HSR
. HOCHSCHULE FUR TECHNIK Institute for
RAPPERSWIL l a Internet Technologies
. . COMPUTER SCIENCE and Applications

Operator overloading for
Java

Bachelor Thesis

Department of Computer Science
University of Applied Science Rapperswil

Spring Term 2011

Author(s): Sandro Brandli

Advisor: Prof. Dr. Josef M. Joller
External Co-Examiner: Matthias Lips

Internal Co-Examiner: Prof. Dr. Andreas Rinkel

Erklirung (German)

Ich erklédre hiermit,

e dass ich die vorliegende Arbeit selber und ohne fremde Hilfe durchgefiihrt habe,
ausser derjenigen, welche explizit in der Aufgabenstellung erwihnt ist oder mit
dem Betreuer schriftlich vereinbart wurde,

e dass ich sdmtliche verwendeten Quellen erwéhnt und geméss géngigen wissenschaftlichen
Zitierregeln korrekt angegeben habe.

Ort, Datum:

Name, Unterschrift:

iii

Abstract

Introduction

This thesis analyzes the possibilities to extend the Java programming language. This
is done by implementing operator overloading as an example of what is possible. An
important goal of this implementation is to be easy to use for the developer. That means
among other things that it should not require a special compiler or extra steps in the
build process and it should work on a standard Java Runtime Environment (JREI).

Approach

There are several possibilities to extend the Java syntax. The obvious ones are:
1. Patch the compiler
2. Preprocess the source code

3. Develop a compiler with the desired features

The problem with patching the compiler or developing a new one is that it would re-
quire the developer to use a different compiler and thus requires extra effort from him.
Preprocessing the code complicates the build process by introducing an additional step.

In this thesis the approach is using a Java 6 pluggable annotation processor to modify
the Abstract Syntax Tree ([AST]) before the bytecode is generated. Annotations and an-
notation processors where introduced in Java 5, as tools like XDoclet showed the need
for metadata in the code especially when developing Java EE applications. Annotation
processors are used to generate source code or configuration files out of meta data (an-
notations) in the code.

Annotation processing in Java 5 was not integrated into the compiler, it required sepa-
rate tools and an extra steps in the build process. With Java 6 and the introduction of
pluggable annotation processors it became part of the compiling process. So an annota-
tion processor can be registered via the Service Provider Interface (SPI) of Java and is
then used by the compiler.

The transformation can be done by casting the objects passed to the annotation processor
to their underlying classes and then modifying the [AST] To stay independent of different
compiler’s [AST] implementations an abstraction layer is used.

vi

Results

Operator overloading has been implemented and works with Eclipse, Netbeans and plain
Javac. Also builds which use Ant or Maven both using Javac are working. The implemen-
tation is compiler independent and extendable. However it is not ready for productive
use yet, because it still has some bugs. To extend it, a new transformations can be
registrated with the of Java.

Management Summary

1 Initial Status

—

' I
‘\ Operator: + /

N

s sestonvecer Y (e
(Id: positionVector Id: movementVector)
N) U)

Figure 1: Simplified [AST] before transformation

Java does, in contrast to many other programming languages, not support operator
overloading. Overloading an operator means to define it on a data type. An operator is
a symbol or function representing a mathematical operation. It is likely, that the intent
was to keep the language simple. Many features from C++ where not included in Java
to keep Java simple.

The debate if Java should support operator overloading is almost as old as the language
itself. The main advantage of having operator overloading in Java would be extensibility.
The developer would be able to use operators not just for primitives or the 4-operator
for strings, but also for his own datatypes. It would also make it easier for Oracle to
define operators for classes like Date, BigInteger and BigDecimal, which would greatly
enhance their usability.

In this thesis operator overloading will be implemented as an example of how Java can
be extended. It is an important goal of the implementation to be easy to use for the
developer and not to introduce extra steps in the compiling process. Also the set of
features should be easy to extend. The implementation should not only work with plain
Javac, but also within Eclipse, Netbeans, Ant or Maven.

vii

viii

2 Approach

Concerning project management, the approach was very lightweight, as this was an
explorative project and only one person was involved. A complex process would have only
slowed things down, without any real benefits. Still the process was iterative and every
iteration was consisting of phases. Every iteration started with defining the goals that
should be achieved at the end. And is ended with discussing the results and defining the
goals for the next iteration. An iteration typically consists of investigation, prototyping,
programming and documenting.

The technical approach is to use some new technologies introduced in Java 6 like plug-
gable annotation processing and dynamic attach. And combine them with existing ideas
to modify the[AST] The annotation processor is used as a hook to the compiling process.
Dynamic attach in conjunction with Javassist is used to change the parser of Eclipse to
use the annotation processor. To stay compiler independet an abstraction of the [AST]
called Java Unified Abstract Syntax Tree (JUAST]) is used.

