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Abstract

Massive Parallel Image Processing: How can image data be processed in an extreme
parallel manner. In this project, we analyze methods on how image segmentation could
be developed with CUDA and give an overview of the advantages and disadvantages by
using CUDA in image processing.

Image processing algorithms are more often than not quite complex and a special
part of them - the image segmentation task - can become quickly very long-winded
because each pixel has to be analyzed and processed repeatedly. NVIDIA has provided
a technology called CUDA, based on the C programming language that supports
calculations on their graphics cards with thousands of concurrent threads. For this
reason the use of CUDA to solve image segmentation algorithm problems is obvious
and the applicability of CUDA in this area should be investigated.

We have developed an application that implements an automatic seeded region
growing algorithm which divides a given image into color based regions, using the
power of NVIDIA’s graphics processing unit on most of the partial sub algorithms. The
application delivers an output where the regions in the resulting image are colorized
with their color mean value additionally to a console output, showing the time required
for each algorithm part. The application can be launched with different command line
arguments which provides the ability to observe, how the results differ while playing
with various threshold values.

Equally important to the implementation documentation we elaborate on the lessons
learned from the challenges and performance insights. In addition, we deliver information
about the expedient use of the CUDA technology and what definitely should be avoided.
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1 Management Summary

In this project, we analyze methods on how image segmentation could be developed with
NVIDIA’s CUDA technology. The project was initiated by the Institute for Internet-
Technologies and Applications at the University of Applied Sciences Rapperswil.

1.1 Motivation

The increased complexity of computable problems desires more and more faster hardware.
This fact is by far not new, but the needed performance can no longer be achieved by
just increasing the clock speed of processors. Hence, the approach to parallelize things
has become more and more popular. NVIDIA provides a technology called CUDA,
based on the programming language C, where computationally intensive operations can
be transfered to a CUDA capable graphics card (almost all new graphics cards from
NVIDIA are CUDA aware) where the tasks are calculated in an massive parallel way,
using the graphics processing unit (GPU).

Image processing algorithms are more often than not quite complex, because computers
are not capable to logically interpret and extract information as seen by human beings. A
special part of an image processing task is the image segmentation, which is responsible
for the isolation of objects in an image by finding regions based on the color value of its
containing pixels. Because each pixel has to be analyzed individually and mostly be
compared with its neighboring pixels repeatedly, the algorithm can become quickly very
long-winded and performance intensive.

The idea of parallelism and the complexity of image processing tasks leads to the
desire to investigate the applicability of CUDA to this domain.

1.2 Goals

The goal of this project is to gain an overview of the advantages and disadvantages by
using CUDA in image processing. It should give an outline of how and if the CUDA
technology can be used for image segmentation algorithms. The resulting work should
help to support further implementation attempts using this technology and depict,
which barriers have to be conquered.

To demonstrate the feasibility, a specific image segmentation algorithm might be
implemented which divides an image into regions, using the CUDA technology. Supple-
mentary, the implementation shall afford a small testing environment where images can
be segmented with different input values.
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1 Management Summary

1.3 Results

We have developed an application that implements an automatic seeded region growing
algorithm which divides a given image into color based regions, using the power of
NVIDIA’s graphics processing unit on most of the partial sub algorithms.

The application delivers an output where the regions in the resulting image are
colorized with their color mean value additionally to a console output, showing the time
required for each algorithm part. The ability to launch the application with different
command line arguments - namely an image and two threshold values for the similarity
and the Euclidean distance - allows an evaluation of the algorithm with different input
data. Therefore, this application acts as a small testing environment where it is possible
to play with various threshold values.

Furthermore we elaborate on the lessons learned from the challenges and performance
insights and deliver information about the expedient use of the CUDA technology and
what definitely should be avoided.

4



2 Technical Introduction

2.1 Problem Domain

Today people expect their computers to do everything. Indeed everything that is
computable can be done by machines and as we start understanding difficult problems
better and better scientist and programmers start writing more complex programs to be
solved by machines. This is also true for the whole area of image processing as images
get larger and hence computationally more complex.

With the increased complexity of the problems the desire for faster hardware increases
as well. To be able to solve more complex problems programmers must have possibilities
to get more power out of these machines, however this performance gain can not be
achieved by just increasing the clock speed of today’s processors. As a result the industry
is heading towards parallel programming concepts.

2.2 Image Processing

Human beings can see and extract information form images that machines are not
capable of. Most of the time we can just see the context of an image what it is about,
which object it shows or what text is written on it. Machines are not capable of just
seeing things they need to process an image, enhance or adjust it to be able to ”see”
something. As described by [20] these computations can be separated into four types of
image processing operations:

� Pixel Operations: The output of processing a certain pixel depends only on the
input on that single pixel. Typical pixel operations include thresholding, image
inverting, addition, subtraction or color space transformations.

� Local (neighborhood) operations: The output at a pixel depends on the local
neighborhood of that pixel meaning the output is dependent form some of the
surrounding pixels. Many filter operations can be classified as this type of operation
for instance smoothing filters such as averaging filter or median filter.

� Geometric Operations: The output of a certain pixel depends on some input pixels
given by a geometric transformation. On the contrary to global operations the
input for geometric operations are given by a subset of all pixels. These input
pixels do not have to be in the local neighborhood of the considered pixel.

� Global operations: The output at a pixel position depends on all pixels in an
image. In contrast to local or geometric operations where only a subset of pixels
act as input these operations are usually computationally much more intensive.

5



2 Technical Introduction

In fact, all these operations show up in many algorithms in the domain of image
processing.

2.2.1 Image Segmentation

Image segmentation is a process to extract objects or segments and classify each pixel
as either a background pixel or an object pixel. In many situations the system is
interested in only some special parts of an image thus the system tries to isolate these
parts. Especially in a sequences of images such as video streams the background is
usually static and therefore boring. What is of interest are the actors in the scene and
those things that change over time. These objects we would like to be extracted by a
image segmentation algorithm. Unfortunately correct segmentation is not trivial and
actually one of the most error-prone steps in an image processing system [9]. People
can segment an image based on the knowledge of its context. For instance most people
probably would segment image 2.1 into the segments: water, sky, bridge, the forest
in the background and the tree in the foreground. However a segmentation algorithm
most likely would segment the image based on color values and thus not recognizing the
water as a dedicated segment.

Figure (2.1) Difficulties in Image Segmentation

In almost all situations image segmentation is only a part of the overall process of an
image processing system. Possibly it provides the knowledge for a following stage of the
process with the information of interest, leaving aside non relevant data.

6



2.3 Automatic Seeded Region Growing Algorithm

2.2.2 Segmentation Algorithms

In general there are four types of segmentation algorithms techniques [20] with different
levels of complexity. Namely these four techniques are thresholding, boundary-based,
region-based, and hybrid techniques.
Thresholding is one of the straight forward approaches to this problem, and in many
situations an adequate method to solve a segmentation problem. Thresholding assumes
that background pixels and object pixels are clearly separated by their color or intensity.
However in situations when the shadow of an object makes background pixels appearing
darker then they are in truth, the thresholding algorithm probably fails and classifies
background pixels as object pixels. A common approach to overcome this problem is
adaptive thresholding, which uses different thresholds for different regions of the image.
In addition to thresholding, other more complex techniques consider their local neigh-
borhood to distinguish between object and background pixels. Boundary-based or edge
extraction methods focus on pixel discontinuity in their local neighborhood, whereas
region-bases methods rely on the similarity of neighboring pixels to make the classifica-
tion.
The forth category of techniques are called hybrid methods and are combinations of
the approaches described above. For example [18] describes an method to combine
boundary detection and region growing to achieve better segmentation results.

2.3 Automatic Seeded Region Growing Algorithm

Seeded region growing is one of the hybrid-methods presented by [5]. It is based on the
conventional region growing postulate of similarity of pixels within regions, but it is in
its mechanics closer to the watershed method. The watershed method is applied to the
gradient of an image, where this gradient can be seen as a topography with boundaries
between regions as ridges. Segmentation is then performed by literally flooding the
topography from the seed or source pixels. Like the watershed algorithm and in contrast
to the boundary-based methods, the seeded region growing technique is guaranteed to
produce closed boundaries. As the segmentation is done based on the color values of the
individual pixels it is assumed that individual objects or regions are characterized by
connected pixels of a similar value. Thus, the technique may not be suitable for highly
textured images. Our implementation is based on the automatic seeded region growing
algorithm described by [21].

2.3.1 Overview of the automatic seeded region growing algorithm

Figure 2.2 presents an overview of the different stages of the automatic seeded region
growing algorithm. In the first step the image is transformed from RGB to Y CbCr

color space. Secondly, the seed pixels are identified as input for the following region
growing algorithm. The seed region growing algorithm is used to segment the image into
individual regions. Because these steps usually result in an over segmented image the
region-merging algorithm is applied in a final step to merge similar and small regions.

The following sections will describe the individual stages of the algorithm in more
detail.
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2 Technical Introduction

Figure (2.2) Overview of the Automatic Seeded Region Growing Algorithm

2.3.2 Color Space Transformation

A captured color image is stored in RGB values. Even if the RGB model is suitable
for color display, it is ill-suited for color analysis because of its high correlation among
R, G, and B components [20]. In addition, the distance in RGB color space does not
represent the perceptual difference in a uniform scale. In image processing and analysis,
the RGB color space is often converted into more applicable color spaces. The Y CbCr

color space has been widely chosen for color segmentation. The reasons are as follows:

� Y CbCr color space is used in video compression standards (e.g., MPEG and JPEG)

� The color difference of human perception is related to the Euclidean distance of
the Y CbCr color space

� The intensity and chromatic components can be easily and independently controlled

Y CbCr is a family of color spaces used as a part of the color image pipeline in video
and digital photography systems. Y is the luma component (background brightness),
where Cb and Cr are the blue-yellow chroma and red-green chroma components. Y CbCr

is not an absolute color space, it is only a way to encode RGB information. The
actual color displayed depends on the actual RGB colorants used to display the signal.
Therefore a value expressed as Y CbCr is only predictable if standard RGB colorants or
an ICC 1 profile (a standardized set of data that characterizes a color input or output
device) are used. [4]

If the RGB data has a range of 0-255 per channel, (which is common when images
exist in digital format), the equations 2.1 to 2.3 and 2.4 to 2.6 can be used to transform
the color spaces [8].

