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Abstract

Loops and iterations have always been a traditional error source in programming.
“Off-by-one” errors, where an iteration is executed once too often or once too few,
top the most common program errors. C++ provides STL algorithms to simplify the
most common tasks accomplished using loops, helping to avoid these kinds of errors.
Unfortunately, STL algorithms are not as commonly used as they could be.

This master thesis describes the development of an Eclipse C++ Development Tools
(CDT) plug-in, which encourages and supports developers to use STL algorithms. The
plug-in provides semi-automatic recognition and transformation of compatible loops
to corresponding STL algorithms. To achieve this, tree pattern matching algorithms
are applied to the processed abstract syntax trees (AST). The final plug-in features
transformation of for each and find/find if -compatible for and while loops to equiv-
alent STL algorithm function calls. The respective loop body is transformed into a
corresponding functor. The user can select either a C++0x lambda expression, a TR1
bind expression or a C++98 bind1st/bind2nd expression.

Based on the foundation created with this project, there exist multiple extension
possibilities. Additional algorithms, such as generate and transform, would greatly
increase the number of use cases served. Furthermore, introducing trivial explicit
function and explicit functor class functor transformations can increase the plug-in’s
flexibility even further. Lastly, the tree pattern matching engine, with all its benefits,
should definitely be provided to the Eclipse end users. Various applications, from
tree pattern search masks to semi-automatic pattern definition based on existing codes,
could support programmers in all of their daily tasks and challenges.
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Loop Analysis and Transformation towards STL Algorithms

1. Introduction

One of the very first things prospective programmers are being taught, after having
written their first “Hello World” to the console, are the possibilities and proper use
of loops and iterations. And it is done so not by coincidence: Loops are the very
one programming expression that separate our modern software environments from
traditional finite automatons. They bring us Turing-completeness. Unfortunately,
they also introduce another property to our programs: They enable our code to never
halt [Sip06, p.137-147,153-154].

Loops and iterations have thus always been a potential source of errors and com-
plexity in programming, and there exist different systems and methods to meet these
challenges. One of these measures in the C++ programming language was the in-
troduction of the Standard Template Library (STL), which - among other things -
attempted to allay the complexity of loops by mapping them to expressive, standard-
ized algorithms. Even though the use of STL algorithms provides remarkable benefits,
as explained in section 1.2.4, they are unfortunately not as frequently used as they
could be. Reasons for this unfavorable situation are manifold and explained to further
detail in section 1.2.4, but its implications can be summarized into one sentence:

Large portions of today’s C++ code can be simplified to a great deal by replacing
custom loops with STL algorithms.

This assumption represents the very essence of this master thesis’ contents and
objectives, which will be explained further in the following of this introduction. This
chapter also includes a brief overview of the functional range of the C++ Standard
Template Library, to provide readers unfamiliar with its possibilities with a context
for the rest of the document.

1.1. Task description

To establish a thorough definition of this master thesis’ goals and objectives, the task
description is stated within three sections: The initial position and current situation
(1.1.1), the definition of the actual problem to be addressed (1.1.2) and the nominal
objectives of the thesis (1.1.3).

1.1.1. Initial position

Among C++ experts, the use of STL algorithms over custom loops is strongly em-
phasized [Mey01, Baj01, Lov10]. Nevertheless, there still exist countless instances in

Date: February 9, 2011 Page 6 of 104



Loop Analysis and Transformation towards STL Algorithms

current C++ code where a manifold of different loop types could be replaced by an
equivalent STL algorithm, as chapter 2 points out. Automatic code transformation
systems often focus on reducing time-consuming tasks for programmers rather than im-
proving the code quality [WY07], which in turn is usually accomplished by refactoring
features. While their functionalities have grown remarkably over the past few years,
major C++ Integrated Development Environments (IDEs) such as Eclipse C++ De-
velopment Tools (CDT) and Visual Studio currently lack the features to automatically
map existing loops to STL algorithms.

1.1.2. Problem definition

Introducing STL functionality into legacy code is today a mainly manual task. It
requires a conscious interpretation of a given loop’s semantics, the knowledge about
the available STL functionalities and an equivalent reformulation of the code in terms
of an STL algorithm. These three requirements illustrate also the main reasons for
the current lack of STL usage:

• Analyzing the code manually is expensive and may simply not be considered
worthwhile

• STL algorithms require almost always advanced C++ concepts such as functors
and iterators, which occur to be too little-known among even professional C++
programmes (see also section 1.2.4)

• Manually rephrasing a loop as STL algorithm may introduce new errors to the
code

1.1.3. Objectives of thesis

Section 1.1.2 explained that manual transformation of loops to STL algorithms is ex-
pensive, challenging and error-prone. The possibilities, requirements and implementa-
tion options of automatic loop transformations will therefore be analyzed in the scope
of this master thesis. The nominal objectives of this task are listed in the following
sections.

Statistical analysis of existing code

Before evaluating and proposing possible transformation techniques, a statistical anal-
ysis of existing C++ code from different sources shall provide a representative context
on the loops and code constructs to be transformed. These occurrences shall be sep-
arated into groups with similar semantical and syntactical properties that allow the
application of common recognition and transformation techniques.

Research and formulate transformation systems

Based on the findings of the previous code analysis, feasible transformation techniques
for the respective groups shall be proposed and evaluated. These systems may span a

Date: February 9, 2011 Page 7 of 104



Loop Analysis and Transformation towards STL Algorithms

wide area of algorithms ranging from provably equivalent transformations to best-effort
code substitutions.

Implement proposed systems

The most promising and beneficial transformation systems shall be implemented as
an Eclipse CDT plug-in, be it that one such implementable technique has been found.
The chosen implementation shall be available as a refactoring feature.

1.1.4. Expressive examples

Section 1.2 provides a detailed explanation of the STL features and structures focussed
on in this master thesis. Nevertheless, let at this point follow some specific examples
of concrete custom loop to STL transformations that should help express the goals of
this project to more detail.

Searching an element by equality

Given any standard container and an element of the contained type, one may want
to search an entry within the container that is equal to the value (e.g. to verify that
aforesaid element is contained).

A custom, intuitive way of achieving this may be expressed by the following lines of
code:

1 vector<Person> p = getPersons ( ) ;
2 Person inDemand ( ”Raphael” , ”Weiss” ) ;
3 const Person ∗ result = 0 ;
4 f o r ( vector<Person > : : size_type i = 0 ; i < p . size ( ) ; ++i ) {
5 i f ( p . at ( i ) == inDemand ) {
6 result = &p . at ( i ) ;
7 }
8 }
9 i f ( result ) {

10 cout << ∗ result << endl ;
11 }

Listing 1.1: Custom search loop

One might agree that the solution in listing 1.1 is as straightforward and simple as
it could ever be. It does not take more than some minutes to truly comprehend all
possible results above code excerpt could yield. Yet, before judging, let us consider an
equivalent expression as an STL algorithm:

1 vector<Person> p = getPersons ( ) ;
2 Person inDemand ( ”Raphael” , ”Weiss” ) ;
3 vector<Person > : : const_iterator result = find ( p . begin ( ) , p . end ( ) , inDemand ) ;
4 i f ( result != p . end ( ) ) {
5 cout << ∗ result << endl ;
6 }

Listing 1.2: STL find
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Listing 1.2 illustrates how the find algorithm reduces the five lines of the custom
for loop to one expressive call to find. It can do so because the custom for loop is
actually only a poor copy of what has already been implemented in the STL. Intuitively,
pragmatic programmers tend to reuse existing functionalities instead of rewriting them,
avoiding errors and providing their algorithms with descriptive names. There is, as
some readers may probably already argue, of course a catch in this mentality, for which
to point out we introduce some changes to the original code:

1 vector<Person> p = getPersons ( ) ;
2 Person inDemand ( ”Raphael” , ”Weiss” ) ;
3 const Person ∗ result = 0 ;
4 f o r ( vector<Person > : : size_type i = 0 ; i < p . size ( ) ; ++i ) {
5 i f ( p . at ( i ) == inDemand ) {
6 result = &p . at ( i ) ;
7 } e l s e {
8 registerSomewhere ( p . at ( i ) ) ;
9 }

10 }
11 i f ( result ) {
12 cout << ∗ result << endl ;
13 }

Listing 1.3: Custom search and register looop

In this case, a simple find is no more sufficient to replace the code in listing 1.3 for it
does no more only implement a simple search through the container. The possibilities,
limits and very purposes that lay within the STL will thus be explained in section 1.2.

Searching an element by a certain property

Listing 1.4 instantiates the very same example as listing 1.1, except that a person with
a matching first name is demanded.

1 vector<Person> p = getPersons ( ) ;
2 string inDemand = ”Raphael” ;
3 const Person ∗ result = 0 ;
4 f o r ( vector<Person > : : size_type i = 0 ; i < p . size ( ) ; ++i ) {
5 i f ( p . at ( i ) . getFirstName ( ) == inDemand ) {
6 result = &p . at ( i ) ;
7 }
8 }
9 i f ( result ) {

10 cout << ∗ result << endl ;
11 }

Listing 1.4: Custom search-by-property looop

This example can again be reformulated using the STL algorithm find if. find if re-
quires us to pass not only the range to be searched but also a predicate function that
takes an element of the list as argument and returns true or false, depending on whether
the element fulfills the predicate. This predicate can be passed as simple function or as
a functor, which was implemented in listing 1.5 by using bind. Again, even though the
transformed code does still present itself as very expressive, it also becomes apparent
that the use of STL functions exceeds the capabilities of C++ novices.
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1 vector<Person> p = getPersons ( ) ;
2 auto isTom = bind ( equal_to<string >() , ”Tom” , bind (&Person : : getFirstName , _1 ) ) ;
3 vector<Person > : : iterator result = find_if ( p . begin ( ) , p . end ( ) , isTom ) ;
4 i f ( result != p . end ( ) ) {
5 cout << ∗ result << endl ;
6 }

Listing 1.5: STL find if

Searching a container using a predicate is in fact a very generic way of finding elements
and can be applied to almost any criterion based upon which should be searched. It
remains to state that using C++0x lambda expressions, predicates can be defined far
simpler than done so in listing 1.5, as shown in listing 1.6.

