
HSR – University of Applied Sciences Rapperswil

Institute for Software

Bachelor Thesis

namespactor

CDT Namespace
Refactoring Plug-in

metriculator speed-up
CDT metric Plug-in

Ueli Kunz, ukunz@hsr.ch
Julius Weder, jweder@hsr.ch

http://sinv-56013.edu.hsr.ch

Supervised by Prof. Dr. Luc Bläser

June 15, 2012

ukunz@hsr.ch
jweder@hsr.ch
http://sinv-56013.edu.hsr.ch

Abstract

This bachelor thesis consists of two sub parts. The main part is about developing a
namespace refactoring tool called namespactor. The other part dedicates to the further
development of the metriculator plug-in that was initiated in our semester thesis at the
IFS [ifs12]. Both projects are plug-ins for the Eclipse C/C++ Development Tooling
Platform (CDT, [CDT11]).

namespactor

C++ allows to introduce names into program scopes by way of "using directives" and
"using declarations", such that symbols can be referred to without their qualified name.
However, the manual changing of names and the switching between their qualified and
unqualified representation is error prone and time consuming. Therefore, we have devel-
oped namespactor, a new automated C++ refactoring tool for names and namespaces
for Eclipse CDT. Modern integrated development environments (IDE) commonly pro-
vide some refactoring features, such as the features of namespactor.

namespactor offers a set of common and effective namespace refactoring functions, such
as switching between qualified and unqualified naming, introducing and moving "us-
ing delarations" or "using directives" and more. namespactor is realized with the Eclipse
Language Toolkit (LTK), the API for integrating automated refactorings in Eclipse IDE.

There is currently no similar refactoring tool publicly available for the programming
language C++. The following refactorings are implemented in namespactor:

• Inline Using Directive: Removes a using directive and qualifies the affected names.

• Inline Using Declaration: Removes a using declaration and qualifies the occurrences
of the affected name.

• Qualify an Unqualified Name: Fully qualifies an unqualified name with all required
names.

• Extract Using Directive: Introduces a using directive for a qualified name and
removes the name qualifier(s) of the affected qualified names.

• Extract Using Declaration: Introduces a using declaration for a qualified name and
removes the name qualifiers(s) on the occurrences of the affected qualified name.

i

metriculator speed-up

The further development of metriculator mainly aimed to improve the performance of
the static code analysis. At the end of the semester thesis metriculator lacked in releas-
ing allocated memory. Various design changes allowed us to improve the algorithm for
calculating the metric values and to constantly release memory.

After the improvements, metriculator performs the analysis up to four times faster and
the memory allocation is reduced by 75%. It is now possible to analyse projects with
about one million physical source lines of code in less than one minute.

June 15, 2012 ii

Management Summary

This chapter summarises the goals and outcomes of the namespactor project and gives
a preview on what might be possible in the future. The section "Illustrated Example"
demonstrates the use of namespactor based a sample scenario.
The last section summarises the results of the metriculator speed-up project.

Initial Situation

Refactoring is a disciplined technique for restructuring an existing body of code, altering
its internal structure without changing its external behaviour [Fow]. C++ allows to
allows to semantically and logically group names. A name nested within such a group
must be qualified if used from outside. Thus, working in an environment with nested
names automatically means more typing effort. More work raises the chance of manually
introduced errors to the code. namespactor will automate frequently required steps when
working with names in C++ by providing different kinds of refactorings. For now, there
is no similar tool publicly available for the Eclipse C/C++ Tooling Platform (CDT,
[cod11]) or any other C++ integrated development environment (IDE).

Procedure and Technologies

namespactor is a plug-in for CDT, which is itself a plug-in for Eclipse. CDT is a well
known platform to develop C/C++ software, which provides an infrastructure called
LTK (Language Toolkit, [ltk06]) to create refactorings.
Given a name as input, a namespactor refactoring changes all referencing names in the
code base. The kind of changes applied depend on the chosen refactoring and input
name.
A smaller part of namespactor relies on the static code analysis framework Codan [cod11].
namespactor analyses the source code in a background process and reports potential
problems related to names. For each reported problem, namespactor suggests to apply
one or more refactorings that will solve the problem.

Results

namespactor features the following refactorings:

• Inline Using Directive: Removes a using directive and qualifies the affected names.

iv

• Inline Using Declaration: Removes a using declaration and qualifies the occurrences
of the affected name.

• Qualify an Unqualified Name: Fully qualifies an unqualified name with all required
names.

• Extract Using Directive: Introduces a using directive for a qualified name and
removes the name qualifier(s) of the affected qualified names.

• Extract Using Declaration: Introduces a using declaration for a qualified name and
removes the name qualifiers(s) on the occurrences of the affected qualified name.

namespactor is available as Eclipse plug-in and can be installed from within Eclipse
using the install wizard. After installation, the namespactor refactorings are available
within the Eclipse refactoring window menu. The Codan checkers of namespactor run as
background processes and continuously analyse the source code for potential program-
ming problems. Reported problems can automatically be solved by executing one of the
suggested problem resolutions, which will start one of the namespactor refactorings.

Illustrated Example

This section outlines the usage of namespactor based on an illustrative scenario.

The example code in figure 0.1 illustrates how even in a small piece of code bad things
can happen. This code prints a sentence to the console output and uses a library called
"answers.h" to calculate an answer.
First of all, it is bad practice to write using directives before #include directives [Sut02].
This could lead to side effects in the included header file. It is also best practice to keep
using directives as local as possible, which definitely the global scope is not.
namespactor detects the using directive that is placed before the last #include directive
and reports a problem. The suggested quick fix is either to move it after the #include
directive or to inline it.

Figure 0.1.: Example of bad source code.

Applying the quick fix "Move using after last #include" moves the using directive after
the last #include directive. Applying the quick fix "Inline using" initiates the inline using
directive refactoring that removes the using directive and qualifies the affected function
call "calculateAnswer()" with the name "A" as illustrated in figure 0.2.

June 15, 2012 v

Figure 0.2.: Source code after the inline using directive refactoring was performed. The
refactoring was initiated by a quick fix.

In this situation it is maybe desirable to introduce the namespace "A" inside the function
"main". This namespace provides other useful functions and I do not want to always write
the qualified name to access them. Selecting the function call "A::calculateAnswer()" as
illustrated in figure 0.2, allows me to apply the extract using directive refactoring via the
corresponding Eclipse refactoring window menu. This refactoring results in the source
code illustrated in figure 0.3.

Figure 0.3.: Source code after the extract using directive refactoring was performed. The
refactoring was initiated by the corresponding Eclipse refactoring window
menu.

The extracted using directive now affects only names in the scope of the function main.
Hence, inside the function "main", it is still possible to benefit from the introduced
namespace "A".

The result of steps shown above is a clean and unproblematic source code, achieved by
using the simple and intuitive features of namespactor.

Future Work

For now, namespactor is a useful and powerful plug-in that accelerates and simplifies
working with names. There are still some issues left open. Since namespactor was
developed only within eleven weeks, it could still profit from further improvements. It
would also help to get some feedback from experienced C++ developers to ensure that
this plug-in can prove itself in real world projects.

June 15, 2012 vi

Metriculator Speed-up

At the end of the preceding semester thesis [met11b] metriculator did not perform well
on projects with more than about 300’000 physical source lines of code (PSLOC). At
some point metriculator run out of memory and crashed.
The aim was to improve the performance, enabling metriculator to analyse 1 mio.
PSLOC in less than 3 minutes.

The performance improvements gained during this bachelor thesis are well observable in
figure 0.4. metriculator now runs up to four times faster than before, by acquiring only
75% of the amount of memory. The analysis of 1 mio. PSLOC is processed in less than
one minute, compared to the initial situation were metriculator run out of memory and
finally crashed.

metriculator was already published at the Eclipse marketplace and was downloaded
over 40 times in the first month since the release [met12]. It performs now very well,
even with large projects. Further metrics would increase the value of metriculator, see
the metriculator documentation [met11b] to read more about interesting metrics.

Figure 0.4.: Memory allocation before (blue) and after (green) the performance improve-
ments analysing 1 mio. PSLOC. Horizontal axes: time in seconds. Vertical
axes: allocated memory in mega bytes.

June 15, 2012 vii

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Project Duration . 1
1.3. About this Document . 1

2. Objectives 3
2.1. Common . 3
2.2. namespactor . 3
2.3. metriculator . 8
2.4. Agreement . 9

3. Namespactor 10
3.1. Analysis . 10

3.1.1. User Stories - Inline Refactoring 10
3.1.2. User Stories - Extract Refactoring 11
3.1.3. Inline Refactorings . 11
3.1.4. Extract Refactoring . 22

3.2. Namespace Refactorings . 31
3.2.1. Inline Using Directive (IUDIR) . 31
3.2.2. Inline Using Declaration (IUDEC) 31
3.2.3. Qualify an Unqualified Name (QUN) 32
3.2.4. Extract Using Directive Refactoring (EUDIR) 32
3.2.5. Extract Using Declaration Refactoring (EUDEC) 33

3.3. Implementation . 33
3.3.1. Plug-in Architecture . 34
3.3.2. Refactoring User Interface - Language Toolkit (LTK) 35
3.3.3. Static Code Analysis with Codan 36
3.3.4. Building Names . 39
3.3.5. Name Lookup Algorithm . 40
3.3.6. Inline Refactorings . 43
3.3.7. Extract Refactorings . 51

3.4. Open Issues . 59
3.4.1. Qualify Names Defined Outside of the Workspace - #273 59
3.4.2. Nested Using Directives within Namespace Definitions - #269 . . . 59
3.4.3. Finding Implicit Operator Calls - #270 59
3.4.4. Qualifying Template Method Definitions - #271 60
3.4.5. Missing Line Break after last Affected Node - #238 60
3.4.6. Creating Fully Qualified Names - #249 61
3.4.7. Using Declaration with Generic Template Argument - #239 61
3.4.8. Inherited Type Name cannot be Replaced - #231 62

ix

Contents Contents

3.5. Future Improvements . 63
3.5.1. Implement Hybrid Lookup in IUDEC and QUN 63
3.5.2. Detect Name Conflicts . 63
3.5.3. Start IUDIR on Any Name . 63
3.5.4. Extract Using Declaration Into a Type Declaration - #265 63
3.5.5. Extension for the Refactoring Qualify an Unqualified Name - #265 65

3.6. Conclusion . 66

4. Metriculator 67
4.1. Requirements . 67

4.1.1. Performance . 67
4.1.2. Tag Cloud - Dealing with Large Data Input 68
4.1.3. Composite Update Site . 68

4.2. Performance . 68
4.2.1. Performance Measurement - Comparison Before and After the Im-

provements . 68
4.2.2. Performance Improvements . 72
4.2.3. Open Issues . 74

4.3. Tag Cloud - Dealing with Large Data Input 75
4.4. Composite Update Site . 75
4.5. Design Changes . 76

4.5.1. Tag Cloud Extraction . 76
4.5.2. NodeInfo Refactoring . 77

4.6. Further Improvements . 83
4.6.1. GUI Guidelines . 83
4.6.2. Minor Bug Fixing . 84

4.7. Unit Testing . 84
4.7.1. Codan Test Infrastructure . 85
4.7.2. Checker Tests . 85
4.7.3. Indexer Based Tests . 86

A. Environment Set up 89
A.1. Hardware . 89
A.2. Project Management Software . 89
A.3. Version Control System, Git . 89
A.4. Development Environment . 89
A.5. Build and Deployment Automation . 90

A.5.1. Maven XML Configuration . 90
A.6. Testing Eclipse CDT Refactoring Plug-ins 90

A.6.1. CDTTesting Framework . 90
A.7. AST Rewrite Store . 94
A.8. DOM AST View . 94

B. Terminology 96

C. CDTTesting Plug-in Set up 97
C.1. Quick Start . 97
C.2. Set up for Refactoring Tests . 97

June 15, 2012 x

Contents Contents

D. IUDIR Refactoring - Indexer Implementation 99
D.1. Finding References Recursively . 101
D.2. Open Issues . 103

D.2.1. Qualification of Implicit Operator Call 103

E. User Manual 106
E.1. Example of a Refactoring - Inline Using Directive 106
E.2. Refactorings in namespactor . 107
E.3. Run a Refactoring . 107
E.4. Quick Fixes . 108

E.4.1. Problem Resolutions (Quick Fixes) 109

F. Project Management 110
F.1. Project Plan . 110
F.2. Time Schedules . 111
F.3. Personal Impression . 112

F.3.1. Ueli Kunz . 112
F.3.2. Julius Weder . 113

G. Nomenclature 118

You don’t understand anything until you learn it more than one way.

Marvin Minsky

June 15, 2012 xi

1. Introduction

This project consists of two sub projects. One is the further development of the metric-
ulator plug-in [met11a]. The other sub project is the main task of this thesis. The topic
is about developing a namespace refactoring tool for the programming language C++.
The tool integrates as plug-in into the Eclipse CDT (C/C++ Development Tooling)
platform [CDT11].

Refactoring is a process in software development to increase the quality of source code
without changing its functionality. Refactoring facilitate certain steps in the process of
creating or maintaining source code. It reduces the complexity of the source code and
therefore the need of time consuming error analysis [Ref11].
Many IDEs (integrated development environment) provide tools to automate refactoring
steps. Appropriately using these tools allows to efficiently apply refactorings and gain
high quality source code. Refactoring tools also eliminate the risk of a fault introduced
by human doing the same change manually many times.

There is no comparable namespace refactoring tool available for Eclipse CDT or any
other C++ IDE.

1.1. Motivation

We intend to improve the quality of the Eclipse CDT platform as it will help other
developers to create better software. Our namespace refactoring tool helps to deal with
namespace directives and declarations. We give our best to implement a highly useful
refactoring that is easy to use and integrates well into the Eclipse CDT.

1.2. Project Duration

This bachelor thesis starts on February 20th and has to be finished until June 15th,
2012.

1.3. About this Document

Since this bachelor thesis covers two sub projects, namespactor and metriculator, each
of it has its own chapter in this document. The chapters are ordered by their weight.
Although we started working on the metriculator project, the namespactor chapter 3

1

1. Introduction About this Document

precedes the metriculator chapter 4. The Appendix and Conclusion as well as the Man-
agement Summary, Introduction and Objectives apply to both sub projects and are not
part of the division.
Regarding heading capitalisation rules, we follow the MLA style [mla08].

June 15, 2012 2

2. Objectives

This chapter defines the topic of this bachelor thesis. The following definition of the
objectives is divided into three sub sections. The first sub section commonly applies
to this thesis. The second and third sub section define goals for each of the two sub
projects.

2.1. Common

Project Organisation The project is organised in fixed one-week iterations. Redmine
[red11] is used for planning, time tracking, issue tracking and as information radi-
ator for the advisor and supervisor. A project documentation is written during the
project. Organisation and results are reviewed weekly together with the advisor
and supervisor.

Integration and Automation Sitting in front of a fresh Eclipse CDT installation a first
semester student can install our namespace refactoring plug-in. An update site is
created to allow the installation of namespactor using the Eclipse install wizard as
long as namespactor is not integrated into the CDT plug-in.

Quality The plug-in code is covered with automated test cases. Automated UI tests are
not mandatory. Automated tests are created for the commands triggered by the
UI.

Delivered Assets At the end, the project will be handed to the supervisor with two
CDs and two paper versions of the documentation. The CDs contain: this project
report, a poster explaining namespactor, the source codes of both plug-ins and the
deployable plug-ins.

2.2. namespactor

namespactor is a namespace refactoring tool for the programming language C++. The
tool is available as plug-in for the Eclipse CDT platform. The main purpose is to provide
a tool that automates inline and extract operations on names. Such operations are often
repetitive and may lead to faulty code if done by hand.
The supported operations are explained in detail in the following descriptions:

Inline Namespace This functionality inlines name specifier(s) referenced in a using di-
rective. The using directive will be removed and the affected unqualified names
in the source code will be expanded by the name specifier(s) of the removed using
directive as illustrated in listing 2.1.

3

2. Objectives namespactor

namespace A{
int a();

}

/* before the inline refactoring */

void doIt (){
using namespace A;
a();

}

/* after the inline refactoring */

void doIt (){
A::a();

}

Listing 2.1: Code snippet illustrating the inline refactoring with a using directive.

This functionality can also be achieved with using declarations as illustrated in
listing 2.2.

namespace A{
int a();

}

/* before the inline refactoring */

void doIt (){
using A::a;
a();

}

/* after the inline refactoring */

void doIt (){
A::a();

}

Listing 2.2: Code snippet illustrating the inline refactoring with a using
declaration.

Extract Namespace This functionality removes occurrences of name specifier(s) in the
source code and introduces the required namespace with a using directive as illus-
trated in listing 2.3.

June 15, 2012 4

2. Objectives namespactor

namespace A{
int a();

}

/* before the extract refactoring */

void doIt (){
A::a();

}

/* after the extract refactoring */

void doIt (){
using namespace A;
a();

}

Listing 2.3: Code snippet illustrating the extract refactoring with a using directive.

This functionality can also be achieved with using declarations, by introducing the
qualified name with a using declaration as illustrated in listing 2.4.

namespace A{
int a();

}

/* before the extract refactoring */

void doIt (){
A::a();

}

/* after the extract refactoring */

void doIt (){
using A::a;
a();

}

Listing 2.4: Code snippet illustrating the extract refactoring with a using
declaration.

Remove Unused Using (Optional) Using directives/declarations that are not required
in the source code will be removed as illustrated in listing 2.5.

June 15, 2012 5

2. Objectives namespactor

/* begin of file */
include <iostream >
using namespace std;

namespace A{
int a();

}
int main (){

using namespace A; // never used
cout << " Hello " << endl;

return 0;
}
/* end of file */

Listing 2.5: Code snippet illustrating the meaning of an unused using.

Remove Needless Nested-Name-Specifier (Optional) Removes name specifier(s) if they
are redundant because the symbol is already available through a using direc-
tive/declaration. Listing 2.6 illustrates a case where needless name specifier(s)
are used.

using namespace A;
cout << hello () << endl;
cout << A:: hello () << endl; // needless qualified name

cout << B:: hello2 () << endl; // ok

Listing 2.6: Code snippet using a needless name specifier.

Force Qualified Name in a Using Directive (Optional) Make unqualified-ids in using
directives qualified. If nested using directives are spread over a file, it could be
difficult to see which namespace is nested in an other namespace, especially in big
source files. The refactoring also helps to prevent name conflicts.
Listing 2.7 shows an example with qualified names in using directives. Further
details are shown in the refactoring analysis in section 3.1.

June 15, 2012 6

2. Objectives namespactor

namespace A {
namespace B {

namespace C{
}

}
}
using namespace A;
using namespace B; // before refactoring
// using namespace A::B; // after refactoring
using namespace C; // before refactoring
// using namespace A::B::C; // after refactoring

Listing 2.7: Code snippet illustrating the effect of the force qualified name in a
using directive refactoring.

June 15, 2012 7

2. Objectives metriculator

2.3. metriculator

At the end of the semester thesis, in which metriculator was initiated, some issues were
left open to be fixed in future releases. In this bachelor thesis, we address the most
important open issues.

Bug Fixing The issues listed below are referenced with the issue number of our Redmine
project [met11a]:

• Composite update site not working (#177)

• Logical merging of function definitions and declarations within anonymous
namespaces does not work (#166)

• Tag cloud throws exception on big input (#176)

Increase Performance metriculator does still not perform very well when analysing large
projects. Large means more than 200’000 LSLOC (Logical Source Lines of Code).
We are going to address this issue in this bachelor thesis with the aim to make
metriculator also a valuable tool for large projects. See the requirements section
4.1.1 where we define how the performance is measured.

Commit Plug-in to CDT We are strongly encouraged to make metriculator officially
available to other developers. Therefore, we introduce metriculator to the CDT
community with the aim to commit it to an upcoming release.

Further Metric (Optional) To make metriculator even more valuable, we plan to im-
plement further metrics.

• Number of Usings in Header Files: Measures the number of using di-
rectives in header files. Since placing using directives in header files is bad
practice [Sut00], metriculator may suggest a quickfix to inline the using di-
rectives with the inline refactoring of namespactor, see section 2.2.

• Number of Function Calls using ADL: If the name of a function cannot
be resolved in its lexical context, the compiler tries to find the function in the
namespaces of its arguments [Str09, paragraph 8.2.6]. This feature is known
as ADL (argument-dependent lookup or argument-dependent name lookup).
Reading source code with unqualified function calls may be confusing and lead
to semantic problems [Sut]. Therefore, metriculator may suggest a quickfix to
qualify the unqualified name of the function call. The refactoring is illustrated
in Listing 2.8.

June 15, 2012 8

2. Objectives Agreement

namespace Time {
class Date {};
std :: string format (const Date &);

}
void f(Time :: Date d, int i){

/* before refactoring - refactoring candidate is format (d) */
std :: string s = format (d); // implicitly resolved to Time :: format ()
std :: string t = format (i); // Error : format cannot be resolved

/* after refactoring */
std :: string s = Time :: format (d); // explicitly call Time :: format ()
std :: string t = format (i); // Error : format cannot be resolved

}

Listing 2.8: Code snippet showing an implicitly resolved name of a function
call with ADL and the result after the inline refactoring was
applied.

2.4. Agreement

The following contracting parties agree upon the objectives of this bachelor thesis de-
scribed in the Objectives chapter (2).

Place, Date:

Dr. Prof. Luc Bläser, Signature:

Ueli Kunz, Signature:

Julius Weder, Signature:

June 15, 2012 9

3. Namespactor

This chapter contains information that relate to the second phase but the main task of
this thesis. This is the development of a namespace refactoring plug-in called names-
pactor. See section 2.2 in chapter Objectives for a brief explanation of the purpose and
motivation behind namespactor.
This chapter starts with the analysis section 3.1 of the inline and extract refactorings.
Section 3.2 defines the refactorings based on the findings during the analysis. The high
and low level software design of the namespactor plug-in is outlined in section 3.3.1 fol-
lowed by section 3.3 which describes the implementation details.
Appendix B defines the terminology for this chapter.

3.1. Analysis

This section examines namespactor from different perspective. Starting from a users
perspective we define the user stories. Based on that, the inline and extract refactorings,
introduced in chapter 2.2, are investigated in detail. We look at different approaches
on how to apply the refactorings regarding to various aspects such as nesting levels and
scope of application.

3.1.1. User Stories - Inline Refactoring

A user can trigger the inline refactoring from different types of locations in the source
code. He may want to inline a using directive or using declaration, or he may want to
qualify an unqualified name. This leads to three sub types of the inline refactoring.

Remove a Using Directive A user wants to remove a using directive. The user marks
the using directive and runs the inline refactoring of namespactor. The refactoring
expands the affected unqualified names in the source code with the required name
specifier(s).

Remove a Using Declaration A user wants to remove a using declaration. The user
marks the using declaration and runs the inline refactoring of namespactor. The
refactoring expands the affected unqualified names in the source code with the
required name specifier(s).