RGB to YCbCr transformation

To transform the RGB values to Y CbCr, following equations are used:

Y = 0.257 ·R+ 0.504 ·G+ 0.098 ·B + 16 (2.1)

Cb = −0.148 ·R− 0.291 ·G+ 0.439 ·B + 128 (2.2)

Cr = 0.439 ·R− 0.368 ·G− 0.071 ·B + 128 (2.3)

1 International Color Consortium
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2.3 Automatic Seeded Region Growing Algorithm

YCbCr to RGB transformation

To transform the Y CbCr values back to RGB, following equations are used:

R = 1.164 · (Y − 16) + 1.596 · (Cr − 128) (2.4)

G = 1.164 · (Y − 16)− 0.813 · (Cr − 128)− 0.391 · (Cb − 128) (2.5)

B = 1.164 · (Y − 16) + 2.018 · (Cb − 128) (2.6)

2.3.3 Automatic Seed Selection Algorithm

To select pixels as seed pixels we must ask ourself what are good seed pixels and which
criteria must be met by the algorithm to give best results. The proposed seed selection
algorithm is based on three criteria that must be satisfied by the selection algorithm:

1. a seed pixel must have high similarity to its neighbors

2. for an expected region, at least one seed pixel must be generated

3. seeds for different regions must be disconnected

The similarity value of a pixel tells us how similar it is compared to its eight neighbors.
Considering the 3× 3 neighborhood of a pixel its similarity is calculated as follows:

1. Calculate the mean value for each of the Y , Cb and Cr components in the 3× 3
region as

x =
1

9

9∑
i=1

xi (2.7)

where x can be Y , Cb or Cr.

2. Calculate the standard deviations of Y , Cb and Cr using

σx =

√√√√1

9

9∑
i=1

(xi − x)2 (2.8)

where x can be Y , Cb or Cr.

3. Sum the individual standard deviations to calculate the total standard deviation
as

σ = σY + σCb
+ σCr (2.9)

4. For further calculations the standard deviation is normalized to [0, 1] by

σN =
σ

σmax
(2.10)

where σmax is the maximum standard deviation in the image.

9



2 Technical Introduction

5. Finally the similarity of a pixel to its eight neighbors is defined as

H = 1− σN (2.11)

From the similarity in the last equation 2.11 the first condition for a seed pixel is
defined as follows:

Condition 1: A seed pixel must have the similarity higher than a threshold value ts.

In our implementation the threshold value ts is given by the user as a command line
argument. In production code this threshold should be calculated at runtime e.g. by
using Otsu’s method [17].

The second condition that has to be fulfilled by a pixel to become a seed pixel is
given by the maximum distance to its eight neighbors. The relative Euclidean distance
of a pixel to its eight neighbors is calculated as

di =

√
(Y − Yi)2 + (Cb − Cbi)

2 + (Cr − Cri)
2√

Y 2 + C2
b + C2

r

, i = 1, 2, . . . , 8 (2.12)

where Y , Cb and Cr represent the reference pixel.

For each pixel the maximum distance to its eight neighbors is determined by

dmax =
8

max
i=1

(di) (2.13)

Form the maximum distance the second condition on seed pixels is defined as follows:

Condition 2: A seed pixel must have the maximum relative Euclidean distance to
its eight neighbors, which is less than a threshold value td.

This condition makes sure that a seed pixel is not on the boundary of two neighboring
regions. As with the threshold in condition 1 this threshold td must be specified as a
command line argument.

Based on condition 1 and condition 2 we get the set of seed pixels. Each connected
component of seed pixels now acts as one seed and defines a region. But, in most cases
for an expected region several different seeds are detected and therefore the result is
likely to be over segmented. This regions can later be merged in the region-merging
step.

2.3.4 Seed Region Growing Algorithm

After detecting the seed pixels we need to identify the individual regions. This is done
by a connected components analysis based on the local neighbor labeling algorithm
described in [7]. The implementation details of this algorithm are described in section
3.3.4, Connected Components Analysis and Seed Selection. Later, when each seed pixel

10



2.4 CUDA Technology

is labeled with a region label the remaining unclassified pixels have to be assigned to one
of the identified regions. In this step we do not implement the algorithm as described in
[21] because of our focus on parallelizing the problem. For this reason we do not grow
the regions pixel by pixel, but try to grow the regions in a faster spreading manner. The
method proposed in the original algorithm iterates until all pixel are classified, where in
each iteration only one non-seed pixel gets classified. The pixel that is chosen is the
one with the least relative Euclidean distance to its adjacent regions. When analyzing
the problem from a parallel viewpoint one has always the tendency to process not just
one pixel at a time, but many pixels in one iteration. For this reason we tried to find a
way to grow the regions faster, knowing that the algorithm may not perform as exact
as the proposed one. In our solution we assign a label to all region-outline pixels per
iteration. This method is very similar to the watershed algorithm where the image is
kind of flooded from the source pixels. The disadvantage of this method is that the
region boundaries of the segmented image are not as exact as with a strict sequential
region growing algorithm.

Like the proposed algorithm we calculate the value of the relative Euclidean distance
di between each unclassified pixel i and each of its adjacent regions by

di =

√
(Yi − Y )2 + (Cbi − Cb)2 + (Cri − Cr)2√

Y 2
i + C2

bi
+ C2

ri

(2.14)

where Y , Cb, and Cr are the mean values of Y , Cb, and Cr components in the region
under consideration.

2.3.5 Region-Merging Algorithm

It is very likely that several seed pixels split an expected region into multiple small
segments. Because of the common problem of over-segmentation in this algorithm a
region-merging algorithm is applied to the result of the previous stage. This algorithm
checks the size of each region. If the number of pixels is smaller than a given threshold,
the region will be merged into the neighboring region with the smallest color difference.
This procedure is repeated until no region has a size less than the threshold. Note that
this step is not part of our implementation.

2.4 CUDA Technology

NVIDIA CUDA is a revolutionary architecture to deliver performance by computing tasks
in a massively parallel manner, using NVIDIA’s graphics processing units. Applications
running under CUDA architecture can achieve dramatic speedups.

The main concept of CUDA is the ability to transfer computationally intensive
operations to the graphics card, where the operation would be processed on the GPU
(graphics processing unit) with hundreds of thousands of concurrent threads. During
this processing time further operations can be computed on the CPU (central processing
unit).
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2 Technical Introduction

2.4.1 The Concept of Parallel GPU Programming

The parallel programming model on a GPU differs from classical task parallelism
programming techniques. NVIDIA’s basic approach with CUDA is called SIMT (Single
Instruction, Multiple Thread) fashion. This approach allows a programmer to write
single instructions, which will be executed from multiple threads at the same time.

In CUDAs programming model, the host program launches a sequence of kernels 1

which are organized as a hierarchy of threads. As illustrated in figure 2.3 these threads
are grouped into blocks. Blocks themselves are grouped within a grid that represents
basically just a kernel launch.

Each thread within a block as well as each block in a grid has a unique index. With
the help of the block dimension one can compute the unique global index per thread.
This index allows us to assign each thread to e.g. its corresponding element in an array.

Threads in a block can be organized in three dimensions (x, y, z) whereas each block
will be executed on a single multiprocessor on the GPU. They can be synchronized and
they can share their data with other threads in the same block through shared memory.
As multiprocessors can not execute a whole block at once, thread blocks are divided
into warp units 2. So it is best to create thread blocks of size that is a multiple of 32
threads.

When processing large data sets on GPUs one is limited by certain constraints. On
graphics cards with CUDA compute capability 1.3 or lower, the maximum number of
threads per block is limited to 512. Newer graphics cards with capability 2.x can handle
up to 1024 threads per block. The maximum grid size is the same for all devices of
all compute capabilities. The grid size is limited to x and y components where each
dimension can handle up to 65535 thread blocks.

Figure (2.3) CUDA Thread Organization

1 functions that are executed on the GPU
2 groups of 32 or 64 threads

12



2.4 CUDA Technology

2.4.2 Existing CUDA Libraries

Currently there are four main libraries included in CUDA Toolkit (Version 3.2). In
addition, several extra libraries can be found on the Internet, which are supported by
NVIDIA.

The CUDA toolkit contains following libraries:

� CUBLAS is a library, based on BLAS (Basic Linear Algebra Subprograms) that
provides functionality for linear algebra operations on top of the NVIDIA CUDA
runtime. The basic model by which applications use the CUBLAS library is to
create matrix and vector objects in GPU memory space, fill them with data, call a
sequence of CUBLAS functions, and, finally, upload the results from GPU memory
space back to the host [13].

� CUFFT provides a simple interface for computing parallel Fast Fourier Transfor-
mations on an NVIDIA GPU. CUFFT supports in its version 3.2 transformations
of complex and real-valued data with up to 128 million elements in any of maximum
three dimension (limited by the available GPU memory) [14].

� CUSPARSE contains a set of basic linear algebra subroutines used for handling
sparse matrices. It is designed to be called from C or C++ host code. Its
subroutines can be classified in four categories: Operations between sparse mode
vector and dense mode vector, sparse mode matrix and a dense mode vector,
sparse mode matrix and a set of dense mode vectors and conversion routines that
allow conversion between different matrix formats [16].

� CURAND is a library that provides facilities with focus on the simple and efficient
generation of high-quality pseudorandom and quasirandom numbers [15].

In addition there are several libraries available on the Internet that are supported by
NVIDIA. One popular library that helped us in implementing some of our algorithms is
the CUDPP (CUDA Data Parallel Primitives Library), hosted on ”google code”.

� CUDPP is an open source library of data-parallel algorithm primitives such as
parallel sort or parallel reduction. Primitives such as these are important building
blocks for a wide variety of data-parallel algorithms, including sorting, stream
compaction, and building data structures such as trees and summed-area tables
[1].

