Machine Learning for Programming Languages

An Overview of Machine Learning for a Software Engineer

Raphael Jenni
OST Eastern Switzerland University of Applied Sciences
MSE Seminar “Programming Languages”
Supervisor: Farhad Mehta
Semester: Autumn 2021

Abstract

Artificial Intelligence, or more precisely deep learning, has
become a trending topic in the broad public and software engi-
neering circles. Some exciting technologies have arisen from it,
such as voice assistants or language translation services. Also,
programmatically understanding source code and supporting
the developer in writing better code have been a topic for a
while. In recent times, a push toward combining these two fields
has been made.

For a software engineer coming from the world of tackling a
problem with the help of algorithms with a predictable outcome,
deep learning can be rather challenging to grasp. This paper
aims to bring a software engineer or a programming language
researcher up to speed on the current state of deep learning
and show the possibilities of such technologies. All this, in an
easily digestible manner for someone without any profound
knowledge about deep learning.

Keywords: Programming Languages, Software Engineering,
Deep Learning, Machine Learning

1 Introduction

Deep learning is a field of computer science that uses artificial
neural networks to learn representations of data. This tech-
nology has enabled the rapid development of methods used
to classify, recognize, and understand objects, images, and
other data. In recent times using deep learning has become a
relatively common application of artificial intelligence. The
advances in computational power and publicly available data
were the leading enabler for that. Nevertheless, deep learn-
ing, or more generally, machine learning, is a topic most
software engineers only know from hearing about its use
cases but rarely really know how to use it.

This paper aims to provide a general overview of the deep
learning field and introduce the use cases of deep learning
in the context of programming languages.

1.1 Assumed Knowledge

This paper assumes that the reader knows the basics of pro-
gramming language constructs and is able to program.
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1.2 Motivating Examples

Before diving into the main content of the paper, we will
look at four examples. Those should help get a feel for the
paper’s general idea and some possible use cases of DL4PL.

1.2.1 GitHub Copilot. One of the most significant projects
at the time of writing this paper is the GitHub Copilot!. The
GitHub Copilot is an Al-powered code assistant powered by
Codex?, an Al system created by OpenAl [CTJ*21].

It supports dozens of programming languages and works
(see Figure 1) by sending the code context to the GitHub
Copilot Service, which the OpenAl Codex Model trains based
on publicly available repositories. This service then sends
back suggestions and receives back a report regarding the
developer’s choice to further improve the model.
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Figure 1. General Workings of the GitHub Copilot [Git21]

An example would be writing a Fibonacci function in
Kotlin. By just providing function name fun fibonacci, the copi-
lot suggests the following code completion:

1 fun fibonacci(n: Int): Int {

2 if (n == @) return @

3 if (n == 1) return 1

4 return fibonacci(n - 1) + fibonacci(n - 2)
5 %

Listing 1. Autocompleted Fibonacci Function

This assistance by itself is already pretty nice, but it is just a
relatively common code snippet. The following code demon-
strates how the copilot leverages the context to give sugges-
tions.

!https://copilot.github.com
Zhttps://openai.com/blog/openai-codex/
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1 // data class Person - gets completed to:

2 data class Person(var name: String, var age: Int)

3

4 // val attendees = 1listOf (Person( - results in:

5 val attendees = 1listOf(

6 Person("John", 20),

7 Person("Jane", 25),

8 Person("Jack", 30)

9 )

10

11 // fun averageAgeOfPersons - gets completed to

12 fun averageAgeOfPersons(persons: List<Person>):
Double {

13 return persons.fold(0.0)

14 { acc, person -> acc + person.age } /

persons.size
15 3}

Listing 2. Extended example of the Copilot’s capabilities

By just having the definition of a person and providing the
name of the function we want to write, the copilot could gen-
erate a working piece of code that does what was intended.

Such coding support is already a huge help when writ-
ing code. The GitHub Copilot website has a catchy sentence:
“Skip the docs and stop searching for examples. GitHub Copi-
lot helps you stay focused right in your editor [Git21]” By
providing code completion for relatively simple but maybe
not familiar code constructs, this aid can boost productivity
quite a bit. Take the Fibonacci function from above (Listing 1)
as an example. The function itself is straightforward and well
known but still requires a bit of thinking to get it right on
the first try. Many developers will not bother to write it by
themselves anyway and turn to the internet for help. Moving
the “internet” directly into the IDE results in fewer context
switches and therefor less downtime in general.

The copilot has more features like converting a function
description into code or suggesting tests for your code. Those
will not be covered here but can be tested by yourself®.

