| HSR

HOCHSCHULE FUR TECHNIK Institute for _
B ceersw Internet Technologies
FHO Fachhochschule Ostschweiz and ApplicatiOHS

,Performance Measurements of
Algorithms in Image Processing”

Bachelor Thesis

Department of Computer Science
University of Applied Science Rapperswil

Spring Term 2011

Authors: Tobias Binna, Markus Hofmann
Advisor: Prof. Josef M. Joller
External Co-Examiner: Dr. Hans J. Grossmann

Abstract

How much can image processing algorithms be parallelized? In this project we im-
plement image processing algorithms in a massively parallel manner using NVIDIA
CUDA. Furthermore we analyze the resulting performance gains against current CPU
implementations.

Image processing algorithms are often quite complex and can quickly become very
compute intensive tasks. NVIDIA has evolved a technology called CUDA which is an
extension to the C programming language and provides the opportunity of general
purpose computing on NVIDIA graphics cards, using thousands of concurrent threads.
Thus the use of CUDA in image processing is obvious and the potential performance
benefits shall be investigated here in detail.

In this project we implemented two algorithms with CUDA, namely the Hough
transform to extract lines from an image and a template matching algorithm to find a
given pattern in a search image. We analyzed the performance of our implementations
and compared the results with reference implementations from the OpenCYV library.

Our results will not only focus on performance issues, but will also give information
about the scalability of algorithms using different graphical processing units (GPU).
Additionally we elaborate on hardware limitations and our experiences made during the
CUDA implementations.

Declaration

We, Tobias Binna and Markus Hofmann declare
e that this term project and the work presented in it is our own, original work.

e All the sources we consulted and cited are clearly attributed. We have acknowl-
edged all main sources of help.

Rapperswil, June 16, 2011

/’
V//}////&,

Tobias Binna

”

Markus Hofmann

Acknowledgments

First we would like to thank our supervisor, Prof. Josef M. Joller, for his support during
our thesis. We appreciated to always have a free hand in realizing our ideas.

Many thanks also to our co-examiner Dr. Hans J. Grossmann who gave us valuable
suggestions in the search of suitable algorithms.

A special thanks goes to Prof. Oliver Augenstein who provided us a helping hand
and gave us useful explanations on mathematical and computational issues.

Last but not least we would like to thank our relatives and friends for their constant
encouragements in this intensive time.

Contents

1 Management Summary

1.1 Introduction.
1.2 Approach
1.3 Results.

2 Technical Introduction

2.1 Problem Domain
2.2 Image Processing Algorithms
2.3 Implementing Algorithms with CUDA
3 Implemented Algorithms
3.1 Hough Transform
3.1.1 Problem Domain
3.1.2 Method
313 Results oo
3.2 Template Matching
3.2.1 Problem Domain
3.2.2 Method
323 Results oo

4 Conclusions

A Development Environment Setup

A.1 Hardware and Software Tools
A.1.1 Hardware
A.12 Software

A2 Setup CUDA

A.3 Setup Eclipse CDT with CMake and CUDA
A3.1 AddFile Type .cu

A.3.2 Setup CMake and CMake Configuration in Eclipse

Bibliography

W W w w N = = =

© Ot ot o1

14
22
22
26
29

35

39
39
39
40
40
40
41
41

43

vii

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2

Hessian Normal Form 7
Hough Transformation with resulting Hough Space 8
Ilustration of the Additive Hough Transform 9
Steps of the implemented Hough Transform Algorithm 10
Room Edge Map with Thinning Factor 1and 5 12
Calculation of Bin Sizeso oL 13
Room Image and its Edge Map 15
Example of bad Edge Map oL 15
Hough Transform Results with Thinning Factor 1and 5 16
Hough Transform Results with Thinning Factor 10 and different Thresholds 17
Parameter Spaces with detected Lines 18
Comparison between Parameter Space and Output Image 18
Runtime Measurements of the Standard Hough Transform 19
Runtime Measurements of the Additive Hough Transform 21
Conceptual Overview of Template Matching 23
Computation of a Summed Area Table 28
Template Matching Search Image and Reference Images 30
Template Matching Output Images with small and large Templates . . . 31
Runtime Measurements of Template Matching 33
Template Matching with Test Image to visualize numerical Artifacts . . 34
CPU and CUDA Runtime with logarithmic Scale 35
Scalable CUDA Implementations on different Graphics Devices 36

List of Tables

3.1 Runtime Example with Standard Hough Transform on the Room Image 18
3.2 Runtime Example with Additive Hough Transform on the Room Image 20

3.3 Runtimes of Template Matching Parts 32
3.4 Template Matching Runtimes with small and large Templates 32
A.1 Low-cost Project Hardware 39

A.2 High-end Project Hardware 39
A.3 Project Software

Xi

Listings

3.1 A trivial Template Matching Kernel

A.1 Check for FindCUDA.cmake
A.2 CMake CUDA Executable .

xiii

1 Management Summary

In this project, we analyze the performance gain of parallelized image processing
algorithms using NVIDIA CUDA. The project was initiated by the Institute for Internet-
Technologies and Applications at the University of Applied Sciences Rapperswil.

1.1 Introduction

The fact that the increased complexity of computable problems desires faster hardware
is by far not new. Todays demand on computing power can no longer be satisfied by just
increasing the clock speed of CPUs. Hence, the approach to parallelize things has become
more and more popular these days. NVIDIA provides a technology called CUDA which
is an extension to the C programming language. This technology allows programmers to
do computations on a CUDA capable graphics card (almost all newer NVIDIA graphics
cards are CUDA enabled) in an massively parallel way, using thousands of concurrent
threads.

Image processing algorithms are often quite complex, because computers are not
capable to logically interpret and extract information as seen by human beings and
therefore often need a lot of steps to manage computer vision tasks. Due to this, image
processing algorithms can become very compute intensive and time consuming.

Therefore the idea to use graphical processing units (GPU) to parallelize complex
image processing algorithms should be investigated. Because in some situations CPU
implementations can still be faster than a CUDA version, the performance results need
to be analyzed in detail. It is important to get a good understanding when CUDA
implementations make sense.

1.2 Approach

Initially we selected two different computer vision algorithms and tested their suitability
for a parallel CUDA implementation. We decided to focus on the Hough transform, an
algorithm to detect lines in an image and a template matching algorithm to find a given
pattern in a search image. In a following step we made performance measurements of
these algorithms on the CPU using reference implementations from the OpenCV library.

To make the transition from the sequential CPU implementation to a parallel GPU
version we analyzed the algorithms and searched for parts which can possibly be
parallelized. Afterwards we developed the algorithms in CUDA in an iterative process
of implementation, performance analysis and performance tuning.

Finally we compared the performance measurements of the GPU implementations
with their CPU references and interpreted the obtained outcomes.

1 Management Summary

1.3 Results

Our results show tremendous performance gains by using CUDA. The two implemented
versions of Hough transform both performed better then their CPU counterparts. An
even better result could be observed with the template matching implementation as we
achieved a performance speedup of a factor of 31.

Besides the performance evaluation we made a lot of experiences on how to develop
CUDA applications and learned about some important points that have to be observed
when dealing with GPU programming. Specifically high performance CUDA implemen-
tations do not only depend on a clever realization, it is equally important to consider
the properties and limitations of the underlying hardware.

2 Technical Introduction

2.1 Problem Domain

With the increased complexity of computing problems the desire of faster hardware
increases as well. To be able to solve more and more complex problems, programmers
must have options to get more power out of their machines. However this additional
performance can no longer be achieved by just increasing the clock speed of today’s
processors, because of physical limits. As a result the industry is heading towards parallel
programming concepts and multi-core architectures. Even if multi-core architectures are
solutions to further increase computing power they involve new challenges in software
development. Parallel implementations require new programming concepts and demand
the developers to care about additional resource management and coordination.

2.2 Image Processing Algorithms

The demand on more computing power is especially present in the area of image
processing, as images get larger or high frame rates desire faster processing. In addition,
image processing algorithms are often very compute intensive by itself because of their
complexity. This complexity is a result of the fact that computers are not capable to
logically interpret and extract information as seen by human beings and therefore often
need a lot of steps to manage computer vision tasks. Because of this circumstances we
have to find ways to implement such algorithms in a parallel manner.

2.3 Implementing Algorithms with CUDA

In this thesis we will deal with the implementation of image processing algorithms, using
NVIDIA’s CUDA technology which provides the opportunity to do general purpose
computations on a CUDA capable graphics card in an massively parallel way. Additional
information about CUDA can be found in our term project ”Massive Parallel Image
Processing” from fall 2010 [1].

The goal of this project is to determine the performance gain when image processing
algorithms are implemented in CUDA and have decided to implement two specific
algorithms. On the one hand we chose the Hough transform, an algorithm to detect
lines in an image while on the other hand we developed a template matching algorithm
to find a given pattern in a search image. The comparison of the time measurements
against CPU reference implementations should give information and experience about
the benefit of CUDA in image processing algorithms.

3 Implemented Algorithms

3.1 Hough Transform

3.1.1 Problem Domain

The Hough transform is a feature extraction technique used in computer vision. The
aim of this technique is to find object instances with a certain shape. The classical
Hough transform, patented by Paul Hough in 1962, was designed to identify lines in an
image [11], but later the Hough transform has been extended to detect arbitrary shapes,
most commonly circles or ellipses. The nowadays universally used Hough transform was
invented by Richard Duda and Peter Hart in 1972, who called the algorithm generalized
Hough transform [7].

Today there are a lot of variations and extensions of the Hough transform. To
get an overview on the great variety of Hough transforms we studied multiple papers
and web resources. From this research we can group the different attempts into two
main categories: non-probabilistic and probabilistic algorithms. In the following two
subsections we listed some interesting variants which we could find in [10], [8], [9], [12]
and [19].