Typically CUDA code is written in standard C language with support for only a
subset of C++. An attempt to mimic extended C++ support is taken with the ”thrust”
project.

� Thrust is a CUDA library of parallel algorithms with an interface resembling the
C++ Standard Template Library (STL) [3].
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CUDA and image processing

A natural fit for data parallel processing is image processing. Typically (in a CPU
implementation) each pixel of an image has to be processed separately in a loop where
a lot of data should have been stored for it. One of the biggest advantage in modifying
an image on the GPU is that each pixel can be assigned to a thread which causes that
a large set of pixels can be processed concurrently. Because of the fact that the data
has to be copied between host and device the resulting overhead may compensate the
performance gain by the GPU. Therefore two of the main problems in image processing
with CUDA is the difficulty to decide how pixels can be well assigned to threads and
how the copy operations can be minimized.
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3.1 Architecture Overview

Massive Parallel Image Processing is an implementation of an image segmentation
algorithm based on color values. The functions are implemented, using the NVIDIA
CUDA framework, where computationally intensive activities are executed on the
graphics processing unit (GPU). In addition to the standard CUDA API the application
makes use of the CUDPP library, which provides high performance functionalities for
several array operations. The implementation of the segmentation algorithm sequentially
calls several sub-functions which execute a sub-set of the algorithm.

3.1.1 Two Layer Architecture

Basically the application is implemented as a two-layer architecture: the host-layer and
the device-layer. Each sub-function contains host code which runs on the CPU and
device code that will be executed on the GPU. It is responsible for its own memory
allocations and CUDA kernel calls, detached from the overall CPU logic. The most
important benefit of this architecture is a clear separation of device code and host code
and builds a nice and clean interface between the CPU and the GPU side as shown
in figure 3.1. Furthermore there is no need to care about device memory allocation or
deallocation when calling sub-functions from the host because the device code is not
directly visible on the host side.

CPU

GPU

GPU Interface

Figure (3.1) CPU/GPU Code Separation

3.2 Logical View

The software components are divided in six packages (folders), based on their logical
function, illustrated in figure 3.2.
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Figure (3.2) Logical View

3.2.1 Package ”algorithm”

The algorithm package contains the main segmentation algorithm which initially converts
the given image into color channel arrays and calls its sub algorithms.

3.2.2 Sub-Package ”seed selection”

Members of this package are responsible for the first part of the algorithm where the
regions are set, based on a comparison of the color value of each pixel and the following
connected component analysis.

3.2.3 Sub-Package ”seed region growing”

The second part of the algorithm is implemented with functions that can be found in
the seed region growing package. Regions that were found in the prior algorithms will
be extended by pixels which are not associated to a region yet.

3.2.4 Package ”datatype”

To avoid long parameter lists, we implemented structures that encapsulate the needed
data. These structures are located in the datatype package.

3.2.5 Package ”helper”

This package contains commonly used helper functions for memory allocation and time
logging.
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3.2.6 Package ”test”

The test package includes the unit tests used to verify the correctness of our algorithms.

3.3 Algorithm Implementation

In this section we focus on implementation details of the algorithm, its individual
components and elaborate on the core concepts in the source code. Initially, figure 3.3
will give an overview of the implemented algorithm. It demonstrates the work flow
of the algorithm, shows the borders between the host and device layer and explains,
where data is copied from host memory (illustrated in green) to device memory (blue
colorized).

3.3.1 Interface to the OpenCV library

Above our implementation we used the OpenCV library [2] which acts as the image I/O
layer. With the help of OpenCV we read, write and display the input and output images.
The function segment_OpenCV() provides the OpenCV specific interface and calls the
generic segment() function. Due to this two phase function call we can easily change to
another image I/O library with no impact on the underlying algorithm implementation.

As with most image libraries the image data coming form the OpenCV library is
given in an RGB format. This means the image data is given as one array of RGB color
triples. Because this data layout is not very useful for a fast CUDA implementation
we reorganize the data within the segment_OpenCV() function in a GPU suitable form.
This means we reorganize the three color channels in three separate sequences of all
red, all green and all blue values. Generally the concept of this data alignment is called
”Structure of Arrays” whereas the RGB alignment of OpenCV is known as ”Array of
Structures”. In section 5.2.5 we describe why the structure of arrays data layout is
faster and better for GPU implementations and why one should aim for such a data
organization.

3.3.2 Host Image Data Allocation

Note that when we reorganize the image data we allocate the new data with a special
type of memory allocation. Namely we use page-locked memory to store the image data
on the host side. First of all page-locked memory is a fixed memory buffer (also called
pinned memory) where the operating system guarantees that this memory will never
be moved to disk, which means the data remains always in the physical memory space.
Consequently the GPU hardware can access this host memory via direct memory access
(DMA) to move data between host and device memory space and therefore memory
transfers are faster then the transfer of pageable memory allocations. However, it is
not possible to simply allocate all the host data as page-locked memory because this
basically erases the possibility of virtual memory. As a result you should only selectively
allocate page-locked memory where it is needed and reasonable.

Now, to the reason why we allocate the image data in page-locked memory. When
the host data is in page-locked memory we can access another class of parallelism
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Figure (3.3) Algorithm Workflow
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on the GPU. Rather than computing a function kernel on a large set of input data
simultaneously we can reach a new type of parallelism known as task parallelism. The
way to do task parallelism in CUDA is called ”streams”. With streams we can do steps
(tasks) of the algorithm in parallel however to use streams the host memory buffer must
be allocated as page-locked memory. In our case we can exploit this conception in
situations when we want to do the same calculation on each color channel. In other
words whenever we would like to do the same operation on each channel we can create
three streams and compute the three results in parallel.

3.3.3 Standard Control Flow in CUDA Functions

In this section we show the way how CUDA functions are most often implemented
with the example of the color transformation algorithm. From the host side memory is
allocated on the device followed by the memory transfer of the image data. Subsequently
the kernel will be called with the predefined launch configuration and the pointers to the
data to be modified. Inside the kernel each thread is responsible for one specific pixel
which matches the calculated global unique index of the thread. The thread replaces
the color values of all channels at his pixel index with the newly calculated values.

3.3.4 Automatic Seed Selection Implementation

The implementation of the seed selection process follows the explanations in section
2.3.3 and is basically divided into the following four pieces.

1. compute the similarity condition

2. compute the Euclidean distance condition

3. set the seed pixels based on the two conditions

4. identify the regions with the connected component analysis

The output of this step is a set of seed pixels where each seed pixel belongs to a
certain region.

Similarity Calculations

To determine the similarity of a certain pixel to its eight neighbors the algorithm first
has to calculate the standard deviation to these neighbors. This value is computed on
each channel separately which opens up the possibility to use streams. As shown in
listing 3.1 three streams are created; one for each channel. In this case no memory
copies are needed prior to the kernel execution, so we immediately start the three CUDA
kernels with specifying the stream in the launch configuration. Note, because a kernel
launch is always asynchronous the control flow returns immediately to the host after
the call.

1 cudaStream_t stream_c1, stream_c2, stream_c3;
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cutilSafeCall(cudaStreamCreate(&stream_c1));
cutilSafeCall(cudaStreamCreate(&stream_c2));

5 cutilSafeCall(cudaStreamCreate(&stream_c3));

std_dev_kernel<<<gridDim, blockDim, 0, stream_c1>>>(d_std_dev_c1.d_ptr
(), d_img.width, d_img.height, channel1);

std_dev_kernel<<<gridDim, blockDim, 0, stream_c2>>>(d_std_dev_c2.d_ptr
(), d_img.width, d_img.height, channel2);

std_dev_kernel<<<gridDim, blockDim, 0, stream_c3>>>(d_std_dev_c3.d_ptr
(), d_img.width, d_img.height, channel3);

10
cutilSafeCall(cudaStreamSynchronize(stream_c1));
cutilSafeCall(cudaStreamSynchronize(stream_c2));
cutilSafeCall(cudaStreamSynchronize(stream_c3));

15 cutilSafeCall(cudaStreamDestroy(stream_c1));
cutilSafeCall(cudaStreamDestroy(stream_c2));
cutilSafeCall(cudaStreamDestroy(stream_c3));

Listing (3.1) CUDA Streams

When we do not work with streams and launch the kernels synchronously the compiler
will implicitly add synchronization calls between the individual kernel launches. In
the case of streams we can decide when the host should be synchronized with the
asynchronously launched streams. As a result we have to write the synchronization
statements as shown in listing 3.1 after the three kernel launches. Finally, it is important
that we do not forget to destroy the streams with a call to cudaStreamDestroy().

Normalize Standard Deviation

The similarity value is defined in the range of [0,1] and has to be normalized to this
interval as the values of the previous calculations are not yet in this interval. To get
values in this range we have to divide all standard deviation values by the maximum
standard deviation calculated in the image (see equation 2.10). One possibility to find
the maximum value could be to have a synchronized variable where each thread writes
his value to this variable in case it is greater than the actual stored value. Specifically
we would have to check the value with an atomic test-and-set function. From our
experience such an approach does not perform well because of the characteristics of
the SIMT architecture of CUDA. In this case nearly all launched threads would like
to enter the atomic operation at once and are therefore forced to access the variable
almost sequentially. Accordingly we have chosen another approach and search for the
maximum value after the values have been calculated. To do so, we rely on the CUDA
Data Parallel Primitives Library (CUDPP, see section 3.7.1 and [1]) to scan the data.
The CUDPP library selects the best scan strategy based on the configuration plan given
by the programmer at compile time.

