parameter srPolicyId with a

specific previously generated SR-

Policy identifier

Deploying a previously generated SR-Policy

Http status code: 200

Body: SR-policy

Yes

T-F-23 DELETE /sr-policies/:srPolicyId

Parameter srPolicyId with a

specific previously generated SR-

Policy identifier

Deleting a SR-Policy by id including the

deprovisioning in the network

Http status code: 200

Body: SR-policy

Yes

1.1.1.7 Jalapeño live subscription

The live network subscription must be able to react to link events. In the image below the logs are shown,

which demonstrate the correct processing of these events by JAGW. In order to trigger these events, a link

was previously dropped on the network.

Green Routing Bachelor Thesis

112

In addition, node events must also be able to be processed. As with the links, the logs are shown in the next

image to demonstrate that they are working correctly. . In order to trigger these events, a node was

previously shut down on the network.

Since no events are generated on JAGW for node edges, they are processed together with the link events

per request.

In addition, two other errors on the part of JAGW play a role here. Firstly, the API Gateway always closes

the connection after five minutes and secondly, the cache of the JAGW has a data inconsistency, which can

also lead to a crash of the Green SR-App processing service. Both errors are unfortunately irreparable on

the side of the Green SR-App and therefore the live subscription can be deactivated.

1.1.1.8 Router configuration

To validate the successful configuration of the green route on the necessary routers in the network, the

two figures below display the relevant configuration snippet for each case.

Green Routing Bachelor Thesis

113

Ingress router

Egress router

Green Routing Bachelor Thesis

114

1.1.2 Frontend

1.1.2.1 Display network graph

It is possible to display the network graph. The nodes are arranged in the best possible way using different

inbuilt algorithms from Simga.js. Additionally, nodes can be searched, and further options (at the bottom of

the figure below) are available to interact with the graph.

Furthermore, the links of a node with other nodes can be highlighted to get a better overview, especially

for larger networks with many more links.

Green Routing Bachelor Thesis

115

1.1.2.2 Generate routes

A green route can be generated using the button at the top left of the image below. Clicking on the button

opens a pop-up where the generation can be started by specifying both the ingress and egress node and

clicking the respective button.

After the successful generation of a new green route, the path with all used metrics is automatically

displayed in the network graph. In the dropdown next to the button for generating the route, the route is

pre-selected, and the total green score is displayed, as visualized in the next figure.

Green Routing Bachelor Thesis

116

1.1.2.3 Update green metrics

The button "Manage green metrics" opens a pop-up that displays all available green metrics and displays

which of them are currently activated and which are deactivated. The activation status of the green metrics

can also be adjusted via the pop-up.

1.1.2.4 Compare scenarios

The button in the upper left corner "Generate fastest route" can be used to generate the traditional fastest

route for an ingress and egress node. This works in the frontend basically the same way as generating a

new green route.

Through this option, the green route can be compared to the fastest route. Both paths are displayed in the

network graph in a different color. Green stands for the green route, blue for the fastest route and overlaps

are colored brown.

Green Routing Bachelor Thesis

117

Green Routing Bachelor Thesis

118

There is also an "Explanation" button that opens a pop-up in which the colors used are explained.

1.2 For non-functional requirements

All system tests for non-functional requirements are based on the definition of non-functional

requirements specified in the requirements definition (part B).

1.2.1 Functionality

Based on the definition for this non-functional requirement, no tests are required for the topic's security

and interoperability.

1.2.2 Usability

ID Based on Expected behaviour and possibilities Fulfilled

T-NF-1 Understandability The green route and node objects provide data about

the power consumption, throughput and other

manually defined green metrics for links between

nodes involved and a resulting cumulated green score

for the whole route.

It is possible to view a history for all green scores of

green routes and node power consumptions and

throughputs for each node.

Yes

T-NF-2 Operability No possibility to test this completely, but the network

configurations worked without problems on the

(Yes)

Green Routing Bachelor Thesis

119

network until now. It worked until now without issues

to provision and deprovision configurations on routers.