1.2.2 Tabnine. Moving on from the GitHub Copilot to a
very similar product, Tabnine®. It completes code with the
help of deep learning similar to the copilot but has a sig-
nificant focus on privacy. Besides the public-code-trained
Al, the service also offers to run locally on your or your
team’s code. Suggestion improvements will also not be re-
ported back to the Tabnine services and are only available
for you and your team. Tabnine also supports a wide range
of IDEs. For a coding assistant, this is an important point
worth considering.

I have been using Tabnine for about half a year at the time
of writing and have found it very useful. When comparing
it to the GitHub Copilot, the copilot seems to have the edge
in completing large code constructs. In a matter of speed or
accuracy, the Tabnine service feels more advanced. Currently,
both services are running in parallel, delivering the best of

3https://copilot.github.com
4https://www.tabnine.com
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both worlds and demonstrating that such tools do not have
to be used exclusively.

Unfortunately, the Tabnine team has not released any
specific information, papers or code, that shows how the
internals work. This lack of insights means that the user has
to trust what is released on their website.

1.2.3 DeepCode by Snyk. DeepCode was an ETH Zurich
spin-off that got acquired by snyk® in 2020. Their focus was
on applying Al to assist developers in achieving better code
quality and application security. They leverage commits and
big code to learn how software can help fix specific issues and
vulnerabilities. The DeepCode team has published several pa-
pers on those topics, although not with a special connection
to deep learning [RZVY, ESR*, RBV, RVK, BRTV, BRV16,
CBR*, PZT"18, RBVK, HZT*18, BRV].

Snyk combines the work of DeepCode with other tools
regarding security and code quality with the help of machine
learning.

1.2.4 ControlFlag by Intel. ControlFlag is a system de-
veloped by Intel. It does not use deep learning but shows
another possibility of machine learning for programming
languages. The goal of it is to detect violations of program-
ming patterns in conditional statements like if or for and
suggests possible fixes for it. An example of such a coding
error would be:

1 for (int i = 0; i < N; i++) {
2 // Some program code

3 i++;

4 3

Listing 3. Example of possible coding error [HG21]

This example shows an instance of code that compiles but
is probably written this way on accident. Increasing the
counter twice can be correct but usually is not the intended
way to use a for-loop. Same goes for the statement if ( x = 7

)y = x, that does an assignment of x instead of a comparison.
Most likely, the desired behavior is if ( x == 7 )y = x. This
additional equal sign is a relatively small change but one
that could have a tremendous impact.

ControlFlag uses big code to learn the bug patterns as
well. The more a pattern gets used, the higher the certainty
of correctness. Based on those learned patterns and their
correctness, ControlFlag can suggest possible fixes.

1.2.5 Related Work. As utilizing deep learning for code
is a relatively new field, not many finished products are avail-
able. One system that uses deep learning for detecting and
correcting bugs, like shown with the example of ControlFlag,
but written for JavaScript, is called Hoppity [DDB*]. Other
than that, primarily ideas are available in the form of papers.
For more papers covering different areas of deep learning
for code or, more generally, for software engineering, check
out the references in [WCP*20].

Shttps://snyk.io
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2 Deep Learning for Software Engineers

Deep learning has developed into a trending topic. A soft-
ware engineer certainly has heard of it and knows what it
is but has a somewhat limited understanding of it most of
the time. This section aims to shed some light on common
confusions regarding the naming, explains the general idea
of deep learning and its use cases, and discusses the most
prominent models used and how they differ.

2.1 Clarifying the Confusion In the Naming

When talking casually with colleagues, Artificial Intelligence
(AI), Machine Learning (ML), Neural Networks (NN), and Deep
Learning (DL) are often used interchangeably. While it is not
always wrong, it is usually used in a generalized way or
in an uninformed and undistinguished manner. The easiest
way to think about the four designations is to take them
as specializations of each other or being nested inside each

other (Figure 2).
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Figure 2. Visualization of the different Al designations and
their relationships. The nesting visualized as Russian Dolls.

Basic Neural Network

2.1.1 Artificial Intelligence (Al). Artificial Intelligence is
the most general category. It can be defined as “Artificial in-
telligence leverages computers and machines to mimic the
problem-solving and decision-making capabilities of the hu-
man mind [IBM20d]” It has been around for a long time,
dating back to 1950, where Alan Turing asked the question
“can machines think [Tur50]?”. Based on that question, the
Turing Test was designed to define intelligence. A computer
passes this test if a human interrogator cannot differentiate
whether an answer to a question came from a human or
a machine. This test already covers several Al disciplines
used today, like natural language processing, automated rea-
soning, or machine learning [NRN10]. Since then, Al has
developed enormously and in various directions.

2.1.2 Machine Learning (ML). Going one step deeper in
the direction of deep learning, there is the field of Machine
2021-12-16 08:43. Page 3 of 1-11.