1 CUDPPConfiguration config;
config.op = CUDPP_MAX;
config.datatype = CUDPP_FLOAT;
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config.algorithm = CUDPP_SCAN;
5 config.options = CUDPP_OPTION_BACKWARD | CUDPP_OPTION_INCLUSIVE;

CUDPPHandle plan;
cudppPlan(&plan, config, n_elements, 1, 0);

10 cudppScan(plan, d_max.d_ptr(), d_similarity, n_elements);

cudppDestroyPlan(plan);

Listing (3.2) CUDPP Plan Configuration and Scan

Listing 3.2 shows the configuration of the execution plan and the call of the scan
algorithm. With this configuration we define the operation to be executed, specify the
datatype and select the algorithm to be used. Together with the configuration we create
the plan where the last three arguments tell the algorithm how many elements have to
be processed and how the data is organized in memory. The ”1” means, we would like
the function to process one row of data with a pitch of 0, meaning we have no pitched
memory allocation.

Connected Components Analysis and Seed Selection

Based on the results of the similarity calculations and the computation of the euclidean
distance we set the seed pixels. Only the pixels that fulfill both condition tests become
seed pixels. That is, the pixel has to have a similarity value higher then the corresponding
threshold given as the first command line argument; on the other side the euclidean
distance must be lower than its corresponding threshold value which was given as second
command line argument. In case the two conditions are met, the associated thread
will write its thread index at the pixel position as illustrated on the left side in figure
3.4. All remaining pixels have to be marked with a special value. We identify these
pixels by setting the value at their pixel position to the maximum unsigned integer
value (UINT_MAX) indicated with the M in figure 3.4.

Figure (3.4) Connected Component Analysis

When the seed pixels are identified we want to know which of the seed pixels are

21



3 Method

connected and therefore form a region. This is done because in further steps we would
like to threat connected seed pixels as one seed. To begin one should know that the
connected component analysis is a computationally intensive task and due to this
challenging to implement it with good performance. Our implementation is based on
[7], an iterative multi-pass algorithm with local neighbor propagation. What does this
mean?

The basic idea of the algorithm is to do the analysis in iterations where in each loop
the launched threads check their neighbors label and compute weather they should
update their own region label. The iterations continue until the system reaches a stable
state where no thread updates his label and hence the break condition is reached. To
go further into the details of the implementation we reconsider the CUDA memory
architecture. To minimize global memory reads we do not just iterate the kernel calls,
we also loop within the kernel function to make best usage of shared memory. As shared
memory is per block memory and therefore accessible by all threads within a block we
do the same thing within a kernel as we do outside the kernel, meaning we iterate until
the labeling actions of the threads within a block reach a stable state. The squares in
figure 3.5 visualize four iterations of the outer iteration loop.

Figure (3.5) Four Steps in Component Analysis (Source [7])

The thick lines in the figure indicate the block boundaries meaning we look at four
blocks of 16 threads each. The situation shown in the for squares shows the state of the
labels after the internal loops. In each of the shown steps the regions within a block
have the smallest possible label. Although to get an even smaller label the inner loop
has to terminate and the kernel has to be launched again.

To illustrate these steps consider the white region outlined in red in figure 3.6: The
pixels in the lower block have the label 25 and although this is not the lowest label
in the outlined region, the kernel of step 1 terminates here. In the next kernel launch
(figure 3.6, step 2) the threads at the upper boundary of the lower block will read the
label 9 as their neighbor label. From now on no labels spill over the block boundaries
meaning the label 9 propagates with the inner iterations through the block, until no
thread within the block updates his label. The same thing happens with the label 30
that spills over the block boundary at the beginning of the kernel execution. However
until label 1 has been propagated to this block it takes three more kernel launches.

As already mentioned we use shared memory to store the image data in a certain
block. This way we can do the inner loops on the device by accessing shared memory
only. Since all threads within a thread block execute in parallel and all threads within
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Figure (3.6) Block-wise Steps in Component Analysis

this block access labels that are likely to be updated by other threads, the execution
must be synchronized. This is done by simply adding a call to __syncthreads() after
each inner iteration.

3.3.5 Seed Region Growing Implementation

In contrast to the other components of the algorithm, the seed region growing part
was the most challenging portion to implement. What makes it difficult to do a good
performing implementation on the GPU is that the input data to the kernel call and
the output data form the kernel are not the same size. In other words during the kernel
computation the system should be able to dynamically allocate memory for the output
data.

The region growing algorithm needs to know the mean color value of every region
and at this point the dynamic behavior comes into play: Since the growing process
repeatedly assigns new pixels the regions the mean values of the regions constantly
change. Each thread in the region growing kernel decides based on the different region
mean values to which region a certain pixel has to be assigned. As not all the pixels are
assigned to a region at once. The kernel gets called multiple times which requires the
update of these mean values after each kernel call otherwise the next kernel call operates
on obsolete mean values. Besides that all threads assign pixels in parallel which means
that we can not calculate the mean values on the fly because a certain thread does not
know which pixels have been assigned by other threads.

But why does a thread not know if a pixel has been added to a certain region by
another thread? When all threads operate on the same data this data should be up to
date, no? While this is true, from an implementation’s point of view it is not guaranteed
that a thread reads the most current pixel label as the labels are accessed through
texture memory fetches. Texture memory is cached memory which means the read
operation at a certain pixel location may return a cached obsolete region label.

To sum up: We would like to have a list of region labels which indicate which pixel
belongs to which region, furthermore unclassified pixels are marked with UINT_MAX (see
right square in figure 3.4). The number of regions is a constant that does not change
up to this step of the algorithm. A kernel call assigns a defined set of pixels to the
existing regions. To update the mean value we need to know how many pixels are in a
certain region. As this number constantly changes within a kernel call we can not do
this calculation on the fly unless we implement the mean value update as an atomic
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function.
In the following two sections we describe the solution we came up with but we know

there is still great potential to implement these steps faster.

Region Mean Values Implementation

This step is fully realized on the host and this has two reasons: First, the implementation
is not as trivial to realize on the device as it may seem. For instance, considering the
region labels in figure 3.4. How do we distribute the computation over the individual
threads; What should they do? In case of a thread per pixel each thread can add his value
to a region sum however this leads to considerable synchronization overhead. Secondly,
the serial approach on the host mostly compensates the overhead of the memory copies
and synchronization in parallel implementation. For these reasons we have chosen the
most trivial approach to simply iterate through the whole array and collect the region
statistics within the region_stats structure. From our timing experiments this is a
reasonable solution as the time consuming task is the following seed region growing
step.

Region Growing Implementation

The difficulties with this task were already mentioned in section 3.3.5. The idea behind
this implementation is similar to the connected component implementation described in
section 3.3.4 as it also iterates and calls the kernel multiple times until each pixel is
assigned to a region. On the contrary to the connected component implementation this
procedure has no inner loop within the kernel function. The basic execution path of the
loop consists of the following steps:

1. Compute the mean color values of the regions.

2. Call the kernel and do one iteration of pixel classification.

3. Check if any pixels had been labeled by the kernel. If so start over again with the
update of the mean values.

The kernel implementation is very straight forward and follows the algorithm descrip-
tions in section 2.3.4. Note, that we are forced to return to the host with the control
flow as the memory locations, read through texture fetches, are also written by the
kernel threads. When returning to the host and calling the kernel over again the texture
cache gets invalidated and we can be sure that the received data from texture fetches is
up to date. Unfortunately there is no possibility to invalidate the texture cache with an
API call.

If we look at the elements of this algorithm the time-consuming part is what happens
besides the computations - the memory transfers. In the description of the mean value
computation we listed the reasons to implement the mean value computation on the
host. As a consequence we now have to copy the results of the mean value computation
and the relabeling actions of the kernel every loop to device memory and back to the
host memory.
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Set Pixel Color

Because we want to display the different regions found in the resulting image (which is
only for demonstration purposes), this function sets the color of each pixel to the color
mean value of its hosting region.

3.4 Testing

To make sure our algorithm returns the correct data, we implemented unit tests for
nearly all sub-functions, using the CUTE unit testing framework. The tests are divided
up into multiple test suites which match the given packages. The test procedure is
practically always the same for all implemented tests:

� Create input and expected data Usually we generate an image structure in host
memory. Additionally, we create the expected output values.

� Prepare data for usage in kernel The next step is the preparation of the input
data in device memory which includes the memory allocation on the graphics
card and memory copy of the input data from host memory to device memory. In
addition we have to allocate host or device memory for the results, depending on
weather the function under test copies the result back to host memory or not.

� Call function to be tested and assert output Finally we call the function under test
and compare the resulting data with our expected result.

3.5 Time Logging

To get an idea about the runtime of the individual stages of the algorithm we introduced
a time logger class. The time measurement basically happens by static function calls
from source code. With the implemented time logger it is possible to log the duration
of the whole algorithm, sections and subsections. As shown in listing 3.3 we can simply
call the static functions of the time_logger class to print the lap times to console.

1 void e() {
// do something...

}

5 void g() {
// do something...

}

void f() {
10 time_logger::start_section("section f");

g();
time_logger::section_lap("section task g");

15 e();
time_logger::section_lap("section task e");
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time_logger::stop_section();
}

20
void main() {

time_logger::start();

25 f();

// and more sections...

time_logger::stop();
30

}

Listing (3.3) Time Logging Sample

To simplify the time logging mechanism even more one might realize this functionality
as a Decorator [6]. This way we could have had simply decorated the function calls
with the time logging mechanism where time logging would have been desired.

3.6 Memory Management

As CUDA is just an extension to the standard C language common CUDA C code
suffers form the painful memory allocation and deallocation calls. To get around the
numerous calls to cudaMalloc(), cudaFree() or for the host side malloc() and free()

we implemented memory allocators which guarantee that the allocated host or device
memory is freed again. As it is no problem to use C++ code to call a CUDA function
on the host side we implemented this logic as template classes to be independent form
the data type of the allocation.

3.6.1 CUDA Memory Allocator

We provide two CUDA allocator types, one for 1D linear memory allocations and another
one for 2D pitched memory allocation. In listing 3.4 we show an extract of the allocator
implementation. Note, for simplicity we omitted some implementation details such as
the initializer list of the constructors or field declarations.

1 template <typename T>
class cuda_allocator1D {
public:

cuda_allocator1D(size_t n_elements) {
5 cutilSafeCall(cudaMalloc((void **) &_device_pointer, _pitch));

}

cuda_allocator1D(size_t n_elements, T init_value) {
cutilSafeCall(cudaMalloc((void **) &_device_pointer, _pitch));

10 cutilSafeCall(cudaMemset(_device_pointer, init_value, _pitch))
;

26



3.7 Supporting Libraries

}

virtual ˜cuda_allocator1D() {
cutilSafeCall(cudaFree(_device_pointer));

15 }

// some more functions and fields are omitted here...
};

Listing (3.4) CUDA Memory Allocator 1D

The type of the allocation is defined by the template parameter whereas the size
of the allocation is given as constructor argument. We provide a second constructor
with an optional initialization value. If the second argument is given, the allocated
memory will be initialized with a call to cudaMemset() to this value. To pass the device
pointers to the kernel launches we provide the function d_ptr() to get the device pointer
of the allocation. Finally we placed the call to cudaFree() into the deconstructor
body, to guarantee that whenever the allocator object is destroyed the reserved device
resources are released again. The 2D allocator version is basically the same as the
1D version except that we have to tell the constructor the with and the height of the
desired allocation instead of the number of elements. Furthermore it exist an additional
function to get the pitch of the memory allocation since 2D memory allocations are
usually pitched to get better performance in memory access. The implemented host
allocators are conceptually exactly the same as their CUDA analogues.

3.7 Supporting Libraries

3.7.1 CUDA Data Parallel Primitives Library

In this section we would like to look at the internals of CUDPP and introduce the
concept of this library. Section 2.4.2 already described what CUDPP is and what
functionality it implements. Our goal is not to explain how the library works down to
the last item but to illustrate an nice approach how to implement reusable CUDA code.

What makes this CUDA library so interesting? When you write C code it is quite
difficult to write nice reusable generic code because the C language has nothing like
polymorphism nor supports C++ like templates. At first sight it seems like we have the
same problems when trying to write a CUDA library. But CUDA C is a bit different as
the NVCC compiler fortunately supports templates which opens a wide range of new
possibilities to implement a CUDA library. Now, CUDPP exploits exactly this feature
to implement the core library functionality.

With the help of templates CUDPP implements the library core with template meta
programming (TMP). For an algorithm there exist usually more then one implementation
each of which performs best under certain circumstances. As shown in listing 3.2 we set
up an algorithm configuration and create a execution plan. After calling the CUDPP
algorithm the library code extracts the configured parameters from the input and selects
the most suitable and best performing algorithm via template parameters. This way the
library code can be implemented datatype and configuration independent. The vision

27



3 Method

of CUDPP is to have a self-tuning library [1] that adapts automatically to the best
performing configuration. Note that all these steps happen at compile time meaning
that the most suitable algorithm is configured at compile time.

Unfortunately we noticed the concept of the CUDPP library only towards the end of
the project. For this reason we had not enough time to make use of these insights in
our own implementation.

3.7.2 CUDA Utility Library

The CUDA Utility Library (cutil) is part of the CUDA SDK and checks for errors in
CUDA API calls. With this library we can simply decorate the CUDA API function
calls with the wrapper cutilSafeCall() to catch error states and abort the execution.
In case the function call returns an error code cutilSafeCall() will print a human
readable message which error occurred and where it might had happen. Although this
is a sufficient solution for our implementation, you might do a real error handling in
productive code.
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In this chapter we would like to analyze the algorithm output and elaborate on per-
formance results. Besides that we do not want to hide the things that could be done
better or could be introduced in a further release of this algorithm.

To begin with, let us take an overview of the results of this implementation and
then go further into the details about the happy execution paths and failing algorithm
configurations. It is important to know that this project does not realize the algorithm
to the very last step as described in section 2.3, meaning the region merging step is
not part of the implementation. Even though we take this step into account for the
interpretation of the results. We ask ourselves what might happen in the last step and
how the shown output would get processed by this last step.

The performance section will give an overview about the elapsed time per algorithm
part and highlight the insights on this data.

Finally we will elaborate on the known issues in the current implementation and try
to show ways how they probably can be eliminated.

4.1 Segmentation Results

The following examples are thought to illustrate successful and failing segmentation
results. We try to show possible difficulties with our implementation of the algorithm.
In each example we will firstly list the configured launch parameters followed by the
listing of the input and output image and the corresponding interpretation.

Note that the interpretation of the results hardly depends on the use case and the
expectations on the desired precision of the result. Most of the time we have a certain
knowledge on how the input image might look and maybe it is reasonable for the
intended use that some regions do not get recognized as segments. When trying to get
to know what the segments might are we usually rely on the human perception and try
to imagine weather the algorithm performs as expected.

Good Case Segmentation

At first we show an example where we get a nice segmentation result. The input image
4.2a shows a plant with red blooms on the left and a dark bird on the right on a blurred
background. If we look at image 4.2a we can see that it has a lot of different green
tones. Whenever an image has low color distribution it could be a sign for a difficult
segmentation because it is likely that the objects disappear in the background. Although
this is true, in this image the background and the plant are clearly separated by the
sharp lines of the leaf even if both are in green tones.
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Launch Configuration Example 1

Image bird.jpg, 1600 x 1066

Similarity Threshold 0.970

Euclidean Distance Threshold 0.090

Table (4.1) Launch Configuration, Bird

Table 4.1 lists the launch configuration used to produce the output image 4.2b. In
this case we noticed that Euclidean distance threshold had a good response to little
changes. This is reasonable as the Euclidean distance values say something about the
distances between color values in the color space. As we have a lot of green color values
that are close together this parameter has good response on the output.

Figure (4.1) Seed Regions: Bird

The colorful scattered pixels in figure 4.1 show the seed pixels selected by the seed
selection algorithm. The different colors represent the individual regions detected by
the connected components analysis. The most important thing is that every desired
output segment includes at least one seed pixel which is the case as we have seeds on
the bird, the plant and the background. From the number of regions within the same
expected segment in this image (e.g. the background) we can see that it is important to
merge the numerous regions in the last algorithm step.

If we take a look at the original image in figure 4.2a we expect the algorithm to find
two foreground objects: The bird and the plant on the left. From the output image
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(a) Input Image: Bird (b) Output Image: Bird

Figure (4.2) Good Case Segmentation

we can clearly see how nice the bird is extracted from the background. Even though
everything still looks like a mosaic we are pretty sure that the region merging step of
the algorithm would merge the dark and hopefully even the reddish parts of the wing.
When considering the plant the situation gets a bit more complicated. The plant has
strong orange-red blooms with juicy green leafs which we expect to be merged by the
last step of the algorithm.

If we look at the stalk of the flower we can see that the regions towards the lower end
become very similar in color to the background. As a result these regions are likely to
be merged with the background in the summarizing step.

Correct Segmentation with Unwanted Output

In this example the algorithm basically produces the correct output in terms of its
computations whereas we as humans would expect something different. As shown in
table 4.2 we set both thresholds to a relative strict value as image 4.3a has a large
distribution of the color values.

Launch Configuration Example 2

Image bridge.jpg, 1800 x 1200

Similarity Threshold 0.985

Euclidean Distance Threshold 0.010

Table (4.2) Launch Configuration, Bridge

If we simply look at the regions produced in the output image 4.3b form a computa-
tion’s viewpoint we get the expected result. The region merging step most likely will
produce a segment for the sky, a segment for the tree on the top right and a segment for
the bridge. The remaining segments are difficult to assign to a certain region because
humans would classify most of them as water. Therefore the algorithm most likely will
fail with the mirror effect of the water. Considering the bridge in the output image we
can see that the regions of the real bridge and the mirrored one are likely to get merged
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to a single segment which is obviously wrong form our logical point of view.

(a) Input Image: Bridge (b) Output Image: Bridge

Figure (4.3) Correct Segmentation with unwanted Output

Interestingly, if we look at the performed seed selection in image 4.4 we can see that
the selected seeds are meagerly distributed over the region of the bridge. At this point
we could expect that the mirrored part of the bridge gets separated from the real bridge
in the region growing step. However as the real and the mirrored parts have very similar
color values they are very likely to be merged.

Figure (4.4) Seed Regions: Bridge

Considering the number of identified regions in image 4.4 we can see that many
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different regions are identified. Comparing this number to the performed seed selection
in the bird image 4.1, it is striking that many pixels more are already classified as
members of a region. Even if we have chosen stricter thresholds in the bridge image we
get more regions and more classified pixels after the seed region step than in the bird
image. This fact can be explained with a pixel-level-size look at the images. As the
bridge image has many objects and almost no clearly identifiable background, the bird
image has a smooth gradient in the background. It seems that this gradient is relatively
homogeneous however when we analyze it on pixel level we can see that the pixel color
values in a local neighborhood are scattered and grainy. This is the reason why only
small regions are identified in the bird image by the first step of the algorithm even if
the threshold would allow much more seed pixels.

Failing Segmentation

We selected image 4.5a with the three gulls as a failing scenario because we expect it
to fail with the segmentation. The interesting part of the input image is the lower left
corner where we can see a white could in the background with a white gull on top of it
in the foreground. Even if the wing of the gull is separated form the white could by
a bright stroke the final step of the algorithm probably will not produce the desired
output. We expect it to fail as it probably merges the two objects that we do not want
to be merged.

Launch Configuration Example 3

Image gull.jpg, 1920 x 1200

Similarity Threshold 0.985

Euclidean Distance Threshold 0.020

Table (4.3) Launch Configuration, Gull

The image properties of figure 4.5a correspond to the properties of the bridge image.
Therefore the launch configuration listed in table 4.3 is approximately the one of the
bridge example.

The two gulls in image 4.5b on the right are nicely isolated from the background
and form two separate regions. If we go to the left side the sky has white clouds which
are very similar to the white feathers of the gull. As a consequence it is likely that
the region merging step will merge the gull with the regions of the cloud. Even if we
try to get better results using different threshold values the output is not significantly
better. Section 4.1.1 describes why we are limited in output optimization by changing
the threshold values.

Unfortunately the algorithm fails in this case whereas the human perception would
separate these objects based on meta information about the content of the image. In
our case we would construe that the image contains three gulls with some clouds on the
blue sky and would extract only the three gulls.
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(a) Input Image: Gull (b) Output Image: Gull

Figure (4.5) Failing Segmentation

Lena Reference Segmentation

We included this image as a reference to other segmentation algorithms as this is a
standard test image across many image processing algorithms. This picture is suitable
for algorithm testing as it contains a good mix of flat regions as well as parts with small
details.

Launch Configuration Example 4

Image lena.jpg, 512 x 512

Similarity Threshold 0.960

Euclidean Distance Threshold 0.060

Table (4.4) Launch Configuration, Lena

Table 4.4 shows the command line arguments for the lena picture. Because the
image 4.6a has a lot of clearly enclosed segments we set the threshold values relatively
moderate.

(a) Input Image: Lena (b) Seed Regions: Lena (c) Output Image: Lena

Figure (4.6) Lena Reference Segmentation
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The input image 4.6a has many small segments which we expect to be segmented
as seen. Compared to the output image we see that all these regions are more or less
detected as autonomous regions discernible by identical colorized connected components
in image 4.6b. Surprisingly the used threshold values provided already a nice intermediate
result as we have quite large connected components for the expected regions.

A critical part in the segmentation of the Lena image is the hat which we expect to
be separated from the background. If we look at the output image 4.6c we can see that
the background region already splashed over the hat’s outline and probably is going
to be merged with it in the next step. However the region merging step for this image
could be quite challenging because of the numerous little regions.

4.1.1 Threshold Selection

The key parameters to get a good set of seed pixels is the choice of a suitable pair of
threshold values. Several methods to choose optimal threshold values exist; they may be
chosen manually, or can be computed automatically using one of multiple thresholding
algorithms.

We decided to not implement an automatic threshold algorithm but let the user choose
the threshold values. So the application can be used to test different configurations
with various thresholds. This decision has to aspects: On the one hand the user can
play with the input values and therefore easily modify the resulting output. On the
contrary it can be very hard to find the optimal threshold values.

As illustrated in picture 4.7a and 4.7b the output could be lousy and far from the
expected result when the thresholds do not fit the input image.

(a) Threshold chosen too restrictive (b) Threshold chosen too relaxedly

Figure (4.7) Threshold Selection

In image 4.7a the threshold was chosen to restrictive with the result that not enough
seed pixels are int the intersection of the two conditions. Therefore we have too few
seeds which results in too large regions.

If the thresholds were chosen too weak, too many pixels are marked as seed pixels.
As a result the connected component analysis finds too many connected components
and classifies most of them to the same region as illustrate in 4.7b. In this case the
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misconfiguration leads to an image where the background is one single region. The
situation gets even worse because many of the object pixels are also assigned to the
large background region.

4.2 Performance

The main goal when using the CUDA technology is performance so when we talk about
better performance, we usually mean faster executing implementations. Unfortunately
we have no references to other segmentation algorithms or CPU-only implementations
to compare our results with.

To get an idea about the average runtime of the individual algorithm steps we list a
typical runtime log for the bird image 4.2a in table 4.5.

Algorithm Section Runtime Share

transform RGB to Y CbCr 11.457 ms 0.07%

Seed Selection

similarity 1309.669 ms 7.70%

euclidean distance 1.772 ms 0.01%

set seed pixels 1030.335 ms 6.06%

connected component 336.736 ms 1.98% 15.75%

Seed Region Growing

region growing 14293.837 ms 83.97%

set pixel color 24.201 ms 0.14% 84.11%

transform Y CbCr to RGB 11.007 ms 0.07%

Total algorithm 17021.770 ms 100.00%

Table (4.5) Runtime Example bird.jpg

First of all, the overall runtime seems to be pretty bad so we have to further analyze
each step of the algorithm to see where it spends so much time. It is striking that the
time gets lost in the region growing step. Actually we are aware of this fact and know
that our implementation of this part is not very supporting to good performance.

The problem with the region growing step is that the implementation includes a lot
of memory copies between the host and the device as already stated in section 3.3.5. To
overcome this problem we would have to find a better implementation with less memory
copies.

On the contrary we would like to show another problem which almost disappears in
the previous example: The connected components analysis seems to perform acceptable
compared to the other pieces. However if we look at another example we can see that
this is also a computationally intensive task that is likely to consume a lot of the overall
runtime.

To demonstrate this fact we will run the segmentation on the bridge image 4.3a. When
we look again at the runtime log in table 4.6 we can see that the connected component
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task consumes about one fifth of the overall runtime while the effort for the region
growing step drops form 83% to 65%. These numbers obviously depend on the actual
image however we can see from many tests that these numbers are correlated. The
correlation is based on the number of selected seed pixels. We know that the number
of selected seed pixels depends on the chosen threshold values. When the thresholds
are harder to be met less pixels become seed pixels, and conversely more pixels become
seed pixels when the conditions are easier to be met. Besides that we know that both
the connected components algorithm and the region growing step are performing bad
we can see that the seed selection algorithm performs better.

Now we can explain the correlation between the runtime of the two steps: When
the thresholds are easy to be met, a lot of pixels become seed pixels and therefore the
connected components analysis has a lot to do. On the other hand if the thresholds are
harder to be met, less pixels get in the set of seed pixels which means more pixels remain
unclassified and have to processed by the region growing algorithm. As we know that
the connected components algorithm is the faster of the two the overall segmentation
takes less time when the connected components analysis has more pixels to process.

Algorithm Section Runtime Share

transform RGB to Y CbCr 14.845 ms 0.06%

Seed Selection

similarity 1653.371 ms 7.04%

euclidean distance 2.025 ms 0.01%

set seed pixels 1307.028 ms 5.56%

connected component 5035.615 ms 21.42% 34.03%

Seed Region Growing

region growing 15449.903 ms 65.72%

set pixel color 30.320 ms 0.13% 65.85%

transform Y CbCr to RGB 13.767 ms 0.06%

Total algorithm 23510.029 ms 100.00%

Table (4.6) Runtime Example bridge.jpg

The stated correlation between the runtime of the connected components analysis
and the region growing step is supported by the two images 4.1 and 4.4. We can see
that in case of the bridge much more pixels are already classified as in the bird image
and therefore the region growing step has much more to do with the bird image.

4.3 Known Issues

4.3.1 Image Dimensions

Because some parts of the algorithm store multiple arrays with the size of the image
dimensions in device memory this is likely to become a problem when the input image
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is very large. Therefore we are interested in the maximum image dimensions to just fit
into memory. Theoretically the maximum possible image dimensions for our algorithm
can be calculated as follows[

n ·
(⌈w · s

t

⌉
· t · pmax

w

)
+m · pmax

]
· s ≈ Gtotal (4.1)

where

pmax is the maximum image size in pixel,

w is the image width in pixel,

n is the number of pitched arrays,

m is the number of non-pitched arrays,

t is the texture alignment in bytes,

s is the size of the allocated datatype in byte (assumed that all used datatypes
have the same size),

Gtotal is the total amount of global device memory in byte.

By applying equation 4.1 to our hardware configuration and algorithm implementation
we try to estimate the maximum possible image dimensions. Our test setup is a NVIDIA
Quadro FX 3800 card as listed in table A.1. From these device specifications we get
Gtotal = 1073020928 and t = 256.

From our implementation we know that m = 6, n = 1 and s = 4. Applying these
variables to equation 4.1 will result in

[
1 ·
(⌈

w · 4
256

⌉
· 256 · pmax

w

)
+ 6 · pmax

]
· 4 ≈ 1073020928 (4.2)

When defining w = 5000 and solving equation 4.2 by pmax we get a maximum pixel
amount of 26705880. Dividing this number by the image width results in an image
height of 5341 pixel.

From our own experiments we could handle an image size of approximately 5000×5000
pixel. Above this, the application crashed with kernel timeouts or CUDA out of memory
exceptions. In fact the calculated number is not an exact result as other memory
allocations may limit the maximum possible image size to a lower amount.
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In this chapter we describe the problems that we had to overcome when implementing
the described algorithm in CUDA. We would like to focus on the difficulties we had
when trying to do something in parallel with the respect to the CUDA architecture
and the CUDA library. For this reason we leave the discussion on the segmentation
algorithm itself.

5.1 Conceptual Issues

5.1.1 Memory Management

The CUDA technology allows you to easily do high-performance parallel implementations
nonetheless there are also limitations on the conceptual side of a CUDA program. The
limitations come from the fact that we basically work on two separate devices, the CPU
and the GPU. These two devices have separate memory spaces at physically different
locations which means the data has to be copied between the two devices and the
programmer has to tell the system where he would like to allocate memory and how
much this should be. In the simplest case malloc() allocates memory on the host
whereas cudaMalloc() reserves memory on the device. These two functions have
in common that both are only callable from the host. By the time of this project it
was not possible to dynamically allocate device memory from device code. In other
words one had to allocate all the required device memory from the host side before
the kernel was launched. The conceptual downside of this lack of functionality on the
device appears when we would like to do a computation on the device and have no a
priori knowledge about the result size. From a conceptual point of view this prevents
us from implementing dynamic device code. You may know some fixed boundaries or
memory usage limits that you know will not be exceeded.

To give an example form this project: The input data to the seed region growing
step described in section 2.3.4 and 3.3.5 are the seed pixels and their region affiliation
identified in a previous step. The goal of this step is to assign all non-seed pixels to
one of the regions. We know how many pixels we have in the image and therefore how
much memory we need for all the pixels in the image. However we do not know how
many pixels are added to which regions in one iteration.

Our first attempt was to have an array per region each of which containing its assigned
pixels. In the kernel one thread per region should add the newly identified pixels to
his region array. In this case the input arrays to the kernel had not the same size as
the output arrays from the kernel. This attempt had two major drawbacks: First of
all we could not allocate additional device memory within the kernel. Event if the first
problem could have been solved, we would not have been able to return the new region
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sizes back to the host in an appropriate way.
So one solution we came up with was to rely on the boundary condition given by the

image size and allocate memory for the whole image. This way we were sure to have
enough memory allocated but knew that we produced an overhead.

Since CUDA Toolkit Release 3.2 (November 2010) it is now possible to allocate device
memory within a CUDA kernel or device function with the device function malloc().
Unfortunately this is only possible for CUDA devices with compute capability 2.x and
even here only with certain restrictions on memory management functions.

5.1.2 Data Representation

Another issue coming with the previousely described problem is the representation of
data that should be processed by the GPU. As described in 5.2.5 the organization of
data should preferably be in a linear sequence. There is often not enough device memory
available to store data many times in different representations in device memory. Above
all the copy overhead between host and device would not make sense anyhow.

In the course of our implementation we came to a point where we needed our image
data in a different representation to calculate the mean values of the identified regions.
To accommodate the problems explained earlier we tried to implemented a special data
structure which we named region view. Unfortunately this view could only be used
to calculate the region mean values in an appropriate way. The further steps of the
algorithm did not match these data structure which forced us to transform it again and
this was not acceptable.

These insights brought us to the decision to redesign this data representation.

5.2 Implementation Issues

5.2.1 Code Organization

Basically neither the NVCC nor the GCC compiler cares about the file extensions. They
simply try to compile the input files they get and therefore we could have had named
all the files with the common .c, .cpp or .h extension. Although this would perfectly
comply with the conventions in C or C++ projects we propose to organize CUDA code
differently.

To keep the file structure organized and clearly arranged we propose to separate
CUDA code and host code. For our project we came up with the following convention:

� every file that contains CUDA code has a .cu extension

� a .cu file can contain one or more CUDA kernels

� a .cu file may provide a host function to call the CUDA kernel

– the host functions cares about the device memory allocation and deallocation

– only this host function calls the CUDA kernel

� one .cuh header announces all the public host functions in a .cu file
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The CPU code includes the .cuh header file and calls the host function defined in the
CUDA source (.cu) file. The code of the host function in the CUDA source file then
allocates the device memory and sets the launch configuration for the CUDA kernel.
Next the CUDA kernel is executed and as soon as it has finished its work the host code
will copy the results back to the host memory and free the device memory allocations.
In an abstract notation the code scaffold would look something like illustrated in the
following listings.

The header file in listing 5.1 shows the declaration of the public host function
implemented in the .cu file.

1 #ifndef HOST_FUNCTION_CUH_
#define HOST_FUNCTION_CUH_

void host_function(float* h_in, float* h_out, size_t size_b);
5

#endif /* HOST_FUNCTION_CUH_ */

Listing (5.1) CUDA Header File host function.cuh

On the CPU side the code does not contain anything that is concerned with GPU
memory allocation, deallocation, or a kernel call. Here we could also use fully object
oriented C++ code instead of plain C code. As we can see from listing 5.2 the
host_function.cuh header file is included and whenever the CPU side wants to do work
on the GPU the execution control flow changes to the GPU side, in this case by calling
host_function().

1 #include "host_function.cuh"

// do whatever you have to be done first ...

5 size_t size = 10;
float h_input[size];
float h_output[size];

host_function(h_input, h_output, size * sizeof(float));
10

// continue with result h_output ...

Listing (5.2) CPU Side Code

Note that the arguments taken by the host function in listing 5.3 reside completely
in host memory (indicated by h_ notation). This means no GPU memory is involved
in the arguments of the host function. The host function acts as the GPU interface to
the CPU side and is responsible for data copies between host and device memory along
with the kernel calls. The listing shows how the host function allocates device memory
of size_b bytes. After the data is being copied to the device memory and the CUDA
kernel is launched. As soon as the kernel has finished its operation the result is copied
back to the host memory location and equally important, the allocated device memory
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is being freed.

1 #include "host_function.cuh"

__global__
void cuda_kernel(float* d_in, float* d_out, size_t size_b) {

5
// kernel code

}

10 void host_function(float* h_in, float* h_out, size_t size_b) {

float* d_in;
cudaMalloc((void**) &d_in, size_b);
cudaMemcpy(d_in, h_in, size_b, cudaMemcpyHostToDevice);

15
float* d_out;
cudaMalloc((void**) &d_out, size_b);

int nThreadsPerBock = 256;
20 int nBlocks = (size_b / sizeof(float) + nThreadsPerBock - 1) /

nThreadsPerBock;

cuda_kernel<<<nBlocks, nThreadsPerBock>>>(d_in, max_value, size_b
/ sizeof(float), d_out);

cudaMemcpy(h_out, d_out, size_b, cudaMemcpyDeviceToHost);
25

cudaFree(d_in);
cudaFree(d_out);

}

Listing (5.3) GPU Side Host Function and CUDA Kernel

Note, that in this example and likewise in this project the GPU interface and the actual
GPU code (CUDA kernels and all __device__ annotated functions) is implemented
within the same file. Of course the kernel could be defined in a separate file.

5.2.2 C/C++ Mixing/Combining

To start with, we would like to explain our understanding of the terms mix and combine
as we used them in this section. When we talk about mixing the two languages we
mean you have C and C++ code within the same layer (CPU and GPU layer, see figure
3.1). On the contrary when we use the term combine we mean you have a C++ layer
and typically below it a C layer strictly separated form each other.

With this said, we consider it critical to mix C and C++ code within a CUDA project
conceivable on the other hand are solutions where C and C++ is combined. Mixing the
two languages is basically a bad idea because it is difficult to keep the data tidy and
consistent. The scenario in terms of combination of the two languages is conceivable if
you stick to clear interfaces and strictly defined layers.

42



5.2 Implementation Issues

The basic CUDA Runtime and Driver API provides a C interface. This means
implementing something in CUDA with a C++ layer on top of it one usually has to
convert all the C++ data in a C conform representation. In case of simple value types
we do not need a transformation at all, however when dealing with C++ Standard
Template Library (STL) containers or objects the problem gets more complicated. The
relevant data has to be mapped to C, then processed on the GPU and finally converted
back to the C++ representation. To avoid such data conversions we decided based on
our own experiences (see also section 5.2.3) to implement all the data related code in C.

5.2.3 Thrust Library

Thrust is a CUDA library with an interface very similar to the C++ Standard Template
Library (STL). This means you can have something similar to the algorithms in the STL
to work with the CUDA code. The idea behind thrust is nice, especially when working
with a C++ layer. Thrust provides a good abstraction and lower representational gap
to the problem domain.

Initially thrust seemed a good entry point to CUDA as we were used to the concepts
of C++ and the STL. Even though it can be simple to solve a problem in CUDA with
the abstraction of thrust after the first few tries we got to know the downside of the
thrust concept. Not every problem can easily be solved by a algorithm even with the
great range of STL algorithms. To make things worse, by the time of this project the
variety of thrust algorithms and thrust data structures is still very limited and thus it
is even more difficult to solve as much problems as possible with thrust.

In our case, we came to this conclusion when we tried to implement equation 2.7
of the automatic seed selection algorithm (see section 2.3.3). The central issue in this
case is that high-performance CUDA code is still highly dependent on the underling
hardware meaning that you have to exploit the different memory hierarchies and the
different memory types to get really fast CUDA programs. Hence, the mentioned mean
value calculation would perfectly fit to the use of texture memory but when using
thrust, unfortunately you have no control on the thrust internals. Therefore we had no
chance to use texture memory with thrust. Another issue that comes up particularly
when dealing with images is that you can not work with 2D or 3D memory allocations
moreover that you have no control over the memory allocation at all. The algorithms
(in thrust and in the STL) rely on the fact that the data you would like to operate
on is in a linear sequence aligned in memory, which this is not always the case when
operating on images. This makes the principle of ”Arrays of Structures over Structures
of Arrays” (see section 5.2.5) even more important to the work with thrust.

To summarize you can have nice short code with the thrust library for a certain kind
of problems. However being on the C++ side you are forced to covert your data to a C
compatible form as soon as it is not possible to solve a particular problem with thrust.
As a matter of fact this evokes the problem of C and C++ code mixing describe in
section 5.2.2. In our case this was the crucial factor to not work with thrust and to do
the entire implementation in C.
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5.2.4 Reuse device functions

Device functions are C functions annotated with the __device__ tag. This tag causes
the effect that these functions are only callable from the device e.g. form a CUDA kernel
or another device functions. In some situations we would like to write such functions
once and reuse them multiple times in different kernels. In the subsequent text we
describe a scenario where it is desirable to provide device function implementations
to be reused by many different kernels. Our motivation to show how we solved this
problem is because we had some problems when trying to reuse these functions, whether
the solution is simple.

The CUDA NVCC compiler supports some of the C++ features such as operator
overloading. This allows you to write operator overloads for certain data types and use
them in device code. Unfortunately CUDA does not provide any operator overloads on
the built-in vector types such as float4, uint3 or char4 (all vector types can be found
in the appendix of [12]). Accordingly we would like to write code that looks as follows:

1 __device__
float4 do_math(float4 a, float4 b, int i) {

return (a * i + b) / (i + 1);
}

Listing (5.4) Use of float4 Operator Overloads

As float4 is a struct with four float values the math operations shown in listing
5.4 are not trivial. However when implementing operator overloads for the float4 type
we can write such code.

Undoubtedly we want to write such operator overloads only once and reuse them
whenever we would like to do math operations on float4. Due to this we implemented
operator overloads for vector types as shown in listing 5.5:

1 inline __host__ __device__ float4 operator+(const float4 &a, const
float4 &b)

{
return make_float4(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);

}

Listing (5.5) float4 ”Plus” Operator Overload

The overload itself is not different from a standard C++ implementation however
to reuse this implementation within multiple kernels or device functions the keyword
inline is crucial. We placed all our float4 operator overloads in a header file and
included that file everywhere we needed the overloads. Initially we did that without
tagging the function with inline which lead us to a compiler error saying something like
”multiple definitions of x”. The reason for this is clear; the header file with the operator
overload implementation is included in multiple CUDA source files and therefore the
function is defined multiple times. However when you write the keyword inline you
request the compiler to in-line the operator overload function. As a result the compiler
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error disappears. Note, it is important to write the keyword inline when you would
like to reuse device functions.