3 Results
< Call: add \
~ e
o [\—fargetAparam/e/t/ersl)
‘1\/\\\ Id: matrix /> (\/\\\ Call: multiply ///\
SE— Farget 77/77\7jparameter5l

— — — I

Id: positionVector [Id: movementVector)

Figure 2: Simplified [AST] after transformation

An annotation processor has been implemented, which is able to transform the [AST]
and allows the implementation of new features for the Java programming language by
simply implementing a visitor that transforms the[ASTI] It works with Eclipse, Netbeans,
Javac, Ant and Maven. Because of problems related to classloading and lack of time, for
Eclipse the transformation is implemented as a plugin. The implemenatation still has
some bugs, but it shows what is possible.

Table of Contents

[Abstract]

[Management Summary)|

[2 Approach|

[1 Scope of work (German)|
[1.1 Organisation|
1.2 Ausgangslage, Problembeschreibung]
1.3 Aufgabenstellung|
1.4 Durchtihrung
[1.5 Dokumentation und Abgabel.

[3.1 Preprocessing code|
[3.2 Patching the compiler|
3.3 lambdaj
3.4 AST-modifying annotation processor|

[4.2.3 Groovy|
4.3 What to implement|.
4.4 How to implement it|

[6 The Java Compiler]
[5.1 Passes of the compiling process| . . .
0.2 Annotation processing|
[.2.1 Debugging|.
[5.2.2 Manipulating the AST|. . . .

ix

11
11
11
11
11
12
13
13

TABLE OF CONTENTS

6 IDE Support|

6.1 Netbeansl
6.2 clipsel
[6.2.1 The Attach Application Programming Interface (API)|
[6.2.1.1 Application litecycle with an agent|.

16.2.2 Hotpatching with an agent|
6.2.2.1 Creating the agent jar{

[6.2.2.2 Injecting the agent|.

6.2.3 Debugging an Annotation Processor|

7 Project Management|
[7.1 Investigating]
7.2 Exploring]
[(.3 Prototyping|
[7.4 IDE-Support|
.0 nishing| e

8 Conclusion|
[8.1 Experience report (German)|. oL
82 Results.
[8.2.1 Annotation processor|o
8.2.2 Echipse plugin|. o o
[8.2.3 Agentlnjector] L
[8.2.4 Injector|

IB List of Figures|

IC_List of Tables|

ID List of Listings|

17
17
17
18
18
19
19
19
20

21
21
21
21
21
22

23
23
23
23
24
24
24
24
24

25

27

27

29

31

33

Chapter 1

Scope of work (German)

1.1 Organisation

Autor: Sandro Brandli, Student Abteilung fiir Informatik HSR Betreuer: Prof. Dr. Josef
M. Joller, Abteilung fiir Informatik HSR Gegenleser: Prof. Dr. Andreas Rinkel, Abteilung
fir Informatik HSR Experte: Matthias Lips, MediData AG

1.2 Ausgangslage, Problembeschreibung

An mehreren Tagungen und Vortrigen wurde immer wieder {iber das Thema "Operator
Overloading (OO) in Java” diskutiert und debattiert. Es gibt Griinde, die fiir ein Oper-
ator Overloading sprechen, wie etwa in den Vortridgen von Guy Steel erldutert wurde.
Traditionalisten/Puristen sehen im Operator Overloading eher eine mogliche Quelle fiir
problematischen, sprich unzuverléssigen Programmcode.

In der Vergangenheit sind verschiedene Ansitze fiir das OO publiziert. Diese basieren
in der Regel auf dlteren JDK bzw. Javac Versionen. Die Einfithrung von Annotations in
Java 5 zeigen einen neuen Weg auf:

e Annotation Processors

Damit hat man die Moglichkiet, speziell ab Version 6 auf den [AST] zuzugreifen und
Manipulationen vorzunehmen.

1.3 Aufgabenstellung

Es ist eine Losung fiir das Operator Overloading zu finden (zu entwickeln, evtl. beste-
hende Ansétze zu erweitern), welche sowohl in standalone Javac als auch in den géngigen
Entwicklungstools (Eclipse, evtl. NetBeans) funktioniert. Dabei ist der Annotation Pro-
cessor Ansatz der naheliegende. Es ist aber dem Studenten / dem Team iiberlassen,
welcher Losungsansatz verfolgt wird. Das Ergebnis steht im Vordergrund!

2 1 SCOPE OF WORK (GERMAN)

1.4 Durchfiihrung

Die Durchfithrung richtet sich nach den geltenden Durchfithrungsbestimmungen fiir
Bachelorarbeiten.

1.5 Dokumentation und Abgabe

Wegen der beabsichtigten Verwendung der Ergebnisse in weiteren Projekten wird auf
Vollstandigkeit sowie (sprachliche und grafische) Qualitét der Dokumentation erhohter
Wert gelegt.

Die Dokumentation zur Projektplanung und -verfolgung ist geméss den Richtlinien der
Abteilung Informatik anzufertigen. Die Detailanforderungen an die Dokumentation der
Recherche- und Entwicklungsergebnisse werden entsprechend dem konkreten Arbeitsplan
festgelegt. Die Dokumentation ist vollstindig auf CD in drei Exemplaren abzugeben.