1 auto isTom = [ ] ( Person p ) { re turn p . getFirstName ( ) == ”Tom” ; } ;

Listing 1.6: C++0x predicate

The features relevant to this master thesis that have been introduced by C++0x will
be illustrated in section 1.3.

Printing each element of a list

As a last example, a short code excerpt writing all elements of the container to the
console will be transformed.

1 f o r ( vector<Person > : : size_type i = 0 ; i < p . size ( ) ; ++i ) {
2 cout << p . at ( i ) << endl ;
3 }

Listing 1.7: Custom loop to print each element

The semantics of the code in listing 1.7 can be rephrased by a practical reinterpre-
tation of classical iterators called ostream iterator. An ostream iterator represents
a wrapper to a given output stream implementing the iterator interface. Aforesaid
implementation writes all data assigned to the current iterator position out to the
referenced output stream. This structure allows us to implement the “print each ele-
ment”-functionality in terms of a copy algorithm:

1 copy ( p . begin ( ) , p . end ( ) , ostream_iterator<Person> ( cout , ”\n” ) ) ;

Listing 1.8: Print each element using copy

Applying the transformation from listing 1.7 to listing 1.8 again requires a profound
knowledge of the tools available in the STL as well as the expertise to use them.
These few examples tried to emphasize how practical and helpful a plug-in implement-
ing these transformations automatically could be. Relieving the programmer of the
burden to recognize the “print each element”-semantics as a possible stage for copy
and ostream iterator could ease the use of STL algorithms significantly and widen
their acceptance.
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1.2. The Standard Template Library (STL)

The Standard Template Library (STL) is a software library and represents a subset
of the C++ Standard Library. The following sections provide a short overview of the
library in general and the contained sub-libraries Algorithms, Iterators and Containers.

1.2.1. Overview

The STL provides reusable and adaptible implementations of containers, iterators, al-
gorithms and functors. These classes can be used with any built-in or user-defined type
that supports the necessary operations (e.g. copy-constructibility). This flexibility is
achieved by the use of templates, which provide compile-time polymorphism.

1.2.2. Algorithms library

Provided by the <algorithm> header, the programming components implemented in
the Algorithms library allow C++ programs to perform algorithmic operations on
containers and any other compatible sequence type. Its functions can be categorized in
Non-modifying sequence operations, Mutating sequence operations, Sorting and related
operations and C library algorithms.

Non-modifying sequence operations

Non-modifying sequence operations usually serve to retrieve data from ranges (e.g.
find if ) or apply a common operation on the elements of a range (e.g. for each, count).
There exist exactly 13 non-modifying sequence oeprations and their effect, return values
and complexities can be found in the final C++ committee draft [ISO10b] [ISO10b,
p.844]. The most important algorithms in context of this document are listed explicitly
in the following:

• for each

– signature:
template<class InputIterator, class Function>
Function for each(InputIterator first, InputIterator last, Function f);

– requirements: Function must meet the requirements of MoveConstructible

– effects: Applies f to the result of dereferencing every iterator in the range
[first,last), starting from first and proceeding to last - 1. [ Note: If the
type of first satisfies the requirements of a mutable iterator, f may apply
nonconstant functions through the dereferenced iterator.—end note]

– returns: std::move(f).

– complexity : Applies f exactly last - first times.

– remarks: If f returns a result, the result is ignored.
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[ISO10b, p.855]

• find

– signature:
template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last, const T& value);

template<class InputIterator, class Predicate>
InputIterator find if(InputIterator first, InputIterator last, Predicate pred);

template<class InputIterator, class Predicate>
InputIterator find if not(InputIterator first, InputIterator last, Predicate
pred);

– returns: The first iterator i in the range [first,last) for which the following
corresponding conditions hold: *i == value, pred(*i) != false, pred(*i) ==
false. Returns last if no such iterator is found.

– complexity : At most last - first applications of the corresponding predicate.

[ISO10b, p.855-856]

• count

– signature:
template<class InputIterator, class T>
typename iterator traits<InputIterator>::difference type count(InputIterator
first, InputIterator last, const T& value);
template<class InputIterator, class Predicate>
typename iterator traits<InputIterator>::difference type count if(InputIterator
first, InputIterator last, Predicate pred);

– effects: Returns the number of iterators i in the range [first,last) for which
the following corresponding conditions hold: *i == value, pred(*i) != false.

– complexity : Exactly last - first applications of the corresponding predicate.

[ISO10b, p.857]

Mutating sequence operations

Mutating sequence operations allow the manipulation of complete ranges of generic
data types. The STL holds 13 mutating sequence operations ranging from simple copy
and remove operations to very flexible algorithms such as transform [ISO10b, p.861]
[ISO10b, p.844].
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Sorting and related operations

The last category of the <algorithm> library is represented by Sorting and related
operations, which perform both sorting and localization tasks on containers. Typical
examples are sort, which allows sorting a given range, is sorted, which verifies whether
a given range is already sorted, and binary search, which localizes an element within
a given range, if present. [ISO10b, p.861] [ISO10b, p.868-872].

1.2.3. Containers library

The Containers library provides the user with a set of type-safe container classes
that allow a unified form of organizing collections of information. Both sequence and
associative containers are included and explained in all their forms in the final C++
committee draft [ISO10b, p.710]. While explaining all available container types at this
point would lead beyond the scope of this introduction, only the std::vector class is
introduced in this section. std::vector may be viewed as the default container type
for C++ projects and is used frequently throughout this document for examples and
explanations.

vector

A vector is random-access sequence container. It supports constant time insert and
erase operations at the end of the container (namely push back and pop back). Ele-
ments in a vector are stored contiguously, meaning that the following condition holds
for all data stored in vectors: ∀n(0 ≤ n < v.size() → &v[n] = &v[0] + n). The most
important and defining vector operations are:

• void push back
(const T &item) Inserts a new item at the end of the vector.

• void pop back
Removes the last item of the vector.

• T &operator [](size type index)
Provides direct access to the requested index, without enforcing and boundary
control on the provided index. Invalid memory accesses are thus possible.

• T &at(size type index)
Provides boundary-controlled access to the requested index, throwing an instance
of std::range check, should the provided index exceed the vector’s boundaries.

1.2.4. Benefits and liabilities

Most C++ experts embrace the use of the STL as a basis for every prospective C++
programmer [Mey01, Baj01, Lov10]. In constrast of this overwhelming acceptance by
the language’s developers and experts, there also exist strong viewpoints against the
use of the STL at all [Wil05]. Therefore, this section tries to provide a neutral view
on a limited selection of both benefits and liabilities within the use of STL constructs.
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Benefits

• Standardized and excessively tested code
STL algorithms and class templates have been tested and evaluated in various
environments and programming situations. Few software libraries can thus pre-
tend to fulfill their specifications as exactly and precise as the STL does.

• Interoperability
Programs relying on the same template-based constructs are able to exchange
data simpler and in a more type-safe manner than if they all used different
container implementations.

• Development effort save
Using STL constructs save software developers the effort of implementing these
functionalities themselves. The STL is available in all C++ environments and
thus introduces no explicit library dependencies to satisfy.

Liabilities

• Complexity
Programmers unfamiliar with C++ find some design aspects of the STL bewil-
dering, e.g. the lack of a common super class for all container types. Further-
more, even trivial tasks such as iterating over each element of a container using
for each require at least basic understanding of templates, iterators and functors.
This provides beginners with a relatively steep learning curve.

• Genericity
Instead of being implemented as member functions, most algorithms are imple-
mented as template-based free functions, applicable to a vast variety of types.
While this represents a very efficient design aspect, it also requires develop-
ers to e.g. understand an std::string as a sequence of characters and calling
sort(str.begin(), str.end()) instead of str.sort() [Wil05].

1.3. C++ and C++0x

C++ and especially C++0x provide some concepts and features essential to the usage
of STL algorithms that developers from other areas may not be used to. The features
used throughout the rest of this document are thus explained in the following of this
section.

1.3.1. Argument binding

Section 1.2 introduced the possibilities and functions the STL provides to C++ pro-
grammers. One of its features, which enjoys the main focus of this master thesis, are
the included algorithm implementations. Almost all STL algorithms consist of one or
more iterator ranges to be processed and a function or predicate pointer to be applied
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to the traversed items. This pattern, however, can in some situations present itself as
quite restrictive, as shown in listing 1.9.

1 void registerPerson ( const Registrar &, const Person &) ;
2 // . . .
3 vector<Person> v = getPersons ( ) ;
4 Registrar registrar ;
5 for_each ( v . begin ( ) , v . end ( ) , registerPerson ) ;

Listing 1.9: for each and functions with more than one argument

The code from listing 1.9 will not compile. Given the signature of register, we must
provide a corresponding registrar for each person. However, for each is limited to
functions taking only a single argument of the type contained in the container (in this
example Person). To circumvent this limitation, we can replace the function pointer
by a C++ functor class, as listing 1.10 illustrates.