Learning. ML is a branch of Al that uses data to learn and
improve over time. In traditional ML, a human has to pre-
process a lot of the data to be learned [[BM20e]. However,
learning can happen in several different ways.

Supervised learning utilizes data that is labeled to cate-
gorize or predict something. For example, this approach is
used for image recognition, where the computer tries to say
whether it is an image of a cat or a dog.

Unsupervised learning does not require labels but instead
tries to find common patterns in the data and build clusters.
A possible use case would be finding common customer be-
havior patterns or automatically developing a concept of
“good” and “bad” traffic days [NRN10]. Unsupervised learn-
ing can also be used as a preprocessing step for reducing the
number of features (specific information) in a dataset before
leveraging other machine learning techniques.

Reinforced learning is the method used, when the learning
process tries to improve the model by maximizing or mini-
mizing the resulting score based on some received feedback.
This method is widely used in games where the computer
tries to finish the race in the least amount of time. Another
example would be maximizing the received tip after a taxi
ride [NRN10].

2.1.3 Machine Programming (MP). Machine Program-
ming (MP) is a relatively new specialization of ML. It is all
about programming with the help of machine learning. The
goal is to have a system that can produce secure, correct, and
efficient code. Further, it aims to enable non-programmers
to solve problems correctly and efficiently without the need
to be able to code. [GSLT"]

The GitHub Copilot, Tabnine, or ControlFlag introduced
in subsection 1.2, are good MP examples.

2.1.4 Neural Networks (NN). Next in line, we have neu-
ral networks, sometimes also called artificial neural networks
(ANN). They work by mimicking the behavior of the human
brain to enable the computer to recognize patterns. The name
"neural” comes from the concept of the brain cells called neu-
rons. As visualized in Figure 3, a neuron receives input data
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Figure 3. Visualization of a Single Neuron

together with a weight for each connection through the den-
drites, which gets fed into an input function. The function



outputs a value based on the received information, which
gets fed into an activation function. There are many different
activation functions, but all have a common goal of reducing
the value into a specific space. For example, the frequently
used sigmoid function takes any value and outputs a value
between 0 and 1. The output gets forwarded to the output
links, which can be other neurons or a final state. [NRN10]

A neural network consists of different artificial neuron
layers: An input layer, one or more hidden layers, and an
output layer. Information gets fed into the input layer, passed,
if it triggers the activation function, to the successive layers
until it reaches the output layer. A neural network with one
to three layers is called a basic neural network. A neural
network with more layers can be considered a deep neural
network (see Figure 4), which brings us to the last level, Deep
Learning. [IBM20b]

Deep neural network
Multiple hidden layers

Input layer

Output layer

Figure 4. Visualization of Deep Neural Network [IBM20b]

2.1.5 Deep Learning (DL). Deep Learning (DL), sometimes
also referred to as Deep Neural Networks (DNN), is only a

particular form of an NN. So everything mentioned above

also holds here. The difference between DL and ML is that

DL automates a lot of preprocessing work and therefore

eliminates the need for some of the human input. The more

hidden layers a DNN has, the more information it can learn.

However, having more layers demands more computation

power and space and represents the limiting factor.

2.2 The Process for Building a Deep Learning Model

The process of training and later using a deep learning model
always starts with not using one. Always ask yourself first
what problem you are facing. Only after that, ask whether ML
would be suitable to solve this problem [Goob]. A relatively
simple heuristic performs better than a sophisticated ML/DL
model in many cases. And even if it does not, it provides a
baseline against which your model can be compared. “Never
launch a fancy ML model that can’t beat a heuristic. [...]
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Non-ML solutions can sometimes be simpler to maintain
than ML solutions. [Gooa]”

If you have decided on using an ML/DL model, you, first of
all, need to have a lot of data. The cleaner the data, meaning
no noise and useless data entries, the easier it will be to train
the model. Further, the more data you have, the better the
model will become. Most of the time required to build a model
often gets used in preparing, cleaning, and preprocessing
the data.

2.2.1 Preprocessing. Before we can train a DL model, we
first need to put the data into a form, the model can learn.
This step is called preprocessing. Preprocessing also includes
altering the data if possible, so the learning process has an
easier task handling the data. There are many different vari-
ants of preprocessing. We will only cover three variants that
often get used when working with programming languages.

Tokenization. Tokenization is the process of breaking
up a text into a list of tokens. This process is also often
done as a first step when parsing a program. Tokens can be
words, characters, or any other sequence that can be some-
how separated. The tokenization process can also eliminate
certain parts that are not needed, for example, punctuations
or spaces [MRS08]. if (a == b) could be tokenized into if, ¢, a,
==, b, ).

