
Haskell and WebAssembly
An Introduction based on Asterius

Nicolas Karrer
OST Eastern Switzerland University of Applied Sciences

MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta

Spring 2022
Switzerland

Abstract
When writing code, different programming languages offer
various approaches to solve a problem. Some of those prob-
lems might be elegantly solved in one programming language,
but challenging in a different one. When it comes to the Web,
interactive client-applications rely only on JavaScript. With
the introduction of WebAssembly, this limitation has fallen.
This article gives some thoughts, why it can be useful to write
applications for the Web in another language than JavaScript,
and it provides an introduction, on how to compile Haskell code
to WebAssembly with the Haskell-to-WebAssembly-Compiler
Asterius. It shows an approach how to compile a full Haskell
application, as well as making single Haskell functions avail-
able in JavaScript. It can be challenging, when it comes to the
interaction between a strictly typed language, like Haskell, and
the dynamically typed language JavaScript. Based on exam-
ples, the article gives insight into this challenge, and its solution
provided by Asterius.

Keywords: WebAssembly, Asterius, JavaScript, Haskell

1 Introduction
The intention of this article is to reflect on the insights gained
from trying out the Haskell-to-WebAssembly-Compiler As-
terius. The Article aims to be an aggregation and summary
of the, in my view, most important take aways for beginners,
provided by the several blogposts and tutorials of the cre-
ators of Asterius, as some of the information is distributed.
In this article I will discuss two cases Asterius provides to
compile Haskell to WebAssembly:

• Section 5: Compiling a Haskell Application to We-
bAssembly and run it in the browser. In this case, the
main function is used as the entry point. It provides
the possibility to run Haskell-Applications, targeting
the browser or the NodeJS environment.

• Section 6: Compiling a single function or a set of
functions to WebAssembly. In my opinion, this is
an interesting case: Haskell code could be used as
library code. It would be possible to make use of
some strengths of the Haskell Programming Language
within a JavaScript application.

2 Background
Asterius is a compiler based on the Glasgow Haskell Com-
piler (GHC) for Haskell1, targetingWebAssembly. It compiles
Haskell Code to WebAssembly, and it provides infrastruc-
tural code to run the resulting WebAssembly code in the
browser and the NodeJS environment. It contains library
code to help with type marshalling on the Haskell and the
JavaScript side. Tweag I/O2 maintains Asterius. They pro-
vide introductory tutorials and examples3 as well as more
in-depth documentation4

3 Motivation
While server-side applications for the Web are not restricted
to a single programming-language, client-side applications
on the other hand rely on JavaScript. Writing meaningful,
interactive applications for the browser therefore requires
developers to learn JavaScript. There were approaches to run
applications written in other languages for the browser, for
example Java or Flash, but they were not adopted broadly
or abandoned by the browser providers for a multitude of
reasons. [Ora] [Goo17]

Other approaches like emscripten or ASM.js used JavaScript
or a subset of JavaScript as a compilation target. But as
JavaScript is not designed as a compilation target, limita-
tions persist. WebAssembly was introduced as a low-level
bytecode, especially design to work as a compilation target.
It was claimed to be the first compilation target which is safe,
fast, portable, and compact. [HRS+17]
Browsers are adopting features which give web applica-

tions the possibility to act like a native app. This includes
the ability to run without internet access or accessing the
device’s cameras and position. This means more potential
use cases for web applications arise. An example of such a
use case would be a bar code scanner for e-commerce and
shopping apps. It requires knowledge in image recognition,
which, frommy experience working in the field of web devel-
opment, seems not to be wide spread in the Web community.

1https://www.haskell.org/ghc/
2https://www.tweag.io/
3https://www.tweag.io/blog/tags/asterius
4https://asterius.netlify.app/

2022-06-12 11:53. Page 1 of 1–9.

https://www.haskell.org/ghc/
https://www.tweag.io/
https://www.tweag.io/blog/tags/asterius
https://asterius.netlify.app/

Nicolas Karrer

Therefore, giving more developers access to not only the
server-side, but also to the client-side of the Web can be
beneficial. It has the potential to increase the amount of
good quality web applications, especially when it comes to
attributes of special knowledge, performance, or reliability.

As Haskell is a pure functional language, is statically typed
and provides a lot of language features to solve problems
elegantly, it is an interesting language for JavaScript pro-
grammers to dive into and sharpen their knowledge. They
could improve their skills in functional programming, which
JavaScript is also capable of. They might take advantage of
performance improvements for intensive computation, or
they could use the language features of Haskell to solve pro-
gramming problems more adequately and reliable than it
would be possible with JavaScript.

4 Prerequisite
For interested readers, wanting to try out Asterius, the provider
recommend, using the docker-image5 to compile the Haskell
code to WebAssembly.
The commands used in this article assume that they are

run on the command line interface (CLI) inside the Docker
container. The necessary docker image can be pulled from
Docker Hub with the command from Listing 1. Listing 2
shows how the Docker container is started from the current
directory.

1 docker pull terrorjack/asterius

Listing 1. The command to pull the Asterius Docker image.