Neben der Dokumentation sind abzugeben:
e cin Poster zur Prasentation der Arbeit

e alle zum Nachvollziehen der Arbeit notwendigen Ergebnisse und Daten (Quellcode,
Buildskripte, Testcode, Testdaten usw.)

e Material fiir eine Abschlussprisentation (ca. 207)

Chapter 2

Introduction

As the title of this Thesis states, it is about implementing operator overloading for Java.
Therefore we first need to define what operator overloading means. We will start with
the definition of what an operator is:

LAn operator is a symbol or function representing a mathematical opemtion’ﬂ

Java only defines arithmetic operators for primitive data types and the operator + for
Strings. Overloading an operator means defining it on a data type. On the next page
you will see an example of how operator overloading works in C++. Java supports the
operators listed in Table

Operator Description

X++, x-- Postincrement, Postdecrement

++X, --X Preincrement, Predecrement

>, < Greater than, Less than

>=, <= Greater than or equals, Less than or equals
== Equal

= Not equal

&, |, ° Logical, bitwise AND, OR, XOR

! Logical negation

&&, || Conditional AND, OR

Complement operator
obj instanceof Class Evaluates if obj is of type Class
= Assignment Operator

Table 2.1: Operators supported by Java [AGH05, Chapter 9.2]

To keep the sourcecode readable, not all of this operators should be overloadable. For
some of them I can not see an overload that would make sense.

"http://wordnetweb.princeton.edu/perl/webwn?s=operator

http://wordnetweb.princeton.edu/perl/webwn?s=operator

4 2 INTRODUCTION

1 #include <iostream>

2

3 class myclass

1

5 int subl, sub2;

6

7 public:

8 myclass (){}

9 myclass(int x, int y){subl=x;sub2=y;}
10 myclass operator +(myclass);

11 void show (){std :: cout<<subl<<”, "<<sub2;}
12}

13

14 myclass myclass:: operator +(myclass ob)
15 {

16 myclass temp;

17 temp.subl=subl + ob.subl;

18 temp.sub2=sub2 + ob.sub2;

19 return temp;

20 }

21

22 int main ()

23 {

24 myclass ob1(10,90);

25 myclass 0b2(90,15);

26 obl=o0obl+ob2;

27 ob1l.show ();

28 return 0;

29 }

30 // Output: 100, 105

Listing 2.1: Operator overloading in C++

Operators in C++ are overloaded by implementing special methods. The rest is per-
formed by the compiler, meaning that it is just a compiler feature.

2.1 MOTIVATION 5

2.1 Motivation

Java has been around for more then ten years without support for operator overloading.
This rises the question why we should need it. There have been many arguments about
operator overloading. The syntax of Java is largely derived from C++, but some features
were suppressed to simplify the language [GM96, Chapter 2.2].

The supporters say, that the user should be able make his own data types behave like
the built in ones [Ste99, p. 233].

The opponents counter, that code might become harder to read and maintain with heavy
use of operator overloading, because it allows programmers to give operators completely
different semantics depending on the types of their operands.

Still many popular programming languages like C++, Ruby and Python offer operator
overloading and also some newer ones like C#, Scala and Groovy [Str00, MOS8, [VRO03,
HWGO3, (0004, KGK™T07].

2.2 Thesis structure

The rest of the thesis is structured as follows: Chapter [3] presents, what has already been
done in finding ways to extend the Java syntax. It also contains the decision of how
operator overloading will be implemented from a technical point of view.

Chapter [4] shows how other languages have implemented operator overloading. It gives
a short overview about what features it has in these languages and how they are used.
It ends with a description of how it should be done in this thesis.

The chapter [5] describes the passes of the compiling process and how to do annotation
processing. It includes an explanation of how to debug an annotation processor.

After the chapter about Javac, chapter [6] about IDE-support follows, it explains how the
IDE-support works.

The thesis continues with chapter 7} which looks at the thesis from a project management
point of view. It describes the iterations and phases of the project.

At the end, the results are summarized and an outlook is given in chapter

Chapter 3

Related Work

There have been other attempts to implement operator overloading in Java or to oth-
erwise extend it. This chapter gives a short overview about the approaches taken, and
how they might be usable for this thesis. Luckily none of them completely solves the
problem, as this would render this thesis useless.

3.1 Preprocessing code

JFront[] is an implementation that works by transforming the source code before com-
piling. This approach is interesting, as it would theoretically allow everything. With
preprocessing the source it would even be possible to transform code from any program-
ming language to Java. As Java is touring complete, every program in any programming
language could be translated to Java. Long story short, there are no limits when using
a preprocessor to implement new features.

Still this approach has some disadvantages. The flexibility of preprocessing comes at
the price of an extra step in the compiling process. This means that it requires extra
effort from the developer and introduces a source of very subtle errors, like bugs in the
preprocessor. Preprocessing also makes it difficult to implement IDE-Support and almost
certainly require a plugin.

Because of the problems and disadvantages mentioned above, this is not a viable solution.
IDE-support is an important requirement and it would be to difficult to implement. Also
requiring the developer to configure an extra step in the build process and to install a
plugin in his IDE is to much effort to remain usable.

3.2 Patching the compiler

Another approach is to patch the compilerE] The linked solution implements operator
overloading, but does not have IDE-support. This is almost the same as using a prepro-
cessor. The difference is that it does not require an extra step in the compiling process
and thus not complicates the build process.