One Hot Encoding. One-hot encoding is a technique that
converts a categorical variable into a binary variable. A cate-
gorical variable is a variable that can take on only a limited
number of values. It does that by creating a new variable for
each possible value of the original variable. For example, if
we want to encode a mail carrier’s shift into a single binary
value, we can do that as follows: We create a new variable
for each weekday, the weekday being the category. If mail
carrier Alice works only on Monday, we set the variable’s
value for Monday to 1 and for all other days to 0. For mail
carrier Bob working on Tuesday, Wednesday, and Thursday,
we set the value for each of those days to 1 and the other to 0.
This process can be displayed in a matrix, like the following
(Table 1). As a result Alice gets the shift encoding “10000”
and Bob “01110”.

Table 1. One Hot Encoding for Shifts of Mail Carriers

Mon Tue Wed Thu Fr

Alice 1 0 0 0 0
Bob 0 1 1 1 0

This encoding is a straightforward, understandable form
but gets unmanageable for cases with many unique cate-
gories. Furthermore, categories are all distributed uniformly,
meaning similar categories do not get put closer together
than categories that have nothing to do with each other.
[Koe18]
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(Neural) Embedding. An embedding is a technique that
converts a categorical variable into a vector of real numbers.
Embedding can drastically reduce the number of categories
and can be used to represent a categorical variable more com-
pactly. Neural embeddings are vector representations that
already involve a neural network for learning how to build
the vector. Those embeddings can act as an input for ma-
chine learning models and provide the possibility to search
for similar embeddings.

When comparing embeddings with an encoding, like the
previously mentioned one-hot encoding, the embeddings are
usually more compact. Instead of needing to represent each
category with a binary value, the embeddings can represent
the categories in a very compacted way.

TSNE Visualization of Book Embeddings Genre

I Crime novel

Science fiction novel

IFantasy novel

Children’s novel

60

40

20

Fantasy

TSNE 2
o

Historical novel
-20 Fiction
Non-fiction
Novel
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TSNE (t-distributed stochastic neighbor embedding) is a visualization
technique, popular for visualizing high-dimensional data.

Figure 5. Visualization of Embeddings of 37,000 Books on
Wikipedia [Koe]

As an example, we move from the simple mail carrier ex-
ample to a more complex one. Assuming we want to give
book recommendations to someone based on their genre
interests. We first have to represent the books in the library
(in the following example, all books on Wikipedia) in a vec-
tor space. We can do that by creating a new category for
each book and setting the value for each book with a specific
category to 1. This approach is the one-hot encoding. For the
37,000 books on Wikipedia, this approach would result in
a 37,000-dimensional vector. Doing the same with a neural
embedding results in a vector of only 50 numbers. Creating
the embedding seems to be a bit of a black box, as the neural
network takes the books’ information, crushes its data, and
outputs a vector of numbers. The learning is a supervised
learning process, and those resulting numbers are the pa-
rameters used in the neural network. The benefit of using
this technique is that using embeddings increases the effi-
ciency of the later learning process and reduces the storage
2021-12-16 08:43. Page 5 of 1-11.

capacity needed to persist those vectors. Moreover, finding
similar books is much easier, as the embedding includes the
closeness in its representation (Visualized in Figure 5). Em-
bedding is not quite as simple as the one-hot encoding, but
it is still not overly complicated and can be well interpreted.
[Koe18]

2.2.2 Training and Validation Process. When having
the preprocessed data, the training process can start. The
training process consists of two steps: A) Training the model
and B) Validating the model.

In a unsupervised learning setting, the machine learning
algorithm uses unlabeled data and analyses and clusters
the data on its own. The verification process needs to be
performed by a human, most likely a data analyst.

In a supervised learning setting, the model is trained by
feeding in labeled input data and then changing the model’s
weights until the expected output data is returned. This pro-
cess of altering the weights based on the result is called back-
propagation. Many different models use different kinds of
backpropagation or other mechanisms to train. We will cover
some of the most used ones in subsection 2.3. A training-
and a verification set are used because training for too long
on the same data will result in overfitting. Overfitting means
that the model will learn the training data patterns “by heart”
and cannot generalize well to new data. Feeding the training
data will result in a perfect result, but the result may be aw-
ful for unseen data. An example of such a case can be seen
in Figure 6. Instead of generalizing the data (the straight

Figure 6. Example of Overfitting [Ghi]

graph), the model creates a graph (the curvy graph) that
matches all data points exactly. For this reason, a validation
set consisting of only unseen data is used to check the quality
of the model. In the example’s case, this would be a set of
points that behave the same but are not at the same position.
Therefore, the peak at position -4.5 would deliver a terrible
result and indicates that the model cannot generalize well.

2.3 What different models are used?

As already mentioned, many different models can be used
for machine learning.