1.2.3 Reliability

ID Based on Expected behaviour and possibilities Fulfilled

T-NF-3 Availability Since the demands for this are not high, no special

deployment setup was implemented to reach a very

high availability. However, if the frontend or backend

should crash during runtime, they will be automatically

restarted by Kubernetes.

Yes

T-NF-4 Recoverability The application system is developed according to the

12-Factor Methodology to ensure that it meets the

Cloud Native Standard. Our app passed all 12 factors,

with only one small discrepancy as described in the

documentation. It is very easy to redeploy the Green

SR-App and it automatically restarts itself after a crash.

Yes

1.2.4 Performance

ID Based on Expected behaviour and possibilities Fulfilled

T-NF-5 Capacity The application can handle a green route calculation for

a network with 1000 nodes and many times more links

in between without any problems or many resources.

Yes

T-NF-6 Time behavior In less than 10 seconds, the program should calculate a

green route and deploy the SR-Policy to the network.

With 1000 nodes on fast desktop PCs inside the docker

build environment, the achieved value is under 1

second, but without the deployment of the SR-Policy.

The SR-Policy can only be deployed in the real data

mode (no mocked data).

While connected to the INS virtual Lab with no mocked

data, the complete calculation and deployment of the

SR-Policy takes around 8 seconds.

The Jalapeño API Gateway must be functioning in

normal workload with typical response times as a

precondition.

Yes

Green Routing Bachelor Thesis

120

1.2.5 Scalability

Since the demands for this are not high due to the purposes for demonstrations only, no special

deployment setup was implemented to automatically scale the running application. However, this can be

achieved relatively easy by increasing the count of replicas of the system on Kubernetes.

1.2.6 Maintainability

ID Based on Expected behavior and possibilities Fulfilled

T-NF-7 Analyzability Multiple log levels must be available in the backend,

which can be controlled by environment variables. The

log events vary according to the stated and accessible

options.

Yes

Green Routing Bachelor Thesis

121

2. Meeting minutes

24.02.2022, Project kick-off

Participants • Prof. Laurent Metzger

• Michel Bongrad

• Jonas Hauser

• Pascal Schlumpf

Agenda and notes

1. BA Planung
a. Idee: Selbstorganisierte Planung durch uns

i. Oder doch noch ein Workshop? Nur noch nächste Woche für uns möglich (Planung)
b. Ausarbeitung Projektplan diese und nächste Woche
c. Vorstellung Zeitplan Draft
d. Priorisierter Product Backlog (noch in Arbeit)
e. Streng iterativ mit vollwertigen Ergebnissen nach jedem Sprint

i. Ausnahme Sprint 1 für Inception
2. Server und Services

a. Gleiches Setup wie in SA geplant
i. MS Teams, YouTrack, GitLab, CI/CD mit INS Runners

ii. GoLand, Docker, Kaniko
b. Zusatz K8S Deployment

i. Yannick Zwicker
c. SonarQube geht nicht mehr

i. Bei Yannick Zwicker melden
d. Ob weiteres nicht mehr funktioniert, wissen wir jetzt noch nicht
e. Wie ist der Stand um die Daten von den Routern zu bekommen?

i. Wurde nicht weiter verfolgt seit Weihnachten
ii. Michel hat einen Workaround gebaut -> muss noch getestet werden

iii. Michel wird sich dem Thema wieder annehmen
iv. Fokus auf Mocken/Faken, mehrere Möglichkeiten für die Umsetzung

1. Direkt in kafka topic schreiben
2. Direkt in InfluxDB schreiben
3. Generierte Meldungen an Telegraf senden (wie bisher)