Non-probabilistic Algorithms
o Standard Hough Transform (SHT)
e Backmapping Hough Transform (BHT)
e Fast Hough Transform (FHT)
e Hierarchical Hough Transform (HHT)
o Combinatorial Hough Transform (CHT)
e Curve Fitting Hough Transform (CFHT)

e Log Hough Transform (LHT)

Probabilistic Algorithms
e Randomized Hough Transform (RHT)
e Probabilistic Hough Transform (PHT)

e Progressive Probabilistic Hough Transform (PPHT)

3 Implemented Algorithms

e Monte Carlo Hough Transform (MCHT)
e Dynamic Combinatorial Hough Transform (DCHT)

Non-probabilistic algorithms process all edge pixels of the input image. This usually
leads to a robust algorithm with few false-positive matches for the price of more memory
consumption. On the opposite probabilistic algorithms process only a randomly selected
subset of edge pixels, which reduces memory usage and processing effort.

Implemented Variants

From the numerous objects which can be detected by the Hough transform we decided
to focus on line detection. Furthermore we determined to implement two variants of
the Hough transform on the GPU and compare them to their CPU counterparts.

Initially we realized the Standard Hough Transform (SHT) because it is a straight
forward approach and we already had good results from the OpenCV library reference
[14]. To try another solution we looked for a method to reduce the computational
overhead of the Standard Hough Transform. During our search we came over the Additive
Hough Transform as described in ”Exploiting Inherent Parallelisms for Accelerating
Linear Hough Transform” [17] which promises an enhancement against SHT.

In the following two sections we describe the two implemented approaches and explain
their characteristics and differences.

Standard Hough Transform

The basic idea behind Hough transform is to convert an input image to a format that
allows us to simply detect the lines from the transformation output. However, before
we can start with the actual transformation the input image is processed to contain
only the information we are interested in, in this case the edges. The edge map is the
original image transformed to a binary image with the edges in white (see e. g. figure
3.5a). This can be produced by applying an edge detector such as the Canny edge filter
[18].

The Standard Hough Transform algorithm starts with a voting process. Given only
an edge pixel (x,y), as in figure 3.1, we do not know weather this pixel is part of a
line or not. Even if we knew that pixel (z,y) lies on a line we would not know its
orientation. The line could be at any angle between 0 and 179 degrees. As a result, the
Hough transform examines all the lines passing through pixel (z,y) and makes a vote
for each of these lines in the so called parameter space (also known as Hough space).
The parameter space acts as an accumulator, summing up the votes of the different lines
passing through an edge pixel. Accordingly, the parameter space has the dimension
of p x 0 where p € [0,7] and 6 € [+, 1] where w and h is the image width and
height.

Essentially the Hough transform maps the image space to a parameter space using an
appropriate mapping function. A trivial mapping function would be the representation
of the lines as m - x + ¢ = y. The problem with this function is if the line is vertical, m
goes to infinity. Because in practice it is impossible to deal with infinite large numbers

3.1 Hough Transform

we have to find another approach. A commonly used solution is to use the Hessian
normal form:

x-cos(f) +y-sin(d) =p (3.1)

with the parameters p and 6 and a given point (x,y). As indicated in figure 3.1 we
can find an infinite set of lines passing through point (z,y) if we vary p and 6.

l\y

Pn ' Tl

Po \

0, '
to

v

Figure (3.1) Hessian Normal Form

Because the transformation from image space to parameter space is essential to
understand, we will try to visualize this procedure and its properties.

Reconsidering equation 3.1 we can recognize the transformation of a point in the
edge map to a curve in parameter space. As illustrated in figure 3.2, each possible line
trough point (2,2) in figure 3.2a is mapped to the parameter space producing the dashed
curve in figure 3.2b. The crucial property about this transformation is the common
intersection point in parameter space (figure 3.2b) of points on the same line in the
edge map (figure 3.2a). As a result, we can find (p,) points in parameter space that
show a remarkably higher accumulator value than the points around them.

Figure 3.2a shows three points lying on the same line and one point located off that
line. If we transform these points with help of equation 3.1 into parameter space we
get the resulting parameter space as shown in figure 3.2b. As we can see, the curves
produced by the points located on the line, intersect at exactly the same position in
parameter space, which results in an accumulator value of 3 at this position. On the
other hand, the point that is located off the line does not pass through that point in
parameter space. Hence it contributes non of its votes to the line in figure 3.2a.

The detection of a line is now trivial: To find the lines in the original image we only

3 Implemented Algorithms

2 o b
10 | 1
o ‘ ‘ ‘ ‘ ‘ ‘ s ‘ ‘ ‘
0 2 4 6 8 10 0 05 1 15 2 25 3
X 6
(a) Input Image with four Edge Pixels (b) Resulting Parameter Space

Figure (3.2) Hough Transformation with resulting Hough Space

have to find local maxima in the parameter space. In the most primitive version this is
done by simply thresholding the values.

Additive Hough Transform

Another approach to calculate the parameter space is called Additive Hough Transform
(AHT). Notice however, the basic idea of the Hough transform algorithm remains
unchanged with the Additive Hough Transform.

The AHT attempt is based on S. Suchitra Sathyanarayana’s paper [17]. This method
can be classified as a non-probabilistic method and has its main focus on the decompo-
sition of the construction of the parameter space to compute it in parallel.

If we analyze the Hough transform we can recognize its additive property given by

HT(A,0) = HT(A, B) + HT(B,0) (3.2)

where O is the origin of the image and HT'(X,Y) represents the Hough transform
of point X with respect to point Y. Applied to equation 3.2 this means, the Hough
transform of some point A with respect to the origin O is the same as the Hough
transform of point A with respect to some other point B plus the Hough transform of
point B with respect to the origin O.

With the Additive Hough Transform a given input image with dimensions of m x m
pixels is divided into 7+ x 7 blocks (illustrated by the thick lines in figure 3.3) with
k x k pixels each. For each block the top left pixel is considered as a local origin (L (g))-
Notice that the so called local Hough transform (HT'(L,,,L0,0))) of all blocks with
respect to their local origin is the same and thus can be precomputed the same way
as previously described in the Standard Hough Transform. To get the actual Hough
transform of a certain block we have to add an offset to all pixels in that block. This

3.1 Hough Transform

offset is referred to as the global Hough transform (HT (G, 4),G (0,0))) Which is effectively
the Hough transform of the local origin of each block with respect to the global origin
(G(0,0))-

As an example consider point L 7 in the bottom right block in figure 3.3 with
coordinates (6,5). The Hough transform of this point is calculated as follows:

HT(Pe5),Go,0) = HT(L(1,2); L)) + HT(G1,1), G(0,0)) (3.3)

The first summand in equation 3.3 refers to the local Hough transform and can be
found in the lookup table. The second summand is the global offset for all the pixels in
the bottom right block.

0 1 2 3 4 5 6 7

o Go.o G HT(G(1,1),G0,0))
Lo.o Lio.o
N ~
1 Laz Laz
2
. ®
HT(La 2),L0,0))
A G0 Gay
L(O,O) L(O,O)
A ~\
5 Laz Laz
: S,
, HT(Pe.5).Gio.0)

Figure (3.3) Ilustration of the Additive Hough Transform

The benefit of the Additive Hough Transform is the reduced number of computations.
First we have to calculate a block only once and second we need only 7 global Hough
transform values to compute.

3.1.2 Method

In this section we focus on the implementation details of the two Hough transform
algorithms described in section 3.1.1. To explain the program code details we do
not distinguish between the two algorithm variants as they are very similar from an
implementations point of view. Nevertheless we will explain special cases and differences
between them in detail if necessary.

First of all it’s important to see that a sequential implementation of Hough transform
is straight forward as we do not have to care about thread synchronization or race
conditions. However, with a massively parallel architecture such as CUDA we have to
overcome some major difficulties in the implementation of the Hough transform. For
instance, if we look at the voting procedure in a parallel implementation it is very likely

3 Implemented Algorithms

that two threads would like to vote for the same (p, #) cell in the accumulator (parameter
space) at the same time. As a result the access would have to be synchronized, e.g. by
an atomic add operation which unfortunately kills most of the performance gain by using
the GPU. But this was not the only problem that came up during the implementation
process, as we also had problems with too much memory consumption. So we had to find
ways to overcome these problems which we will describe in the following paragraphs.

To get an overview of the code and a mental model of our implementation refer to
figure 3.4. As illustrated we can identify five major steps in our code which will be
discussed in detail on the following pages.

Preprocessing

Thinning

Voting

Bin Size Calculation

Peak Detection

Figure (3.4) Steps of the implemented Hough Transform Algorithm

Theoretically it is possible to compute the Hough transform for any angle of {6 € R |
0 < 6 < 7}. Obviously it is not possible in practice to have an infinite resolution of angle
and thus we have to discretize this value. To decide for an adequate angle resolution
we have to consider the memory consumption. If we chose the angle resolution too high,
we will run into memory shortage pretty fast. Otherwise with a too coarse grained
resolution we may miss some of the lines. Consequently we decided to process every
angle at a resolution of one degree between 0° — 179°, which proved to be a suitable
value.

Preprocessing: In contrast to the Standard Hough Transform where this step to simply
does some memory allocations, the Additive Hough Transform computes the global
and local Hough transform arrays. These arrays act as lookup tables in the upcoming
voting procedure of AHT. The computation of these lookup tables is done as described
on page 8.