2.3.1 Feed-Forward Neural Networks (FNNs). Feed-For-
ward Neural Networks (FNNs) are the simplest versions of
neural networks. They only work in one direction. The out-
put of a node from one layer can only be passed to the nodes
in the next layer. Therefore, the graph of connections is a
directed acyclic graph (DAG).

2.3.2 Recurrent Neural Networks (RNNs). Compared
to the FNN, a Recurrent Neural Network (RNN) is a more com-
plex neural network version. Instead of passing the node’s
output only to the next layer, in an RNN, the output can
also be passed back to the same layer. This “back-passing” is
called recurrent and gives the model a “memory”. The output
of a node heavily relies on the elements earlier in the se-
quence. Furthermore, do share all layers their weights across
nodes. In contrast, in a feed-forward network, each weight
is independent in each layer. The memory’s effect is that an
RNN can handle sequences or time-series data like used for
processing natural language and speech recognition. For that
reason, RNNs are currently the most used neural network
models. [IBM20c, Phi18b]

Variants. RNNs are just the base concept. Many variants
build upon that idea.

The Bidirectional Recurrent Neural Network (BRNN) is an
RNN that uses not only previous inputs for prediction but
also uses future data to enhance the accuracy of predictions.
For example, in neural language processing, knowing the
end of the sentence might help to understand better what a
word, in the beginning, is referring to.

The Long Short Term Memory (LSTM) is a variant of an
RNN where the memory gets slightly altered. In the normal
RNN, the memory is relatively short-termed. The informa-
tion further away in the sequence has less impact and gets
slowly forgotten. LSTM tries to tackle this issue by having
so-called “gates” that decide what remains in the memory
and gets discarded. [Olal5]

Very similar to LSTM, the Gated Recurrent Unit (GRU) aims
to improve the memory of the RNN. It is built in a slightly
different way but has a similar outcome. We will not go into
details here but [Phil8a] has a good explanation of the two
variants.

2.3.3 Convolutional Neural Networks (CNNs). Convo-
lutional Neural Networks (CNNs) are variants of a neural
network mainly used for computer vision and image classifi-
cation. They consist of different layers that are connected.
The convolutional layer converts data into numerical val-
ues that the network can then interpret. The pooling layer
reduces the input space by applying algebraic aggregation
functions. And the fully-connected layer then classifies the
features extracted by the other layers. The first two layers
can be applied multiple times after each other, but the last
layer is only used once in the end. Together, those layers

Raphael Jenni

can very accurately classify, for example, objects in images.
[IBM20a]
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Figure 7. Illustration of classification process of a CNN
employing pattern matching, reduction, and classifica-
tion [IBM20a]. Process goes from bottom to top.

Figure 7 illustrates that for recognizing an item in a picture.
In this example, a bicycle. It first converts the picture into a
numerical representation. Then it reduces the input space
by applying a pattern matching algorithm, which results in
different parts, like a saddle or a wheel. It further reduces
the input space by applying a reduction algorithm, which
results in the end in a complete bicycle. The network does
not know what it has put together at this stage. It is still just
a numerical representation of an item. Finally, it classifies
the feature by applying a classification algorithm and yields
the result of the item in the picture as being a bicycle.

2.3.4 Encoder-Decoder Models. The Encode-Decoder model

uses two RNNs. One RNN encodes an input sequence, and
one decodes the encoded sequence and outputs the result.
It is generally used for sequence-to-sequence (S2S) models.
The main advantage of having two independent RNNs work
together is that the input and output sequence can differ in
dimension. For example, the length of a sentence in German
will most likely be longer than the length of an English sen-
tence. By having the encoder encode the German input into
a vector that abstractly contains its meaning, the decoder
can then decode this abstract vector into another language
without knowing anything about the original sentence.

For example, Google Translate has used Encoder-Decoder
models since 2016, and more advanced S2S models are built
upon those kinds of models. [Mos21]

3 Deep Learning for Programming
Languages (DL4PL)

This section will move from deep learning in general to deep
learning in the area of programming languages. It discusses
what DL4PL can be used for and what not, and how it is
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used. It is all rounded up with an extensive example of one
application of DL4PL, namely for the DeepBugs project, and
a non-DL approach as a comparison.

3.1 What can I do with it?

In programming languages (PL), DL is mainly used for pro-
gram synthesis, code comprehension, and code generation.
Program synthesis means constructing a program that satis-
fies a given specification. The specification can be stated in
many different forms, such as defining pseudo-code, writing
prose text, or a formal specification. Code comprehension
is the study of understanding the ways engineers maintain
existing code. Code generation covers the general idea of
generating code based on prior acquired knowledge, for ex-
ample, from other codebases. [WCP*20]

In subsection 1.2 some examples regarding what is possible
with DL were shown. In subsection 3.4 an extended example
will be discussed.