3. Aktueller Arbeitsfortschritt
a. Systeme / Tools aufsetzen
b. Dokumentationstemplate
c. Projektplan

03.03.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Michel Bongrad

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

Green Routing Bachelor Thesis

122

1. Brainstorming Product Backlog (10 bis 11 Uhr)
a. Erweiterung der Requirements aus SA

i. UC07 Login löschen?
ii. UC06 View routes wird nur umgesetzt durch Anbindung an Frontend vom INS

(optional)
iii. Actors beibehalten? Authentifizierung & Autorisierung nach uns nicht nötig (Gibt

wichtigeres umzusetzen)
2. Verschiben: BA Erwartungen / allgemeine Anforderung (von Laurent)
3. Projekt Plan Review (Plan ab 11 Uhr)

a. Wichtig: Zeitplan, Meilensteine, Risiko mgmt
4. Konkrete Mängel in der SA Dokumentation, die wir verbessern können?
5. Updates deployment auf unseren Server sr-000166 (Michel)
6. Aktueller Arbeitsfortschritt

a. Development concept draft done
b. Requirements wip

7. Outlook
a. M1 abschliessen (Projekt Plan)
b. M2 WIP (Requirements)
c. Start Elaboration (Research and conceptions)

8. Pascal und Jonas abwesend nächsten Donnerstag (HSR Skitag)
a. Wir senden die definierten Requirements frühzeitig per Teams und erwarten gerne bis zum

Wochenende die Bestätigung / das Feedback

Notes on each agenda item discussed

1. Notes
a. SR Aspekt ist wirklich Prio 1 für die Umsetzung aus Sicht von Laurent

i. Muss auf SRv6 umgesetzt werden, mit IPv6 Adressen
ii. Gibt eine Einführung am Mittwoch 09.03 15:00-17:00 in SR

iii. Das Team schaut ob sie das Netzwerk neu deployen wollen auf eine neuere Version
des Images, dieses könnte die Konfiguration erleichtern

b. Alle Einverstanden mit der Umstellung auf Subscription
c. Metrik g CO2 /Mbit wäre grundsätzlich gut. Man muss die Stromart pro Rechenzentrum

nehmen und als Konfiguration pro Node nehmen
i. Gut wäre wenn man aus mehreren Pfaden auswählen könnte

ii. Throughput wird fix als Metrik genommen
iii. Carbon footprint monitoring anschauen
iv. Vergleich von Greenest Path zu Shortest Path mit der Einsparung über einen

Zeitraum
v. Average verwenden für einen stabilen Pfad aber trotzdem auch die Realtimedaten

berücksichtigen
d. Fokus soll auf einer Demo liegen welche die Möglichkeiten aufzeigt die man im Bereich SR

und Ökologie machen kann
e. Pipeline optimierung ist eher Nebenthema
f. Deployment auf Kubernetes wird umgesetzt und wird geschätzt
g. Es wird ein einfaches GUI gewünscht zu Präsentationszwecken um auch sehen zu können

was passiert
i. Optimalerweise werden auch die Pfade angezeigt.

ii. Man sollte auch den Unterschied von Fastest path zu greenest path sehen
2. Zugriff auf Swisscom Netz ist möglich aber nicht hilfreich aktuell

a. Möglicherweise gibt es noch andere Router die man nutzen könnte im IATF-Netz, ist nicht
für uns Relevant

Green Routing Bachelor Thesis

123

3. Wird nächste Woche beim persönlichen Treffen besprochen basierend auf den heute definierten
Zielen

4. Zwischenpräsentation in der Kalenderwoche 19 inklusive Michel
a. Schlusspräsentation in der KW 25 inklusive Michel

5. Michel wird die SA Doku durchschauen und Feedback geben
6. Jalapeño hat ein Update bekommen und es hat ein paar Änderungen am Gateway gebraucht.