"http://www.gginc.biz/jfront/
Zhttp://www.java-forum.org/540038-post1.html (German)

http://www.gginc.biz/jfront/
http://www.java-forum.org/540038-post1.html

8 3 RELATED WORK

The problem with this approach is, that it requires the developer to use a different com-
piler. It is difficult for a developer to be sure, that a patched compiler is still trustworthy.
Using a patched compiler may also violate policies in a company. Besides there might be
copyright problems when patching the compiler. As Eclipse uses its own compiler and
parser, it would be necessary to also patch them.

The main reason for not using this approach are the copyright concerns. It would require
a lawyer to determine, what changes are allowed and under what conditions. It would
also be to much work to patch the compiler of Eclipse and write a plugin to support it
in the editor.

3.3 lambdaj

The listing below shows what is possible with lambdaj[ﬂ It is taken from lambdaj’s
website.

List <Person> personInFamily = asList (
new Person (”Domenico”),
new Person (”Mario”),
new Person(”Irma”)
);
forEach (personInFamily).setLastName (”Fusco”);
List <Person> sortedPersons = sort(persons, on(Person.class).getAge());

N O U W N

Listing 3.1: Example of using lambdaj

Lambdaj strives to facilitate working with collections by eliminating loops and manipu-
late them in a pseudo-functional and statically typed way. It first seems, that lambdaj
needs to modify Java in some way to achieve its functionality. Further investigation
showed, that this is not the case. Everything lambdaj does can be achieved with plain
Java code. Lambdaj works by using dynamic proxies and thread locals. So lambdaj does
not show a new way of modifying the Java syntax, it is just an internal Domain Specific

Language (DSI)).

Investigation showed, that with lambdaj’s approach it is not possible to do operator
overloading, as it does not allow to change Java’s syntax.

3.4 AST-modifying annotation processor

DIIKSIE] works by directly transforming the syntax tree during the compile process.
[JTUAST] already has a basic demo that does operator overloading in special cases. It also
provides an abstraction layer for the [ASTIrepresentations of different compilers. So it is
a good start. What is missing is IDE-support.

3http://code.google.com/p/lambdaj/
“https://bitbucket.org/amelentev/juast/wiki/Demo

http://code.google.com/p/lambdaj/
https://bitbucket.org/amelentev/juast/wiki/Demo

3.4 AST-MODIFYING ANNOTATION PROCESSOR 9

Another project which works the same way is Lombokﬂ It has IDE-support, but does
not implement operator overloading and does not have an [ASTlabstraction. However
it seems very stable and the knowledge in which way you can support Eclipse is very
useful.

This is the way to go. It does not require any extra steps or a modified compiler. And
by using [JUAST] the solution is compiler independent. Annotation processing is part of
the Java standard and thus can be used on any compliant compiler. Also IDE-support
should not be to hard to implement, since the code of the annotation processor is ex-
ecuted by the same Virtual Machine (VM]) as the IDE. One big constraint of using an
annotation processor is, that the sourcecode must be parsable by the compiler, because
the annotation processor works on the [AST] provided by the compiler. For operator over-
loading, however this is not a problem, due to the fact that the code is parsed before type
resolution is done. As long as the compiler does not know, the type of an expression, it
can not complain about using operators, since it might be of a primitive type.

Shttp://projectlombok.org/

http://projectlombok.org/

Chapter 4

Analysis

This chapter describes how operator overloading is implemented in other languages.
Then the decision is made, how it will be implemented.

4.1 Potential misuse

Code could become hard to read if operators like = or == are overloaded. For some
operator there is no meaningful overload, for example for the instanceof operator.

4.2 Current implementations

This section shows in which form other languages implement operator overloading. It
gives a short overview about the features and how to use them, this is done by using
sample code.

4.2.1 C++

Chapter 2] contains sample code for C++, so it is not repeated here. In C++ an operator
is overloaded by implementing a method with a special name. As C++ also supports
extension methods, it is possible to overload operators even on classes of the standard
library or other classes not under control of the developer.

C++ does not allow to change the precedence or associativity of an operator, which is a
good thing, as this would only make the code less readable. If a developer needs different
associativity or precedence, he can use parentheses to achieve it. Because of the special
method names of overloaded operators, they look a bit out of place.

4.2.2 Scala

Listing shows an exampleﬂ of operator overloading for a class representing a complex
number.

"http://www.scala-lang.org/node/224

11

http://www.scala-lang.org/node/224

12 4 ANALYSIS

1 object complexOps extends Application {

2 class Complex(val re: Double, val im: Double) {

3 def + (that: Complex) =

4 new Complex(re + that.re, im + that.im)

5 def — (that: Complex) =

6 new Complex(re — that.re, im — that.im)

7 def x (that: Complex) =

8 new Complex(re * that.re — im % that.im,

9 re * that.im + im * that.re)

10 def / (that: Complex) = {

11 val denom = that.re x that.re + that.im * that.im
12 new Complex((re % that.re + im % that.im) / denom,
13 (im % that.re — re x that.im) / denom)
14 }

15 override def toString =

16 re + (if (im < 0) =" 4+ (—im) else "4+” + im) + 7"*i”
17 }

18 val x = new Complex(2, 1); val y = new Complex(1l, 3)

19 println (x + y)

20 }

Listing 4.1: Operator overloading in Scala

It seems like Scala implements operator overloading, actually this is not the case. There
is no chapter about operator overloading in the Scala Language Specification ([OO04]).
Scala just has less constraints on how to name a method, than for instance Java. As
shown in the example, a method in Scala can be named ,*”. With the property that
any method which takes a single parameter can be used as an infix operator, operator
overloading is possible without explicitly implementing it.