3.2 What and how does it “learn”?

Deep Learning contains the word “learning”, but what is
learned? To leverage the power of DL, a lot of 0 data is needed.
Since more and more projects are being developed and in-
creasingly more open-sourced, tapping into those resources
is the most straightforward way, and the most commonly
used at the moment, for gathering data. GitHub, GitLab, Bit-
Bucket, to name the three most significant code collaboration
and version control tools, all provide APIs over which one
can farm the repositories based on several criteria. Mining
code can be done in different ways. The source code can be
used at the binary level, code-snipped level, method level,
class level, or project level. Besides code, additional artifacts
can be mined and utilized. For example, we can leverage code
review comments and suggestions to understand code better
or use bug reports to identify possible errors. Nevertheless,
in general, the main source one tries to learn from is code.

Some methods utilize the code as a single version, visited
at a certain point in time, to learn patterns of correct code.
Other methods use the version control system to gather
information regarding code changes to find possible errors
that got fixed. Examples for both approaches are discussed
later in section subsection 3.4 and subsection 3.5.

Also, how code is interpreted varies from application to ap-
plication. Code can be parsed, put into an abstract syntax tree
(AST), and interpreted by encoding it into some learnable
sequence (for example, One Hot Encoding, Neural Embed-
ding, or Execution Trace Vectorization). In subsection 3.4
this approach will be discussed. Another option is to inter-
pret the code as it is, as a sequence of characters. This option
would be similar to processing natural language. The GitHub
Copilot, discussed in subsubsection 1.2.1, is an example of a
code interpreter that uses this approach. [WCP*20]
2021-12-16 08:43. Page 7 of 1-11.

3.3 What are its limitations?

DL is often thought to be kind of a silver bullet that can
solve all problems. DL tries to mimic the human mind but is
miles away from coming even close. The strength of DL is
to find patterns in a blob of un- or semi-structured data and
make some sense out of it. However, writing code is much
more than just applying common patterns. Going back to
the initial examples shown with the GitHub Copilot, code
can be generated based on some description of the problem
that is wanted to be solved. But this only works on a small
scope. Defining a general problem, like “We need a system for
managing our warehouse” will never be fully automated. To
specify all the requirements and stitch together the parts, the
need for humans will always persist. DL can assist in this but
will most certainly never be able to do that independently.

Coming back to the current state of DL, many limitations
originate from other sources than mere complexity. Often,
there is a general lack of “proven-to-be-clean” code, meaning
code that has no code smells, bugs, or “bad code” in it. Pro-
viding such a collection is a tremendous task and is also very
likely not to be open-sourced. Further, the problems we want
to solve are often not well-defined or not well-understood,
such that a DL model would struggle to work effectively.
Furthermore, even if they would be well-defined, the cur-
rently available architectures are not suitable for applying
them to the available data [WCP*20]. Much more needs to
be open-sourced and well documented to bring DL to the
next level, so one would not need to reinvent the wheel
each time something new wants to be tried. The lack of
open-source material is a widespread problem in research or
software engineering in general but is much more severe for
machine/deep learning.

3.4 DeepBugs

We now look at a practical example of using deep learning to
find bugs in a program. For this, we will use the DeepBugs®
project by Michael Pradel and Koushik Sen [PSD17]. The gen-
eral idea of the project is to use correct code, automatically
generate a falsy/buggy version of it, and train the system to
detect such bugs. Then, newly, previously unseen code gets
fed into the bug detector, which results in a prediction of
whether the code is buggy or not.

An example of the process is shown in Figure 8 with the
code construct setsize(width, height). The buggy version that
gets generated is setsize(height, width), where the order of the
parameters is swapped. Those two versions get embedded
into a vector representation. The vector representations then
get fed into the deep learning network for training it to detect
the buggy versions. For new code, in the example setbin(y_din
, x_dim), the vector representation gets generated as well and
classified by the bug detector. The result is a prediction that

®https://github.com/michaelpradel/DeepBugs
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Figure 8. Overview of DeepBugs’ aproach [PSD17]

the arguments are incorrectly ordered and therefore is buggy
code.

As previously mentioned, training on the code first re-
quires the code to be converted to a vector representation.
To do that, the code gets parsed into an AST. Based on this,
a context gets built for each statement. A context contains
information regarding the parent, grandparent, siblings, un-
cles, cousins, nephews, and the statement’s position in the
code. These attributes each get encoded with the one-hot
encoding and then concatenated, resulting in a single vector.

I&entifier
setTimeout

: window

Figure 9. Simplified AST of the function -call

window. setTimeout(callback, 1000); [PSD17]

For example (AST shown in Figure 9), setTimeout is the iden-
tifier of the member expression of the call expression. The
sibling is window, and the uncles are caliback and 1eee. That in-
formation gets encoded and together builds the AST context
vector.