As the current NVIDIA graphics devices do not provide more than 64 KB of constant
memory (see [3], ”"Features and Technical Specifications”), it was not possible to place
the local and global lookup tables in constant memory. It would not be possible to

10

3.1 Hough Transform

place the global Hough transform table in constant memory anyway, as the amount of
constant memory has to be defined at compile time and the size of the global Hough
transform table depends on the size of the input image. As a result we had to place these
values in global memory. Because global memory read access is generally slow we had to
find other possibilities to either reduce read access or improve the performance by faster
types of memory. Since lookup tables have only read access we can use texture memory
to cache data reads from global memory, which compensates for the performance loss of
not using constant memory.

Thinning: We already mentioned in the introduction to this section that thread syn-
chronization was not the only problem we had to deal with. Another problem that came
up during the implementation was the amount of memory resources to store the data.
In case of a CPU implementation the main memory is usually not a problem, as there
are normally 2 GB or more available. Unfortunately, this might be a problem in the
field of GPU implementations, as the graphics cards we tested on had between 512 MB
and 1 GB of memory available, which is a limiting factor for our implementation.

To mitigate the memory problems we came up with a solution inspired by the
probabilistic algorithms. When we look at the parameter space after the transformation
we detect high vote counts at the (p,) cells which actually represent the lines in the
original image. The votes on the other cells represent basically just noise. If we now
process only a part of the edge pixels the results would not be much different. We will
still get a strong response on the cells which represent a line, however the signal-to-noise
ratio actually gets smaller.

With this insight our implementation requires an additional parameter which specifies
a thinning factor. This factor allows us to control the amount of pixels to be processed
by the algorithm. The thinning parameter represents the value on how many pixels
should be kept for calculation. A thinning factor of e. g. 1 indicates that every pixel is
processed, where a factor of 2 effects that only every second pixel is kept for calculation.
In other words, a thinning factor of 5 reduces the number of pixels to be processed to
20%. To visualize the impact of this procedure, figure 3.5 displays the different edge
maps of our input image with thinning factor 1 and 5, respectively.

Voting: Generally the voting step includes the transformation of the edge pixels into
parameter space. We consider this process as a voting procedure where each edge pixel
votes for the set of lines passing through it.

In a sequential implementation of the Hough transform the parameter space is built up
directly from the edge map, where each edge pixel is being processed one after another
and transformed into parameter space. If we look at this from a parallel implementations
point of view we tend to do the same, but in parallel with one thread per pixel. This
raises multiple problems:

e As only a small amount of pixels are actually edge pixels we launch a lot of threads
that do no work at all.

e When multiple threads vote for the same line in parallel we get race conditions on
the (p, 0) cells in parameter space.

11

3 Implemented Algorithms

Ty

(a) Edge Map of the Room Image with (b) Edge Map of the Room Image with
Thinning Factor 1 Thinning Factor 5

Figure (3.5) Room Edge Map with Thinning Factor 1 and 5

e If we try to solve the synchronization problems by allocating memory for each
produced vote we immediately run out of memory.

These problems suggest that we have to find another way to build the parameter
space in parallel. To do so, we initially analyze the edge map and safe the coordinates
of the edge pixels (combined with the thinning process as described in the previous
paragraph). All edge pixel coordinates are coded in a one dimensional integer index
given by

fN2 SN, (z,9)—»z+w-y where w is the image width. (3.4)

This mapping allows us to save memory as we have to store just one integer for the
coordinates of an edge pixel instead of two. The actual voting process then consists of
mapping the edge pixel to the cells in parameter space that represent the lines going
through that point. In case of the Standard Hough Transform, we can extract the x
and y coordinates from the linear index by

NS N2 2 (2 mod w, i) where w is the image width, (3.5)
w

and solve equation 3.1 for all 180 angles. This results in 180 votes, one for each possible
line going through the edge pixel at (x,y). In case of the Additive Hough Transform the
result of equation 3.1 is not calculated directly as we already have calculated some parts
of of the result. To get the actual voting coordinate we have to add the global Hough
transform to the local Hough transform of edge pixel (x,y) as described in equation 3.2.

12

3.1 Hough Transform

We get the corresponding global (G) and local (L) = and y indexes by

G:N? = N2, (z,y) (% %) where k is the block dimension,
(3.6)

L:N?> - N? (z,y) — (z mod k,y mod k) where k is the block dimension.
(3.7)

In the introduction to this paragraph we already mentioned the race condition
occurring when multiple threads try to vote for the same (p, 6)-cell at the same time. A
simple solution to this problem would be to synchronize all write accesses to parameter
space during the voting process. Unfortunately this simple solution is not suitable for
a SIMT architecture such as CUDA, as it prevents a parallel execution path of the
threads. To get around the synchronization problem we look at the voting process as the
calculation of a 2D histogram, where the input data are the actual votes. The question
is now, how to compute this histogram as fast as possible. To store the produced votes
from this step we first allocate an array that is suitable in size to have a separate storage
location for all the votes of each thread. Because we already analyzed the edge map and
computed the number of edge pixels in the thinning step we know exactly how much
memory to allocate for all votes.

In the voting process we store the votes the same way as in equation 3.4 and map the
(p,0) indices to a linear index (bin index) by

g:N? 5N, (p,0) — p+n-6 where n is the number of possible p values. (3.8)

In the next paragraph we show how we implemented the histogram calculation and
how we could avoid thread synchronization.

Bin Size Calculation: After storing the histogram data we calculate the bin ((p, 6)-
coordinate) sizes of the 2D histogram. We first sort the votes in increasing order to get
sequences of votes for the same (p, 0)-cell, such as illustrated in figure 3.6. To determine
the length of these sequences we search for the lower bound (start of sequence) and the
upper bound (end of sequence) indices of the same value. From this two indices we can
calculate the bin size (number of votes) by simply subtracting the upper bound index
from the lower bound index.

lower bound upper bound
olojffr {1111 11|33 ([34]5 42142|43
0 1 2 3 4 5 6 7 8 9 10 n n-3 n2 n-1

upper bound - lower bound = sequence size =7-2=5

Figure (3.6) Calculation of Bin Sizes

Now, that we have computed the bin sizes we actually computed the parameter space
without having to synchronize any threads. The last step includes the detection of the

13

3 Implemented Algorithms

highest peaks in parameter space.

Peak Detection: Peak detection can be implemented in many different ways, where
some are very compute intensive and others are not. We decided to not simply threshold
the values in parameter space, moreover we reinforced the criteria for a cell to be
detected as a line. Specifically, we look for local maxima which means a cell value has
to be higher than the given threshold and higher than his neighbors on the top, bottom,
left and right position. This way we can reduce the number of false-positive matches
and increase the exactness of the detected lines.

When thinking about the implementation of this local maxima finder we naturally
think of accessing the pixels in x and y coordinates and equally the neighbors by adding
or subtracting 1 from the x or y coordinate index. Because this mental model perfectly
fits to the concept of 2D texture memory we stored the calculated bin sizes of the
previous step in a 2D texture array. Besides the simplified neighbor access scheme
texture memory provides the benefit of having cached memory access which increases
performance.

3.1.3 Results

In this section, we show the results achieved by the two implementation variants and
discuss them in terms of memory usage and runtime performance. Furthermore we look
for the bottlenecks in our implementations and compare the results with reference CPU
implementations.

Because the GPU runtime measurements have small fluctuations, we took the average
runtime of multiple measurements.

Test Components and Conditions

All our test results are based on the image shown in figure 3.7a and its corresponding
edge map (3.7b). We generate the edge map from the original image by using the Canny
edge detector from the OpenCV library.

We chose this image because its edge map has nice straight lines and the edge detector
produces almost no noise. As we could see from tests with other images the Hough
transform fails when the edge detector produces a lot of very small edge segments as
shown in figure 3.8b. The grass parts in image 3.8a result in many little connected
edge segments that add a lot of noise to the parameter space which then makes it
difficult to distinguish between line or no line for the peak detector. This problem can
be solved by configuring the edge detector with suitable threshold values. However,
in our implementations we used a constant configuration to not further overload our
algorithms parameter list.

Another important factor when testing CUDA algorithms is the underlying hardware.
Before we start discussing our performance results we would like to mention that the
following results stem from tests on a machine with an NVIDIA Quadro FX 3800 as
described in the appendix in table A.2. Earlier tests with an NVIDIA Quadro FX 580
device in a machine described in table A.1 showed that it is essential to have a sufficient
graphics card configuration to achieve enough parallelism and to satisfy the demand

14

3.1 Hough Transform

(a) Input Image as for Hough Transform (b) Edge Map of the Room Image
Tests

Figure (3.7) Room Image and its Edge Map

a) Failin Input Image for Hough Trans- b Edge Map with a lot of Noise
for [ests

Figure (3.8) Example of bad Edge Map

on memory resources. Compared to the Quadro FX 3800 device, the Quadro FX 580
is much cheaper, has six times less GPU cores and holds only half of the amount of
graphics memory. We documented the impact of different graphics card configurations
on our implementations in chapter 4.

15

3 Implemented Algorithms

Edge Pixel Thinning: As already described on page 11 we implemented a thinning
procedure which takes only a certain amount of pixels into account for the calculation
(see figure 3.5). Because a line usually consists of a high number of pixels, its structure
can still be recognized if we process only every fifth pixel. Figure 3.9 shows the output
with a thinning factor of 1 (each pixel was taken for calculation) on the left hand side
in contrast to a thinning factor of 5 (only every fifth pixel was taken for calculation) on
the right hand side.

(b) Result of the Room Image with Thin-

(a) Result of the Room Image with Thin-
ning Factor 1 ning Factor 5

Figure (3.9) Hough Transform Results with Thinning Factor 1 and 5

Even if the results in figure 3.9 seem to be the same, the thinning feature indeed has
an effect to the algorithm. Namely the threshold becomes more sensitive as less edge
pixels are taken for the calculation. Or in other words: A small change in the threshold
value can have dramatic impact to the result when the thinning factor is too high.