Scala is a very flexible language and thus also allows to change associativity and prece-
dence of operators.

4.2.3 Groovy

Groovy does operator overloading in a way similar to C+4. What is different are the
method names. In Groovy the methods have normal names as shown in listing The
set of operators that can be overloaded is limited to comparison operators, arithmetic
operators and the array access operator.

4.3 WHAT TO IMPLEMENT 13

1 class JukeBox {

2 def songs

3

4 JukeBox (){

5 songs = |[]

6 }

7

8 def plus(song){

9 this.songs << song

10 }

11

12 def minus(song){

13 def val = this.songs.lastIndexOf(song)
14 this.songs.remove(val)

15 }

16

17 def printPlayList (){

18 songs.each{ song —> println "${song.getTitle()}” }
19 }

20 }

Listing 4.2: Operator overloading in Groovy

The way Groovy implements operator overloading seems very Java-like. With normal
methods as operators it is possible to implement the overloading using an annotation
processor, as the sourcecode remains parsable. Groovy does not allow to change associa-
tivity or precedence.

4.3 What to implement

Operator overloading should be implemented in a similar way as it works in groovy. If
the operators are represented as normal methods, the code of a class with overloaded
operators remains normal Java. It can therefore even be compiled without operator
overloading enabled. Operator overloading only needs to be enabled for classes, that
really use it.

The set of operators is limited to the arithmetic operators +, -, *, /, *, since the over-
loading of operators like the assignment operator would cause a lot of confusion. Also
changing precedence or associativity is not allowed. It would be confusing to use, difficult
to implement and not really bring any advantage.

4.4 How to implement it

As already stated in chapter [3|the best way to implement operator overloading seems to
be using an annotation processor which modifies the [AST] To stay compiler independet,
[JUAST] can be used. Eclipse can be supported by changing the parser to transform the
[AST] after parsing using the Dynamic Attach [APIl and a bytecode manipulation library.

Chapter 5

The Java Compiler

5.1 Passes of the compiling process

The compiling process consists of the passes shown in Figure [5.1

Parse) Enter >Annotate> Attribute) Flow) Desugar) Generate)

Figure 5.1: Passes of the compiling process

parse Reads a set of *.java source Files and maps the resulting token sequence into

[AST}Nodes.
enter Enters symbols for the definitions into the symbol table.

process annotations If requested, processes annotations found in the specified compila-
tion units.

attribute Attributes the syntax trees. This step includes name resolution, type checking
and constant folding.

flow Performs dataflow analysis on the trees from the previous step. This includes checks
for assignments and reachability.

desugar Rewrites the [AST] and translates away some syntactic sugar.

generate Generates Source Files or Class Files.

The above description of the compiling process is taken from [EKO§|. For implementing
operator overloading the "process annotations”-phase is important. It is described in
detail in the next section.

5.2 Annotation processing

Java 6 has introduced a new Java Specification Request (JSR)) called TSR] 269" which is
the Pluggable Annotation Processing[APIl With this[API] it is possible for the developers

"http://www.jcp.org/en/jsr/detail?id=269

15

http://www.jcp.org/en/jsr/detail?id=269

16 5 THE JavA COMPILER

to write an annotation processor which can be plugged-in to the compiling process to
operate on the set of annotations that appear in a Source File. The idea is typically used
to create new source file or configuration files to be used in conjunction with the original
code.

In this thesis the parameters given to the annotation processor are casted to their under-
lying implementation. With this technique the [AST] becomes accessible and also modi-
fiable.

5.2.1 Debugging

It is difficult to debug an annotation processor, since it is executed during the compiling
process. Therefore, it is needed to start the compiler in debug mode to render it possible
to debug the annotation processor. The compiler can be launched in debug mode by
starting the underlying launcher in debug mode.

The easiest way to accomplish this is by using Ant or Maven and start them in debug
mode. As the compiler is running in the same process as Ant or Maven, it will also be
in debug mode. Maven can be set to debug mode by setting the environment variable

MAVEN_OPTS.

1 set MAVEN.OPTS=Xdebug —Xnoagent —Djava.compiler=NONE
2 —Xrunjdwp:transport=dt_socket ,server=y,suspend=y, address=8000

Listing 5.1: Debugging Maven

5.2.2 Manipulating the AST

To manipulate the [AST] a good way is to use JUAST] It provides an abstraction of the
[AST] and is therefore compiler independent.