When the context vector is built, the embeddings for the
identifiers are created and forwarded to the bug detector.
Examples for such embeddings are shown in Figure 8.

In the example, the training data generator built code
versions with the arguments swapped. Swapped arguments
are only one type of bug. The paper also covers bug detectors
for wrong assignments, wrong binary operators, and wrong
binary operands. The repository additionally contains bug
detectors for incorrect assignments and missing arguments.

3.4.1 Practical Example. We now look at a code example
provided by DeepBugs. Given a data set of parsed method

1 // Math.min(max, 1)

2 {

3 'base': 'ID:Math',

4 '‘callee': 'ID:min',

5 'calleeLocation': 'location_identifier',
6 'arguments': ['ID:max', 'LIT:1'],

7 'argumentLocations ': [location_identifier, ...],
8 'argumentTypes ': ['unknown' 'number '],
9 'parameters': ['', ''],

10 'src': 'fileanme line_number ',

11 'filename': 'fileanme'

12 }

Listing 4. Sample data structure

invocations (Listing 4) and a map or function that maps each
token to a vector, we can produce a correct and a buggy ver-
sion for each method (Listing 5). Note how the AST nodes
are identified. Identifiers are prefixed with “ID: literals with
“LIT:”. This is important for later. After generating all wrong

1 # Inputs given to the model: Each element is

2 # the vector representation of a function call.

3 xs =[]

4

5 # Outputs expected from the model: For each

6 # call, predict the probability that it's buggy.

7 ys =[]

8

9 for call in calls:

10 if (call["callee"] in token2vec and

11 call["arguments"][@] in token2vec and
12 call["arguments"][1] in token2vec):

13 callee_vec = token2vec[call["callee"]]

14 argl_vec = token2vec[call["arguments"][0]]
15 arg2_vec = token2vec[call["arguments"][1]]
16

17 # Positive, i.e., correct example

18 x_correct = callee_vec + argl_vec + arg2_vec
19 # Negative, i.e., buggy example

20 x_buggy = callee_vec + arg2_vec + argl_vec
21

22 xs.append(x_correct)

23 ys.append (@) # Probability that buggy is @
24 xs.append(x_buggy)

25 ys.append (1) # Probability that buggy is 1

Listing 5. Traing Data Generation
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versions, we can divide our two sets into training and val-
idation sets. We put the sets into a nine-to-one ratio, the
larger set being used for training. In total, this results in

1 # Split into training and validation data
2 nb_training = int(0.9*len(xs))

3 xs_training = np.array(xs[:nb_training])
4 ys_training = np.array(ys[:nb_trainingl)
5 xs_validation

6 ys_validation

np.array(xs[nb_training:1])
np.array(ys[nb_training:])

Listing 6. Creation of Training and Validation Sets

training sets with 21592 samples and validation sets with
2400 samples. With all the preparation work done, we can
now train the model. The training in the example is done
by Keras. Keras’ is a human-friendly API for creating and
training machine learning models. It is built on top of Ten-
sorFlow®, an open-source machine learning framework by
Google. We will not cover the building of such a model, as
it requires some machine learning knowledge and does not
yield any significant additional information. We use pseudo
python code as a way to express it. After just five training

1 model = Model()

2 model.train(xs_training, ys_training)

3

4 # Epoch 1/5 - loss: ©0.5015 - accuracy: 0.7396
5 # Epoch 2/5 - loss: ©0.3581 - accuracy: 0.8323
6 # Epoch 3/5 - loss: 0.2963 - accuracy: 0.8662
7 # Epoch 4/5 - loss: ©0.2554 - accuracy: 0.8875
8 # Epoch 5/5 - loss: ©0.2236 - accuracy: 0.9006

Listing 7. Pseudo-Train the Model

cycles, we can see that the model has an accuracy of 90% on
the training set. We need to verify the actual performance
with the verification set to see the actual performance. The

1 model.evaluate(xs_validation, ys_validation)
2
3 # loss: ©.3072 - accuracy: 0.8562

Listing 8. Verify the Model

accuracy on previously unseen data is slightly lower than
before, but with 85% still an acceptable result. The model
trained and verified is now ready to be used in a “real-world
example”. For that, we craft a piece of code. First, a correct
example: The JavaScript method setTineout(func, time) is used
to execute a function after a certain time. If we feed this piece
of code into our model, it should be classified as correct. If we
feed the incorrect version into our model, the result should
be classified as buggy. We can see that the model accurately
predicts the buggy piece of code with a certainty of 96%. The
correct piece of code is classified as being correct with a 71%

"https://keras.io
8https://www.tensorflow.org
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callee = token2vec["ID:setTimeout"]
argl token2vec["ID:fn"]
arg2 token2vec["ID:delay"]

1
2
3
4
5 x = callee + argl + arg2 # correct order
6 model.predict(x)

7

8

# Call is buggy with probability ©.2932

Listing 9. Setup Function and Predict Bugginess of Correct
Piece of Code

1 x = callee + arg2 + argl # wrong order
2 model.predict(x)

3

4 # Call is buggy with probability ©.9697

Listing 10. Predict Bugginess of Wrong Piece of Code

certainty. The certainty for the correct code is not as high as
for the buggy code but is still high enough not to be counted
as a false positive. In the end, the threshold for marking a
method call as being buggy or not lies in our hands. The way
the model is trained (details omitted in the code above) also
plays an important role. It needs some trying-out work to
find the best possible combinations of parameters and meth-
ods used. With some tweaking on the parameters (epochs
and batch sizes - not shown in the paper), we quickly can
get a prediction certainty of 98% for the buggy code and 93%
for the correct code.

The significant achievement of this approach is that vast
amounts of training data can be automatically generated. Fur-
thermore, although only shown for JavaScript, this approach
works for all kinds of programming languages. The paper
only covered elementary types of bug creators and detectors,
but some more advanced versions could be possible in future
versions. Combining this method with other methods like,
for example, ControlFlag (covered in subsubsection 1.2.4)
could yield some significant advances for coding assistants.

3.5 DiffCode

Another approach for detecting code bugs, code name “Diff-
Code”, is described in the paper “Inferring Crypto API Rules
from Code Changes [PZT*18]”. This approach does not use
deep learning but shows another option to understand and
represent code. Adding deep learning to this could be a pos-
sibility for future projects.

DiffCode uses version control systems (VCS) commits
to detect possible bugs. For that, it builds a DAG derived
from the AST for every single instantiated object. The DAG
contains the interactions with the object, starting from its
initialization. In the example (Figure 10), the object enc of
type cipher is shown. The changes in the before (left) and
after (right) versions are visualized in color.

With this representation, a system is constructed that
matches the changes and filters out the irrelevant ones, such
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public class AESCisher {
Cipher enc, dec;

public class AESCipher { £
Cipher enc, dec;

final String algerithm =

protected void setkeyAndIV(Key key, String iv) {
bytel] ivdytes;
IvParaneterspec ivspec;
tey {
Bytes = iv.getaytes(standardcharsets. UTF

protected void setKeyAndIV(Key key, String iv) {
try {
enc = Cipher.getInstance(algorithm) ;

enc.init(Cipher.ENCRYPT_HODE, Key)

c = Cipher.getInstance(algorithn);

dec = Cipher.getTnstance(algorithn);

dec.init(Cipher.DECRYPT_MODE, Key) dec = Cipher.getInstance(algorithn);

P

} catch (Exception ) { init(Cipher.DE
N } caten (Exception &) {

getinstance
AES/CBC/PKCS5Padding

ENCRYPT_MODE

Figure 10. Conversion of code usages of the field enc of type
Cipher into an abstract DAG [PZT*138].

as refactorings. The system then clusters the changes and
outputs a list of changes that are very similar and changed
something in the behavior.

The benefit of this approach opposed to the one of Deep-
Bugs (subsection 3.4), is that bad versions are created with
the help of real-world code changes. Furthermore, the code
representation also contains some information regarding
the object’s lifecycle. On the other hand, DiffCode’s repre-
sentation is not as contextually detailed as DeepBugs’ one
and has no compact way of representing it. Using statistical
tools to analyze the data, instead of using something like
deep learning, results in a system that will never be able to
cope with the amount of data required to make a system
that runs more or less in real-time and is fully automatic.
The statistical approach is way too slow. A more detailed
analysis of this paper can be found in [Jen21]. Nevertheless,
a combination of both approaches, DeepBugs and DiffCode,
could potentially yield some interesting results.

4 Conclusion

This paper addresses the current state of machine learning
in general and the current state of deep learning for pro-
gramming languages. The critical insight is that the field is
very quickly evolving and yields new results rather quickly.
The technology is still in its early years, and many advance-
ments are going to happen. Nevertheless, some fantastic
results, like Google Assistant, Alexa, etc., for deep learning
in general, or Github’s Copilot and Tabnine explicitly in the

Raphael Jenni

context of programming languages, have been achieved al-
ready. With more and more code being open-sourced, many
more possibilities are going to open.

However, there are still things for what you are always
going to need a human. Deep learning is not a silver bullet
that solves all our problems. It can assist a human but not
replace it. In the long term, this assistance will grow and
grow; the question is just by what speed this will happen.
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