Michel wird es am Nachmittag deployen auf dem Server
a. Support und eventuelle Weiterentwicklung sind neu bei Dominique Illi und Urs …

7. Ok
8. Meeting verschoben auf Mittwoch ab 15:00

10.03.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Michel Bongrad

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Requirements in Arbeit
a. Wird noch diese Woche fertig gestellt

2. BA Erwartungen / allgemeine Anforderung (von Laurent)
3. Segment routing introduction from Laurent
4. Feedback zur SA Dokumentation (von Michel evtl.)
5. Simulate network changes for live updates (jagw subscriptions)
6. Aktueller Arbeitsfortschritt

a. Development concept
b. Requirements

7. Outlook
a. M1 abschliessen (Projekt Plan)
b. M2 WIP (Requirements)
c. Start Elaboration (Research and conceptions)

Notes on each agenda item discussed

1. Neue IOS-XR Image Version ist 7.5.1 und diese wird auch im INS virtual Lab provisioniert
2. Wichtige Punkte

a. Mindestens drei Faktoren für die Metriken
b. Deployment auf K8s Cluster
c. Scenarios für die Demo

i. Shortest Path vs Greenest Path
ii. Demo mit Iperf auf realem netz

iii. Für grosse Netzwerke mit gemockten Daten ohne Iperf
iv. Stromdaten werden in einem Register pro Router gesammelt

3. Nichts anzumerken
4. Feedback

a. Bilder zentriert, leere Zeilen vorher und nacher
b. Bei Bildern immer Quelle angeben auch wenn Eigenkreation

Green Routing Bachelor Thesis

124

c. Teil B in den Anhang
d. List of Figures etc. ebenfalls Nummerieren
e. Nicht mehr als 4 Verschachtlungsebenen
f. Keine Bilder oder Tabellen auf die nicht verwiesen wird
g. Erster Satz in einem Abschnitt macht klar um was es geht
h. Letzter Satz in einem Abschnitt fasst alles noch einmal zusammen

5. Verschoben (bilateral besprechen)

17.03.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Michel Bongrad

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Feedback zu Requirements
2. JAGW fehlende Endpoints

a. l3vpn_v4_prefix (content in Jalapeno: yes)
b. ls_srv6_sid (content in Jalapeno: yes)
c. Peer? (content in Jalapeno: yes)
d. Neues Risiko wird erstellt

3. Inkonsistente Daten von Jalapeno
a. Behindern bei der Arbeit

4. VRF Introduction (von Severin)
a. Von wo kommen die Daten?
b. Alle nötigen Daten im Domain Model?

5. Status Virtual Lab IOS-XR 7.5.1 upgrades
6. Info: Go v1.18 jetzt offiziell veröffentlicht
7. Aktueller Arbeitsfortschritt

a. App für Segments bereit: Domain model v1
b. Frontend PoC
c. Green Index metrics

i. Aktuell ca. 15 Ideen
ii. Interview mit Swisscom

d. Calculation algorithm
8. Outlook

a. Green index
b. Configure real network

9. Letzte Arbeitswoche von Michel beim INS

Notes on each agenda item discussed

1. Keine spezifischen Rückmeldungen zu den Anforderungen
2. Infos

a. Prefix ist auch Interessant, Base attributes -> ext_community_list
b. Vpn rd ebenfalls wichtig
c. Es hat zu viele Abhängigkeiten um es schnell im Gateway zu implementieren

Green Routing Bachelor Thesis

125

d. Evt direkte Verbindung zu Arango ohne Gateway
i. Abhängig von der evtl. Weiterentwicklung

e. Direkt auf Kafka topic zugreifen um Änderungen mitzubekommen ist eine Alternative um
zu sehen was sich geändert hat

f. Es wird am 17.03.22 Nachmittag einen Entscheid gefällt zur Weiterentwicklung des
Gateway

g. Wenn bis am Abend keine andere Information kommt, wird das Topic nicht im Gateway
sein

3. Es gibt einen Fix, welcher anscheinend funktioniert
a. Wurde auf unserer Seite noch nicht angewendet
b. Fix wird zeitnahe auf unserer Seite angewendet