Let us explain this statement with the following example: The image 3.7a with a
resolution of 512 x 512 pixels and thinning factor 1 affords 16843 different potential
lines with vote counts between 2 and 271. We generate the best output if we take a
threshold of around 100. By taking a look at the vote counts we notice a difference of
48 votes with counts between 95 and 105. If we play with the threshold in the range of
99 and 101, we will have a total difference of 12 lines in our result.

The same picture processed with thinning factor 5 generates 19015 different lines
with votes between 2 and 53. The best threshold we can take for this configuration lies
somewhere around 23. Now we have a remarkable amount of 305 potential candidates
with vote counts between 18 and 28 and still 90 candidates between 21 and 25 votes.

The situation gets even worse if we increase the thinning factor to 10. In the threshold
range of 13 to 15 we will have a difference of 56 lines which is a clearly visible change as
we can see in figure 3.10.

Finally, we think that the thinning feature is very useful in case of runtime performance

16

3.1 Hough Transform

(a) Result with Thinning (b) Result with Thinning (c) Result with Thinning
Factor 10 and Threshold Factor 10 and Threshold Factor 10 and Threshold
13 14 15

Figure (3.10) Hough Transform Results with Thinning Factor 10 and different Thresh-
olds

and memory consumption, but it has to be used carefully.

Algorithm Output

This section discusses the visual results produced by the algorithm. The visual results
are namely an example of the parameter space and the actual output image with the
detected lines. As the output image was already shown in figure 3.9 we here focus on
the relationship between the output and parameter space.

The parameter space is an intermediate result of the computation and is usually not
directly visible. To visualize the parameter space with its votes and peeks we rendered
two versions in image 3.11a and 3.11b to their corresponding output images in figure
3.9a and 3.9b, respectively. If we ask ourselves how the parameter space is affected by
the thinning factor, we can see in figure 3.11b that the illustration of the parameter
space simply gets darker, as the vote count over the whole parameter space is lower.

The circles in the parameter spaces mark the (p,) coordinates of the detected lines.
To roughly verify these circles we can compare these results with the found lines in the
output image. To simplify this procedure we chose a higher threshold which makes the
comparison more clearly because less lines are detected. In figure 3.12a we can see a lot
of circles at 6 = 0° in the parameter space, which means that the algorithm detected
many vertical lines in our input image. If we check this result with the output image
3.12b we can see the matching vertical lines.

Runtime Measurement of Standard Hough Transform

The goal of the first test scenario is to test our Standard Hough Transform implemen-
tation against the OpenCV implementation. The resulting runtime measurements are
listed in table 3.1.

17

3 Implemented Algorithms

P

(a) Parameter Space to Output Image 3.9a (b) Parameter Space to Output Image 3.9b

Figure (3.11) Parameter Spaces with detected Lines

P
(a) Parameter Space to Output Image 3.12b (b) Result of the Room Image with less
detected Lines

Figure (3.12) Comparison between Parameter Space and Output Image

Algorithm 128 x 256 x 512 x 1024 x 2048 x 4096 x 8192 x
128 256 512 1024 2048 4096 8192
SHT CUDA 6.2 ms 9.8 ms 18.7 ms 496 ms 1068 ms 351.3ms 374.8 ms

SHT CUDA (1) 4.6 ms 6.1 ms 9.2 ms 16.8 ms 43.5 ms 89.8 ms 189.4 ms

SHT OpenCV 3.6 ms 9.6 ms 18.5 ms 552 ms 1354 ms 303.5ms 527.6 ms

Table (3.1) Runtime Example with Standard Hough Transform on the Room Image

18

3.1 Hough Transform

The first series of measurements is a results from processing each edge pixel. The
numbers in the second row are generated by processing only every fifth pixel. Since the
OpenCV implementation has no parameter to reduce the number of processed pixels,
there is only one row of time measurements from the CPU. The data of table 3.1 is
visualized in figure 3.13.

Even if not visible in figure 3.13, table 3.1 shows the typical effect of the graphics device,
which is the slower runtimes on smaller images. Here, the OpenCV implementation is
faster mainly due to the reduced memory transfer overhead, where on the other hand
we can beat the OpenCV Hough transform if we process larger images.

A big enhancement in our implementation is the thinning procedure. If we process
only every fifth pixel we can see that our algorithm performs better than the reference
implementation. As already described in the previous section, one should be careful to
not thin the pixels too much, as the resulting output could suffer from wrong matches. If,
on the other hand the thinning factor and threshold is chosen wise, our implementation
can beat the reference implementation of OpenCV up to a factor of 3.4 with the
4096 x 4096 tests.

SHT CUDA —e—
SHT CUDA (1/5) ——
OpenCV —a—

500 —

400 —

300 —

Time [ms]

200 —

100 —

L — | | | J
s RN S, Y < 7 &,
e&+ %, /ﬂ %, %, %, %9,
> % % "% % "% *s,
g % % %
Image Size

Figure (3.13) Runtime Measurements of the Standard Hough Transform

By taking a look at figure 3.13, we notice a gap between our theory and the actual
curve of the Standard Hough Transform CUDA (SHT CUDA). We can see a sudden rise
in runtime from 2048 x 2048 to 4096 x 4096 instead of an expected steadily increasing
trend. Our measurements showed that this increase originates from the sort algorithm

19

3 Implemented Algorithms

we are using. To sort the vote array we rely on the Thrust implementation [16] which
is based on CUDA Data Parallel Primitives Library (CUDPP) [13]. The CUDPP
implementation uses different optimized sorting implementations based on the input
size, we infer that the underlying CUDPP core switches to another implementation in
this very moment. This assumption will be reinforced by the fact that after the sudden
increase the slope of the curve evens out to a normal level.

A further analysis of the average runtime of the individual algorithm steps showed
that the sorting of the vote array is the bottleneck in our implementation. The runtime
of the sort increases faster in time as most of the other steps do. So, to get even better
performance on larger inputs the sorting step would be the hot spot to care about.

Runtime Measurement of Additive Hough Transform

Now we compare a CPU version of the Additive Hough Transform with our CUDA
implementation. Because we developed this CPU reference on our own, we have the
opportunity to include the thinning step to reduce the amount of data to process, which
allows us to compare the two versions with the same configuration. Notice that these
test scenarios are limited to an image resolution of 4096 x 4096 pixels as we ran out of
GPU memory on larger inputs.

In table 3.2 we summarize the average runtime of the individual measurements. The
tests are based on measurements where each pixel will be processed on the one hand
and a test with a thinning factor of 5 on the other hand.

Algorithm 128 x 128 256 x 256 512 x 512 1024 x 2048 x 4096 x

1024 2048 4096
AHT CUDA 8.1 ms 11.6 ms 24.7 ms 53.11 ms 124.9 ms 418.9 ms
AHT CUDA (1) 6.4 ms 8.1 ms 11.9 ms 26.1 ms 64.8 ms 163.5 ms
AHT CPU 229 ms 60.1 ms 165.9 ms 722.0 ms 2192.0 ms 6011.2 ms
AHT CPU (%) 9.7 ms 21.5 ms 62.5 ms 248.7 ms 842.6 ms 2812.6 ms

Table (3.2) Runtime Example with Additive Hough Transform on the Room Image

The performance measurements of the Additive Hough Transform in this section show
a much larger divergence between the CPU implementation and the CUDA approach.
In contrast to the Standard Hough Transform implementation this algorithm has much
more computational overhead. When the CPU version slows down very fast on an
increasing number of input pixels, the GPU variant does not.

If we analyze the effect of the pixel thinning (dashed lines in figure 3.14) we can
see a much stronger response on the CPU than on the GPU. This shows the higher
computational power of GPU stream processing. Even if we can see the effect on the
GPU as well, especially in figure 3.13 by comparing SHT CUDA and SHT CUDA (1/5),
the impact is not as striking as on the CPU. However, the insight that the GPU reacts
less strongly on increasing input amounts holds only as long as we can keep the card
busy. As soon as we have to synchronize threads or include too much memory transfers,
the GPU curve will rise faster as well.

20

3.1 Hough Transform

6000 |- AHT CUDA —e—

AHT CPU —@—
AHT CUDA (1/5) --@--
AHT CPU (1/5) - -m--

5000 —

4000 —

3000 —

Time [ms]

2000 —

1000 —

o
7.
%,
7.
<

Image Size

Figure (3.14) Runtime Measurements of the Additive Hough Transform

Comparison between SHT and AHT Runtimes

In addition to the previous runtime analysis we can see that the AHT on the GPU
performs worse than its SHT GPU counterpart. The reason for this is that the
computation of the lookup tables and the lookups itself take longer than a direct
computation of the Hough transform. Generally the concept of pre-computation and
lookup is successful in terms of performance optimization. However, in this case with the
computing power of the GPU the direct computation is so fast that the pre-computation
of a reusable lookup table brings no performance gain.

21

3 Implemented Algorithms

3.2 Template Matching

3.2.1 Problem Domain

To describe the following problem domain we use Wilhelm Burgers ”Digital Image
Processing” [2] as an aid.

Humans will be faced with the following main question when they compare two
images: In which case are they the same or at least similar and how can similarity be
measured? The most trivial approach might be to compare each pixel value and, if they
are all the same the images are identical. Unfortunately this kind of definition is far
too simple for practical use because of noise, small changes in lighting or quantization
errors can cause numerical differences of pixel values. Obviously, human perception
can handle this problem and will recognize image similarities even if the previously
described approach would technically fail.

Burger deals with a simpler problem of image comparison in chapter 17 of his book;
in particular, localizing a sub-image (so called "template”) in a lager image. This task
is frequently required to track certain patterns through an image sequence, or to find
patches in stereo images, for example. The basic idea behind template matching is
simple: measure the difference of a template to the current section of the search image
while moving the template over it and record the positions where the highest similarity
is obtained. Unfortunately this is not as simple as it initially sounds. Questions like:
”What are suitable distance measures?”, ” What total difference is required for a match?”
and ”What happens when contrast or brightness of even the image or the template
changes?” have to be considered.