[JUASTI provides an[APIusing visitors to manipulate the[AST] The interface juast.visit.Visitor
can be implemented to manipulate the [ASTL It contains enter and leave methods for the

nodes of the [AST] Alternatively the class juast.visit.DefaultVisitor can be ex-

tended, it contains default implementations of every method of the interface.

5.2.3 Service Provider Interface

The [SPIl is a standardized way to provide services in a Java application. A service
is registered by putting its fully qualified classname on a new line in a file with the
name of the interface implemented by the service. This file must be put under the path
»META_INF /services” in the published jar file.

Chapter 6

IDE Support

6.1 Netbeans

To use operator overloading in Netbeans, annotation processing has to be enabled. This
can be done by enabling ,,annotation processing” and ,,annotation processing in editor”
under the compiler settings of the project. No additional steps are required.

Implementing operator overloading for Netbeans did not require any extra effort, because
Netbeans internally uses Javac. Thus implementing operator overloading for Javac also
means implementing it for Netbeans.

6.2 Eclipse

Using operator overloading in Eclipse requires to register and enable the annotation pro-
cessor. The annotation processor can be enabled by enabling ,annotation processing”
and ,annotation processing in editor” under the compiler settings of the project. To reg-
ister an annotation processor, the factory path under the annotation processing settings
has to be set.

Eclipse uses its own parser and compiler. As mentioned in Chapter 4] [JUAST] is used to
handle the different [AST] implementations. However, when using Eclipse, there remains
a problem. Eclipse not only compiles the sourcecode on-save, but also parses it when
typing and reports errors. The problem here is, that the parser does not run annotation
processors and therefore operates on a non-transformed [AST] This results in the parser
reporting errors because of unsupported operators.

The behavior of Eclipse seems legitimate as annotation processors were originally not
intended to modify the [AST] so it should not be needed to run the annotation processors
for parsing the sourcecode. Fortunately, there is a solution for this problem. The code to
run the annotation processor can be injected into the parser during runtime, using the
Dynamic Attach AP introduced in Java 6.

"http://download.oracle.com/javase/6/docs/technotes/guides/attach/index. html

17

http://download.oracle.com/javase/6/docs/technotes/guides/attach/index.html

18 6 IDE SUPPORT

6.2.1 The Attach [AP]

This section shortly describes the Attach[API] how it is actually used to patch the parser
of Eclipse is explained in Section [6.2.2] The attach [API] provides a way to modify and
reload classes in an application by using an agent. Since Java 6 it is not needed to declare
the agent when starting an application, it can also be attached later.

A dynamically attached agent is used to patch the parser of Eclipse at runtime. To do
this, the annotation processor, which is called by the compiler of Eclipse, creates the
agent and loads it into the current [VM| The agent then patches the parser.

Patching the parser is done by modifying it with Javassist. With its instance of a
java.lang.instrument.Instrumentation, the agent reloads the parser class. It achieves
this by using the following methods of the Instrumentation:

addTransformer with this method a transformer can be added, which then transforms
classes when loaded or unloaded.

retransformClasses causes transformation of given classes, even if they where already
loaded.

6.2.1.1 Application lifecycle with an agent

Normally the first method invoked when starting a Java program is the main method.
When working with agent, this might not be the case. When starting a Java application
with the -javaagent option and pointing it to a jar file, that contains an agent and has
an appropriate manifest, the premain method of the agent is executed before the main
method of the application. This behavior is guaranteed. Since Java 6 there might also
be a agentmain method which can be executed before or after the main method. So we
have the following methods when using an agent:

premain is invoked first prior to running the main method and used for loading the
agent statically at startup.

main this one should be familiar. It is always invoked after premain.

agentmain can be invoked at any time and is the hookpoint when loading the javaagent
dynamically and attaching it to a running process.

The methods premain and agentmain have, except for the name, the same method
signature. They are throwing Exception, are public, static and take two arguments.

6.2 ECLIPSE 19

6.2.2 Hotpatching with an agent
6.2.2.1 Creating the agent jar

Within the context of this thesis the class ch.gizmo.overload.agent.AgentInjector
has been implemented. It is a helper class for injecting agents into its own [VML As the
Dynamic Attach [APIl requires the path to a jar file to load an agent, the AgentInjector
is able to create a compliant jar.

With the method loadAgent (Class<?> agentClass) it is possible to directly use a class
as an agent. The AgentInjector creates a jar file containing the given class and all its
dependencies with an adequate manifest and loads the agent into the current VMl

6.2.2.2 Injecting the agent

An agent class needs to have a method with the signature public static void agent-
main(String, java.lang.instrument.Instrumentation). The agent has to be de-
ployed in a jar file with a manifest like Listing

Manifest—Version: 1.0
Agent—Class: agent.AgentTest
Can—Redefine—Classes: true
Can—Retransform—Classes: true

=W N =

Listing 6.1: Manifest of agent jar

The method com.sun.tools.attach.VirtualMachine.loadAgent (String) loads the
agent, the parameter is the absolute path to the jar containing the agent. The class
VirtualMachine is part of Sun’s Java Development Kit (JDK]), so the [JDKI is needed
to inject an agent.