Qualify an Unqualified Name A user wants that an unqualified name gets qualified.
The user marks the unqualified name to be qualified and runs the inline refactoring
of namespactor. The refactoring expands the affected unqualified name with the
required name specifier(s).

10

3. Namespactor Analysis

3.1.2. User Stories - Extract Refactoring

A user can trigger the extract refactoring from different types of locations in the source
code. He may want to introduce a using directive or a using declaration by selecting a
qualified name. This leads to two sub types of the extract refactoring.

Introduce a Using Directive A user wants to introduce a namespace of a qualified name
with a using directive. The user marks the qualified name and runs the extract
refactoring of namespactor. The refactoring extracts the name specifier(s) into a
using directive.

Introduce a Using Declaration A user wants to introduce a local synonym of a qualified
name with a using declaration. The user marks the qualified name and runs the
extract refactoring of namespactor. The refactoring extracts the name-specifier(s)
into a using declaration.

3.1.3. Inline Refactorings

This section describes the purposes and examines the aspects of the inline refactorings.

3.1.3.1. Inline Using Directive

A using directive introduces names from a namespace, so the names are available without
qualification. Using directives in the global namespace should better be avoided, it
is rather a tool for a transitional solution [Str09, paragraph 8.2.3]. Using directives
facilitate the reading and writing of source code. Sometimes it would be helpful or
necessary to remove a using directive, that was inserted during a transitional phase for
instance. If a using directive is removed, the unqualified names affected by the using
directive need to be qualified. This could be a lot of work, if it has to be done by hand.
The inline refactoring automatically expands the affected names with the required name
specifier(s).
As already mentioned, using directives in the global scope should be avoided. Therefore,
the inline refactoring can be applied to remove a using directive. In a further refactoring
step it could be desirable to introduce the previously inlined namespace or another
namespace in a more local scope. To introduce a namespace, the extract refactoring can
be applied 3.1.4.

3.1.3.2. Inline Using Declaration

With a using declaration it is possible to determine the scope of application for a name.
The using declaration creates a local synonym. Usually it is a good idea to keep the
local synonyms as local as possible to avoid confusion [Str09, paragraph 8.2.2]. To avoid
this confusion, it could be helpful to remove a using declaration. If a using declaration
is removed, all occurrences of the affected unqualified name need to be qualified. The
inline refactoring automatically expands all occurrences of the unqualified name with
the required name specifier(s).

June 15, 2012 11

3. Namespactor Analysis

If one or more namespaces are introduced with a using directive, a using declaration
can be used to create a local synonym to prevent name conflicts, see extract refactoring
3.1.4 and listing 3.1 for more details. The using declaration reduces typing efforts and
therefore typing errors. After the using declaration is in place, the inline refactoring can
be applied to qualify all occurrences of the unqualified name, introduced by the using
declaration. These two steps result in a source code without name conflicts.

3.1.3.3. Qualify an Unqualified Name

An unqualified name in a source code, that should be qualified because of clarity for
instance, can be qualified with the inline refactoring. Qualifying a name is not just about
simply qualifying this name, maybe it is also desired that all occurrences of other names
from the same namespace are qualified. If all names from a namespace are qualified, the
corresponding using directive could be removed or could be placed in another scope, for
instance in another file of the translation unit [cpp11, paragraph 2.1.1].
The same applies to the using declarations as well, where all occurrences of a name are
qualified so that the using declaration could be removed or could be placed in another
scope.
The listings 3.1, 3.2, 3.3, 3.4 illustrate the different approaches of the inline refactoring
by qualifying an unqualified name.

void doIt (){
using namespace A;
f1 (); // apply inline refactoring here
if(true){

f2 ();
}
f3 ();

}

Listing 3.1: Foundation for the snippets 3.2, 3.3, 3.4 related to the inline refactoring by
qualifying an unqualified name.

// 1st approach - only the chosen name is qualified
using namespace A;
A:: f1 ();
if(true){

f2 ();
}
f3 ();

Listing 3.2: First approach of the inline refactoring by qualifying an unqualified name.

June 15, 2012 12

3. Namespactor Analysis

// all occurrences of names from the same namespace are qualified
using namespace A;
A:: f1 ();
if(true){

A:: f2 ();
}
A:: f3 ();

Listing 3.3: Second approach of the inline refactoring by qualifying an unqualified name.

// same as 2nd approach + removing the " using namespace A" directive
A:: f1 ();
if(true){

A:: f2 ();
}
A:: f3 ();

}

Listing 3.4: Third approach of the inline refactoring by qualifying an unqualified name.

3.1.3.4. Examination of General Aspects

Following paragraphs describe aspects that apply generally to the inline refactorings.

3.1.3.4.1. Nested Namespaces Using nested namespaces is common for practical
reasons as well as constructs can simply be nested where it makes sense [Sut02]. Names-
paces are used to encapsulate names, in which case namespaces are preferred to classes.
Encapsulating names can also help providing better readability.
There are different aspects to consider when applying the inline refactoring with respect
to nested namespaces. The refactoring can be applied to the enclosing namespace or to
a node that is in a nested namespace.
The listings 3.5, 3.6, 3.7 illustrate approaches of the inline refactoring applied to the
enclosing namespace. The listing 3.8, 3.9, 3.10, 3.11 illustrate three approaches of the
inline refactoring applied to the nested namespace.

3.1.3.4.2. Inline Name from an Enclosing Namespace Two approaches are shown.
The first approach in listing 3.6 qualifies all names with the required namespace A. The
second approach in listing 3.7 inlines the namespace A and its nested namespace B. The
second approach could also be achieved by applying the inline refactoring as described in
the first approach and than applying it again on the function b() or the using namespace
A::B directive.

June 15, 2012 13

3. Namespactor Analysis

namespace A{
int a();
namespace B{

int b();
}

}

void doIt (){
using namespace A;
using namespace B;
a(); // apply inline refactoring here
b();

Listing 3.5: Foundation for the snippets 3.6, 3.7 illustrating the inline refactoring with
respect to nested namespaces.

// 1st approach - inline namespace A
using namespace A::B; // qualify B with A
A::a(); // qualify a() with A
b(); // b is known

Listing 3.6: First approach of the inline refactoring with respect to nested namespaces.

// 2nd approach - inline namespaces A and B
A::a();
A::B::b();

Listing 3.7: Third approach of the inline refactoring with respect to nested namespaces.

3.1.3.4.3. Inline Name from a Nested Namespace The first approach in listing
3.9 qualifies the function b() with the required namespace B and removes the using di-
rective for the namespace B. The second approach in listing 3.10 inlines the namespace
B and its enclosing namespace A. All names of these two namespaces are now quali-
fied. The second approach can also be achieved by first applying the inline refactoring
as described in the first approach and then by applying it again on function b() or
function a(). The third approach in listing 3.11 qualifies function b() with the required
namespaces and removes the using directive for namespace B.

June 15, 2012 14

3. Namespactor Analysis

namespace A{
int a();
namespace B{

int b();
}

}

void doIt (){
using namespace A;
using namespace B;
a();
b(); // apply inline refactoring here

Listing 3.8: Foundation for the snippets 3.9, 3.10, 3.11 illustrating the inline refactoring
with respect to nested namespaces.

// 1st approach - inline namespace B
using namespace A;
a(); // a() is known
B::b(); // qualify b() with B

Listing 3.9: First approach of the inline refactoring with respect to nested namespaces.

// 2nd approach - inline namespaces A and B
A::a();
A::B::b();

Listing 3.10: Second approach of the inline refactoring with respect to nested
namespaces.

// 3rd approach - qualify b()
using namespace A;
a();
A::B::b();

Listing 3.11: Third approach of the inline refactoring with respect to nested namespaces.

3.1.3.4.4. Nested Using Directives Using directives can be placed inside of a
namespace definition. Therefore, if a namespace is introduced with a using directive,
other namespaces may be introduced transitively.
The listings 3.12 and 3.13, 3.14 illustrate cases of using directives nested in namespace
definitions with its impact to the inline refactoring.

June 15, 2012 15

3. Namespactor Analysis

Applying the inline refactoring to the function call a() qualifies it with A. If the in-
line refactoring would have been applied to the function call b(), the results looks very
similar. The function call b() would have been qualified with B. Qualifying an unquali-
fied name does not affect other names but the one the refactoring was initiated from.

But based on listing 3.12, we could also want to inline the using namespace B direc-
tive. In this case a transitive inline refactoring is required. Such a refactoring is required
if the namespace to be inlined inlines another namespace. This is the case in listing 3.12,
where namespace B has a using directive for the namespace A. This means that inside
of the function doIt() all names from namespace A and B are known.
When inlining the using directive B, the directive is removed and the function call b() is
qualified with B. Now, the function call a() cannot be resolved. When removing a using
directive it is also necessary to recursively lookup for nested using directives inside of
its target namespace. Therefore, the function call a() has to be qualified with A. The
result of this transitive inline refactoring is shown in listing 3.14.

namespace A{
int a();

}
namespace B{

using namespace A;
int b(){

return a();
}

}
void doIt (){

using namespace B; // also introduces namespace A
a(); // apply inline refactoring here
b();

}

Listing 3.12: Foundation for the listing 3.13 illustrating the result of the inline refactoring
with respect to nested using directives.

June 15, 2012 16

3. Namespactor Analysis

namespace A{
int a(); // untouched

}
namespace B{

using namespace A;
int b(){

return a();
}

}
void doIt (){

using namespace B;
A::a(); // qualify a() with A
b();

}

Listing 3.13: Result of the inline refactoring with respect to nested using directives.

namespace A{
int a(); // untouched

}
namespace B{ // untouched

using namespace A;
int b(){

return a();
}

}
void doIt (){ // using namespace B removed

A::a(); // qualify a() with A, transitive dependency
B::b(); // qualify b() with B

}

Listing 3.14: Result of the inline refactoring with respect to nested using directives.

3.1.3.4.5. Multiple Inheritance In contrast to using directives, using declarations
can be placed in composite type scopes (class or struct). This feature gets especially
relevant, if inheritance is in place. A using declaration can than be used to avoid am-
biguous names.
Listing 3.15 shows the foundation for a inline using declaration refactoring with multiple
inheritance. It contains four structs, where the last struct (AB) inherits from two structs
A and B. The struct A further inherits from struct U. In this example we examine the
inlining of the using declaration ’using A::f’ in struct AB.
The problem is that without this using declaration, the function call ab.f(1) in the main
method would be ambiguous. Because, without the using declaration, the function call
can not be resolved to an exact match (f(int)). Without the using declaration, the func-
tion A::f(int) is not visible from within the main method. Instead, the compiler tries to
find other possible matches by implicitly converting the parameter. The implicit targets
are B::f(double) and AB::f(char). Since two targets are found the function call is am-
biguous.
As a result, the inline using declaration refactoring has to qualify function calls that

June 15, 2012 17

3. Namespactor Analysis

reference a function that was introduced by the using declaration to be inlined (in this
case ’using A::f’). The result of the refactoring is shown in listing 3.16.

struct U {
int f(int i);
char f(char c);

};
struct A : public U {

int f(int i){}
// shadow U::f(char)
char f(char c);

};
struct B {

double f(double d) {}
};
struct AB : public A, public B {

// make A::f(int) and A::f(char) accessible from outside ,
// references are ab.f(1) , ab.f(’a ’);
using A::f; // apply inline refactoring here
// make B::f(double) accessible from outside
using B::f;
// hide A::f(char) (only if ’using A::f’ in place)
char f(char c){}

};
int main (){

AB ab;
// A::f(int) exact match , without ’using A::f’ => ambiguous ,
// because multiple implicit conversions exist (B::f(double), AB ::f(char)).
// Declarations are: A::f(int) => qualify
ab.f(1);
// AB ::f(char) exact match . Declarations are: AB ::f(char), A::f(char)
// => no need to qualify , since the definition AB ::f(char) is called
ab.f(’a’);
// B::f(double) exact match , without ’using B::f’ => ambiguous ,
// because multiple implicit conversions exist (A::f(int),
// A::f(char), AB ::f(char))
ab.f (3.14);

}

Listing 3.15: Str.]Foundation to analyse multiple inheritance issues related to the inline
using declaration refactoring. The code of this listing is based on [Str09,
Page 419].

struct AB : public A, public B {
// using declaration removed
using B::f;
char f(char c){}

};
int main (){

AB ab;
ab.A::f(1); // qualify f with A
ab.f(’a’);
ab.f (3.14);

}

Listing 3.16: Result of the inline using declaration refactoring based on listing 3.15.

June 15, 2012 18

3. Namespactor Analysis

3.1.3.4.6. Scopes An important aspect by applying the inline refactoring is in which
scope the refactoring takes place. There are different approaches, as illustrated in the
listings 3.17, 3.18, 3.19, 3.19.
The first approach qualifies all the names in the same scope including the inner scope(s).
The second approach qualifies all the names in the same scope and pushes down the re-
moved using directive into the inner scope(s). By applying this approach, it is possible
that the using directive is introduced in several inner scopes. The third approach re-
moves all the equivalent using directives in the chosen scope, in this case the file scope.
Therefore, all names of this namespace have to be qualified. Other scopes available to
choose could be file, translation unit, namespace, folder and project.

namespace A{
int a();

}

void doIt(bool is){
if(is){

using namespace A; // apply inline refactoring here
a();
if(true){

a();
}

}
using namespace A;
a();

}

Listing 3.17: Foundation for the listings 3.19, 3.19 illustrating the approaches of the
inline refactoring with respect to the scope it applies to.

// 1st approach
void doIt(bool is){

if(is){
A::a(); // qualify here
if(true){

A::a(); // qualify here
}

}
using namespace A;
a();

}

Listing 3.18: Result of the inline refactoring with respect to the scopes it applies to.

June 15, 2012 19

3. Namespactor Analysis

// 2nd approach
void doIt(bool is){

if(is){
A::a(); // qualify here
if(true){
using namespace A;

a();
}

}
using namespace A;
a();

}

Listing 3.19: Result of the inline refactoring with respect to the scopes it applies to.

// 3rd approach
void doIt(bool is){

if(is){
A::a(); // qualify here
if(true){

A::a(); // qualify here
}

}
A::a(); // qualify here

}

Listing 3.20: Result of the inline refactoring with respect to the scopes it applies to.

Another special case, which was also mentioned as bad practice, is if there are using
directives in an include file (*.h) [Sut02, Item 40]. If an implementation file (*.cpp)
includes such a header file it implicitly introduces the names already introduced by
using directive(s) in the header file. The inline refactoring could also have impacts to
other files in the translation unit than the file where the refactoring was initiated from. A
simple example is illustrated in the listings 3.21, 3.22, 3.23. The example works also for
using declarations. Considering there is a using declaration instead of a using directive,
the result of the inline refactoring is similar.

June 15, 2012 20

3. Namespactor Analysis

/* MyExample .h */
include " Other .h" // contains namespace A with a function a()
using namespace A; // apply inline refactoring here (option 1)
int hello (); // normal function declaration

/* MyExample .cpp */
include " MyExample .h"

void doIt (){
hello ();
a(); // apply inline refactoring here (option 2)

}

Listing 3.21: Foundation code snippet to illustrate the impact of an inline refactoring
across multiple files. Listings 3.22, 3.23 show the results. Considering there
is a function declaration a() in the namespace A inside the Other.h header
file, the refactoring qualifies the method call a() with the namespace name
A. This applies for both options, 1 and 2. Option 1 additionally removes
the using namespace A directive.

/* after refactoring option 1 */

/* MyExample .h */
include " Other .h"
// using directive removed

/* MyExample .cpp */
void doIt (){

hello ();
A::a(); // qualify here

}

Listing 3.22: Result of the inline refactoring over multiple files, option 1.

/* after refactoring option 2 */

/* MyExample .cpp */
void doIt (){

hello ();
A::a(); // qualify here

}

Listing 3.23: Result of the inline refactoring over multiple files, option 2.

The inline refactoring could also be initiated from another file than illustrated in listing
3.21. The chosen scope of the refactoring could be the translation unit for instance. The
refactoring has to look up in the whole translation unit which namespaces are introduced
and based on it qualify the names.

June 15, 2012 21

3. Namespactor Analysis

Another approach is to move the using directive to the implementation file. It is also
possible that other files include the header file with the using directive in it, even other
header files. The aim could than be to move the using directive until it is no longer in
a header file.

3.1.4. Extract Refactoring

This section describes the purposes and examines the aspects of the extract refactorings.

3.1.4.1. Introduce a Using Directive

Introducing names with a using directive often reduces typing effort but you have to pay
attention with using directives. Introducing using directives can cause name conflicts.
It is also bad practice to write using directives in header files or before include directives
[Sut02, Item 40]. Therefore, introducing a using directive with the extract refactoring
should be considered carefully, especially in which scope it takes place. To avoid name
conflicts, it is probably the best to keep the using directives as local as possible.

3.1.4.2. Introduce a Using Declaration

Creating a local synonym with a using declaration, which brings in specific and selected
names, often reduces typing effort. It is not like a using directive that introduces all
names of a namespace. Using declarations follow the same guidelines as using directives,
that is to keep the using declarations as local as possible and to not write them in header
files or before include directives [Sut02, Item 40].
Another purpose to introduce a local synonym with a using declaration is to avoid
name conflicts. If, for instance, two functions with the same signature are valid and its
desirable to use always only one of them in a chosen scope. Listing 3.24 illustrates the
effect of an extract refactoring that creates a using directive.

void doIt (){
// before
using namespace A; // has a function f()
using namespace B; // has a function f()
cout << f(); // f is ambiguous (name conflict), apply refactoring here

// after
using namespace A;
using namespace B;
using A::f; // introduced using declaration to avoid name conflicts
cout << f(); // equal to A::f()

}

Listing 3.24: Code snippet illustrating the priority of a using declaration over a using
directive. It helps to prevent name conflicts. Consider both namespaces
(A and B) have a function f().

June 15, 2012 22

3. Namespactor Analysis

3.1.4.3. Examination of Common Aspects

The following paragraphs describe aspects that generally apply to the extract refactor-
ings.

3.1.4.3.1. Nested Namespaces There are different approaches how the extract refac-
toring is applied if nested namespaces are involved. These are illustrated in the listings
3.25, 3.26, 3.27, 3.28.
The first approach applies the refactoring on the foremost name specifier(s). It removes
all occurrences of the chosen name specifier(s) to be removed and introduces the name(s)
with the appropriate using directive. The second approach removes all occurrences of
the name specifier(s) by introducing the name(s) with the appropriate using directive.
The third approach is an improved variant of the second approach. It introduces the
namespaces of each name specifier of the qualified name with the appropriate using
directive and removes all occurrences of name specifier(s) that are no longer required.

namespace A{
int a();
namespace B{

int b();
}

}
void doIt (){

A::B::b(); // apply extract refactoring here

Listing 3.25: Foundation for the listing 1,2,3 illustrating the extract refactoring with
respect to nested namespaces and using directives.

// 1st approach
using namespace A;
B::b();

Listing 3.26: First approach of the extract refactoring with respect to nested namespaces
and using directives.

// 2nd approach
using namespace A::B;
b();

Listing 3.27: Second approach of the extract refactoring with respect to nested names-
paces and using directives.

June 15, 2012 23

3. Namespactor Analysis

// 3rd approach
using namespace A;
using namespace B;
b();

}

Listing 3.28: Third approach of the extract refactoring with respect to nested names-
paces and using directives.

Applying the extract refactoring with a using declaration reveals a simpler approach
than with using directives as illustrated in listing 3.29.

namespace A{
int a();
namespace B{

int b();
}

}
void doIt (){

/* before the refactoring */
A::B::b(); // apply extract refactoring here

/* after the refactoring */
using A::B::b;
b();

}

Listing 3.29: Extract refactoring with respect to nested namespaces and using
declarations.

3.1.4.3.2. Scope of Application An important aspect when applying the extract
refactoring is where, or rather in which scope the refactoring takes place. There are
different approaches as illustrated in the listings 3.30, 3.31, 3.32, 3.33.
The first approach introduces the namespace with a using directive and removes all
occurrences of the name specifier(s) in the same scope (not in inner scopes). The sec-
ond approach also introduces the namespace and removes all occurrences of the name
specifier(s) in the same scope and its inner scopes. The third approach removes all
occurrences of the name specifier(s) in the whole file.

June 15, 2012 24

3. Namespactor Analysis

namespace A{
int a();

}
void doIt (){

A::a();
if(true){

A::a(); // apply refactoring here
while (true){

A::a();
}

} else {
A::a();

}

Listing 3.30: Foundation for the listings 3.31, 3.32, 3.33 illustrating an extract refactoring
with respect to the scope it applies to.

// 1st approach
A::a();
if(true){

using namespace A;
a(); // extract name here
while (true){

A::a();
}

} else {
A::a();

}

Listing 3.31: First approach of the extract refactoring with respect to the scope it applies
to.

// 2nd approach
A::a();
if(true){

using namespace A;
a(); // extract name here
while (true){

a(); // extract name here
}

} else {
A::a();

}

Listing 3.32: Second approach of the extract refactoring with respect to the scope it
applies to.

June 15, 2012 25

3. Namespactor Analysis

// 3rd approach
using namespace A;
a(); // extract name here
if(true){

a();
while (true){

a(); // extract name here
}

} else {
a(); // extract name here

}
}

Listing 3.33: Third approach of the extract refactoring with respect to the scope it ap-
plies to.

3.1.4.3.3. Scope - Special Case Composite Type Neither using declarations nor
using directives can be placed inside class or struct definitions, except using declaration
nominating members of base types of the enclosing type declarations 3.1.4.3.4. This
is especially important to be aware of, if an extract refactoring is applied on the type
name of a member variable declaration. In such a case the using declaration or directive
cannot be placed in the same scope as the refactoring was initiated from.

3.1.4.3.4. Scope - Inside Type Declaration In contrast to using directives, using
declarations can be placed in composite type scopes (class or struct). This feature gets
especially relevant, if (multiple) inheritance is in place. A using declaration can than be
used to avoid ambiguous names.
It is possible to place a using declaration in the scope of a type declaration if the last
name of a qualified name is a type member of a base type of the type declaration.
This case is illustrated in listing 3.34. Listing 3.35 illustrates the result of the extract
refactoring.

namespace A{
struct S1{

struct S1_1 {};
};

}
struct AB : A:: S1{

void f1(A:: S1 :: S1_1); // apply extract refactoring here
};

Listing 3.34: Foundation of listing 3.35 illustrating the extract refactoring inside a type
declaration. The type S1_1 is a member of the type S1 and S1 is a base
type of the type AB which defines the scope of the refactoring.

June 15, 2012 26

3. Namespactor Analysis

namespace A{
struct S1{

struct S1_1 {};
};

}
struct AB : A:: S1 {

using A:: S1 :: S1_1;
void f1(S1_1);

};

Listing 3.35: Result of the extract refactoring inside a type declaration scope.

3.1.4.3.5. Scope - Name Hiding and Conflicts Another issue related to scopes
is that extracting name qualifiers can lead to semantic errors. Listing 3.36 and 3.37
illustrate such a case.

namespace A{
int var = 0;

}
int main (){

int var = 0;
A:: var = 0; // apply extract refactoring here
return 0;

}

Listing 3.36: Foundation of listing 3.37 illustrating a name conflict introduced by an
extract refactoring.

namespace A{
int var = 0;

}
int main (){

int var = 0;
using namespace A;
var = 0; // removed A, binding changed to the declaration inside main
return 0;

}

Listing 3.37: Result of an extract refactoring that changed the semantics of the source
code. The binding of var = 0 in the main function was changed from A::var
to the var definition inside the main function.

Approaches about extracting namespaces into other files are not discussed since it does
not lead to good design nor does it provide clarity.

June 15, 2012 27

3. Namespactor Analysis

3.1.4.3.6. Dealing with Name Conflicts Ambiguous names occur if one or more
namespaces are introduced and if there are equivalent names. When applying the extract
refactoring, introducing name conflicts should be avoided. There are different ways to
deal with name conflicts:

• Cancel the extract refactoring.

• Apply the extract namespace and produce faulty source code and warnings.

• Let the affected name(s), otherwise conflicted names, qualified.

• Introduce a namespace alias and qualify the affected name(s) using the namespace
alias.

• If names are in conflict, using declarations can resolve the conflicts.

3.1.4.3.7. Using Declaration Order Dependency A using declaration can only
refer to names whose declarations have already been introduced before. A using directive,
in contrast, brings in names introduced before and after the using directive. For further
information about order dependencies see [Sut02, Item 40].
Therefore, it is important to find the correct place for the using declaration. The listings
3.38, 3.39, 3.40 illustrate the order dependency of the using declaration. Applying the
extract refactoring on the function call A::f(1), which currently calls A::f(int), the using
declaration has to be placed below the declaration of the function to be called. The using
declaration has only seen the function declaration f(double), if it is placed between the
two namespace definitions of the namespace A. In this case, a silent implicit conversion
from int to double occurs. Therefore, the using declaration must be placed after the
declaration of the function f(int). Either in the global scope or even better immediately
before the function call. The latter would also follow the rule, stating that extractions
must be placed as local as possible.

namespace A{
int f(double i);

}

namespace A{
int f(int i);

}

int main (){
A::f(1); // calls f(int i); - apply extract refactoring here
return 0;

}

Listing 3.38: Foundation for the listings 3.39, 3.40 illustrating approaches of an extract
refactoring with respect to the order dependency of using declarations.

June 15, 2012 28

3. Namespactor Analysis

// 1st approach - misplaced using declaration
namespace A{

int f(double);
}
using A::f;

namespace A{
int f(int);

}

int main (){
f(1); // calls f(double), uses a silent implicit conversion
return 0;

}

Listing 3.39: First approach of the extract refactoring with respect to the order depen-
dency of using declarations.

// 2nd approach - correctly positioned using declaration
namespace A{

int f(double);
}

namespace A{
int f(int);

}
using A::f; // first suitable place

int main (){
using A::f; // second suitable place (as local as possible)
f(1); // calls f(int);
return 0;

}

Listing 3.40: Second approach of the extract refactoring with respect to the order de-
pendency of using declarations.

3.1.4.3.8. Using Directive Order Dependency A using directive introduces names
of a namespace that are declared before or after the directive. When extracting a names-
pace the using directive can be placed in various places. Each of which is discussed in
this paragraph.

Same File, on Top This would mean that the namespace is also introduced to poten-
tially afterwards included files. This can cause side effects in the included files
which is not desirable [Sut02].

Same File, Right after Include Directives This solves the side effect problem from above.
But since the file itself may be included by others this approach can lead to side
effects as well.

Same File, with other Using Directives Placing the using directive right after the in-

June 15, 2012 29

3. Namespactor Analysis

clude directives may also have another issue. If other using directives, referring to
outer namespaces of the one to be introduced, already exist right after the include
directives, the position we insert our new using directive may be essential. But the
position is only essential if the using directive does not use qualified names. Using
fully qualified names in a using directive allows it to be placed independently to
other using directives. See listings 3.41, 3.42, 3.43, 3.44 that illustrates the initial
situation and possible refactoring solutions.

Same Scope, as Local as Possible Placing using directives as local as possible avoids
side effects in other files (assuming that all names are encapsulated in namespaces).
As described above the using directives may be order dependent if they do not use
qualified names.

/* A.h */
namespace A{

namespace B{
void f();

}
}

/* Impl.cpp */
include "A.h";
using namespace A;
B::f(); // apply extract refactoring here

Listing 3.41: Foundation for the listings 3.42, 3.43, 3.44 illustrating an extract refactoring
with respect to the order dependency of using directives.

// 1st approach - misplaced unqualified using directive
include "A.h";
using namespace B; // error - B not known
using namespace A;
B::f();

Listing 3.42: First approach of the extract refactoring with respect to the order depen-
dency of using directives.

// 2nd approach - correctly positioned unqualified using directive
include "A.h";
using namespace A;
using namespace B;
B::f();

Listing 3.43: Second approach of the extract refactoring with respect to the order de-
pendency of using directives.

June 15, 2012 30

3. Namespactor Namespace Refactorings

// 3rd approach - correctly positioned qualified using directive
include "A.h";
using namespace A::B; // possible place independent of other usings
using namespace A;
using namespace A::B; // possible place independent of other usings
B::f();

Listing 3.44: Third approach of the extract refactoring with respect to the order depen-
dency of using directives.

3.2. Namespace Refactorings

This section defines the inline and extract refactorings based on the analysis results in
section 3.1. Definitions that directly relate to an approach discussed in the analysis are
annotated with the corresponding listing or section number.

3.2.1. Inline Using Directive (IUDIR)

Initial Condition Using directive in selection. (This differentiate from the analysis where
the initial condition is a name, see section 3.1.3.4.)

Subject References of top level declarations in the namespaces to be inlined (this in-
cludes namespaces indirectly introduced by nested using directives) that are not
qualified (3.14).
Motivation: Nested using directives are not modified. This could lead to side
effects and is not directly related to inlining the selected using directive.

Scope Only references within the potential scope of the using directive (3.18).
Motivation: This is the most natural behaviour, since only code is affected that
depends on the selected using directive.

Result Names are qualified with the name of the using directive, using directive removed
(3.18, 3.22).
Motivation: The selected using directive is always removed because we think that
is the natural behaviour the users expects, since the using directive has no effect
after the refactoring.

Extensions • The user can choose the scope, e.g. file, project.

3.2.2. Inline Using Declaration (IUDEC)

Initial Condition Using declaration in selection. (This differentiate from the analysis
where the initial condition is a name, see section 3.1.3.4.)

Subject References of the declaration nominated by the using declaration (3.15).
Motivation: This is the most natural behaviour, since only code is affected that

June 15, 2012 31

3. Namespactor Namespace Refactorings

depends on the selected using declaration.

Scope References of the declarations nominated by the using declaration, that belong
to one declaration, and therefore to one definition (3.15).
Motivation: References, that belong to more than one declaration, belong to a
definition after the using declaration. Hence, they do not require qualification.

Result Names are qualified with the name used in the using declaration, using declara-
tion removed.
Motivation: The selected using declaration is always removed because we think
that is the natural behaviour the users expects, since the using declaration has no
effect after the refactoring.

3.2.3. Qualify an Unqualified Name (QUN)

Initial Condition Unqualified name in selection. The name does not belong to a declara-
tor.

Subject Selected name.

Scope Selected name (3.2).
Motivation: This is the behaviour the user expects. Qualifying other references
of the same name may result in code changes not intended by the user.

Result Name is fully qualified.

Extensions • The user can choose the scope, e.g. file, project.

3.2.4. Extract Using Directive Refactoring (EUDIR)

Start Condition Qualified name in selection.

Subject References of top level declarations in the namespaces to be extracted. The
using directive is extracted with all required name specifier(s) of the selected name
(3.27).
Motivation: Using fully qualified names in a using directive allows it to be placed
independently to other using directives (3.44). Using directives are introduced as
local as possible.

Scope of Application Only references within the potential scope of the selected name
(3.32).
Motivation: Keep the refactoring as local as possible.

Result Using directive with a qualified name above the first name to be changed (3.44).
Other using directives with the same specifier(s) are also affected. The using
directives are shortened with the name specifiers introduced by the extracted using
directive. The shortening of a using directive can lead to the remove of the whole
using directive.

Extensions • The user can choose the scope, e.g. file, project.

June 15, 2012 32

3. Namespactor Implementation

3.2.5. Extract Using Declaration Refactoring (EUDEC)

Start Condition Qualified name in selection.

Subject References of top level declarations in the declaration to be extracted. The
using declaration is extracted with all required name specifier(s) of the selected
name (3.29).

Scope of Application Only references within the potential scope of the selected name
(3.32, 3.38).
Motivation: Keep the refactoring as local as possible.

Result Using declaration with a qualified name above the first name to be changed
(3.44).

Extensions • The user can choose the scope, e.g. file, project.

3.3. Implementation

This section describes how namespactor is implemented. The C++ refactorings specified
in 3.2 are implemented for the Eclipse CDT platform. The implementation is based on
the CDT platform, the LTK (section 3.3.2) and the Codan framework (section 3.3.3,
figure 3.1).
The sections 3.3.6 and 3.3.7 outline the details of the inline and extract refactoring the
implementations.

Figure 3.1.: Layer diagram with the dependencies of namespactor.

June 15, 2012 33

3. Namespactor Implementation

3.3.1. Plug-in Architecture

Figure 3.2 shows a dependency graph of the namespactor packages. Each refactoring has
a ui and a refactoring package. The ui part is responsible to handle the Eclipse refac-
toring menu command by starting the associated refactoring. In contrast to the extract
refactorings the inline refactorings feature a common ui package called iu (inline using).
The inline refactorings have only one menu command. Depending on the selection either
the IUDIR or the IUDEC refactoring is started. See 3.3.2 for more information about
the user interface implementation.
The refactoring part is divided into a base package, which contains classes that are used
by all refactoring implementations, and one package for each implemented refactoring.
The refactoring base package contains the AST rewrite infrastructure (section A.7), an
abstract base class for the refactorings and the TemplateIdFactory which is used to build
template names (section 3.3.4.2).
The checkers package holds Codan checker implementations that report problems. The
implemented resolutions in the quick fixes package start an appropriate refactoring to
solve a reported problem. See section 3.3.3 for more information.

June 15, 2012 34

3. Namespactor Implementation

Figure 3.2.: Dependency graph of the namespactor core packages. The grey arrows show
the dependencies between the packages. The rtstest (section A.6) and astu-
tils packages are excluded from the diagram for convenience. The extract,
inline and base frames where manually introduced to stress the belongings
of the shown refactoring packages.

3.3.2. Refactoring User Interface - Language Toolkit (LTK)

To create automated refactorings for CDT, the language toolkit (LTK, [ltk06]) of Eclipse
is used. A detailed description of the the LTK and its API can be found at [MI10] in
chapter 2.1.
The LTK provides a wizard that allows to preview the changes of a refactoring (figure
3.3). Each of the refactorings has its own wizard implementation. Because we did not
require to define any custom wizard pages, there was no need to customise the default
implementation.
Along with the refactoring wizard other UI classes had to be implemented for every
refactoring:

IWorkbenchWindowActionDelegate Required to bind an action to the UI via window
menu or toolbar. Creates and invokes a refactoring action.

RefactoringAction Delegate between action delegate and refactoring runner. Creates a

June 15, 2012 35

3. Namespactor Implementation

RefactoringRunner2 and passes the selection of the active editor to it.

RefactoringRunner2 Instantiates the refactoring and passes this to a newly created
refactoring wizard. The wizard is then passed to a helper class that starts the
wizard if the initial conditions of the refactoring are met.

The implementation of these UI classes is very similar for every refactoring. The only
exception is the implementation of the inline using (IU) refactoring UI classes. This is
a special refactoring that, depending on the selection, invokes either the IUDIR or the
IUDEC refactoring wizard. The dispatching is implemented in the IURefactoringRunner
class. The advantage of the IU refactoring is, that only one inline refactoring entry is
visible in the refactoring menu, see figure E.1.

Figure 3.3.: Refactoring wizard showing the preview of an IUDIR refactoring.

3.3.3. Static Code Analysis with Codan

Codan is a static code analysis framework built upon Eclipse CDT [cod11]. In Codan,
checkers are used to detect problems (e.g. dead code). Problems can be reported to
Eclipse, which is able to visualise them in different ways, for example as markers in text
editors. Optionally a problem marker has one or more resolutions. This is a suggestion
to fix the marked problem (e.g. remove dead code branch). A detailed description of
Codan and checkers can be found at [met11b] in chapter 4.3.
Checkers and problems have to be registered in the plugin.xml using an extension point.
Another extension point allows to register resolutions for registered problems. See listing
3.45 featuring a sample entry that registers one checker with one problem and two
resolutions for that problem.

June 15, 2012 36

3. Namespactor Implementation

<extension point ="org. eclipse .cdt. codan .core. checkers ">
<checker class =" namespactor . checkers . UsingChecker "

id="ch.hsr.ifs.cdt. namespactor . checkers . UsingPosition ">
<problem category ="org. eclipse .cdt. codan .core. categories . ProgrammingProblems "

id="ch.hsr.ifs.cdt. namespactor . UDIRBeforeInclude ">
</problem >

</checker >
</extension >
<extension point ="org. eclipse .cdt. codan .ui. codanMarkerResolution ">

<resolution class =" namespactor . quickfix . InlineUsingQuickFix "
problemId ="ch.hsr.ifs.cdt. namespactor . UDIRBeforeInclude ">

</ resolution >
<resolution class =" namespactor . quickfix . MoveAfterIncludesQuickFix "

problemId ="ch.hsr.ifs.cdt. namespactor . UDIRBeforeInclude ">
</ resolution >

</extension >

Listing 3.45: Code snippet from the plugin.xml registering one checker with one problem
and two resolutions (quickfixes). Class names shortened.

The resolutions are implemented by extending one of these classes provided by Codan:

AbstractCodanCMarkerResolution Base class for all resolutions of problems reported
with Codan.

AbstractAstRewriteQuickFix Extends AbstractCodanCMarkerResolution. Applies AST
modifications to the document of the marker via template method.

3.3.3.1. Problems Detected by namespactor

namespactor features one checker that looks out for five problems, which are listed
below. Except the last one, these problems are all based on the namespace guidelines
documented by Herb Sutter in [Sut02] page 236. Each problem has one or more resolution
as described in section E.4.1.
The implementation of this checker was not mandatory based on the objectives section
2.2, some of them where not even thought of at that point. But this checker generates
a great surplus for namespactor, because the problem markers serve as good starting
points to initiate one of the namespactor refactorings from. See figure 3.4 that suggests
multiple quick fixes to solve a reported problem.
All the problems are detected on type. There is no need to explicitly run Codan to check
for problems, this is done on the fly while typing. The following problems are reported
by the namespactor checker:

Using Directive in Header File (UDIRInHeader) [Sut02] rule #1. A using directive in
a header file, at the global scope, may lead to side effects. It introduces many
names at the global scope. This may lead to unintended name conflicts in files
that include the header file.

Using Declaration in Header File (UDECInHeader) [Sut02] rule #2. A using (names-
pace) declaration in a header file has similar side effects as a using directive has.

June 15, 2012 37

3. Namespactor Implementation

But with using declarations this goes one step further. A a using declaration should
not be placed in a header file at all, because a using declaration may change the
meaning of code depending on what #includes are in place ([Sut02] Example 40-
3(c)).

Using Directive before #include (UDIRBeforeInclude) [Sut02] rule #3. Using direc-
tives before an #include may have side effects and change the semantics of the
included files by introducing unexpected names.

Using Declaration before #include (UDECBeforeInclude) [Sut02] rule #3. Same as
above.

Unqualified Name in Using Directive (QUNUDIR) An unqualified name in a using di-
rective may decrease the readability of the code because it is not obvious where the
name comes from. This problem is listed in the objectives section 2.2 as optional
feature.

3.3.3.2. Problem Resolutions (Quick Fixes)

All of the reported problems can be solved by invoking one of the namespactor refactor-
ings. Some problems have multiple resolutions and vice versa.

Inline Using (IU) Invokes the IU refactoring. Solves the problems: UDIRInHeader,
UDECInHeader, UDIRBeforeInclude, UDECBeforeInclude.

Move Using After Include (MoveAfterIncludes) Moves the problematic using state-
ment after the last #include directive. Solves the problems: UDIRBeforeInclude,
UDECBeforeInclude. This is not a refactoring, since it may have side effects.

Qualify Unqualified Name (QUN) Invokes the QUN refactoring. Solves the problems:
QUNUDIR.

The problem resolution implementations that invoke one of the namespactor refactor-
ings extend the class AbstractCodanCMarkerResolution. The implementations simply
instantiate the appropriate refactoring action and run it. The required information to
run the action (active editor, problematic ASTNode) are determined by the data pro-
vided by the super classes.
The MoveAfterIncludes resolution implementation in contrast extends the AbstractAs-
tRewriteQuickFix class. The AST rewrite is done in this implementation without dele-
gation to a namespactor refactoring.

Figure 3.4.: Problem marker with suggested resolutions.

June 15, 2012 38

3. Namespactor Implementation

3.3.4. Building Names

namespactor has to deal with names. Either qualifiers are added (inline refactorings)
or removed (extract refactorings) to a name or a name has to be built from scratch
(names of using statements). In the AST, a name is represented by IASTName nodes.
If a name is qualified, a specialised name, the ICPPASTQualifiedName is required. The
ICPPASTQualifiedName contains multiple IASTName children. An unqualified name is
represented by one IASTName instance or an ICPPASTQualifiedName with one IAST-
Name child node. See figure 3.5 on the right that illustrates this.
A template name goes one step further, because names are nested. A template name
contains an IASTTemplateId instance, which itself is a specialisation of IASTName.
Figure 3.5 on the left, shows the AST of a nested template name.
An IASTTemplateId contains an IASTName, which is the template name, and an ICP-
PASTTypeId, that describes the node inside the angle brackets of the template name. An
ICPPASTTypeId contains an ICPPASTNamedTypeSpecifier or an ICPPASTSimpleDe-
clSpecifier. The ICPPASTSimpleDeclSpecifier is a leaf node and represents a primitive
type. The ICPPASTNamedTypeSpecifier contains one IASTName child, for example an
IASTTemplateId, if so, the nesting of template names begins.

Figure 3.5.: AST of a template name with a qualified template argument name and
an unqualified nested template argument name (left) and a qualified name
(right).

The following sections describe how namespactor handles names.

3.3.4.1. Default Approach for non-Template Names

If a name without a template id has to be changed, the unchanged parts can just be
copied and be reused in the new name. The names have to be copied because otherwise
they are marked as frozen and can therefore not be inserted at another location. Every
time the parser finishes its work, all nodes in the newly built AST are set to be frozen.
Frozen nodes can not be changed. To modify a node retrieved from the AST, a copy of
it is required.
For instance, if the name B::C has to be qualified with the name A, a new ICPPASTQual-

June 15, 2012 39

3. Namespactor Implementation

ifiedName is created, a new name node A is added first, followed by copies of B and
C.

3.3.4.2. Template Names

The default approach, described above, does not work for template names for two rea-
sons:

• First, copying template names does not work as expected. Nested template argu-
ments are not written by the CDT ASTRewrite.

• Second, since template names contain nested names, it is possible that multiple
names within a template name instance require to be changed. Nested names are
problematic, because rewrite changes that affected nested nodes can not be han-
dled by the ASTRewrite.
For instance, the template name B::C::S<B::C::X> requires to be qualified with
A at two locations (given that B is within A).
Once at the outer template name B::C::S and once at the template argument
B::C::X resulting in A::B::C::S<A::B::C::X>.
The solution we implemented to change template names is described in the follow-
ing paragraph.

3.3.4.2.1. Changing Template Names To change template names, namespactor
features an abstract factory base class called TemplateIdFactory. Given an existing
IASTTemplateId as input, the factory visits each node in the IASTTemplateId and
creates a new IASTName node step by step. Different specialisations of the base class
implement different name changing mechanisms. Following specialisations exist:

CopyTemplateIdFactory This factory does not change any name within the given IAST-
TemplateId instance. It just copies all nodes within the template name and returns
a copy of it. The copy can than be used in a rewrite change.

InlineTemplateIdFactory This factory adds qualifiers to names within the given IAST-
TemplateId instance if required. The names that require to be changed are pro-
vided by a context object.

ExtractTemplateIdFactory This factory removes qualifiers that are not required any
more, for instance, because they will be placed in a using declaration or using
directive. The names that require to be changed are provided by a context object.

3.3.5. Name Lookup Algorithm

One fundamental question that applies for both, the inline and extract refactorings, is
how the look up of the IASTName nodes, that require to be changed, is implemented.
After some discussions we worked out two different approaches, each with its pros and
cons. The analysis and approaches are discussed in the following sections.
Figure 3.6 illustrates the different scopes that play a role when comparing the two ap-

June 15, 2012 40

3. Namespactor Implementation

proaches. The figure uses sample names, that would play a role with an inline refactoring,
to illustrate the meanings of the scopes. Each scope represents a set of IASTName nodes.
The sets are:

Source Names that must be considered when searching for candidates. E.g. the name
of the function definition x and the namespace definition A.

References Names that reference one of the names in the source set. These are references
found by the indexer, and therefore can be anywhere in the active workspace (even
in system libraries). Any found A or x;

Scope Names in the scope that the selection is in. Any found A or x;

Target Names within the scope set that require to be changed, e.g. qualified or ex-
tracted. For an inline refactoring this would be the name x.

Figure 3.6.: Scopes that play a role when comparing the indexer and AST lookup
algorithms.

The aim of the lookup algorithms, described in the sections below, is to create the target
set. All names therein will than be processed, e.g. qualified or extracted.

3.3.5.1. Indexer Lookup

The indexer lookup algorithm uses the source set as input. Given a set of names it uses
the indexer to search all references of all source names. Than it continuously filters the
reference set based on different criteria until only the target set is left. First, it filters out
names that are within the same scope as the selection is in. Than, a validator mechanism
is used to check if a given name requires to be changed (e.g. qualified or extracted). If
so it is added to the target set.

June 15, 2012 41

3. Namespactor Implementation

3.3.5.2. AST Lookup

The AST lookup algorithm uses the scope set as input. It uses a visitor [GHJV95] to
collect all names within the scope of the selection. The binding owner of each visited
name is compared to the binding of the namespace to be extracted (EUDIR) or to the
potential type to be extracted (EUDEC) within the source set. A validator mechanism
is used to check if a given candidate name requires to be changed (e.g. extracted with
EUDIR or EUDEC).

3.3.5.3. Implementation Strategy

We decided to start our implementations using two strategies. The inline refactorings
started with implementing the indexer lookup, the AST lookup was implemented by
the extract refactorings. The reasons, why we decided to implement both algorithms in
parallel, are as follows:

• The knowledge of the CDT API was not sufficient to decide whether or not one
approach will definitely work or not.

• During the semester (and this) thesis we have experienced that CDT has still
fundamental bugs (e.g. 3.4.5, 3.4.2).

• By implementing two alternative lookup algorithms in parallel, we minimize the
risk of having to start over if one approach fails. If so, the knowledge gained
during the parallel development of the other implementation could be used to
quickly adapt the other refactoring to the working algorithm.

3.3.5.4. Result

The implementation of the indexer based lookup algorithm in the inline refactorings,
described in section 3.3.6, revealed the following issues:

Complexity Filtering the reference set to gain the scope set is a waste of time. The AST
approach does not require this step. The percentage of filtered names is potentially
very low, since the indexer scope can be much bigger than, for example, the scope
of a function.

Scalability Using the indexer to get all references can result in a fairly big amount of
names, especially if working with system or third party libraries. The indexer
based algorithm creates an IASTTranslationUnit for every file a referencing name
was found in. Creating an AST, possibly hundreds of times, requires much time
and memory and should therefore be avoided.

AST of std Namespace Even if we agree with creating an AST for each system include,
getting the AST node of the std namespace definition is tricky, because it is cre-
ated using macros. namespactor does not plan to support macros. Since the std
namespace will likely be inlined very often, the indexer approach does not fit here.

June 15, 2012 42

3. Namespactor Implementation

Based on the issues listed above, after the planned code freeze, we decided to abandon
the indexer lookup and try to adapt the IUDIR refactoring to the AST lookup algo-
rithm. We managed to implement the new lookup algorithm for the IUDIR refactoring
in two days. But we could not use a plain AST lookup, instead we had to create a new
approach that uses the indexer and the AST. This new hybrid approach is described in
paragraph 3.3.5.4.1.
Because we were running out of time we did not change the indexer based implementa-
tions of the IUDEC refactoring implementation, which is described in section 3.3.6.5.
A detailed description of the new hybrid implementation for the IUDIR refactoring is
given in section 3.3.6.4. The description for the now obsolete IUDIR refactoring imple-
mentation using the indexer can be found in appendix D.

3.3.5.4.1. Hybrid Lookup The hybrid lookup algorithm combines the pros of the
indexer lookup as well as the pros of the AST Lookup. It uses the scope set as input. A
visitor is used to collect all names within the scope of the selection. The index binding of
each visited name is compared to all bindings of the namespace definition index names
within the source set. Equal names are collected as candidates for the target set. A
validator mechanism is used to check if a given candidate name requires to be changed
(e.g. qualified with the IUDIR refactoring). If so, it is added to the target set.

3.3.5.4.2. Why Hybrid? The IUDIR refactoring requires access to nested using di-
rectives within namespace definitions to support transitive using dependencies, see sec-
tion 3.1.3.4.4 for more details. Nested using directives can be accessed by using the
ICPPASTNamespace.getDeclarations() method. But to get an ICPPASTNamespace in-
stance, an AST is required. As already mentioned above, getting the AST of every file
(also system includes) is very inefficient.
Another way to access using directives within namespace definitions is by using the
method ICPPNamespace.getUsingDirectives. ICPPNamespace instances can be retrieved
from the indexer. Unfortunately the method getUsingDirectives is not implemented as
excepted, as described in the open issues section 3.4.2.
The hybrid lookup uses the indexer to get all namespace definition index names of the
namespace nominated by the selected using directive. The AST is used to visit the scope
of the selected using directive.

3.3.6. Inline Refactorings

This section reveals the implementation details of the inline refactorings inline using
directive, inline using declaration and qualify an unqualified name. These implemen-
tations are based on the definitions in section 3.2. First, each refactoring is illustrated
based on a simple C++ code snippet 3.46. After that, each refactoring implementation
is explained in detail in separate sub sections.

June 15, 2012 43

3. Namespactor Implementation

namespace Collections {
struct Element {

Element (int value){}
};

}

Listing 3.46: Foundation for the refactoring demonstration snippets 3.47, 3.48 and 3.49.

3.3.6.1. Inline Using Directive

Qualifies all affected names in the scope of the selected using directive with its name
and removes it.

// before
using namespace Collections ; // apply inline refactoring here
Element e1 (23);

// after
Collections :: Element e1 (23);

Listing 3.47: Before and after illustration of the inline using directive refactoring based
on a simple example snippet (3.46).

3.3.6.2. Inline Using Declaration

Qualifies all affected names in the scope of the selected using declaration with the name
of the using declaration and removes it.

// before
using Collections :: Element ; // apply inline refactoring here
Element e2 (42);

// after
Collections :: Element e2 (42);

Listing 3.48: Before and after illustration of the inline using declaration refactoring based
on a simple example snippet (3.46).

June 15, 2012 44

3. Namespactor Implementation

3.3.6.3. Qualify an Unqualified Name

Qualifies the selected unqualified name. Only works with unqualified names. A future
improvement is to allow the full qualification of an already qualified name.

// before
Element e2 (42); // apply inline refactoring here

// after
Collections :: Element e2 (42);

Listing 3.49: Before and after illustration of the qualify an unqualified name refactoring
based on a simple example snippet (3.46).

The following sections focus on the details of the three inline refactoring implementa-
tions. In section 3.3.6.7 different aspects that are common to multiple inline refactoring
implementations are explained.

3.3.6.4. Inline Using Directive Refactoring - Hybrid Implementation

The indexer based implementation of the IUDIR refactoring was started after we dis-
covered that the indexer based implementation, described in appendix D, had some
disadvantages. See section 3.3.5 for an overview about the pros and cons of both ap-
proaches.
This implementation has some open issues related to template method definitions and
implicit operator calls. These are described in detail in the sections 3.4.4 and 3.4.3 re-
spectively.

The pseudo code in listing 3.50 summarises the algorithm implemented by the IUDIR
refactoring.

selectedUsing = getSelectedUsing (selection);
usingScope = getScopeOf (selectedUsing);
namespacesPerUsing = findNamespaceDefinitionsRecursively (selectedUsing);
targetsPerNamespace = findTargetsInScope (usingScope);
validTargetsPerNamespace = filterValid (targetsPerNamespace);
inlineDeclarationName (validTargetsPerNamespace);
removeUsing (selectedUsing);

Listing 3.50: Pseudo code illustrating the algorithm used in the hybrid based IUDIR
refactoring implementation.

Figure 3.7 shows a sequence diagram that gives an insight on how the IUDIR implemen-
tation looks like. The methods are explained in the following:

June 15, 2012 45

3. Namespactor Implementation

checkInitialConditions This method is invoked by the LTK framework prior to show the
refactoring wizard. If the returned refactoring status contains an error the wizard
is not shown, instead the error is displayed to the user. See section 3.3.2 for more
details.

getSelectedUsing Gets the selected using directive. It uses a visitor to visit all declara-
tions within the active IASTTranslationUnit and returns the last one that is within
the offsets of the active text selection provided by Eclipse. If null is returned, no
using directive is selected and the user is notified appropriately.

findCompoundStatementInAncestors Recursively traverses the AST upwards, starting
at the selected using directive, until an IASTCompoundStatement is found, if not,
null is returned. The compound statement is required to validate if a candidate
reference node is in the same scope as the originating using directive where the
refactoring was initiated from. See method findTargetsInScope. If no compound
is returned, the IASTTranslationUnit is used as scope.

findNamespaceDefinitionsRecursively Uses the indexer to get all definitions of the
namespace name nominated by the using directive. All of them are added to
a map (namespacesPerUsing) that holds a list of namespace definition names per
namespace name. If a namespace definition contains another using directive, the
namespace nominated by it would be searched as well. Unfortunately there is a bug
in CDT that does not allow to retrieve using directives nested within a namespace
definition, see 3.4.2.

findTargetsInScope Uses an ASTVisitor to visit all name nodes within the scope the
selected using directive is in. The aim is to create a set of target names that require
to be changed. If the using directive is in the global scope all include dependent
translation units are visited as well. More about include dependencies can be found
in section 3.3.6.7.1.
A name is ignored if it matches any of the following criteria:

• The name is ignored if it is enclosed by one of the source namespace defi-
nitions. Visiting such a name could happen if the using directive is in the
global scope. In such a case the namespace definition, nominated by the
using directive, is visited as well, but all names within that namespace def-
inition can be ignored, since they do not require to be qualified. As soon
as a namespace definition is visited its IASTName is compared to all col-
lected IIndexName namespace names in the namespacesPerUsing map. If
one matches, the namespace definition is skipped. To compare whether an
IIndexName represents the same name as an IASTName their positions are
compared. Their node offset, node length and file name must be equal.

• If the binding owner of the visited name is null, the name is ignored, because
than it is a name from the global scope.

A name is elected as target name if it matches all of the following criteria:

• If an enclosing compound is given, the name must be within the enclosing
compound

June 15, 2012 46

3. Namespactor Implementation

• The indexer binding owner of the name is equal to one of the indexer bindings
of the namespace definition names from the source.

• The name is not yet qualified

Figure 3.7.: Sequence diagram of the IUDIR refactoring AST implementation.

3.3.6.5. Inline Using Declaration Refactoring Implementation

The IUDEC implementation follows the same basic indexer based algorithm, as the first
approach of IUDIR refactoring implementation uses, which is explained in appendix
D. The main difference is that with inline using declarations only the references of
one declaration, the one introduced with the using declaration, must be considered to
be qualified. In contrast to using directives where candidates have to be looked up
recursively. See appendix D.1 for more details on recursive search.
Using declarations require special treatments if templates are in place, as explained in
the following paragraphs 3.3.6.5.1 and 3.3.6.5.2. The IUDEC refactoring currently does
not work for names defined outside the workspace, see 3.4.1.

3.3.6.5.1. References of Template Names Template names in using declarations
require special treatment. For example when used inside composite types with multiple
inheritance as shown in listing 3.51. See paragraph 3.1.3.4.5 for more details on multiple
inheritance.
The default approach to lookup references of using declaration names is to simply call
IIndex.getReferences(IBinding) where IBinding is the binding of the name of the se-
lected using declaration. But with template names this does not work, an empty array

June 15, 2012 47

3. Namespactor Implementation

is returned.
To find the declaration, the name of a using declaration points to, the method ICPPUs-
ingDeclaration.getDelegates() is used. ICPPUsingDeclaration is the casted IBinding of
the using declaration name binding. This method returns an array of IBinding, where
each of it is a reference to a previously declared IBinding. In this case, the first del-
egate represents the method definition S::a(). Using the delegate binding, the method
IIndex.getReferences(IBinding) is able to find the call site within method T::b().
The code in listing 3.51 will not compile with GCC versions less than 4.5.2, because the
using declaration uses a concrete template argument (char). This is documented as open
issue in section 3.4.7. If a user tries to inline a using declaration with a generic template
argument, the refactoring wizard shows a warning explaining the issue (see figure 3.8).

namespace AA{
template <typename T>
struct S{

void a(){} // only found if delegates are used
template < class F> void t(){}

};
struct U{

void a(){}
template < class F> void t(){}

};
template <typename C>
struct T : public S<char >, public U{

using S<char >::a; // start inline refactoring here
using U::t;
void b(){

a(); // qualified with S<char >
t<int >();

}
};

}

Listing 3.51: Using declaration with template name in a multiple inheritance scenario.

Figure 3.8.: Refactoring wizard shows a warning if the user tries to inline a using decla-
ration that contains a generic template argument.

June 15, 2012 48

3. Namespactor Implementation

3.3.6.5.2. References of Template Function Calls If a using declaration declares
a template function, special treatment is required to find all referencing function calls.
First, the delegate mechanism described in paragraph 3.3.6.5.1 is used to find the decla-
ration the using declaration name points to. Then, the references of the found function
definition are looked up.
The default approach is to simply use IIndex.findReferences(IBinding), where IBinding
is the binding of the function declaration. But this approach does not always work for
template functions, as illustrated in listing 3.52. The first function call getMax(1, 2) is
not found as reference, but the explicit function call getMax<int>(1, 2) is found.
In C++, a template function has multiple instances. One for each specialisation. In
listing 3.52 only one specialisation exists, that is for the template argument int. The so-
lution is to look for references of ICPPTemplateInstance bindings. To get all instances of
a template function definition, the method ICPPInstanceCache.getAllInstances is used,
where ICPPInstanceCache is the casted IBinding of the function definition. Calling IIn-
dex.findReferences(ICPPTemplateInstance) also finds call sites without explicit template
arguments, in this case getMax(1, 2).

namespace AA{
template <class T>
T getMax (T a, T b){ return a;}

}

template <class T>
T getMax (T a, T b){ return a;}

int main (){
using namespace AA;
using AA :: getMax ; // start inline refactoring here
getMax (1, 2); // only found when using ICPPTemplateInstance
getMax <int >(1 , 2); // always found as reference and qualified with AA
return 0;

}

Listing 3.52: Using declaration pointing to a template function.

3.3.6.6. Qualify an Unqualified Name Refactoring Implementation

The QUN refactoring implementation is the most simple of the inline refactoring im-
plementations. This is because the name to be inlined is already given as input to the
refactoring. Therefore, no references require to be found, which is a challenging part in
the IUDIR and IUDEC refactoring implementations (see appendix D and section 3.3.6.5
respectively).
But since the QUN refactoring also changes names in the AST, it has to be able to mod-
ify template names. How this is done is described in section 3.3.4. The QUN refactoring
is currently not able to modify template names defined outside of the workspace, see
3.4.1 for more details.

June 15, 2012 49

3. Namespactor Implementation

3.3.6.7. Common Aspects

This section outlines aspects that are common to multiple refactoring implementations.

3.3.6.7.1. IUDIR, IUDEC - Indexer Scope The IUDIR (see appendix D) and
IUDEC (see section 3.3.6.5) refactoring implementations use the indexer to search for
references and definitions of IBindings.
For example, all definitions of a namespace definition binding of a namespace that was
nominated by a using directive. This kind of lookup is done by the recursive search
algorithm of the IUDIR refactoring, see appendix D.1.
To find definitions of an IBinding, the indexer compares the IIndexBindings of the found
nodes. This bindings equal if they have the same name and are of the same type. The
CRefactoring2 base class of the refactorings provides an indexer that indexes all open
projects within the active workspace. Considering that two projects exist, each with a
definition of namespace A, and no dependencies exist between the projects, the indexer
will return both definitions. This is not desirable for the inline refactorings, since nodes
in foreign projects may be affected, although they are not within the same translation
unit.
The same effect also applies for two files within the same project. Although they have
no dependencies to each other, the indexer will search both of them and only look for
equal IIndexBindings. Listing 3.53 illustrates the results of an indexer search.

// file A.cpp
// searching definitions of this namespace definition with the indexer
// returns : A.cpp ::A, C.h::A and B.cpp ::A
// desired : A.cpp ::A, C.h::A
include "C.h"
namespace A{ }

// file B.cpp
namespace A{ }

// file C.h
namespace A{ }

Listing 3.53: Indexer does not respect #include dependencies when searching for
definitions.

To solve that problem a dependency analyser is used, which is implemented in the class
IncludeDependencyAnalyser that provides the following methods:

areFilesIncludeDependent(IIndexFile file, String originFileName) Returns true if file
includes originFileName or if file is included by originFileName in any depth.
This method is used to check whether two nodes are in the same file or within
files that include each other. If true, the files belong to the same translation unit
and must be further processed. If not, the found definition can safely be ignored,
because, for the compiler they do not belong to each other. The IIndexFile instance
is retrieved by calling the IIndexName.getFile() method. An array of IIndexName

June 15, 2012 50

3. Namespactor Implementation

is returned from the method IIndex.getDefinitions(IBinding), where IBinding is
the binding of a namespace definition for instance.
This method is used by the IUDIR (see appendix D) and EUDEC (see section
3.3.6.5) indexer based implementations.

getIncludeDependentPathsOf(ITranslationUnit tu) Returns a List of IPath. A file
(path) is added to the list if the file is included by the tu or the tu is included by
the file. Only paths that point to a file within the workspace are added to the list.
This method is used by the IUDIR hybrid implementation, see section 3.3.6.4.

By using the IncludeDependencyAnalyser class, it is possible to profit from the power of
the indexer to search the code base and at the same time reduce the scope of the target
set to nodes that belong to the same translation unit.

3.3.6.7.2. Indexer File Set An indexer instance contains a set of files. An indexer
instance can be created to index any number of open projects within the workspace.
Most likely an indexer over all projects is used. Any implementation file within the
indexed projects is added to the indexer. But only header files that are included by
another file (either header or implementation) are added to the indexer.

3.3.7. Extract Refactorings

This section reveals the implementation details of the extract refactorings extract using
directive and extract using declaration. The implementations are based on the definitions
in section 3.2. First, each refactoring is illustrated based on the simple C++ code snippet
3.54. After that, the interesting algorithms of the implementation are explained in detail.

namespace Collections {
struct Element {

Element (int value){}
};

}

Listing 3.54: Foundation for the refactoring demonstration snippets 3.55 and 3.56.

3.3.7.1. Extract Using Directive

Introduces a using directive for the selected qualified name and removes the name qual-
ifier(s) from the affected qualified names.

June 15, 2012 51

3. Namespactor Implementation

// before
Collections :: Element e1 (23); // apply extract refactoring here

// after
using namespace Collections ;
Element e1 (23);

Listing 3.55: Before and after illustration of the extract using directive refactoring based
on the simple example snippet 3.54.

3.3.7.2. Extract Using Declaration

Introduces a using declaration for the selected qualified name and removes the name
qualifiers(s) from the occurrences of the affected qualified name.

// before
Collections :: Element e2 (42); // apply extract refactoring here

// after
using Collections :: Element ;
Element e2 (42);

Listing 3.56: Before and after illustration of the extract using declaration refactoring
based on the simple example snippet 3.54.

3.3.7.3. Extract Refactorings - Base Algorithm

This section focuses on the details of the two extract refactoring implementations. The
EUDIR and EUDEC refactorings both follow the same basic algorithm, which is shown
as pseudo code in listing 3.57. The challenges of the EUDIR and EUDEC refactorings
are explained separately in the following sections.

June 15, 2012 52

3. Namespactor Implementation

// only qualified names are interesting
selectedQualifiedName = getSelectedQualifiedName (selection);
// name for using directive / declaration
usingName = buildUsingNameFrom (selectedQualifiedName);
scopeOfInterest = findScopeOf (selectedQualifiedName);
visitNodesIn (scopeOfInterest){

if(node is a replace candidate){
replaceNode = buildReplacementNodeFor (node);
// using directives could be useless cause of new one
removeUsingIfUseless (node);
replaces = addReplace (replaceNode);

}
}
// correct placement of the using directive / declaration
insertionPoint = findFirstNodeToReplace ();
insertUsingStatement (scopeOfInterest , insertionPoint , usingName);
applyReplaceChanges ();

Listing 3.57: Pseudo code for the EUDIR and EUDEC algorithms.

The following sections describe interesting parts of the extract refactorings. The se-
quence diagrams in the following sections represent abstractions that are valid for both
refactorings. Both extract refactorings, EUDIR and EUDEC, follow the same base al-
gorithm explained in the sections below. The two refactorings differentiate only in a few
method implementations which are explained in the method descriptions.
The sequence diagrams in each section are not exact representations of the source code,
only important and interesting parts and methods will be considered and explained.
This also applies to the descriptions of the method implementations.

3.3.7.4. checkInitialConditions - EURefactoring

The method is called by the LTK of Eclipse and initiates the particular extract refac-
toring, see 3.3.2 for more information about the LTK. Figure 3.9 illustrates the check-
InitialConditions implementation. The LTK first invokes this method on the refactoring
object to determine whether the refactoring is applicable at all in the context desired by
the user [ltk06].

getSelectedQualifiedName Gets the selected qualified name. It uses a visitor to visit
all declarations within the active IASTTranslationUnit and returns the one that
is within the offsets of the active text selection. If null is returned, the selection is
invalid.
This method basically uses a selection helper class provided by Eclipse. To de-
termine the exact selection inside a template and its potentially nested qualified
names, our method NSSelectionHelper.getInnerMostSelectedNameInExpression is
used, which is an extended version of SelectionHelper.isSelectionOnExpression.
Consider a qualified name A::B::S1<A::B::S2> with a selection on A::B::S2. Se-
lectionHelper.isSelectionOnExpression (Eclipse) returns true because A::B::S2 is
inside of A::B::S1<A::B::S2>. Our extended implementation returns the quali-
fied name A::B::S2. This is important since all further operations depend on the

June 15, 2012 53

3. Namespactor Implementation

selected qualified name found here.

buildUsingNameFrom Builds the name for the new using directive/declaration. The
name is built with all qualifiers even if the selected qualified name is not qualified
with all qualifiers. Consider a function f inside a namespace B that is nested in
a namespace A. If the qualified name of a function call f() is B::f, the name of
the extracted using directive will be A::B. The same applies for the extract using
declaration that will result in the name A::B::f. The following code snippet 3.58
illustrates this behaviour.

namespace A{
namespace B{

void f();
}

}
// before extract refactoring
void func (){

using namespace A;
if(true){

B::f(); // apply refactoring here
}

}
// after extract refactoring
void func (){

using namespace A;
if(true) {

using namespace A::B; // new introduced using directive
f();

}
}

Listing 3.58: Extract a using directive with all qualifiers of the selected qualified
name.

This method is implemented different for each extract refactoring. The EUDIR
refactoring extracts only namespace names into a using directive. The EUDEC
refactoring on the other hand allows the extract other names like function names
or type names. It is also possible to extract template names to using declarations.
EUDEC also implements a special treatment if the extract using declaration is
inserted into the scope of a type declaration (ICPPASTCompositeTypeSpecifier).
This case is further discussed in the analysis section 3.1.4.3.

findScope Finds the scope of the selected qualified name. This method calls sequen-
tially the methods findCompoundScope, findTypeScope, findNamespaceScope. All
three methods search in the ancestor nodes of the ICPPASTQualifiedName. find-
CompoundScope returns an IASTCompoundStatement if existing. findTypeScope
returns an ICPPASTCompositeTypeSpecifier if existing. findNamespaceScope re-
turns an ICPPASTNamespaceDefinition if existing. If all three methods return
null, the IASTTranslationUnit node is the scope. findTypeScope is only imple-
mented for the EUDEC refactoring, since it is not possible to place a using directive
inside a type declaration.

acceptReplaceVisitor Starts the visitation on the node detected with the findScope

June 15, 2012 54

3. Namespactor Implementation

method.

getReplaceVisitor Depending on which refactoring was initiated, this method returns
an implementation of the abstract EUReplaceVisitor.

Figure 3.9.: Sequence diagram illustrating the checkInitialConditions implementation of
the extract refactorings.

3.3.7.5. visit - EUReplaceVisitor

This method is called by checkInitialConditions and visits all names in the scope of
interest. Figure 3.10 illustrates the visit implementation.

buildReplacementName Builds the replacement name for each relevant name. This
method is explained in detail in figure 3.11 and its method description 3.3.7.6.

removeUselessUsingDirective Removes a useless using directive, if, because of the re-
placement, the using directive has no more value. If an extracted using directive
introduces the same namespace as a using directive in the same scope already does,
this redundant using directive is removed.

replace Prepares the replacement of the origin name with the replace name in the
ASTRewriteStore 3.3.2.

removeUnqualifiedUsingDirective Especially handles using directives with unqualified
names, since in all other cases only qualified names are relevant for a replacement.
This method calls the methods buildReplacementName and the removeUselessUs-
ingDirective explained above. This method is only implemented for the EUDIR
refactoring.

June 15, 2012 55

3. Namespactor Implementation

Additionally the visit method prepares the insertion point for the extracted using direc-
tive/declaration. The first name to be changed in the scope of interest is the input for
the insertion point search algorithm. The definitive insertion point is determined in the
collectModification implementation, see section 3.3.7.7.

Figure 3.10.: Sequence diagram illustrating the visit implementation of the extract refac-
torings in the abstract EUReplaceVisitor class.

3.3.7.6. buildReplacementName - EUReplaceVisitor

This method is called by the visit method, described above, and is responsible for the
correct name building of the name of interest. Figure 3.11 illustrates the buildReplace-
mentName implementation.

alt isExtractCandidate Determines if the name is a candidate that is affected by the
extract refactoring. For example, if the name is a child of a function call expression
or a parameter declaration. An invalid example would be a function declaration,
because a function declaration can not be declared as qualified name.

getNamesOf Gets the names of the name to be replaced. Especially relevant if the
name is a qualified name.

alt isReplaceCandidate The default implementation identifies if a name has a names-
pace qualifier of interest and therefore is a candidate to be replaced. This method
is implemented different for each extract refactoring. EUDEC additionally requires
to check if the last name is the same name as the one extracted into a using dec-
laration, this is achieved by EUDEC overriding a default null implementation of
another method only used by isReplaceCandidate.

loop names Loop over all names returned by getNamesOf.

alt isTemplateReplaceCandidate Determines if the current name is a template name

June 15, 2012 56

3. Namespactor Implementation

and therefore maybe a template name of interest to be replaced.

buildReplacementTemplate Builds the replacement name for a template name. Further
information about template names are in the Building Names section 3.3.4. This
method is implemented different for each extract refactoring.

replaceName.addName If the namespace of interest is found in the names loop, the
replacement starts and the following names in to loop are added to replaceName.
This replaceName is returned at the end of the buildReplacementName method.

Figure 3.11.: Sequence diagram illustrating the buildReplacementName implementation
of the extract refactorings in the abstract EUReplaceVisitor class.

3.3.7.7. collectModifications - EURefactoring

This method is called by the LTK of Eclipse and collects all the changes to be performed
in the AST, see 3.3.2 for more information about the LTK. Figure 3.12 illustrates the
collectModifications implementation.

addReplaceChanges Adds all replace changes, collected in a context object, during the
visits in the scope of interest, see figure 3.10, to the ASTRewriteStore, described
in appendix A.7).

addInsertChange First calls the findInsertionPoint and prepareInsertStatement meth-
ods explained below then adds the insert change to the ASTRewriteStore.

findInsertionPoint On the basis of the first name to be changed, determined in the
visit implementation, illustrated in figure 3.10, the place to insert the new using
directive/declaration is found here. The node where the using directive/declaration

June 15, 2012 57

3. Namespactor Implementation

has to be inserted before, has to be a child in the scope of interest. Therefore, the
parent of the insertion point node has to be the same node as the scope of interest.
This means that somewhere in the parent hierarchy of the first name node to be
replaced, the insertion point is found.

prepareInsertStatement Creates the using directive/declaration with the name built
by buildUsingNameFrom in the checkInitialConditions implementation 3.9. This
method is implemented different for each extract refactoring.

addRemoveChanges Adds all remove changes, collected in a context object, during the
visits in the scope of interest to the ASTRewriteStore.

performChanges Performs all the changes that the refactoring added to the ASTRewrite-
Store.

Figure 3.12.: Sequence diagram illustrating the collectModification implementation of
the extract refactorings in the abstract EURefactoring class.

June 15, 2012 58

3. Namespactor Open Issues

3.4. Open Issues

This section describes the issues left open at the end of this bachelor thesis. Some of
them are also documented in the issue tracker at [nam12]. If so the section heading
features the issue number.

3.4.1. Qualify Names Defined Outside of the Workspace - #273

The IUDEC (section 3.3.6.5) and QUN (section 3.3.6.6) still use the infrastructure that
was introduced by the indexer based IUDIR implementation (see appendix D). There-
fore, they have difficulties in handling names that are defined outside the workspace,
see 3.3.5.4 for more details. For the QUN refactoring this means, that inlining template
names defined outside the workspace is not possible, e.g. vector<string>. With the
IUDEC refactoring it is not possible to change any name that is defined outside the
workspace. In both cases the user is notified with an appropriate error message explain-
ing the issue.

The indexer based implementations heavily rely on the method RefactoringBase.getNodeOf(IName,
IProgressMonitor), which gets the IASTNode of a given IIndexName. This method fails
to get an ASTNode if it was defined in a IASTTranslationUnit located outside the
workspace.

3.4.2. Nested Using Directives within Namespace Definitions - #269

Using directives nested within namespace definitions can be accessed by using the ICP-
PASTNamespace.getDeclarations() method. Another way, offered by the PDOM imple-
mentation, is to use the method ICPPNamespace.getUsingDirectives. ICPPNamespace
instances can be retrieved by using the indexer. Unfortunately the method getUsingDi-
rectives is not implemented as excepted. Always an empty array of ICPPUsingDirective
is returned. The bug is reported to CDT [cdt12b].

3.4.3. Finding Implicit Operator Calls - #270

The hybrid based IUDIR implementation does currently not look for implicit operator
calls. The indexer based implementation used the indexer to get all references of an
operator overload definition. This references also contained implicit operator calls. But
the hybrid implementation uses an AST visitor to visit all name nodes within the scope
of the selected using directive. Hence, for example the implicit shift operator call («)
is never found, because in the AST it is represented as IASTBinaryExpression. Even
if the visitor would visit such an operator call, it can not simply be treated as name
that could be qualified. Instead it has to be transformed into an explicit operator that
can then be qualified. The indexer based IUDIR implementation has a similar issue, see
appendix D.2.1.

June 15, 2012 59

3. Namespactor Open Issues

3.4.4. Qualifying Template Method Definitions - #271

The hybrid based IUDIR implementation currently does not support to qualify unqual-
ified template method definition names. The indexer based implementation did support
this feature. Something went wrong by adopting the hybrid based lookup algorithm.
Further research is required to find the exact cause of the failure.

3.4.5. Missing Line Break after last Affected Node - #238

Both extract refactorings, EUDIR and EUDEC, introduce one new node (a using direc-
tive or a using declaration) and replace names in the AST.
Before the last node that is affected by a replace change, always a line break is missing.
Listing 3.59 illustrates this misbehaviour.

// before the extract using directive refactoring
void func (){

A::a(); // apply refactoring here
A::B::b();
A::a();

}
// after the extract using directive refactoring
void func () {

using namespace A;
a();
B::b();a(); // missing line break before a();

}

Listing 3.59: Missing line break after last affected node.

This misbehaviour is not fatal so far. But if there is a one line comment before the
last node to be affected, the resulting code changes its behaviour which is not the idea
behind refactorings and it could lead to compile errors as well. Listing 3.60 illustrates
this more precarious misbehaviour.

June 15, 2012 60

3. Namespactor Open Issues

// before the extract using directive refactoring
void func (){

A::a(); // apply refactoring here
A::B::b();
// one line comment
A::a();

}
// after the extract using directive refactoring
void func () {

using namespace A;
a();
B::b();
// one line comment a(); -> function call a() is now in the comment

}

Listing 3.60: Missing line break after last affected node, function call a() is now in the
comment.

The problem appears with the usage of the ASTRewriteStore, see section A.7, as well
as with the usage of ModificationCollector that is used by the LTK, see section 3.3.2.
The ASTRewriteStore is a wrapper for the ModificationCollector.
It is also possible to perform AST modifications using the ASTModificationStore of
Eclipse CDT but this issue is not reproducible with the ASTModificationStore.
Since we use the LTK in our refactoring implementations and it is not in our competence
to change the ModificationCollector, this issue remains open.

3.4.6. Creating Fully Qualified Names - #249

The ICPPQualifiedName.setFullyQualified method allows to mark a qualified name as
fully qualified. The implementations are correct. But the ASTWriter does not respect
the flag when writing qualified names. Hence, the leading scope resolution operator :: is
missing. This issue is reported to CDT ([cdt12a]).

3.4.7. Using Declaration with Generic Template Argument - #239

The code in listing 3.61 will not compile with GCC versions less than 4.5.2, because
the using declaration uses a concrete template argument (char). Lower versions of GCC
require the template argument to be generic. But with generic template arguments
the reference lookup, as described in paragraph 3.3.6.5.2, does not work, because the
returned binding is an ICPPUnkownBinding. Changing this behaviour is not in our
competence. Therefore, inlining using declarations with generic template arguments are
not supported for now. If a user tries to inline a using declaration with a generic template
argument, the refactoring wizard shows a warning explaining the issue.

June 15, 2012 61

3. Namespactor Open Issues

namespace AA{
template <typename T>
struct S{

void a(){}
};
template <typename C>
struct T : public S<char >{

// declaration of S::a not found if C is used instead of char.
using S<char >::a;

};
}

Listing 3.61: Using declaration with template name.

3.4.8. Inherited Type Name cannot be Replaced - #231

Types can extend other types. The type name(s) of the base type can be qualified with
namespace qualifiers and type qualifiers. Listing 3.62 illustrates an example of that issue.

namespace A{
struct S1 {};

}
struct S2 : A:: S1{ // apply EUDIR refactoring here (A:: S1)

void f(A:: S1);
};

Listing 3.62: Foundation snippet of the issue: Inherited Type Name cannot be Replaced.
A::S1 is a qualified name of the type S1 which is the base type of S2.

The EUDIR refactoring results in the source code illustrated in figure 3.63.

namespace A{
struct S1 {};

}
using namespace A;
struct S2 : A:: S1{ // is still qualified with A

void f(S1); // qualifier A is removed
};

Listing 3.63: Result snippet of the issue: Inherited Type Name cannot be Replaced.
Foundation illustrated in listing 3.62

The problem is that in the rewrite algorithm of the AST in CDT, the replace changes
of the ICPPASTBaseSpecifier get lost. Hence the result is: struct S2 : A::S1, instead of
struct S2 : S1.

June 15, 2012 62

3. Namespactor Future Improvements

3.5. Future Improvements

This section describes the future improvements of this bachelor thesis. Some of the issues
are also documented in the issue tracker at [nam12]. If so, the section heading features
the issue number.

3.5.1. Implement Hybrid Lookup in IUDEC and QUN

The IUDEC and QUN refactoring still rely on the indexer infrastructure introduced
by the indexer based IUDIR implementation. Because we ran out of time these two
refactoring could not have been adopted to use the hybrid lookup algorithm, see 3.3.5
for more details.
By updating the IUDEC and QUN implementations, the open issue 3.4.1 will be solved.

3.5.2. Detect Name Conflicts

By applying the EUDIR refactoring it is possible that the refactored code is semantically
changed, or that compilation fails. See section 3.1.4.1 and paragraphs 3.1.4.3.5 for more
details how name conflicts may be introduced. Currently the EUDIR refactoring is
applied without any warning. Possible strategies to handle name conflicts are listed in
paragraph 3.1.4.3.6.

3.5.3. Start IUDIR on Any Name

Currently the IUDIR refactoring can only be initiated from a selected using directive.
One approach discussed in the analysis is to allow to start the IUDIR refactoring by
selecting any name. The Analysis section 3.1.3.4 contains various case studies discussing
this approach.

3.5.4. Extract Using Declaration Into a Type Declaration - #265

Using declarations can be used to avoid ambiguous name in case of multiple inheri-
tance, see paragraph 3.1.3.4.5 for more information. The extract refactoring algorithm
described in section 3.3.7, does not allow to insert a using declarations into other scopes,
than the scope the refactoring was initiated from, which is necessary in this case. An
example illustrates the situation in listing 3.64 and 3.65, the desired result is illustrated
in listing 3.66.

June 15, 2012 63

3. Namespactor Future Improvements

struct U {
int f(int i);
char f(char c);

};
struct A : public U {

int f(int i){}
char f(char c); // shadow U::f(char)

};
struct B {

double f(double d) {}
};

Listing 3.64: Foundation snippet of the issue: Extract Using Declaration into a Type
Declaration from another Scope. The refactoring foundation is illustrated
in 3.65.

struct AB : public A, public B {
using B::f; // make B::f(double) accessible from outside
char f(char c){} // hide A::f(char) (only if ’using A::f’ in place)

};
int main (){

AB ab;
// A::f(int) exact match , without ’using A::f’ => ambiguous , because
// multiple implicit conversions exist (B::f(double), AB ::f(char))
ab.A::f(1); // apply refactoring here
// AB ::f(char), declarations are: AB ::f(char), A::f(char) => no change
ab.f(’a’);
// B::f(double) exact match , without ’using B::f’ => ambiguous , because
// multiple implicit conversions exist (A::f(int), A::f(char), AB ::f(char))
ab.f (3.14);

}

Listing 3.65: Foundation snippet of the issue: Extract Using Declaration into a Type
Declaration from another Scope.

If the EUDEC refactoring is applied on the call ab.A::f(1), the refactoring should insert
a using declaration inside the type declaration of struct AB and remove the namespace
qualifier A from the function call. Listing 3.66 illustrates the desired result.

June 15, 2012 64

3. Namespactor Future Improvements

struct AB : public A, public B {
using A::f; // new inserted using declaration
using B::f;
char f(char c){}

};
int main (){

AB ab;
ab.f(1); // namespace qualifier A is removed
ab.f(’a’);
ab.f (3.14);

}

Listing 3.66: Result snippet of the issue: Extract Using Declaration into a Type Decla-
ration from another Scope.

3.5.5. Extension for the Refactoring Qualify an Unqualified Name -
#265

The implemented QUN refactoring, described in section 3.3.6.6, only works with unqual-
ified names. The same functionality would be feasible and useful with qualified names.
Qualified names do not have to be qualified with all qualifiers as illustrated in listing
3.67. The name of the function call B::f() is qualified but not qualified with all its qual-
ifiers. Since QUN only works with unqualified names, the name B::f is not a candidate
for the QUN refactoring as it is implemented now.

If the QUN refactoring would get this additional functionality, it would be renamed to
Qualify any Name (QAN).

namespace A{
namespace B{

void f(){}
}

}
using namespace A;
int main (){

B::f(); // apply QAN refactoring here
}

Listing 3.67: Foundation for the snippet 3.68 related to the issue Extension for the Refac-
toring Qualify and Unqualified Name.

Listing 3.68 shows the desired result of the QAN refactoring initiated in the code snippet
3.67.

June 15, 2012 65

3. Namespactor Conclusion

int main (){
A::B::f(); // is now qualified with A

}

Listing 3.68: Result source code of the refactoring based on the foundation snippet 3.67.
The using directive with the name A is removed and the function call is
qualified with the name A.

3.6. Conclusion

All objectives specified at the start of this bachelor thesis were achieved. The Codan
part described at 3.3.3 was not part of the objectives. Using Codan, we were able to add
great value to namespactor, because problem reports explicitly ask the programmer to
use one of the namespactor features to enhance the quality of the source code. One of
the problem resolutions corresponds to the optional objective "Force Qualified Name in
a Using Directive".
We have benefited from the idea to implement the refactorings with two different ap-
proaches, outlined in section 3.3.5. Even though some issues are left open, see section
3.4, we gained important knowledge which, at last, led to the hybrid approach. Due to
the late code changes we exceeded our deadline of the code freeze, but now we are glad
we recognised the misleading approach and implemented the hybrid approach 3.3.5.4.1.
Since namespactor was developed only within eleven weeks, it could still profit from
further improvements. It would also help to get some feedback from experienced C++
developers to ensure that namespactor can prove itself in real world projects.

June 15, 2012 66

4. Metriculator

This chapter contains information that relates to the first phase of this thesis. This is
the further development of the metriculator plug-in that was initiated in the semester
thesis [met11a]. The first section defines the requirements. Based on the requirements,
the design is changed as described in section 4.5. Section 4.2 gives detailed information
about performance measurements and improvements made during this thesis. Further
sections describe the implementations of the requirements and optional features. At the
end, we describe details about our unit test implementations in section 4.7.

4.1. Requirements

Based on the objectives defined in chapter 2 we defined the following requirements.

4.1.1. Performance

4.1.1.1. Current State

At the end of the semester thesis metriculator run out of memory when analysing more
than about 350’000 PSLOC. See section 5.1 in the metriculator documentation [met11a]
for more details.

4.1.1.2. Objective

metriculator is able to completely analyse 1 million physical source lines of code (PSLOC)
in less than 3 minutes without crashing.
The performance tests are always executed in the same environment that has the fol-
lowing specifications:

Computer specifications :

• Processor(CPU): 64Bit, 2.67GHz, Intel Xeon

• RAM: 8GB

• OS: Linux 3.1.9, Fedora release 16 (Verne)

Runtime Eclipse Indigo 3.7.2 with CDT 8.0.2, Java Runtime Environment 6. Depending
on the test run, the memory assigned to Eclipse varies.

Metriculator Settings Only the LSLOC metric is activated and problem reporting is

67

4. Metriculator Performance

deactivated. Problem reporting is disabled to gain objective results. Whether
a problem is being reported or not depends on the workspace properties defined
by the user. The LSLOC metric was chosen because it has the most complex
implementation.

4.1.2. Tag Cloud - Dealing with Large Data Input

4.1.2.1. Current State

The tag zest cloud component (cloudio [sou11]) produces an error if the input data
exceeds an unknown limit. This error is shown as message box to the user. The exact
circumstances that lead to the error are not yet determined.

4.1.2.1.1. Objective Independent of the amount of words and their lengths and
weights, the tag cloud component creates a tag cloud without any errors.

4.1.3. Composite Update Site

4.1.3.1. Current State

The composite update site was introduced to allow the installation of metriculator, in-
cluding the tag cloud component, in one single step using the Eclipse update mechanism,
without having zest or CDT already installed. At the end of the semester thesis neither
the update site nor the composite update did work.

4.1.3.2. Objective

Using a composite update site, users will be able to install metriculator including the
tag cloud feature without having any prerequisites installed.

4.2. Performance

In the thesis of metriculator we described some performance issues of the plug-in ([met11a]
section 5.1). In this bachelor thesis we aim to further improve the performance. This
section reports on the performance improvements made for metriculator.

4.2.1. Performance Measurement - Comparison Before and After the
Improvements

Table 4.1 shows a direct comparison of the metriculator performance measurement data
before and after the performance improvements, see section 4.2.2 for more details about
the improvements.

June 15, 2012 68

4. Metriculator Performance

All the tests were performed using the llvm project [llv11] source code excluding the sub
folder at tools/clang/INPUTS. This folder contains test code that forces the llvm parser
to produce errors. As a side effect, the CDT parser produces the expected errors as well,
hence we ignore that folder.
Before the improvements metriculator was not able to analyse more than about 400’000
physical source lines of code (PSLOC). Exceeding this limit resulted in a heap out of
space error that caused metriculator to crash. Therefore, the first two rows represent
analysis results of the clang sub folder at tools/clang/lib which has 346’377 PSLOC.
The remaining three rows represent analysis results of the llvm project source code. The
PSLOC of a directory were determined with the command shown in listing 4.1:

find . -print | egrep ’\. cpp$ |\. h$ |\.c$ ’ | xargs cat | sed ’/^\s*$/d’ | wc -l

Listing 4.1: Command to get the number of physical source lines of code (PSLOC) ig-
noring blank lines.

In order to monitor the memory usage of metriculator, we used the Java tool JConsole
[JCo]. To compare and visualise the performance improvements, several screenshots
were taken. Each screenshot shows the memory consumption of a code analysis with
metriculator. The analysis of metriculator started after about one second JConsole
started monitoring and ended a few seconds before the screenshot was taken. See the
figures 4.1, 4.2 and 4.3 for the screenshots.

PSLOC VM Memory [MB] before [s] after [s] speedup
346’377 2048 45 12 3.8
346’377 1024 50 12 4.2

1’209’742 2048 - 45 :)
1’209’742 1024 - 64 :)
1’209’742 900 - 120 :)

Table 4.1.: Runtime performance measurement data before and after the improvements.
The first column contains the number of the physical source lines of code
(PSLOC) that were analysed. There is no before measurement for 1.2 million
PSLOC as metriculator was not able to process that amount of source code.

4.2.1.1. Interpretation

As illustrated in table 4.1 the duration of the analysis depends on the available memory.
The more memory is available the faster the analysis completes. The figures 4.1 and 4.2
show the memory consumption over time. Figure 4.3 shows that the memory consump-
tion has improved in the new version compared to the old version. As you can see in
the table 4.1 the speed has increased up to four times.

Before the performance improvements it was not possible to analyse more than about

June 15, 2012 69

4. Metriculator Performance

400’000 physical source lines of code (PSLOC). The reason was that there were to many
reachable references, that prevented the garbage collector to collect them. Hence, the
Java heap space ran out very soon. Before the improvements, the lower limit of memory,
to analyse 346’377 PSLOC, was about 1024MB.

After the performance improvements it is possible to analyse more than one million
PSLOC without any problem. The lower limit of memory, to analyse 1’209’742 PSLOC,
is about 900MB. Running with less memory disproportionately increases the running
time. metriculator performs better if there is more memory available, as illustrated in
Table 4.1.

4.2.1.2. Further Observations

It is also noteworthy that the metric analysis of metriculator can be executed multiple
times without losing its performance. Before the performance improvements metricula-
tor did not release all of its acquired memory after the analysis. Therefore, the process
became slower with every further execution.
Activating more than one metric does not significantly decrease the performance. As
reasonable, metriculator requires more execution time, but the memory allocation per
additionally activated metric is barely apparent.
Running metriculator on llvm with all metrics and problem reporting enabled and
2048MB of memory assigned to Eclipse, takes about 3 minutes to run and allocates
at most 1GB of memory.

Figure 4.1.: Before the performance improvements - The graph on the left shows the
analysis of 346’377 PSLOC with 2048MB virtual memory in Eclipse. The
graph on the right shows the same analysis with only 1024MB memory.