1 docker run -it --rm -v .:/ workspace -w /workspace

terrorjack/asterius

Listing 2. The command to start the Asterius Docker
container.

As most browsers do not allow file access to the local file
system for security reasons, at least a simple web server
is necessary to run the WebAssembly code in the browser.
To test and run code from the examples in this article, the
http-server6 package from NPM (Node package manager)
was used.

5 Use case 1: Running a Haskell application
in the browser

Compiling Haskell code to be run in the browser for a simple
example is straight forward. The code in Listing 3 doubles a
given integer and prints the output in the browser console:7.
The command from Listing 4 compiles the Haskell code to
WebAssembly.

1 import Control.Monad
2 import System.IO
3

5https://hub.docker.com/r/terrorjack/asterius
6https://www.npmjs.com/package/http-server
7https://balsamiq.com/support/faqs/browserconsole/

4 double :: Int -> Int
5 double x = 2 * x

6
7 main :: IO
8 main = print $ double 3

Listing 3. The content of the file double.hs.

1 ahc -link --browser --input -hs double.hs

Listing 4. The command to compile double.hs to
WebAssembly.

The compilation results in a set of files. Those files are
necessary to run the code in the browser. The most interest-
ing ones are double.wasm, double.html and double.mjs. While
double.wasm represents the WebAssembly bytecode of the
program. The files double.html and double.mjs contain gener-
ated code to help running the resulting WebAssembly code
in the browser.
The result of the program execution can be seen, when

serving double.html to the browser via a web server. With
in double.html the file double.mjs is loaded. double.mjs loads
then the WebAssembly code from the web server and exe-
cutes it asynchronously by calling the exported main func-
tion. The resulting “6” is printed to the console, visible in the
browser’s developer tools.
In of itself this code is not very useful but shows some

initial mechanics how to use the Asterius compiler and what
it produces.
Tweag I/O provides two, more in depth tutorials which

are worth mentioning for this use case:
The Hilbert Tutorial [SHI19]: This tutorial shows how

to print a graphic to the browser, using the Scalable Vec-
tor Graphics (SVG) image format. It uses the Haskell pack-
age manager Cabal to import already available packages
from the Haskell ecosystem for generating SVG-graphics.
It uses import javascript to render the resulting graphic
in the browser. This is possible because Asterius provides
an adaption of Haskell’s JavaScript Foreign Function In-
terface (JSFFI)[Sha18b]. With import javascript a single
JavaScript expression can be executed from within Haskell.
The opposing export javascript will be discussed in sec-
tion 6. Both methods from the JSFFI are used when mar-
shalling types.

It is worth mentioning, that in a real-world application it
would be a better approach to append the graphic not directly
to the body, but into a predefined existing element. This al-
lows a controlled positioning of the resulting application
inside an existing webpage. The adaption of the necessary
changes to the tutorial code are shown in Listing 5 and List-
ing 6.

1 foreign import javascript

2 "(() => { \

3 \ const d = document.querySelector ('#show -

hilbert -here '); \

4 \ d.innerHTML = $1; \

5 \ })()"

2022-06-12 11:53. Page 2 of 1–9.

https://hub.docker.com/r/terrorjack/asterius
https://www.npmjs.com/package/http-server
https://balsamiq.com/support/faqs/browserconsole/

Haskell and WebAssembly

6 showSVG :: JSString -> IO ()

Listing 5. The adaption of the Hilbert tutorial to target a
specific HTML element by its ID.

1 <body>
2 <p>Shows the Hilbert output </p>
3
4 <div id="show -hilbert -here">
5 <!-- Resulting SVG will be displayed here -->

6 </div>
7
8 <script type="module" src="Hilbert.mjs"></script >
9 </body>

Listing 6. The adaption of the Hilbert tutorial, providing
the specific HTML element.

Note: As Asterius will overwrite the Hilbert.html file upon
a new compilation, I recommend extracting the code into a
new index.html file and adapt this.
The Todo-MVC Example [Sha18a]: This tutorial goes

deeper into details on how to write an Application in Haskell
and compile it to WebAssembly. It introduces new concepts
such as type marshalling and the element abstraction. Type
marshalling is necessary to work with types across the lan-
guage barrier of Haskell and JavaScript. A more detailed
explanation is provided in section 7.
In the previous tutorial, the manipulation of the HTML

Document ObjectModel (DOM)was done via invoking JavaScript
from Haskell. The Element abstraction by Asterius provides
a Haskell native functionality to interact with the DOM.
This section has shown the necessary steps to compile

Haskell applications to WebAssembly with the main func-
tion, and run the resultingWebAssembly code in the browser.
With the provided Docker image, there is no need for an
extensive setup procedure. All necessary tools are already in-
stalled. Interacting with the browser from Haskell can either
be done with the element abstraction or by calling JavaScript
from Haskell. The browser’s development tool console is
treated as the output device for print, which one would ex-
pect. Some manual work might be necessary to extract the
resulting code, as Asterius overwrites already existing files,
even if they are modified. Some adaptions to this process
would be helpful to prevent unexpected behaviour.