We start with a conceptual overview of the algorithm with help of figure 3.15. The
template image (also known as reference image) R with origin R, s, width wg and height
hr will be shifted over the search image I with origin (0,0), width w; and height h;. To
cover the whole search image I we have to shift the reference image R line by line from
(0,0) to (wy — 7, hy — s), where the distance function d(r,s) is evaluated at each position.
We finally want to find the offset (r,s) where the similarity between the shifted reference
image and the underlying sub-image of I is a maximum.

Now let’s take a look to the problem of localizing a reference image R in a larger image
I, where the template is a snipped of the search image I and therefore the contents of
the reference image R are the same or at least similar to the corresponding sub-image of
1. To successfully solve this task, we have to address several issues such as developing a
good strategy for finding optimal displacements and determining a minimum similarity
value to accept a match. In addition a suitable measurement must be found that is
tolerant enough against contrast and intensity variations.

Distance Measures between Image Patterns

There is a variety of distance measures for two-dimensional intensity images. A carefully
considered selection of an appropriate distance measure is essential to this algorithm, as
it determines the quality of its output. Based on tests with the OpenCV implementation
of template matching we decided to realize our algorithm using the correlation coefficient
distance measure. On the following pages we start with a simple distance measure and

22

3.2 Template Matching

wr
(0,0)
Ro,0
s
WR
r
h Rr,s
hy R
.. (- r - 9
search image I search region

reference image R shifted to (r;s)

Figure (3.15) Conceptual Overview of Template Matching

repeatedly evolve it up to the desired correlation coefficient function. Notice that in
all of the following distance functions (¢,j) € R is a short notation for {(7,j) |0 <i <
wr,0<j<h R}-

The principle of a distance function d(r,s) to compare the reference image R to a
patch in the search image [is always the same: To get the distance value at a certain
position (r,s) we iterate the pixels in I covered by the template R, compare them to
their corresponding pixel in R and sum the resulting distance values up.

A trivial and commonly used distance measure is the sum of the squared differences
also known as Euclidean distance:

dp(rs) = | Y (I(r+is+j) = R(i.j))? (3.9)
(3,5)€ER

The distance measure 3.9 produces satisfying results when the intensity over an image
is constant. On changing light conditions, however, this measure would fail.
Cross Correlation

To find the best matching position between R and I, it is sufficient to find the minimum
of the square of dg, because a minimum in Euclidean distance remains a minimum even
if we square this result. This insight will result in

dy(rs)= > (I(r+is+j)— R(i.j))* (3.10)
(4,5)eR

23

3 Implemented Algorithms

and by expanding equation 3.10, we will receive

dh(rs) = > Plr+is+i)+ > R(ij)—2- Y I(r+is+j)-R(ij). (3.11)
(i,7)ER (i,7)ER (i,7)ER

On closer consideration of equation 3.11 we can see that the second summand is
simply the sum of the squared pixel values of the template image and the first summand
the one of the corresponding sub-image. As a result, only the third summand provides
any information about the correlation of the template image R with the corresponding
sub-image I at the current offset (r,s). This term is called linear cross correlation and
is generally defined as

(IxR)(rs)= > > I(r+is+j)-R(ij). (3.12)

1=—00 j=—00

Since we assume that R and I have zero values outside their boundaries, this is
furthermore equivalent to

wr—1hgp—1

Yo Ir+is+j)-Rg) = Y I(r+is+j)-R(i.j), (3.13)

i=0 =0 (i.j)€R

where wg corresponds to the reference image width and hg to its height, respectively.
As we can see in equation 3.13, this is effectively the same as the third summand in
equation 3.11.

If we assume that the intensity of image I is constant, we can ignore the first summand
of equation 3.11 and interpret it as a constant. In this case, the minimum of d%(r,s)
can be found by calculating the maximum value of the correlation of I x R.

Normalization

Unfortunately, the assumption of a constant intensity of image I holds only for few
images and therefore the results of the cross correlation varies because of intensity
changes. With a normalization we can counteract this effect by considering the ”energy”

in the sub-image and the reference image. The so called normalized cross correlation is
defined as

(i,5)eR

\/@,E P(r+is+j) - \/(%E R2(i.j)

i,j)ER i,j)ER

dn(r,s) = (3.14)

With this calculation the result of dy(r,s) is guaranteed to be in the range of [0,1]
if all values in the reference and search image are positive (which is usually the case).
This has the advantage that the decision about acceptance or rejection of a matching
position can be made with ease by just using a suitable threshold between 0 and 1.
Since the threshold values are between 0 and 1 a value of dy(r,s) = 1 indicates a perfect
match whereas dy(r,s) = 0 means a complete mismatch.

24

3.2 Template Matching

Correlation Coefficient

Even if there is an improvement with the normalized cross correlation (equation 3.14)
in contrast to the cross correlation (equation 3.13) the calculation still has the problem
that the result changes dramatically, when the overall intensity of image I varies.

A solution to overcome this problem is to compare the differences between R and [
with respect to their average values, instead of comparing the original function values.
With this modification we will receive following equation

> (I(r+is+j)—I(rs)) - (R(i.j) — R)

()R
de(r,s) = _ _ (3.15)
¢ > U(r+is+d) 1) | » (Rli) - B
(i,J)ER (1.J)ER
2 ((r+is+j) R(ij) = R Ins R)
- CIeR _ . (3.16)
\/ > <I?<r+z',s+j>—R|‘fzs>-¢z (R(irj) — R)?
(i.J)ER (4,)ER

where |R| is the number of pixels in the reference image and the average values I(r,s)
and R are defined as

- 1

— e O Tr+istd) and R= = 3 R(ij). (3.17)

R
(i,j)ER] (i.J)ER

Equation (3.15) is well known in statistics as the correlation coefficient. In our
case, the correlation coefficient d¢(r,s) describes the piecewise correlation between the
template R and the actual sub-image at offset (r,s) of the search image I. The resulting
values of d¢(r,s) will be in the range of [—1,1] regardless of the contents of R and I. As
before, a value of 1 indicates a perfect match between the compared image patterns,
whereas a maximum mismatch will now result in a value of —1. The value 0 means
there is no correlation between R and I.

If we further analyze equation 3.16 we can find the first part of the nominator already
appeared as the last term in equation 3.11. We then identified this term as the linear
cross correlation between I and R. As the linear cross correlation is basically the same
as the convolution I * R, but without flipping the reference image over the diagonal, the
linear cross correlation and the convolution have very similar properties. Consequently
we can calculate the cross correlation I x R the same way as the convolution, as a simple
point wise complex conjugate multiplication of I and R in the frequency domain. This
can be formulated as

(IxR)(r,s) =F HF(I) F(R)*} (3.18)

where the asterisk indicates the complex conjugate. In the next section we explain
why this mathematical property is interesting to speedup our implementation.

25

3 Implemented Algorithms

3.2.2 Method

To implement the template matching algorithm we followed again the standard scheme
and started with the simplest and most trivial solution we could come up with. Besides
that we used the OpenCV reference implementation as an orientation to help us with
some algorithmic details. As you could expect from this approach, the first implementa-
tion is most likely not the best, however it helped us to get a good understanding of
the difficulties and properties of the algorithm and gave us insights of where to start
optimizing and modifying the implementation to speed it up.

We decided to implement the correlation coefficient version of the template matching
algorithms described in the previous section. Even if the calculation of the correlation
coefficients involves much more computation effort than other methods, it is also much
more robust against intensity changes in the image in contrast to simpler versions.
Accordingly this method is also much more relevant in practice when dealing with
natural images where intensity changes are likely due to changing light.

A trivial Cross Correlation Template Matching Implementation

We started off with a trivial implementation of the template matching algorithm and
identified two major steps: Firstly, we precomputed the constant terms of equation
3.16 followed by the actual distance computation using these constant values. But,
what are the constant values in equation 3.167 Basically it is the second square root
in the denominator which includes the computation of the average reference image
intensity R. This value is also used to calculate the nominator. Both of the two values,
R and the mentioned square root, are only dependent on the reference image and
therefore constant for the computation of all correlation coefficients. The other parts
of the correlation coefficient, especially the ones that are only dependent on the image
I seem to be constant, however, as these values are only constant for the sub-image
I(r+wg,s+hgr) at a certain offset (r,s) with wg and hg being the reference image with
and height, these values are not the same for all correlation coefficients. Due to this, we
included the computation of these values in the second step, the actual computation of
the correlation coefficients. Because each correlation coefficient at a certain position
(r,s) can be computed independently from all the others we compute these values in
parallel. The first part of the CUDA kernel for this trivial implementation is shown in
listing 3.1.

1 __global___

void match_template_kernel (config conf, charx d_img_out, int out_width
, int out_height)

{
int r = blockIdx.x * blockDim.x + threadIdx.x;

) int s = blockIdx.y * blockDim.y + threadIdx.y;

if(r < out_width && s < out_height)
{

unsigned int sum_img = 0;
10 unsigned int sum2_img = 0;
unsigned int sum_img_tmpl = 0;

26

3.2 Template Matching

for(int j = 0; j < conf.tmpl_height; J++) {

for(int i = 0; i < conf.tmpl_width; i++) {
15 unsigned int val_img = tex2D(tex_image, r + i, s + 7J);
unsigned int val_tmpl = tex2D(tex_template, i, 3J);

sum_img += val_img;
sum2_img += val_img * val_img;
20 sum_img_tmpl += val_img x val_tmpl;

VYA
25 }

Listing (3.1) A trivial Template Matching Kernel

Each thread executes the code shown in listing 3.1 and thereby computes:
e sum_img the sum of all pixel values in the current search image patch
e sum2_img the sum of all squared pixel values in the current search image patch

e sum_img_tmpl the cross correlation between the sub-image at offset (r,s) and the
reference image

Identify potential Performance Improvement

An analysis of the trivial approach revealed great potential for performance improvement
in the kernel in listing 3.1. Especially the nested loop to compute the tree variables
sum_img, sum2_img and sum_img_tmpl is proved to be slow. Consequently it would be
best, if we could replace this computation with a more sophisticated approach and get
rid of the whole loop.