5.2.5 Structures of Arrays over Arrays of Structures

Considering the implementation of high-performance CUDA software we notice this
very important concept. For CUDA hardware it is desirable to access memory locations
in a linear sequence to get highest memory throughput. When threads within a warp
or half a warp access the memory in sequence (thread 1 → location 1, thread 2 →
location 2, etc.) the memory access can be coalesced by the hardware (see also [11],
section ”Coalesced Access to Global Memory”). To support coalesced memory access it
is important to keep the data structures as structures of arrays rather than arrays of
structures. What does that mean?

First of all let’s take a look at the thing we do not want, arrays of structures. Listing
5.6 illustrates this principle in code. The structure color contains three floats which
represent the RGB color values of one pixel. The complete image then consists of 256
color structures.

1 struct color {
float r;
float g;
float b;

5 }

color image[256];

Listing (5.6) Array of Structures

If we consider the memory layout of such an arrangement as shown in figure 5.1 we
can see that the structures lay one after another linearly aligned in memory (indicated
by the green rectangles).

Figure (5.1) Array of Structures

Now, we would like to implement equation 2.7 in CUDA so assume the memory
allocation in listing 5.6 is done for device memory and the data has already been copied
to the device. To calculate the mean red value within the region of interest we have to
read these values from memory (marked with the red arrows). Unfortunately the red
values do not lay in successive order within device memory which means the memory
access to these values can not be coalesced by the hardware.

Another method to address this problem is to not just save the color data of one pixel
within the structure but save the color data of the complete image within a structure in
the form of three arrays. The corresponding code is demonstrated in listing 5.7 .
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1 struct color {
float r[256];
float g[256];
float b[256];

5 }

color image;

Listing (5.7) Structure of Arrays

Again assume the memory allocation has been done for device memory and the data
has been copied but this time we can achieve a much better implementation of equation
2.7. In figure 5.2 you can see that the red values lay one after another in memory.
As a result we can access these memory locations much faster than in the previous
example. As illustrated with the red arrows the hardware accesses a series of red values
with one read operation which means better performance for the overall runtime of this
implementation.

Figure (5.2) Structure of Arrays

To sum up it is better for the overall performance of an implementation to organize
the data as a structure of arrays rather than an array of structures. This reordering
of data is done with regard to the CUDA hardware and hence the performance gain
comes form the capability of the hardware to do coalesced memory access. Note, that
optimizing coalesced memory access is also listed in [11] as a high priority task when
tuning to high-performance CUDA code.

5.3 Literature

In this section I, Tobias Binna, would like to provide a review on the two books
”Programming Massively Parallel Processors” [10] and ”CUDA by Example” [19] I read
as an introduction to CUDA.

5.3.1 Programming Massively Parallel Processors

Initially I thought this book would be a good introduction to learn how to program
CUDA but today I have to say it is not really an introduction. In my opinion the book
has a nice start but then gets very fast into details on the GPU architecture and how to
tune your program to high performance. I agree, in the end this is all CUDA is about
but as an introduction I prefer to first get a global overview and then go further into
details. In addition the book does never really says something about any CUDA API
functions or what the API actually provides. I missed this stuff all along the reading.
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By now it seems like I criticized almost everything written in this book. But I am
sure after you have worked out the basic stuff the book has also positive sides. The
chapters about memory, performance and floating point considerations will certainly
help you when you try to get the last bits of performance out of your code. After many
ups and downs during the reading I was satisfied by the last chapter in the book called
”conclusion and future outlook”. It gives you a nice overview of the current state of
CUDA and what is and what is not possible when programming CUDA. Even though
it is a nice good finish I thought: ”Why couldn’t you tell me earlier in the book about
all that stuff?”

5.3.2 CUDA by Example

First of all, I think Well I have to say, I definitely read them in the wrong order.
This book gives you a very good introduction in the most important concepts of

CUDA. Every Chapter covers one or two concepts from the CUDA API such as different
Memory Types, Events, Graphics Interoperability with OpenGL or Streams. As an
introduction this gives you a very good overview on the most important things provided
by the API, and you get a firm understanding on what you have to write on your own
and what you can use as predefined.

Usually each topic is introduced by showing a portion of code that solves a particular
problem without actually using the dedicated concept that is being introduced. Then
this code is transformed step by step into the new solution by introducing the new
concept and showing how it is done better. I liked this kind of learning CUDA because
after studying this examples I think you know when you should use which concept.

The important thing to say on this book is that you really get an introduction on the
API functions and features. When you are reading the book reviewed in section 5.3.1
you get taught the more the general concept of the hardware and the language itself.
Unfortunately I read this book after ”Programming Massively Parallel Processors” and
I have to say I definitely read them in the wrong order.
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Appendix A

Development Environment Setup

A.1 Hardware and Software Tools

Table A.1 and Table A.2 summarize the hardware and software tools we used for the
development of this term project.

A.1.1 Hardware

Tool Description

Processor Intel Xeon CPU E5520, 8 x 2.27 GHz

Memory 4049 MB

Graphics Device NVIDIA Quadro FX 3800 - 192 CUDA Cores - 1024 MB Memory -
Compute Capability 1.3

Table (A.1) Project Hardware

A.1.2 Software

Tool Description

Operating System Ubuntu 10.04 LTS - 64-bit

CUDA Driver Version 3.20

CUDA Runtime Version 3.20

Build System CMake 2.8

Development Environment Eclipse CDT (Helios)

Unit Test CUTE (C++ Unit Testing Easier)

Libraries OpenCV, CUDPP, CUDA Utility Library (cutil)

Table (A.2) Project Software

Writing CUDA code is basically programming C. Therefore we used the basic Eclipse
CDT development environment with some small adjustments to support the build
process and readability of the source code. To build our programs we used the CMake
build system which made a good job on a ”one-button” build process.
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A.2 Setup CUDA

The simplest way to setup the CUDA development tools is to just follow the ”NVIDA
CUDA C Getting Started Guide” for the desired platform. This guide is available from
the NVIDIA Developer Zone (http://developer.nvidia.com).

Note that in case you are working on hardware that has a built-in graphics chip and
a dedicated graphics chip (in our case a MacBook Pro with a built-in Intel graphics
chip and a external NVIDIA graphics processor) you may have to force the device to
use the NVIDIA hardware to be able to run your programs. If a CUDA program is
executed and the hardware is not running on a CUDA capable device one might get an
error such as

cudaGetDeviceCount FAILED CUDA Driver and Runtime version may be mismatched

In this case you have to force your hardware to switch to the NVIDIA capable device
before you run the program.

If you are on a Mac you can install a nice free tool called ”gfxCardStatus” (http:
//codykrieger.com/gfxCardStatus/) which indicates you with a little icon on
which chip one is working and helps you to easily force your Mac to use the NVIDIA
chip.

A.3 Setup Eclipse CDT with CMake and CUDA

This section describes how we setup and configured our Eclipse installation together
with the build system CMake to build the CUDA programs.

A.3.1 Add File Type .cu

Because Eclipse does not know the extension .cu you may configure Eclipse to treat
these files as C or C++ source files. To do so do the following steps:

1. go to Window → Preferences

2. open C/C++ → File Types dialog

3. click New...

4. then write as Pattern: *.cu and select Type: C++ Source File

5. finish the dialog with OK

Now all the .cu files should have code highlighting. The only thing that is not
recognized by Eclipse are the kernel launches with the triple brackets (<<<...>>>).
Repeat these steps if you would like to have highlighting for .cuh files as well. In this
case select as type C++ Header File.
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A.3.2 Setup CMake and CMake Configuration in Eclipse

We assume that you have already downloaded and installed CMake on your system and
you are aware of the concepts of CMake. Install the CMakeEd plugin for Eclipse (http:
//cmakeed.sourceforge.net) which supports you when editing CMakeLists files
with code highlighting and code completion. Note, the following documentation list just
the parts of the CMake files needed to compile CUDA code, the complete files however
can be found in the provided source material.

First of all, we check for the module FindCUDA.cmake (see listing A.1). This module
should come with your CMake installation as a standard module.

1 # find cuda
IF(INCLUDE_CUDA)

FIND_PACKAGE(CUDA)

5 IF(CUDA_FOUND)
MESSAGE("CUDA has been found")

ELSE(CUDA_FOUND)
MESSAGE(FATAL_ERROR "CUDA could not be found")

ENDIF(CUDA_FOUND)
10 ENDIF(INCLUDE_CUDA)

Listing (A.1) Check for FindCUDA.cmake

Tell CMake to build a CUDA program by setting the compile instruction as shown in
listing A.2, the link instruction is as usual.

1 CUDA_ADD_EXECUTABLE(${EXE_NAME} ${source} ${main})
TARGET_LINK_LIBRARIES(${EXE_NAME} ${LIBS})

Listing (A.2) CMake CUDA Executable

These are the only special commands used to instruct CMake to build a CUDA
program nevertheless the FindCUDA module provides a lot more variables and options
to customize the build and set NVCC compiler flags. All these variables can be found
on the web in the official CMake documentation. Now that we have covered the special
CMake commands we have to configure the Eclipse project properties to work best with
CMake.

Follow the steps below to set up Eclipse with CMake.

1. start a new project with
C++ Projekt → Makefile project → Empty Project

2. create a build folder for out-of-source builds in the project root
File → New → Folder → Folder Name: build

3. adjust the project properties
Project → Properties → C/C++ Build
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� set the Build location to the just created build folder

� uncheck Generate Makefiles automatically

� click OK to finish

4. edit the make targets On the right side of the editor window there should be a
tab called Make Targets. Click this tab and select your project, then right click
and select New...

� set the target name to cmake

� uncheck Same as the target name and Use builder settings

� delete the text in the field Make target

� write in Build command the text cmake .. (you have the possibility to set
additional CMake command line arguments right after cmake)

5. Now you can start coding. Before the first build and after every change on
the CMakeLists files double click the cmake target created in the previous step.
Afterwards compile your project as usual with the compile button.
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