1 void registerPerson ( const Registrar &, const Person &) ;
2 // . . .
3 vector<Person> v = getPersons ( ) ;
4 Registrar registrar ;
5 c l a s s doRegister {
6 pr i va t e :
7 const Registrar &r ;
8 pub l i c :
9 doRegister ( const Registrar &r ) : r ( r ) {}

10 void operator ( ) ( const Person &p ) {
11 registerPerson ( r , p ) ;
12 }
13 } ;
14 for_each ( v . begin ( ) , v . end ( ) , doRegister ( r ) ) ;

Listing 1.10: for each and functor

This process of creating a separate functor class that holds the second argument as a
member variable is called argument binding. Since this pattern provides a remarkable
amount of boilerplate code, argument binding has been facilitated by the introducation
of the template-based bind functor.

1 void registerPerson ( const Registrar &, const Person &) ;
2 // . . .
3 vector<Person> v = getPersons ( ) ;
4 Registrar registrar ;
5 for_each ( v . begin ( ) , v . end ( ) , bind ( registerPerson , registrar , _1 ) ) ;

Listing 1.11: for each and bind

Listing 1.11 illustrates the usage of the bind environment. The functor’s constructor
takes the respective function (registerPerson), the arguments to bind (registrar) and
the argument placeholders remaining for the function call. In 1.11, only the placeholder
for the first argument ( 1 ) is used. The result is a functor taking one argument and
calling registerPerson with registrar and the given argument [Mad05].
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1.3.2. Lambdas

In standard C++ and particularly when using STL algorithms such as for each or
sort, developers often need to instantiate functor objects implementing a certain logic.
Creating explicit classes for these functors is sometimes remunerative, if they are of
general use and referenced multiple times throughout the project. In many other
situations, however, these objects represent only one particular instance of code within
one function, and developers would thus prefer to define them as near as possible to
their actual usage. Lambda expressions have been introduced to C++0x for this very
reason [Mic10, p.7-10]. Lambda functions are defined as shown in listing 1.12.

1 [ ] ( i n t x , i n t y ) { re turn x + y ; }

Listing 1.12: Simple lambda expression

The implicit return type of the function in listing 1.12 is decltype(x + y) (see 1.3.3).
This return type can be stated explicitly using the trailing-return-type syntax.

1 [ ] ( i n t x , i n t y ) −> i n t { re turn x + y ; }

Listing 1.13: Simple lambda expression with trailing return type

Furthermore, lambda functions are able to reference identifiers declared outside the
lambda body. To do so, closures defined between square brackets in the declaration
of the lambda are used. Listing 1.14 explains their semantics.

1 [ ] //no va r i a b l e s captured . Using one w i l l r e s u l t in a compi la t ion e r r o r .
2 [ x , &y ] //x captured by value , y captured by r e f e r e n c e
3 [&] //any ex t e rna l v a r i ab l e i s imp l i c i t l y captured by r e f e r e n c e
4 [=] //any ex t e rna l v a r i ab l e i s imp l i c i t l y captured by value
5 [& , x ] //x e x p l i c i t l y captured by value . Others captured by r e f e r e n c e
6 [= , &z ] // z e x p l i c i t l y captured by r e f e r e n c e . Others captured by value

Listing 1.14: Lambda closures semantics

1.3.3. Type inference

In order to use a variable in standard C++, its type must be explicitly specified. In
template-based environments, however, identifying these specific types is sometimes
not trivial or even possible, as listing 1.15 demonstrates.

1 template<c l a s s T>
2 void someGenericAlgorithm ( const T &t ) {
3 T : : iterator it = t . begin ( ) ;
4 TYPE value = ∗it ; // What type to use here ?
5 }

Listing 1.15: Difficult explicit type specification

For situations like these, the two keywords decltype and auto provide relief. Using
decltype, the programmer is able to deduce an expressions type at compile-time and
use it in one’s own declarations.
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1 template<c l a s s T>
2 void someGenericAlgorithm ( const T &t ) {
3 T : : iterator it = t . begin ( ) ;
4 decltype (∗ it ) value = ∗it ;
5 }

Listing 1.16: Decltype example

The keyword auto provides a very similar functionality, but can only be used in a
declaration with associated initializer, since that initializer’s type is used for the dec-
laration. This behavior is illustrated in listing 1.17, where the declarations of value1
and value2 are equivalent.

1 template<c l a s s T>
2 void someGenericAlgorithm ( const T &t ) {
3 T : : iterator it = t . begin ( ) ;
4 decltype (∗ it ) value1 = ∗it ;
5 auto value2 = ∗it ;
6 }

Listing 1.17: Auto vs. decltype example

1.4. Natural limits of code analysis

The halting problem, one of the most renowned theorems of computer science, proofs
that a computer program in general cannot be analyzed against even the most simple
properties (e.g. “halts” or “does not halt”) [Sip06, p.173-181]. Whether or not a loop
implements an STL algorithm, which is the main topic of this thesis, also represents
one such unprovable property. This implies that the problem approached during this
master thesis cannot be fully solved. The following sections are dedicated to proving
this statement by applying the matter of loop transformation to the halting problem.

1.4.1. Assumptions

In order to transform a loop to an STL algorithm, it is necessary to identify the range
traversed by the loop. Loops that do not process an explicit range can be extended by
a virtual one. Listings 1.18 and 1.19 illustrate such an extension by a virtual range.

1 whi le ( t rue ) {
2 doSomething ( ) ;
3 }

Listing 1.18: Loop without explicit range

1 i n t i = 0 ;
2 whi le ( t rue ) {
3 doSomething ( ) ;
4 ++i ;
5 }
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Listing 1.19: Same loop extended by a virtual range

This adaption can be applied without loss of generality. In order to transform the loop
body to a lambda expression, break, return and other range-affecting statements would
also need to be expressed by the traversed range, as listings 1.20 and 1.21 illustrate.

1 f o r ( i n t i = 0 ; i < 10 ; ++i ) {
2 i f ( i == 7) {
3 break ;
4 }
5 cout << i << endl ;
6 }

Listing 1.20: Loop with range-affecting statements

1 i n t nums [ ] = { 0 , 1 , 2 , 3 , 4 , 5 , 6 } ; // range r e s u l t i n g due to ”break ; ”
2 for_each ( nums , nums + 7 , [ ] ( i n t x ) {
3 cout << x << endl ;
4 }) ;

Listing 1.21: for each call resulting from range-affecting statements

Above two measures guarantee that:

• there are no (range-affecting) statements in the loop body that forbid a trans-
formation to a lambda expression

• there is a valid range to be processed by a for each call

Based on these two conditions, every for loop can be transformed to a for each call as
illustrated by figures 1.22 and 1.23.

1 f o r ( init ( ) ; condition ( ) ; step ( ) ) {
2 body ( ) ;
3 }

Listing 1.22: General for loop

1 init ( ) ;
2 for_each ( begin , end , [ ] ( T x ) {
3 condition ( ) ;
4 body ( ) ;
5 step ( ) ;
6 }) ;

Listing 1.23: General for each call

The question is now whether such a transformed form can always be found. Its answer
strictly depends on the question of whether the range processed by a loop can always
be properly determined.
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1.4.2. Proof of non-existence of a general algorithm

We assume it would be possible to always automatically deduce the (possibly virtual)
range of a loop. This would directly allow to disambiguate infinite loops from finite
loops. Every loop having a range of the form [x,∞) or [x,−∞) would in that case
represent an infinite loop. The possibility to identify halting loops from not halting
loops, however, would solve the halting problem.

It is thus not possible to automatically identify the (virtual) range of every loop and
thus automatically transforming every compatible loop to a matching STL function
call is impossible.

1.4.3. Implications for this project

The theoretical impossibility shown in section 1.4.2 should advise us not to focus on
a fully-automated transformation of every possible loop construct, since that would
be infeasible. Instead, the idea behind this master thesis is creating a semi-automatic
system to facilitate these transformations for the programmer. Best effort transfor-
mation systems that may need some manual user interaction, and analysis algorithms
that recognize commonly known patterns of transformable loops can still provide a
tremendous benefit to C++ developers. The notions from section 1.4.2 thus in no
way, shape or form discourage the creation of a loop-to-STL transformation plug-in.
They merely show how to do it and which features and functionalities to focus on.
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2. Analysis

This chapter provides a detailed dissection of this master thesis’ different motivations
and circumstances. It first states a summary of general conditions and properties
one has to face when dealing with loops in the C++ language. Afterwards, a use-
of-potential analysis describes which loop categories and relative algorithms are most
worthwhile to be covered by this project.

2.1. Properties of loops in C++

Before exploring the various possibilities of how C++ loops can be analyzed and
transformed, let first be explained what syntactical and semantical elements these
statements are allowed to bear due to the C++ language specification [ISO10a]. This
will lead to some strict implications as to how far an analysis module can or should
be implemented.

2.1.1. Syntactical properties

The C++ syntax definition in the format of a Backus-Naur-Form (BNF) provides a
solid overview of what kind of structures and nodes are expected to be found in the
whereabouts of a for loop in C++. We will thus explain an excerpt of the C++ BNF
definition to describe what a potential C++ loop analysis system at least needs to be
able to cope with in order to at least implement some amount of genericity.

While

The following BNF grammar describes how while statements are defined in C++0x
[Mar10]. Please note that Terminals are written in bold letters. Furthermore, the used
grammar dates to 2nd of July, 2010. Since C++0x still remains a working draft up to
this point, changes and divergencies may still occurr.

while →
- while ( condition ) statement

condition →
- expression |
- attribute-specifieropt type-specifier-seq declarator = initializer-clause |
- attribute-specifieropt type-specifier-seq declarator braced-init-list
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expression →
- assignment-expression |
- expression , assignment-expression

assignment-expression →
- conditional-expression |
- logical-or-expression assignment-operator initializer-clause |
- throw-expression

// all possible types of expressions to follow

statement →
- labeled-statement |
- attribute-specifieropt expression-statement |
- attribute-specifieropt compound-statement |
- attribute-specifieropt selection-statement |
- attribute-specifieropt iteration-statement |
- attribute-specifieropt jump-statement |
- declaration-statement |
- attribute-specifieropt try-block

For

Using equally top-level BNF elements, the for loop specification presents itself as
follows:

for →
- for ( for-init-statement conditionopt ; expressionopt ) statement

for-init-statement →
- expression-statement |
- simple-declaration

Consequences

Both for and while loops allow a statement within their bodies, which includes any
possible C++ statement and equivalents to an arbitrarily complicated code block, as
section 2.1.2 illustrates. For a code analysis system, it thus only matters what kind of
statement is present - and whether it is simple enough to be replaced by one or more
calls to bind or whether a lambda functor is necessary. Furthermore, they both use
a condition within their header brackets - mandatory for while and optional in for.
However, in C++, each and every expression may serve as a condition, as indicated
in the BNF definition.
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The other two elements of the classic for loop are defined as for-init-statement and
- once more - expression. Taking into account that for-init-statement may be either
of expression-statement or simple declaration, this leaves the programmer with almost
any possible freedom on what to include into a loop statement in C++. There exists
a slight restriction inherent to expressions that statements are not confined to, which
is explained in section 2.1.2. The influence of this finding on this project is elaborated
further in 2.1.3.

2.1.2. Semantic properties

One important thing to realize before analyzing the predication of section 2.1.1 is the
difference between a statement and an expression. The Microsoft Developer Network
(MSDN) library defines these terms as follows [Cor10a, Cor10b]:
“Expressions are sequences of operators and operands that are used for one or more of
these purposes:

• Computing a value from the operands.

• Designating objects or functions.

• Generating ”side effects.” (Side effects are any actions other than the evaluation
of the expression — for example, modifying the value of an object.)

C++ statements are the program elements that control how and in what order objects
are manipulated. This section includes:
[. . . ]

• Categories of Statements

– Null statements. These statements can be provided where a statement is
required by the C++ syntax but where no action is to be taken.

– Compound statements. These statements are groups of statements enclosed
in curly braces ({ }). They can be used wherever a single statement may be
used.

– Selection statements. These statements perform a test; they then execute
one section of code if the test evaluates to true (nonzero). They may execute
another section of code if the test evaluates to false.

– Iteration statements. These statements provide for repeated execution of a
block of code until a specified termination criterion is met.

– Jump statements. These statements either transfer control immediately to
another location in the function or return control from the function.

– Declaration statements. Declarations introduce a name into a program.
(Declarations provides more detailed information about declarations.)”

The list of statement types is illustrative, but not complete. The very important
type Expression statement is missing. This type also forms the very reason why expres-
sions may be considered more “powerful” than statements - a statement can consist
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of a list of many expression, imposing semantic order and control on them. The C++
final committee draft [ISO10b] confirms this description:

“An expression is a sequence of operators and operands that specifies a computation.
An expression can result in a value and can cause side effects.” [ISO10b, p.83]

“Except as indicated, statements are executed in sequence. [. . . ] Iteration statements
specify looping.” [ISO10b, p.125-128]

To summarize above implications, let again be said that statements can incorporate
any number and type of loops, which deems complete analysis impossible, as explained
in the following of this section. Expressions, on the other hand, may be arbitrarily
complex and can even hold conditional assignments. Loops, however, may not be
incorporated in an expression. Unfortunately, this does not mean that they can be
analyzed any further than statements, as listing 2.1 illustrates:

1 function<i n t ( i n t )> fibonacci ;
2 ( fibonacci = [&] ( i n t z ) {
3 i f ( z >= 2) {
4 re turn fibonacci ( z − 1) + fibonacci ( z − 2) ;
5 }
6 i f ( z == 1) {
7 re turn 1 ;
8 }
9 re turn 0 ;

10 }) (10) ;

Listing 2.1: Recursive expression

Listing 2.1 shows that, even without previously defined functions, expressions can im-
plement recursive calls, which provides equally much functionality as loop statements
do [HS08]. For this project’s analysis module, the following facts must hence always
remain considered:

• Loop bodies can represent complete programs themselves (“turing-complete sys-
tems”, [Sip06, p.141-143]). Accordingly, they can not be automatically ana-
lyzed against properties of their implemented logic (e.g. “implements a find if-
algorithm”, see also “The halting problem” [Sip06, p.173-181]). Even though a
fitted analysis module can perform very well and recognize most practical pat-
terns of today’s C++ code, there may always exist even trivial cases that the
module fails to interpret.

• Using function call expressions or, as listing 2.1 describes, using functor con-
structions, expressions provide the same functionality as statements do. The
additional constraints they are bound to (see section 2.1.1) make them no more
analyzable than statements.
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2.1.3. Conclusion

Sections 2.1.1 and 2.1.2 provide the basic knowledge to comprehend what a prospective
analysis module can face when analyzing a while or for loop. While statements must
be analyzed against the following questions:

• Is the condition expression an iteration step or based upon an iteration step
within the body?

• Can the body be expressed as a (possibly composed) bind expression or is a
lambda functor necessary?

The for analysis consists of rather similar ideas:

• Is the for-init-statement something more sophisticated than a simple declaration
or an assignment expression operation?

• Is the iteration expression implementable by means of an iterator?

• Can the iteration condition be expressed in terms of an iterator comparison?

• Can the body be expressed as a (possibly composed) bind expression or is a
lambda functor necessary?

Depending on the answers to these questions, the transformation algorithms can
apply the following actions to achieve STL compatibility:

• Move the for-init-statement before the STL algorithm call.

• Extract the simple declaration or assignment expression r-value and pass it as
the first iterator to the algorithm.

• Extract the condition argument that is not equal to the iteration variable and
pass it as the second iterator to the algorithm.

• Transform non-STL based iteration structures to STL iterators 2.4.1.

Above actions present of course only a very generic overview of the refactoring actions
possible (and necessary) for this project. Actual refactorings will, however, presum-
ably not be implementable using generic aspects, since genericity usually provides no
added expressiveness, as the for iterator example in listing 2.14 indicates. Instead, the
analysis and transformation algorithms will have to cater specific instances of loops in
order to transform them to their most expressive STL equivalent.

2.2. Use-of-potential analysis

As a matter of practice, this project faces from its very beginning two limiting factors.
One of them is the number of STL algorithms, that amounts to over 60 functions
ranging from binary sorting to permutation generation. The second factor is implied
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by the fact that loop initializers and their corresponding code blocks may not only
contain single variables and single statements, respectively. Instead, both initializers
and iterated code block can call arbitrarily complex functions, establishing a Turing-
complete system of their own (see also listing 2.2). As chapter 1.4 pointed out, such a
system can never truly be completely analyzed by an automated algorithm.

1 AnyType t = 0 ;
2 f o r ( initManyVariables ( ) ; veryComplexPredicate ( ) ; affectManyVariables ( ) ) {
3 perform (&t ) ;
4 simple (&t ) ;
5 findIf (&t ) ;
6 }

Listing 2.2: Arbitrarily complex loops

This statement implicates that, no matter how thoroughly our transformation system
for a certain STL algorithm may be, there will always exist loop constructions that
can not be transformed by it. So e.g. even though a certain loop may implement no
more than a simple find if, it can be too complex to analyse and recognize as such.
The project is thus bound to focus on a certain set of algorithms and a corresponding
set of loop instances that should be analyzed for appropriate transformations. This
section strives to identify the algorithms and loop types that, based on the analysis of
a sufficiently large code base, are expected to provide the greatest potential in terms
of usage frequency and feasibility.

2.2.1. Considered categories of transformations

At this point, a summary of the different types of transformations taken into account
during this use-of-potential analysis is stated.

Find and find if

Loops implementing the functionality of find and in this context also find if often
exhibit the following properties:

• Search range (index- or iterator-based)

• Predicate

• Result

During this analysis, loops presenting themselves similar in one or more ways to the
following constructs are thus considered “find/find if candidates”:

1 f o r ( i n t i = BEGIN ; i < NUM_ELEMENTS ; ++i ) {
2 i f ( CONDITION ( elements [ i ] ) ) {
3 RESULT = elements [ i ] ;
4 break ;
5 }
6 }

Listing 2.3: Find/find if candidates
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for each

In combination with C++0x lambda functors, for each may be the most flexible of
all STL algorithms. Almost any for loop, even index-based ones, can be mapped
to a for each call with corresponding lambda functor. To apply index-based loops
to this pattern as well, a transformation to iterators is necessary, as explained in
section 2.4.1. Preferred candidates to a for each transformation are loops having only
a single statement in their bodies. Using lambda functors, however, virtually any for
loop can be transformed. Listings 2.4 through 2.6 illustrate these two cases and their
characteristics.

1 f o r ( ITERATOR_TYPE it = BEGIN ; it != END ; ++it ) {
2 it−>FUNCTION ( ) ;
3 }

Listing 2.4: Simple classic for pattern

1 for_each ( BEGIN , END , mem_fun_ref (&TYPE : : FUNCTION ) ) ;

Listing 2.5: for each corresponding to 2.4

1 f o r ( ITERATOR_TYPE it = BEGIN ; it != END ; ++it ) {
2 it−>FUNCTION ( ) ;
3 cout << ∗it << endl ;
4 }

Listing 2.6: Extended classic for pattern

1 for_each ( BEGIN , END , [ ] ( TYPE &t ) {
2 t . FUNCTION ( ) ;
3 cout << t << endl ;
4 }) ;

Listing 2.7: for each corresponding to 2.6

count/count if

Compared to other algorithms such as for each or transform, count and count if pro-
vides the very narrow, yet often used functionality of counting elements in a range
satisfying a certain predicate. During analysis, loops similar in one or multiple prop-
erties to the following constructs are possible count/count if candidates:

1 SIZE_TYPE count ;
2 f o r ( ITERATOR_TYPE it = BEGIN ; it != END ; ++it ) {
3 i f ( PREDICATE (∗ it ) ) {
4 ++count ;
5 }
6 }
7 SIZE_TYPE count = count_if ( BEGIN , END , &PREDICATE ) ;

Listing 2.8: Count/count if candidates
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2.2.2. Code base analysis results

Based upon the characteristics defined in section 2.2.1, a substantial code basis of
various different open source projects is searched for these properties. The target
of this task is to establish a profound estimate of potential for the respective STL
functions in order to assign priorities of implementation based on their frequencies of
use and their feasibilities.

Projects

• Blender
Blender is a cross-platform, free open source 3D content creation suite published
under GNU General Public License.

• CGAL
The Computational Geometry Algorithms Library (CGAL) offers, as its name
suggests, algorithms and data structures for various geometric calculations.

• MySQL
A project which requires no further introduction. MySQL is one of the most
popular free databases available.

• Flight gear
Flight gear is an open source flight simulator, which recently matured to version
2.0.

• Mozilla Firefox
Currently allocating 30-60% of today’s browser market, Mozilla Firefox is one of
the world’s most frequently used web browser.

Overview

To establish a broad idea of what kinds of loops exist in the examined projects, a
course-grained search based on regular expressions has been performed. Since regular
expressions provide too few support to identify certain nestings (e.g. “if statement
within for loop”), code format conventions of the different projects have been used to
augment the results, so the nesting level has been deduced e.g. from the number of
leading tabs and spaces.
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Blender CGAL MySQL Flight gear Firefox
for loops 3153 1265 2926 565 8947

begin/end 526 322 0 18 79
0/size 362 36 271 236 1042

while loops 332 312 1617 105 5633
head 173 30 88 2 386
body 72 71 225 20 987

print 7 34 0 14 2
for each 524 153 421 88 1176
count if 19 6 16 1 94
find if 284 100 250 42 623

Table 2.1.: Results of regular expression-based analysis

The different expressions that lead to the results in table 2.1 are listed in the fol-
lowing:

• for loops
Regular expression matching all for statements:

1 ˆ\s∗ f o r \s ∗ \ ( [ ˆ ; ] ∗ ; [ ˆ ; ] ∗ ; [ ˆ ) ]∗\ )

Examples:

1 for(int i = 0; i < 10; ++i)
2 for (unsigned int i = 0; i < vec.size(); ++i)
3 for(;;)
4 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
5 while(x != y)

• for loops (begin/end)
Expression matching only for loops starting with “begin()” and ending with
“end()”.

1 f o r \s ∗ \ ( [ ˆ ; ] ∗ begin\s ∗\(\ s ∗\) [ ˆ ; ] ∗ ; [ ˆ ; ] ∗ end\s ∗\(\ s ∗\) [ ˆ ; ] ∗ ; [ ˆ ) ]∗\ )

Examples:

1 for(int i = 0; i < 10; ++i)
2 for(;;)
3 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
4 for(int begin = 0; begin != end; ++begin)
5 while(x != y)

• for loops (0/size)
Expression matching only for loops beginning at “0” and ending at “size()” or
“count” respectively.
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1 f o r \s ∗ \ ( [ ˆ ; ] ∗ 0 [ ˆ ; ] ∗ ; [ ˆ ; ] ∗ ( size | count ) \ (\ ) [ ˆ ; ] ∗ ; [ ˆ ) ]∗\ )

Examples:

1 for(int i = 0; i < vec.size(); ++i)
2 for(val = 0; val < max size; ++i)
3 for(int z = 0; z < count; ++z)
4 for(int i = begin; i < count; ++i)
5 for(;;)
6 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
7 while(x != y)

• while loops
Pattern to recognize any while loop, even in combination with “do”.

1 whi le \s ∗ \ ( ( ( ? ! \ ) \r?\n ) . ) ∗?\)

Examples:

1 for(int i = 0; i < vec.size(); ++i)
2 for(;;)
3 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
4 while(x != y)
5 while(true)
6 while(x != y)
7 do {
8 } while(true);

• while loops (head-counting)
Adapted “while loops” pattern, recognizing only while statements with increment
or decrement statement in their condition.

1 \s∗whi le \s ∗\ ( [ ˆ\ n ]∗?(\+\+|\−\−) [ˆ\ n ]∗?\ )

1 whi le \s ∗ \ ( ( ( ? ! \ ) \r?\n ) . ) ∗?\)

Examples:

1 for(int i = 0; i < vec.size(); ++i)
2 for(;;)
3 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
4 while(x != y)
5 while(x++ != y)
6 while(−−value)
7 do {
8 } while(true);
9 do {

10 } while(−−x >= 22);

• while loops (body-counting)
Adapted “while loops” pattern, recognizing only while statements with nested
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increment or decrement statements.

1 (\ s ∗) whi le \s ∗\ ( [ ˆ\ r\n ]∗\ ) \s∗{?\ r?\n ?(ˆ\1\ s+.∗\r?\n ) {0 ,2}(ˆ\1\ s
+.∗(\+\+|−−) .∗\ r?\n )+(ˆ\1\s+.∗\r?\n ) {0 ,2}

Examples:

1 for(int i = 0; i < vec.size(); ++i)
2 for(;;)
3 for(vector::<int> it = vec.begin(); it != vec.end(); ++it)
4 while(x != y) {
5 ++x;
6 }
7 while(x++ != y) {
8 int x = z + −−y;
9 }

10 while(x++ != y) {
11 cout << x << endl;
12 }
13 do {
14 ++x;
15 } while(x >= 22);

• print
This specific pattern searches for loops printing complete collections to an out-
put stream, which can be achieved very expressively by using copy and os-
tream iterators.

1 (\ s ∗) f o r \s ∗ \ ( ( ( ? ! \ 1 [ ˆ s ] ) . ) ∗\)\s∗{?\ r?\n\1\s+.∗( cout | clog | cerr | os )\s
+<<.∗\r?\n \1( [ˆ\ s ]+ |\ r?\n )

Examples:

1 for(int i = 0; i < vec.size(); ++i) {
2 cout << vec.at(i) << endl;
3 }
4 for(;;) {
5 clog << “Hello World!” << endl;
6 }
7 for(vector::<int> it = vec.begin(); it != vec.end(); ++it) {
8 os << *it << endl;
9 }

10 while(x != y) {
11 clog << random() << endl;
12 }
13 for (;;) {
14 cout << x << endl;
15 }
16 for (;;) {
17 cout << x << endl;
18 cout << somethingElse() << endl;
19 }

• for each
Apart from the various for loops processed by the previous expressions, this
pattern focuses on trivial for loops containing only one line, thus rendering
themselves perfectly suited for a for each and bind construct.
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1 (\ s ∗) f o r \s ∗ \ ( ( ( ? ! \ 1 [ ˆ s ] ) . ) ∗\)\s∗{?\ r?\n\1\s+.∗\r?\n \1( [ˆ\ s ]+ |\ r?\n )

Examples:

1 for (unsigned int i = 0; i < vec.size(); ++i) {
2 addToList(i);
3 }
4 for (vector<Person>::iterator it = list.begin(); it != list.end(); ++it) {
5 it->call();
6 }
7 for (vector<Person>::iterator it = list.begin(); it != list.end(); ++it) {
8 it->call();
9 register(*it);

10 }

• count if
One of the simpler and yet powerful and broadly usable algorithms is expressed
in the following pattern. It is designed slightly more restrictive than it had to
be, which should allow compensation for the cases in which the counting within
a loop is only an accompanying task to fulfill the actual logic of the code - and
extracting the counting from the loop would break aforesaid logic.

1 (\ s ∗) f o r \s ∗ \ ( [ ˆ ; ] ∗ ; [ ˆ ; ] ∗ ; [ ˆ ) ]∗\ ) ( ( ? ! \ 1 [ ˆ s ] ) . ) ∗?(\1\ s+) i f ( ( ? ! \ 3 [ ˆ s ] ) . )
∗?\3\ s+.∗?(\+\+|−−|\+=|−=) [ ˆ ; ] ∗

Examples:

1 for(;;) {
2 if(true) {
3 ++count;
4 }
5 }
6 for(;;) {
7 ++count;
8 }
9 for(;;) {

10 if(true) {
11 doIt();
12 }
13 }

• find if
Pattern to recognize an assignment or “break” expression within an “if” node,
which itself again is nested within a “for” node.

1 (\ s ∗) f o r \s ∗ \ ( [ ˆ ; ] ∗ ; [ ˆ ; ] ∗ ; [ ˆ ) ]∗\ ) ( ( ? ! \ 1 [ ˆ s ] ) . ) ∗?(\1\ s+) i f ( ( ? ! \ 3 [ ˆ s ] ) . )
∗?\3\ s+.∗?(= |( break ) ) [ ˆ ; ] ∗

Examples:

1 for(vector<int>::iterator it = vec.begin(); it != vec.end(); ++it) {
2 if(isPrime(*it)) {
3 result = *it;
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4 }
5 }
6 for(it = vec.begin(); it != vec.end(); ++it) {
7 if(isPrime(*it)) {
8 break;
9 }

10 }
11 for(it = vec.begin(); it != vec.end(); ++it) {
12 if(isPrime(*it)) {
13 doSomethingElse();
14 }
15 }
16 for(it = vec.begin(); it != vec.end(); ++it) {
17 result = *it;
18 }

2.2.3. Estimated potential

The results of section 2.2.2 provide a certain ambivalence. On the one hand, projects
like Blender and CGAL suggest that there exists at least some room for improvements
through STL algorithms, as for loops spanning from begin to end can at least be
replaced by for each and a lambda. Even though the regular expressions-based analysis
provides anything but guarantee for its results, depending on how reliable we estimate
them, it remains safe to say that 15-25% of the loops in Blender and CGAL could be
replaced by STL algorithms. However, for every Blender and CGAL project, there
exist examples like MySQL, where the STL functions begin() and end() are only called
as much as 51 times, and never in the direct context of a for loop. This indicates a
very low adoption of the STL in general, and abominations like a name space called
“mySTL” support this suspicion.

Summarizing both the motivating and disenchanting results of this analysis, a cau-
tious estimation of 10% of all loops in today’s C++ code can be replaced by appropriate
STL algorithms. Applying this idea to the processed example projects, incorporating
a total of no less than 24855 loops, and let us assume that an STL algorithm can
on average replace three lines of code by one, this amounts to roughly 5000 lines of
code saved by the use of STL algorithms. While this analysis provides a brief and
meaningful impression of the possible benefits of this project, it is of course despite
its various sources neither representative nor complete. But it states two facts very
clearly: There is room for STL algorithms in today’s projects, and they can reduce
the amount of code in a non-trivial manner.

2.3. Analysis techniques

Section 1.4 pointed out the various difficulties one may encounter when trying to
automatically interpret and manipulate the semantics of existing programs. While
there exist no all-embracing solutions against this backdrop, there are two promising
approaches, namely “Code pattern recognition” and “Natural metadata interpreta-
tion”, that have been examined during this master thesis and will be explained in the
following of this section.
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2.3.1. Pattern-based analysis

When refactoring manual STL algorithm implementations to effective STL function
calls, there exist certain patterns in these implementations that tend to repeat them-
selves. One example may be that, when programmers manually search through a
container instead of using find or find if, it is highly probable that they create slightly
altered forms of the code lines illustrated in listings 2.9 through 2.11.

1 i n t data [ ] = { 0 , 1 , 2 , 3 , 4 , 5 } ;
2 f o r ( it = data ; it != data + 6 ; ++it ) {
3 i f (∗ it == 3) {
4 break ;
5 }
6 }
7 i f ( it != data + 6) { // check whether an element has been found
8 // . . .
9 }

Listing 2.9: find if break pattern

1 const i n t ∗ findIfReturn ( const i n t ∗ begin , const i n t ∗end , i n t value ) {
2 f o r ( const i n t ∗it = begin ; it != end ; ++it ) {
3 i f (∗ it == value ) {
4 re turn it ;
5 }
6 }
7 re turn end ;
8 }

Listing 2.10: find if return pattern

1 unsigned char line [ ] = { ’ a ’ , ’ s ’ , ’ d ’ , ’ f ’ } ;
2 const unsigned char ∗c = line + 4;
3 f o r ( c = line ; c != line + 4 && ∗c == ’ s ’ ; ++c ) {
4 }

Listing 2.11: Embedded find if pattern

Section 2.2 evaluated a series of open source projects against a set of such patterns and
showed that analysis techniques based on these code patterns may indeed recognize a
large portions of potential STL function call candidates. Unfortunately, this analy-
sis did also point out that common lexical regular expressions are not sufficient for a
reliable recognition of these patterns. Instead, at least the additional structural infor-
mation of the code’s abstract syntax tree (AST) should be exploited, leading to the
idea of tree patterns becoming a necessity. The following subsection will thus address
the tree pattern matching problem.

Pattern matching in trees

Hoffmann and O’Donnell illustrated in their research paper “Pattern Matching in
Trees”[HO82] that tree pattern matching is in its implementation complexity com-
parable to lexical pattern matching. They even provided a procedure to map the
tree pattern matching problem to the lexical pattern matching problem in general. Lu
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Wuu, Lu and Yang followed up on these findings in their work “A Simple Tree Pattern-
Matching Algorithm”[WtLY00] and exemplified that these algorithms’ computational
complexity does not exceed the limits of today’s commonly available performance
standards and may indeed find application in actual software projects.

Both papers address, however, only the recognition of exact subtrees within a tree
and omit the possibility of metadata augmentation for more elaborate pattern specifi-
cations (such as e.g. repetitions in lexical regular expressions). The natural language
processor Tregex (http://nlp.stanford.edu/software/tregex.shtml) provides a good
overview of which metadata relationships are helpful in creating expressive tree regular
expressions [LA05, p.2]. Of the various possibilities implemented there, the following
relationships are estimated critical for successful pattern matching in the abstract
syntax tree:

• Domination
One tree or node dominates another one, i.e. represents an ancestor of the latter.
Immediate domination represents a parent-child relationship, general domination
allows for an indefinite number of intermediate nodes. Figure 2.1 illustrates this
relationship.

Figure 2.1.: Domination and immediate domination

• Sibship
Subnodes of the same parent are identified as right or left siblings of each other.
Immediate siblings allow furthermore no intermediate nodes between them. The
relationship is displayed in detail in figure 2.2.
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Figure 2.2.: Sibship and immediate sibship

• Logical connections
A subtree can be required to satisfy multiple patterns at the same time or to
satisfy any one of a set of arbitrary patterns. One example of such a pattern
combination is shown in figure 2.3.

Figure 2.3.: B is immediately dominated by P AND is the immediate right sibling of
A

The requirements and possibilities identified in this chapter find their respective im-
plementation described in section 3.3.1.
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2.3.2. Natural metadata interpretation

Natural metadata interpretation represents an approach to use meta information apart
from the actual source code, that does not have to be inserted explicitly for the sake
of analysis, but may be found sporadically in any code (thus “natural” metadata,
a neologism introduced during this thesis and used as such during the rest of this
thesis). To explain the benefits and occurrences of natural metadata, introducing
an example of non-natural metadata first may be helpful. For the upcoming release
of version 7 of the Java programming language Ali, Correa, Ernst and Papi filed a
Java specification request (JSR) named “The Checker Framework: Custom pluggable
types for Java”[ACEP10]. The paper proposed the introduction of independently
controllable compiler extensions that would specifically target the semantics of a set
of newly introduced annotations. Examples of these annotations include:

• Nullness annotations
@Nullable indicates that a variable may indeed reach a value of null and should
be checked for such before dereference. @NonNull indicates that null is excluded
from the domain of this variable and it may be safely accessed. The nullness
checker will cause a compiler error when detecting the assignment of a (possibly)
null value to the variable.

• Mutability annotations
@ReadOnly types provide only non-modifying access. A reference ammended by
this annotation may not be used to modify its referent. @Mutable marks the
very opposite case. Should the programmer use modifying methods (or methods
not marked as non-modifying) of a @ReadOnly object, the immutability checker
will issue corresponding warnings and errors.

• Tainting annotations
The tainting checker prevents trust errors by marking values as tainted or un-
trusted. Tainted values stem from arbitrary, possibly malicious sources, such as
user input or unvalidated data. These values must be sanitized or “untainted”
before further using them. One example of such a tainted situation might be
a user input that should be searched for in the database. Before querying for
the value, however, it must be untainted, by e.g. escaping all parts of the input
that could be interpreted as SQL commands, thus effectively prohibiting SQL
injection.

One of the core problems of this master thesis is the fact that turing-complete sys-
tems cannot be automatically analyzed for their semantics. The checkers framework
circumvents this issue by introducing metadata outside of the scope of the actual
turing-system: the annotations. The very same approach could be chosen for the
goals of this thesis to analyze loops for their equivalence to STL algorithms, as listing
2.12 illustrates.

1 i n t data [ ] = { 0 , 1 , 2 , 3 , 4 , 5 } ;
2 const i n t ∗it = data + 6 ;
3 // @Find
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4 f o r ( it = data ; it != data + 6 ; ++it ) {
5 i f (∗ it == 3) {
6 break ;
7 }
8 }
9 i f ( it != data + 6) {

10 // . . .
11 }

Listing 2.12: Annotations for simplified analysis

In contrary to anything said about the complexity of semantic analysis in the course of
this document, identifying the loop in listing 2.12 as an implementation of find if would
be a trivial task. For the scope of this project, however, the presence of such specific,
non-natural metadata cannot be assumed. What would be imaginable, however, is a
slightly altered scenario shown in listing 2.13.

1 i n t data [ ] = { 0 , 1 , 2 , 3 , 4 , 5 } ;
2 // The de f au l t value , i f the de s i r ed value was not found
3 const i n t ∗it = data + 6 ;
4 // Searches the conta ine r f o r the requested value
5 f o r ( it = data ; it != data + 6 ; ++it ) {
6 i f (∗ it == 3) {
7 break ;
8 }
9 }

10 i f ( it != data + 6) {
11 // . . .
12 }

Listing 2.13: Code comments as metadata source

Looking for keywords like found or search in the context of find if, as an example,
code comments could provide a valuable resource for natural metadata describing the
semantics of the actual code. This approach, however, was not followed during the
progress of this master thesis and may be the topic of future works in this field.

2.4. Transformation techniques

This section explains which principles have been applied programmatically when trans-
forming the various parts of the processed loops. It focuses on general concepts, e.g.
“how to replace iterator-based by value-type operations”, rather than the actual im-
plementation of these concepts within the final plug-in.

2.4.1. Index-based access to iterators

One unnegotiable difference between all STL algorithms and plain for statements is
STL’s restriction to and focus on iterators. The STL mainly targets operations on
containers, whereas for loops may use arbitrary statements for initialization, iteration
step and break condition. That may seem to leave a transformation system with a
certain gap of functionality. Yet in theory, an iterator is merely an interface and can
be implemented far beyond the enumeration of a list, as listing 2.14 indicates.
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1 f o r ( init ( ) ; finished ( ) ; next ( ) ) {
2 // . . .
3 }
4 for_iterator it ( [ ] ( ) { init ( ) } , [ ] ( ) { i f ( finished ( ) ) {
5 re turn ∗ t h i s = for_iterator ( )
6 } } ,
7 [ ] ( ) { next ( ) }) ;
8 for_each ( it , for_iterator ( ) , [ ] ( for_iterator : : value_type it ) {
9 // . . .

10 }) ;

Listing 2.14: Iterator and for statement bridging

In practice, of course, the use of such a for iterator is highly questionable, as it provides
little to no more expressiveness than a plain for statement. The only use it could
provide is applying other STL algorithms than for each to a range of numbers - which
is usually more easily accomplished using a counting iterator construct, as shown in
listing 2.15;

1 i n t result = −1;
2 f o r ( i n t i = 0 ; i < 99999; ++i ) {
3 i f ( satisfiesCertainCondition ( i ) ) {
4 result = i ;
5 }
6 }
7 counting_iterator<int> begin (0 ) , end (99999) , result ;
8 result = find_if ( begin , end , &satisfiesCertainCondition ) ;

Listing 2.15: Counting iterator (boost.org)

This project focuses on eliminating custom implementations of STL algorithms. This
effort is primarily directed towards iterator-based loops. Transforming index-based
accesses to iterator-based accesses, as seen in listing 2.16, is not part of the official
task description and thus considered optional.

1 vector<int> v = getData ( ) ;
2 f o r ( vector<int > : : size_type i = 0; i < vec . size ( ) ; ++i ) {
3 i f ( lookingFor ( vec . at ( i ) ) ) {
4 // . . .
5 }
6 }
7 find_if ( vec . begin ( ) , vec . end ( ) , &lookingFor ) ;
8 f o r ( vector<int > : : size_type i = 7; i < 25 ; ++i ) {
9 i f ( lookingFor ( vec . at ( i ) ) ) {

10 // . . .
11 }
12 }
13 find_if ( vec . begin ( ) + 7 , vec . begin ( ) + 25 , &lookingFor ) ;

Listing 2.16: Index access to iterators

Even for those rather simple examples above, it must be stated that the second trans-
formation is considered highly hazardous and not equivalent to the original, since
vector ’s at function would throw a range check exception, whereas the transformed
code would result in an illegal memory access in case of a container having less than 25
elements. Counting iterator based solutions to apply STL algorithms to numeric val-
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ues are again, since not part of the official task description, considered strictly optional
in the scope of this project.

The remaining transformations thus will have to fulfill the requirement of being able
to link the index value of 0 to vec.begin(), index value of vec.size() to vec.end() and
recognise their usage in terms of a vector access using vector::at or vector::operator
[] as an equivalent to iterator access. This will require a transformation algorithm
to inspect initialization, iteration step and break condition of counting for loops and
determine whether they can be statically deduced to the corresponding values or meth-
ods respectively. Listing 2.17 illustrates a situation in which such a static deduction
is bound to fail and a respective transformation thus cannot be applied.

1 vector<int > : : size_type begin , end ;
2 cin >> begin ;
3 cin >> end ;
4 f o r ( vector<int > : : size_type i = begin ; i < end ; ++i ) {
5 i f ( lookingFor ( vec . at ( i ) ) ) {
6 // . . .
7 }
8 }

Listing 2.17: Example case of impossible static deduction

Let once more be stated that the transformation techniques analyzed in this com-
plete section are not part of the thesis’ task description and will consequently only
approached if spare time is at hand.

2.4.2. Iterators to value type

As remarked throughout the entirety of this document, removing iterator-based access
by an equivalent value type based access is a desired improvement of the programming
code. This is primarily true beacuse we strive for the code to be as simple and un-
derstandable as possible. A short code example in listing 2.18 may explain this issue
further.

1 f o r ( i n t i = 1 ; i <= 10 ; ++i ) {
2 cout << i << endl ;
3 }
4 f o r ( i n t i = (11 − 10) , j = 99 ; i < j − 88 ; ) {
5 i n t ∗p = &i ;
6 cout << ∗p << endl ;
7 i ∗= 2 ;
8 i += 2 ;
9 i /= 2 ;

10 }

Listing 2.18: Simplicity vs. semantic power

Both code excerpts in listing 2.18 implement the same logic and both of them represent
perfectly legal C++ code. As for the second example, C++ offers the freedom to place
also non-trivial expressions as for-init-statement and condition, and the iteration step
may very well be handled within the body as well. Furthermore, C++ offers pointer
arithmetics that have proven themselves useful in countless instances. The question
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that remains is in fact the very one that motivated this whole master thesis: Should one
use these extended capabilities and semantic ways of expression the language offers if
they are not necessary? Introducing pointers to this short code example offers countless
new ways of expressing the desired logic - as well as countless new opportunities for
mistakes. Simplifying code usually means either omitting overhead syntax or removing
unnecessary semantic power. One expressive example of the latter measure are C#
LINQ expressions. Listings 2.19 and 2.20 show a for loop that has been replaced by a
LINQ statement.

1 i n t [ ] numbers = { 5 , 4 , 1 , 3 , 9 , 8 , 6 , 7 , 2 , 0 } ;
2 IList<int> lowNums = new List<int >() ;
3 f o r each ( i n t element in numbers )
4 {
5 i f ( element < 5)
6 {
7 lowNums . Add ( element ) ;
8 }
9 }

Listing 2.19: Foreach ”lower-than-5” example

1 i n t [ ] numbers = { 5 , 4 , 1 , 3 , 9 , 8 , 6 , 7 , 2 , 0 } ;
2 var lowNums =
3 from n in numbers
4 where n < 5
5 s e l e c t n ;

Listing 2.20: LINQ ”lower-than-5” example

Most programmers agree that the implementation in 2.20 is the more expressive one.
That is to some respect a surprising statement, since the foreach variant requires less
knowledge of extra keywords and can even be understood by novice programmers.
Nevertheless, if a logic can be implemented both as for loop or LINQ statement, the
latter option usually presents itself remarkably simpler. This is due to the fact that
SQL statements (apart from PL/SQL, CTE and Windowing [Fet09, p.47-53]) and
LINQ statements accordingly provide less functionality than the C# programming
language itself. Consequently, SQL is also more easily learnable than the full C#
language. This reduced functionality, however, bears limitations as well so that there
exist iterative logics that cannot be expressed as LINQ query. One such example is
given in listing 2.21.

1 IList<int> result = new List<int >() ;
2 f o r ( i n t i = 0 ; i < numbers . Length / 2 ; ++i )
3 {
4 result . Add ( numbers [ i ] ) ;
5 result . Add ( numbers [ numbers . Length − i − 1 ] + numbers [ i ] ) ;
6 }

Listing 2.21: Loop without LINQ equivalent

Removing semantic power, as explained in listings 2.19 through 2.21, therefore also
implies removing capabilities from the code. While the question of whether we should
use pointers to implement the counting functionality in listing 2.18 will probably be
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answered unanimously with “no” by most programmers, the same question can be
asked for iterators as well.

1 vector<int> vec = { 0 , 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 } ;
2 f o r ( vector<int > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
3 i f ( it != vec . begin ( ) ) {
4 clog << (∗ it − ∗( it − 1) ) << endl ;
5 }
6 }
7 for_each ( vec . begin ( ) , vec . end ( ) , [ ] ( i n t i ) {
8 // How to implement above l o g i c ?
9 }) ;

Listing 2.22: Additional iterator semantics

Listing 2.22 illustrates a situation where iterators indeed prove themselves useful and
necessary. The rest of this documentation shows a habit of denouncing iterators as
tedious and error-prone, since it was written during the effort of searching and replacing
the instances of iterator usages where this indeed may apply. However, the additional
layer of complexity iterators introduce does serve a purpose - it allows us to access
elements depending on the current iterator position. This functionality is used in listing
2.22 and represents a perfectly expressive code example with no overhead semantic. If
this position information is not necessary to implement our logic, however, the usage
of iterators becomes very similar to the second example in listing 2.18. A prospective
analysis module that is to decide whether a certain logic can be implemented by means
of a lambda functor or an STL algorithm should thus also consider iterator-specific
semantics (such as increasing or decreasing the iterator position within the loop body)
and judge based on this information that the usage of iterators may indeed be necessary
and cannot be replaced.
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3. Implementation

The purpose of this chapter is to provide both a structural as well as a logical descrip-
tion of the actual implementation of the analysis and transformation plug-in developed
during this master thesis. The Architecture section (3.2) will thus present the differ-
ent modules and packages of the program, while the rest of this chapter serves the
explanation of the logical behavior and algorithms implemented by this plug-in.

3.1. Overview

Before describing any part of the final implementation in more detail, a general
overview of the program and its information flow is shown first. Figure 3.1 provides a
comprehensive summary of all involved components.