It is also possible to inject an agent into the own [VMl To achieve this, a reference to the
VM has to be retrieved. The method in Listing [6.3] accomplishes this.

public VirtualMachine getCurrentVm () throws Exception {
RuntimeMXBean mxbean = ManagementFactory . getRuntimeMXBean () ;
Field jvmField = mxbean.getClass (). getDeclaredField (”jvm”);

VMManagement mgmt = (VMManagement) jvmField.get (mxbean);
Method method = mgmt. getClass ().getDeclaredMethod (”getProcessId”);

1

2

3

4

5 jvmField . setAccessible (true);
6

7

8 method . set Accessible (true);

9 Integer processld = (Integer) method.invoke (mgmt);
10

11 return VirtualMachine.attach(”” + processld);

12 1}

Listing 6.2: Get reference to own [VM]

20 6 IDE SUPPORT

6.2.3 Debugging an Annotation Processor

The most convenient way to debug an annotation processor within Eclipse is by exporting
it as an Eclipse plugin. Launching the plugin in debug mode causes a new instance of
Eclipse to launch in debug mode. The first instance can then be used to debug the second
one. The following plugin.xml is needed for a plugin to export an annotation processor.

1 <?xml version="1.0" encoding="UTF-8”7>

2 <?eclipse version="3.47"7>

3 <plugin>

4 <extension

5 point="org. eclipse.jdt.apt.core.annotationProcessorFactory”>
6 <javabprocessors enableDefault="true”>

7 <javabprocessor

8 class="ch.gizmo.overload . processor.RootProcessor” />
9 </javabprocessors>

10 </extension>

11 </plugin>

Listing 6.3: Exporting an annotation processor via an Eclipse plugin

Chapter 7

Project Management

This project is not based on a strict heavy-weight process. In an explorative one-man
project, complex processes would only slow things down. Nevertheless, this project was
not unorganized. The organization is iterative and agile. Every iteration started with
a meeting to define the goals. After accomplishing the goals, a new meeting to discuss
the iteration and define goals for the next iteration was arranged. An iteration typically
consisted of investigation, prototyping, programming and documenting.

The project consisted of the following iterations:
7.1 Investigating

This was the shortest phase, it took one week, but of course there was some investigation
during the whole project. This phase consisted of finding out, how operator overloading
works in other languages and how it should be implemented for this thesis.

7.2 Exploring

With a duration of about two weeks, this was also a rather short iteration. In this phase
I researched about related projects. The results are documented in chapter

7.3 Prototyping

This iteration was dedicated to experimenting with all sorts of technologies that are
needed for this thesis, with the goal of making a prototype that does operator overloading.
It was three weeks long. In this iteration also prototypes of what is possible with agents
and the Instrumentation [API where made.

7.4 IDE-Support

It was the longest and hardest iteration of this project. It was underestimated a lot, what
effort it needs to make the overloading, therefore this iteration was eight weeks long.

21

22 7 PROJECT MANAGEMENT

7.5 Finishing

The last two weeks were dedicated to finishing tasks and make everything ready for
delivery.

Chapter 8
Conclusion

8.1 Experience report (German)

Da ich das Thema selbst vorgeschlagen habe, fand ich es besonders interessant. Ich kon-
nte viele Technologien ausprobieren, mit welchen ich zuvor noch nicht gearbeitet hatte.
Einige davon, wie zum Beispiel Dynamic Attach oder Pluggable Annotation Processing
wurden erst in Java 6 eingefithrt, waren also noch sehr neu.

Es war spannend, die Moglichkeiten der oben genannten Technologien bis an die Grenzen
auszureizen um Dinge moglich zu machen, welche in der Sprache nicht vorgesehen waren.
Ausserdem habe ich viel dabei gelernt.

WEeil es sich um ein Thema handelte, mit dem sich bisher wenige beschéftigt hatten und
neue, relativ unbekannte Technologien involviert waren, liessen sich nur wenige Informa-
tionen finden. Vieles war auch sehr spérlich oder gar nicht dokumentiert. Somit brauchte
ich viel Zeit um Losungen zu erarbeiten.

Den Code fiir Eclipse zu implementieren benétigte besonders viel Zeit. Dies war vor
allem der Fall, weil Eclipse es einem nicht erlaubt, auf Klassen des [JDKb zuzugreifen.
Eine weitere Schwierigkeit war es, den Parser von Eclipse zu patchen, damit nach dem
Parsen die [ASTl Transformation durchgefiihrt wird. Andererseits war es auch spannend,
zu experimentieren, wie zur Laufzeit Code eingeschleust werden kann.

Auch wenn die Integration in Eclipse interessant und lehrreich war, wiirde ich dies beim
nichstem Mal weglassen. Es hat mich viel zuviel Zeit gekostet und daran gehindert,
neben dem Operator Overloading weitere Transformationen zu implementieren und alle
gesetzten Ziele zu erreichen.

8.2 Results

8.2.1 Annotation processor

An annotation processor that implements operator overloading and works with Netbeans
and Javac build, including Maven and Ant. It was implemented by extending [JUAST]
It is not ready for production use, since it has some bugs. Nevertheless it demonstrates
what is possible with annotation processors.