6 Use case 2: Make Haskell functions
available in JavaScript

Some programming problems can be solved very elegantly in
Haskell. It is pure functional and provides features like type
safety and laziness. In addition, it provides some syntactical
benefits like list comprehension and pattern matching.

While JavaScript does a good job providing interaction to a
web application, it lacks features that are available in Haskell.
Missing those features can have an impact on performance
and reliability of an application written in JavaScript.

One assumes it might be a good idea to delegate certain
critical tasks and problems to a more appropriate program-
ming language. Therefore, an interesting case, whenworking
with Haskell and WebAssembly, is to make single Haskell
functions available in JavaScript. Asterius does provide the
functionality to compile single Haskell functions to We-
bAssembly and make them usable in JavaScript.
This section and section 7 focus on the necessary steps

and challenges that arise, when making Haskell functions
available in JavaScript.

Revisiting the example double from the previous section,
it is necessary to do some adaptions to the Haskell code,
the compilation command and to the resulting generated
JavaScript code.

For the function doubleInt to be available in JavaScript,
the Haskell code has to fulfil the two additional requirements,
shown in Listing 7:

1. The code must be defined inside a module definition.
2. The function must be explicitly exported to JavaScript.

1 module ExportedHSFunction where
2
3 foreign export javascript doubleInt :: Int -> Int
4 shouldBeExportedInt x = 2 * x

Listing 7. The content of file doubleInt.hs

Note: if the first requirement is not fulfilled, a compilation
error occurs, because of the missing main function. If the
second requirement is not fulfilled, the code will be compiled.
But the function will not be available in JavaScript.
The compilation command has to fulfil two additional

requirements as well, as shown in Listing 8:
1. The code must be compiled with the no-main param-

eter.
2. The codemust be compiledwith the –export-function

parameter.

1 ahc -link --browser --input -hs doubleInt.hs --no-main

--export -function doubleInt

Listing 8. The command to compile doubleInt.hs to
WebAssembly

The resulting code in the doubleInt.mjs file requires adap-
tion as well. Asterius generates the file still calling the main
function, instead of the new doubleInt function. As this
change is done in an auto-generated file, which will be over-
written upon a subsequent compilation, it is recommended
creating a copy of the file and adapt the resulting JavaScript
code as shown in Listing 9.
Lines 1 to 5 in Listing 9 is the JavaScript code generated

by Asterius. It takes care of loading and instantiating the
WebAssembly Code. No adaption is necessary here.

Lines 6 to 9 in Listing 9 is the adapted code that calls the
target function doubleInt. Note that WebAssembly code
must be called asynchronously in JavaScript. In this example,

2022-06-12 11:53. Page 3 of 1–9.

Nicolas Karrer

it is done using a Promise Object of JavaScript. These objects
are a way of handling callbacks in JavaScript. 4

1 import * as rts from "./rts.mjs";

2 import module from "./export -function.wasm.mjs";

3 import req from "./export -function.req.mjs";

4
5 module.then(m => rts.newAsteriusInstance(Object.

assign(req , { module: m }))).then(i => {

6 i.exports.doubleInt (3)

7 .then(result => {

8 console.log(result);
9 })

10 });

Listing 9. The function doubleInt is called asynchronously
in JavaScript

Opening the file resulting doubleInt.html in the Browser
will have the same result as the previous example. It will
print the number "6" to the developer console.
Some specialities regarding the type are notable for this

example as well: as Int is a shared type between JavaScript
and Haskell, it can be use it as it is. The code will compile and
run without any marshalling necessary on the Haskell side.
There are examples in section 7 where this is not possible.

Because JavaScript is dynamically typed, some potentially
surprising calls of doubleInt are possible:

• i.exports.doubleInt(0.2)will result in 0, because
the number will be converted to an Int with value 0.

• i.exports.doubleInt(‘c’) will result in a runtime
error from WebAssembly, which is correct. In plain
JavaScript, calling 2 * ‘c’ would result in the "Not a
Number" (NaN) bottom value.

It is possible to use further Haskell types out-of-the-box
when compiling Haskell to WebAssembly. Besides Int, tests
with Char, Bool and Double were successful.

One exception arising from the tests is the type Float: a
function with parameter or return type Float will be com-
piled, but when calling the resulting function in JavaScript, it
will result in a runtime error. My assumption is, that a func-
tion is missing in the generated JavaScript code to handle
this type correctly.

For further reading, Tweag I/O provides a tutorial for mak-
ing Haskell functions available.8 It gives some background
information about the challenges of calling Haskell functions
from JavaScript. For example, if the Haskell environment is
not yet initialized.
This section has shown, that exporting single functions

or a set of functions is possible with Asterius. It is possible
to use primitive types like Int, Char, Bool, Double without
any additional conversion necessary. Some convenience re-
garding the resulting code is missing for developers, as the
code generation still generates code calling the non-existent

4https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise
8https://www.tweag.io/blog/2018-09-12-asterius-ffi/

main function. So the generated code needs adaptions, but
is overwritten upon subsequent compilations.