4. Inputs von Severin
a. VRF ist ein virtueller Space für Kundennetzwerke
b. RouteDistinguisher fügt Tag hinzu welcher sagt zu welchem Netz es gehört
c. Route targets könne tags exportieren welche von anderen VRFs importiert werden können

i. Ermöglicht VRF übergreifende Sachen
ii. Nur wenn export und import tag matchen funktioniert VRF

d. 10.10.10.10:1 um Netz zu identifizieren als "Hack"
e. In 99% der Fälle ist export und import tags identisch

i. Da keine andere Möglichkeit muss davon ausgegangen werden, dass diese
identisch sind

f. RD manuell setzen und logik implementieren um vrf name zu generieren
g. RD type immer 1 -> nicht beziehen
h. https://packetlife.net/blog/2013/jun/10/route-distinguishers-and-route-targets/

5. Ist bereit und konfiguriert
6. Infos
7. Infos

a. Rückmeldungen
i. Node hat mehr einen locator als eine SegmentId, durch IPv6 gibt es mehr Felder

ii. Nach der Destination auch Color exportieren
b. Mit zwei unidirectional links gibt es probleme bei der Darstellung -> zu einem bidirectional

link umwandeln
i. Positionen von den Routern hardcoden und nicht dynamisch erstellen

31.03.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. JAGW/Jalapeno Pain Points, gelistet nach Priorität (Liste an Dominique gesendet)
a. LsNodeEdges Dateninkonsistenz (@Julian)
b. Subscription stream timeout error nach exakt 5min

i. Error: "rpc error: code = Unknown desc = stream timeout"
ii. Lösungsvorschlag auf seitens Server (JAGW)

iii. Idee "keepalive": https://github.com/grpc/grpc-go/issues/5059#issuecomment-
994997711

https://packetlife.net/blog/2013/jun/10/route-distinguishers-and-route-targets/
https://github.com/grpc/grpc-go/issues/5059#issuecomment-994997711
https://github.com/grpc/grpc-go/issues/5059#issuecomment-994997711

Green Routing Bachelor Thesis

126

c. Keine events bei SubscribeToLsNodeEdges()
i. Workaround seitens Green-SR App möglich, sofern Daten konsistent sind

d. Fehlende Collections von Jalapeno im JAGW
i. "l3vpn_v4_prefix"

ii. "peer" (unbekannt, ob wirklich nötig)
2. Weiterer JAGW pain point bekannt

a. Request service gibt auch Nodes und Links mit "del" status retour
b. In Jalapeno sind diese aber nicht zu finden
c. Evtl. ein Caching Problem?

3. Ausbau Wechsel auf Subscription on hold, weil zu viele pain points mit JAGW (funktioniert mit
NodeEdges on demand)

a. Aufwand und tatsächlicher Ertrag lohnt sich zum jetzigen Zeitpunkt nicht
b. Fehlerbehandlung und Überprüfungen für Datenkonsistenz sind extrem aufwändig mit dem

aktuellen Standpunkt
4. Aktueller Arbeitsfortschritt

a. Alle dependencies up to date (exkl. Go v1.18)
b. Neues Domain Model umgesetzt (mehrere neue Entities etc.)
c. Direktverbindung zu Jalapeno (für z.b. l3vpnV4Prefix)
d. Green Index handling and calculation
e. JAGW subscription

5. Outlook
a. API Ausbau
b. Mocking und Testing
c. Algorithmus v2 beta
d. Get throughput from router
e. Architektur Doku
f. Abschluss M4

Notes on each agenda item discussed

1. JAGW Übersicht der Probleme
a. Fix wird heute von Julian eingespielt auf Jalapeno, informiert wenn Wechsel vollzogen

worden ist
b. Kein Kommentar
c. Julian schaut einmal in Kafka ob alle ok ist
d. Sind nicht vorhanden im Gateway und wird wahrscheinlich nicht gelöst, da Workaround

vorhanden
2. JAGW Part 2

a. Liegt wahrscheinlich am Redis cache
3. Ist ok dass wir Subscription on hold stellen
4. Kein Kommentar
5. Bei verschiedenen Versionen ist es wichtig, die Gründe in der Doku zu beschreiben (bsp.