23

24 8 CONCLUSION

8.2.2 Eclipse plugin

For Eclipse operator overloading is implemented as a plugin that provides an annotation
provider. The original idea was to convert the plugin to a plain annotation provider that
also works with Netbeans. This turned out to be more difficult than expected because
classloading works different in annotation processors than in plugins.

8.2.3 Agentlnjector

AgentlInjector is a utility class, which does a lot of useful things regarding agents. It can
be used to generate a agent jar file containing all dependencies and necessary manifest
entries. It is also able to inject agents in its own VML

8.2.4 Injector

The Injector is a small Swing application, that can inject agents into any running Java
applications. It was mainly created for testing purposes and proved useful.

8.2.5 Agent

An agent has been developed, it patches the Eclipse parser to do operator overloading.
It can be injected into a running Eclipse instance using the Injector.

8.3 Outlook

The results of this thesis lays the base to implement other features like extension meth-
ods. Although it needs some bugfixing and refactoring first.

For the future I suggest to drop support for other compilers than Javac and not to
focus on IDE-Support. It should be used to experiment with new features. After the
experiences I made, I do not think it is possible to make [ASTHransforming annotation
processors production ready with the current [APIk of Java. There where many non public
[APIk involved in realizing operator overloading.

Bibliography

[AGHO05]
[EKO08]
[FMO8]

[GMY6]

[HWGO03]

[KGK*07]
[0004]
[Ste99)]
[Str00]

[VRO3]

Ken Arnold, James Gosling, and David Holmes. The Java Programming
Language. Pearson, 4th edition, 2005.

David Erni and Adrian Kuhn. The Hacker’s Guide to Javac. http://scg.
unibe.ch/archive/projects/ErniO8b.pdf, 2008.

David Flanagan and Yukihiro Matsumoto. The Ruby Programming Lan-
guage. O’Reilly, first edition, 2008.

James Gosling and Henry Mcgilton. The Java language environment: A white
paper. Technical report, Sun Microsystems, 1996. http://java.sun.com/
docs/white/langenv/.

Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The C# Programming
Language. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2003.

Dierk Koenig, Andrew Glover, Paul King, Guillaume Laforge, and Jon Skeet.
Groovy in Action. Manning Publications Co., Greenwich, CT, USA, 2007.

Martin Odersky and Others. The Scala Language Specification. http://
www.scala-lang.org/docu/files/ScalaReference.pdf, 2004.

Guy L. Steele. Growing a language. Higher-Order and Symbolic Computation,
12:221-236, 1999. http://dx.doi.org/10.1023/A:1010085415024.

Bjarne Stroustrup. The C++ Programming Language: Special Edition.
Addison-Wesley Professional, 3rd edition, 2000.

Guido Van Rossum. The Python Language Reference Manual. Network
Theory Ltd., 2003.

25

http://scg.unibe.ch/archive/projects/Erni08b.pdf
http://scg.unibe.ch/archive/projects/Erni08b.pdf
http://java.sun.com/docs/white/langenv/
http://java.sun.com/docs/white/langenv/
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://dx.doi.org/10.1023/A:1010085415024

Appendix A

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree

DSL Domain Specific Language

JDK Java Development Kit

JRE Java Runtime Environment

JSR Java Specification Request

JUAST Java Unified Abstract Syntax Tree
SPI Service Provider Interface

VM Virtual Machine

27

Appendix B

List of Figures

1 Simplified [AST] before transformation]

12 Simplified [AST] after transformation|

[5.1 Passes of the compiling process|

29

Appendix C

List of Tables

[2.1 Operators supported by Java [AGHO5, Chapter 9.2]

31

Appendix D

List of Listings

2.1 Operator overloading in C++ 4
3.1 Example of using lambdag| o oo 8
4.1 Operator overloading in Scalal 12
4.2 Operator overloading in Groovy|. 13
.1 Debugging Maven|, 16
[6.1 Manifest of agent jar| L 19
6.2 Get reference to own VM|o oo o oL 19
6.3 Exporting an annotation processor via an Eclipse plugin| 20

33

	Abstract
	Management Summary
	Initial Status
	Approach
	Results

	Scope of work (German)
	Organisation
	Ausgangslage, Problembeschreibung
	Aufgabenstellung
	Durchführung
	Dokumentation und Abgabe

	Introduction
	Motivation
	Thesis structure

	Related Work
	Preprocessing code
	Patching the compiler
	lambdaj
	AST-modifying annotation processor

	Analysis
	Potential misuse
	Current implementations
	C++
	Scala
	Groovy

	What to implement
	How to implement it

	The Java Compiler
	Passes of the compiling process
	Annotation processing
	Debugging
	Manipulating the AST
	Service Provider Interface

	IDE Support
	Netbeans
	Eclipse
	The Attach API
	Application lifecycle with an agent

	Hotpatching with an agent
	Creating the agent jar
	Injecting the agent

	Debugging an Annotation Processor

	Project Management
	Investigating
	Exploring
	Prototyping
	IDE-Support
	Finishing

	Conclusion
	Experience report (German)
	Results
	Annotation processor
	Eclipse plugin
	AgentInjector
	Injector
	Agent

	Outlook

	Bibliography
	Appendices
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings

