
HSR – University of Applied Sciences Rapperswil

Institute for Software

Parallator
Transformation towards C++ parallelism

using TBB

Master Thesis: Fall Term 2012

Martin Kempf
martin.kempf@gmail.com

Supervised by Prof. Peter Sommerlad

Version: February 21, 2013

martin.kempf@gmail.com

Parallator

Abstract

Intels TBB (Threading Building Blocks) library provides a high level abstraction to write
parallel programs in C++. It addresses the fact that parallel hardware with increasing
number of cores in processors is likely to be the main source of performance gains. With
this change in common computer architecture, an application must provide enough parallel
work to exploit the computational power of a multi-core CPU. Parallel programs using
multiple threads with independent operations are needed. Operations in a loop are often,
although not explicitly defined, a source of independent operations and provide therefore
potential to introduce parallelism. With algorithm calls of TBB, loop operations can be
explicitly parallelized while making use of the efficient task scheduling mechanism that
uses threads for parallelism.
A manual transformation of loops to the corresponding TBB algorithm is time consuming
and includes pitfalls like carelessly introduced data races. Parallator, an Eclipse plug-
in is therefore developed using the C++ Development Tooling (CDT) project to replace
loops with TBB calls and provide hints for possible parallelization issues. The plug-
in lets the user decide a transformation to apply. This approach differs from automatic
parallelization introduced by compilers and improves the situation of a rather conservative
handling towards parallelism by a compiler. Parallator is based on a former project [Kes10]
and uses its tree pattern matching algorithm on the program code’s abstract syntax tree
to find potential code for parallelism and possible parallelization issues.

Page I

Parallator

Management Summary

Motivation

The introduction of parallelism into existing applications gets increasingly important.
This is based on the fact that desktop computers are equipped with multi-core processors
and that an increasing number of cores in processors is likely to be the main source of
improved performance in computer hardware. Introducing parallelism into an existing ap-
plication involves finding possible sources for parallelism and the implementation towards
parallelism. This process is time consuming and error prone.

Goal

In this master thesis, this situation is addressed with the Parallator project. The project
aims to assist the C++ developer using Eclipse C++ Development Tooling (CDT) in the
process of introducing parallelism in an existing application. To simplify the transforma-
tion to parallelism, Intel’s TBB (Threading Building Blocks) library is used that provides
a high level abstraction to write parallel programs in C++. Beside other features it pro-
vides algorithms to parallelize loops. Loops often show similar independent computation
over iterations and are therefore a source for parallelism.
The chosen approach enables the user to choose whether a transformation should be
applied or not and overcome the issue of too conservatively applied optimizations by a
compiler. Possible issues, like a potential data race that let to undefined program behavior
should be addressed with a warning.

Results

The resulting CDT plug-in detects iterator- and index-based loops as well as STL for each
calls that can be transformed to the equivalent parallel for / parallel for each counterpart
in TBB. A warning is provided if the transformation is not safe according to potential
conflicting access of a shared variable, but the transformation can be proceeded anyway
if the users allows to do so. The implementation also features a natural support for the
conversion of the loop’s body to C++11 lambdas with capture evaluation, STL or Boost
bind functors.
A performance measurement of an implemented transformation has shown an improvement
of about 50% compared to its serial equivalent. This shows the potential of Parallator.

Outlook

The application of Parallator in a real life project must be further evaluated to show its
benefit. The project evaluated also transformations that have not been implemented. An

Page II

Parallator

interesting project would be the transformation of loops and STL algorithm calls to its
parallelized version implemented in Thrust1.

1http://thrust.github.com/

Page III

http://thrust.github.com/

Parallator Contents

Contents

1. Introduction 1
1.1. What is Parallelism . 1

1.1.1. Parallelism vs. Concurrency . 2
1.1.2. Explicit vs. Implicit Parallelism . 2
1.1.3. Performance in Parallelism . 2

1.2. Parallel Programming . 3
1.2.1. The Need For Explicit Parallelism 3
1.2.2. Strategies for Parallelism . 3
1.2.3. Mechanism for Parallelism . 4
1.2.4. Key Features For Performance . 5
1.2.5. Pitfalls . 5

1.3. Selected C++11 Features . 6
1.3.1. Lambda Expression . 6
1.3.2. Defined Multi-Threaded Behavior with STL Container 8

1.4. Threading Building Blocks . 9
1.4.1. Introducing Example . 9
1.4.2. Task Scheduling . 10
1.4.3. Iteration Space / Range Concept . 11
1.4.4. Controlling Chunking . 14
1.4.5. Parallel Algorithms . 15

1.5. Existing Tools . 20
1.5.1. Intel Parallel Advisor . 20
1.5.2. ReLooper . 21

1.6. Project Goals . 22
1.7. About this Report . 23

2. Analysis 24
2.1. Loop Analysis and Transformation in DS-8 Project 24

2.1.1. Focus on Specific Loop Variants . 24
2.1.2. Loop Body Transformation . 26

2.2. Potential Transformations Using TBB . 26
2.2.1. Loops to TBB Parallel Algorithms 27
2.2.2. STL Algorithms to TBB Parallel Algorithms 30
2.2.3. Thrust . 32

2.3. Semantic Analysis Towards STL Algorithms 33
2.3.1. Pass Lambda Parameter by Reference / Constant Reference 33
2.3.2. Capture by Reference or by Value 34

2.4. Semantic Analysis Towards Parallelism . 35
2.4.1. Conflicting Memory Accesses . 35
2.4.2. Lambda Functors Towards Parallelism 37

Page IV

Parallator Contents

2.4.3. Independent Iterations . 37
2.4.4. Additional Criteria for Parallelization 39

2.5. Tree Pattern Matching . 40
2.5.1. Available Implementation . 40
2.5.2. Usage and Limits in Tree Pattern Matching 43

2.6. Potential further Refactorings . 44
2.6.1. Divide-and-Conquer Algorithms . 44
2.6.2. Replace Threading Architecture . 45

3. Implementation 46
3.1. Library for Parallelization . 46

3.1.1. Motivation . 46
3.1.2. The Library . 47

3.2. The Plug-In . 49
3.2.1. Overview . 49
3.2.2. Analysis . 50
3.2.3. Replacement and Transformation . 53
3.2.4. Codan Integration . 59
3.2.5. Used Extension Points . 61

3.3. Pattern for Semantic Analysis . 62
3.3.1. Semantic Analysis Pattern . 62
3.3.2. Pattern for Parallelism Analysis . 64
3.3.3. For Each call Pattern for Parallelism 66
3.3.4. Iteration Variable Criteria for Parallelism 68

4. Summary 69
4.1. Results . 69

4.1.1. Measurement . 69
4.1.2. Resulting Plug-In . 70

4.2. Known Issues . 72
4.2.1. STL Implementation Dependent Behavior 72
4.2.2. Index-based Loops and size t . 73
4.2.3. Error in Nested Loop Detection . 74

4.3. Outlook . 74
4.3.1. Improvements to the Existing Implementation 74
4.3.2. Further Loop Variants . 75
4.3.3. Thrust Integration . 75

4.4. Personal Reflection . 76

A. Parallelize STL 77

B. User Guide 83
B.1. Installation of Plug-in . 83
B.2. Use of Plug-in . 83

B.2.1. Recognition of Possible Transformations 83
B.2.2. Apply a Transformation . 85
B.2.3. Choose Transformations to Recognize 86
B.2.4. Configure Argument Binding . 87

Page V

Parallator Contents

B.2.5. Configure Launch Mode . 88

C. Project Management 89
C.1. Time Schedule . 91

D. Project Setup 92
D.1. Development environment . 92

D.1.1. Used Versions . 92
D.1.2. Installation and Configuration of TBB 92

D.2. Continuous Integration . 94
D.2.1. Build Environment . 94
D.2.2. Testing . 94

E. Upgrade to CDT 8.1.1 95

List of Figures 96

Bibliography 98

Page VI

Parallator 1. Introduction

1. Introduction

”The free lunch is over” [Sut05]. The free lunch of having the performance of software
increased, just by the increased clock rate of the processor. Without any changes in the
source code, the application runs faster and the user can profit of faster response times.
The end of this era in desktop applications is introduced by the shift in computer ar-
chitecture from uniprocessor systems to multiprocessing systems. This change started in
the last decade and it is expected that the number of processing units even in desktop
computers will increase in the future [MRR12]. While in uniprocessor system all tasks
are executed by one CPU in sequential order, the tasks in a multiprocessing system can
be executed in parallel by several CPUs. But this also requires the application to provide
work that can be executed in parallel.
The programming languages mostly used in desktop applications are designed for serial
execution. They do not provide simple constructs to express parallelism. Threads are a
possibility but not a simple one and can be seen as a mean to parallelism. An example
for the serial intention in programming languages is a for loop. It enforces an execution
ordering that might not be needed as the semantics remain the same in a possible parallel
execution of the loop iterations [MRR12]. This lack of expressing parallelism forced the
development of parallel programming model that provide simpler possibilities to express
parallel executions.
Intels TBB (Threading Building Blocks) [Cor12b] library is a parallel programming model
that provides a high level abstraction to write parallel programs in C++. The library fea-
tures an efficient implementation of several algorithm strategy patterns. Algorithm strategy
patterns can be seen as a guide to structure an algorithm, in our case a parallel algorithm.
These parallel patterns mostly have a serial equivalent [MRR12].
The change to a new era of computer architecture demands also tooling support [SL05].
This project aims to support a programmer in introducing parallelism in an existing appli-
cation by finding serial equivalents of parallel patterns and the transformation to them. As
implementation of the parallel patterns, TBB is used. This results in an application that
is scalable: The performance of the application increases with the number of processing
units available by the system.

1.1. What is Parallelism

Parallelism is something natural for humans. It appears daily. An example is the parallel
checkout in a grocery store. Each customer buys goods and does not share them with
other customers. This enables the cashiers do work independently of other customers.
The parallel checkout in a grocery store can be done if multiple cashiers are available and
the goods are not shared between the customers. With this real life example in mind
this section explains parallelism in computer hardware and software and also clarifies the
usage of terms in this work. The terms explained are related to parallel programs using
shared memory, as this project is focused on TBB which follows this parallel programming

Page 1 of 99

Parallator 1. Introduction

paradigm. Other parallel programming paradigms such as message passing or data flow
programming are not covered here.

1.1.1. Parallelism vs. Concurrency

Concurrency is when at least two tasks can run in overlapping time periods. It does
not necessarily mean that tasks are executed simultaneously. Concurrency just expresses
the condition of having two tasks that do not need to end before the next one can start.
For parallelism, it is required to have the task run genuinely parallel. Which is only
possible if at least two processing units are available. This gets clear by looking at the
multitasking capability of operating systems to run multiple applications at the same
time. On a computer with only one processor, with a single processing unit or core, the
execution of the multiple tasks can not be genuinely parallel. Through task switching the
tasks are scheduled on the processor in an alternating manner. Because the tasks can be
switched several times per second we have the illusion of real parallelism. If we consider a
multiprocessor system or a multi-core processor where the processing units are on the same
chip, the tasks can be executed real parallel. We refer to this as hardware concurrency.
The execution of multiple independent tasks on a system providing hardware concurrency
is therefore faster. Not only because the tasks can run in parallel, also the time used for
context switching is saved. The switch of a tasks needs a backup of the stack and also
processor registers of the currently running task, to be restored when the task is resumed
for execution.
Possible parallelism relates to the number of hardware threads a processor provides. It is
the measure of how many tasks can be genuinely run in parallel. With SMT (Simultaneous
Multi-threading) it is also possible to have more than one hardware thread on a single
core. For Intel processors this technique is better known as hyper-threading.

1.1.2. Explicit vs. Implicit Parallelism

The term implicit parallelism describes the condition if parts of the program are auto-
matically executed in parallel. Automatic parallelization is done at the instruction level.
This is called instruction level parallelism (ILP). In that, a processor evaluates available
parallelism, e.g. nearby instructions that do not depend on each other, and executes these
instructions at the same time. In explicit parallelism the parts that can run in parallel are
expressed explicitly. The means of expressing parallelism explicitly is further explained in
Section 1.2.3 on page 4.

1.1.3. Performance in Parallelism

The performance of a serial program can be measured by the amount of computational
work. Strive for less computational work improves performance. This is not entirely
valid for parallel programs. It has two reasons. First, the bottleneck might not be in
computation. A possible bottleneck can also be memory access or communication between
processors. And second, the algorithm is not scalable: the execution is not faster although
more cores are available. The reason might be in the algorithm’s span. This is the time it
takes to perform the longest chain of tasks that must be performed sequentially. It is also
known as the critical path [MRR12]. The span and communication issue can be seen in
Figure 1.1 on the next page. The sequential execution (a) of tasks A, B, C, D might be

Page 2 of 99

Parallator 1. Introduction

executed in parallel (b) and (c). As soon as the task are dependent (b) or they have not
equal execution time (c) the span is increased and limits scalability.

Figure 1.1.: Seriall (a) and parallel execution of tasks with dependency (b) and un-
equal computation time between tasks (c). Both increase the span and limit
scalability.

1.2. Parallel Programming

Parallel programming is needed to develop scalable applications. This involves to express
parallelism explicitly as explained in this section. The result is an application runnable on
new hardware with increased hardware concurrency also with an increase in performance.

1.2.1. The Need For Explicit Parallelism

Implicit parallelism as explained in Section 1.1.2 on the preceding page can be introduced
automatically. The compiler or the processor must detect the implicit parallelism in order
to exploit it. There are many cases where the compiler or the processor can not detect the
implicit parallelism [MRR12]. A loop is a serial control construct and may hide parallelism
because the ordering does not need to be maintained. Loops over-specify the ordering.
Listing 1.1 shows an example. It sums the elements of an array. Each loop iteration
depends on the prior iteration, thus the iteration cannot be done in parallel. At least in
some compilers dependency analysis. But as it is shown later that this kind of dependency
in loops can be explicitly parallelized using the reduce pattern (Section 1.4.5 on page 15).

1 double summe (i n t n , double a [n]) {
2 double mysum = 0 ;
3 i n t i ;
4 f o r (i = 0 ; i < n< ++i)
5 mysum += a [i] ;
6 r e turn mysum

7 }

Listing 1.1: An ordered sum with dependency in loop [MRR12].

1.2.2. Strategies for Parallelism

For a scalable application, the strategy is to find scalable parallelism. The best strategy
is data parallelism. Data parallelism means parallelism where the computational work
increases with the problem size. Often the problem is divided in smaller subproblems
and the number of subproblems increases with the problem size. Solving a problem by
the division of a problem into a number of uniform parts represent regular parallelism.

Page 3 of 99

Parallator 1. Introduction

Sometimes also called embarrassing parallelism. In irregular parallelism, the parallelism
is not obvious because the parallelization enforces different operations to be applied in
parallel. Both, regular and irregular parallelism are a kind of data parallelism and therefore
scalable. Two example show that. An example for fine-grained data parallelism is shown
in Listing 1.2 where a matrix is multiplied by 2.

1 double A [1 0 0] [1 0 0]
2 f o r (i n t i = 0 ; i < 100 ; i++) {
3 f o r (i n t j = 0 ; j < 100 ; j++) {
4 A [i] [j] = 2 * A [i] [j] ;
5 }
6 }

Listing 1.2: Fine-grained data parallelism with independent loop operations.

100×100 operations are executed independently in parallel. The separation into subprob-
lems requires in this example more attention as there is much more potential of concurrency
than hardware can provide. It is therefore also more practical to partition the matrix in
blocks of n×m and execute the operation on these blocks concurrently. An example for
irregular parallelism and more coarse-grained example is the parallel compilation of dif-
ferent files. The tasks are more complex and the operations in compiling are different as
the content of the files differs. But it is still scalable as the work increases with additional
files.
A contrast to scalable parallelism is functional decomposition. In functional decompo-
sition, functions that can run independently are executed in parallel. If the functions
take the same amount of time and the overhead in parallelization is rare, it increases the
performance. But it does not scale [MRR12]. Functional decomposition is also used to
maintain the responsiveness of the user interface when a computation intensive action is
started. Each functionality runs in a different thread, the user interface handling and the
computational intensive action.
Sometimes the term task parallelism is used as a parallelism strategy. But its meaning
often conflicts with functional decomposition that does not scale or with scalable paral-
lelism where the tasks differ in control flow. The distinguished parallelism in this work
are regular parallelism and irregular parallelism as explained in this section.
For the best performance, the different parallelism strategies and also serial strategies
are combined. An example can be separated in different parallel phases. The parallel
phases are executed serially. This makes clear that serial performance of code can not be
neglected for overall performance [MRR12].

1.2.3. Mechanism for Parallelism

Most modern processors provide two possibilities to express explicit parallelism in software
for parallel execution [MRR12]:

� Thread parallelism: Hardware threads are used for the execution of a separate
flow of instructions. The flow of operations in software threads can be different and
hardware threads can be used to execute regular as well as irregular parallelism.

� Vectorization: This is the mechanism to execute the same flow of instruction on
multiple data elements. It can therefore naturally be used for regular parallelism but
also with limitation for irregular parallelism. To support vectorization a processor

Page 4 of 99

Parallator 1. Introduction

provides a set of vector instructions that operate on vector registers. The specific
vector instruction is then applied in parallel to each element that is stored in one
vector register.

Potential for vectorization can be detected by a compiler and transformed appropri-
ately [MRR12]. This is called auto vectorization. But vectorization is not detected in every
case. Additionally the vectorization capabilities regarding to register sizes and available
instructions are different. It is therefore also required to express vectorization explicitly.

1.2.4. Key Features For Performance

While we focused in Section 1.1.3 on page 2 on the performance that parallelism can
provide and also limitations, this section explains the two key features to reach performance
in modern computer hardware. The two key features are data locality and availability of
parallel operations. The available parallelism can be also defined as parallel slack and
tasked-based programming is a mean for an efficient execution of available parallelism.

Data Locality

Data locality describes the reuse of data from nearby locations in time or space. It is
a crucial issue for a good use of memory bandwidth and efficient use of cache. For an
algorithm it is therefore important to have a good data locality. This influences how the
problem is subdivided and in which order the different tasks are executed. Section 1.4.2
on page 10 will show an implementation that is aware of data locality.

Parallel Slack and Task-Based Programming

We have already mentioned the problem of having more concurrency than a hardware
can provide. The potential parallelism is in this cases higher than the actual parallelism.
The amount of “extra” parallelism available is called parallel slack. This is nothing bad
and enables the scheduler more flexibility to exploit machine resources. But it also needs
another abstraction above threads.
If all the possible independent operations are executed in a different thread, the overhead
in scheduling the threads swamps the performance gain of parallel execution. On the other
side, the performance is also influenced if more threads could have been used. The best
performance can be achieved if the number of running threads is equal to the available
hardware threads. Task-based programming prevents time consuming thread switching.
The term task defines a light weight object that performs its computation without inter-
ruption and returns when his computation is finished. A task scheduler maintains a pool
of threads and is responsible for spawning the tasks across the available threads in a way
that the computational work is balanced equally on the threads. Thinking in tasks, we
can focus on the dependency of the task and leave the efficient scheduling to the scheduler.

1.2.5. Pitfalls

The shared memory communication brings also the problem of concurrent access to the
same memory location which can result in a race condition. Race conditions occur when-
ever two or more different threads access the same memory location and one access is a
write access. Consider a variable that holds the number of currently available pieces of a

Page 5 of 99

Parallator 1. Introduction

product. Multiple people / threads can buy the product concurrently. The activity is as
shown in Listing 1.3.

1 bool buyProduct (productId) {
2 i n t amount = stock . get (productId) ;
3 i f (amount > 0) {
4 amount = amount − 1 ;
5 stock . put (productId , amount) ;
6 r e turn t rue ;
7 } e l s e {
8 r e turn f a l s e ;
9 }

10 }

Listing 1.3: Pseudo code of a race condition. The variable amount as well as stock are shared
between the threads that execute the method buyProduct() concurrently.

Assuming two persons concurrently want to buy the same product and there is only one
piece available. If the function buyProduct() is executed in parallel, a product can be bought
although it is not available anymore. This is the case if line 2 is executed simultaneously
with the result that both threads read that there is one piece left. If the shared variables
are only accessed in a read only manner, there is no potential for a race condition. To
prevent from race conditions the access on the shared data must be synchronized.
Another problem that arises in shared memory parallel programming and are introduced
with synchronization of shared data are deadlocks. They occur if two threads wait on each
other because each thread restricts the other in accessing shared data. Load balancing is
another issue and occurs if the work of the threads are not of equal size. A solution on
this is task-based programming as introduced in Section 1.2.4 on the previous page with
an efficient implementation as explained in Section 1.4.2 on page 10.

1.3. Selected C++11 Features

In this project we make use of some features that are introduced in the new C++ standard,
C++11 [Bec12]. The used features are explained in this section. We will also have a look
on the memory model introduced with C++11 regarding the implication of this to the
usage of containers.

1.3.1. Lambda Expression

A lambda expression is just a simpler way to create a functor (function object) that could
otherwise be written manually. We show this in a comparison of a functor that is equal
to a lambda expression. An algorithm that takes a functor as argument is std ::equal(

first1, last1, first2, binaryPred). It compares values of two sequences and returns true if for
each value in the sequence the binary predicate binaryPred holds. The binary predicate as
explicit functor CompareIgnoreCaseAndChar in Listing 1.4 on the next page evaluates to true if the
characters provided to the overloaded function call operator equals-ignore-case or if the
character is equal to the value set in the constructor call (line 13) and therefore ignored
in the comparison.

Page 6 of 99

Parallator 1. Introduction

Essentially the functor has three parts:

� A field for storing the character that is ignored in the comparison.

� A constructor that captures the character to ignore.

� A definition of what to execute if the functor is used.

1 c l a s s CompareIgnoreCaseAndChar {
2 const char ignore ;
3 pub l i c :
4 CompareIgnoreCaseAndChar (const char ignore) : ignore (ignore) {}
5
6 bool operator () (const char c1 , const char c2) {
7 r e turn (c1==ignore) | | (tolower (c1) == tolower (c2)) ;
8 }
9 } ;

10
11 bool equals_ignore_case_and_char (std : : string s1 , std : : string s2 , const char c1)

{
12 r e turn std : : equal (s1 . begin () , s1 . end () ,
13 s2 . begin () , CompareIgnoreCaseAndChar (c1)) ;
14 }

Listing 1.4: Using a manually written functor CompareIgnoreCaseAndChar.

Writing the same functor as lambda expression saves a lot of work as it can be seen in
Listing 1.5. It shows the equivalent function of Listing 1.4. The lambda expression can
be seen from line 3 to line 5.

1 bool equals_ignore_case_and_char_lambda (std : : string s1 , std : : string s2 , const
char ignore) {

2 r e turn std : : equal (s1 . begin () , s1 . end () , s2 . begin () ,
3 [=] (const char c1 , const char c2) {
4 r e turn (c1==ignore) | | (tolower (c1) == tolower (c2)) ;
5 }
6) ;
7 }

Listing 1.5: Using lambda expression the code from Listing 1.4 can be written more
concisely.

The syntax of a lambda expression is shown in Figure 1.2 on the following page with the
numbered sections explained as follows:

1. This part defines how to capture local variables and make them available in section
5. Global variables do not need to be captured as they are available on default.
Possibilities in capturing are: [=]-capture by value, [&]-capture by reference, []-
nothing to capture. They influence how the fields in the “generated” functor are
declared and passed in the constructor call. It is also possible to define a specific
capture mode for each variable to capture. E.g., a capture definition of [=, &x, &y]

defines a capture by value for all local variables except for x and y that are captured
by reference. Additionally, a lambda expression inside a member function captures
all the member fields by reference independent of the defined capture mode.

2. The parameter list defines the parameter that can be passed in a call of the lambda
expression. These parameters become the parameters to the overloaded function call
operator.

Page 7 of 99

Parallator 1. Introduction

3. The modifier mutable can be used to declare a non constant function call operator. If
omitted, the function call operator is constant in every case. A variable captured by
value can not be modified in the lambda body (5).

4. Defines the type of the return value. It is optional as it can be deduced from a
possible return statement int the lambda body (5). If no return statement exists in
section 5 the return type is evaluated to void.

5. The body of the lambda expression. It becomes the body of the function call oper-
ator.

Figure 1.2.: Syntax of a lambda expression.

1.3.2. Defined Multi-Threaded Behavior with STL Container

Prior to C++11, the language specification did not state anything about thread safety of
containers. Further, threading was not a part of the language specification. Additional
libraries needed to be used for threading support in C++. This has changed with the
new standard. A memory model is now part of the specification. It exactly defines a data
race and assures defined behavior in case the program is free of a data race. Additionally,
implementation requirements for containers are given. The standard defines the following
in section 23.2.2 Container data races [Bec12]:

...implementations are required to avoid data races when the contents of the
contained object in different elements in the same sequence, excepting vector<

bool>, are modified concurrently.

Further the standard defines the following data structures from the STL (Standard Tem-
plate Library) to be sequencing container satisfying the statement above: vector, forward_list
, list, and deque. Additionally also array but with limited sequence operations because it
has a fixed number of elements. Referring back to the quote, these containers avoid data
races in concurrent modification of different elements. For example a vector<int> x with a
size greater than one, x [1] = 5 and x [2] = 10 can be executed concurrently without a race.
The exception states a vector<bool> y with a potential data race in case of concurrent exe-
cution of y [0] = true and y [1] = true.
Operations that change the container object itself, e.g. insertion of an element, or a con-
flicting access to the container by different threads are a source of a data race and need
separate synchronization mechanism. A conflicting access is defined as two operations on
the same container element while at least one is a write.

Page 8 of 99

Parallator 1. Introduction

1.4. Threading Building Blocks

Intel’s TBB (Threading Building Blocks) library provides a set of “threading building
block” for a high-level, task-based parallelism to abstract from platform details and thread-
ing mechanisms for scalability and performance [Cor12b]. A developer does not need to
care about thread management. This reduces the complexity and the number of code
lines otherwise present in multi-threaded applications. It provides ability to express data
parallelism and also an efficient implementation of the parallelization. It makes use of
the hardware supported threading but does not provide ability to enforce vectorization.
For vectorization TBB relies on auto vectorization introduced in the compiler [MRR12].
Starting with an introduction example followed by a detailed description of the different
components involved in the example, this section gives an overview on the possibilities
TBB provides and are used in this work.

1.4.1. Introducing Example

In Listing 1.6 we apply an arbitrary function Foo to every array element by iteration over
all array elements. This is done in serial and defined order.

1 void SerialApplyFoo (f l o a t a [] , size_t n) {
2 f o r (size_t i = 0 ; i != n ; ++i) {
3 Foo (a [i]) ;
4 }
5 }

Listing 1.6: Serial application of function Foo on every array element [AK12].

The method SerialApplyFoo() provides typical potential for data parallelism. The operation
Foo in the loop are independent and can be parallelized. This is only valuable if the
operation is time consuming or the array is big enough to not swamp parallelism with
the overhead. If so, complicated considerations as how many threads execute how many
iterations, arises too. Listing 1.7 shows the parallel version of Listing 1.6.

1 ApplyFoo { //Loop body as func t i on ob j e c t
2 f l o a t * const my_a ;
3 pub l i c :
4 ApplyFoo (f l o a t *a) : my_a (a) {}
5 void operator () (const blocked_range<size_t>& range) const {
6 f l o a t *a = my_a ;
7 f o r (size_t i=range . begin () ; i != range . end () ; ++i)
8 Foo (a [i]) ; // loop body
9 }

10 } ;
11
12 void ParallelApplyFoo (f l o a t a [] , size_t n) {
13 parallel for(blocked range<size t>(0, n) ,
14 ApplyFoo(a) ,
15 auto partitioner()) ; // p a r t i t i o n i n g h int
16 }

Listing 1.7: Serial application of function Foo on every array element [AK12].

The loop body is extracted into a function object (line 1-10). Using the parallel_for parallel
algorithm (line 13-15) the functor object is applied on subranges. The subranges are the
result of a splitting mechanism of the whole iteration space defined as blocked_range object
(line 13). With a partitioning hint (line 15) the size of the subrange is influenced and

Page 9 of 99

Parallator 1. Introduction

therefore also the number of parallel tasks spawned, since each subrange is executed by
one task. The scheduling of the tasks is managed by the task scheduler (Section 1.4.2) of
TBB. The following sections explain the different parameters in more detail.

1.4.2. Task Scheduling

The task scheduler is the component that underlies the different parallel algorithms. It
is the key component for load balanced execution of the tasks and makes TBB useful for
nested parallelism.

Task Graph and Work Stealing

The task scheduling algorithm in TBB is a work stealing algorithm. In that, the scheduler
maintains a pool of worker threads where each thread has a ready pool for tasks that can
be executed (Figure 1.3). The ready pool is modeled as a double-ended queue, a deque.
Whenever a new task is spawned, it is added at the front of the deque. If the thread is
ready, the next task is popped from the front of its deque, hence running the youngest
task that is created before by this thread. If the thread is ready and its deque is empty
(see worker 1 in Figure 1.3), it steals the task from the back of a randomly chosen other
deque maintained by another worker thread (victim). This steals the oldest task created
by another thread.

Figure 1.3.: Obtaining tasks from the local double-ended queues (deques) maintained by
the worker threads. This strategy unfolds recursively generated task trees in
a depth-first manner, minimizing memory use. [KV11]

This algorithm works best if the task graph is a tree. The task scheduler evaluates this
task graph in a preferably most efficient way using the work stealing algorithm. A task
tree is created by tasks (executed by threads) that split its work to other tasks and wait
until the child tasks finished there work and join back1. A possible task tree is shown

1This is the default behavior but also more complex dependencies than the simple parent-child relationship
can be specified.

Page 10 of 99

Parallator 1. Introduction

in Figure 1.4 resulted from a recursively split range of data. Applying the work stealing
algorithm on this task tree results in depth-first execution order on the same thread to
minimize memory use whereas stolen work is executed in breadth-first order to occupy
the worker threads and exploit parallelism. As the stolen oldest task is high in the task
tree it represents large chunk of work and is further again executed in depth-first manner
until it needs to steal more work.

Figure 1.4.: Recursive subdivision of a range to generate tasks. Each box represents a
task that will perform computation on a subrange. The leaves represent tasks
that haven’t yet executed and the internal nodes represent tasks that have
executed and chose to subdivide their range.

Parallelism is exploited by stolen work. This is only possible if a worker threads has no
work. Therefore there is no guarantee that potentially parallel tasks actually execute in
parallel.

Instantiation of Task Scheduler

The task scheduler is initialized using the task_scheduler_init class. This initialization is
optional. A task scheduler is created automatically the first time a thread uses task
scheduling services. The task scheduler is destroyed again when the last thread that uses
the scheduler exits. The number of threads used by the task scheduler and the stack size
of the worker threads can be set in a manual initialization. But it is best to leave the
decision of how many threads to use to the task scheduler, as the hardware threads is a
global shared resource. Also other threads running on the system want to use the available
hardware threads. For the programmer there is no way to know how many threads would
be optimal considering also other threads running on the system.

1.4.3. Iteration Space / Range Concept

To divide the work into chunks that are equaly spread on the tasks, a range concept is
used. A range object provides functions to recursively split the iteration space into smaller
chunks. The size of the chunk is evaluated by the scheduling system. It uses the range

Page 11 of 99

Parallator 1. Introduction

object to split. Splitting is stopped if the serial execution is faster than to split further.
The chunks can then be executed by tasks concurrently. Range objects can also be seen
as a wrapper to indices. While a loop iterates serially over the indices and accesses the
data container, ranges are executed in parallel by tasks whereas each task iterates serially
over the wrapped indices of a range. Custom range objects can be declared with specific
criteria on how and when to split. TBB also provides common used range objects that
implement the range concept. They are explained in the following sections. Figure 1.4 on
the preceding page shows a recursively split range that generates tasks. It also outlines
the relationship of the range concept with the task scheduling regarding to data locality.

blocked range<Value>

A blocked_range<Value> represents a half-open range [i,j) that can be recursively split. It is
constructed with the start range value i and the end range value j. An optional third
parameter defines the grain size which specifies the degree of splitting. In blocked_range,
the grain size specifies the biggest range considered indivisible. On default, grain size is
set to 1. The requirements of the Value template parameter are shown in Table 1.1. The
template argument type D references a type that is implicitly convertible to std ::size_t.

Pseudo signature Semantics

Value::Value(const Value&) Copy constructor.
Value:: Value() Destructor.
void operator=(const Value&) Assignment.
bool operator<(const Value& i, const Value& j) Value i precedes value j.
D operator-(const Value& i, const Value& j) Number of values in range [i,j).
Value operator+(const Value& i, D k) kth value after i.

Table 1.1.: Value requirement for blocked_range [Cor12c]
.

Examples that model the Value concept are integral types, pointers, and STL random-
access iterators whose difference can be implicitly converted to std ::size_t [Cor12c]. The
application of the blocked_range<Value> can be seen in the introducing parallel example of
Listing 1.7 on page 9 where the chunk is serially processed with access to subsumed indices
of the range through begin() for the start index and end() for the end index. The returned
values by these functions meet the Value requirement.

blocked range2d<RowValue,ColValue>

A blocked_range2d<RowValue,ColValue> represents a half-open two dimensional range [i0,j0)×[i1,j1).
The grain size can be specified for each axis of the range. For RowValue and ColValue the
same requirements must be satisfied as stated in table 1.1. A blocked_range2d perfectly fits
for a parallel matrix multiplication where each input matrices can be split along one di-
mension to perfectly split the data needed for calculating an entry in the resulting matrix
as Figure 1.5 on the next page shows.

Page 12 of 99

Parallator 1. Introduction

Figure 1.5.: Data depencency in matrix mutliplication.

By mapping a number of horizontal strips of matrix A and a number of vertical strips of
matrix B to one task, the calculation can be done in parallel where each task calculates
the resulting values in matrix C. Listing 1.8 implements the algorithm and shows the
application of blocked_range2d with the corresponding access to the indices using the rows
dimension for matrix A and the column dimension for matrix B.

1 const size_t L = 150 ;
2 const size_t M = 225 ;
3 const size_t N = 300 ;
4
5 c l a s s MatrixMultiplyBody2D {
6 f l o a t (* my_a) [L] ;
7 f l o a t (* my_b) [N] ;
8 f l o a t (* my_c) [N] ;
9 pub l i c :

10 void operator () (const tbb : : blocked_range2d<size_t>& r) const {
11 f l o a t (* a) [L] = my_a ;
12 f l o a t (* b) [N] = my_b ;
13 f l o a t (* c) [N] = my_c ;
14 f o r (size_t i = r . rows () . begin () ; i != r . rows () . end () ; ++i) {
15 f o r (size_t j = r . cols () . begin () ; j != r . cols () . end () ; ++j) {
16 f l o a t sum = 0 ;
17 f o r (size_t k = 0 ; k < L ; ++k)
18 sum += a [i] [k] * b [k] [j] ;
19 c [i] [j] = sum ;
20 }
21 }
22 }
23 MatrixMultiplyBody2D (f l o a t c [M] [N] , f l o a t a [M] [L] , f l o a t b [L] [N]) :
24 my_a (a) , my_b (b) , my_c (c) {
25 }
26 } ;
27
28 void ParallelMatrixMultiply (f l o a t c [M] [N] , f l o a t a [M] [L] , f l o a t b [L] [N]) {
29 parallel_for (tbb : : blocked_range2d<size_t>(0 , M , 16 , 0 , N , 32) ,
30 MatrixMultiplyBody2D (c , a , b) , tbb : : simple_partitioner ()) ;
31 }

Listing 1.8: Parallel matrix multiplication using blocked_range2d [Cor12c].

The parallel_for on line 29 recursively splits the blocked_range2d until the pieces are no larger
than 16×32. With reference to Figure 1.5 a task calculates the results from maximum 16
rows of matrix A and 32 columns of matrix B.

Page 13 of 99

Parallator 1. Introduction

blocked range3d<PageValue,RowValue,ColValue>

A blocked_range3d<PageValue,RowValue,ColValue> is the three-dimensional extension of blocked_range2d
. A typical usage is the parallelization of operation with three dimensional data structures.

1.4.4. Controlling Chunking

The grain size is not the only parameter that affects the chunk size. The other parameter
is the partitioner as seen in the introducing example in Listing 1.7 on page 9 where an
auto_partitioner is used. Table 1.2 shows the available partitioner and its affect on the chunk
size together with the grain size.

Partitioner Description
When used with
blocked range(i,j,g)

simple partitioner Chunksize bounded by grain size. dg/2e ≤ chunksize ≤ g

auto partitioner Automatic chunk size. dg/2e ≤ chunksize
affinity partitioner Automatic chunk size and cache affinity.

Table 1.2.: Overview and description of the different partitioner.

Automatic Chunking

Using parallel algorithms without specifying a partitioner, the auto_partitioner is used. It
determines the chunk size automatically. Initially the number of subranges is proportional
to the number of processing threads, and further additional subranges are created only
when necessary to balance load, hence if a thread gets idle and is ready to work on another
chunk.

Upper Bound of Chunksize

With a simple_partitioner the range is from the very beginning divided into subranges un-
til the subrange is not further dividable. Since this limit is grain size dependent, the
simple_partitioner provides an upper bound for the chunk size.

Optimize for Cache Affinity

An optimization on cache usage provides the affinity_partitioner. It uses the automatic
chunking algorithm as auto_partitioner but advices the parallel algorithm to assign iterations
to the same processors as in an earlier execution of the same loop (or another loop) with
the same affinity_partitioner.

Ideal Chunking

Finding the ideal parameters for loop template using ranges and partitioners is a difficult
task. A too small grain size may cause scheduling overhead in execution and swamps
the speedup gained from parallelism. A too large grain size may reduce parallelism un-
necessarily. For example, a chosen grain size for a range that is the half of the entire
iteration space splits only once and the potential parallelism is two. Generally, to relay
on auto_partitioner provides a good solution.

Page 14 of 99

Parallator 1. Introduction

1.4.5. Parallel Algorithms

TBB provides several parallel algorithms that help to parallelize common operations. In
the following, some algorithms are described in detail whereby the parallel_for, parallel_reduce
and parallel_scan are loop templates that make use of the range concept and partitioner

for chunking, the parallel_for_each is an algorithm for streams.

parallel for Template

The parallel_for function template performs parallel iteration over a range of values. There
are two versions for parallel_for, a compact notation and a more general version that uses
a range explicitly. The syntax for the compact notation is shown in Listing 1.9.

1 template<typename Index , typename Func>
2 Func parallel_for (Index first , Index last , Index step , const Func& f [,

task_group_context& group]) ;

Listing 1.9: Syntax of parallel_for for compact notation.

An example usage of this compact notation is shown in Listing 1.10 which represents
another parallel version of the introduction example. The step is explicitly specified, if
omitted it is set to one. The partitioning strategy is always auto_partitioner. It supports
only unidimensional iteration spaces and the Index template parameter requires a type
convertible to integers. Iterators can therefore not be used in this compact notation.

1 void ParallelApplyFoo (f l o a t * a , size_t n) {
2 tbb : : parallel_for (size_t (0) , n , size_t (1) , [=] (size_t i) {
3 Foo (a [i]) ;
4 }) ;
5 }

Listing 1.10: Example of using parallel_for with compact notation.

The syntax of the more general version of parallel_for is shown in Listing 1.11

1 template<typename Range , typename Body>
2 void parallel_for (const Range& range , const Body& body , [, partitioner [,

task_group_context& group]]) ;

Listing 1.11: Syntax of parallel_for for general usage.

The requirements of the Body concept is a unary functor with an overloaded constant call
operator that takes a range object as argument. For every constructed subrange the body
object is copied and applied on the range. For an example on this general version we refer
to the introducing example in Listing 1.7 on page 9.
Both versions of parallel_for and all upcoming described algorithms are featuring an op-
tional parameter for a specified task_group_context. A task_group_context represents a group
of tasks that can be canceled in order to abort the computation. The task_group_context

objects form a forest of trees where the root of each tree is a task_group_context constructed
as isolated. Isolated is one kind of a possible relation to the parent, in fact isolated means
the group has no parents. Canceling a task_group_context causes the entire subtree rooted
at it to be canceled. Therefore also a cancellation of a task_group_context does not affect
other task_group_context trees created as isolated. The default parent relation behavior is
bound. A root task that is associated with a bound task_group_context becomes, in contrast
to isolated, the child of the innermost running task’s group. A child task automatically

Page 15 of 99

Parallator 1. Introduction

joins its parent task’s group. The parameter to the parallel algorithms specifies to which
group context the created tasks belong and affects therefore the behavior in cancellation.

parallel reduce Template

With parallel_reduce a reduction can be calculated over a range. Listing 1.12 shows two
possible syntax for the reduction.

1 template<typename Range , typename Body>
2 void parallel_reduce (const Range& range , const Body& body [, partitioner [,

task_group_context& group]]) ;
3
4 template<typename Range , typename Value , typename Func , typename Reduction>
5 Value parallel_reduce (const Range& range , const Value& identity , const Func&

func , const Reduction& reduction , [, partitioner [, task_group_context& group

]]) ;

Listing 1.12: Syntax of parallel_reduce.

Referring to the first syntax of a parallel_reduce call, the body argument needs the over-
loaded operator() as in parallel_for. Additionally, a function join(const Body& b) for the reduc-
tion of the values calculated in concurrent tasks and a splitting constructor is required.
Listing 1.13 shows an implementation of a parallelized std ::count. It counts the values equal
to 42 in an array.

1 c l a s s Count {
2 pub l i c :
3 i n t my_count ;
4 void operator () (const tbb : : blocked_range<const i n t*>& r) {
5 my_count += std : : count (r . begin () , r . end () , 42) ;
6 }
7 Count (Count& x , tbb : : split) : my_count (0) {
8 }
9 void join (const Count& y) {

10 my_count += y . my_count ;
11 }
12 Count () : my_count (0) {
13 }
14 } ;
15
16 i n t parallelCount (const i n t data [] , size_t n) {
17 Count counter ;
18 tbb : : parallel_reduce (tbb : : blocked_range <const i n t*> (data , data + n) , counter

) ;
19 r e turn counter . my_count ;
20 }

Listing 1.13: Parallelized std ::count using tbb ::parallel_reduce. Counts the occurrence of 42
in the data array.

Consider the special splitting constructor on line 7. This constructor is used to split the
body to apply on the recursively split ranges as described in Section 1.4.3 on page 11. A
splitting of the reduction body is only done if a worker thread is ready to steal a subrange.
Otherwise, a subrange or several subranges are processed by the same reduction object.
Hence a body is not split every time a range is split, but the converse is necessarily true.
This must especially be regarded on line 5 to not discard earlier accumulated counts. The
already mentioned join() function on line 9 is called to join the split reduction object back
to its origin and accumulate the calculated values.

Page 16 of 99

Parallator 1. Introduction

The second syntax outlined in Listing 1.12 on the preceding page makes the use of lambda
expressions in conjunction with parallel_reduce possible. The previously described reduc-
tion body is separated into a functor applied on the range and another functor that does
the reduction. The additional identity parameter represents the identity of the reduction
operator. Listing 1.14 shows the usage of the lambda friendly syntax also simplified by
the usage of numeric operation provided by the STL.

1 i n t parallelCount (const i n t data [] , size_t n) {
2 r e turn tbb : : parallel_reduce (tbb : : blocked_range<const i n t *>(data , data + n) ,
3 0 , [=] (tbb : : blocked_range <const i n t*> r , i n t i) −> i n t {
4 r e turn i += std : : count (r . begin () , r . end () , 42) ;
5 } , std : : plus<int >()) ;
6 }

Listing 1.14: Parallelized std::count using tbb::parallel reduce with lambda friendly
syntax. Counts the occurrence of 42 in the data array.

This version of parallel_reduce directly returns the result of the reduction.

parallel scan Template

The parallel_scan calculates a parallel prefix also known as parallel scan. It allows to
parallelize calculations over a sequence of data that appear to have inherently serial de-
pendencies. A serial implementation of a parallel prefix, the calculation of a the running
sum, can be seen in Listing 1.15

1 i n t runningSum (i n t y [] , const i n t x [] , i n t n) {
2 i n t temp = 0 ;
3 f o r (i n t i = 1 ; i <= n ; ++i) {
4 temp = temp + x [i] ;
5 y [i] = temp ;
6 }
7 r e turn temp ;
8 }

Listing 1.15: Serial implementation of parallel prefix that calculates the running
sum [Cor12c].

From line 4 we realize the serial dependency as the current sum is dependent on the pre-
vious calculated sum. But for faster calculation, here also, the range must be split in
subranges to do the calculation in parallel. To make a parallel calculation possible, the
serial dependency can be resolved, by calculating a parallel prefix in two phases. In a pre-
scan phase, only the summary of a subrange is calculated without setting the resulting
value of each element. In a second phase, a final-scan is done to calculate also the resulting
value for each element using summary results from pre-scanned ranges. As the calculation
happens in two phase and the parallel prefix operation is applied at most twice as often
as in the serial implementation, it can outperform the serial version only with right grain
size and if sufficient hardware threads are available.

The syntax of parallel_scan can be seen in Listing 1.16. Additionally, a partitioner can
be explicitly specified as third parameter, but an affinity_partitioner can not be used.

1 template<typename Range , typename Body>
2 void parallel_scan (const Range& range , Body& body) ;

Page 17 of 99

Parallator 1. Introduction

Listing 1.16: Syntax of parallel_scan.

The exact working of parallel_scan can best be explained by an example body (Listing 1.17)
in conjunction with a possible execution flow (Figure 1.6 on the next page) where each color
denotes a separate body object. The example shows the calculation of the running sum
over 16 integers. In step 1 and 2, the body object is split using the splitting constructor
(line 23). In step 3 a final-scan as well as two pre-scan can be executed in parallel using the
overloaded operator() on line 14 with the scan variation distinction on line 18. In step 5 and
6 the reverse_join function on line 26 is executed where the summary of scans are provided
to other bodies to enable parallel final-scans in step 7. The parameter in reverse_join is
a body object from which the calling body was split before. In the final step the origin
body object is updated with the summary calculated in the last range.

1 template<typename T>
2 c l a s s Body {
3 T sum ;
4 T* const y ;
5 const i n t * const x ;
6 pub l i c :
7 Body (i n t y_ [] , const i n t x_ []) :
8 sum (0) , x (x_) , y (y_) {
9 }

10 T get_sum () const {
11 r e turn sum ;
12 }
13 template<typename Tag>
14 void operator () (const tbb : : blocked_range<int>& r , Tag) {
15 T temp = sum ;
16 f o r (i n t i = r . begin () ; i < r . end () ; ++i) {
17 temp = temp + x [i] ;
18 i f (Tag : : is_final_scan ())
19 y [i] = temp ;
20 }
21 sum = temp ;
22 }
23 Body (Body& b , tbb : : split) :
24 x (b . x) , y (b . y) , sum (0) {
25 }
26 void reverse_join (Body& a) {
27 sum = a . sum + sum ;
28 }
29 void assign (Body& b) {
30 sum = b . sum ;
31 }
32 } ;

Listing 1.17: Body to calculate the running sum [Cor12c].

Page 18 of 99

Parallator 1. Introduction

Figure 1.6.: Possible execution flow in calculating the running sum with parallel_scan. Each
color denotes a separate body object and the values in the brackets represent
the summary of the corresponding range [Cor12c].

parallel for each Template

The parallel_for_each is the parallel equivalent to std ::for_each. It can operate directly with
iterators as it can be seen form the syntax in Listing 1.18.

1 template<typename InputIterator , typename Func>
2 void parallel_for_each (InputIterator first , InputIterator last , const Func& f

[, task_group_context& group]) ;

Listing 1.18: Syntax of parallel_for_each.

The provided functor or function pointer as last argument is applied to the result of
dereferencing iterator in the range [first,last). Internally, the algorithm can not operate
with a blocked_range and recursive splitting because this is not applicable on InputIterators
as they do not provide random access. Every element is therefore executed in its own
task. Additionally, if the user does not provide random-access iterators, the algorithm
ensures that no more than one task will ever act on the iterators concurrently, but this
restriction is relaxed with random-access iterators [Cor12d] [KV11]. But still, as every
element is processed by a separate task also in case of a provided random-access iterators,
the algorithm can only beat the serial equivalent if the computation time on the element
exceeds the splitting and task scheduling overhead.

Page 19 of 99

Parallator 1. Introduction

1.5. Existing Tools

There are some tools that already support the user in parallelize serial code. Some of
them are quite mature and used in practice. Therefore they are analyzed and can show
which advices are useful for a user in the process of parallelization. Two existing tools are
introduced in this section.

1.5.1. Intel Parallel Advisor

The Intel Parallel Studio equips the developer with tools to design, build, debug, verify and
tune serial and parallel applications. The whole suite consists of different tools integrated
with Microsoft Visual Studio. The one that is most related to this work is Intel Parallel
Advisor. It guides the user with a workflow (Figure 1.7). The steps in the workflow (A...E)
are explained here.

Figure 1.7.: Intel Advisor XE Workflow
window [Cor12a].

A: Survey Target: This step helps in
finding call-sites and loops that con-
sume most of the time in execution
and are therefore hot spots to experi-
ment with parallelism.

B: Annotate Sources: The source can
be annotated with different annota-
tions to model a parallel execution.
A task annotation may surround the
loop body to mark each loop iteration

as a task. The task then is surrounded
with a parallel site annotation, e.g.
around the whole loop statement. The
tasks inside the parallel site are then
executed in parallel. With an annota-
tion wizard the user is guided through
the annotation step.

C: Check Suitability: In this step the
performance of the parallel experi-
ment is evaluated. The performance
of the parallel site as well as of the
whole program can be analyzed. The
information provided by the suitabil-
ity check can be seen in Figure 1.8 on
the following page.

D: Check Correctness: The correct-
ness tool will provide help in identi-
fying data issues like data races in the
parallel experiment. A potential data
race can then experimentally be made
safe by letting the Advisor annotate
the racing statement with lock annota-
tions. For verification, the suitability
check and the correctness check need
to be performed again.

E: Add Parallel Framework: The last
step is to replace the annotations with
a parallel framework. In this step the
Advisor provides documentation to as-
sist with the transformation. There is
no automatic transformation.

Page 20 of 99

Parallator 1. Introduction

Figure 1.8.: Suitability data collected by Advisors suitability tool [Cor12a].

1.5.2. ReLooper

ReLooper [DD12] is an Eclipse plug-in to refactor loop parallelism in Java. It is semi-
automatic and guides the user in the refactoring process. It supports the refactoring
of Java arrays or vectors into ParallelArray [Lea12] class. A ParallelArray allows to apply
operations on the elements of arrays in parallel. The available operations are similar to
the parallel algorithms that TBB provides. As an example it also provides the operation
to reduce all elements into a single value. The internals of ParallelArray are very similar to
TBB. A pool of worker threads processes the operations on the array elements in parallel
whereby the runtime library is responsible for balancing the work among the processors in
the system. Figure 1.9 shows sequential loops that perform different computations over an
array of Particle objects on the left side and the refactored version that uses ParallelArray

on the right side.

Page 21 of 99

Parallator 1. Introduction

Figure 1.9.: The programmer selects the bodies array and Convert To Parallel Array refac-
toring. ReLooper converts the sequential loops (left-hand side) into parallel
loops (right-hand side) using the ParallelArray framework [DD12].

ReLooper uses a data-flow analysis that determines objects that are shared among loop
iterations, and detects writes to the shared objects. This static analysis is based on the
SSA (single static assignment) intermediate representation of a program and it analyzes
both, the program in source code and in byte code. Additionally the data-flow analysis
is conservative, it could give false warnings. Therefore it is crucial that the refactoring
is interactive. The user as expert can decide whether to move on even though warnings
exist. The decision to parallelize and ignore the warnings can be done for every loop in
the example of figure 1.9.

1.6. Project Goals

TBB provides a rich set of threading building blocks that help in parallelize sequential
algorithms. They provide an abstraction to parallelize operations on loop elements with
different kind of dependencies. A manual conversion of the loops into parallelized TBB
calls is time consuming, error prone and enforces advanced knowledge as of the following
reasons:

� Finding loops that provide data or task parallelism is difficult. It requires a conscious
analysis of the code.

� The manual transformation to parallelism can introduce errors. Especially if knowl-
edge of lambda expressions and functors is not well-founded. Whether to pass a

Page 22 of 99

Parallator 1. Introduction

variable as reference or value is essential in parallelism as references allow to share
the same object.

� Introducing parallelism may also introduce data races that are overseen in a manual
conversion.

Most STL algorithms operate on a sequence of data with different kind of dependencies.
These algorithms, either explicitly programmed using a loop or the call of the specific
algorithm, can be parallelized as shown in Listing 1.13 on page 16. Former work in this
area [Kes10] have shown a working recognition of loops representing an STL algorithm
and the conversion to the corresponding STL algorithm call.

The project goal can be stated as semi-automatic transformation of source code into
semantically equal, parallelized code using TBB, eventually after user acknowledgment.
As mentioned, the loops and STL call show a potential for parallelism. Besides the par-
allelization of already recognized STL algorithms by [Kes10], further conversions of loops
into its equivalent STL calls remain another goal of the project.

The limitation a semi-automatic transformation with user acknowledgment is founded
by the program equivalence problem. Determining whether two programs are equivalent
is in general undecidable. This can be proven using the halting problem. The possibility
to find a transformation into the semantic equal parallelized program from any program
would contradict with program equivalence. For restricted cases, a guarantee for a seman-
tic preserving transformation is possible. For many other cases, a transformation might
be valid but can not be automatically guaranteed so user involvement is required to apply
it. Nevertheless, the mechanics of such transformations should be automatic, once the
user acknowledges them.

The focus in this project is on the recognition of parallelism and the transformation to
expose them. Profiling analysis as shown by Intel Advisor (Section 1.5.1 on page 20) to
find hot spots for parallelism, is not the focus.

The implemented transformation shall be applied in existing projects to show the usabil-
ity and performance gain. Furthermore, the implementation will be served as an Eclipse
CDT [Fou12] plug-in.

1.7. About this Report

In chapter 2 potential source code constructs for parallelism are analyzed in detail also
evaluating the criteria for a loop to be safe for parallelism. The chapter describes also the
tree pattern matching approach of the DS-8 project and how it can be used in this project.
Chapter 3 describes the implementation details of the Parallator Eclipse plug-in. The final
chapter 4 presents the project results, including a measurement to outline the performance
impact of the implemented transformations. Further, open problems and enhancements
are described and the project concludes with a personal reflection and acknowledgment.

Page 23 of 99

Parallator 2. Analysis

2. Analysis

Loops with implied sequential execution provide a great potential for parallelism. This
analysis is focused on the detection of loops to parallelize and the possible transformation
to a TBB specific algorithm. The last section (Section 2.6 on page 44) then states some
possible other code, where parallelism could be introduced using TBB.
The chapter starts with an introduction to the DeepSpace-8 (DS-8) project where loops
are recognized and transformed to a specific STL algorithm. It gives an overview on the
semantics of different loops and the limitation in the abstraction with an algorithm call.
The potential usage of TBB to parallelize concrete loop examples is shown in Section 2.2
on page 26. Section 2.3 on page 33 deepens the semantic analysis of the already imple-
mented transformation towards STL algorithm because similar considerations must also
be taken as in the analysis of whether the stated potential loops are safe for parallelization
(Section 2.4 on page 35). The technique used in the DS-8 project to find and transform
loops is tree pattern matching. Section 2.5 on page 40 starts with an introduction into
the implemented approach and is followed by an analysis on its usage and limitation to
detect loops transformable towards TBB algorithms.

2.1. Loop Analysis and Transformation in DS-8 Project

The findings in loop analysis and transformation from the DS-8 project are summarized
in this section. It shows the problems and limitations in loop analysis and transformation
towards STL algorithms. These findings are also valid for this project.

2.1.1. Focus on Specific Loop Variants

An approach to detect all loops that correspond to a specific STL algorithms is not
possible. A loop analysis towards a for each algorithm for example, constitutes an analysis
of the range of a loop. In this range, every element of the iterating sequence must be
processed somehow. Extracting the range of a loop is equal to the halting problem which
is not decidable [Sip06]. Whether the loop constitutes a valid for each code pattern or not
is therefore undecidable too. Additionally the body of a loop can be arbitrary complex
and represents itself a complete program (“turing-complete systems”) [Sip06]. A statement
about the logical algorithm it implements, such as “Implements a for each algorithm”, can
not be made according the Rice’s theorem [Sip06]. But for specific cases the recognition
of loop candidates for an STL algorithm is possible as shown in [Kes10].

Detectable Loop Variants

Listing 2.1 on the following page shows concrete for - and while-loops where the iteration
start value and end value is detected. In all cases exactly one increment on the iteration
variable must be in place.

Page 24 of 99

Parallator 2. Analysis

1 i n t main () {
2 char s [] = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;
3
4 // s t a r t va lue found in f o r loop i n i t s e c t i on , end value in f o r loop cond i t i on
5 f o r (char *it = s , *xy = s + 1 ; it != s + 5 ; ++it) {
6 process (* it) ;
7 }
8
9 // s t a r t va lue found be f o r e the f o r loop , end value in f o r loop cond i t i on

10 char * it = s + 1 ;
11 it = s ;
12 f o r (; it != s + 5 ; ++it) {
13 process (* it) ;
14 }
15
16 // s t a r t va lue found be f o r e the whi l e loop , end value in whi l e loop cond i t i on
17 it = s ;
18 whi le (it != s + 5) {
19 process (* it) ;
20 it++;
21 }
22 }

Listing 2.1: Possible range evaluation in loop constructs with different iteration variable
initializers.

Undetectable or Wrongly Detected Loop Variants

Listing 2.2 shows cases where the loop is not detectable or the range is wrongly detected.
Wrongly detected can be expressed as loops that match an assumed code pattern but
additional code constructs let the range deduction fail.

1 void increment (char * &it) {
2 it++;
3 }
4
5 i n t main () {
6 char s [] = { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ } ;
7 char *it ;
8
9 // increment hidden by a func t i on c a l l

10 f o r (it = s ; it != s + 5 ; increment (it)) {
11 process (* it) ;
12 }
13
14 //wrongly detec ted loop range because o f complex loop cond i t i on
15 bool run = true ;
16 f o r (it = s ; (it != s + 5) && run ; ++it) {
17 process (* it) ;
18 i f (* it == ’b ’) {
19 run = f a l s e ;
20 }
21 }
22 }

Listing 2.2: Examples of undetected loops and wrong range evaluation.

Both example from Listing 2.2 show the possible complexity that can be faced in parts of a
loop. The incrementation part can be an arbitrary expression and the increment therefore
be hidden by a function call. The range is wrongly detected in the second example as the
condition can be an arbitrary expression and it is not possible to cover all cases.

Page 25 of 99

Parallator 2. Analysis

Conclusion

Many potential loops are detected with the situations covered from Listing 2.1 on the
previous page and it is suggested to focus on index based loops to reach more potential
loops for a transformation towards STL [Kes10]. The loop analysis is focused on iterator
based loops mainly because of the simpler transformation to STL algorithms which are
based on iterators.

2.1.2. Loop Body Transformation

In the transformation of a loop to an STL algorithm, the loop body must be transformed
into a functor or lambda. Additionally, the iteration variable can not be accessed anymore
in the functors body. This leads to a transformation of iterator-based accesses to value
type-based accesses. Iterator embrace a pointer akin syntax of dereferencing (*) and
member access (−>). Listing 2.3 and Listing 2.4 show this transformation.

1 vector<string> vec = getData () ;
2 f o r (vector<string > : : iterator it = vec . begin () ; it != vec . end () ; ++it) {
3 std : : cout << *it << std : : endl ;
4 it−>clear () ;
5 }

Listing 2.3: Iterator access syntax [Kes10].

1 vector<string> vec = getData () ;
2 std : : for_each (vec . begin () , vec . end () [] (string &it) {
3 std : : cout << it << std : : endl ;
4 it . clear () ;
5 }) ;

Listing 2.4: Transformed iterator access [Kes10].

Recognize also that there is a semantic loss when moving from iterators to value types.
This can be seen in Listing 2.5 where the loop semantic can not be maintained in a for each
algorithm. The analysis of for each loop candidates does not check this and leaves this
detection to the user.

1 vector<string> vec = getData () ;
2 f o r (vector<string > : : iterator it = vec . begin () + 1 ; it != vec . end () ; ++it) {
3 std : : cout << (* it + *(it − 1)) << std : : endl ;
4 }

Listing 2.5: Loop showing th semantic loss in transformation to for each [Kes10].

2.2. Potential Transformations Using TBB

As already seen, TBB provides different parallel algorithms to parallelize loops with differ-
ent dependencies between loop iterations. This section describes the possible loop variants
that resemble a specific TBB algorithm and the possible transformations. Whether a trans-
formation is safe regarding to a possible conflicting variable modification in a parallelized
execution is analyzed in Section 2.4 on page 35. As STL algorithm do also imply a certain
dependency in loop iterations, they are analyzed too for a possible parallelization.
During this analysis, the Thrust library [JH13], which is a parallel algorithms library

Page 26 of 99

Parallator 2. Analysis

that resembles the C++ standard template library, has shown interesting for this project.
Thrust uses TBB as one possible back end for parallelization. The potential usage of
Thrust for this project is analyzed in Section 2.2.3 on page 32.

2.2.1. Loops to TBB Parallel Algorithms

The available analysis mechanism for loops works best and sufficiently reliable for specific
loop variants [Kes10]. This section is focused mainly on elaborating specific loop variants
that can be transformed to a TBB equivalent. For some algorithms it is simpler to support
the transformation from index-based and iterator-based loops. This distinction affects also
the transformation of the loop body. The variants and its specific handling are introduced
in this section.

2.2.1.1. Loops to tbb::parallel for each

The tbb ::parallel_for_each algorithm operates on InputIterator which means that this algo-
rithm can directly be used with iterators and that index-based loops are not that simple
to transform to this algorithm [Kes10].

Iterator-Based Loop

Listing 2.6 shows a possible iteration-based loop candidate and Listing 2.7 the parallelized
equivalent using a lambda expression.

1 std : : vector<WebSite> sites = getWebSites () ;
2 f o r (vector<WebSite > : : iterator site = sites . begin () ; site != sites . end () ; ++site

) {
3 site−>search (searchString) ;
4 }

Listing 2.6: Iterator-based loop as tbb ::parallel_for_each candidate.

1 std : : vector<WebSite> sites = getWebSites () ;
2 tbb : : parallel_for_each (sites . begin () , sites . end () , [] (WebSite& site) {
3 site . search (searchString) ;
4 }) ;

Listing 2.7: Resulting tbb ::parallel_for_each call using lambda expression.

As the loop body consists of only one function call that includes the iteration variable,
this function call can be transformed to a unary functor that is called with the bound
iteration variable using std ::bind (Listing 2.8).

1 std : : vector<WebSite> sites = getWebSites () ;
2 tbb : : parallel_for_each (sites . begin () , sites . end () , std : : bind(&WebSite : : search , _1

, searchString)) ;

Listing 2.8: Resulting tbb ::parallel_for_each call using argument binding.

Index-Based Loop

Listing 2.9 on the following page shows an index-based loop with the same functionality.
The transformation of such a loop to tbb ::parallel_for_each would require to be able to link

Page 27 of 99

Parallator 2. Analysis

the index value of 0 to sites.begin(), sites.size() to sites.end() and recognize their usage in
terms of a vector access using vector::at or vector::operator [] [Kes10]. This can be seen if we
consider Listing 2.7 on the previous page as the result of the index-based loop example.

1 std : : vector<WebSite> sites = getWebSites () ;
2 f o r (vector<WebSite > : : size_type i = 0 ; i != sites . size () ; ++i) {
3 sites [i] . search (searchString) ; // a l t e r n a t i v e : s i t e s . at (i) . s earch (s ea r chS t r i ng)
4 }

Listing 2.9: Index-based loop as tbb ::parallel_for_each candidate.

It is shown in [Kes10] that there exist cases in which the transformation is not as straight
forward as described above.

2.2.1.2. Loops to tbb::parallel for

The tbb ::parallel_for algorithm provides the possibility to parallelize index-based loops with-
out great effort. This comes from the fact that the parameters for the iteration range in
tbb ::parallel_for are not restricted to Iterators. Remember the Index concept (Section 1.4.5
on page 15) or the Value concept (Section 1.4.3 on page 12). Regarding to the body
section, there is no semantic loss (expect the sequential execution) compared to a for
statement. The loop range is simply separated into subranges executed by different tasks
but the loop body can remain the same (apart from parallelism issues). The following
examples show possible loops with a parallelized equivalent using the compact version and
the more generic version of tbb ::parallel_for.

Index-Based Loop

The index-based example in Listing 2.9 can be parallelized using tbb ::parallel_for as shown
in Listing 2.10.

1 std : : vector<WebSite> sites = getWebSites () ;
2 tbb : : parallel_for (size_t (0) , sites . size () , [sites] (const i n t i) {
3 sites [i] . search (searchString) ;
4 }) ;

Listing 2.10: Resulting tbb ::parallel_for call (compact version) from index-based loop using
lambda expression.

A transformation of the index-based loop body from Listing 2.9 to a bind variation is often
not possible. In most cases it would require the introduction of a new function to which
the arguments (sites and i) are bound.

The compact version allows also iteration steps different to an increment by one. There-
fore it is also possible to map the loop in Listing 2.11 to the tbb ::parallel_for equivalent in
Listing 2.12 on the following page

1 void addValueOnEverySecondElement (i n t data [] , i n t size , i n t const value) {
2 f o r (i n t i = 0 ; i != size ; i += 2) {
3 data [i] = data [i + 1] + value ;
4 }
5 }

Listing 2.11: Index-based loop with an increment by two as tbb ::parallel_for candidate.

Page 28 of 99

Parallator 2. Analysis

1 void addValueOnEverySecondElement (i n t data [] , i n t size , i n t const value) {
2 tbb : : parallel_for (0 , size , 2 , [data , value] (const i n t i) {
3 data [i] = data [i + 1] + value ;
4 }) ;
5 }

Listing 2.12: Resulting tbb ::parallel_for call with step size.

Iterator-Based Loop

In iterator based loops, the iteration variable does not satisfy the Index interface. The
compact notation can therefore not be used. But using a blocked_range explicitly enables the
possibility to parallelize also iterator-based loops with tbb ::parallel_for. Not all iterators
can be used. But all iterators that satisfy the Value interface (Section 1.4.3 on page 12)
are supported. Listing 2.13 shows the parallelized version of Listing 2.6 on page 27 using
tbb ::parallel_for.

1 std : : vector<WebSite> sites = getWebSites () ;
2 tbb : : parallel_for (
3 tbb : : blocked_range<std : : vector<WebSite > : : iterator>(sites . begin () , sites . end ())

,
4 [=] (const tbb : : blocked_range<std : : vector<WebSite > : : iterator>& site) {
5 const std : : vector<WebSite > : : iterator it_end = site . end () ;
6 f o r (std : : vector<WebSite > : : iterator it = site . begin () ; it != it_end ; it

++) {
7 it−>search (searchString) ;
8 }
9 }) ;

Listing 2.13: Resulting tbb ::parallel_for call from an iterator-based loop.

A transformation of the loop body from iterator-based to value type-based access is not
needed as the iteration is explicitly done using the Range object. It is therefore also
possible to have access on the iteration variable which enables to parallelize loops that
have operations on the iteration variable as shown in Listing 2.14.

1 void multiplyValueOnEverySecondElements (i n t * data , i n t size , i n t const value) {
2 f o r (i n t * i = data ; i != data + size ; i += 2) {
3 *i = *(i + 1) * value ;
4 }
5 }

Listing 2.14: tbb ::parallel_for candidate with operations on the iteration variable in the loop
body.

A step size different to one is also possible in an explicit usage of a Range. But it must be
assured, that the iteration of the sub ranges are aligned correctly. The range must first
be scaled down by the step size. In the iteration over the range the index used to access
the sequence is then upscaled again to get correct indexes. An example of this process is
shown in Listing 2.15 on the next page that shows the parallelized version of Listing 2.14.

Page 29 of 99

Parallator 2. Analysis

1 void multiplyValueOnEverySecondElements (i n t * data , i n t size , i n t const value) {
2 i n t end = ((data + size) − data − 1) / 2 + 1 ; // s c a l e down the range (l a s t −

f i r s t − 1) / s t e p s i z e + 1
3 tbb : : parallel_for (tbb : : blocked_range<int >(0 , end) , [data , value] (const tbb : :

blocked_range<int>& r) {
4 // s c a l e up to a c c e s s the c o r r e c t o f f s e t s : k = f i r s t + r an g e i t e r a t i o n *

s t e p s i z e
5 i n t *k = data + r . begin () * 2 ;
6 f o r (i n t i = r . begin () ; i != r . end () ; i++, k = k + 2) {
7 *k = *(k + 1) * value ;
8 }
9 }) ;

10 }

Listing 2.15: Using tbb ::parallel_for and blocked_range explicitly with a step size.

The variable k is correctly aligned on line 5. It is achieved with pointer arithmetic. Pointer
arithmetic does not allow to use multiplication and therefore the Range is instantiated
using integer type. This allows to do the calculation on line 5 that uses the Range object.
Figure 2.1 shows the mapping of the ranges to the data index. The shown range objects
can result from recursively splitting a sequence of size 20 with a grain size of 2 and using
the auto_partitioner.

Figure 2.1.: Mapping the scaled and split Range objects to the indexes of the sequence.

2.2.2. STL Algorithms to TBB Parallel Algorithms

STL algorithms imply a loop with a specific data dependency between the iterations. This
section is focused on which and how STL algorithms can be parallelized using TBB.

Example - Mapping STL to TBB

The std ::count algorithm increments a counter in case the iteration element equals a certain
value. The counter is shared over loop iterations. This algorithm shows a dependency
between loop iterations that can be parallelized using tbb ::parallel_reduce. Listing 2.16
shows the serial std ::count version from STL that counts the number of elements in vec that
are equal to 42. This example can be parallelized as shown in Listing 2.17 on the next
page using the reduction body as introduced in Section 1.4.5 on page 15.

1 i n t count (std : vector<int> vec) {
2 r e turn std : : count (vec . begin () , vec . end () , 42) ;
3 }

Listing 2.16: Usage of std ::count.

Page 30 of 99

Parallator 2. Analysis

1 c l a s s Count {
2 pub l i c :
3 i n t my_count ;
4 void operator () (const tbb : : blocked_range<std : : vector<int > : : iterator>& r) {
5 my_count += std : : count (r . begin () , r . end () ,42) ;
6 }
7 Count (Count& x , tbb : : split) :
8 my_count (0) {
9 }

10 void join (const Count& y) {
11 my_count += y . my_count ;
12 }
13 Count () : my_count (0) {
14 }
15 } ;
16
17 i n t count (std : : vector<int> vec) {
18 Count counter ;
19 tbb : : parallel_reduce (tbb : : blocked_range<std : : vector<int > : : iterator>(vec . begin

() , vec . end ()) , counter) ;
20 r e turn counter . my_count ;
21 }

Listing 2.17: Parallelized implementation of std ::count.

Such a transformation implies code generation of the reduction body. This code could
be more generic to be used for other STL algorithm that show a reduction like data
dependency. These reasons induce a parallelized library with STL equivalent calls.

Parallelization of STL Algorithms

A library that provides parallelized equivalents to STL algorithms is Thrust. Thrust par-
allelizes the STL algorithm using TBB and shows therefore, that nearly all STL algorithm
can be parallelized. The library is built up using basic constructs that are reused in the
provided parallelized algorithms [ea13]. An analysis of Thrust has also shown that the
reduction body and scan body are template functors. For their reuse, these functors are
parametrized with another functor that is used to apply the desired operation in the it-
eration on the subranges. A rough overview on how the provided parallel algorithms of
Thrust are implemented can be found in Table A.1 on page 82.

Conclusion

A transformation as needed from Listing 2.16 on the preceding page to Listing 2.17 is too
specific and would induce duplicated code. With the usage of thrust, the transformation
is simplified as shown in Listing 2.18 that shows the parallelized equivalent of Listing 2.16
on the previous page using Thrust.

1 i n t count (std : vector<int> vec) {
2 r e turn thrust : : count (vec . begin () , vec . end () , 42) ;
3 }

Listing 2.18: Parallelization of std ::count using Thrust.

More on Thrust and a possible integration to this project follows in the next section.

Page 31 of 99

Parallator 2. Analysis

2.2.3. Thrust

Thrust parallelizes algorithms of the STL. The implementation of Thrust allows the pro-
grammer to use different back ends for parallelization. Besides TBB, CUDA and OpenMP
are possible back ends. This might imply additional information that must be specified
in a transformation of loops or STL calls to equivalent algorithms in Thrust. This section
shows how the additional information can be handled for a straight forward transforma-
tion as shown in Listing 2.18 on the preceding page. Further, the limitations of Thrust
compared to a direct usage of TBB are outlined.

Minimize Overhead in Transformation

To determine which implementation of the called thrust algorithm to take, the type of
the provided iterator is inspected. This process is known as static dispatching since the
dispatch is resolved at compile time and no runtime overhead occurs in dispatching [JH13].
There are three different possibilities to influence the evaluated type of an iterator:

� TBB specific vector:
A vector declared of type thrust::tbb ::vector works the same as a std ::vector but the
returned iterator type, e.g. in calls of begin() or end(), is tagged with thrust::tag ::tbb.
This indicates the execution of the algorithm using TBB. In a transformation, this
would imply to change the declaration of the used vector variable.

� Retagging to TBB iterator:
Instead of changing the type of the vector variable it is also possible to retag the
returned iterator. Retagging as seen in Listing 2.19 with thrust::tbb ::tag enables the
parallel execution with TBB.

1 i n t count (std : vector<int> vec) {
2 r e turn thrust : : count (thrust : : retag<thrust : : tbb : : tag>(vec . begin ()) , thrust

: : retag<thrust : : tbb : : tag>(vec . end ()) , 42) ;
3 }

Listing 2.19: Change the inspected type of an iterator with retagging.

� TBB specific Compiler Option:
Setting the compiler option -DTHRUST HOST SYSTEM=THRUST HOST SYSTEM TBB, ev-
ery iterator returned by a std ::vector indicates the execution using TBB. This option
enables a straight forward transformation as shown in Listing 2.18 on the preceding
page. Also pointers to array elements are interpreted as TBB iterators.

Limitations of Thrust using TBB

Thrust wraps TBB to parallelize the STL algorithms. The user is not aware of any TBB
specific properties. This limits thrust to use some features of TBB:

� the grain size can not be specified. The default value is used.

� the partitioner used can not be specified. auto_partitioner is used as default.

Additionally the interface of the algorithms in Thrust makes use of iterators. This compli-
cates the transformation from index-based loops in some cases as outlined in Section 2.2.1.1
on page 27.

Page 32 of 99

Parallator 2. Analysis

2.3. Semantic Analysis Towards STL Algorithms

The existing transformations of loops to STL Algorithms using a lambda functor imple-
ment a default behavior. The lambda parameter is always passed by reference and a
default reference capture is used. This solution is universal and works in every case. But
it makes the understanding of the code more difficult, especially the default capture be-
havior, as the origin of a variable in the lambda body can not be seen from the lambda
capture. This section analysis which variable need to be captured by value and which by
reference to keep equal semantic. Whether a lambda parameter can be passed by reference
or when a constant reference is sufficient is analyzed too. The constant reference variant is
preferred to a pass by value variant as the later might induce an expensive copy operation.

2.3.1. Pass Lambda Parameter by Reference / Constant Reference

In some implementations the loop body only reads the iteration element, where in other
implementations the iteration element is changed e.g. for in-place manipulation. This in-
fluences the declaration of the lambda parameters. Considering the example in Listing 2.20
the sequence element is manipulated in-place. In order to allow in-place manipulation and
therefore write access on the iteration element using std ::for_each with a lambda functor,
the sequence element must be passed by reference to the lambda functor as it can be seen
in Listing 2.21.

1 void addValueOnElements (i n t data [] , i n t size , i n t const value) {
2 f o r (i n t *it = data ; it != data + size ; ++it) {
3 *it += value ;
4 }
5 }

Listing 2.20: In-place change of a sequence using a for loop.

1 void addValueOnElements (i n t data [] , i n t size , i n t value) {
2 for_each (data , data + size , [=] (i n t &it) {
3 it += value ;
4 }) ;
5 }

Listing 2.21: In-place change of a sequence using std ::for_each.

If the loop body contains only read access on the iteration element, it is safe to pass
the element by a constant reference. But considering the example in Listing 2.22 on the
following page it is not sufficient to only analyze the loop body to determine read only
access. As the iteration element is passed by reference to the function manipulate where the
element is changed. A loop body only analysis would misclassify the iteration variable as
passed by constant reference candidate.

Page 33 of 99

Parallator 2. Analysis

1 void manipulate (i n t& i , i n t const value) {
2 i = j ;
3 }
4
5 void addValueOnElements (i n t data [] , i n t size , i n t const value) {
6 f o r (i n t *it = data ; it != data + size ; ++it) {
7 manipulate (* it , value) ;
8 }
9 }

Listing 2.22: Requires enhanced analysis method to recognize the iteration variable as
passed by constant reference candidate for lambda parameter.

2.3.2. Capture by Reference or by Value

All the variables used in a loop body must be available in the lambda body. As described in
Section 1.3.1 on page 6 this is done with lambda captures. The code sample in Listing 2.23
shows various cases to describe the evaluation of lambda captures from a loop body.

1 c l a s s Util {
2 pr i va t e :
3 void doSomething () {} ;
4 pub l i c :
5 i n t initValue ;
6
7 Util (i n t value) : initValue (value) {}
8
9 void addValueOnElements (i n t data [] , i n t size , i n t const value) {

10 Util t (0) ;
11 i n t count = 0 ;
12 f o r (i n t *it = data ; it != data + size ; ++it) {
13 *it += (value + initValue) ;
14 t . initValue++;
15 th i s−>initValue++;
16 doSomething () ;
17 count++;
18 }
19 std : : cout << ”Manipulated items : ” << count ;
20 }
21 } ;

Listing 2.23: Different cases for lambda capture evaluation from loop body.

The variables to capture are evaluated as follows:

� Variable it - Line 13: Not needed to capture as it will be available from the lambda
parameter.

� Variable value - Line 13: Must be captured as the variable is declared before the
loop body. The variable is not changed in the body and can therefore be captured
by value.

� Variable t - Line 14: Must be captured as the variable is declared before the loop
body. The state of the object t is changed but not accessed later on. It is therefore
also possible to capture by value. A write on a variable that is captured but not
accessed later does not make sense mostly and is considered an uncommon case.

Page 34 of 99

Parallator 2. Analysis

� Local field initValue - Line 15: The access on a local field requires to capture the
this pointer by value. The this pointer references the object whose addValueOnElements

function runs the loop.

� Local member function doSomething - Line 16: The call of a local member
function enforces to capture the this pointer by value.

� Variable count - Line 17: Must be captured as the variable is declared before the
loop body. The variable is changed and accessed after the loop. This enforces to
capture the variable by reference to maintain equal semantic.

The resulting equivalent code with the transformed lambda in a std ::for_each call is shown
in Listing 2.24.

1 c l a s s Util {
2 pr i va t e :
3 void doSomething () {} ;
4 pub l i c :
5 i n t initValue ;
6
7 Util (i n t value) : initValue (value) {}
8
9 void addValueOnElements (i n t data [] , i n t size , i n t const value) {

10 Util t (0) ;
11 i n t count = 0 ;
12 std : : for_each (data , data + size , [th i s , value , t , &count] (i n t& it) {
13 it += value ;
14 t . initValue++;
15 th i s−>initValue++;
16 doSomething () ;
17 count++;
18 }) ;
19 std : : cout << ”Manipulated items : ” << count ;
20 }
21 } ;

Listing 2.24: Lambda expression with evaluated captures.

All the considerations can be applied to transformations using a functor, where the capture
variant influences the constructor declaration of the functor.

2.4. Semantic Analysis Towards Parallelism

In STL calls, functor, lambda functors and functions constitute a body that is applied
in iterations. In loops, the body is applied in iterations. For parallelization the body
is copied and applied to chunks in parallel. If variables are shared between the bodies
there is potential for a conflicting access. This analysis defines when variables are shared
in various cases and when the access is conflicting. Also the data dependency in loop
iterations is analyzed. The over restricted definition at the beginning of this section of
whether a loop is parallelizable or not is relaxed later on for a reduction or a scan.

2.4.1. Conflicting Memory Accesses

Before we consider an example to elaborate a conflicting memory accesses, some definitions
are made:

Page 35 of 99

Parallator 2. Analysis

� Definition 1. A parallel section contains program instructions that will be executed
in parallel in a particular loop candidate for parallelization [DD12].

� Definition 2. Each variable represents an object that is located at one or several
memory location. Scalar objects, as integer variables or also a pointer occupy one
memory location. An instance of a class is itself an object and constitutes of further
memory locations for the fields [Bec12].

� Definition 3. A shared object is an object that is shared between parallel loop
iterations. Fields of a shared object are shared themselves [DD12]. A pointer
variable occupies a memory location and points to another address. If two pointer
point to the same location, the object at the shared location is a shared object. A
reference variable is just an alias to another variable. The aliased variable is a
shared object.

� Definition 4. A write on a shared object is a race. This comes from the definition,
that a data race occurs if two operations of different threads access the same object
(memory location) and one of them is a write [Bec12].

The definitions are illustrated in Listing 2.25.

1 c l a s s Util {
2
3 pr i va t e :
4 void doSomething () { // a rb i t r a r y ope ra t i on s . F i e ld upate ?}
5 pub l i c :
6 i n t initValue ;
7
8 Util (i n t value) : initValue (value) {}
9

10 void executeOnElements (SomeClass* data [] , i n t size , i n t const value) {
11 Util a (0) ;
12 Util* pA = new Util (0) ;
13 i n t count = 0 ;
14 f o r (SomeClass **it = data ; it != data + size ; ++it) {
15 (* it)−>execute (value + initValue) ; // p o s s i b l e wr i t e on shared ob j e c t
16 th i s−>initValue++; // in i tVa lue i s shared
17 doSomething () ; // p o s s i b l e wr i t e on shared ob j e c t
18 count++; // count i s shared
19 a . initValue++; // in i tVa lue i s shared
20 Util b = a ; // new ob j e c t b with va lue s o f a
21 b . initValue = 3 ; // b i s not shared
22 Util* pB = &b ; // new po in t e r pB to ob j e c t b
23 pB−>initValue++; // ob j e c t pB po in t s to i s not shared
24 Util* pC = pA ; // new po in t e r pC po in t s to same ob j e c t as pA po in t s to
25 pC−>initValue++; // ob j e c t pC po in t s to i s shared
26 pC = new Util (0) ; // pC po in t s to new ob j e c t
27 pC−>initValue++; // ob j e c t pC po in t s to i s i s not shared
28 }
29 }
30 } ;

Listing 2.25: Examples for evaluating writes on shared objects.

The parallel section enfolds from line 15 to line 27. A variable can reference a shared object
during the whole parallel section or just at a specific program point [DD12]. Variable a is
shared at any time in the parallel section. This is not the case for the object the pointer
variable pC points to. At line 25 pC points to a shared object whereas on line 27 the object
pC points to is not shared. According to the comments in Listing 2.25 the following lines

Page 36 of 99

Parallator 2. Analysis

constitute a race: 16, 18, 19, 25. The operations on line 15 and 17 may have potential for
a data race as in the called function a shared object might be updated. For line 15 this is
possible if the data array consists of pointers pointing to the same object and the function
execute updates fields of this object. We can conclude that a parallel section without a race
as defined is safe for parallelization and does not produce a data race.

2.4.2. Lambda Functors Towards Parallelism

In a possible parallelization of a std ::for_each call that uses a lambda functor, the lambda
functor must be analyzed for a race as explained in the prior section. Most cases are
similar to those shown in Listing 2.25 on the preceding page. But for lambda functors it
is crucial to analyze how the variable are captured for the parallel section. This is shown
in Listing 2.26.

1 void addValueOnElements (i n t data [] , i n t size , i n t value) {
2 i n t count = 0 ;
3 std : : for_each (data , data + size , [value ,&count] (i n t& it) mutable {
4 i f (it != 5) {
5 it += value ;
6 count++;
7 value++;
8 }
9 }) ;

10 }

Listing 2.26: Reference captured count produces a race.

The variable count is a shared object in the parallel section (line 4-8) because it is captured
by reference for the lambda body. The write on line 6 constitutes therefore a race and the
parallelization is not safe. Apart from this issue and considering the example without the
variable count: The variable value is captured by value and can only be modified because
the lambda is mutable. As the lambda might be copied and executed in parallel, value is
not a shared object over the iterations. There is no race. But the semantic can also not
be kept the same as in a serial execution. To conclude, a lambda is safe for parallelization:

� if no write accesses on reference captured variables exist,

� and is not mutable.

2.4.3. Independent Iterations

The recognition of a race is one aspect in transformation towards parallelization. Another
similar aspect is the dependence of the iteration. It defines whether it is possible to execute
the iteration in a different order than in sequential order. This is especially interesting
in parallel algorithms where access on the iteration variable is possible. It enables to
manipulate which sequence element is accessed in an iteration. Index- and iterator-based
loops are equal in this aspect.

Loop Carries a Dependency

A loop carries a dependency if two different iterations access the same sequence element
(memory location) and one of them is a write operation. If this can happen, the result of
the computation depends on the iteration order. In a parallel execution this order can not

Page 37 of 99

Parallator 2. Analysis

be influenced. The parallelization of such a loop in C++ results in a data race [Bec12].
Listing 2.27 shows an example with operations on the iteration variable and the step size
is 3.

1 void multiplyValueOnEveryThirdElement (i n t data [] , i n t size , i n t const value) {
2 f o r (i n t i = 2 ; i < size ; i += 3) {
3 data [i] = data [i − 1] * data [i − 2] * value ;
4 }
5 }

Listing 2.27: Loop with operations on the iteration variable.

It needs to be analyzed whether data[i] references the same element as in data[i − 1] or data

[i − 2] for any other iteration. One need to extract the index operations. Normalizing the
loop (increment by 1, start at 0) provides the indexes [3 * i + 2] , [3 * i − 1 + 2] and [3 * i

− 2 + 2]. With the GCD test [ZC91] it is verified whether these three indexes can ever be
the same for any iteration. If yes, there is a dependency. The loop in the example is ready
for parallelization. Of course this test can only guarantee correctness if the elements in
the sequence do not refer to the same memory location. This is especially a problem in a
sequence of pointers.

Loop Independence and Criteria in a Reduction

Listing 2.28 shows a classical example of a reduction. It calculates the sum of all elements
in a sequence.

1 i n t arraySum (i n t data [] , i n t size) {
2 i n t sum = 0 ;
3 f o r (i n t i = 0 ; i != size ; ++i) {
4 sum += data [i] ;
5 }
6 r e turn sum ;
7 }

Listing 2.28: Serial implementation to compute the sum of elements in an array.

According to the analysis so far, this loop constitute a race for sum. But because the
operations in the loop body accumulate to one variable, the loop can be parallelized using
reduction. Each reduction body of a subrange then calculates the sum independently to
a variable not shared over different tasks.
The operator used in the reduction must be associative. Associative and commutative are
defined as follows for a binary operator ⊗:

� Associative: (a⊗ b)⊗ c = a⊗ (b⊗ c)

� Commutative: a⊗ b = b⊗ a

It shows that for associative operation the order of application is independent. The need
for associativity in reduction can be seen in the fact that the sum of element 2 and 3 is
not guaranteed to be computed before the sum of elements 4 and 5. The operation in
reduction does not need to be commutative because the operands to the binary operator
are never reversed in a reduction.

Page 38 of 99

Parallator 2. Analysis

Loop Independence and Criteria in Scan

Listing 2.29 shows a classical example of a scan. It calculates the running sum of all
elements in a sequence.

1 i n t runningSum (i n t y [] , const i n t x [] , i n t n) {
2 i n t temp = 0 ;
3 f o r (i n t i = 1 ; i <= n ; ++i) {
4 temp = temp + x [i] ;
5 y [i] = temp ;
6 }
7 r e turn temp ;
8 }

Listing 2.29: Serial implementation of parallel prefix that calculates the running
sum [Cor12c].

Here again, the analysis so far constitutes a race for variable temp. The loop also carries
a dependency. The dependency gets obvious when writing the dependency explicitly as
y[i] = x[i − 1] + x[i]. Nevertheless this loop can be parallelized using a scan as explained in
Section 1.4.5 on page 15. The scan produces all partial reductions on an input sequence
and stores the results in a new output sequence [MRR12]. It is therefore also crucial that
the operator used for the reductions is associative.

2.4.4. Additional Criteria for Parallelization

Despite conflicting memory access and iteration independence, there are other criteria
that hinder in parallelization of loops. Namely these are statements that abort the loop
traversal: return, break or throw [DD12]. This general statement applies not to all loops.
A find if loop returns the iterator position when the predicate matches. Although this
loop aborts, a parallelization is possible. The find if algorithm could be applied in parallel
on the chunks. With a minimum reduction, the first iteration position can be evaluated.
The find if implementation in Thrust works like this.

In general in a sequential program, the execution is continued after the loop in case of a
loop abortion. For the parallel execution this implies that all parallel tasks need to be
aborted too if one iteration stops. In TBB this is possible through an explicit canceling
request using the task group context (see Section 1.4.5 on page 15). A thrown exception
in an iteration is an implicit canceling request. Canceling a task group context causes the
entire subtree rooted at it to be canceled [Cor12c]. In the default behavior, this will cancel
all the tasks created for a called TBB algorithm.

Page 39 of 99

Parallator 2. Analysis

2.5. Tree Pattern Matching

In the DS-8 project, a tree pattern matching algorithm is used to identify loops equivalent
to the STL algorithm. The algorithm is applied on the program code’s abstract syntax
tree (AST). In that way, loops are identified and specific parts of a loop, as the iteration
variable, can be extracted to be further used in the transformation. In contrast to regular
expressions that define patterns to match in a lexical representation, tree patterns addi-
tionally specify hierarchical information to match: How nodes in a tree must relate to each
other. This section explains the tree pattern matching algorithms and important concepts
further. More detailed descriptions can be found in [Kes10] [Kem12]. The algorithm as
implemented in DS-8 is analyzed towards its usage and limitations in the recognition of
further STL algorithms and parallelization issues as outlined in Section 2.4 on page 35.

2.5.1. Available Implementation

The algorithm is best imagined as if the root of a tree pattern is placed at every node
in the AST. Each time the tree pattern can fully cover the subtree, rooted at the node
covered by the patterns root, the node matches the tree pattern. Figure 2.2 illustrates
different matches. The root of the pattern is marked with an “R”. The curvy line in the
tree pattern defines that the nodes matching the connected patterns must not be exactly
aligned. The tree pattern is built up of different pattern objects. The different available
patterns are introduced in the following sections and an example shows the dynamics with
concrete patterns.

Figure 2.2.: Tree pattern matching in the AST. The node covered by the tree patterns
root is a match.

Structural Patterns

Structural patterns are used to define how matching nodes must be related to each other.
An example of a structural pattern is the Dominates pattern. It matches a node that
satisfies the first pattern and the node matching the second pattern must be an ancestor
of the parent. Figure 2.3 on the next page shows this pattern. The green marked node
satisfies the first pattern. The red nodes are the nodes that are traversed to look for a node
that satisfies the second pattern. Another structural relation is the sibship. An example
is the AnyLeftSiblingSatisfies pattern. This pattern takes another pattern as parameter
that specifies how any of a node’s left sibling(s) must match to get found. This pattern is
also shown in Figure 2.3 on the following page.

Page 40 of 99

Parallator 2. Analysis

Figure 2.3.: Overview of some structural patterns implemented in the DS-8
project [Kem12].

Logical Patterns

A subtree can be required to satisfy multiple patterns at the same time or to satisfy any
one of a set of arbitrary patterns [Kes10]. Figure 2.4 shows an example of subtree that
requires to satisfy multiple patterns.

Figure 2.4.: B is immediately dominated by P AND is the immediate right sibling of
A [Kes10]

Semantic Patterns

The semantic patterns are often parameters to logical or structural patterns. The imple-
mentation of these patterns analyze internals of an AST node to define whether the node
matches the pattern. An example pattern is the IsOperatorIncrement pattern. It satisfies
if the node in question is an increment on a node that matches another pattern. For the
analysis of an increment, the AST node must be a UnaryExpression with the increment
operator.

Capture and Reference

An important concept in the implemented tree pattern matching algorithm is capture and
reference. A capture pattern can wrap any other pattern and stores the node matching
the wrapped pattern. This allows to extract specific nodes. This can be good illustrated
as in Figure 2.5 on the following page where the pattern matches at the node covered by
the root of the tree pattern. In this moment the node matching the wrapped pattern of

Page 41 of 99

Parallator 2. Analysis

the capture is stored.

A reference pattern allows to wrap a capture pattern. It references not the capture pattern
but the node stored by the capture pattern. This allows do define that two nodes in a tree
pattern must be equal. Figure 2.6 shows a pattern that defines that the node dominating
another must be equal. The equality of the nodes can be specified with different com-
parators. E.g. source equivalent, if the nodes don’t need to be exactly the same node but
represent the same source code. Capture and reference is used to map an increment on the
iteration variable in the body of a loop to a captured iteration variable in the initializer
of a for loop.

Figure 2.5.: Node behind “R” matches and
the node behind the capture
pattern is stored.

Figure 2.6.: The captured node must domi-
nate an equal node.

Pattern Matcher Dynamics

The pattern matcher is addressed with the visitor pattern [GHJ95]. While traversing the
nodes of the AST, each visited node is checked against the tree pattern, starting at the
root of the tree pattern. The check whether a node satisfies the pattern or not, is the
responsibility of the pattern itself. An example will show this behavior. The tree pattern
used in this example is shown in Figure 2.7. It represents the tree pattern with identical
hierarchical constraints as shown in Figure 2.2 on page 40 but using the pattern objects
as described above. The round objects are semantic patterns and can be read as a pattern
that satisfies for any node of kind C or D respectively.

Figure 2.7.: Combined tree pattern com-
posed of different pattern
objects.

Figure 2.8.: Navigation of the pattern
shown in Figure 2.7 [Kem12].

Page 42 of 99

Parallator 2. Analysis

Figure 2.8 on the preceding page shows the synthetic AST in which we search for a node
matching the pattern in Figure 2.7 on the previous page. The situation shows the pattern
matcher at node A with the numbered navigation to find node A satisfying the pattern.
The navigation done by the AnyLeftSibling pattern is marked in orange and the navigation
of the DominatesImmediately is marked in green. The check whether a pattern matches
a node is executed as long as the pattern as a whole does not match. Node B does not
dominate a node D whereon the next left sibling is checked. Recognize also that the pattern
matcher also visits node B that matches the pattern from Figure 2.7 on the preceding page
too. To assemble a tree pattern the AST of the code to found must be known.

Textual Notation of Patterns

For the simplified explanation of patterns and to avoid the need of a picture for every
combined pattern, a textual notation is used in this report. The notation is shown in
an example. The following textual pattern describes the patten from Figure 2.7 on the
previous page.

� AnyLeftSibling(DominatesImmediately(Or(C,B), A))

2.5.2. Usage and Limits in Tree Pattern Matching

The algorithm as implemented proved to be satisfiable for the transformation of loops to
find if and for each calls. The usage and limitation in further transformation to STL calls
and parallelization issues is analyzed here.

Recognition of STL Algorithms

The tree pattern matching algorithm works reliable to find specific loops that show a
behavior equivalent to an STL algorithm. The more complex the implementation of an
STL algorithm is, the more variants exist to implement this algorithm and the more
difficult it gets to cover the variants with a tree pattern. Algorithms that show a unique
characteristic are easier to detect. This is one point and comes naturally with the theorem
of Rice.
Another point that complicates the detection of an algorithm are function calls. Some
STL algorithms can be implemented using another algorithm. This is also possible in a
custom implementation. A pattern in this case might be hidden by the function call and
is out of scope for the visits of the pattern matcher. Table A.1 on page 82 shows the
evaluation according to recognizability of STL algorithms.

Check for Parallelism

The parallelization issues discussed in Section 2.4 on page 35 with the evaluation for their
possible implementation with tree pattern matching is given in the following list:

� Shared object detection: This involves the detection of variables in a parallel
section that are declared before the loop. This is a similar problem as looking for
iteration variable access in a loop, which is possible. The detection of variables that
are captured by reference in a lambda is a similar problem too. The detection gets
hard or infeasible if a pointer variable is declared in the parallel section and initialized

Page 43 of 99

Parallator 2. Analysis

with a pointer variable declared before the loop. This requires an advanced analysis
of how a variable is initialized or changed in the parallel section. To detect all
accesses on shared object, also the potential shared objects behind a function call
must be analyzed. This is not possible with the current tree pattern matching
implementation.

� Write access on shared object: This is possible for write access not hidden by
function calls. An advanced analysis is needed for overloaded operators, to detect
write access operations.

� Different elements in a sequence: This is not possible with pattern matching.

� GCD test: The extraction of the values needed for the GCD test is possible and
might be a task for capture patterns. To test for overlapping writes and reads of the
same sequence element it is also required to extract the value of the last index in the
iteration. Each possible read index must be checked against possible write indexes.
The evaluation of the last index in the iteration can be difficult or even unfeasible if
the last index is e.g. a user input.

� Reduce dependency detection: The detection of a reduction to one variable in
a loop is possible to specify with a tree pattern. The used reduction operator can
be extracted.

� Scan dependency detection: The detection of a scan like dependency in a loop is
possible too. The used reduction operator for the partial reductions can be extracted.

To conclude, the most problems can be tackled with tree pattern matching as implemented.
And if it is not feasible to safely state “safe for parallelization” tree pattern matching allows
to state at least, that there is a potential problem. The user is then in charge to do the
transformation or not. Of course, complex code still imply more complicated tree patterns
for different variations.

2.6. Potential further Refactorings

During the analysis of this project also other possible refactoring came up. Also influenced
by other work done in this area. This ideas are collected here with a statement of its
feasibility.

2.6.1. Divide-and-Conquer Algorithms

Computational tasks are perfectly parallelizable if they operate on different parts of the
data or they solve different subproblems. Divide and conquer algorithms fall in this cat-
egory. A static analysis can determine dependencies between the recursive tasks, e.g.
whether the tasks write within the same ranges of an array [RR99]. Figure 2.9 on the fol-
lowing page shows the pseudo code of a serial and a parallel divide-and-conquer algorithm.
An important factor in the parallel version is the grain size, here expressed as SEQ_THRESHOLD.
It specifies the bound of when the problem is better solved using the serial algorithm than
to split further. If the problem size is not yet below the threshold, the problem is split
and executed in parallel for further split or serial execution.

Page 44 of 99

Parallator 2. Analysis

Figure 2.9.: Sequential and parallel pseudo code for a divide-and-conquer
algorithm[DME09]

.

A concrete implementation of a parallel version using tbb ::parallel_invoke is shown in List-
ing 2.30. It uses lambda expressions with reference capture to overcome the issue of
accepting only nullary functors as parameter to parallel_invoke and its ignorance of return
values for a provided nullary function. On line 4 the threshold to use the serial version
can be seen. With the parallel_invoke on line 8 two tasks are spawned to recursively calcu-
late the Fibonacci number, the results are caputred in x and y. The composition of the
subresults can be seen on line 12.

1 void parallelFib (i n t N , long &sum) {
2 i f (N < 2)
3 sum = N ;
4 e l s e i f (N < 1000)
5 sum = serialFib (N) ;
6 e l s e {
7 long x , y ;
8 tbb : : parallel_invoke (
9 [&] () { parallelFib (N−1, x) ;} ,

10 [&] () { parallelFib (N−2, y) ;}
11) ;
12 sum = x + y ;
13 }
14 }

Listing 2.30: Parallel Fibonacci number calculation using tbb ::parallel_invoke [Gue12].

Another parallel implementation of parallel computation of a Fibonacci number can also
use the low level tasking interface of TBB [Cor12c]. Both implementations make use of
the task scheduler that turns this potential parallelism of the tasks into real parallelism
in a very efficient way as described in Section 1.4.2 on page 10.

In Java it has shown that a refactoring of sequential divide-and-conquer algorithms into a
parallel version that makes use of Java’s ForkJoinTask is feasible and results in a speedup [DME09].

2.6.2. Replace Threading Architecture

Threads are used far before the time TBB is introduced. There might be useful transfor-
mation to make use of TBBs rich and scalable task scheduler for algorithms that do not
match to one of the high-level templates. While the result of a refactoring like this would
increase the maintainability, productivity and maybe also the performance, the recogni-
tion of TBB feature equivalent parts in custom made threading infrastructure and the
transformation towards the TBB feature would not be feasible.

Page 45 of 99

Parallator 3. Implementation

3. Implementation

Parallator extends the DS-8 project. It introduces the transformation using TBB into the
CDT plug-in of the DS-8 project. This chapter describes the integration of the transfor-
mation towards parallelism as well as the changes to make the existing transformation
to STL algorithms applicable in practice. Section 3.1.2 on the next page describes the
implemented parallel library that simplified the transformation towards parallelism. Sec-
tion 3.2 on page 49 covers the details of the integration to the existing plug-in and the final
architecture. A detailed description of the patterns used to cover the semantic analysis is
given in Section 3.3 on page 62.

3.1. Library for Parallelization

A header-only library to parallelize iterator-based loops is implemented. The header file
can simply be copied to the project for usage. The motivation for such a library, the
implementation details and design decision are reported here.

3.1.1. Motivation

Listing 3.1 is a good example that shows several aspects that motivated a separate library.
The iteration on the Range object is boilerplate code that needs to be inserted for every
iterator-based loop. Code generation in the IDE has always the issue of introducing names
for variables. Arbitrary chosen variable names make the understanding of the generated
code more difficult. The boilerplate code can be parametrized with template parameters
and extracted to a Body functor that can be reused in other transformation. In that way,
the code to generate is minimized to the call of the library function. The boilerplate code
is hidden. The library is inspired by thrust, but additional TBB specific features like the
selection of the grain size as well as the partitioner shall be possible to the user.

1 std : : vector<WebSite> sites = getWebSites () ;
2 tbb : : parallel_for (
3 tbb : : blocked_range<std : : vector<WebSite > : : iterator>(sites . begin () , sites . end ())

,
4 [=] (const tbb : : blocked_range<std : : vector<WebSite > : : iterator>& site) {
5 const std : : vector<WebSite > : : iterator it_end = site . end () ;
6 f o r (std : : vector<WebSite > : : iterator it = site . begin () ; it != it_end ; it

++) {
7 it−>search (searchString) ;
8 }
9 }) ;

Listing 3.1: Motivation for an own library – tbb ::parallel_for usage with iterator.

Page 46 of 99

Parallator 3. Implementation

3.1.2. The Library

The library features its own namespace :: ptor. When applying a transformation the header
file is copied to the working project. It is not possible to change the implementation of
the algorithm provided but the library can also be used while writing new code and not
only in a transformation. This section demonstrates the usage of the parallel algorithms
provided by the library as well as the implementation issues considered.

Example Usage

The ptor::for_each algorithm is the parallel std ::for_each equivalent and allows the user to
define the grain size and the partitioner to use. Listing 3.3 shows the usage of this al-
gorithm. It is the equivalent parallel implementation of Listing 2.7 on page 27 and also
from Listing 3.2. A transformation from iterator-based loops or from a std ::for_each call is
therefore possible with minimal code generation.

1 std : : vector<WebSite> sites = getWebSites () ;
2 std : : for_each (sites . begin () , sites . end () , [] (WebSite& site) {
3 site . search (searchString) ;
4 }) ;

Listing 3.2: Serial equivalent of ptor::for_each.

1 std : : vector<WebSite> sites = getWebSites () ;
2
3 //without chunk con t r o l
4 ptor : : for_each (sites . begin () , sites . end () , [] (WebSite& site) {
5 site . search (searchString) ;
6 }) () ;
7
8 //with chunk con t r o l
9 ptor : : for_each (sites . begin () , sites . end () , [] (WebSite& site) {

10 site . search (searchString) ;
11 }) (1 , tbb : : simple_partitioner ()) ;

Listing 3.3: Example usage of ptor::for_each with and without chunk control.

Separation of Chunk Control

As seen in the examples of Listing 3.3 the chunk control parameters are separated from the
algorithm call. This way a ptor::for_each call serves the same parameters as a std ::for_each

call but with possible additional parallelization specific parameters. The execution of the
examples is shown in Figure 3.1 on the next page.

Page 47 of 99

Parallator 3. Implementation

Figure 3.1.: Interactions in the execution of a ptor::for_each call with chunk control.

The separation of the chunk control parameter is possible through the usage of the
ParallelFor functor. In a first call the functor is created and stores copies of the itera-
tors and the callable object provided. In a second call the returned functors overloaded
call operator is called with the chunk control parameters. The ParallelFor functor has now
all parameters available to setup the tbb ::parallel_for call. For this the Range object is
created with the iterators and the grain size provided. The Body functor is parametrized
with the provided functor. In this process, ptor::for_each is a factory function template to
deduce the template arguments for the ParallelFor functor. Listing 3.4 shows a simplified
definition of the ParallelFor functor.

1 /*
2 * Functor that encapsu l a t e s parameters always needed in c a l l s to
3 * tbb : : p a r a l l e l f o r . I t p rov ide s func t i on c a l l operator ove r l oads
4 * to parametr ize the c a l l .
5 */
6 template <typename RandomAccessIterator , typename UnaryFunction>
7 s t r u c t ParallelFor {
8
9 RandomAccessIterator begin ;

10 RandomAccessIterator end ;
11 UnaryFunction f ;
12
13 ParallelFor (RandomAccessIterator begin , RandomAccessIterator end ,

UnaryFunction f) : begin (begin) , end (end) , f (f) {} ;
14
15 /*
16 * Pa r a l l e l f o r e a ch implementation us ing p a r a l l e l f o r with g r a i n s i z e
17 * and p a r t i t i o n e r to s p e c i f y .
18 */
19 template <typename Partitioner>
20 void operator () (std : : size_t grainSize , Partitioner partitioner) {
21 tbb : : parallel_for (tbb : : blocked_range<RandomAccessIterator>(begin , end ,

grainSize) ,

Page 48 of 99

Parallator 3. Implementation

22 Body<tbb : : blocked_range<RandomAccessIterator>, UnaryFunction>(f) ,
partitioner) ;

23 }
24 } ;

Listing 3.4: Implementation of the ParallelFor functor.

The Body object implements the Body concept for the tbb ::parallel_for call. It is the object
that is copied whenever a task runs on an available worker thread. The implementation
of the Body object uses the std ::for_each algorithm to apply the provided callable object on
the chunk.

3.2. The Plug-In

The already implemented CDT plug-in from the DS-8 project provided a good structure
to integrate transformations towards parallelism. The function calls of ptor::for_each (Sec-
tion 3.1.2 on page 47) and tbb ::parallel_for_each (Section 1.4.5 on page 15) show a very
similar interface compared to std ::for_each. Also the loops to detect for the transformation
into parallelized calls show very similar code structure. The given separation into mainly
analysis components and transformation components could be reused. Three important
issues needed to be integrated into the given structure: (1) Transformation from func-
tion calls, (2) transformation from index-based / blocked range iterator-based loops and
(3) analysis for parallelization issues. Another important aspect was the reuse of given
transformation components, e.g. the converter from a loop body into a bind functor, in
transformations from loops to parallelized calls. The resulting architecture that features
these additional requirements is explained in this section. Section 3.2.1 shows the overview
of the different components involved in the plug-in implementation as well as an outlook
of how the functionality is exposed to the plug-in user. Section 3.2.2 on the following page
and Section 3.2.3 on page 53 show how the analysis and the transformation components
respectively are enriched, Section 3.2.4 on page 59 shows the integration details of these
two modules in Eclipse.

3.2.1. Overview

Figure 3.2 on the next page shows all the plug-in components involved to transform serial
code into parallelized code. The CDT Codan (Code Analysis) framework [Fou13] is used
as the driver for starting the code analysis. It uses the semantic analyzers (Section 3.2.2
on the following page) and results in Eclipse resource marker for loop and call candidates
for parallelization.

Page 49 of 99

Parallator 3. Implementation

Figure 3.2.: Functionality overview.

If the user chooses to parallelize a candidate, by a click on a resource marker, the related
marker resolutions are provided and show the options of how the candidate can be par-
allelized. Figure 3.3 shows this situation with possible warnings for parallelization. For
every possible resolution there is a replacement. A replacement assembles components
from the transformation module. If the user chooses a resolution the replacement uses the
transformation components to generate the resulting call. For the call, range parameters
are evaluated and the loop body is transformed into a lambda functor or bind functor. In
this conversion of the loop body to a functor, the lambda capture evaluation, the lambda
parameter modifier evaluation and a possible iterator to value type conversion take place.
Eventually, if the new function call is generated successfully, the Eclipse refactoring frame-
work is used to rewrite the source code and replace the respective loop or call.

Figure 3.3.: Marker resolutions to parallelize the loop.

3.2.2. Analysis

The analysis module covers all the components involved to detect loop and call candidates
for parallelism and to introduce a warning in case a transformation to parallelism is not
safe. This section explains the integration of the new components into the existing plug-in
implementation.

Iteration Variable Requirements for Parallelism

The iteration variable type in a transformation to a tbb ::parallel_for call using the compact
notation must conform to the Index concept. For a transformation to tbb ::parallel_for_each

Page 50 of 99

Parallator 3. Implementation

or ptor::for_each the iteration variable type must be an iterator that follows the constraints
given by the Value concept. More precisely, for tbb ::parallel_for_each an InputIterator is
allowed but does not show performance benefits as explained in Section 1.4.5 on page 15.
The difference between index-based loops compared to iterator-based loops is the type of
the iteration variable and how an element in the loop body is accessed. While in iterator-
based loops the sequence element is received by dereferencing the iterator, in index-based
loops the sequence element is received using the subscript operator of the sequence object.
The detection of the possible loops as shown in Listing 2.1 on page 25 remain the same.
The already existing IsLoopCandidate pattern is therefore changed to be parameterizable with
an IterationPatternProvider. The specific implementation provides the pattern to identify the
iteration variable and the pattern to detect the access on the sequence element using the
iteration variable. Figure 3.4 shows the classes involved to detect a for each loop. The
IsForEachCandidate pattern uses the IsLoopCandidate pattern to detect loops.

Figure 3.4.: IterationPatternProvider are used to parametrize the for each candidate
pattern.

The patterns returned by the different IterationPatternProvider are further described in Sec-
tion 3.3.4 on page 68. The criteria from Section 2.4 on page 35 that define whether a loop
is safe for parallelism or not are not integrated in the shown for each candidate pattern.
They are incorporated during the creation of the replacement as described in Section 3.2.4
on page 59.

Page 51 of 99

Parallator 3. Implementation

Detecting std::for each Calls

An extensive pattern implementation covers the detection of std ::for_each calls that can be
parallelized. The integration of the pattern in the analysis module is shown in Figure 3.5.
Further implementation details are reported in Section 3.3.3 on page 66.

Semantic Analyzer

The whole analysis module is abstracted behind the ISemanticAnalyzer interface. Figure 3.5
shows the different implementations for the different STL or TBB for each algorithm
candidates. The function getOffendingNodes() provides the AST nodes that match the spe-
cific pattern used in a SemanticAnalyzer. For the integration of TBB algorithms, the
ForEachSemanticAnalyzer is abstracted and specific implementations for index-based and iteration-
based loop candidates are implemented. All these implementations use IsForEachCandidate

to detect the loop but provide the respective IterationPatternProvider to distinguish index
based and iterator based loops as explained above.

Figure 3.5.: Different implementations of ISemanticAnalyzer to analyze the code for possible
for each candidates.

The ParallelForEachSemanticAnalyzer is introduced for the recognition of std ::for_each calls. It
uses the IsParallelForEachCandidate pattern as introduced above to find the calls. Each Se-
manticAnalyzer provides its own indication string (the ID). This ID is set to the resource

Page 52 of 99

Parallator 3. Implementation

marker and later used to distinguish the different steps executed in generating the reso-
lutions. This is explained further in Section 3.2.4 on page 59.

Generate Warnings for Parallelization

The detection of parallelism issues are implemented using the tree pattern matching al-
gorithm. To generate hints for parallelism issues a pattern can be wrapped by so called
message patterns. The message patterns define which hint and when the hint is col-
lected. The hints are collected in a message context provided to a message pattern. If a
RelaxedMessagePattern is used the hint is collected in case the wrapped pattern does not match,
additionally the message pattern relaxes the pattern match and defines the wrapped pat-
tern to match for every node. If a SatisfyingMessagePattern is used, the verification result of
the wrapped pattern is not changed and the specific hint is collected in case the wrapped
pattern matches. Because the message patterns are patterns themselves they can be used
in combination with any other pattern and collect hints during verification. Listing 3.5
show the sample usage of the SatisfyingMessagePattern.

1 MessageContext context = new MessageContext () ;
2 IPattern pattern = getPattern () ;
3 SatisfyingMessagePattern messagePattern = new SatisfyingMessagePattern (pattern ,

context) {
4
5 @Override

6 protec ted String getPatternMessage () { // ove r r i d e to s p e c i f y message
7 r e turn ” s p e c i f i c message” ;
8 }
9 } ;

10 messagePattern . satisfies (getBody ()) ; // generate messages
11 message = context . getMessages () ; // get messages

Listing 3.5: Sample code to generate messages in the plug-in implementation.

The shown process decouples a pattern from the message that should be generated in
case of a match or when the wrapped pattern does not match. To see when the messages
for parallelism are generated consider Section 3.2.4 on page 59, the patterns to detect
parallelism issues are described in Section 3.3.2 on page 64.

3.2.3. Replacement and Transformation

The analysis chapter has shown different source code constructs that resemble a candi-
date for parallelism. Although different in source, they can result in an equivalent call.
An iterator-based loop or an std ::for_each call can both result in a ptor::for_each or tbb ::

parallel_for_each call. Another situation that bring up the feeling for extensive reuse of
different components is the conversion of the loop body that is used in transformation
towards STL algorithms and TBB algorithms. In the following sections the components
that assemble a replacement are explained as well as their collaboration to generate the
parallelized call including namespace handling, header file includes and the integration of
the parallelization library.

Components Overview

Figure 3.6 on the next page show the packages involved in a replacement and their depen-
dencies.

Page 53 of 99

Parallator 3. Implementation

Figure 3.6.: Different components and its dependencies that assemble a replacement.

The different packages and their responsibility are explained in the following sections.

ch.hsr.ifs.ds8.transformation.iterator

This package contains the functionality to transform iterator-based to value-type based
access in the conversion of a loop body to a bind functor or lambda functor. This function-
ality was already available. The transformation is not needed for index-based loops. But
still, a modification in the loop body transformed to a lambda body is needed. The iter-
ation increment in the body of a while loop must be removed. An IterationVariableModifier

provides a generic modifyIterationVariableInNode function that accepts any IASTNode, performs
the modification and returns the node again. The modification is implemented by vis-
itors [GHJ95]. While the IteratorToValueTypeVisitor traverses the given node and replaces

Page 54 of 99

Parallator 3. Implementation

any child nodes identified as iterator accesses by their value type equivalent and also any
modification of the iteration variable, the RemoveIterationVariableModificationVisitor performs
only the remove of the iteration variable modification while traversing.

ch.hsr.ifs.ds8.transformation.functor

This package contains classes responsible for creating lambda or bind functors out of the
loop body. The transformation uses the iterator-transformation package for the modifica-
tion around the iteration variable as described above. For lambda functors the modified
loop body statement is then analyzed to evaluate the lambda captures and the declaration
modifier of the lambda parameter. See Section 3.3.1 on page 62 for the implementation of
this evaluation. With the evaluated information, a lambda expression taking an argument
of the value type of the iteration expression (iterator-based loop) is created that wraps
the body statement. Every implementation of a loop body to a callable object imple-
ments the IFunctorConverter interface. The only function to implement is getFunctor that is
expected to return the resulting callable object. Figure 3.7 shows the extension to convert
a index-based loop body to the lambda functor.

Figure 3.7.: Different loop body to lambda functor converters.

They differ in the ModifyIterationVariableVisitor used and in the lambda parameter type
evaluation. As an example the transformation of a while loop body to a lambda is shown
in Listing 3.6 on the following page and Listing 3.7 on the next page. Matching code
segments in the original and the transformed block are highlighted with the same color.

Page 55 of 99

Parallator 3. Implementation

1 int i = 0 ;
2 whi le (i != size) {
3 cout << data [i] << endl ;
4 i++;
5 }

Listing 3.6: Original compound statement to transform to a lambda.

1 [data] (const int& i) {
2 cout << data [i] << endl ;
3 }

Listing 3.7: Resulting lambda expression.

During this project the former implemented transformation towards bind functors using
bind1st and bind2nd are removed because these bind implementation is deprecated since
C++11 (Meeting decision: 13.11.2012). The also available transformation towards the
formerly called TR1 bind implementation is enriched with namespace handling and header
file include handling as explained below.

ch.hsr.ifs.ds8.transformation.range

Loop range deduction is an important task in the transformation towards STL and TBB
algorithm. It handles the extraction of AST Nodes representing the iteration start and end
value as well as the iteration variable. These nodes are later used to create the algorithm
call. No changes in this package were needed as the analysis is the same for both loop
variants, iterator-based and index-based loops. The IRangeDeducer interface extends the
interfaces IFirstDeducer, ILastDeducer and IIterationExpressionDeducer from Figure 3.6 on page 54
that are responsible for deducing the iteration start, iteration end node and iteration
variable respectively. There is no direct implementation for a RangeDeducer but with
the various implementations of FirstDeducers and LastDeducers a RangeDeducer can be
implemented.

ch.hsr.ifs.ds8.transformation.algorithm.converter

An AlgorithmConverter is able to provide all arguments necessary to create a call of
an STL algorithm or a TBB algorithm. All implemented transformations operate on
one sequence and have the same declaration as the formal parameters. Therefore the
general interface and its name: IUnarySequenceAlgorithmConverter. It is an extension of the
interfaces IRangeDeduction and IFunctorConverter. The generic implementation of this inter-
face, the DynamicUnarySequenceAlgorithmConverter class, can be configured with a FirstDeducer,
a LastDeducer, a IterationExpressionDeducer from the range-transformation package and
a FunctorConverter from the functor-transformation package. This class can therefore
serve as AlgorithmConverter for a loop transformation to any unary sequence algorithm.
In the transformation from a std ::for_each call no real range deduction must be done. This
fact is considered with the implementation of UnarySequenceAlgorithmCallConverter that simply
extracts the range and functor nodes from the function call expression representing the
std ::for_each call.

Page 56 of 99

Parallator 3. Implementation

ch.hsr.ifs.ds8.transformation.functor.context

A FunctorContext is introduced to collect and provide information during a transfor-
mation. It is responsible for ADL (argument dependent lookup) respecting namespace
handling as well as for collecting the header includes for a generated algorithm call. The
context is extensively used in replacements with argument binding as the context abstracts
the handling for std ::bind and boost::bind [Boo13]. This can be shown in an example. List-
ing 3.8 represents a loop convertible to a find if call. The resulting call with argument
binding using boost is shown in Listing 3.9 and using std ::bind in Listing 3.10.

1 void findIfCallConditionInBody (unsigned char * line) {
2 const unsigned char *it ;
3 f o r (it = line ; it != line + 4 ; ++it) {
4 i f (* it < ’ s ’) {
5 break ;
6 }
7 }
8 }

Listing 3.8: Original compound statement to transform to a lambda.

1 #inc lude ” boost /bind . hpp”
2 #inc lude <f unc t i ona l>
3 #inc lude <algor ithm>
4
5 void findIfCallConditionInBody (unsigned char * line) {
6 const unsigned char *it ;
7 it = find_if (line , line + 4 ,
8 bind (std : : less<const unsigned char>() , _1 , cref (’ s ’))) ;
9 }

Listing 3.9: Resulting boost::bind expression.

1 #inc lude <f unc t i ona l>
2 #inc lude <algor ithm>
3
4 void findIfCallConditionInBody (unsigned char * line) {
5 const unsigned char *it ;
6 us ing std : : placeholders : : _1 ;
7 it = find_if (line , line + 4 ,
8 bind (less<const unsigned char>() , _1 , cref (’ s ’))) ;
9 }

Listing 3.10: Resulting std ::bind expression.

It is common in the usage with std ::bind to declare a placeholder before the application of
the argument binding. Because of ADL, the namespace prefix for the find if call and for
the predefined binary functor less can be omitted. This is not the case in argument binding
with boost. The namespace prefix must be specified for the binary functor less but as it is
an argument to the find if call the namespace prefix can also be omitted for the algorithm
call. Recognize also the different header includes needed and that the placeholders and
the bind function in boost are not in a separate namespace. To handle these variations, the
context is provided to the FunctorConverters that create calls to bind. If these converters
are used to create a bind call, the specific information like header file to include or whether
the call should be created with a namespace prefix, is set to the context.

Page 57 of 99

Parallator 3. Implementation

ch.hsr.ifs.ds8.transformation.algorithm

An AlgorithmCall class assembles a specific algorithm call. It needs a FunctorContext
to know whether a namespace prefix for the algorithm call is needed and to add the
algorithm specific header include. An AlgorithmConverter provides the parameter nodes
for the call. Remember, the parameter nodes can be gathered either by Deducers in case
of a transformation from a loop, or by the UnarySequenceAlgorithmCallConverter in case of a
transformation from a function call.

ch.hsr.ifs.ds8.ui.replacement.option

While the class hierarchy for a replacement is chosen towards a unification of STL re-
placements and TBB replacements, the replacement options show a class hierarchy for
the unification of the different options to transform a loop body. Figure 3.8 shows some
replacement options implemented. A replacement option is responsible for providing the
replacement specific AlgorithmConverter and FunctorContext. An implementation of a
ILambdaConverterFactory is used to handle the different iteration variable type criteria and
provides methods to create the correct FunctorConverter.

Figure 3.8.: Different replacement options implemented.

Page 58 of 99

Parallator 3. Implementation

ch.hsr.ifs.ds8.ui.replacement

Every resolution provided to the user has its own algorithm replacement implementation.
An algorithm replacement is responsible for building up the Eclipse Change object with
all changes needed to apply to the file. The changes compose of the algorithm call, the
header includes and possible placeholder declarations in case of a loop body transformation
towards argument binding. In collaboration with a replacement option and an Algorithm-
Call the AST nodes are created. The ASTRewriter is then used to modify the AST and
create the Change object. After applying the change, the Eclipse linked mode is entered
in case of a transformation towards a ptor::for_each call. This enables to set the grain size
and the partitioner.

3.2.4. Codan Integration

In Codan, checkers can be implemented to create markers indicating a problem at a specific
source code position. An checker can be registered and the different problems reportable
by a checker are configurable to run at different times, e.g. when a file is saved. Problems
can also have generic preferences and belong to a category. The resolutions can also
be registered and defined to which problem they belong. An alternative to register the
resolutions is a resolution generator. Generators can be registered and are then used for
generating the resolutions of different problems.

Checker Implementation

The plug-in implementation features three different checkers that are responsible for re-
porting the possible transformations. One checker reports loops convertible to STL algo-
rithm, another reports loops convertible to TBB algorithms and the third reports for each
calls transformable to TBB algorithms. This differentiation is needed as checkers can
only report problems of the same category and loop transformation are configured to have
generic preferences which is not needed for transformation from function calls. The pref-
erences in loop transformation (see Figure B.9 on page 87) provide the configuration to
choose between boost argument binding or the standard argument binding. Figure 3.9 on
the following page shows the sequence executed to report a problem. The checkers use the
SemanticAnalyzers described in Section 3.2.2 on page 50.

Page 59 of 99

Parallator 3. Implementation

Figure 3.9.: Execution of a checker to report a marker representing parallelizable loops.

Resolution Generator Implementation

A specific marker can have more than one resolution. But also not every possible reso-
lution for a loop to parallelize is applicable. The transformation using argument binding
is only applicable if the loop body satisfies certain criteria. The already available imple-
mentation of the DS-8 project handles this issue by a resolution generator to create only
the applicable resolutions for the found loop. The resolution generator uses a specific
aggregator to create the resolutions. Using the id of the reported marker a specific ag-
gregator is determined which in turn is responsible for creating all applicable resolutions.
An aggregator is also responsible for generating warning hints for the resolution to apply.
The created resolutions are adapters [GHJ95] to a specific replacement that is executed if
the user chooses to do so. Figure 3.10 on the following page shows the process to create
the resolutions to transform loops to parallelism.

Page 60 of 99

Parallator 3. Implementation

Figure 3.10.: Execution of a resolution generator to create applicable resolutions.

For some reasons, the getResolutions(marker) method is triggered many times by the Codan
framework. If the whole process is executed several times, the performance is bad. This
issue is solved by storing the resolutions for a specific marker in the generator and return
a stored resolution if one exists. If a marker is removed, the corresponding resolutions are
removed too.

An alternative implementation would have been to register all resolutions in the plugin.xml

and state to which problem they belong. A resolution derived from AbstractCodanCMarkerResolution

could then override the isApplicable(marker) method to evaluate e.g. whether an argument
binding resolution is possible. In such an implementation, every possible resolution is
instantiated only once. The same resolution object is used to execute the actions for the
same problem id at different positions in the code. The warnings in parallelization are
specific to the source code. To have a specific warning in the resolution, the warning
could then be passed in the open argument list of a marker. The already existing design
is kept as it worked and provides a simple possibility for context specific information in
resolutions.

3.2.5. Used Extension Points

The extension points used to integrate the plug-in are listed here.

org.eclipse.cdt.codan.core.checkers

Registration of the CodeAn checkers with the problem they report and the problem cate-
gory assignment.

Page 61 of 99

Parallator 3. Implementation

org.eclipse.ui.ide.markerResolution

Registration of the marker generator classes used to generate the resolutions.

org.eclipse.core.resources.markers

Registration of own marker types. They are needed to change the appearance of reported
transformation candidates. Two marker types are registered. One for STL algorithms and
one for transformations towards parallelism. Both are derived from org.eclipse.cdt.codan.core

.codanProblem.

org.eclipse.ui.editors.markerAnnotationSpecification

The appearance definition of the different marker types. Different properties as the icon
of the reported problem with a specific marker type are specified. A marker annotation
specifies also that a marker type used for parallelism is layered on top of the marker type
for STL algorithms.

org.eclipse.ui.editors.annotationTypes

This is the mapping from marker annotations to marker types to define which marker type
has which appearance.

3.3. Pattern for Semantic Analysis

The semantic analysis described in Section 2.3 on page 33 and Section 2.4 on page 35
is implemented using the available tree pattern matching algorithm. The new patterns
introduced are explained in this section. Consider [Kes10] for further explanation of other
extensive patterns, e.g. the IsForEachCandidate pattern.

3.3.1. Semantic Analysis Pattern

The implementation of the pattern for the semantic analysis related to parallelism makes
extensive use of code analysis functions provided by the CDT plug-in. These patterns are
explained here.

IsImplicitMemberFunctionCall

An implicit member function call must be recognized in order to evaluate the this-pointer
as value capture. The pattern matches a function call, extracts the function name and
creates a binding for this name using the CPPVisitor from CDT. A binding represents the
semantics of a name in the AST. In case of a ICPPMember binding the function is identified
as a member function call.

IsInOuterScope

This pattern verifies whether a variable is already known in an outer scope. An outer scope
is relative to an inner scope. The node representing the inner scope must be specified
for this pattern. The other parameter is a capture pattern containing the variable that is

Page 62 of 99

Parallator 3. Implementation

verified for its existence in the outer scope. The pattern searches the AST node represent-
ing the outer scope. It must be a compound statement. Each compound statement node
has a reference to a Scope object. Scopes can be used to look-up names and contain the
variables introduced. If the variable is found using the Scope object, the variable is already
defined. Note that the scope objects are hierarchical. In a look-up, also the hierarchically
higher ordered scopes are considered. Listing 3.11 marks inner and outer scope with the
nodes contained in the scopes.

1 void addValueOnElements (i n t data [] , i n t size , i n t value) {
2 // func t i on body i s outer CompoundStatement with Scope ob j e c t : count , data ,

value , s i z e
3 i n t count = 0 ;
4 f o r (i n t i = 0 ; i != size ; ++i) {
5 // loop body i s the inner CompoundStatement with Scope ob j e c t : <empty>
6 data [i] += value ;
7 count++;
8 }
9 }

Listing 3.11: Example showing variables introduced in inner and outer scope.

IsWriteAccessOnVariable

The occurrence of a write to a variable is recognized if the variable is an immediate left
child of a binary expression with an assignment operator, or the variable is involved in an
increment or decrement operation either prefix or postfix. In the pattern implementation
the analysis of a write access is done upwards in the AST. The verification is more like
whether the variable to test is dominated immediately by a binary expression whose left
child is the variable to test for a write access. This approach enables a simple application
for a write access verification on a given node representing a variable. Line 1 and 2 of
Listing 3.12 show possible situations of write access to variable var.

1 var++; var = i = 5 ; // wr i t e s on var
2 var . field++; var . field = 9 ; // wr i t e s on var in f i e l d mod i f i c a t i on
3 var . functionCall () ; functionCall (var) ; // p o t e n t i a l wr i t e on var in func t i on c a l l

Listing 3.12: Recognized writes and potential writes on variable.

The implementation does also identify a variable in a write access if the variable is either
a parameter in a function call or a member function is called on the variable. See line 3 in
Listing 3.12. This test is made to cover a potential write on the variable, as the tree pattern
matching algorithm does not analyze the called function. Still, the implementation is
upwards and verifies whether the variable to test is dominated by a function call expression.
This misclassifies value in Listing 3.13 on the following page as potential write because
the variable is dominated by the function call std ::for_each. This problem is solved by
a scopeStopper pattern. The function call that dominates the variable to test must be
dominated by the scope stopper. For the example, the scope stopper must match a node
that is dominated by the std ::for_each call.

Page 63 of 99

Parallator 3. Implementation

1 std : : vector<int> vec = getData () ;
2 i n t value = 10 ;
3 std : : for_each (vec . begin () , vec . end () , [value] (i n t it) {
4 it += value ;
5 }) ;

Listing 3.13: Need for a scope stopper in IsWriteOnAccessVariable.

The implementation as described does not observe operator overloading to identify oper-
ators with write access.

IsField

A field must be recognized in order to evaluate the this-pointer as value capture. The
pattern uses the CPPVisitor from CDT to create a binding. In case of a IField binding, the
named AST node is evaluated as a field.

3.3.2. Pattern for Parallelism Analysis

The described patterns above are combined to define patterns that can be used to verify
whether a lambda body or a loop body is safe for parallelism. In this process, shared
objects must be identified. The detection of a non field shared object for a lambda can be
done by an analysis of the lambda capture, for a loop the outer scope of the body must
be analyzed. Common is the detection of a field (always shared) in either the lambda
and the loop body. Also the iteration variable must be detected as it, or the element
accessed in the sequence respectively, is in most cases not a shared object. At the time
the loop is verified for safety in parallelism the iteration variable is already deduced. The
deduction of the iteration variable in a lambda expression is easier and is simply the
lambda parameter. These different and common aspects in analyzing a loop body or a
lambda body for parallelization led to the patterns shown in Figure 3.11 on the next page.

Page 64 of 99

Parallator 3. Implementation

Figure 3.11.: Different patterns involved in verification of a loop or lambda to be safe for
parallelism.

The ParallelizableBody assembles a pattern that is responsible for traversing the body and
identify shared variables with write access. Each variable is potentially shared. Whether
the variable is actually shared is identified using the other shown patterns. An identified
shared variable is then verified for write access. The IsSharedVariableInLoopBody delivers the
IsInOuterScope pattern for shared variable identification, the IsSharedVariableInLambdaBody de-
livers a pattern assembly to search for a variable in the lambda capture equally named to
a potential shared variable. The ParallelizableLoopBody needs an iteration variable identifi-
cation pattern in the constructor, the ParallelizableLambdaBody receives the iteration variable
identification pattern from the IsSharedVariableInLambdaBody. It is a pattern that searches a
variable in the lambda parameter equally named to a potential shared variable. List-
ing 3.14 shows the usage of the ParallelizableLoopBody to verify a compound statement to be
safe for parallelism.

1 ParallelizableBody parallelBody = new ParallelizableLoopBody (new SourceEquals (”
iterVarName”)) ;

2 i f (parallelBody . satisfies (loopBodyNode) {
3 // p a r a l l e l i z a b l e
4 } e l s e {
5 //not p a r a l l e l i z a b l e
6 }

Listing 3.14: Usage of ParallelizableLambdaBody in the plug-in code.

Page 65 of 99

Parallator 3. Implementation

The following verifications are not executed compared to the evaluated ones:

� Shared objects hidden by function calls are not reliably detected. Instead a function
call in parallel section is recognized as a potential problem in parallelization. Shared
pointer variables as described in Section 2.4.1 on page 35 are only detected if the
pointer is not modified in the parallel section. To fully test for a shared pointer
variable at a point in the parallel section, the variable occurrence in assignments
must be analyzed and its r-value must then also be analyzed for a shared object in
the same manner.

� A GCD test [ZC91] is not performed. But an iteration variable involved in an
operation are recognized as a potential problem in parallelization and a warning is
provided.

� A verification for different elements in a sequence can not be verified. No warning
is provided.

� A functor or a function pointer used in a std ::for_each call is not analyzed for writes
on shared variables. Instead, a warning is provided that the used functor or function
pointer is assumed to be free of shared variable modification.

3.3.3. For Each call Pattern for Parallelism

An iterator usable for parallelism must implement the Value concept. This is one criteria
for the first two parameters of a std ::for_each call. Another criteria is the callable third
parameter that can be a function pointer, lambda expression or a functor. A simplified
visualization of the extensive pattern implementation can be seen in Figure 3.12 on the
following page with the description of which part cover the different criteria.

Page 66 of 99

Parallator 3. Implementation

Figure 3.12.: Extensive pattern to recognize std ::for_each calls.

The pattern basically defines a for each call whose return value is not used and the criteria
for each child of the function call. They represent the function name (1st child) and the
parameters to the function call (other children). Any function call matching this pattern
is considered a candidate for tbb ::parallel_for_each or ptor::for_each. One criteria is not shown
in the visualization: The limitation to only three parameters. This is covered by testing
the absence of a right sibling for the third parameter. The BlockedRangeIterator pattern
is the ImplementsBlockedRangeValueConcept pattern and the ImplementsIteratorInterface
pattern connected with the logical AND pattern. The ImplementsBlockedRangeValueCon-
cept pattern does not fully test all Value concept criteria. The tests for an available copy
constructor, destructor and assignment operator overload is not checked as they are avail-
able on default and assumed to be not overridden privately. The requirements for a type
T implementing the Iterator concept are [Kes10]:

� operator != (T)

� operator ++

� operator *

Page 67 of 99

Parallator 3. Implementation

3.3.4. Iteration Variable Criteria for Parallelism

The iteration variable type in loops for parallelism must implement the Value concept.
This criteria holds for index-based and iterator-based loops. In transformation to a tbb ::

parallel_for call the iteration type is further restricted to an integral type (Index concept).
The patterns described here implement this verification and are returned by the specific
IndexIterationPatternProvider as shown in Section 3.2.2 on page 50.

Index-Based Loops

The verification for an integral type is not possible with the AST provided by the CDT
plug-in. Instead, a check is made for the iteration variable type to implement the Value
concept as internally tbb ::parallel_for uses the Range object. This is sufficiently safe because
additionally the occurrence of the iterator variable in a subscript access is verified too and
only integral types are allowed in the subscript operator of a sequence. The pattern as
returned by the IndexIterationPatternProvider are described as follows, where variableName
denotes the captured iteration variable name:

� Iteration Variable Type Pattern:
DominatesImmediately(ImplementsBlockedRangeValueConcept, variableName)) – The
expression dominating the variable name must satisfy the Value concept.

� Value Of Iteration Variable Pattern:
IsImmediatelyDominatedBy(variableName, IsInstanceof(IASTArraySubscriptExpres-
sion.class)) – the variable name is dominated by an array subscript expression.

The access using the at() function is not considered for a possible access to a sequence
element.

Iterator-Based Loops

The verification for iterators that satisfy the Value concept is straight forward. The pattern
as returned by the BlockedRangeIteratorIterationPatternProvider are described as follows, where
variableName denotes the captured iteration variable name:

� Iteration Variable Type Pattern:
DominatesImmediately(And(ImplementsIteratorInterface, ImplementsBlockedRangeVal-
ueConcept), variableName)) – The expression dominating the variable name must
satisfy the Iterator concept and the Value concept.

� Value Of Iteration Variable Pattern:
IsDereference(variableName) – the iterator is dereferenced.

Page 68 of 99

Parallator 4. Summary

4. Summary

In this chapter the achieved project results are summarized and the performance impact
of implemented transformations is evaluated. Known issues are shown and possible im-
provements are listed. The project concludes with the personal impressions made during
the last couple of months.

4.1. Results

The transformation supported by the plug-in are outlined and analyzed according to the
performance benefits. Due to time reasons the performance is analyzed in a rather syn-
thetic environment. Interesting would also be to see how many loops in a project are
detected for parallelism and how many loops are recognized correctly with parallelization
issues. This analysis could not be done for time reasons.

4.1.1. Measurement

The measurement to evaluate the implemented transformation is explained here. The test
setup as well as the results are described.

Setup

For the measurement a simple for loop iterating over an STL vector is used. The vector
is randomly initialized with floating point numbers. Each iteration multiplies the element
in the vector with 1.2 and stores it back at the same position. Listing 4.1 shows this
operation.

1 f o r (auto it = vec_data . begin () ; it != vec_data . end () ; it++) {
2 *it *= 1 . 2 ;
3 }

Listing 4.1: Simple loop operation for measurement.

Using the plug-in, the loop is transformed to an equivalent ptro::for_each call as shown in
Listing 4.2. Because no grain size and partitioner is specified, the default values are taken.
These are a grain size of one and the auto partitioner.

1 ptor : : for_each (vec_data . begin () , vec_data . end () , [] (f l o a t& it) {
2 it *= 1 . 2 ;
3 }) () ;

Listing 4.2: Loop from Listing 4.1 parallelized for measurement.

The measurement also contains the serial version using an std ::for_each call. The task
scheduler is initialized with default values at the beginning to prevent from including the
time for the task scheduler initialization in the measurement. The parallelization of such
a loop with a vector containing only ten elements brings no improvement. The overhead

Page 69 of 99

Parallator 4. Summary

hides the parallelization benefit. Instead, the measurements are executed with increasing
number of elements, starting with one thousand. For the measurement, a configuration as
shown in Table 4.1 is used.

Operating System Ubuntu 12.04, 64 Bit
GCC Version 4.7.2
TBB Version 4.1
CPU Intel Xeon(R) CPU E5520 2.27GHz x 16 (16 cores)
Compiler Optimization Option -O3 most optimized

Table 4.1.: Configuration of measurement.

Results

The results of the measurement are shown in Table 4.2.

Problem Size
[number of elements]

Serial Loop
[ms]

std::for each
[ms]

ptor::for each
[ms]

Improvement

1000 0.001 0.001 0.182 -18100.00%
10000 0.013 0.011 0.177 -1261.54%
100000 0.129 0.129 0.333 -158.14%
1000000 0.805 0.788 0.363 54.91%
10000000 8.287 8.479 4.332 47.73%
100000000 82.91 83.518 43.804 47.17%

Table 4.2.: Measurement results.

The parallelization start to provide an improvement somewhere between 100000 and
1000000 entries in the vector. The improvement is calculated by the formula 1 − (parallelTime

/ serialTime). A resulting improvement of 50% would therefore represent a parallel execu-
tion time half of the serial execution time.

4.1.2. Resulting Plug-In

The implemented plug-in shows several transformation that help the programmer to intro-
duce parallelism into an existing C++ project. The plug-in is able to detect iterator-based
and index-based loops as well as std ::for_each calls transformable to an equivalent TBB al-
gorithm. Possible problems in parallelism are evaluated and provided to the user. Not
every problem can be recognized. But the plug-in gives also warnings in case there is a
potential problem. This approach enables the user to explicitly choose which code shall be
parallelized. The available tree pattern matching algorithm from the DS-8 project could
be used to detect code for parallelism as well as for the evaluation of possible parallelism
warnings. The measurement from Section 4.1.1 on the preceding page has shown perfor-
mance impact of the transformation. While this is a rather synthetic test, it shows the
potential of the plug-in. But its usage in a real life project must further be evaluated.

Page 70 of 99

Parallator 4. Summary

The following sections provide an overview of the transformation available in the plug-
in. The transformation to STL algorithms were already available in the DS-8 project but
enhanced with namespace prefix and header include handling.

Loop to std ::for_each

An iterator-based for or while loop can be transformed to a std ::for_each call. The following
resolution variants are provided:

� Lambda expression

� Argument binding with std ::bind

� Argument binding with boost::bind

Loop to std ::find/std ::find_if

An iterator-based for or while loop can be transformed to a std ::find or a std ::find_if call.
The decision for std ::find or std ::find_if is handled by the plug-in. The following resolution
variants are provided:

� Lambda expression

� Argument binding with std ::bind

� Argument binding with boost::bind

Loop to std ::generate

An iterator-based for or while loop can be transformed to a std ::generate call. The following
resolution variants are provided:

� Function pointer

Loop to tbb ::parallel_for_each

An iterator-based for or while loop can be transformed to a tbb ::parallel_for_each call.
Problems in parallelization are reported as warnings. The following resolution variants
are provided:

� Lambda expression

� Argument binding with std ::bind

� Argument binding with boost::bind

std ::for_each call to tbb ::parallel_for_each

A std ::for_each call can be transformed to a tbb ::parallel_for_each call. Problems in paral-
lelization are reported as warnings. The callable object to apply on the sequence element
can either be one of the following:

� Lambda expression

� Functor

� Function pointer

Page 71 of 99

Parallator 4. Summary

std ::for_each call to ptor ::for_each

A std ::for_each call can be transformed transformed to a ptor::for_each. Problems in paral-
lelization are reported as warnings. The callable object to apply on the sequence element
can either be one of the following:

� Lambda expression

� Functor

� Function pointer

This transformation does also support the manual chunk control. The grain size and the
partitioner to use can be chosen.

Loop to ptor ::for_each

An iterator-based for or while loop can be transformed to a ptor::for_each call. Problems in
parallelization are reported as warnings. The following resolution variants are provided:

� Lambda expression

� Argument binding with std ::bind

� Argument binding with boost::bind

This transformation does also support the manual chunk control. The grain size and the
partitioner to use can be chosen.

Loop to tbb ::parallel_for

An index-based for or while loop can be transformed to a tbb ::parallel_for call. Problems
in parallelization are reported as warnings. The following resolution variants are provided:

� Lambda expression

4.2. Known Issues

This section presents some unresolved problems or bugs which could not be fixed during
the project.

4.2.1. STL Implementation Dependent Behavior

The result of the transformation from a for loop into a call of for each using vector
iterators is dependent on the implementation of the vector class. The example in listing
4.3 is transformed to code in listing 4.4 using the STL implementation shipped with the
Microsoft Visual C++ compiler, whereas listing 4.5 shows the resulting transformation
using GCC and its STL implementation. These examples stay for the different behavior
whenever a the type of the vector element must be deduced.

Page 72 of 99

Parallator 4. Summary

1 void testForEachConversion (vector<int> numbers) {
2 f o r (auto it = numbers . begin () ; it != numbers . end () ; ++it) {
3 *it += 10 ;
4 }
5 }

Listing 4.3: Transformation result from listing 4.3 using Microsoft Visual C++ compiler.

1 void testForEachConversion (vector<int> numbers) {
2 std : : for_each (numbers . begin () , numbers . end () ,
3 [] (std : : allocator<int > : : value_type& it) {
4 it += 10 ;
5 }) ;
6 }

Listing 4.4: Transformation result from Listing 4.3 using Microsoft Visual C++ compiler.

1 void testForEachConversion (vector<int> numbers) {
2 std : : for_each (numbers . begin () , numbers . end () ,
3 [] (i n t& it) {
4 it += 10 ;
5 }) ;
6 }

Listing 4.5: Transformation result from Listing 4.3 using GCC.

4.2.2. Index-based Loops and size t

The type size_t is an alias for an integral type and is often used in the standard library to
represent sizes and counts [plu13]. Index-based loops with a comparison of the loop run-
ning condition against a variable of type size_t are recognized but the applied transforma-
tion to an equivalent tbb ::parallel_for call results in code that is not compilable. Listing 4.6
shows the source code that is transformed to Listing 4.7. This code is not compilable
as the function template tbb ::parallel_for can not be instantiated with different template
arguments for the first two parameters. A manual adaption as shown in Listing 4.8 on the
next page is needed.

1 void addValueOnElementsIndex (i n t data [] , size_t size , i n t const value) {
2 f o r (i n t i = 0 ; i != size ; ++i) {
3 data [i] += value ;
4 }
5 }

Listing 4.6: Example of index-base loop with a comparison to variable of type size_t.

1 void addValueOnElementsIndex (i n t data [] , size_t size , i n t const value) {
2 tbb : : parallel_for (0 , size , [data , value] (const i n t& i) { // does not compi le
3 data [i] += value ;
4 }) ;
5 }

Listing 4.7: Not compilable resulting tbb ::parallel_for after transformation.

Page 73 of 99

Parallator 4. Summary

1 void addValueOnElementsIndex (i n t data [] , size_t size , i n t const value) {
2 tbb : : parallel_for (size_t (0) , size , [data , value] (const i n t& i) {
3 data [i] += value ;
4 }) ;
5 }

Listing 4.8: Manually adapted tbb ::parallel_for call.

4.2.3. Error in Nested Loop Detection

An outer loop is misclassified as transformable the same way like an inner loop that is
correctly recognized as a transformable loop. This situation is faced if an outer loop is used
to execute the inner loop for a constant number of times. Listing 4.9 shows an example
of such a situation. The loop on line 2 is wrongly marked as transformable loop because
of the found transformable loop on line 3.

1 void testNestedLoop (std : : vector<int> numbers) {
2 f o r (i n t i = 0 ; i < 5 ; i++) {
3 f o r (auto it = numbers . begin () ; it != numbers . end () ; ++it) {
4 *it *= 1 . 2 ;
5 }
6 }
7 }

Listing 4.9: Situation showing misclassified outer loop.

The reason for this behavior is the loop recognition pattern that is defined with too loosely
borders. An iteration variable initialization search and the search for a loop running con-
dition is just addressed with a dominates pattern. The outer loop dominates the iteration
variable of the inner loop and is therefore wrongly recognized as a transformable loop.
Additionally, the tree pattern matching algorithm takes more time for the misclassifica-
tion which results in a long running code analysis. It is expected to solve this issue by
a definition that the iteration variable must additionally be a left child of the loop body.
Since this error came up fairly late in the project, too less time was at hand to fix this
bug. This behavior shows also that it is better to formulate a pattern as exact as possible
to prevent from misclassification.

4.3. Outlook

The project could not cover all loop variants transformable to an equivalent call in TBB.
During the project also other ideas came up that might help to increase the performance of
an existing application. Further transformation ideas and performance increasing features
are therefore reported here.

4.3.1. Improvements to the Existing Implementation

Due to time reasons, the current implemented transformations could not be implemented
to provide the best usability. The possible improvements are listed in the following sec-
tions.

Page 74 of 99

Parallator 4. Summary

Specific Messages for Parallelization Issues

The current implementation states a general message in case of any parallelization issue.
A specific message would help the user to retrace the problem. A specific message could
include variables that are recognized to be a shared object with modification in the parallel
section. Since the tree pattern matching algorithm is not able to identify every problem
with 100% certainty, a differentiation in problems that are safely recognized and does that
have potential problems would also be helpful.

Warnings in Parallelized Calls

The implemented patterns to identify parallelization issues in a possible transformation
towards parallelism could also be used to analyze calls that already use TBB. The patterns
are then used to identify data races or potential data races.

Preview of Algorithm

While choosing the resolution to apply, the description of the resolution could include a
preview of the code that would be inserted.

Link Warning to Code

A possible warning could be selectable and the code responsible for the warning is marked
in the code.

4.3.2. Further Loop Variants

The following transformation of loops could also be implemented:

� Enhance the implemented transformation to STL algorithms for index based loops
as already suggested in [Kes10].

� Transformation of loops with different step size to tbb ::parallel_for as suggested in
Section 2.2.1 on page 27.

� Transformation of nested loops to TBB calls using the blocked_range2d object. This
implementation would enable the parallelization of matrix multiplication as shown
in Listing 1.8 on page 13.

4.3.3. Thrust Integration

The integration of thrust into the plug-in would enable the parallelization of several STL
calls. The plug-in implementation could then enable the following features:

� The recognition of further loops that resemble a specific STL algorithm and the
transformation to them or to the parallelized version of Thrust.

� The recognition of STL calls and the transformation to the parallelized version of
Thrust.

Page 75 of 99

Parallator 4. Summary

The plug-in could also help in setting up a project using Thrust with TBB. This would
include the integration of the Thrust header files in the include path and setting the
compiler options to use the TBB back end (see Section 2.2.3 on page 32). Note that not
all algorithms are parallelized with TBB in Thrust. Some implementation just provide
the serial implementation.

4.4. Personal Reflection

Multi-core processors are the most important source of future performance gain. I knew
this already. But the impact of this fact to programmers, language designer and also to
the development environments was not that clear to me. During the project I realized
that the new multi-core era forces to change many things in software development. Multi-
threading is not only used for the separation of concerns and responsiveness of the user
interface but also for increasing the performance. As in parallel programs data races are
introduced quickly I think it is a very important task for an IDE to help the programmer
to write correct code.

The project has shown that a semi automatic transformation of loops towards paral-
lelism is possible and led to an increase in performance. I am satisfied with the outcome
of the project although I expected to implement more transformations. I had good prelim-
inary work I could base on. On one side the already implemented loop to STL algorithm
transformations from Pascal Kesseli on the other side my former work with a try to use a
DSL for the pattern creation. The later helped me a lot in creating the patterns for the
analysis of the parallelization issues. The hardest part was to get a good understanding of
parallelism. When can a loop be parallelized and when does it show situations resulting
in a data race.

I thank my supervising professor Peter Sommerlad for all the support during the project.
It was helpful in many situations to ask for his competent opinion. I also thank Mirko
Stocker for co-assisting me during the project and the continuous helpful feedback in writ-
ing the report. I further thank the whole team from the IFS Rapperswil for their standby
whenever CDT related questions came up.

Page 76 of 99

P
arallator

A
.
P
arallelize

S
T
L

A. Parallelize STL

The following table lists if and how the STL algorithms can be parallelized. Some of the results are gained in an analysis of the
implemented algorithms in Thrust. The column “DS-8 Ready” states whether the specific STL algorithm is detectable with tree pattern
matching.

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::adjacent find algorithm yes no the elements at the borders would also be
needed for a comparison, not only compar-
ison in the ranges provided to the different
task.

std::all of, std::any of,
std::none of

algorithm yes yes parallel reduce predicate extraction. Implementable us-
ing find if. Any of == !none of.

std::binary search algorithm no no To detect this algorithm, an analysis
whether the elements are sorted would be
needed in advance. Binary search is too
complicated to detect because of too many
implementation variants.

std::copy algorithm yes yes parallel for only possible if random access iterator for
OutputIterator. Uses transform. If copy
is used for I/O, it does not make much
sense.

P
age

77
of

99

P
arallator

A
.
P
arallelize

S
T
L

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::copy backward algorithm yes yes parallel for only possible if random access iterator for
OutputIterator. If copy is used for I/O, it
does not make much sense.

std::count algorithm yes yes parallel reduce

std::count if algorithm yes yes parallel reduce The transformation must also include a an
extraction of the comparison into a pred-
icate function or the usage of an existing
predicate (e.g. std::less¡int¿).

std::equal algorithm yes yes parallel reduce implemented with find if not. Find if not.
reduction with minimum index of found
element.

std::equal range algorithm no no To detect this algorithm, an analysis
whether the elements are sorted would be
needed in advance. Uses too complicated
lower bound.

std::fill algorithm yes yes parallel for

std::fill n algorithm yes yes parallel for The size parameter might be difficult to
deduce if not a constant in for-loop.

std::find algorithm yes yes parallel reduce reduction with minimum index of found
element. Might be slower as iteration is
not stopped when found.

std::find first of algorithm yes yes parallel reduce maybe blocked range2d with paral-
lel reduce

std::find if algorithm yes yes parallel reduce reduction with minimum index of found
element. Might be slower as iteration is
not stopped when found.

std::for each algorithm yes yes parallel for

P
age

78
of

99

P
arallator

A
.
P
arallelize

S
T
L

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::generate algorithm yes yes parallel for

std::generate n algorithm yes yes parallel for The size parameter might be difficult to
deduce if not a constant in for-loop.

std::includes algorithm yes yes parallel reduce The algorithm is only working on sorted
ranges. For parallel reduce logical AND
is used

std::inplace merge algorithm yes no

std::iter swap algorithm yes no Switch of two values. Parallelization does
not make sense.

std::lexicographical
compare

algorithm yes yes parallel reduce Might be slower.

std::lower bound algorithm no no

std::make heap algorithm no no

std::max element algorithm yes yes parallel reduce

std::merge algorithm yes yes parallel invoke Parallel merge with Divide and con-
quer implementation: http://www.

drdobbs.com/parallel/parallel-merge/

229204454?pgno=3

std::min element algorithm yes yes parallel reduce

std::mismatch algorithm yes yes parallel reduce use find if implementation. Find if uses
parallel reduce

std::next permutation algorithm no no Inherent serial.

std::nth element algorithm no no Too complex to detect.

std::partial sort algorithm no no Too complex to detect.

std::partial sort copy algorithm no no Too complex to detect.

std::partition algorithm yes yes parallel for usage of count if, remove copy if, scat-
ter if

P
age

79
of

99

http://www.drdobbs.com/parallel/parallel-merge/229204454?pgno=3
http://www.drdobbs.com/parallel/parallel-merge/229204454?pgno=3
http://www.drdobbs.com/parallel/parallel-merge/229204454?pgno=3

P
arallator

A
.
P
arallelize

S
T
L

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::pop heap algorithm no no Too complex to detect.

std::prev permutation algorithm no no Too complex to detect. Inherent serial.

std::push heap algorithm no no Too complex to detect.

std::random shuffle algorithm yes no Does not make sense.

std::remove algorithm yes yes parallel for remove if, scatter if, transform, for each,
Needs RandomAccessIterator

std::remove copy algorithm yes yes parallel for remove copy if, scatter if, transform,
for each, Needs RandomAccessIterator

std::remove copy if algorithm yes yes parallel for remove copy if, scatter if, transform,
for each, Needs RandomAccessIterator

std::remove if algorithm yes yes parallel for remove if, scatter if, transform, for each,
Needs RandomAccessIterator

std::replace algorithm yes yes parallel for using transform if

std::replace copy algorithm yes yes parallel for using replace copy if, transform, for each,

std::replace copy if algorithm yes yes parallel for using transform, for each,

std::replace if algorithm yes yes parallel for using transform if

std::reverse algorithm yes yes parallel for swap ranges with reverse iterator,
for each

std::reverse copy algorithm yes yes parallel for same as copy with reverse iterator

std::rotate algorithm yes no maybe with scatter.

std::rotate copy algorithm yes yes parallel for with copy.

std::search algorithm yes yes parallel for not in thrust. Parallel search of subranges.
Might be slower.

std::search n algorithm yes yes parallel for not in thrust. Parallel search of subranges.
Might be slower.

P
age

80
of

99

P
arallator

A
.
P
arallelize

S
T
L

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::set difference algorithm yes yes parallel for Not parallelized with TBB in thrust. Al-
gorithm expects sorted ranges to test dif-
ference.

std::set intersection algorithm yes yes parallel for Not parallelized with TBB in thrust. Al-
gorithm expects sorted ranges to test in-
tersection.

std::set symmetric dif-
ference

algorithm yes yes parallel for Not parallelized with TBB in thrust. Al-
gorithm expects sorted ranges to test sym-
metric difference.

std::set union algorithm yes yes parallel for Not parallelized with TBB in thrust. Al-
gorithm expects sorted ranges to create
union. Algorithm uses std::copy algorithm

std::sort algorithm no yes parallel invoke stable sort, merge sort with parallelized
divide and conquer. Sort difficult to de-
tect.

std::sort heap algorithm no yes parallel invoke before sort, need to be arranged as heap.
Sort is parallelizable

std::stable partition algorithm yes yes stable partition copy, remove copy if.

std::stable sort algorithm no yes parallel invoke merge sort with parallelized divide and
conquer.

std::swap algorithm yes no to few calculation to vanish overhead of
parallelism.

std::swap ranges algorithm yes yes parallel for uses for each

std::transform algorithm yes yes parallel for OutputIterator parameter needs to be a
RandomAccessIterator for parallelization.
Analysis, return value needed or not.

std::unique algorithm yes yes parallel for uses unique copy, copy if

P
age

81
of

99

P
arallator

A
.
P
arallelize

S
T
L

STL Alogrithm header DS-8
Ready

Parallelizable TBB paradigm
for paralleliza-
tion

Remarks

std::unique copy algorithm yes yes parallel for copy if (transform, exclusive scan, scat-
ter if)

std::upper bound algorithm no no too complicated to detect.

std::partial sum numeric yes yes parallel scan Different variants to write this algorithm
(e.g += variant). Also recognition of func-
tional Functor (e.g. std::multiplies¡¿ pos-
sible)

std::accumulate numeric yes yes parallel reduce operation to reduce must be associative
and commutative.

std::adjacent difference numeric yes yes parallel for using transform

std::inner product numeric yes yes parallel reduce both operation must be associative and
commutative. The one to reduce as well
as the one for “multiplicatio”

std::is sorted algorithm yes yes parallel reduce abort if not sorted→ serial might be much
faster

std::is sorted until algorithm yes yes parallel reduce algorithm explanation: returns pointer to
one behind last object that is not sorted.
abort if not sorted→ serial might be much
faster

Table A.1.: Summary of STL algorithms analysis towards recognizability and parallelism.

P
age

82
of

99

Parallator B. User Guide

B. User Guide

B.1. Installation of Plug-in

Parallator needs Eclipse Juno (4.2) with CDT 8.1.1 installed. This can be done either
by installing a bundled “Eclipse IDE for C/C++ developers CDT distribution” from the
Eclipse download page1 or by installing CDT from an existing Eclipse installation using
its update site2. Now, the Parallator plug-in can be installed. Choose the menu “Help”,
“Install New Software...”and add the URL of the Parallator update site3. Proceed with
the steps through the installation and accept the license.

B.2. Use of Plug-in

This user manual covers the application and configuration of the implemented transfor-
mation. After the installation, the Parallator plug-in is ready to use.

B.2.1. Recognition of Possible Transformations

There is different visual support for the indication of possible transformations available
in the current working project. As soon as the Parallator plug-in recognizes possible
transformations the following features can be used to navigate to reported code fragments.

Marker in the Vertical Ruler

Any source code recognized from Parallator is indicated by a marker on that line in the
vertical ruler. Figure B.1 shows the indication for a transformation to an STL algorithm.
Figure B.2 on the next page shows the indication for a transformation towards parallelism.

Figure B.1.: Marker for a possible transformation to an STL algorithm.

1http://www.eclipse.org/downloads/
2http://download.eclipse.org/tools/cdt/releases/juno
3https://sinv-56017.edu.hsr.ch/tools/ds8/development/juno/

Page 83 of 99

http://www.eclipse.org/downloads/
http://download.eclipse.org/tools/cdt/releases/juno
https://sinv-56017.edu.hsr.ch/tools/ds8/development/juno/

Parallator B. User Guide

Figure B.2.: Marker for a possible transformation towards parallelism.

If the code on a specific line shows a code construct transformable by both categories.
The icon for transformations towards parallelism is shown.

Navigate with the Overview Ruler

The overview ruler provides ability to see all possible transformations of a file. Clicking on
an entry let you navigate in a fast manner to a next transformation candidate. Figure B.3
shows the overview ruler with the annotations usable to navigate.

Figure B.3.: Potential transformation indication in the overview ruler.

Navigate with the Problems View

All possible transformation applicable in a project are listed in the Problems view. Fig-
ure B.4 on the next page shows the problem view with STL algorithm markers and par-
allelization markers.

Page 84 of 99

Parallator B. User Guide

Figure B.4.: The Problems view lists all possible transformation candidates in a project.

A double click on an entry let you navigate to the specific source code position.

B.2.2. Apply a Transformation

A transformation can be applied in two different ways.

Selection in the Vertical Ruler

Click on the marker in the vertical ruler to see the transformations applicable for the code
at the specified line. Double click to apply the transformation. Figure B.5 shows the
possible transformations appeared after a click on the marker icon. Note that if several
markers are placed on one line, the transformations for all markers are shown when clicked
on the marker. A warning for a parallelization issue appears when a transformation is
selected.

Figure B.5.: A Click on the marker shows applicable transformation. Double click on a
transformation to apply it.

Table B.1 on the next page shows the transformation icons with the described meaning.
If a transformation with manual chunk control is chosen, the plug-in marks the two config-
urable parameters. Navigate between the positions using the tabulator, use the keyboard
or the mouse to select a partitioner and complete by pressing enter. Figure B.6 on the
following page shows the configurable parameters marked for navigation.

Page 85 of 99

Parallator B. User Guide

Transformation to STL algorithm.

Transformation to STL algorithm with warning.

Transformation for parallelism.

Transformation for parallelism with warning.

Table B.1.: Icons for transformation and its explanation.

Figure B.6.: Use the tabulator to switch between the configurable parameters. Finish
editing by enter.

Hover over a Marked Line

The transformation to apply can also be chosen from a pop-up that appears when hovering
in the source code over a marked line. Figure B.7 shows the appearing pop-up.

Figure B.7.: Quick-fix pop-up appeared when hovering over a marked line.

Select a transformation to apply. If the code on a specific line shows a code construct
transformable to parallelism and to an STL algorithm, the pop-up shows only the trans-
formation towards parallelism.

B.2.3. Choose Transformations to Recognize

Open the preferences located in “Window - Preferences” and select the property “C/C++
- Code Analysis”. On the appearing page the recognition of possible transformations

Page 86 of 99

Parallator B. User Guide

can be enabled or disabled. Figure B.8 on the following page shows the code analysis
configuration page.

Figure B.8.: Preferences to configure the possible transformation to detect.

B.2.4. Configure Argument Binding

Parallator supports the transformation of loops to STL or TBB algorithms. A possible
usage of argument binding is possible in such a transformation. In the preferences page
of the transformation, the argument binding can be configured. Figure B.9 shows the
pre-entered configuration to use the argument binding form the C++11 standard.

Figure B.9.: Preferences to configure the argument binding.

Table B.2 on the following page shows the configuration entries needed to choose boost

Page 87 of 99

Parallator B. User Guide

binding.

Bind namespace Place holders namespace

Std Bind std std::placeholders
Boost Bind boost <empty>

Table B.2.: Configuration entries for choosing the argument binding.

B.2.5. Configure Launch Mode

Choose the launch mode in the preference page of a transformation. You can decide
at which times a transformation is recognized. Figure B.10 shows the possible entries.
Parallator runs a quite extensive analysis and “Run as you type” might be too time
consuming in larger projects.

Figure B.10.: Preferences to configure the launch mode.

If only “Run on demand” is selected, start the analysis by selecting a project and choose
“Run C/C++ Code Analysis” in the context menu of the project.

Page 88 of 99

Parallator C. Project Management

C. Project Management

The project plan created at the beginning of the project is shown in Figure C.1.

T
a

sk
 /

 W
e

e
k

K
W

3
7

K
W

3
8

K
W

3
9

K
W

4
0

K
W

4
1

K
W

4
2

K
W

4
3

K
W

4
4

K
W

4
5

K
W

4
6

K
W

4
7

K
W

4
8

K
W

4
9

K
W

5
0

K
W

5
1

K
W

5
2

K
W

1
K

W
2

K
W

3
K

W
4

K
W

5
K

W
6

P
ro

je
ct

 S
e

tu
p

S
e

tu
p

 R
e

la
te

d
 E

n
v

ir
o

n
m

e
n

t

T
a

sk
 D

e
sc

ri
p

ti
o

n
 a

n
d

 P
ro

je
ct

p
la

n

U
p

g
ra

d
e

 D
S

8
 t

o
 C

D
T

 8
.1

P
re

S
tu

d
y

O
v

e
rv

ie
w

 o
n

 T
B

B
 f

e
a

tu
re

s

E
xi

st
in

g
 T

o
o

ls
 /

 P
a

ra
ll

e
l

S
tu

d
io

 /
 C

o
m

p
il

e
r

p
a

ra
ll

e
l_

fo
r_

e
a

ch

T
ra

n
sf

o
rm

a
ti

o
n

 f
ro

m
 s

td
:f

o
r_

e
a

ch

T
ra

n
sf

o
rm

a
ti

o
n

 f
ro

m
 f

o
r

 l
o

o
p

s
u

si
n

g
 l

a
m

b
d

a

E
v

a
lu

a
ti

o
n

 o
n

 O
p

e
n

 S
o

u
rc

e
 P

ro
je

ct
 /

 L
ib

ra
ry

p
a

ra
ll

e
l_

fo
r

(p
a

rt
ly

 e
x

is
t)

In
co

rp
o

ra
te

 d
if

fe
re

n
t

lo
o

p
 s

te
p

 s
iz

e
s

In
co

rp
o

ra
te

 r
a

n
g

e
 c

o
n

ce
p

t
(g

ra
in

si
ze

,
p

a
rt

it
io

n
e

r)

E
v

a
lu

a
ti

o
n

 o
n

 O
p

e
n

 S
o

u
rc

e
 P

ro
je

ct
 /

 L
ib

ra
ry

F
u

rt
h

e
r

fe
a

tu
re

s
(s

u
g

g
e

st
io

n
)

M
u

tl
id

im
e

n
si

o
n

a
l

ra
n

g
e

s

p
a

ra
ll

e
l_

re
d

u
ce

 p
a

ra
d

ig
m

p
a

ra
ll

e
l_

sc
a

n
 p

a
ra

d
ig

m

A
d

v
ic

e
 a

n
d

 H
in

ts
 i

n
 p

a
ra

ll
e

li
sm

T
ra

n
sf

o
rm

a
ti

o
n

s
to

 T
B

B
 c

o
n

cu
rr

e
n

t
co

n
ta

in
e

rs

T
ra

n
sf

o
rm

 o
th

e
r

S
T

L
a

lg
o

ri
th

m
s

u
si

n
g

 T
B

B

D
o

cu
m

e
n

ta
ti

o
n

T
e

cn
ic

a
l

R
e

p
o

rt

F
in

is
h

in
g

F
in

a
li

ze
 P

lu
g

in
 /

 U
p

d
a

te
 S

it
e

 /
 T

e
st

in
g

A
b

st
ra

ct

P
o

st
e

r
/

v
id

e
o

R
e

se
rv

e

A
b

se
n

ce
s

1
.

/
2

.
O

ct
.

C
h

ri
st

m
a

s

M
il

e
st

o
n

e
 1

 (
K

W
 4

0
)

Im
p

le
m

e
n

te
d

 t
ra

n
sf

o
rm

a
ti

o
n

 o
f

st
d

::
fo

r_
e

a
ch

 o
r

fo
r

 l
o

o
p

 i
n

to
 t

b
b

::
p

a
ra

ll
e

l_
fo

r_
e

a
ch

 u
si

n
g

 l
a

m
b

d
a

 e
xp

re
ss

io
n

M
il

e
st

o
n

e
 2

 (
K

W
 4

3
)

Im
p

le
m

e
n

te
d

 t
ra

n
sf

o
rm

a
ti

o
n

 o
f

fo
r

lo
o

p
 i

n
to

 t
b

b
::

p
a

ra
ll

e
l_

fo
r

w
it

h
 r

a
n

g
e

 c
o

n
ce

p
t

u
si

n
g

 l
a

m
b

d
a

 e
xp

re
ss

io
n

,
fu

rt
h

e
r

fe
a

tu
re

s
to

 i
m

p
le

m
e

n
t

d
e

fi
n

e
d

Figure C.1.: Project plan and milestones of the project.

Page 89 of 99

Parallator C. Project Management

The tasks starting from week 43 were considered only ideas of what could be possible in
this project. But the tasks until week 43 could not be finished as planned. Figure C.2
reflects the project and shows the scheduling of the work done.

T
a

sk
 /

 W
e

e
k

K
W

3
8

K
W

3
9

K
W

4
0

K
W

4
1

K
W

4
2

K
W

4
3

K
W

4
4

K
W

4
5

K
W

4
6

K
W

4
7

K
W

4
8

K
W

4
9

K
W

5
0

K
W

5
1

K
W

5
2

K
W

1
K

W
2

K
W

3
K

W
4

K
W

5
K

W
6

P
ro

je
ct

 S
e

tu
p

S
e

tu
p

 R
e

la
te

d
 E

n
v
ir

o
n

m
e

n
t

T
a

sk
 D

e
sc

ri
p

ti
o

n
 a

n
d

 P
ro

je
ct

p
la

n

U
p

g
ra

d
e

 D
S

8
 t

o
 C

D
T

 8
.1

U
p

g
ra

d
e

 t
o

 C
D

T
 8

.1
.1

P
re

S
tu

d
y

O
v
e

rv
ie

w
 o

n
 T

B
B

 f
e

a
tu

re
s

E
xi

st
in

g
 T

o
o

ls
 /

 P
a

ra
ll

e
l

S
tu

d
io

 /
 C

o
m

p
il

e
r

P
a

ra
ll

e
li

ze
 S

T
L

a
n

d
 T

h
ru

st
 A

n
a

ly
si

s

p
a

ra
ll

e
l_

fo
r_

e
a

ch

T
ra

n
sf

o
rm

a
ti

o
n

 f
ro

m
 s

td
:f

o
r_

e
a

ch

T
ra

n
sf

o
rm

a
ti

o
n

 f
ro

m
 f

o
r

 l
o

o
p

s
u

si
n

g
 l

a
m

b
d

a

p
a

ra
ll

e
l_

fo
r

p
a

ra
ll

e
l_

fo
r

u
sa

g
e

 w
it

h
 p

to
r:

:f
o

r_
e

a
ch

In
co

rp
o

ra
te

 c
h

u
n

k
 c

o
n

tr
o

l
to

 p
to

r:
:f

o
r_

e
a

ch

In
cl

u
d

e
 a

n
d

 n
a

m
e

sp
a

ce
 H

a
n

d
li

n
g

Lo
o

p
 t

o
 p

a
ra

ll
e

l_
fo

r
Lo

o
p

 t
o

 p
a

ra
ll

e
l_

fo
r

D
S

-8
 C

h
a

n
g

e
s

In
cl

u
d

e
 a

n
d

 n
a

m
e

sp
a

ce
 H

a
n

d
li

n
g

F
u

rt
h

e
r

fe
a

tu
re

s

A
d

v
ic

e
 a

n
d

 H
in

ts
 i

n
 p

a
ra

ll
e

li
sm

R
e

fa
ct

o
ri

n
g

 o
f

Im
p

le
m

e
n

te
d

 F
e

a
tu

re
s

D
o

cu
m

e
n

ta
ti

o
n

T
e

cn
ic

a
l

R
e

p
o

rt

F
in

is
h

in
g

F
in

a
li

ze
 P

lu
g

in
 /

 U
p

d
a

te
 S

it
e

 /
 T

e
st

in
g

M
e

a
su

re
m

e
n

t

A
b

st
ra

ct

A
b

se
n

ce
s

1
.

/
2

.
O

ct
.

C
h

ri
st

m
a

s

Figure C.2.: Effective project plan of the project.

The important points that led to this quite different project schedule compared to the
expected one are:

� Understanding the features of TBB took longer. I constantly learned how TBB
works but it was harder than expected. This resulted also in a greater effort to write

Page 90 of 99

Parallator C. Project Management

the introduction and dive into the topic of parallelism. But it was also needed to get
the clear understanding in the application of TBB with iterators on STL containers.

� TBB’s tbb ::parallel_for_each makes it easy to introduce parallelism with iterator-
based loops but has shown also worse performance in many cases compared to tbb

::parallel_for. This fact was then faced with ptor::for_each. This enabled also the
incorporation of chunk control with the linked mode feature but this whole task was
not expected.

� In general the refactoring of the features was underestimated but resulted in an
unified work flow for the transformations and a clean plug-in architecture.

� Measurements have been done to analyze the features of TBB. But finding an open
source project to apply the transformation has shown to be difficult and the imple-
mentation of the transformation were just not finished. The measurement of the
performance impact of an implemented transformation is made at the end.

C.1. Time Schedule

The expected duration of a master thesis is 810 hours of work (27 ECTS * 30 hours). I
worked 847.5 hours over the past 21 weeks. The distribution over the project weeks can
be seen from Figure C.3.

Figure C.3.: Weekly working hours.

Some comments on the working hours are listed here:

� In general, the variation in the weekly working hours are sourced by the time needed
to work on the MSE seminar module.

� In week 47 an effort was needed to reach the milestone 2 of the MSE seminar module.

� The lower working time in week 51 is related to the additional time needed for the
finish of the seminar paper.

Page 91 of 99

Parallator D. Project Setup

D. Project Setup

Important installation instructions to develop and use the plug-in are explained in this
chapter. Also the changes to the continuous integration environment compared to the
DS-8 project and the DS-8 DSL project [Kem12] are reported.

D.1. Development environment

This section reports important issues in setting up the environment to develop on the
Parallator plug-in.

D.1.1. Used Versions

The software and the versions used for the development are listed in table D.1

Software Version

Java 1.6
Eclipse Juno 4.2

Eclipse CDT Plug-In 8.1.1
TBB 4.1

Tycho 0.16.0
Maven 3.0.4

GCC used by CDT 4.7
MSVC used by CDT VC 10

Table D.1.: Used tools in development.

D.1.2. Installation and Configuration of TBB

The plug-in supports the Microsoft Visual C++ (MSVC) and the Gnu Common Compiler
(GCC). This section covers the needed build settings for a C++ project setup in Eclipse
CDT for both compiler. TBB is only supported with the MSVC compiler on windows.
The installation of TBB is therefore explained for Windows (usage with MSVC) and for
the Ubuntu distribution (usage with GCC).

On Windows

The following pre-conditions must be fulfilled for the setup of a project in CDT using
MSVC and TBB:

� Installed MSVC, e.g. the compiler shipped with the Microsoft Visual Studio

Page 92 of 99

Parallator D. Project Setup

� Downloaded TBB version for Windows from the download page1 and unzipped into
a directory. In the following steps referenced with <TBB_ROOT>.

For the configuration of the C++ project in CDT follow these steps:

1. Create a new project: Choose “New - C++ Project”.

2. Enter a project name, select “Hello World C++ Project” as project type and select
the “Microsoft Visual C++” toolchain.

3. Step through the wizard with “Next” and “Finish” the wizard.

4. Open the properties page by selecting “Properties” in the context menu of the created
project.

5. Open “C/C++ Build - Settings” and select the “Preprocessor” settings of the “C++
Compiler (cl)”.

6. Add the directory to the installed MSVC compiler e.g. “C:\Program Files (x86)\Microsoft
Visual Studio 10.0\VC\include” to the include path.

7. Add <TBB_ROOT>\include to the include path.

8. Switch to the “Libraries” settings of the “Linker (link)”.

9. Add <TBB_ROOT>\lib\ia32\vc10 to the additional libpath.

10. Repeat step 5 to step 9 for the setup of a “Release” configuration.

11. Apply the settings and close the configuration with “Close”.

For the correct environment of the MSVC compiler, start Eclipse from the “Visual Studio
Command Prompt” that sets up the environment for using Microsoft Visual Studio tools.

On Ubuntu

The following pre-conditions must be fulfilled for the setup of a project in CDT using
MSVC and TBB:

� Installed GCC compiler with C++11 feature support. At least 4.7 is therefore
needed. Good installation descriptions can be found in the web.2

� Downloaded TBB version for Linux from the download page3 and unzipped into a
directory. In the following steps referenced with <TBB_ROOT>.

For the installation of TBB, do the following step:

1. Make the library files of TBB available in the system. One way to do this is copying
the library files to the library directory of linux. In a concrete case: copy the files
from <TBB_ROOT>/lib/intel64/cc4.1.0_libc2.4_kernel2.6.16.21/ to /lib/.

1http://threadingbuildingblocks.org/download#stable-releases
2http://charette.no-ip.com:81/programming/2011-12-24_GCCv47/
3http://threadingbuildingblocks.org/download#stable-releases

Page 93 of 99

http://threadingbuildingblocks.org/download#stable-releases
http://charette.no-ip.com:81/programming/2011-12-24_GCCv47/
http://threadingbuildingblocks.org/download#stable-releases

Parallator D. Project Setup

For the configuration of a C++ project in CDT follow these steps:

1. Create a new project: Choose “New - C++ Project”.

2. Enter a project name, select “Hello World C++ Project” as project type and select
the “Linux GCC” toolchain.

3. Step through the wizard with “Next” and “Finish” the wizard.

4. Open the properties page by selecting “Properties” in the context menu of the created
project.

5. Open “C/C++ Build - Settings” and select the “Includes” settings of the “GCC
C++ Compiler”.

6. Add <TBB_ROOT>\include to the “include paths (-l)”.

7. Switch to “Miscellaneous” settings of the “GCC C++ Compiler”.

8. Add −std=c++11 to the “other flags” field. This enables C++11 features.

9. Switch to “Libraries” settings of the “GCC C++ Linker”.

10. Add tbb to “Libraries (-l)”.

11. For timing functions, also add rt to “Libraries (-l)”

12. Repeat step 5 to step 11 for the setup of a “Release” configuration.

13. Apply the settings and close the configuration with “Close”.

D.2. Continuous Integration

The continuous integration environment was already setup by the DS-8 project and the
DS-8 DSL. As build server, Hudson is used. The plug-in is built using maven and tycho.
For the version control management, SVN is used. The changes in the setup compared to
the former projects are reported here.

D.2.1. Build Environment

The DS-8 DSL project has introduced a new plug-in on which the DS-8 plug-in was related.
Since the DS-8 DSL project did not provide the simplification expected, the dependency
upon its plug-in is removed. The changes involved to remove the dependency can be seen
in the SVN revision: 584.

D.2.2. Testing

The DS-8 DSL project had already integrated some features of the CDT Testing plug-in4.
But at this time, the testing plug-in did not exist as a separate plug-in and the features
were just copied. During this project a switch is made to use CDT Testing and remove the
former copied functionality. The CDT Testing plug-in is needed to add external resources,
e.g. header files of the STL, to the parser.

4https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting used version: 3.0.0

Page 94 of 99

https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting

Parallator E. Upgrade to CDT 8.1.1

E. Upgrade to CDT 8.1.1

In the upgrade of the DS-8 project to use CDT Version 8.1.1 two changes were needed
that are reported here.

Type of Dependent Expression

Since the resolution of Bug 2999111 [Sch12] the expression type of the iteration variable
it of Listing E.1 resolves to TypeOfDependentExpression instead of a CPPUnknownBinding.

1 template<c l a s s T>
2 void printContainer (T &t) {
3 f o r (typename T : : iterator it = t . begin () ; it != t . end () ; ++it) {
4 cout << *it << endl ;
5 }
6 }

Listing E.1: The type of variable it resolves to TypeOfDependentExpression.

The type of the variable it must be deduced for a declaration of the iteration variable in a
lambda expression. Beside other components the DecltypeFallBackDeclarationGenerator class is
responsible for the type evaluation. In the case of Listing E.1 the explicit type is difficult
to deduce. This is addressed with the C++11 construct decltype. The condition to insert
decltype in the declaration was based on the CPPUnknownBinding and had to be changed to test
for a TypeOfDependentExpression.

Typedef Specialization

Since the resolution of Bug 2999111 [Sch12] the expression type of a template class declared
variable like it in Listing E.2, resolves to a CPPTypedefSpecialization binding that wraps
the new type introduced with a decltype declaration. The iterator type in STL vector
implementation is often declared with a typedef declaration. For the evaluation of whether
the type follows the restrictions of the Iterator concept or not, the wrapped type must be
used. To receive this type, a binding inherited from ITypedef is iteratively unpacked as long
as the type is still a ITypedef binding. On the resulting binding that represents a type, the
Iterator concept is evaluated.

1 vector<int> v (10) ;
2 f o r (vector<int > : : iterator it = v . begin () ; it != v . end () ; it++) {
3 *it = rand () ;
4 }

Listing E.2: The expression type of variable it resolves to CPPTypedefSpecialization.

Page 95 of 99

Parallator List of Figures

List of Figures

1.1. Seriall (a) and parallel execution of tasks with dependency (b) and unequal
computation time between tasks (c). Both increase the span and limit
scalability. 3

1.2. Syntax of a lambda expression. 8
1.3. Obtaining tasks from the local double-ended queues (deques) maintained by

the worker threads. This strategy unfolds recursively generated task trees
in a depth-first manner, minimizing memory use. [KV11] 10

1.4. Recursive subdivision of a range to generate tasks. Each box represents a
task that will perform computation on a subrange. The leaves represent
tasks that haven’t yet executed and the internal nodes represent tasks that
have executed and chose to subdivide their range. 11

1.5. Data depencency in matrix mutliplication. 13
1.6. Possible execution flow in calculating the running sum with parallel_scan.

Each color denotes a separate body object and the values in the brackets
represent the summary of the corresponding range [Cor12c]. 19

1.7. Intel Advisor XE Workflow window [Cor12a]. 20
1.8. Suitability data collected by Advisors suitability tool [Cor12a]. 21
1.9. The programmer selects the bodies array and Convert To Parallel Array

refactoring. ReLooper converts the sequential loops (left-hand side) into
parallel loops (right-hand side) using the ParallelArray framework [DD12]. . 22

2.1. Mapping the scaled and split Range objects to the indexes of the sequence. 30
2.2. Tree pattern matching in the AST. The node covered by the tree patterns

root is a match. 40
2.3. Overview of some structural patterns implemented in the DS-8 project [Kem12]. 41
2.4. B is immediately dominated by P AND is the immediate right sibling of

A [Kes10] . 41
2.5. Node behind “R” matches and the node behind the capture pattern is stored. 42
2.6. The captured node must dominate an equal node. 42
2.7. Combined tree pattern composed of different pattern objects. 42
2.8. Navigation of the pattern shown in Figure 2.7 on page 42 [Kem12]. 42
2.9. Sequential and parallel pseudo code for a divide-and-conquer algorithm[DME09] 45

3.1. Interactions in the execution of a ptor::for_each call with chunk control. . . . 48
3.2. Functionality overview. 50
3.3. Marker resolutions to parallelize the loop. 50
3.4. IterationPatternProvider are used to parametrize the for each candidate

pattern. 51
3.5. Different implementations of ISemanticAnalyzer to analyze the code for possible

for each candidates. 52

Page 96 of 99

Parallator List of Figures

3.6. Different components and its dependencies that assemble a replacement. . . 54
3.7. Different loop body to lambda functor converters. 55
3.8. Different replacement options implemented. 58
3.9. Execution of a checker to report a marker representing parallelizable loops. 60
3.10. Execution of a resolution generator to create applicable resolutions. 61
3.11. Different patterns involved in verification of a loop or lambda to be safe for

parallelism. 65
3.12. Extensive pattern to recognize std ::for_each calls. 67

B.1. Marker for a possible transformation to an STL algorithm. 83
B.2. Marker for a possible transformation towards parallelism. 84
B.3. Potential transformation indication in the overview ruler. 84
B.4. The Problems view lists all possible transformation candidates in a project. 85
B.5. A Click on the marker shows applicable transformation. Double click on a

transformation to apply it. 85
B.6. Use the tabulator to switch between the configurable parameters. Finish

editing by enter. 86
B.7. Quick-fix pop-up appeared when hovering over a marked line. 86
B.8. Preferences to configure the possible transformation to detect. 87
B.9. Preferences to configure the argument binding. 87
B.10.Preferences to configure the launch mode. 88

C.1. Project plan and milestones of the project. 89
C.2. Effective project plan of the project. 90
C.3. Weekly working hours. 91

Page 97 of 99

Parallator Bibliography

Bibliography

[AK12] Intel Corporation Alexey Kukanov. Parallel programming with intel threading
building blocks. Website access October 23, 2012. https://www.sics.se/files/

projects/multicore/days2008/IntelTBB_MCDays2008_Stockholm.pdf.

[Bec12] Pete Becker. C++ standard. Website access November 04, 2012. http://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.

[Boo13] Boost.org. Boost c++ libraries. Website access February 1, 2013. http://www.

boost.org/.

[Cor12a] Intel Corporation. Design parallel performance with less risk and more impact.
Website access November 27, 2012. http://software.intel.com/zh-cn/sites/

default/files/design-parallel-performance_studioxe-evalguide.pdf.

[Cor12b] Intel Corporation. Intel threading building blocks for open source. Website
access October 23, 2012. http://threadingbuildingblocks.org/.

[Cor12c] Intel Corporation. Intel threading building blocks, reference man-
aual, document number 315415-016us. Website access October 23,
2012. http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%

20Source%20Documentation/Reference.pdf.

[Cor12d] Intel Corporation. parallel for and parallel for each usage with stl vector. Web-
site access October 26, 2012. http://software.intel.com/en-us/forums/topic/

328652.

[DD12] Ralph Johnson Danny Dig. Relooper: Refactoring for loop parallelism. Website
access November 1, 2012. http://hdl.handle.net/2142/14536.

[DME09] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential java
code for concurrency via concurrent libraries. In Proceedings of the 31st Inter-
national Conference on Software Engineering, ICSE ’09, pages 397–407, Wash-
ington, DC, USA, 2009. IEEE Computer Society.

[ea13] Jared Hoberock et al. Parallelizing the standard algorithms library. Website ac-
cess January 20, 2013. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2012/n3408.pdf.

[Fou12] The Eclipse Foundation. Eclipse cdt (c/c++ development tooling). Website
access November 27, 2012. http://www.eclipse.org/cdt/.

[Fou13] The Eclipse Foundation. Cdt - static analysis. Website access January 30, 2013.
http://wiki.eclipse.org/CDT/designs/StaticAnalysis.

Page 98 of 99

https://www.sics.se/files/projects/multicore/days2008/IntelTBB_MCDays2008_Stockholm.pdf
https://www.sics.se/files/projects/multicore/days2008/IntelTBB_MCDays2008_Stockholm.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
http://www.boost.org/
http://www.boost.org/
http://software.intel.com/zh-cn/sites/default/files/design-parallel-performance_studioxe-evalguide.pdf
http://software.intel.com/zh-cn/sites/default/files/design-parallel-performance_studioxe-evalguide.pdf
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf
http://threadingbuildingblocks.org/uploads/81/91/Latest%20Open%20Source%20Documentation/Reference.pdf
http://software.intel.com/en-us/forums/topic/328652
http://software.intel.com/en-us/forums/topic/328652
http://hdl.handle.net/2142/14536
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3408.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3408.pdf
http://www.eclipse.org/cdt/
http://wiki.eclipse.org/CDT/designs/StaticAnalysis

Parallator Bibliography

[GHJ95] Erich Gamma, Richard Helm, and Ralph and Johnson. Design Patterns – Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Longman, Ams-
terdam, 1 edition, 1995.

[Gue12] Paul Guermonprez. Parallel programming course threading build-
ing blocks (tbb). Website access November 1, 2012. http://

intel-software-academic-program.com/courses/manycore/Intel_Academic_-_

Parallel_Programming_Course_-_InDepth/IntelAcademic_Parallel_08_TBB.pdf.

[JH13] Nathan Bell Jared Hoberock. Thrust - parallel algorithms library. Website
access January 17, 2013. http://thrust.github.com/.

[Kem12] Martin Kempf. Dsl for specifying ds-8 tree patterns. Technical report, Institute
for Software, HSR, Switzerland, 2012.

[Kes10] Pascal Kesseli. Loop analysis and transformation towars stl algorithms. Tech-
nical report, Institute for Software, HSR, Switzerland, 2010.

[KV11] Wooyoung Kim and Michael Voss. Multicore desktop programming with intel
threading building blocks. IEEE Softw., 28(1):23–31, January 2011.

[Lea12] Doug Lea. D. lea. parallelarray package extra166y. Website access November 1,
2012. http://gee.cs.oswego.edu/dl/concurrency-interest/index.html.

[MRR12] Michael D. McCool, Arch D. Robison, and James Reinders. Structured parallel
programming patterns for efficient computation. Elsevier/Morgan Kaufmann,
Waltham, MA, 2012.

[plu13] plusplus.com. size t - c++ reference. Website access February 6, 2013. http:

//www.cplusplus.com/reference/cstring/size_t/.

[RR99] Radu Rugina and Martin Rinard. Automatic parallelization of divide and con-
quer algorithms. In Proceedings of the seventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’99, pages 72–83, New
York, NY, USA, 1999. ACM.

[Sch12] Markus Schorn. Cdt - bugzilla bug 299911. Website access October 8, 2012.
https://bugs.eclipse.org/bugs/show_bug.cgi?id=299911.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, 2nd edition, 2006.

[SL05] Herb Sutter and James Larus. Software and the concurrency revolution. Queue,
3(7):54–62, September 2005.

[Sut05] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in Software. Dr. Dobb’s Journal, 30(3), 2005.

[ZC91] Hans Zima and Barbara Chapman. Supercompilers for parallel and vector com-
puters. ACM, New York, NY, USA, 1991.

Page 99 of 99

http://intel-software-academic-program.com/courses/manycore/Intel_Academic_-_Parallel_Programming_Course_-_InDepth/IntelAcademic_Parallel_08_TBB.pdf
http://intel-software-academic-program.com/courses/manycore/Intel_Academic_-_Parallel_Programming_Course_-_InDepth/IntelAcademic_Parallel_08_TBB.pdf
http://intel-software-academic-program.com/courses/manycore/Intel_Academic_-_Parallel_Programming_Course_-_InDepth/IntelAcademic_Parallel_08_TBB.pdf
http://thrust.github.com/
http://gee.cs.oswego.edu/dl/concurrency-interest/index.html
http://www.cplusplus.com/reference/cstring/size_t/
http://www.cplusplus.com/reference/cstring/size_t/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=299911

	Introduction
	What is Parallelism
	Parallelism vs. Concurrency
	Explicit vs. Implicit Parallelism
	Performance in Parallelism

	Parallel Programming
	The Need For Explicit Parallelism
	Strategies for Parallelism
	Mechanism for Parallelism
	Key Features For Performance
	Pitfalls

	Selected C++11 Features
	Lambda Expression
	Defined Multi-Threaded Behavior with STL Container

	Threading Building Blocks
	Introducing Example
	Task Scheduling
	Iteration Space / Range Concept
	Controlling Chunking
	Parallel Algorithms

	Existing Tools
	Intel Parallel Advisor
	ReLooper

	Project Goals
	About this Report

	Analysis
	Loop Analysis and Transformation in DS-8 Project
	Focus on Specific Loop Variants
	Loop Body Transformation

	Potential Transformations Using TBB
	Loops to TBB Parallel Algorithms
	STL Algorithms to TBB Parallel Algorithms
	Thrust

	Semantic Analysis Towards STL Algorithms
	Pass Lambda Parameter by Reference / Constant Reference
	Capture by Reference or by Value

	Semantic Analysis Towards Parallelism
	Conflicting Memory Accesses
	Lambda Functors Towards Parallelism
	Independent Iterations
	Additional Criteria for Parallelization

	Tree Pattern Matching
	Available Implementation
	Usage and Limits in Tree Pattern Matching

	Potential further Refactorings
	Divide-and-Conquer Algorithms
	Replace Threading Architecture

	Implementation
	Library for Parallelization
	Motivation
	The Library

	The Plug-In
	Overview
	Analysis
	Replacement and Transformation
	Codan Integration
	Used Extension Points

	Pattern for Semantic Analysis
	Semantic Analysis Pattern
	Pattern for Parallelism Analysis
	For_Each call Pattern for Parallelism
	Iteration Variable Criteria for Parallelism

	Summary
	Results
	Measurement
	Resulting Plug-In

	Known Issues
	STL Implementation Dependent Behavior
	Index-based Loops and size_t
	Error in Nested Loop Detection

	Outlook
	Improvements to the Existing Implementation
	Further Loop Variants
	Thrust Integration

	Personal Reflection

	Parallelize STL
	User Guide
	Installation of Plug-in
	Use of Plug-in
	Recognition of Possible Transformations
	Apply a Transformation
	Choose Transformations to Recognize
	Configure Argument Binding
	Configure Launch Mode

	Project Management
	Time Schedule

	Project Setup
	Development environment
	Used Versions
	Installation and Configuration of TBB

	Continuous Integration
	Build Environment
	Testing

	Upgrade to CDT 8.1.1
	List of Figures
	Bibliography