Algorithmus)

14.04.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Severin Dellsperger

• Jonas Hauser

Green Routing Bachelor Thesis

127

Agenda

1. Teilausfall Pascal aufgrund Krankheit/Spitalaufenthalt
a. Ca. eine Woche Arbeitszeitausfall
b. Arbeit ab jetzt wieder und versucht die Zeit Schritt für Schritt einzuholen
c. Leichte Verzögerung dadurch für die M4 Erreichung

2. JAGW/Jalapeno pain points:
a. LsNodeEdges Dateninkonsistenz (Julian)

i. Es scheint nach unserer App behoben zu sein
b. Subscription stream timeout error nach exakt 5min (Dominique)
c. Keine events bei SubscribeToLsNodeEdges() (Dominique)
d. Fehlende Collections von Jalapeno im JAGW

i. Workaround implementiert
e. Request service gibt auch Nodes und Links mit "del" status retour, obwohl sie nicht mehr

vorhanden sind in der ArangoDB von Jalapeno. (Dominique)
3. BA Zwischenpräsentation (Laurent)

a. 18.05 15:00 oder 20.05 11:00
b. SA PPT ausgehändigt an Laurent für Demo Zwecke

4. Welche Yang Models und Sensor Pfade nehmen um Throughput zu bekommen?
5. Aktueller Arbeitsfortschritt

a. Jagw Subscription
b. Get throughput from router
c. Implementation LsPrefixes & LsSrv6Sid
d. Algorithmus v2 beta
e. API Ausbau (neue Endpoints)

6. Outlook
a. Green route segments
b. Generate SR-Policies
c. Abschluss M4
d. Start M5

i. Configure network
ii. Frontend

iii. Deployment to K8s

Notes on each agenda item discussed

1. In Ordnung, sie wünschen Pascal gute Genesung
2. Details

a. Problem sollte weiterhin bestehen, Severin klärt ab
b. Dominique wird leider nicht sehr bald Zeit dafür haben
c. Dasselbe wie zuvor
d. Okey
e. Dominique wird leider auch dafür nicht sehr bald Zeit haben, evtl. wird sich Severin darum

kümmern
3. Um eine Woche verschoben

a. Entweder 18.05 nach 15:00 oder
b. 20.05 um 11:00
c. Vor Ort in Rapperswil

4. Severin schaut es sich an und meldet sich
5. Kein Kommentar
6. Kein Kommentar

Green Routing Bachelor Thesis

128

21.04.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. BA Zwischenpräsentation (Laurent)
a. 18.05 15:00 oder 20.05 11:00

2. Router Erkennung über angehängte Netzwerke nur über parsing möglich
a. Collection L3_VPN_V4_Prefix
b. Router-ID und Peer sind immer Reflektoren
c. Erkennung welcher Router nur über next hop möglich

3. Updates zu JAGW pain points?
4. Aktueller Arbeitsfortschritt

a. M4 abgeschlossen
b. Start M5

5. Outlook
a. Frontend part 1w

i. Display graph
ii. Generate Green route pop-up

iii. Path highlighting
iv. Etc.

b. Configure network
i. Generate SR-Policies

ii. Config message
iii. Green route CRUD network handling

Notes on each agenda item discussed

1. Definitiver Termin wird am 28.04 bestätigt
2. Julian schaut wie sie es gelöst haben auf ihrer JAGW Instanz und gibt Rückmeldung
3. Wir bis Ende BA nicht gelöst werden.

a. Router Konfiguration soll vorbereitet werden
b. Alle Probleme dokumentieren und laufend melden