June 15, 2012 70

4. Metriculator Performance

Figure 4.2.: After the performance improvements - The graph on the left shows the
analysis of 1’209’742 PSLOC with 2048MB virtual memory in Eclipse. The
graph on the right shows the same analysis with only 1024MB memory.

June 15, 2012 71

4. Metriculator Performance

Figure 4.3.: Memory consumption before (left) and after (right) performance improve-
ments, analysing 346’377 PSLOC with 1024MB virtual memory assigned to
Eclipse. The analysis on the right is about 4 times faster than the left one
and requires only a third of the memory in comparison.

4.2.2. Performance Improvements

This section describes how the performance of metriculator was improved as part of
this bachelor thesis. This was mainly achieved by reducing or removing unnecessary
references to AST related instances. The NodeInfo refactoring described in section 4.5.2
supported us by identifying and solving performance issues. It simplified the design and
algorithms related to AST information management.

4.2.2.1. Problems

metriculator merges declarations with definition. Therefore we must be able to find the
a declaration that belongs to a definition. Using bindings provided by the indexer and
AST, we can do this. Bindings represent semantic concepts and their properties, and
they connect declarations and references. The index of CDT captures all bindings and is
built by the indexer, which parses the AST [Sch08]. Thus, it is possible to find matching
definitions and declarations with the bindings of the AST nodes.
Some binding instances that we store, reference AST information. Hence, storing bind-
ing instances in metriculator may prevent the garbage collector to collect AST instances

June 15, 2012 72

4. Metriculator Performance

that would otherwise be collected. Because we require the bindings to merge nodes in
the hybrid tree builder after all checkers ran, we cannot release the bindings resulting in
huge memory allocations which impacts the performance. Furthermore, the logical tree
is built on demand based on the hybrid tree. To transform the hybrid node structure to
a completely logical structure, we still require binding information. See the metriculator
documentation [met11a] for further details.

The solution is described in the following paragraphs. The idea is particularly to process
the bindings of a translation unit [cpp11, paragraph 2.1.1] and release all references to
binding instances after the translation unit has been processed.

4.2.2.2. Merging of Declarations and Definitions in the Hybrid Tree

As of the end of the semester thesis all the binding information of the indexer for the
declarations and definitions of functions as well as types were stored in NodeInfo objects
associated to the hybrid tree nodes. As soon as a definition of a declaration was found
in the same scope during the analysis, the declaration was removed and replaced by the
definition. All the bindings have been saved during the static analysis and were also
needed after the analysis to build the logical tree.

The merging of declarations and definitions now takes place at the end of a transla-
tion unit. After the analysis of a translation unit all the bindings of declarations and
definitions in the same scope are collected and resolved. Thus, all bindings of the nodes
in a translation unit can be released at the end of the translation unit analysis.

4.2.2.3. Merging of Members in the Logical Tree

The merging of the members of a type is based on the binding that contains the owner
hierarchy information. To determine the owner of a node, the binding is used to build
a logical owner name. Up to now the logical owner name was built on demand when
the logical tree was built. That is why the binding was still needed after the code analysis.

The logical owner name is now built directly after the creation of the node, which means
that the binding is no longer needed to build the logical tree.
The concept of string based identifiers for nodes in a tree structure has already been im-
plemented in the hybrid tree using hybrid ids. See metriculator documentation [met11a]
section 4.2.2.1. The refactoring allowed us to consequently implement the same concept
for logical trees.

4.2.2.4. Merging of Declarations and Definitions in the Logical Tree

Up to now the binding information were located in the node and were used to determine
the bindings of declarations and definitions. But now it is no longer possible to get the
binding at the time the logical tree is built.

June 15, 2012 73

4. Metriculator Performance

The merging is currently based on the logical owner name and the logical name of
the node. The logical owner name determines the scope where the merging takes place
and the logical name is used to find the definition for the declaration. Both names were
extracted from the binding after the creation of the node.

4.2.2.5. Removing the AST Bindings

The merging of function declarations and definitions is based on index bindings. Merging
type declarations and definitions in contrast is based on AST bindings. We completely
removed the AST bindings by replacing them with index bindings. These changes caused
some errors, which are further described in the open issues section 4.2.3.
This improvement massively decreased the memory consumption as illustrated in figure
4.4, but it did not change the running time of the analysis.

Figure 4.4.: Memory consumption before (left) and after (right) removing the AST bind-
ings. The analysis on the right requires about one third of the memory in
comparison.

4.2.3. Open Issues

After the performance has been improved as described in section 4.2.2, we started to
further refactor the source code to get rid of the AST bindings entirely. This refactoring
further decreased the heap space allocation, hence, analysing doom [doo12] was not a

June 15, 2012 74

4. Metriculator Tag Cloud - Dealing with Large Data Input

problem any more (see [met11a] bug #222). Unfortunately, now our tests related to
anonymous namespaces failed. We recognised that it is not possible to build the logical
owner name based on an index binding the same way we did it before based on an AST
binding. This is due to regarding anonymous namespaces, index bindings do not behave
the same as AST bindings. AST bindings contain information from the AST and the
indexer. The lack of the AST information in index bindings prevented us to generate
the logical owner name if anonymous namespaces were in place.

Therefore, instead of building the owner name by ourself, we started to use a helper
method from the CDT parser (CPPVisitor.findNameOwner) that handles anonymous
namespaces correctly. However, using this helper method almost doubled the running
time of metriculator. Therefore, we decided to discard the helper method approach for
this thesis. Further work is required to support anonymous namespaces while maintain-
ing the current performance. We think that low memory consumption and fast running
time is more important than the correct merging of declarations and definitions within
anonymous namespaces in the logic tree of metriculator. The hybrid tree is not affected
by that decision. It only affects the logical tree nodes hierarchy and values if they contain
anonymous namespaces.

4.3. Tag Cloud - Dealing with Large Data Input

The tag cloud component which is based on the cloudio project [zes11] has difficulties to
render a tag cloud when there are many words to place in the cloud. More specifically,
the bigger the weight span from minimum to maximum weight is, the more frequently
it fails. The error is shown to the user. This is not an issue of metriculator but a bug
in the tag cloud component. There is no bug report yet, but the author is aware of
the bug and will soon fix it. Since the tag cloud component is an optional feature of
metriculator, this bug is not critical for this thesis.

4.4. Composite Update Site

We originally intended to set up a composite update site because we wanted to simplify
the installation process. Up to now, users had to manually install the zest framework and
the CDT, prior to the installation of metriculator. We thought that using a composite
update site will resolve that problem in order that Eclipse will be able to automatically
resolve all dependencies.

The plug-in separation that moved the tag cloud component as optional feature into
its own plug-in, lowered the importance to provide a composite update site. Because
the ability to automatically install zest in the same step as installing metriculator was
the main motivation to introduce a composite update site. People that want to use
metriculator most likely have CDT already installed.
Users that just want to install metriculator can do this by using the normal update site
experiencing a fast and simple installation process. The optional tag cloud feature can
be installed from the same update site at a later time if desired. However, to install the

June 15, 2012 75

4. Metriculator Design Changes

tag cloud feature, users still require the zest framework, which has to manually installed
in advance.

4.5. Design Changes

The software design of metriculator has been changed for various reasons. Each sub
section describes the motivation and consequence of the design changes.

4.5.1. Tag Cloud Extraction

As of the end of the semester thesis the tag cloud component was integrated into the
metriculator plug-in. After we published the plug-in, different people proposed to make
the tag cloud component an optional feature of metriculator. We have already considered
this as well during the semester thesis. Based on our schedule and priorities we decided
to not separate it immediately. But now, since we published metriculator in the cdt-dev
mailing list and other people shared their opinions about the tag cloud, we decided to
make it an optional feature [cdt]. Overall, this decision was taken based on the following
issues:

• The zest tag cloud component has some issues with large input data. This is-
sue has already been discovered in the semester thesis. See section 4.3 for more
information.

• Before installing metriculator, users have to install the zest framework manually.
See [met11a] Appendix C for the installation manual.

4.5.1.1. Component Design

Figure 4.5 illustrates the new design. The tag cloud related classes are moved to a new
plug-in so that metriculator does no longer has dependencies on zest. The tag cloud
component uses the view menu contribution extension point [vie12] provided by Eclipse
to register itself as a contributor of the metriculator view. metriculator automatically
detects if the tag cloud component is installed and based on that toggles the tag cloud
commands on the user interface.

June 15, 2012 76

4. Metriculator Design Changes

Figure 4.5.: The metriculator component has no dependencies to the zest.cloudio compo-
nent. The metriculator.tagcloud component registers itself in metriculator
to place a command in the table context menu.

4.5.1.2. Consequence

Because the tag cloud component is extracted to a separate feature, metriculator is no
more dependent on the zest framework. This simplifies and shortens the installation
process of metriculator because users do not have to install the zest framework in ad-
vance. The tag cloud component can be installed in a second step if desired. However,
before doing so the zest framework has to be installed separately in advance.

4.5.2. NodeInfo Refactoring

This design change is not directly related to a requirement defined in section 4.1. This
refactoring changed the NodeInfo and AbstractNode class hierarchies used in metricu-
lator. Its purpose was to eliminate some design flaws, which are outlined below. The
improved design provided us by determining and solving the performance issues de-
scribed in section 4.2.2.

As of the end of the semester thesis, the AST related information of the classes in
the AbstractNode composite hierarchy [GHJV95] were encapsulated in the NodeInfo
class as illustrated in figure 4.6. NodeInfo had several constructors, each associated with
a specialised node of AbstractNode. The specific data and logic of the classes from the
AbstractNode hierarchy were held and implemented in the large class NodeInfo [FM05].
For further information about the AbstractNode hierarchy, see the metriculator docu-
mentation.

June 15, 2012 77

4. Metriculator Design Changes

The NodeInfo refactoring was mainly performed in two steps. The first step was about to
introduce a NodeInfo hierarchy that resulted in the AbstractNodeInfo hierarchy 4.7. The
second step was about to merge the AbstractNodeInfo hierarchy and the AbstractNode
hierarchy that resulted in an improved AbstractNode hierarchy 4.8. The motivations
and consequences of this refactoring process are described in detail in the following
paragraphs.

Figure 4.6.: AbstractNode composite hierarchy with AST related information stored in
NodeInfo. Every node holds a NodeInfo reference. The logical classes im-
plement the ILogicNode marker interface.

4.5.2.1. Consequences - AbstractNodeInfo Hierarchy

To counteract the data clumps and large class smells [FM05] of NodeInfo we introduced
a NodeInfo hierarchy as illustrated in figure 4.7. The specific classes of the AbstractNode
hierarchy are now associated with the specific classes of the AbstractNodeInfo hierarchy.
This new design approach increases the cohesion of the nodes and its information as
well as it improves the separation of concerns. The data and logic of the AbstractNode
hierarchy are now encapsulated in the associated AbstractNodeInfo specialisation classes.

This refactoring results in two almost parallel inheritance hierarchies [FM05], the Ab-
stractNode and AbstractNodeInfo hierarchy with the following associated classes:

The remaining classes of the AbstractNode hierarchy do not have any AST related in-
formation and thus no associated classes in the AbstractNodeInfo hierarchy.

June 15, 2012 78

4. Metriculator Design Changes

AbstractNode AbstractNodeInfo
AbstractNode AbstractNodeInfo
FileNode
FolderNode

FileSystemNodeInfo

ILogicNode LogicalNodeInfo
FunctionNode FuncDeclNodeInfo

FuncDefNodeInfo
CompositeTypeNode TypeDeclNodeInfo

TypeDefNodeInfo
NamespaceNode NamespaceNodeInfo

Table 4.2.: Class association mismatch between AbstractNode and AbstractNodeInfo
hierarchy.

Figure 4.7.: AbstractNodeInfo hierarchy with AST related information distributed in
specialised NodeInfo classes. Every class of the AbstractNode hierarchy is
associated with a class of the AbstractNodeInfo hierarchy. The abstract
class LogicalNodeInfo contains the shared logic and data of the logical AST
information. The abstract class MemberNodeInfo contains the shared logic
and data of the specific function and type information of the AST. The
NullNodeInfo serves for test purposes only, where no AST infos are required.

As already mentioned, the AbstractNodeInfo classes encapsulate the AST related in-
formation of the specific classes of the AbstractNode hierarchy. Each AbstractNode
derivative uses a specialised AbstractNodeInfo instance to manage AST related infor-
mation. As depicted in the Table 4.2, some AbstractNode derivatives relate to more
than one AbstractNodeInfo specialisation. This is because up to now the AbstractNode

June 15, 2012 79

4. Metriculator Design Changes

hierarchy does not reflect the AST hierarchy of CDT but the AbstractNodeInfo hierarchy
does. This inconsistency in design complicates the usage of AbstractNode instances. For
instance, to distinguish whether an AbstractNode instance represents a function decla-
ration or function definition node, we first need to get the associated AbstractNodeInfo
instance of the AbstractNode.

4.5.2.2. Consequences - Improved AbstractNode Hierarchy

To improve the quality of the design of metriculator and its AbstractNode hierarchy
we restructured the AbstractNode hierarchy as illustrated in figure 4.8. This improved
AbstractNode hierarchy allows to merge the whole AbstractNodeInfo 4.7 hierarchy into
the AbstractNode hierarchy and thus increases the cohesion of the AbstractNode classes
and its AST related information.
The AST related information are now placed directly into the AbstractNode and its
specialised classes which makes the AbstractNodeInfo classes needless. A further benefit
of the merged hierarchies is that the NullNodeInfo [GHJV95] is no longer needed be-
cause all AbstractNode classes can be instantiated without any AST related information
required. This simplifies unit testing because not all tests require AST information, for
instance model and tree builder tests.

June 15, 2012 80

4. Metriculator Design Changes

Figure 4.8.: Improved AbstractNode composite hierarchy - The abstract classes (Ab-
stractNode, LogicalNode, MemberNode, FunctionNode, TypeNode) of this
hierarchy contain the shared logic and data of its specialised classes. The
other classes represent the specific classes of the AST, except of the Edi-
torInfo class. EditorInfo encapsulates information of the AbstractNodeInfo
class required by Eclipse to show the node location in a source code editor
and information to required to report problems.

4.5.2.3. Consequences - Improved AbstractNode Hierarchy - Merging
Details

Looking at the differences between the improved AbstractNode hierarchy and the late
AbstractNode hierarchy (figure 4.9) with its associated AbstractNodeInfo classes, we see
that AbstractNodeInfo has a lot of methods that should have been moved to specialised
classes. Since we merged the AbstractNodeInfo implementation into the AbstractNode
class it is now possible to move all AbstractNodeInfo methods to specialised AbstractN-
ode classes, as illustrated in the figures 4.9 and 4.10. Most of the data and logic of
AbstractNodeInfo were pushed down in the AbstractNode hierarchy to the classes where
they belong to, as illustrated in the class diagram in figure 4.11 showing only classes that
represent logical nodes.

June 15, 2012 81

4. Metriculator Design Changes

Figure 4.9.: AbstractNodeInfo hierarchy - This figure shows the upper part of the hier-
archy without the specialisations of LogicalNodeInfo, see figure 4.7 for the
whole class diagram. The specialised classes of AbstractNodeInfo override
the default implementation of AbstractNodeInfo if required. Therefore, the
specialised classes often refuse their bequest [FM05] which is not a very good
design and leads to ugly and confusing code.

Figure 4.10.: AbstractNode hierarchy - This figure shows the upper part of the hierar-
chy without the specialisations of LogicalNode, see figure 4.8 for the whole
class diagram. In comparison to the class diagram of the AbstractNode-
Info hierarchy in figure 4.9, these classes only implement what they are
responsible for. There is no unnecessary default implementation neither a
NullNodeInfo class for test purposes.

June 15, 2012 82

4. Metriculator Further Improvements

Figure 4.11.: AbstractNode hierarchy - This figure shows the lower part of the hierarchy
with the logical nodes. As already mentioned in figure 4.10 it is now a
proper design.

4.6. Further Improvements

This section describes further improvements that were applied to metriculator. They are
not part of the objectives or requirements but refer to open issues that will be fixed at a
later time. Each improvement is associated to an issue number in our Redmine project
[met11a].

4.6.1. GUI Guidelines

As part of the preparation to commit metriculator to the CDT (#180), we checked the
Eclipse guidelines [ecl12] and figured out that metriculator does not have a view menu
that contains all commands from its toolbar, guideline 6.10, issue #195.
To fix this we simply added a view menu and added the commands of the toolbar also
to the view menu.

June 15, 2012 83

4. Metriculator Unit Testing

4.6.2. Minor Bug Fixing

The following bugs were fixed. They have less priority since they are not subject of the
requirements.

Extra Column At the End Issue #116. metriculator displays the metric values in columns.
Each metric has its own column. Depending on the view mode the jface TreeViewer
or TableViewer component is used [jfa12]. On Unix based systems these compo-
nents stretch the last column to fill the remaining space of the control, in contrast
to Windows based systems where the last column behaves the same as all other
columns. On large screens the metric values in the last column are separated con-
fusingly far right as illustrated in figure 4.12.
To overcome this issue, we added one extra column at the end that automatically
fills up the remaining horizontal space.

Figure 4.12.: The jface TreeViewer and TableViewer components stretch the last column
to fill the remaining horizontal space.

Number of Rows Issue #211. This is a small enhancement contributed to the filter
views. The first column header shows the number of rows displayed in the table.
This allows the user to easily see the number of analysed files, functions, types or
namespaces.

4.7. Unit Testing

The unit tests can be divided into three categories: model, tag cloud and checker test
cases. The model and checker test cases are part of the test suite that is executed by
the continuous integration server (CI-server) on every push to the VCS. The checker
test cases require the CI-server to support headless builds. Headless builds run without
an Eclipse UI. This build system is provided by the Eclipse PDE (Plug-in Development
Environment) in conjunction with Maven [mav11]. Read more about the test set up in
the metriculator documentation [met11a, Appendix A.6.2].

Model Tests to verify that the nodes, tree builders and tree visitors work correctly. The
tree builder tests rely on the test infrastructure provided by Codan. See section
4.7.1 for further information. All other model tests do neither require Eclipse nor
Codan to run.

Checker Tests to verify that the checkers of metriculator produce correct metric values.

June 15, 2012 84

4. Metriculator Unit Testing

The checker tests require the Codan test infrastructure to run. See section 4.7.1
and 4.7.2 for further information.

Tag Cloud The tag cloud tests have no assertion rules at all. Neither are they part of
the test suite. They just simplify to start and test the tag cloud component within
Eclipse.

For further details about unit testing and test coverage see the metriculator documen-
tation [met11a, Appendix B.4].

4.7.1. Codan Test Infrastructure

Codan provides a test infrastructure that allows each test method to be fed with a piece
of C++ source code. The source code is placed above the test method as comment.
This feature is available by extending the CodanTestCase class.
Codan offers different ways to process the source code in comment. We use two different
variants. One variant loads the code without indexing it, the other loads the code and
runs the indexer. Both variants are conceptionally illustrated in the listings 4.2 and 4.3
respectively.

/* code to be tested */
public void testXXX (){

loadCodeAndRun (getAboveComment ()); // runs the code above without
// building the Index

/* test logic */
}

Listing 4.2: Sample test method that does not run indexer on method comment.

/* code to be tested */
public void testXXX (){

loadcode (getAboveComment ());
runOnProject (); // runs the code above with building the Index

/* test logic */
}

Listing 4.3: Sample test method that runs indexer on method comment.

4.7.2. Checker Tests

For checker test cases, we extend the CheckerTestCase class, so that the source code in
comment is analysed by the checker under test. Listing 4.4 shows a real world checker
test method used in metriculator.

June 15, 2012 85

4. Metriculator Unit Testing

// #if a <0
// # endif
public void testPreprocessorIfStatement (){

loadCodeAndRun (getAboveComment ());

assertEquals (2, workspaceNode . getValueOf (metric). aggregatedValue);
}

Listing 4.4: Checker test method that verifies the McCabe value calculated by the Mc-
CabeMetricChecker. The workspaceNode is an AbtractNode instance that
is the root of the hybrid tree builder, created in the setUp-method.

4.7.3. Indexer Based Tests

Some model tests require indexer information to work correctly, e.g. merging of types
and functions. Codan provides a way to run the indexer on the source code in method
comments (Listing 4.3). Listing 4.5 shows a real world example of an indexer based test
used in metriculator. For further information about function merging see section 4.2.2.

// namespace Outer { // at depth 0
// namespace {
// struct A {
// void fx ();
// };
// void A:: fx (){}
// }
// }
public void testNestedAnonymousNamespaceMemberMerging (){

loadcode (getAboveComment ());
runOnProject ();

root = MetriculatorPluginActivator . getDefault (). getLogicTreeBuilder (). root;

// only Outher present
assertEquals (1, root. getChildren (). size ());
// only struct A present
assertEquals (1, getFirstChildInDepth (root , 1). getChildren (). size ());
// only one child in A present
assertEquals (1, getFirstChildInDepth (root , 2). getChildren (). size ());
// the only child in A is a function definition
assertTrue (getFirstChildInDepth (root , 3) instanceof FunctionDefNode);

}

Listing 4.5: Real world example test method that runs indexer on method comment.
The indexer information is required to replace the declaration of fx() with
its definition in the logic tree.

he idea behind namespactor is to provide a tool that simplifies and accelerates working
with names

June 15, 2012 86

Statement of Authorship

Wir erklären hiermit,

• dass wir die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt haben,
ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit
dem Betreuer schriftlich vereinbart wurde,

• dass wir sämtliche verwendeten Quellen erwähnt und gemäss gängigen wissenschaftlichen
Zitierregeln korrekt angegeben haben.

• dass ich/wir keine durch Copyright geschützten Materialien (z.B. Bilder, Mess-
daten) in dieser Arbeit in unerlaubter Weise genutzt habe(n).

Ort, Datum:

Ueli Kunz, Name, Unterschrift:

Julius Weder, Name, Unterschrift:

87

A. Environment Set up

This appendix describes the hardware and software components that support us in reach-
ing our project goals. We give detailed installation and configuration instructions and
highlight problem areas to be aware of when setting up a similar environment.
Where possible we use the same set up in this bachelor thesis as we used in the semester
thesis [met11a].

A.1. Hardware

We use a virtual server to host different kinds of software that support us in our daily
project tasks. The virtual server is hosted by the HSR. We have full root access and can
connect to the server by VPN if we are outside of the HSR-LAN. The server runs with
Ubuntu 10.04 TLS on 1GB RAM. The host name is sinv-56013.edu.hsr.ch.

A.2. Project Management Software

Our Redmine instance is publicly and read only available at http://tiny.cc/namespactor.
For further details see [met11a].

A.3. Version Control System, Git

To support our file version management we decided to use Git. The latest release at the
start of our project was version 1.7.6. For further details see [met11a].

A.4. Development Environment

The plug-in was developed in Eclipse Indigo using the plug-in development environment
(PDE) plug-in. To test namespactor we use self written C++11 source code and the
CDTTesting framework [Fel12]. To force the compiler to build according to the C++11
standard add the -std=gnu++0x flag to the following field: Project Properties > C/C++
Build > Settings > GCC C++ Compiler > Miscellaneous > Other flags.

89

http://tiny.cc/namespactor

A. Environment Set up Build and Deployment Automation

A.5. Build and Deployment Automation

The CDT project supports ant and Maven as build automation platform. We use Maven
(in contribution with Tycho version 0.14.1) because it seemed a lot easier to maintain
than ant and has already been used in recent projects at HSR as well as in some CDT
projects.
The metriculator plug-ins are deployed as nightly and stable builds. namespactor is only
available as nightly build because it has not been made public yet. Take a look at our
Jenkins server to access the builds [jen12].

A.5.1. Maven XML Configuration

Maven uses pom.xml for build instructions. We have one pom.xml in the root directory
of all Eclipse projects (root pom) and one in each subdirectory (project pom). All pom
files are checked-in to the VCS as well. The pom files used for namespactor are very
similar to the ones used in the semester project, see [met11a] for more details.

A.6. Testing Eclipse CDT Refactoring Plug-ins

When developing a C++ refactoring plug-in, the refactoring can be manually tested
in Eclipse. This is a very time consuming and inefficient approach. To follow a test
driven development cycle [Bec03] it is best to have a tool that allows to automatically
execute tests, this also applies to refactorings. Our test suite is built upon the recently
announced CDTTesting plug-in created by the IFS [Fel12].

A.6.1. CDTTesting Framework

The CDTTesting plug-in simplifies writing and running JUnit4 tests for CDT plug-ins.
It is based on the RTS framework that has already been used in other theses to create
automated refactoring tests (e.g. [MI10]). The RTS framework is integrated into CDT.
A good description of it can be found at [MI10]. The CDTTesting Eclipse plug-in is
available from http://dev.ifs.hsr.ch/updatesites/cdttesting/. The set up of the plug-in
is described in appendix C.

A.6.1.1. Plug-in Concepts

This paragraph explains the features of the CDTTesting plug-in which encapsulates the
RTS framework and how the plug-in is intended to be used. In contrast to plain RTS
tests the plug-in provides the following benefits:

• Parametrised JUnit4 test cases that allow to re run single unit tests (i.e. RTS test
cases)

June 15, 2012 90

A. Environment Set up Testing Eclipse CDT Refactoring Plug-ins

• Complete set up of the CDT index prior to test case run

• External include paths (e.g. the STL is by default not available in CDT tests)

• Dependencies to other projects and files in other projects

The diagram in figure A.2 illustrates the basic concepts in a CDTTesting plug-in envi-
ronment. A JUnit4 test suite class may be used to run multiple JUnit4RTSTest test
cases. The CDTTesting plug-in associates each Java test case class with one RTS file.
By default the RTS file of a test case class is looked up at predefined location. The
default location is defined in listing A.1 and illustrated by an example project in figure
A.1.

<plug -in_root >/< extension - point_sourceLocation >/ \
<test -case - class_package -appendix >/<test -case - class_name >. rts

Listing A.1: Default lookup location of an RTS file by a given test case class. Where
extension-point_sourceLocation is the extension points property value de-
fined in the plug-in xml and test-class_package-appendix is the fully qual-
ified package name of the test case class trimmed by the fully qualified
package name of the activator class of the test project.

Figure A.1.: Eclipse test project using the CDTTesting plug-in. The name of the RTS
file is the same as the class name of the JUnit4RtsTest test class. The
path of the RTS file is derived from the package name of the test class as
illustrated by the highlighted names.

June 15, 2012 91

A. Environment Set up Testing Eclipse CDT Refactoring Plug-ins

Figure A.2.: Concepts related to the CDTTesting plug-in and the RTS framework
respectively.

RTS files have an own syntax. The syntax is described at [MI10]. Figure A.3 shows
how the abstract concepts of figure A.2 map to a sample RTS file. A RTS file contains
test case definitions. Each test case defines one or more test files that are part of the
test. A test file is divided into two sections: the expected source and the original source
section. The expected source section is optional for files not expected to be changed by
the refactoring.
A test case can have a config section with custom attributes. For example, in names-
pactor we introduced the attribute skipTest to indicate that JUnit4 should not run the
test. This way we can commit draft versions of test cases or test cases for bug resolutions
that are in progress without producing build failures.

June 15, 2012 92

A. Environment Set up Testing Eclipse CDT Refactoring Plug-ins

Figure A.3.: Concepts of the RTS framework mapped to a RTS file.

A.6.1.2. RTS Editor Outline

There is a special editor for RTS files. The editor does syntax highlighting and features an
outline view. The editor can be downloaded from http://sinv-56013.edu.hsr.ch/rts_editor.zip.
To install, just extract the zip into the root folder of your Eclipse installation.

Figure A.4.: Screenshot of the RTS editor and its outline view.

June 15, 2012 93

A. Environment Set up AST Rewrite Store

A.6.1.2.1. RTS Test File and Selections In RTS tests, the text selection (defined
by /*$*/.../*$$*/) has to be in the first RTS test file of a RTS test. The RTS API
provides access to an ITranslationUnit instance. In test mode this is always linked to
the first file in your RTS test definition. Therefore, to get the selection and its underlying
AST node you have to place the file with the selection on top of your RTS test (after
the optional config section).

A.7. AST Rewrite Store

The AST rewrite store is the name of a set of classes that simplifies creating AST
rewrites. The ASTRewriteStore wrapper class allows to add insert, remove and replace
changes. The class stores all rewrites created during a refactoring process and selects
the appropriate one for the current change, by considering the rewrite root of a change.
If a change creates a new rewrite, it is saved inside the store for further usage.
Although the AST rewrite store simplifies creating AST rewrites a lot, some limitations
still exist. For instance, nested AST rewrites are not possible. But this is not a limitation
of the AST rewrite store but the underlying framework. For more information read the
documenation of the author at [tur] section 4.3.1.

A.8. DOM AST View

The DOM AST view is an Eclipse view that outlines the AST of the active document
in a tree view (figure A.5). It was first announced by Devin Steffler in the cdt-dev
mailing list in 2005 [Ste05]. Because there is no update site, we published the plug-in
at http://sinv-56013.edu.hsr.ch/DOMASTView.zip. To install, extract the zip into your
Eclipse workspace root and add the location ${workspace_loc}/testing-project to your
target definition.

June 15, 2012 94

A. Environment Set up DOM AST View

Figure A.5.: Screenshot of the DOM AST view.

June 15, 2012 95

B. Terminology

This terminology mainly applies to namespactor related content. As long as not other-
wise noted, this thesis respects the grammar of the C++11 standard [cpp11].

• For better understanding and to prevent confusion, listing B.1 illustrates the gram-
mar description of the C++11 standard for namespace specifiers.

• To simplify reading we introduce the term name specifier that is used instead of
nested-name-specifier or namespace-name.

• A qualified name is called fully qualified if it starts with the scope resolution
operator :: .

• The C++11 standard distinguishes between name and identifier although they
mean almost the same: identifier is used for describing the grammar of the lan-
guage and name is used in descriptions where no grammar is included. We use the
term name.

• The term namespace using declaration is shorten to using declaration, since this
thesis focuses on namespace using declarations, not class member using declara-
tions.

namespace A {
namespace B {

void f();
};

};

//A unqualified -id -> unqualified
// ::A no nested -name - specifier -> fully qualified
//A::B namespace -name: A:: -> qualified
// ::A::B namespace -name: A:: -> fully qualified
//A::B::f nested -name - specifier : A::, namespace -name: B:: -> qualified
// ::A::B::f nested -name - specifier : A::, namespace -name: B:: -> f. qualified

Listing B.1: Terminology of names often used in the analysis section of the namespactor
chapter.

96

C. CDTTesting Plug-in Set up

C.1. Quick Start

To set up the CDTTesting plug-in [Fel12] to get started quickly you can just import the
existing example project:

1. Add http://dev.ifs.hsr.ch/updatesites/cdttesting/ as location to your target defi-
nition. Update the location and reset the target platform.

2. Download the zip from the CDTTesting source repository [Fel12].

3. Create a new empty Java project.

4. Extract the zip to any folder.

5. In Eclipse, choose File > Import > Plug-ins and Fragments. Import from the
directory you just extracted to. Import as Project with source folders.

6. Add the example project to be imported and start the import.

C.2. Set up for Refactoring Tests

To set up the CDTTesting plug-in [Fel12] to test refactorings follow these steps:

1. Add http://dev.ifs.hsr.ch/updatesites/cdttesting/ as location to your target defi-
nition. Update the location and reset the target platform.

2. Download the zip from the CDTTesting source repository [Fel12].

3. Create a new empty Java project.

4. Paste the folder externalTestResource from the downloaded zip into the test project
root.

5. Create a class that serves as base for all refactoring test cases. Place it in the root
package (e.g. ch.hsr.ifs.cdt.namespactor.rtstest). It extends the JUnit4RtsTest
base test case. Since the CDTTesting plug-in is designed to help building test
suites for CDT plug-ins in general, this extension is required to create a specialised
refactoring test case base class. The source is available at [nam].

6. Add a test suite class to the project (e.g. in package ch.hsr.ifs.cdt.namespactor.rtstest).
That is just a normal Java class annotated with @RunWith(Suite.class) and @Suit-
eClasses(Class<?>...).

97

C. CDTTesting Plug-in Set up Set up for Refactoring Tests

7. Create a package for your Java test classes (e.g. ch.hsr.ifs.cdt.namespactor.rtstest.tests).

8. Add the following xml to the plugin.xml of your test project:

<extension point ="ch.hsr.ifs. cdttesting . testingPlugin ">
<testResouresLocation sourceLocation ="/ resources /" \

activatorClass ="ch.hsr.ifs.cdt. namespactor . rtstest . Activator "/>
</ extension >

Listing C.1: Registration at the extension point of the CDTTesting plug-in.

sourceLocation is the project relative path to the root directory where your RTS
files reside.

activatorClass is the fully qualified name of the plug-in activator class of your test
project.

9. Create the folder resources (previously specified as sourceLocation) in your project
root.

10. Create a sub folder called tests (according to the package name suffix where the
test classes reside).

11. Create a test class SampleTest, that extends the created test case base class, in
the package ch.hsr.ifs.cdt.namespactor.rtstest.tests.

12. Create a RTS file at /resources/tests/SamplteTest.rts

Now you are ready to define RTS tests in the created SampleTest.rts file and run the
test with JUnit4 by running the created test suite.

June 15, 2012 98

D. IUDIR Refactoring - Indexer
Implementation

The IUDIR implementation has the most complex algorithm of all inline refactorings.
The IUDEC refactoring is similar to the IUDIR refactoring, hence, both follow the same
basic algorithm, which is shown as pseudo code in listing D.1. The QUN refactoring
is much more simpler, because only one name is affected, see section 3.3.6.6 for more
details.
This chapter describes the outdated IUDIR refactoring implementation using an indexer
lookup algorithm, see section 3.3.5 for more details on the different lookup algorithms.
For a description of the new hybrid based IUDIR refactoring implementation see section
D.

selectedUsing = getSelectedUsing (selection);
sourceDeclaration = getDeclarationOf (selectedUsing); // e.g. namespace def.
usingScope = getScopeOf (selectedUsing);
candidates = findReferencesOf (sourceDeclaration);
candidates = filterByScope (candidates , usingScope);
candidates = filterValid (candidates);
inlineDeclarationName (candidates , sourceDeclaration);

Listing D.1: Pseudo code for the IUDIR and IUDEC algorithms.

The sequence diagram in figure D.1 summarises the checkInitialConditions algorithm of
the IUDIR refactoring. IUDEC and QUN only implement sub steps of this algorithm,
see 3.3.6.5 and 3.3.6.6 respectively. Below, each method shown in the sequence diagram
is explained.

checkInitialConditions This method is invoked by the LTK framework prior to show the
refactoring wizard. If the returned refactoring status contains an error the wizard
is not shown, instead the error is displayed to the user. See section 3.3.2 for more
details.

getSelectedUsing Gets the selected using directive. It uses a visitor to visit all decla-
rations within the active IASTTranslationUnit and returns the one that is within
the offsets of the active text selection provided by Eclipse. If null is returned, no
using directive is selected and the user is notified appropriately.

findCompoundStatementInAncestors Recursively traverses the AST upwards, starting
at the selected using directive, until an IASTCompoundStatement is found, if not,
null is returned. The compound statement is required to validate if a candidate
reference node is in the same scope as the originating using directive where the

99

D. IUDIR Refactoring - Indexer Implementation D. IUDIR Refactoring - Indexer
Implementation

refactoring was initiated from. See method isChildValid. If no compound is re-
turned, the IASTTranslationUnit is used as scope.

findChildrenBindingsRecursive The insides of this method are described in detail in
appendix D.1. It basically collects all declaration bindings within the namespace
referred to by the selected using directive.

processNamespaceDefinitions For each IASTNamespaceDefiniton in the map built in
the findChildrenBindingsRecursive method (see D.1), this method sets the active
NamespaceInlineContext (figure D.2) and calls processNamespaceChildren.

processNamespaceChildren This method simply iterates over all children bindings of
the active NamespaceInlineContext (figure D.2) and invokes the processChildRef-
erences method for each child.

processChildReferences All references of the given child are iterated over and validated.
If valid, the child reference is handed over to the method processReplaceOf.

isValidChild This method validates the reference instance. It returns true if the name
of the referencing node should be changed. A node is invalid if it is:

• an implicit operator call. See section D.2.1 for more details.

• or not within the scope of the selected using directive. See method findCom-
pountStatementInAncestors.

• or already qualified with a trailing name of the using directive. E.g. inlining
A::B on a name that is already qualified with B is not required.

getNodeOf This method returns an IASTNode instance for a given IIndexName. This
method is associated with an open issue, see 3.4.1 for more details.

processReplaceOf Creates a replace change and a remove change in the ASTRewrite-
Store (see appendix A.7 for more information). The given IASTName instance
will be replaced by its qualified version and the selected using directive will be
removed. See section 3.3.4 for more details on how names are built.

June 15, 2012 100

D. IUDIR Refactoring - Indexer Implementation Finding References Recursively

Figure D.1.: Sequence diagram illustrating the IUDIR checkInitialConditions implemen-
tation. The checkInitialConditions method is called from the LTK frame-
work before the refactoring wizard is shown. See section 3.3.2 for more
details on LTK.

D.1. Finding References Recursively

The following explanation relates to the code in listing D.2. A using directive (A) intro-
duces all names of a namespace into the scope where it is placed in. If the introduced
namespace contains another using directive (B) these names are also introduced. On the
other hand, if using directive A is removed, all the names introduced by it are no longer
valid without qualification, this also applies to names introduced by the nested using
directive B. Therefore, when inlining using directive A, also the names, in the scope of
using directive A, introduced by using directive B, must be qualified. See paragraph
3.1.3.4.4 in the Analysis section for more on nested using directives.
To find all potential names that must be inlined, the IUDIR algorithm works recursively.
In the AST, all children of a namespace definition are declarations. First, all declaration
names in the namespace definition, referred to by the selected using directive, are col-
lected as potential names. The same is recursively repeated for any using directive that
is a direct child of the referenced namespace definition. These names are the output of
the algorithm (see method findChildrenBindingsRecursive in figure D.1). They will be
further processed in a next step, where all references of all names are collected. These
references are than filtered and will finally be qualified if required. For example, one
filter is the indexer scope filter, see paragraph 3.3.6.7.1 for more details.
The recursive search algorithm uses a context object with information about the cur-

June 15, 2012 101

D. IUDIR Refactoring - Indexer Implementation Finding References Recursively

rently searched scope, i.e. a namespace definition, and a collecting parameter object to
store all found names. Both objects are encapsulated within the NamespaceInlineCon-
text class, see figure D.2.
One namespace (name) can be defined multiple times within the same translation unit,
all definitions having the same IBinding. For instance, namespace A may be defined in
file A.cpp and in file B.cpp. The recursive search algorithm collects the declarations in
both definitions. To gather all declarations the algorithm uses a map (NamespaceIn-
lineContextMap) with the key being a namespace definition and the value a Names-
paceInlineContext, see figure D.2.

Figure D.2.: Class diagram of the NamespaceInlineContext class and companions
used in the recursive search algorithm of the IUDIR refactoring im-
plementation. The NamespaceInlineContextMap class is an adapter
[GHJV95] for the generic type Map<ICPPASTNamespaceDefinition,
NamespaceInlineContext>.

June 15, 2012 102

D. IUDIR Refactoring - Indexer Implementation Open Issues

// file A.cpp
include "B.cpp"
namespace A{ // merged with definition in B.cpp , same IBinding

struct SA{ // collected name
struct SSA {}; // not collected

};
namespace AA {} // collected name

}

int main (){
using namespace A; // UDIR A, apply inline refactoring here
SA sa (); // qualified with A
SB sb (); // qualified with A
SB2 sb2 (); // qualified with B
return 0;

}

// file B.cpp
namespace B{

struct SB2 {}; // collected name
}
namespace A{

using namespace B; // UDIR B. starts recursive search of B
struct SB {}; // collected name

}

Listing D.2: Foundation snippet for the explanation of the recursive search algorithm of
the IUDIR implementation.

D.2. Open Issues

The indexer based IUDIR refactoring implementation has the following open issues.

D.2.1. Qualification of Implicit Operator Call

As illustrated in listing D.3, operator calls may also be affected by the IUDIR refactor-
ing. Finding references of the operator definition in namespace OP is not a problem.
Both calls inside the main method are found.
In the AST, these two calls are represented very differently, as illustrated in figure D.3.
The explicit operator call (operator «(cout, s)) uses names to represent the operator.
But the implicit call (cout « s) is represented using a binary expression. Using IASTN-
odeSelector.findNode(int offset, int length) for the reference node («) of the second call
throws a NullPointerException.
namespactor currently ignores implicit operator calls and does not qualify them. In the
listing below this results in a compilation error, because the argument dependent name
lookup (ADL) does not work here, since no matching operator can be found in one of the
namespaces of the argument types (A::ostream and A::string). The refactoring wizard
shows a warning to notify the user about this circumstance, see figure D.4.
If the operator were defined in A, the code in listing D.3 would also work after only
inlining the explicit operator call, because the ADL works. One solution to solve this

June 15, 2012 103

D. IUDIR Refactoring - Indexer Implementation Open Issues

problem, might be to first transform the implicit operator call into an explicit operator
call which than can be qualified.

namespace A{
class string {
public :

string (char *){ }
};
class ostream {};

}

namespace OP{
A:: ostream & operator <<(A:: ostream & o, const A:: string &){}

}

int main (){
using namespace A;
using namespace OP; // start inline refactoring here
string s("s...");
ostream cout;
operator <<(cout , s); // qualified as OP :: operator <<(cout , s)
cout << s; // operator is not a name => not qualified
return 0;

}

Listing D.3: IUDIR refactoring affecting an explicit operator call. The implicit operator
call is not inlined.

Figure D.3.: AST showing the difference between an implicit (top) and an explicit (bot-
tom) operator call statement.

June 15, 2012 104

D. IUDIR Refactoring - Indexer Implementation Open Issues

Figure D.4.: If an implicit operator call is affected by the IUDIR refactoring, the user
is notified with a warning, because the implicit operator call will not be
qualified.

June 15, 2012 105

E. User Manual

This user manual assumes that Eclipse CDT and namespactor are already installed.
The refactoring features of namespactor work like the other refactorings Eclipse provides.
Section E.1 introduces namespactor by a simple example. In section E.2 all refactorings
are presented. Section E.3 describes how the refactorings are invoked. Section E.4
presents the quick fixes and its usage.

E.1. Example of a Refactoring - Inline Using Directive

If the using directive in the listing E.1 is removed, the function call doIt() requires to
be qualified. This work will be automated by the Inline Using Directive refactoring of
namespactor by selecting the using directive and invoking the refactoring in the Eclipse
Refactoring Window Menu.

namespace Example {
void doIt (){

/* ... */
}

}
int main (){

using namespace Example ;
doIt ();

}

Listing E.1: Example code for an Inline Using Directive refactoring.

After the refactoring was initiated, a window opens with a preview of the changes this
refactoring would apply if the user confirms. The result of this refactoring is illustrated
in listing E.2.

106

E. User Manual Refactorings in namespactor

namespace Example {
void doIt (){

/* ... */
}

}
int main (){

Example :: doIt ();
}

Listing E.2: Result code of the foundation code in listing E.1 after the Inline Using
Directive was applied.

E.2. Refactorings in namespactor

namespactor provides the following refactorings:

• Inline Using Directive: Removes a using directive and qualifies the affected names.

• Inline Using Declaration: Removes a using declaration and qualifies the occurrences
of the affected name.

• Qualify an Unqualified Name: Fully qualifies an unqualified name with all required
names.

• Extract Using Directive: Introduces a using directive for a qualified name and
removes the name qualifier(s) of the affected qualified names.

• Extract Using Declaration: Introduces a using declaration for a qualified name and
removes the name qualifiers(s) on the occurrences of the affected qualified name.

E.3. Run a Refactoring

This section describes how a refactoring is started. Based on a selection in the editor a
refactoring can be started via the Eclipse refactoring window menu illustrated in figure
E.1.
The menu entries of the refactorings largely describe to which refactorings it belongs.
To start the inline using directive or inline using declaration refactoring the menu entry
called "Inline Using ..." is used. This command decides itself which of the two inline
refactorings is appropriate based on the selection done by the user.

June 15, 2012 107

E. User Manual Quick Fixes

Figure E.1.: Eclipse Refactoring Window Menu with menu entries for the refactorings
implemented in namespactor.

The selection requires at least one character to be selected inside the using directive/dec-
laration (inline refactoring) or the qualified name (extract refactorings). If more than
the line of interest is selected, the last using directive/declaration (inline refactoring) or
the last qualified name (extract refactorings and qualify an unqualified id refactoring)
in the selection is the base for the refactoring. Figure E.2 illustrates possible selections,
the upper two snippets with minimal selection and the lower two snippets with a wide
selection. On the left are candidates for inline refactorings, on the right are candidates
for the extract refactoring as well as for the qualify an unqualified name refactoring.

Figure E.2.: Selections in the editor of Eclipse.

E.4. Quick Fixes

namespactor analyses the source code in a background process and reports potential
problems. For each reported problem, namespactor marks the problematic source code
section and suggests to apply quick fixes. Figure E.3 illustrates a problematic source
code section with a marker on the left and the proposed quick fixes to solve the problem
in a tool tip.

June 15, 2012 108

E. User Manual Quick Fixes

Figure E.3.: Example of bad source code.

namespactor provides following quick fixes:

• Inline Using: Invokes the inline using directive/declaration refactoring.

• Move After Includes: Moves a using directive/declaration after the last #include
directive

• Qualify Using Directive: Invokes the qualify an unqualified name refactoring.

E.4.1. Problem Resolutions (Quick Fixes)

All of the reported problems can be solved by invoking one of the namespactor refactor-
ings. Some problems have multiple resolutions and vice versa.

Inline Using (IU) Invokes the IU refactoring. Solves the problems: UDIRInHeader,
UDECInHeader, UDIRBeforeInclude, UDECBeforeInclude

Move Using After Include (MoveAfterIncludes) Moves the problematic using state-
ment after the last #include directive. Solves the problems: UDIRBeforeInclude,
UDECBeforeInclude

Qualify Unqualified Name (QUN) Invokes the QUN refactoring. Solves the problems:
QUNUDIR.

June 15, 2012 109

F. Project Management

This chapter provides an overview to project management related tasks such as project
planning and spent time analysis.

F.1. Project Plan

The bachelor thesis lasts seventeen weeks from February 20. to June 15. 2012. The first
version of the project plan F.1 was created in week one. During the project the initial
project plan has experienced a few minor changes F.2.
We soon realised that the refactorings require more work than we originally planned.
And that the work has not much to do with GUI but with a thorough analysis and
challenging algorithms. The implementation of the inline and extract refactorings took
double the time we estimated. But fortunately not on behalf of any other task. The
GUI part was mainly provided by the LTK framework, and therefore only required one
third of the estimated time.

Figure F.1.: First version of the project plan.

110

F. Project Management Time Schedules

Figure F.2.: Latest version of the project plan.

F.2. Time Schedules

This chapter evaluates the time spent during the project. Figure F.3 shows the time
spent per member per week. The bachelor thesis module is worth 12 ECTS. This means
that the expected work per week of an average student to pass the module is about
21 hours1. In average each of us worked about 447 hours in total, which is 87 hours
(24%) above the expected 360 hours. In total, 895 hours of work were spent for both
sub projects. We spent 695 hours for namespactor and 200 hours for metriculator.

112 ECTS * 30 hours per ECTS / 17 weeks

June 15, 2012 111

F. Project Management Personal Impression

Figure F.3.: Time spent (in hours) per project member per week.

F.3. Personal Impression

From the very beginning of this thesis we both worked consequent and targeted enhanc-
ing the metriculator plug-in as well as to create a highly useful and simple to understand
refactoring plug-in. In the following sub sections each team member writes about his
personal impressions during this project. But first of all we would like to thank our
supervisor Prof. Dr. Luc Bläser, for his valuable time and competent advices. Special
thank goes to our advisor Thomas Corbat, who was always ready to generously assist
us with technical problems as well as administrative issues. Further we would also like
to thank Lukas Felber for his helpful advices in case of technical problems.

F.3.1. Ueli Kunz

The performance improvements we gained with metriculator are very satisfying. met-
riculator is now a reasonable metric tool for the CDT platform, this is also proved by
the fact that in the first month metriculator has been installed over 40 times via Eclipse
marketplace.
As we started working on metriculator I did not expect that the performance could
be improved that much. I have learned, that it is, also with high level programming
languages, very important to know what one is doing and that deliberately handling
resources is important. It was also very interesting to see how the design has evolved
step by step and that this enabled the implementation of an improved algorithm which
lead to better performance.

I have never before done anything in the field of refactorings. I was curious and un-

June 15, 2012 112

F. Project Management Personal Impression

certain about the subject at the same time. First I had to reboot my C++ knowledge.
At the beginning it was a bit hard to see what a professional C++ developer would
demand from a namespace refactoring tool, because I had insufficient experience to eval-
uate that and there was no other similar tool to learn from. But after some analysis and
discussions with Thomas Corbat I was confident that we are on the right track.
The biggest obstacle was clearly the CDT framework. It has very poor documentation
if any, since no literature exists and only sparse documentation is available online. The
best sources accessible for us are inside the IFS, either from people working there or
from other thesis documentations that were written in the past.
Handling C++ templates is something we undervalued. During the analysis we have
not paid special attention to templates, for us template names were just another kind of
names. But dealing with them, using the AST or the indexer, requires special treatment
and some extra knowledge I did not have before.

Although it was kind of an experiment to divide a bachelor thesis into two projects
for all involved parties, I am very glad that we had the chance to finalise the product we
started during the semester thesis. This division required some organisational flexibility
from all parties involved in the project. Everything went fine, but I would not recom-
mend to let this become a habit. Especially the regulations and formalities given by the
school are not designed for a forked thesis.

As already during the semester thesis, working with Julius Weder has been delight-
ful and very enjoyable. I think we managed to create a fairly good refactoring tool in
only eleven weeks.

F.3.2. Julius Weder

I think this bachelor thesis was a bit special because it consists of two projects. The
first weeks were very interesting and also intensive. At first, I did not really had hopeful
suspicions in significantly improving the performance of our semester thesis metricula-
tor. But after some analysis and tests the speed up of the static analysis raised quite
intense as well as my motivation.

It was again a great challenge to improve the design of metriculator and thereby dis-
cover how to improve the algorithm. Although it was the same project as in the semester
thesis, the challenges were different. I learned a lot about memory allocation and the
necessary releasing of the memory. Tt is even in Java a huge factor in developing a time
critical software.

Although I had some experience with Eclipse plug-ins, CDT and the abstract syntax
tree the refactorings in the second part of this thesis were a new, different and even
more challenging work. At the beginning I had a lot of analysis to do, since my C++
skills and experiences still were not as advanced as it was necessary to create a useful
namespace refactoring plug-in. This task took its time and was at a point a bit ex-
hausting. Afterwards I think this was the key to create useful and for experienced C++
programmers meaningful refactoring features. We were able to deliver refactoring fea-

June 15, 2012 113

F. Project Management Personal Impression

tures of good quality and good design even if big challenges and time consuming parts
at this project were the algorithms to perform the refactorings.

Overall, I am proud of the work we have done and it was surely a great experience
which further improved my professional skills and helps for future projects. At this
point I would like to thank Ueli Kunz for being a very competent, helpful and pleasant
project partner. I think this bachelor thesis proves that our teamwork is productive and
equally enjoyable.

June 15, 2012 114

List of Figures

0.1. Example of bad source code. v
0.2. Source code after the inline using directive refactoring was performed.

The refactoring was initiated by a quick fix. vi
0.3. Source code after the extract using directive refactoring was performed . . vi
0.4. Memory allocation before and after the performance improvements analysing

1 mio. PSLOC. vii

3.1. Layer diagram with the dependencies of namespactor. 33
3.2. Dependency graph of the namespactor core packages 35
3.3. Refactoring wizard showing the preview of an IUDIR refactoring. 36
3.4. Problem marker with suggested resolutions. 38
3.5. AST of template names . 39
3.6. Scopes that play a role when comparing the indexer and AST lookup

algorithms. 41
3.7. Sequence diagram of the IUDIR refactoring AST implementation. 47
3.8. Refactoring wizard shows a warning if the user tries to inline a using

declaration that contains a generic template argument. 48
3.9. Sequence diagram illustrating the checkInitialConditions implementation

of the extract refactorings. 55
3.10. Sequence diagram illustrating the visit implementation of the extract

refactorings in the abstract EUReplaceVisitor class. 56
3.11. Sequence diagram illustrating the buildReplacementName implementa-

tion of the extract refactorings in the abstract EUReplaceVisitor class. . . 57
3.12. Sequence diagram illustrating the collectModification implementation of

the extract refactorings in the abstract EURefactoring class. 58

4.1. Before the performance improvements. 70
4.2. After the performance improvements. 71
4.3. Memory consumption before and after performance improvements. 72
4.4. Memory consumption before (left) and after (right) removing the AST

bindings. The analysis on the right requires about one third of the memory
in comparison. 74

4.5. Component diagram of metriculator and zest.cloudio. 77
4.6. AbstractNode composite hierarchy with AST related information stored

in NodeInfo. 78
4.7. AbstractNodeInfo hierarchy with AST related information distributed in

specialised NodeInfo classes. 79
4.8. Improved AbstractNode composite hierarchy. 81
4.9. AbstractNodeInfo hierarchy . 82
4.10. AbstractNode hierarchy - the upper part of the hierarchy 82

115

List of Figures List of Figures

4.11. AbstractNode hierarchy - the lower part of the hierarchy. 83
4.12. The jface TreeViewer and TableViewer components stretch the last column

to fill the remaining horizontal space. 84

A.1. Eclipse test project using the CDTTesting plug-in 91
A.2. Concepts related to the CDTTesting plug-in and the RTS framework re-

spectively. 92
A.3. Concepts of the RTS framework mapped to a RTS file. 93
A.4. Screenshot of the RTS editor and its outline view. 93
A.5. Screenshot of the DOM AST view. 95

D.1. Sequence diagram illustrating the IUDIR checkInitialConditions imple-
mentation. 101

D.2. Class diagram of the NamespaceInlineContext class and companions. . . . 102
D.3. AST showing the difference between an implicit (top) and an explicit

(bottom) operator call statement. 104
D.4. Implicit operator call warning. 105

E.1. Eclipse Refactoring Window Menu with menu entries for the refactorings
implemented in namespactor. 108

E.2. Selections in the editor of Eclipse. 108
E.3. Example of bad source code. 109

F.1. First version of the project plan. 110
F.2. Latest version of the project plan. 111
F.3. Time spent (in hours) per project member per week. 112

June 15, 2012 116

List of Tables

4.1. Runtime performance measurement data before and after the improvements. 69
4.2. Class association mismatch between AbstractNode and AbstractNodeInfo

hierarchy. 79

117

G. Nomenclature

AST Abstract Syntax Tree – An abstract representation of a program or source code,
usually focusing on domain specific information.

VCS Version Control System – A software that helps managing multiple versions of files.

OSGi Specification for Java runtime service and modularisation platform.

PDE The Eclipse Plug-in Development Environment provides utilities to create, main-
tain, test and build Eclipse artefacts.

p2 Stands fro provisioning platform and is the engine used to install plug-ins and manage
dependencies in Eclipse.

IDE Integrated development environment is used to develop, compile and maintain
source code written in a specific programming language

namespace Also called name scope, is a logical container that holds names of functions,
classes, variables and other identifiers or symbols. A fully qualified name of an
identifier thereby consists of the namespace(s) it is placed in and its own name.

Codan checker Codan uses checkers to analyse source code. Each checker is specialised
in one problem, for instance unreachable code. Through extension points Codan
allows third party tools to register other checkers. metriculator defines one checker
per metric. As soon as a user invokes the Codan command on the UI, Codan
automatically calls all registered checkers.

IUDIR Inline Using Directive Refactoring – One of the implemented refactorings in
namespactor.

IUDEC Inline Using Declaration Refactoring – One of the implemented refactorings in
namespactor.

EUDIR Extract Using Directive Refactoring – One of the implemented refactorings in
namespactor.

EUDEC Extract Using Declaration Refactoring – One of the implemented refactorings
in namespactor.

QUN Qualify an Unqualified Name – One of the implemented refactorings in names-
pactor.

118

Bibliography

[Bec03] Kent Beck. Test-driven development : by example. Addison-Wesley, Boston,
2003.

[cdt] Announcement of metriculator in cdt-dev mailing list. http://dev.eclipse.
org/mhonarc/lists/cdt-dev/msg23868.html.

[CDT11] Eclipse cdt project homepage. http://eclipse.org/cdt/, 2011.

[cdt12a] Cdt bug 381031 - fully qualified names are not written by the namewriter.
https://bugs.eclipse.org/bugs/show_bug.cgi?id=381032, 2012.

[cdt12b] Cdt bug 382497 - pdomcppnamespace.getusingdirectives always returns
empty array. https://bugs.eclipse.org/bugs/show_bug.cgi?id=382497,
2012.

[cod11] Codan is a lightweight code analysis framework for the eclipse cdt platform.
http://wiki.eclipse.org/CDT/designs/StaticAnalysis, 2011.

[cpp11] Iso/iec 14882. PDF, 2011.

[doo12] Doom3 source code. https://github.com/TTimo/doom3.gpl, 2012.

[ecl11] jprofiler product page. profiling tool for the java virtual machine., 2011.

[ecl12] Eclipse user interface guidelines. http://wiki.eclipse.org/User_
Interface_Guidelines, 2012.

[Fel12] Lukas Felber. Cdttesting framework. https://github.com/IFS-HSR/ch.
hsr.ifs.cdttesting, 2012.

[FM05] Kerievsky Joshua Fowler Martin. Smells to refactorings. http://www.
industriallogic.com/papers/smellstorefactorings.pdf, 2005.

[Fow] Martin Fowler. Refactoring : improving the design of existing code. Addison-
Wesley.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison-Wesley, 1995.

[ifs12] Institut für software. http://www.ifs.hsr.ch/, 2012.

[JCo] Using jconsole to monitor applications. http://java.sun.com/developer/
technicalArticles/J2SE/jconsole.html.

[jen12] Jenkins - ci server. http://sinv-56013.edu.hsr.ch/jenkins, 2012.

[jfa12] Eclipse jface tableviewer. http://help.eclipse.org/indigo/index.jsp?

119

http://dev.eclipse.org/mhonarc/lists/cdt-dev/msg23868.html
http://dev.eclipse.org/mhonarc/lists/cdt-dev/msg23868.html
http://eclipse.org/cdt/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=381032
https://bugs.eclipse.org/bugs/show_bug.cgi?id=382497
http://wiki.eclipse.org/CDT/designs/StaticAnalysis
https://github.com/TTimo/doom3.gpl
http://wiki.eclipse.org/User_Interface_Guidelines
http://wiki.eclipse.org/User_Interface_Guidelines
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting
http://www.industriallogic.com/papers/smellstorefactorings.pdf
http://www.industriallogic.com/papers/smellstorefactorings.pdf
http://www.ifs.hsr.ch/
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://java.sun.com/developer/technicalArticles/J2SE/jconsole.html
http://sinv-56013.edu.hsr.ch/jenkins
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html

Bibliography Bibliography

topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%
2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html, 2012.

[llv11] Project homepage of the clang project. http://llvm.org, 2011.

[ltk06] Eclipse. http://www.eclipse.org/articles/Article-LTK/ltk.html,
2006.

[mav11] Maven download. http://maven.apache.org/download.html, 2011.

[met11a] metriculator project home page. http://tiny.cc/metriculator, 2011.

[met11b] metriculator report. http://sinv-56013.edu.hsr.ch/redmine/
attachments/1/metriculator.pdf, 2011.

[met12] metriculator - download the plugin-in at the eclipse marketplace. http:
//marketplace.eclipse.org/content/metriculator, 2012.

[MI10] Roger Knöpfel Matthias Indermühle. Cdt c++ refactorings.
http://eprints3.hsr.ch/115/, 2010.

[mla08] MLA style manual and guide to scholarly publishing. Modern Language As-
sociation of America, New York, 2008.

[nam] http://sinv-56013.edu.hsr.ch/redmine/projects/namespector/
repository/revisions/master/entry/dev/ch.hsr.ifs.cdt.
namespactor.rtstest/src/ch/hsr/ifs/cdt/namespactor/rtstest/
testinfrastructure/JUnit4RtsRefactoringTest.java.

[nam12] namespactor project home page. http://tiny.cc/namespactor, 2012.

[PDE11] Official help documentation for the eclipse plug-in development envi-
ronment. http://help.eclipse.org/galileo/index.jsp?topic=/org.
eclipse.pde.doc.user/guide/intro/pde_overview.htm, 2011.

[red11] Redmine set up using mod passenger. http://www.redmine.
org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#
Ubuntu-1004-and-10041-using-Passenger, 2011.

[Ref11] Refactoring explanation and definition. http://www.ifs.hsr.ch/
C-Refactoring.5821.0.html, 2011.

[Sch08] Doug Schaefer. http://cdtdoug.blogspot.com/2008/11/
code-analysis-and-refactoring-with-cdt.html, 2008.

[sou11] Sourcecloud plug-in for eclipse. https://github.com/misto/Sourcecloud,
2011.

[Ste05] Devin Steffler. Dom ast view - cdt-dev mailing list announcement. http:
//dev.eclipse.org/mhonarc/lists/cdt-dev/msg04355.html, 2005.

[Str09] Die C++ Programmiersprache. 2009.

[Sut] Herb Sutter. A modest proposal: Fixing adl (revision 2).

[Sut00] Herb Sutter. Migrating to namespaces. 25(10):48, 50, 52, October 2000.

June 15, 2012 120

http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html
http://help.eclipse.org/indigo/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjface%2Fviewers%2FTreeViewer.html
http://llvm.org
http://www.eclipse.org/articles/Article-LTK/ltk.html
http://maven.apache.org/download.html
http://tiny.cc/metriculator
http://sinv-56013.edu.hsr.ch/redmine/attachments/1/metriculator.pdf
http://sinv-56013.edu.hsr.ch/redmine/attachments/1/metriculator.pdf
http://marketplace.eclipse.org/content/metriculator
http://marketplace.eclipse.org/content/metriculator
http://sinv-56013.edu.hsr.ch/redmine/projects/namespector/repository/revisions/master/entry/dev/ch.hsr.ifs.cdt.namespactor.rtstest/src/ch/hsr/ifs/cdt/namespactor/rtstest/testinfrastructure/JUnit4RtsRefactoringTest.java
http://sinv-56013.edu.hsr.ch/redmine/projects/namespector/repository/revisions/master/entry/dev/ch.hsr.ifs.cdt.namespactor.rtstest/src/ch/hsr/ifs/cdt/namespactor/rtstest/testinfrastructure/JUnit4RtsRefactoringTest.java
http://sinv-56013.edu.hsr.ch/redmine/projects/namespector/repository/revisions/master/entry/dev/ch.hsr.ifs.cdt.namespactor.rtstest/src/ch/hsr/ifs/cdt/namespactor/rtstest/testinfrastructure/JUnit4RtsRefactoringTest.java
http://sinv-56013.edu.hsr.ch/redmine/projects/namespector/repository/revisions/master/entry/dev/ch.hsr.ifs.cdt.namespactor.rtstest/src/ch/hsr/ifs/cdt/namespactor/rtstest/testinfrastructure/JUnit4RtsRefactoringTest.java
http://tiny.cc/namespactor
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://help.eclipse.org/galileo/index.jsp?topic=/org.eclipse.pde.doc.user/guide/intro/pde_overview.htm
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
http://www.redmine.org/projects/redmine/wiki/HowTo_Install_Redmine_in_Ubuntu#Ubuntu-1004-and-10041-using-Passenger
http://www.ifs.hsr.ch/C-Refactoring.5821.0.html
http://www.ifs.hsr.ch/C-Refactoring.5821.0.html
http://cdtdoug.blogspot.com/2008/11/code-analysis-and-refactoring-with-cdt.html
http://cdtdoug.blogspot.com/2008/11/code-analysis-and-refactoring-with-cdt.html
https://github.com/misto/Sourcecloud
http://dev.eclipse.org/mhonarc/lists/cdt-dev/msg04355.html
http://dev.eclipse.org/mhonarc/lists/cdt-dev/msg04355.html

Bibliography Bibliography

[Sut02] Herb Sutter. More exceptional C++ : 40 new engineering puzzles, program-
ming problems, and solutions. Addison-Wesley, Boston, 2002.

[tur] Master’s thesis.

[vie12] Eclipse view contribution. http://help.eclipse.org/helios/index.
jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fworkbench_
basicext_popupMenus.htm, 2012.

[Vog11] Lars Vogel. Comprehensive tutorials for eclipse developers. http://www.
vogella.de, 2011.

[zes11] Zest, the eclipse visualization toolkit. http://www.eclipse.org/gef/zest/,
2011.

The versions of the documents, referenced to in this bibliography, that we used are stored
in our VCS.

June 15, 2012 121

http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fworkbench_basicext_popupMenus.htm
http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fworkbench_basicext_popupMenus.htm
http://help.eclipse.org/helios/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide%2Fworkbench_basicext_popupMenus.htm
http://www.vogella.de
http://www.vogella.de
http://www.eclipse.org/gef/zest/

	Introduction
	Motivation
	Project Duration
	About this Document

	Objectives
	Common
	namespactor
	metriculator
	Agreement

	Namespactor
	Analysis
	User Stories - Inline Refactoring
	User Stories - Extract Refactoring
	Inline Refactorings
	Extract Refactoring

	Namespace Refactorings
	Inline Using Directive (IUDIR)
	Inline Using Declaration (IUDEC)
	Qualify an Unqualified Name (QUN)
	Extract Using Directive Refactoring (EUDIR)
	Extract Using Declaration Refactoring (EUDEC)

	Implementation
	Plug-in Architecture
	Refactoring User Interface - Language Toolkit (LTK)
	Static Code Analysis with Codan
	Building Names
	Name Lookup Algorithm
	Inline Refactorings
	Extract Refactorings

	Open Issues
	Qualify Names Defined Outside of the Workspace - #273
	Nested Using Directives within Namespace Definitions - #269
	Finding Implicit Operator Calls - #270
	Qualifying Template Method Definitions - #271
	Missing Line Break after last Affected Node - #238
	Creating Fully Qualified Names - #249
	Using Declaration with Generic Template Argument - #239
	Inherited Type Name cannot be Replaced - #231

	Future Improvements
	Implement Hybrid Lookup in IUDEC and QUN
	Detect Name Conflicts
	Start IUDIR on Any Name
	Extract Using Declaration Into a Type Declaration - #265
	Extension for the Refactoring Qualify an Unqualified Name - #265

	Conclusion

	Metriculator
	Requirements
	Performance
	Tag Cloud - Dealing with Large Data Input
	Composite Update Site

	Performance
	Performance Measurement - Comparison Before and After the Improvements
	Performance Improvements
	Open Issues

	Tag Cloud - Dealing with Large Data Input
	Composite Update Site
	Design Changes
	Tag Cloud Extraction
	NodeInfo Refactoring

	Further Improvements
	GUI Guidelines
	Minor Bug Fixing

	Unit Testing
	Codan Test Infrastructure
	Checker Tests
	Indexer Based Tests

	Environment Set up
	Hardware
	Project Management Software
	Version Control System, Git
	Development Environment
	Build and Deployment Automation
	Maven XML Configuration

	Testing Eclipse CDT Refactoring Plug-ins
	CDTTesting Framework

	AST Rewrite Store
	DOM AST View

	Terminology
	CDTTesting Plug-in Set up
	Quick Start
	Set up for Refactoring Tests

	IUDIR Refactoring - Indexer Implementation
	Finding References Recursively
	Open Issues
	Qualification of Implicit Operator Call

	User Manual
	Example of a Refactoring - Inline Using Directive
	Refactorings in namespactor
	Run a Refactoring
	Quick Fixes
	Problem Resolutions (Quick Fixes)

	Project Management
	Project Plan
	Time Schedules
	Personal Impression
	Ueli Kunz
	Julius Weder

	Nomenclature