Summed Area Tables Considering the execution path of each thread computing a
coefficient in listing 3.1, we can observe that a lot of work is done multiple times.
When a thread iterates over the pixels in the sub-image at offset (r,s) their values are
accumulated to build the integral of the pixel values and of the squared pixel values,
respectively. In this case the thread one to the right, at position (r + 1,s), iterates
basically the same pixels except of column r and column r 4+ 1 + wg. So if we could
simply subtract column r from the results at offset (r,s) and add the values at column
r + 1+ wg, we could calculate the values at the sub-image offset (r + 1, s) given the
values at (r,s) with a small effort. In fact this is almost what we do to eliminate the
computations of sum_img and sum2_img from the loop. Before we call the kernel in
listing 3.1 we compute a so-called Summed Area Table (SAT) or also called integral
image, introduced by [6]. The structure of a SAT is fairly simple as the value at some
point (x,y) in the table is the sum of all the values above and to the left of this position.

27

3 Implemented Algorithms

In figure 3.16 we give an example of how the SAT works: We can get the sum of the
pixels in the gray area in the image on the left by simply reading the four marked values
from the SAT and add them up as described in equation 3.19.

As you can imagine, with this concept we can get a large improvement the template
matching kernel in listing 3.1 as we can pre-compute the whole SAT once and then each
thread does simply four global memory reads and computes the sum of the desired area
instead of iterating all the pixels in the area. Of course this concept works for the sum
of the squared pixel values as well. In this case the sums stored in the SAT are the
accumulated squared pixel values.

With the help of a SAT it is possible to compute the sum of the pixel values in any
rectangular area in an image by sampling the SAT at the four corner pixels of the area.
We can then compute the value for sum_img at a sub-image offset (r,s) in constant time
by

s(r,s) = SAT (u+wg,v+hgr) — SAT (u,v+hg) — SAT (u+wg,w)+ SAT (u,v) (3.19)

where u=r—1and v=s—1.

Image Summed Area Table (SAT)
2 1 5 6 2 3 8 14
0 5 4 4 2 8 17 27
4 4 8 2 6 16 33 45
7 3 1 5 13 26 44 61
5+4+4+4+8+2+3+1+5=36 61-13-14+2=36

Figure (3.16) Computation of a Summed Area Table

Older CUDA architectures do not support double floating point or long integer data
types which means we are limited to the bounds of representable numbers with these
data types with the SAT approach. If we look at the SAT in figure 3.16 we can see
very fast growing values towards the bottom right corner. If the SAT gets larger and
larger we reach the limit of representable integers pretty fast. Specifically the integer
has 32 bits and since we are dealing with intensity images with pixel values between
[0,255] = [0,2% — 1]. Assuming we need 8 bits for the intensities we get the following
equation for the maximum dimensions of a square sized image:

9232
logy(a? - 2%) =32 & a = 4/ o5 Fa= 212 (3.20)

28

3.2 Template Matching

As we can see from equation 3.20 the SAT size, which is equal to the input image
size, should theoretically not be larger then 212 x 212 = 4096 x 4096 pixels. However
because natural images are usually never all white this is only a theoretical value and
the actual image size can be larger in practice. Of course this limitation gets even more
significant for the squared integral image but in this case the use of floating point values
provides an acceptable workaround for the price of lower precision on larger values.

We did not implement the SAT computation ourselves, instead we used the existing
NVIDIA NPP [5] implementation. For a description on how to implement the SAT
computation in CUDA refer to [15], Chapter 39 on Parallel Prefix Sum (Scan) with
CUDA. The NVIDIA NPP implementation uses integers to store the standard SAT and
floating point values for the squared SAT values. As a consequence of the use of the
NPP implementation the image size in our case is, as previously described, theoretically
limited to 4096 x 4096 pixels.

Cross Correlation in the Frequency Domain Unfortunately the computation of the third
variable sum_img_tmpl in listing 3.1 can not be eliminated the same way as the other
two. This means, the nested loop has to remain in the kernel. However with the loop
and the texture fetches still being present the speedup from the previously discussed
summed area tables would be almost zero. Consequently we have to find another way
to produce the same result for sum_img_tmpl but without doing all these iterations.

To the end of section 3.2.1 in the description of the correlation coefficient we mentioned
the possibility to compute the cross correlation by transforming the image and the tem-
plate into frequency domain, followed by a point wise complex conjugate multiplication
and a final inverse transformation. Doing these steps allows us to pre-compute the cross
correlation for all (r,s) offsets of the sub-image and therefore eliminate the nested loop
in the kernel in listing 3.1.

The computation of the cross correlation through frequency domain starts with a
2D discrete Fourier transform. We use the NVIDIA CUDA Fast Fourier Transform
(CUFFT) library [4] to transform image I and the reference image R into frequency
domain. Because the point wise complex conjugate multiplication in frequency domain
works best when I and R are the same size we previously had to pad the reference
image R with zero values. To get the final result of the cross correlation of I and R we
execute an inverse FFT.

With this optimization we eliminated the whole nested loop in 3.1 and the final
matching kernel is now free of any loops. In the next section we discuss the impact of
these optimizations and analyze how the final template matching algorithm performs.

3.2.3 Results

After optimizing the trivial implementation we analyzed the performance of the optimized
version and compared the results with its OpenCV CPU counterpart. Additionally we
wondered weather there is a difference in runtime between using a large template image
and a small one.

29

3 Implemented Algorithms

Test Components and Scenarios

The following runtime measurements are based on the test images shown in figure 3.17.
Image 3.17a is the input image I in which we search for one of the template images
Ry or Ry visualized in figure 3.17b. We have chosen this image because it contains
many similar flowers of different sizes which makes it interesting to observe the effects
of matching a template image that does not perfectly match.

(a) Search Image I (b) Small and Large Reference Images Ry
and Ro

Figure (3.17) Template Matching Search Image and Reference Images

All runtime measurements in this section come from tests on an NVIDIA Quadro
FX3800 card in a machine described in section A.1 in table A.2. In the same way as with
the Hough transform we can observe the scalability of the algorithm implementation on
different graphics devices. The measurements on the smaller card, an NVIDIA Quadro
FX580 in a machine described in table A.1, showed slower results. Nevertheless they
were still much faster then the measured CPU runtimes.

Algorithm Output

In case our implementation works correctly we expect the resulting output image to
indicate the template matches in image I with a bright area at the matching position of
Ry and Rp. The properly place the template image R to the matching position we have
to align its upper left corner to the center of the bright area. Places where the reference
image R does not match perfectly, but still a vast majority of the pixels match, the
location should appear only a bit brighter.

Small Template Image R; We start the test scenarios with the search of the small
template image R; visualized in image 3.17b. Counting the bright points in the output
image 3.18a the algorithm result suggests us to find 11 flowers of the same size and

30

3.2 Template Matching

orientation in search image 3.17a. If we cross-check this statement we can find indeed
exactly these 11 flowers at the bright positions indicated in the output image.

Interesting to notice in output image 3.18a are the two flowers on the middle of the
left border. The response from one of them is remarkably smaller than the signal of the
other bright points. If we search for the reason of this effect we find the answer in input
image 3.17a. The flower with the weak response is partly covered by its neighbours and
therefore does not match petty good. Fortunately the response is still good enough to
produce a visible match.

(a) Output Image with small Template (b) Output Image with large Template

Figure (3.18) Template Matching Output Images with small and large Templates

Large Template Image R2 In the second test we chose a larger template, namely the
template Ry which is also illustrated in image 3.17b. Obviously this template exists
only once in the search image, which is why we expect to receive only one bright point
as result. Unsurprisingly we get the output in image 3.18b with the expected result in
the upper right quadrant.

It is striking that the resulting image 3.18b looks like a blurred picture compared to
image 3.18a. This effect arises from the larger size of the template and its structure,
since there are a lot more values which contribute to the result of a certain pixel. Because
the output value for a pixel is the mean of a larger area the pixel values over the whole
image get averaged.

Runtime Measurements of Template Matching

First of all we would like to determine the runtime differences between using a small
and a large template. While the small template is approximately only 0.6% of size of
the search image I and the large template counts around 17% their runtimes are almost
equal. As we can see in figure 3.19 the difference in the CUDA implementation is so

31

3 Implemented Algorithms

small that the two graphs are almost congruent. We can find the answer to this in two
algorithm parts, specifically the integral image computation of the template and the
actual template matching procedure. On the one hand the computation of the integral
image is very fast with a small template, whereas the template matching part takes
longer. On the other hand, with a large template the situation is the other way round.
Even if the runtime distribution between the two algorithm procedures is different, they
surprisingly both sum up to the same total runtime, as illustrated in table 3.3. The
remaining algorithm parts have only small fluctuations because they depend mostly on
the size of the search image.

Algorithm: TM CUDA (Image Size 1024 x 1024) small template large template

(76 x 76) (413 x 413)
Integral Image Procedure 0.9 ms 1.9 ms
Template Matching Procedure 3.2 ms 2.1 ms
Total 4.1 ms 40 ms

Table (3.3) Runtimes of Template Matching Parts

To conclude, it is generally unimportant in case of our CUDA implementation, weather
we use a large template image or a small one, as the total runtime is approximately the
same.