4. Keine wichtigen Inputs
5. Keine wichtigen Inputs

28.04.2022, Weekly exchange

Participants • Julian Klaiber

• Jonas Hauser

Agenda

1. Pascal wieder im Spital
a. Macht eine zweiwöchige Pause in der BA

2. BA Zwischenpräsentation Termin
a. 18.05 15:00 oder 20.05 11:00

Green Routing Bachelor Thesis

129

3. Laurent zeigt Präsentation von letzter Woche
4. Aktueller Arbeitsfortschritt

a. Frontend part 1w
i. Graph dynamisch anzeigen

ii. Generate Green route pop-up
iii. Path highlighting basierend auf letzter berechneter Green Route

b. Configure network
i. Backned diverse Fehlerbehebungen

ii. Generate SR-Policies
iii. Protobuf repo Erstellung

5. Outlook
a. Frontend Optimierungen

i. Zweite Möglichkeit um bestehende Green Routes anzuzeigen
b. Config message Generierung
c. API Ausbau
d. CRUD green route network handling
e. BE Optimierung & Fehlerbehebungen

Notes on each agenda item discussed

1. Nach Besprechung mit Pascal möchte er eine Zweiwöchige Auszeit nehmen für die Genesung
a. Julian kann keine definitive Aussage darüber treffen, wie wir weiter vorgehen sollen und

wird darum dies mit Laurent bilateral besprechen
b. Das Projekt verläuft allgemein trotzdem sehr gut und höchstwahrscheinlich müssen keine

grösseren Umplanungen vorgenommen werden, sondern einfach gewisse weniger
wichtigen Features weggelassen werden für die betroffenen Meilensteine bzw. Product
Backlog items

c. Laurent meldet sich bei uns
2. Traktandum verschoben, weil Laurent abwesend ist
3. Traktandum verschoben, weil Laurent abwesend ist
4. Ausgiebiger Austausch mit Julian

a. Über das Frontend von ihrer BA inkl. Feedback (Demo aktueller Frontend Stand)
b. Über das Backend und den Schwierigkeiten das Netzwerk zu konfigurieren und ein Handling

zu machen für Green Route Änderungen (z.b. Green Route löschen)
i. Info: Cisco ist daran eine Netzwerkprovisionierungs-API zu bauen, mit welcher die

SR-Apps nicht mehr selbst die Netzwerke konfigurieren müssen. Diese API ist aber
noch nicht fertig und kann darum noch nicht verwendet werden.

ii. Potentiell alternatives Tool um Netzwerk zu konfigurieren:
https://github.com/nornir-automation/gornir

5. Keine wichtigen Inputs

05.05.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

https://github.com/nornir-automation/gornir

Green Routing Bachelor Thesis

130

1. Zweiwöchiger Ausfall von Pascal, weiteres Vorgehen
a. Bis 15. Mai, Ende M5
b. Anpassungen M5

i. Routerkonfiguration abschluss verschieben
ii. Deployment verschieben

2. BA Zwischenpräsentation Termin
a. Definitiv am 20.05 um 11:00

3. Laurent zeigt Präsentation von vorletzter Woche
4. Anforderungen BA Zwischenpräsentation
5. Aktueller Arbeitsfortschritt

a. Start M5 Sprint 2, nur halbe Zeit eingeplant
b. Frontend

i. Generate green route
ii. Select and highlight green routes

iii. Manage green metrics
c. Router Konfiguration

i. Beim Yang model für Traffic Engineering fehlt srv6 bei den Segmenten
ii. Jetzt wird versucht es über SSH direkt zu konfigurieren

iii. Gab noch Probleme mit SSH Standard Lib von Go
iv. Wird noch versucht über gornir

6. Outlook
a. Calculate fastes path und Vergleich im Frontend
b. Green score besser anzeigen
c. BE Bugfixes

Notes on each agenda item discussed

1. Es gibt zwei Varianten
a. Verlängerung von 40h -> ist die präferierte Variante
b. Oder Funktionsumfang reduzieren
c. Entscheid gefallen auf Verlängerung
d. Präsentation am 24.06 11:00 vor Ort

2. Keine weiteren Infos
3. Er stellt sie uns zur Verfügung
4. Eine Mischung aus Übersicht und technischen Aspekten sowie persönliche Erfahrungen und

Herausforderungen
a. Stefan Keller wird Gegenleser sein und auch an der Präsentation anwesend sein
b. 20min (exkl. 5min Demo)
c. Evtl. in Englisch, aber wenn alle Deutsch können dann in Deutsch
d. Slides aber definitiv in Englisch

5. Bemerkungen
a. Keine
b. Wäre gut wenn ein Router ausgewählt werden könnte anstelle über die Keys

i. Farbe des Pfades natürlich in Grün
ii. Vergleich von schnellster zur Grünsten Route mit separaten Graphen ist besser

iii. Ein Szenario mit 100 Routern und 500 - 1000 Links ist gewünscht

20.05.2022, Bachelor thesis interim presentation

Participants • Prof. Laurent Metzger

• Prof. Stefan Keller

Green Routing Bachelor Thesis

131

• Julian Klaiber

• Severin Dellsperger

• Jonas Hauser

• Pascal Schlumpf

Agenda

1. Feedback zur Präsentation

Notes on each agenda item discussed

2. Feedback zur Präsentation
a. Green Routing in Networking erwähnen
b. Grüne Metrik für Fastest Path auch anzeigen, um zu vergleichen
c. IGP Metrik für Grüne Route anzeigen
d. Grössere Topologie verwenden, einzelne Folie nur für den Vergleich nutzen
e. Mehr Vergleich zwischen Routen in der Demo aufzeigen
f. Direkt Green Score und IGP link metrik anzeigen
g. Im Frontend evtl. Beide Graphen übereinanderlegen, um besser nachzuvollziehen
h. Wenn nötig fixe Punkte (x/y) verwenden für die Graph Nodes, damit es besser aussieht
i. Evtl. Ablaufdiagramm für den Kalkulierungsalgorithmus erstellen

09.06.2022, Weekly exchange

Participants • Prof. Laurent Metzger

• Julian Klaiber

• Severin Dellsperger

• Pascal Schlumpf

Agenda

1. Genauer Termin für BA Präsentation
2. Aktueller Arbeitsfortschritt

a. Frontend abgeschlossen
i. Pfade könne nun kombiniert angezeigt werden

ii. Man sieht nun sowohl die Link Kosten als auch den GreenScore auf den Edges
b. Netzwerk config funktioniert aber konnte nicht kontrolliert werden

i. Wie prüft man pfad von Packeten?
c. Verschiedene Aufräumarbeiten und Behebung offener Punkte

3. Outlook
a. Abschluss Entwicklung in diesem Sprint
b. Abgabe Abstract und Poster
c. Dokumentation fertigstellen
d. Abgabe aller Teile

Notes on each agenda item discussed

1. Freitag 24.06.22 Vorort
2. Aktueller Arbeitsfortschritt

a. Kein Kommentar
b. Nur per debugging auf dem router möglich

i. Nicht so wichtig

Green Routing Bachelor Thesis

132

c. Kein Kommentar
3. Outlook

a. Laurent hat gefragt, ob wir auch bei der BA Präsentationen dabei sind am 17.06 -> Antwort
Ja wir sind vor Ort am präsentieren

3. Project related configurations

3.1 Golangci-lint linters

• goconst

• gocritic

• gofmt

• gomnd

• Gocyclo

• goprintffuncname

• gosec

• gosimple

• govet

• bodyclose

• deadcode

• depguard

• dogsled

• errcheck

• errorlint

• exportloopref

• exhaustive

• ineffassign

• misspell

• nakedret

• prealloc

• predeclared

• revive

• staticcheck

• structcheck

• stylecheck

• thelper

• tparallel

• typecheck

• unconvert

• unparam

• unused

• varcheck