7 Marshalling Types
While we can use any type provided by Haskell inside the
Haskell part of the application, even custom types. The
types for the interaction across Haskell and JavaScript are
restricted. As mentioned in section 6 primitive types shared
between Haskell and JavaScript can be used directly as argu-
ment type and return type.
In JavaScript, there is a set of more types, which are pos-

sible to use and in Haskell there is the possibility to define
custom types.

To be able to pass such types across the language barrier,
they have to be marshalled. This section describes the pro-
cess of type marshalling for the most important JavaScript
types: String, Array, Function and Object. For those types
Asterius provides an abstraction which can be used in the
function definitions in Haskell: JSVal, JSString, JSArray,
JSFunction and JSObject.
JSVal: This is the basic type and stands for an opaque

value existing In JavaScript. The other types are newtypes9
of JSVal[I/O22].

JSString: While a string in JavaScript is a primitive type10.
In Haskell, a string is a list of Char. But as both languages
share the primitive type Char, it is possible to marshal a
Haskell [Char] into JSString and back. The Listing 10
shows the process of marshalling strings with the help of
the functions fromJSString and toJSString provided by
Asterius11.

In both cases, each string representation is marshalled
character by character. To get a better insight of the details
of the marshalling process, Listing 10 provides the definition
of fromJSString and toJSString as well. It is important to
note, that codePointAt and fromCodePoint are both meth-
ods of the JavaScript string type. The expression $1 is a
reference to the parameter, passed to the function.

Calling the Haskell function js_string_tochar "Hello
World" 0 translates to the JavaScript call

"Hello World".codePointAt(0) and results in the char-
acter H. [con20b] [con20a]

1 -- to apply reverse to a string , the given JSString

has to be marshalled to a Haskell String

2 foreign export javascript reverseString :: JSString

-> JSString

3 reverseString x = toJSString (reverse (fromJSString

x))

4
5 -- these functions are provided by the Asterius.

Types module

6 toJSString :: String -> JSVal

9https://wiki.haskell.org/Newtype
10https://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-
javascript-primitives/
11https://github.com/tweag/asterius/blob/master/asterius/test/jsffi/
AsteriusPrim.hs

2022-06-12 11:53. Page 4 of 1–9.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://www.tweag.io/blog/2018-09-12-asterius-ffi/
https://wiki.haskell.org/Newtype
https://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-javascript-primitives/
https://javascriptweblog.wordpress.com/2010/09/27/the-secret-life-of-javascript-primitives/
https://github.com/tweag/asterius/blob/master/asterius/test/jsffi/AsteriusPrim.hs
https://github.com/tweag/asterius/blob/master/asterius/test/jsffi/AsteriusPrim.hs

Haskell and WebAssembly

7 toJSString =

8 foldl ' (\s c -> js_concat s (js_string_fromchar c)

) js_string_empty

9
10 fromJSString :: JSVal -> String
11 fromJSString s = [js_string_tochar s i | i <- [0 ..

js_length s - 1]]

12
13 foreign import javascript "\"\"" js_string_empty ::

JSVal

14
15 foreign import javascript "$1.concat($2)"

16 js_concat :: JSVal -> JSVal -> JSVal

17
18 foreign import javascript "String.fromCodePoint($1)"

19 js_string_fromchar :: Char -> JSVal

20
21 foreign import javascript "$1.codePointAt($2)"

22 js_string_tochar :: JSVal -> Int -> Char

Listing 10. Marshalling a JSString to a Haskell String and
reversing it.

JSArray: Marshalling JavaScript arrays and Haskell lists is
a bit more challenging. This is because, like strings, JavaScript
arrays and Haskell lists do not translate one to one. However,
the necessary procedure to marshal these types is similar
to the procedure for strings. First, the array has to be trans-
lated into a list of JSVal or one of its newtype. Second each
entry has to be marshalled in to the specific type. The List-
ing 11 shows the according functions provided by themodule
AsteriusPrim. This article describes a more detailed exam-
ple of the procedure in section 8.
Note: Both one advantage and one disadvantage for this

case arise from the dynamic typing of JavaScript: The advan-
tage is, like for JSString the function js_concat is used to
append an element to the array. Both JavaScript types String
and Array contain the method concat.[con20c] Because of
the dynamic typing of JavaScript, the same Haskell function
can be use for marshalling both types.
As for the disadvantage: JavaScript arrays can contain

elements of any type (Not to be confused with Haskell’s Any
type). For example, a JavaScript array can look like this: [1,
2, 3, "four"]. If such an array is passed to the Haskell
code, it will cause a runtime error during the marshalling
process.

1 toJSArray :: [JSVal] -> JSVal

2 toJSArray = foldl ' js_concat js_array_empty

3
4 fromJSArray :: JSVal -> [JSVal]

5 fromJSArray arr = [js_index_by_int arr i | i <- [0

.. js_length arr - 1]]

6
7 foreign import javascript "$1.concat($2)"

8 js_concat :: JSVal -> JSVal -> JSVal

9
10 foreign import javascript "[]" js_array_empty ::

JSVal

11
12 foreign import javascript "$1[$2]" js_index_by_int

:: JSVal -> Int -> JSVal

Listing 11. Converting a JSString to a Haskell string and
reversing it.

JSObject: Asterius does not provide functions, besides
creating an empty JavaScript object, to marshal JSObjects.
But once understood how the JavaScript Foreign Interface
works, the process is rather straight forward and is best
explained by example.
Listing 12 defines a Haskell record Person with its prop-

erties name :: String and age :: Int[Dev22].
1 -- defining the Person record

2 data Person = Person {age :: Int , name :: String}
deriving (Show , Eq)

3
4 setAge :: Int -> Person -> Person

5 setAge newAge person = person {age = newAge}

Listing 12. Defining a record Person in Haskell with
properties name and age

Listing 13 shows the process of marshalling the JavaScript
object into a Person record. For this, it is necessary to access
the single attributes of the object and marshal it into the
correct Haskell type. As age is of basic type Int, this can be
done directly with the accessAge function. The attribute
name has to be marshalled from JSString to String first.
Note: both object attributes are accessed with a default

value ($1.name || ’J. Doe’). This prevents runtime er-
rors if the attribute on the JavaScript object undefined. For
example, when the attribute is missing or misspelled.

1 -- Marshal from JavaScript input

2 convertObjectToPerson :: JSObject -> Person

3 convertObjectToPerson obj = Person {age = age ',

name = name '}

4 where
5 age ' = accessAge obj

6 name ' = (fromJSString . accessName) obj

7
8 foreign import javascript "$1.name || 'J. Doe '"

accessName :: JSObject -> JSString

9 foreign import javascript "$1.age || 0" accessAge ::

JSObject -> Int

Listing 13. Receiving a JavaScript object and marshal it into
the Person record

Listing 14 shows the process of marshalling the Person
record back into a JavaScript object. Note that the numbering
of the variables $1, $2 . . . $n in function jsPerson is defined
by the order of its parameters.

1 -- Marshal to JavaScript outputs

2 convertPersonToObject :: Person -> JSObject

3 convertPersonToObject x = jsPerson ((toJSString .

name) x) (age x)

4
5 foreign import javascript "{name: $1, age: $2}"

jsPerson :: JSString -> Int -> JSObject

Listing 14. Receiving a Person record and marshal it into a
JavaScript object

Marshalling JavaScript objects is not restricted to Haskell
records, but it seems that it is one of the best fitting Haskell
types. In section 8 there is an example where a JavaScript
object is marshalled into a Haskell tuple.

2022-06-12 11:53. Page 5 of 1–9.

Nicolas Karrer

JSFunction: As in Haskell, JavaScript functions are values
and therefore can be passed as parameters or assigned to
variables. Listing 15 shows how a JSFunction is taken as
Parameter and executed as callback of the setTimeout12

function.
1 foreign export javascript timeout :: JSFunction ->

Int -> IO ()

2 timeout = setTimeout

3
4 foreign export javascript timeout5s :: JSFunction ->

IO()
5 timeout5s = flip timeout 5000

6
7 foreign import javascript "setTimeout($1, $2)"

setTimeout :: JSFunction -> Int -> IO()

Listing 15. Use a given JSFunction as callback of
setTimeout

As described in this section, with type marshalling, it
is possible to pass parameters and return types across the
language barrier. This allows to cover a lot of potential use
cases when working with Haskell and WebAssembly. But it
requires some knowledge of JavaScript. Depending on the
type, a lot of back and forth between Haskell and JavaScript
is necessary. For larger data sets like large arrays of strings
or nested JavaScript objects, this can be costly[I/O22].
To help developers which are not that familiar with the

concept of type marshalling, Asterius could provide some
more functions and explanations on how to deal with mar-
shalling types, like it does for Strings. For example, with
accessing attributes on a JavaScript object. Listing 16 pro-
vides two rather simple access function for object attributes.
Note that the way of accessing the attributes have changed
compared to Listing 13. This is because the notation in
JavaScript depends on how this attribute is accessed. If the
object’s attribute is accessed directly from code, the "Dot-
Notation" (objectName.attributeName) can be used. If it
is accessed by a String variable, the "Bracket-Notation"
(objectName[attributeName]) is necessary. The "Bracket-
Notation" has to be used as well if the attribute name contains
special characters, like spaces or hyphens.[Mor17].

1 -- accessing a property of type Int on a JavaScript

object

2 accessObjectAttributeInt :: JSObject -> String ->

Int
3 accessObjectAttributeInt obj key = accessInt obj (

toJSString key)

4
5 foreign import javascript "$1[$2] || 0" accessInt ::

JSObject -> JSString -> Int
6
7
8 -- accessing a property of type String on a

JavaScript object

9 accessObjectAttributeString :: JSObject -> String ->

String
10 accessObjectAttributeString obj key = (fromJSString

. accessString) obj (toJSString key)

11

12https://www.w3schools.com/jsref/met_win_settimeout.asp

12 foreign import javascript "$1[$2] || \'\'"

accessString :: JSObject -> JSString ->

JSString

13
14
15 -- accessing a property of type Double on a

JavaScript object

16 accessObjectAttributeDouble :: JSObject -> String ->

Double
17 accessObjectAttributeDouble obj key = accessDouble

obj (toJSString key)

18
19 foreign import javascript "$1[$2] || 0.0"

accessDouble :: JSObject -> JSString -> Double

Listing 16. Possible functions to give developers more
convenience, when accessing attributes on JSObjects

8 Color - An extended example
In the previous sections the article described the bits and
pieces, on how Haskell code is compiled to WebAssembly,
how the resulting code is run in the browser, how single
Haskell functions can be made available to JavaScript and
how to deal with the type marshalling. Now it is possible to
put it together in a more detailed example.
One of the possibilities to define colors in the browser

is by a hexadecimal string representation of an RGB (Red
Green Blue) color code. The first two digits of this code
represent green, the second two represent red and the third
two represent red. So the code "FFFFFF" would represent
the color white and the code "000000" represents the color
black. It is not uncommon for Web applications to calculate
fitting colors based on an input color. For example, if a text
has to be still displayed readable on an image which can be
either of dark or of light color.

The following example provides the functionality to calcu-
late the complementary color13 to a given color and a func-
tion to calculate the appropriate brightness, black or white,
for the text color. All based on a given color, either in hexa-
decimal or as an JavaScript object. The example uses Haskell
language features which are not available in JavaScript like
lazy evaluation, tuples and pattern matching. The resulting
calculation functions will be made available in JavaScript as
single functions.
Note: The code in this example does not claim to be the

optimal way to solve the problem, but to demonstrate certain
language features.

As a first part, in Listing 17 the initial definitions are done
which are later used in the code. This part uses the Haskell
features lazy evaluation and type declaration.

The first step is the module definition, which is necessary
as described in section 6.

The second step is to define the necessary imports. In this
case, Asterius.Types and Data.List. Those are used later
on, to marshal the types. The imports follow two type aliases,
with data for a Color-Tuple and the JSHexcolor.
13https://www.canva.com/colors/color-wheel/

2022-06-12 11:53. Page 6 of 1–9.

https://www.w3schools.com/jsref/met_win_settimeout.asp
https://www.canva.com/colors/color-wheel/

Haskell and WebAssembly

The third step is to define of a list of tuples and its look
up functions. The list of tuples is mapping a number (Int)
to its hexadecimal representation (Char).

1 module Color where
2
3 import Asterius.Types

4 import Data.List
5
6 type Color = (Int , Int , Int)
7 type JSHexColor = JSString

8
9 -- Color is always a 6 digit Hex number:

10 -- first two stands for red ,

11 -- second two for green ,

12 -- third one for blue

13 hexMap :: [(Int , Char)]
14 hexMap = zip [0 ..] "0123456789 ABCDEF";

15
16 hexToInt :: Char -> Int
17 hexToInt x = (fst . head . filter (\xs -> snd xs ==

x)) hexMap

18
19 intToHex :: Int -> Char
20 intToHex x = (snd . head . filter (\xs -> fst xs ==

x)) hexMap

Listing 17. The initial definitions of the color example.

In the Listing 17 the Haskell features type declaration,
lazy evaluation are used.
The second part in Listing 18 defines some function to

convert a color to its string representation and vice versa.
To convert the code, it uses the language feature "Pattern
Matching".

1 -- Hex to Color conversion , and vice -versa

2 hexToColor :: String -> Color

3 hexToColor [] = error "Not a color string"

4 hexToColor [r1, r2, b1, b2, g1, g2] =

5 (hexToInt r1 * 16 + hexToInt r2, hexToInt b1 *

16 + hexToInt b2, hexToInt g1 * 16 +

hexToInt g2)

6 hexToColor _ = error "Not a color string"

7
8 calcHexDigit :: Int -> String
9 calcHexDigit x = [intToHex (x `div` 16), intToHex(x

`mod` 16)]

10
11 colorToHex :: Color -> String
12 colorToHex (r, g, b) = concat [calcHexDigit r,

calcHexDigit g, calcHexDigit b]

Listing 18. Conversion of a color to its hexadecimal notation
and vice versa.

In the third part, shown in Listing 19, the main logic to
calculate the complementary color and the text color are
defined. For the functions to be available in JavaScript the
functions need to be exported, and its parameters have to
be marshalled. To convert the type JSString to the type
string, we use toJSString and fromJSString from the As-
terius.Types module.

1 -- complementary color is on the otherside of the

color wheel

2 complementaryColor :: Color -> Color

3 complementaryColor (r, g, b) = (255 - r, 255 - g,

255 - b)

4
5 hexComplementary :: String -> String
6 hexComplementary = colorToHex . complementaryColor .

hexToColor

7
8 -- if a background color surpasses a certain

threshold ,

9 -- either black or white text is better for

readability

10 brightnessColor :: Color -> Color

11 brightnessColor (r, g, b) = color

12 where
13 threshold = (r * 299 + g * 587 + b * 114) `

div` 1000

14 color | threshold < 110 = (255, 255, 255)

15 | otherwise = (0, 0, 0)

16
17 hexBrightness :: String -> String
18 hexBrightness = colorToHex . brightnessColor .

hexToColor

19
20 -- populating the functions to be available in

JavaScript

21 foreign export javascript jsComplementColor ::

JSHexColor -> JSString

22 jsComplementColor = toJSString . hexComplementary .

fromJSString

23
24 foreign export javascript jsBrightnessColor ::

JSHexColor -> JSString

25 jsBrightnessColor = toJSString . hexBrightness .

fromJSString

Listing 19. Calculation of the complementary color and the
calculation of the text color.

So far, the example would be able to solve the given task
based on a hexadecimal color representation. As an exten-
sion, it would be nice to have the ability to do the same
thing, if we have the color in an object notation. For exam-
ple: {red: 255, green: 255, blue: 255}. In this case,
the Haskell code needs to receive a JSObject and convert
it to a Color type in Haskell, then do the calculation and
return a JSHexcolor. This is done in listing 20.

1 objectToColor :: JSObject -> Color

2 objectToColor input = (red , green , blue)

3 where
4 red = extractRed input

5 green = extractGreen input

6 blue = extractBlue input

7
8 foreign import javascript "$1.red || null"

extractRed :: JSObject -> Int
9 foreign import javascript "$1.green || null"

extractGreen :: JSObject -> Int
10 foreign import javascript "$1.blue || null"

extractBlue :: JSObject -> Int
11
12 -- takeing a JSObject as an Input and return a color

in Hex Form

13 foreign export javascript convertObjectToHex ::

JSObject -> JSHexColor

14 convertObjectToHex = toJSString . colorToHex .

objectToColor

Listing 20. The extension to receive the color in JavaScript
object notation

2022-06-12 11:53. Page 7 of 1–9.

Nicolas Karrer

As a second extension, a function should return the whole
set of calculated colors, based on its input, as a JavaScript
object. The given color itself, the appropriate text color, its
complementary color and the appropriate text color of the
complementary color. This is done in Listing 21, by calcu-
lating all necessary information and marshal the result to a
JavaScript object.

1 -- put above functions together into an object

2 foreign export javascript jsColorInformation ::

JSHexColor -> JSObject

3 jsColorInformation input = jsColorObject input

brightness complementJS complementText

4 where
5 brightness = (toJSString . hexBrightness .

fromJSString) input

6 complement = (hexComplementary .

fromJSString) input

7 complementText = (toJSString . hexBrightness

) complement

8 complementJS = toJSString complement

9
10 foreign import javascript "{color: $1, textColor: $2

, complementColor: $3, complementTextColor: $4}

"

11 jsColorObject :: JSHexColor -> JSHexColor ->

JSHexColor -> JSHexColor -> JSObject

Listing 21. Calculating all information and return them as
a JavaScript object.

As a last extension, instead of receiving a single color, the
program should have two functions that receive an array
of colors in object notation. One function should return an
array of the according hexadecimal notation of the colors, the
other the color information as an object. Listing 22 shows the
necessary functions to do the calculations and the according
marshalling functions. Note that both functions have the
same definition (:: JSArray -> JSArray). It might be
advisable to define aliases for these types in Haskell for better
readability: For example, type JSHexArray = JSArray.

1 foreign export javascript convertObjectsToHex ::

JSArray -> JSArray

2 convertObjectsToHex input = value

3 where
4 marshalledInput = objectsFromJSArray input

5 objects = map objectToColor marshalledInput

6 colors = map (toJSString . colorToHex)

objects

7 value = stringsToJSArray colors

8
9 foreign export javascript jsColorInformations ::

JSArray -> JSArray

10 jsColorInformations input = value

11 where
12 marshalledInput = objectsFromJSArray input

13 objects = map (jsColorInformation .

convertObjectToHex) marshalledInput

14 value = objectsToJSArray objects

15
16 -- Marshalling code copied and adapted from

AsteriusPrim.hs

17 stringsToJSArray :: [JSString] -> JSArray

18 stringsToJSArray = foldl ' js_concat_array_string

js_array_empty

19

20 objectsToJSArray :: [JSObject] -> JSArray

21 objectsToJSArray = foldl ' js_concat_array_object

js_array_empty

22
23 objectsFromJSArray :: JSArray -> [JSObject]

24 objectsFromJSArray arr = [js_index_by_int arr i | i

<- [0 .. js_length arr - 1]]

25 foreign import javascript "$1.concat($2)"

js_concat_array_string :: JSArray -> JSString

-> JSArray

26 foreign import javascript "$1.concat($2)"

js_concat_array_object :: JSArray -> JSObject

-> JSArray

27 foreign import javascript "[]" js_array_empty ::

JSArray

28
29 foreign import javascript "$1[$2]" js_index_by_int

:: JSArray -> Int -> JSObject

30 foreign import javascript "$1.length" js_length ::

JSArray -> Int

Listing 22. Calculating all information based on a set of
colors, both in hexadecimal and object notation.

Finally, the Listing 23 shows how the Haskell functions
are called from JavaScript.

1 import * as rts from "./rts.mjs";

2 import module from "./color.wasm.mjs";

3 import req from "./color.req.mjs";

4
5 module.then(m => rts.newAsteriusInstance(Object.

assign(req , { module: m }))).then(i => {

6 let randomColor = Math.floor(Math.random () *

16777215).toString (16).toUpperCase ().

padStart(0, 6);

7
8 i.exports.jsComplementColor(randomColor)

9 .then(complement => console.log(complement))
;

10
11 i.exports.jsBrightnessColor(randomColor)

12 .then(textcolor => console.log(textcolor));
13
14 i.exports.convertObjectToHex ({ red: 255, green:

0, blue: 125 })

15 .then(hex => console.log(hex));
16
17 i.exports.convertObjectsToHex(

18 [

19 { red: 255, green: 0, blue: 255 },

20 { red: 255, green: 255, blue: 255 }

21]

22).then(hexes => console.log(hexes));
23
24 i.exports.jsColorInformations(

25 [

26 { red: 255, green: 0, blue: 255 },

27 { red: 255, green: 255, blue: 255 },

28 { red: 125, green: 255, blue: 125 }

29]

30).then(colorInformations => console.log(
colorInformations));

31 });

Listing 23. Applying the compiled Haskell functions in
JavaScript.

This example demonstrates, that it is possible to useHaskell
language features like laziness, and strict typing to write a
program, that interacts with JavaScript. It shows, that when

2022-06-12 11:53. Page 8 of 1–9.

Haskell and WebAssembly

it comes to marshalling more complex types like arrays, a
lot of additional code is necessary. Caution regarding type
safety is necessary as well, as the values of the JavaScript
types vary.
This example is available in Git alongside with the other

code examples used in this article: https://bitbucket.org/
nkarrer/haskell-and-webassembly

9 Conclusion
As this article has shown, starting to work with Asterius can
be accomplished by people having some basic knowledge of
Haskell, JavaScript, and HTML. First example applications
can be compiled and used fast, thanks to the provided Docker
image by Asterius and the output of the compiler. The docu-
mentation and tutorials provided Tweag I/O are informative
and well written, but some information are outdated as de-
tails have changed during the implementation. For example,
the tutorials mention the type JSRef which is now called
JSVal.

As type marshalling is an important topic when work-
ing in the interface between the two languages Haskell and
JavaScript, some further knowledge about the JavaScript
Function Interface, its mechanics and its pitfalls, is necessary.
Asterius could be more supportive in this field, by extending
the documentation and providing additional functions. This
article tried to close some of those gaps.
Even though the generated code HTML and JavaScript

code is helpful at the beginning, it becomes noisy upon fur-
ther usage. It would be good, if this code could be generated
optionally.
With Asterius, the potential is given, that in the future

there will be Haskell applications running in the browser
and the NodeJS environment.

References
[con20a] MDN contributors. String.fromcodepoint(), 2020. last accessed

27.05.2022.
[con20b] MDN contributors. String.prototype.codepointat(), 2020. last

accessed 27.05.2022.
[con20c] MDN contributors. String.prototype.concat(), 2020. last accessed

27.05.2022.
[Dev22] DevTut. Record syntax, 2022. last accessed 27.05.2022.
[Goo17] Google. Saying goodbye to flash in chrome, 2017. last accessed

09.05.2022.
[HRS+17] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer,

Michael Holman, Dan Gohman, Luke Wagner, Alon Zakai, and
JF Bastien. Bringing the web up to speed with webassembly.
SIGPLAN Not., 52(6):185–200, jun 2017.

[I/O22] Tweag I/O. Javascript ffi, 2022. last accessed 27.05.2022.
[Mor17] Brandon Morelli. Javascript quickie— dot notation vs. bracket

notation, 2017. last accessed 27.05.2022.
[Ora] Oracle. Java and google chrome browser, ? last accessed

09.05.2022.
[Sha18a] Cheng Shao. Asterius ghc webassembly backend reaches

todomvc, 2018. last accessed 15.05.2022.
[Sha18b] Cheng Shao. Haskell webassembly calling javascript and back

again, 2018. last accessed 15.05.2022.

[SHI19] Cheng Shao Sylvain Henry (IOHK). Haskell art in your browser
with asterius, 2019. last accessed 15.05.2022.

2022-06-12 11:53. Page 9 of 1–9.

https://bitbucket.org/nkarrer/haskell-and-webassembly
https://bitbucket.org/nkarrer/haskell-and-webassembly

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	4 Prerequisite
	5 Use case 1: Running a Haskell application in the browser
	6 Use case 2: Make Haskell functions available in JavaScript
	7 Marshalling Types
	8 Color - An extended example
	9 Conclusion
	References