In contrast to the previous discussion, the measurements of the OpenCV implementa-
tion showed a stronger response in runtime on varying template sizes. If we count the
steps to check the template against each offset (r,s) in the search image, we recognize
that the algorithm needs to do more individual steps to complete with a smaller template.
Even if the amount of calculations is higher on large templates, the CPU implementation
is faster at that. Here we assume that the larger amount of individual iterations with
smaller templates has a negative effect on the runtime.

By comparing the CUDA implementation with the OpenCV reference, we can see
remarkably good results. As illustrated in figure 3.19 the graphs of the two implementa-
tions begin to drift apart rapidly when the image size rises. Again the benefit of the
higher GPU computing power is evident when more data can be processed. To receive
an impression how much faster the CUDA implementation is, we consider the runtime
measurements in table 3.4 where we notice an performance gain of factor 31!

Algorithm 128 x 256 x 512 x 1024 x 2048 x 4096 x

128 256 512 1024 2048 4096
TM CUDA (small) 2.3 ms 3.1ms 5.8 ms 14.3 ms 51.8 ms 201.9 ms
TM OpenCV (small) 6.1 ms 17.2 ms 84.8 ms 285.0 ms 14253 ms 6263.1 ms
TM CUDA (large) 2.1ms 29 ms 5.6 ms 14.5 ms 52.0 ms 203.1 ms
TM OpenCV (large) 5.6 ms 15.7 ms 61.4 ms 273.7ms 1268.8 ms 5584.7 ms

Table (3.4) Template Matching Runtimes with small and large Templates

32

3.2 Template Matching

TM CUDA (small) —e—
5000 - TMOpenCV, (small) ——

TM CUDA, (large) --@-~-
TM OpenCV, (large) --H--
5000 [—

4000 —

Time [ms]

3000 —

2000 —

1000 —

~
&
+
19

Image Size

Figure (3.19) Runtime Measurements of Template Matching

Numeric Stability of Template Matching Implementation

Generally NVIDIA GPUs with CUDA compute capability 1.2 and lower do not support
double precision floating point operations. Consequently all produced device code using
double precision, is forced to use single precision on these older architectures. The
limitation to single precision also influenced our implementations as we used an NVIDIA
Quadro FX 580 device with compute capability 1.1. to test our algorithms.

In the paragraph about summed area tables on page 27 we discussed the numeric
limitations of the SAT approach. When the table becomes too large, the values to
the bottom right are likely to be bigger, then the representable numbers with a 32 bit
integer. To solve this problem, we switched to single precision floating point values with
the price of less precision.

In the context of our template matching algorithm the reduced accuracy of the
floating point computations gets visible in numeric artifacts in the output image as
shown in figure 3.20b. The limited numeric stability of single precision computations
affects the result of our algorithm in the evaluation of the correlation coefficient with
equation 3.16. If we do not do anything against these errors, the output image would
contain false-positive matches. To counteract these artifacts we introduced some tricks
in the template matching kernel to increase the stability and reduce the number of
false-positives inspired by the OpenCV implementation. Specifically we check the
plausibility of the data at neuralgic places and introduced fault tolerances in some

33

3 Implemented Algorithms

computations. In case the algorithm detects values that make no sense, they are set a
defined value, that does not affect the result negatively.

Rs

H o

(a) Search Image with marked Template (b) Output Image with numerical Arti-
R3 facts

Figure (3.20) Template Matching with Test Image to visualize numerical Artifacts
An alternative to overcome the problems numeric stability causes, is to use double

precision floating point values. However, devices with hardware support for double
precision floating point numbers are not yet widespread.

34

4 Conclusions

In this chapter we summarize our most important insights we gained during this work.
In general we can formulate the following main statements, where most of them are
related to the implementation of algorithms in CUDA.

o Asymtotic Behaviour: Even if the graphs of our performance measurements look
very nice, they deceive in their perception. When examining the curves in figure
3.19, one might think the CUDA implementation has almost linear runtime,
which it has not. If we take a look at the CPU and GPU runtime measurements
independently, we can see that the graphs of the CUDA implementations have
similar progression in time as the CPU code. In fact, both implementations have
exponential runtime behavior. We illustrate this insight by plotting the same
curves in figure 3.19 but this time with a logarithmic scale of the time axis.

10000 —
[TMCUDA —e—
[TM OpenCV —i—

1000 -

Time [ms] (logarithmic scale)

Image Size

Figure (4.1) CPU and CUDA Runtime with logarithmic Scale

The logarithmic scale allows us to easily recognize a nearly linear progression of
both curves in figure 4.1 and a roughly constant offset between the CPU and the
GPU curve. With these observations we can verify that both implementations run
in exponential time and accordingly their limiting behavior has to be the same.

35

4 Conclusions

We observe that the parallelization of some algorithm actually does not change
the O notation of the algorithm itself, unless we implement it in a completely
different way. To illustrate this fact consider the following example: Instead of
executing some steps five times repeatedly a complete parallelization of this part
results in a speedup of a factor of five. However the factor five is not relevant
in an asymptotic analysis and hence the O notation remains unchanged when
parallelizing. With CUDA we distribute the computation to multiple processors
that compute in parallel and hence the asymptotic behavior remains unchanged
as well, just the time the curve starts to increase heavily gets shifted to larger
input sizes.

The O notation of some CPU algorithm ported to the GPU remains unchanged
unless we find a complete new attempt to implement it.

Scalability: 1t was nice to see how our algorithms performed better, only by
changing the underlying hardware. The algorithms scaled to better hardware and
made use of the increased number of resources, without changing anything in our
implementations.

In fact we could compare the runtime performance of our algorithms on two
different graphics cards which basically differed in the amount of global memory
and multiprocessors. Not only we could work with images that had four times
more pixel data with just twice the amount of memory, but also the computations
where automatically scattered to more available GPU cores. This resulted into an
enlarged parallelism and an enormous performance gain.

TM CUDA, NVIDIA Quadro FX 3800 —@—

TM CUDA, NVIDIA Quadro FX 580 —ill—
200 —

Time [ms]

100 —

2|0

S5 P
.

> 3
+ - F v %

% 7)
2 2 %,

@
Q
£

Image Size

Figure (4.2) Scalable CUDA Implementations on different Graphics Devices

In figure 4.2 we illustrate of how an algorithm scales to better hardware. The
graphs in this figure show the runtime measurements of the template matching
algorithm executed on the NVIDIA Quadro FX 580 and the NVIDIA Qudaro FX
3800, respectively. As we realized that CUDA implementations usually are nicely
scalable, it is important to always indicate the graphics card model with runtime
measurements, otherwise they are meaningless.

It is essential to have a sufficient graphics card configuration to achieve enough
parallelism in CUDA applications.

Intermediate Data Overhead: When mapping data structures from CPU imple-
mentations to a ?CUDA-suitable” format we often generated intermediate data
that affected the memory consumption negatively. This means, that sometimes
we introduced helper arrays with meta data. The problem with this data is that
they additionally stress memory consumption and therefore can limit the variety
of possible implementations.

Meta data affect memory consumption negatively. Because this intermediate data
cannot be avoided, it is important to keep their overhead small.

Memory Limitations: Memory limitations were one of the most serious problems
we had to deal with. When implementing our algorithms we repeatedly encountered
problems with not having enough memory. It was sometimes not easy to find
ways to reduce the memory usage and required a lot of effort to come up with
appropriate new solutions. The most simple solution to overcome memory issues is
to replace the graphics device with another larger GPU with more main memory.
Obviously it makes no sense to simply buy a better graphics device to get an
application to work when the application code itself has a bad design. Even with
a high performance GPU it is important to produce high quality code which
carefully uses the provided resources.

In CUDA implementations we sometimes have to deal with memory shortage. To
counteract this problem programmers have to mind about good code design.

Low-cost vs. High-end Graphics Cards: With reference to the previous points
Scalability and Memory Limitations we can say that a higher cost graphics card
is definitively a worthwhile investment. Higher-priced cards in general have more
resources to satisfy the demand on memory and computing power. While it was
hard to beat the OpenCV implementation of Hough transform with the Quadro FX
580, the same algorithm on an NVIDIA Quadro FX 3800 surpassed the OpenCV
Hough transform with ease.

Buying a high-end computing solution does not mean that you have to spend a
lot of money. Todays high-end graphics devices cost a few thousand swiss francs,
which is still cheap compared to a compute cluster with an equal amount of cores.
Accordingly graphics devices have a much better cost-performance ratio.

Spending a bit more money in a better graphics device is a worthwhile investment
because high-end GPUs provide much more computing power.

37

4 Conclusions

e Optimization: It should be avoided to try to implement an algorithm with a lot
of optimizations from scratch. The best way from our experience to get well
performing CUDA implementations can be described as follows:

1. Start with a simple implementation and get it to work.

2. Measure the runtime to get an overview where your algorithm spends most
of the time.

3. Optimize the algorithm on the basis of the previously collected data
4. Tterate steps 2 and 3 until the the runtime performance becomes satisfying.

In case it is difficult to improve the performance after several iterations, it might
be a solution to think of a completely different approach.

Do not try to implement an optimized algorithm from scratch, without have a
working implementation yet. Start with a simple solution and try to improve it.

38

Appendix A

Development Environment Setup

A.1 Hardware and Software Tools

Table A.1, A.2 and Table A.3 summarize the hardware and software tools we used
for the development of this term project. We tested our algorithms on two different
machines with different CPU’s and different graphics devices.

A.1.1 Hardware

Low-cost Machine

Tool Description

Processor Intel Xeon CPU X3450, 8 x 2.67 GHz

Memory 8192 MB

Graphics Device NVIDIA Quadro FX 580 - 32 CUDA Cores - 512 MB Memory - Compute
Capability 1.1

Table (A.1) Low-cost Project Hardware

High-end Machine

Tool Description

Processor Intel Xeon CPU Eb520, 8 x 2.27 GHz

Memory 4096 MB

Graphics Device NVIDIA Quadro FX 3800 - 192 CUDA Cores - 1024 MB Memory -

Compute Capability 1.3

Table (A.2) High-end Project Hardware

39

Appendix A Development Environment Setup

A.1.2 Software

Tool Description

Operating System Ubuntu 10.10 - 64-bit

CUDA Driver Version 4.0

CUDA Runtime Version 4.0

Build System CMake 2.8

Development Environment Eclipse CDT (Helios)

Libraries OpenCV, CUFFT, Thrust, NVIDIA NPP, CUDA Utility Library (cutil)

Table (A.3) Project Software

Writing CUDA code is basically programming C. Therefore we used the basic Eclipse
CDT development environment with some small adjustments to support the build
process and readability of the source code. To build our programs we used the CMake
build system which made a good job on a ”one-click” build process.

A.2 Setup CUDA

The simplest way to setup the CUDA development tools is to just follow the "NVIDA
CUDA C Getting Started Guide” for the desired platform. This guide is available from
the NVIDIA Developer Zone (http://developer.nvidia.com).

Note that in case you are working on hardware that has a built-in graphics chip and
a dedicated graphics chip (in our case a MacBook Pro with a built-in Intel graphics
chip and a external NVIDIA graphics processor) you may have to force the device to
use the NVIDIA hardware to be able to run your programs. If a CUDA program is
executed and the hardware is not running on a CUDA capable device one might get an
error such as

cudaGetDeviceCount FAILED CUDA Driver and Runtime version may be mismatched

In this situation you have to force your hardware to switch to the NVIDIA capable
device before you run the program.

If you are on a Mac you can install a nice free tool called ”gfxCardStatus” (http:
//codykrieger.com/gfxCardStatus/) which indicates you with a little icon on
which chip one is working and helps you to easily force your Mac to use the NVIDIA
chip.

A.3 Setup Eclipse CDT with CMake and CUDA

This section describes how to setup and configure the Eclipse installation to work with
the build system CMake to build the CUDA programs.

40

http://developer.nvidia.com
http://codykrieger.com/gfxCardStatus/
http://codykrieger.com/gfxCardStatus/

A.3 Setup Eclipse CDT with CMake and CUDA

A.3.1 Add File Type .cu

Because Eclipse does not know the extension .cu you may configure Eclipse to treat
these files as C or C++ source files. To do so do the following steps:

1. go to Window — Preferences

open C/C++ — File Types dialog

click New...

then write as Pattern: «.cu and select Type: C+4 Source File
finish the dialog with OK

A el o

Now all the .cu files should have code highlighting. The only thing that is not
recognized by Eclipse are the kernel launches with the triple brackets (<<<...>>>).
Repeat these steps if you would like to have highlighting for .cun files as well. In this
case select as type C++ Header File.

A.3.2 Setup CMake and CMake Configuration in Eclipse

We assume that you have already downloaded and installed CMake on your system and
you are aware of the concepts of CMake. Install the CMakeEd plugin for Eclipse (http:
//cmakeed.sourceforge.net) which supports you when editing CMakeLists files
with code highlighting and code completion. Note, the following documentation lists
just the parts of the CMake files needed to compile CUDA code, the complete files
however can be found in the provided source material.

First of all, we check for the module FindCUDA.cmake (see listing A.1). This module
should come with your CMake installation as a standard module.

1 # find cuda
IF (INCLUDE_CUDA)
FIND_ PACKAGE (CUDA)

5 IF (CUDA_FOUND)
MESSAGE ("CUDA has been found")
ELSE (CUDA_FOUND)
MESSAGE (FATAL_ERROR "CUDA could not be found")
ENDIF (CUDA_FOUND)
10 | ENDIF (INCLUDE_CUDA)

Listing (A.1) Check for Find CUDA.cmake

Tell CMake to build a CUDA program by setting the compile instruction as shown in
listing A.2, the link instruction is as usual.

1 CUDA_ADD_EXECUTABLE (${EXE_NAME} ${source} ${main})
TARGET_LINK LIBRARIES (S{EXE_NAME} S${LIBS})

Listing (A.2) CMake CUDA Executable

41

http://cmakeed.sourceforge.net
http://cmakeed.sourceforge.net

Appendix A Development Environment Setup

These are the only special commands used to instruct CMake to build a CUDA
program, nevertheless the FindCUDA module provides a lot more variables and options
to customize the build and set NVCC compiler flags. All these variables can be found
on the web in the official CMake documentation.

Now that we have covered the special CMake commands we have to configure the
Eclipse project properties to work best with CMake. Follow the steps below to set up
Eclipse with CMake.

1.

start a new project with
C++ Projekt — Makefile project — Empty Project

. create a build folder for out-of-source builds in the project root

File — New — Folder — Folder Name: build

. adjust the project properties

Project — Properties — C/C++ Build
e set the Build location to the just created build folder
e uncheck Generate Makefiles automatically
e click OK to finish

. edit the make targets On the right side of the editor window there should be a

tab called Make Targets. Click this tab and select your project, then right click
and select New...

e set the target name to cmake
e uncheck Same as the target name and Use builder settings
e delete the text in the field Make target

e write in Build command the text cmake .. (you have the possibility to set
additional CMake command line arguments right after cmake)

. Now you can start coding. Before you start the first build and after every change

on the CMakeLists files you have to double click the cmake target created in the
previous step. Afterwards compile your project as usual with the compile button.

42

Bibliography

1]
2]

[11]

[12]

[13]

Tobias Binna and Markus Hofmann.
Massive parallel image processing, 2010.

Wilhelm Burger and Mark James Burge.
Digital Image Processing, An Algorithmic Introduction using Java.
Springer Science + Business Media, LLC, 2008.

NVIDIA Corporation.
NVIDIA CUDA C Programming Guide, 4.0 edition, March 2011.

NVIDIA Corporation.
NVIDIA CUFFT Library User Guide, February 2011.

NVIDIA Corporation.
NVIDIA Performance Primitives Library User Guide, 4.0 edition, February 2011.

Franklin C. Crow.

Summed-area tables for texture mapping.

SIGGRAPH Comput. Graph., 1984.

Richard O. Duda and Peter E. Hart.

Use of the hough transformation to detect lines and curves in pictures.
Commun. ACM, 15:11-15, January 1972.

C. Galambos, J. Matas, and J. Kittler.
Progressive probabilistic hough transform for line detection.
1999.

G. Gerig.
Linking image-space and accumulator-space.
page 113, 1987.

B. Giesler, R. Graf, and R. Dillmann.
Fast mapping using the log-hough transformation.
1998.

Paul V. C. Hough.
Method and means for recognizing complex patterns.
Patent, December 1962.

H. Kélviainen, P. Hirnoven, L. Xu, and Oja E.
Probabilistic and non-probabilistic hough transforms.
Image and Vision Computing, 13(4):239 — 252, May 1995.
Cuda Data Parallel Primitives Library.
http://code.google.com/p/cudpp/.

page last visited, June 2011.

43

http://code.google.com/p/cudpp/

Bibliography

[14]

[15]

OpenCV Library.
http://opencv.willowgarage.com/wiki/.
page last visited, June 2011.

Hubert Nguyen.
GPU Gems 3.
Addison-Wesley Professional, 2007.

Thrust project.
http://code.google.com/p/thrust/.
page last visited, May 2011.

S. Suchitra Sathyanarayana, R.K. Satzoda, and T. Srikanthan.
Exploiting inherent parallelisms for accelerating linear hough transform.
IEEE Transactions on Image Processing, 18(10):2255 — 2264, October 2009.

Canny Wikipedia.
http://en.wikipedia.org/wiki/Canny_edge_detector.
page last visited, June 2011.

L. Xu and Oja E.
Randomized hough transform.
Encyclopedia of Artifacial Intelligence, pages 1354 — 1361, 2009.

44

http://opencv.willowgarage.com/wiki/
http://code.google.com/p/thrust/
http://en.wikipedia.org/wiki/Canny_edge_detector

	Contents
	1 Management Summary
	1.1 Introduction
	1.2 Approach
	1.3 Results

	2 Technical Introduction
	2.1 Problem Domain
	2.2 Image Processing Algorithms
	2.3 Implementing Algorithms with CUDA

	3 Implemented Algorithms
	3.1 Hough Transform
	3.1.1 Problem Domain
	Implemented Variants
	Standard Hough Transform
	Additive Hough Transform

	3.1.2 Method
	3.1.3 Results
	Test Components and Conditions
	Algorithm Output
	Runtime Measurement of Standard Hough Transform
	Runtime Measurement of Additive Hough Transform
	Comparison between SHT and AHT Runtimes

	3.2 Template Matching
	3.2.1 Problem Domain
	Distance Measures between Image Patterns
	Cross Correlation
	Normalization
	Correlation Coefficient

	3.2.2 Method
	A trivial Cross Correlation Template Matching Implementation
	Identify potential Performance Improvement

	3.2.3 Results
	Test Components and Scenarios
	Algorithm Output
	Runtime Measurements of Template Matching
	Numeric Stability of Template Matching Implementation

	4 Conclusions
	A Development Environment Setup
	A.1 Hardware and Software Tools
	A.1.1 Hardware
	Low-cost Machine
	High-end Machine

	A.1.2 Software

	A.2 Setup CUDA
	A.3 Setup Eclipse CDT with CMake and CUDA
	A.3.1 Add File Type .cu
	A.3.2 Setup CMake and CMake Configuration in Eclipse

	Bibliography