Figure 3.1.: Functionality overview

Generally speaking, the source code in question is first analyzed by the Analysis
module and its Semantic analyzers (3.2.1). These analyzers verify the code against
certain properties and flaws. The two most important properties also displayed in
figure 3.1 are “convertible to for each” or “convertible to find if” respectively. Any
loop satisfying that property is marked by an Eclipse resource marker. Resource
markers, on the other hand, can be connected by so-called marker resolutions to be
displayed if a user desires so. Figure 3.2 shows a screenshot of resource marker and
its relative marker resolutions displayed when the programmer clicked on the marker
symbol.
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Figure 3.2.: Markers and marker resolutions

If selected by a user, these marker resolutions trigger the second major module
of the plug-in: The transformation module. Depending on the information attached
to the marker itself, the appropriate transformation algorithm converting bodies to
functors and iterator values to ranges. Eventually, if the conversion rendered successful,
the Eclipse refactoring framework is used to rewrite the source code and replace the
respective loop by the newly created for each or find if function call. Figure 3.3 shows
the same code snippet after the transformation has been applied.
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Figure 3.3.: Same code snippet after transformation

3.2. Architecture

Describing module by module, this section is dedicated to providing insight in the
structural composition and the logical data flows of the implemented plug-in project.
The structures and dependencies displayed in section 3.1 as an overview will be cov-
ered in the following sections in more detail. The major focus in this section will be
architectural properties of the plug-in, such as class diagrams and dependency views.
For the actual algorithms used in the analysis and transformation module, please see
sections 3.3 and 3.4 respectively.

3.2.1. Analysis

The analysis package is dominated by two major concepts: The tree pattern matching
package explained in section 2.3.1 and the semantic analyzers infrastructure. Both
concepts will be explained in the forthcoming of this section.

Tree pattern matching package

Based on the requirements defined in section 2.3.1, the actual implementation of the
described patterns interface is illustrated in figure 3.4.
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Figure 3.4.: Basic patterns package (ch.hsr.ifs.ds8.analysis.patterns.base)

The base package lays the foundation for the various following implementations of
the IPattern interface. One of these basic concepts are capturing and referencing,
which are implemented in this package using the two wrapper classes Capture and
Reference. Any pattern can be wrapped by a Capture pattern, matching the same
nodes, but storing the matched node for later access. Equally, each capture can be
used with Reference object, to require a node equal to the previously matched one to
appear again.

Listing 3.1 shows how an IPattern can be used in the actual Java code.

1 IASTNode node = nodeFactory . newBreakStatement ( ) ;
2 IPattern pattern = new IsInstanceOf ( IASTBreakStatement . c l a s s ) ;
3 pattern . satisfies ( node ) ; // t rue

Listing 3.1: IPattern usage example
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Every pattern can furthermore be combined using logical connector patterns. The
respective package is shown in figure 3.5.

Figure 3.5.: Logical patterns package (ch.hsr.ifs.ds8.analysis.patterns.logical)

Using these logical combinations, another requirement stated in section 2.3.1 can be
fulfilled. These requirements are:

• Ability to express domination

• Ability to express sibship

• Ability to combine pattern elements

By combining the available patterns using these logical connectors, very flexible combi-
nations can be created to identify desired nodes within an abstract syntax tree. Using
these tools, a wide variety of semantic patterns have been implemented suitable for
various analysis and AST-based search tasks. An excerpt of these patterns is shown
in figure 3.6.
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Figure 3.6.: Semantic patterns package (ch.hsr.ifs.ds8.analysis.patterns.semantic)

An expressive example of how these elements can be used to express an actual
pattern recognizing transformable loops is the find if pattern. Displayed in a simplified
form, the pattern recognizes all for loops that immediately dominate bodies (compound
statements) holding an if statement which itself dominates either a break or return
statement. Figure 3.7 shows this example graphically.
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Figure 3.7.: Find if pattern example

Semantic analyzers

The semantic analyzers represent the core of the analysis module. Using the algo-
rithms described in section 3.3, they verify a given code segment and nodes within
the abstract syntax tree offending their topic. As one example, the ForEachSeman-
ticAnalyzer would skim a given translation unit for any for or while loop traversing
a determinable range of iterators (section 3.4 explains the respective deduction and
analysis algorithms to more detail). Figure 3.8 provides a brief overview of how these
analyzers are interconnected.
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Figure 3.8.: Semantic Analyzers (ch.hsr.ifs.ds8.analysis.base)

A semantic analyzers must, in order to implement its interface, provide client classes
with a set of IASTNodes matching its implemented rule. In the case as displayed in fig-
ure 3.8, this happens to be a class using the CodAn framework (http://wiki.eclipse.
org/CDT/designs/StaticAnalysis) to display the reported nodes as user interface mark-
ers. Of course, this class could be replaced by any other desired implementation not
using the CodAn framework. ISemanticAnalyzer thus represents a seam point for the
analysis package and avoids cumbersome dependencies to other frameworks at all cost.

Listing 3.2 shows the explicit interface specification of ISemanticAnalyzers, while
listing 3.3 illustrates how client classes (e.g. a CodAn Checker) could use this interface
to report problems.

1 /∗∗
2 ∗ {@link ch . hsr . i f s . ds8 . a n a l y s i s . base . ISemanticAnalyzer Semantic ana lyz e r s }
3 ∗ r ep r e s en t the c en t r a l i n t e r f a c e between the DeepSpace−8 ana l y s i s module and
4 ∗ Ec l i p s e UI {@link org . e c l i p s e . core . r e s ou r c e s . IMarker markers } . Problem
5 ∗ r e p o r t e r s use these ana lyz e r s to f i nd o f f end ing
6 ∗ {@link org . e c l i p s e . cdt . core . dom. as t . IASTNode nodes} in a t r a n s l a t i o n uni t
7 ∗ and mark t h e i r p o s i t i o n with the
8 ∗ {@link ch . hsr . i f s . ds8 . a n a l y s i s . base . ISemanticAnalyzer ana lyze r } ’ s id .
9 ∗/

10 pub l i c i n t e r f a c e ISemanticAnalyzer {
11 /∗∗
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12 ∗ @return The t ex tua l problem id t h i s ana lyze r addre s s e s .
13 ∗/
14 pub l i c String getId ( ) ;
15
16 /∗∗
17 ∗ @param unit
18 ∗ The {@link org . e c l i p s e . cdt . core . dom. as t . IASTTranslationUnit
19 ∗ IASTTranslationUnit} to be analyzed .
20 ∗ @return A {@link java . u t i l . Set Set} o f a l l
21 ∗ {@link org . e c l i p s e . cdt . core . dom. as t . IASTNode nodes} within
22 ∗ <code>unit</code> that o f f end t h i s semantic ana lyze r ’ s code
23 ∗ r u l e s and should be r e f a c t o r ed .
24 ∗/
25 pub l i c Set<IASTNode> getOffendingNodes ( IASTTranslationUnit unit ) ;
26 }

Listing 3.2: ISemanticAnalyzer interface

1 pub l i c void processAst ( IASTTranslationUnit ast ) {
2 f o r ( ISemanticAnalyzer analyzer : analyzers ) {
3 Set<IASTNode> offendingNodes = analyzer . getOffendingNodes ( ast ) ;
4 f o r ( IASTNode node : offendingNodes ) {
5 reportProblem ( analyzer . getId ( ) , node ) ;
6 }
7 }
8 }

Listing 3.3: ISemanticAnalyzer usage example

3.2.2. Transformation

This section is dedicated to explaining the various algorithms found present in the
final implementation of the transformation module.

Range

The range deduction and transformation module is purposed to analyze transformable
loop statements in the code, dissect initialization statements and break conditions
of the respective constructs. From this information, the module tries to deduce an
equivalent range of iterators that can be used with STL algorithms to replace the
given loop statement. Listing 3.4.1 marks the three main analysis artifacts of this
module: range begin, range end and the iteration variable.

1 vector<int> vec = getData ( ) ;
2 f o r ( vector<int > : : iterator it = vec.begin() ; it != vec.end() ; ++it) {
3 // . . .
4 }

Listing 3.4: Range deduction

The module itself can be summarized into three sub-parts: the IFirstDeducers, ILastD-
educers and IIterationExpressionDeducers. The respective class diagrams are shown
in figures 3.9, 3.10, 3.11 and 3.12.

Date: February 9, 2011 Page 50 of 104



Loop Analysis and Transformation towards STL Algorithms

Figure 3.9.: ch.hsr.ifs.ds8.transformation.range.IFirstDeducer
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Figure 3.10.: ch.hsr.ifs.ds8.transformation.range.ILastDeducer

Figure 3.11.: ch.hsr.ifs.ds8.transformation.range.IIterationExpressionDeducer
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Figure 3.12.: ch.hsr.ifs.ds8.transformation.range.IRangeDeducer

Important to notice in figures 3.9 through 3.12 is the fine-grained interface structure,
even including partial range deduction mechanisms such as IFirstDeducer, ILastDe-
ducer and IIterationExpressionDeducer. Each of these interfaces are implemented by
multiple code analysis algorithms (e.g. deducing the last iterator from an equality
expression forming the loop’s break condition). All these deduction algorithms can be
combined using DeductionProviders, that try all available algorithms and use the first
one that successfully determines the respective range element. This design decision
was made under the assumption that there will exist many algorithms to deduce it-
erator ranges and each of them will only fit certain instances and fail in others. The
concept of a DeductionProvider furthermore eliminates the necessity of deciding for
a concrete algorithm without knowing its capabilities. What cases of a loop can or
cannot be dissected using a given algorithm is a matter to the specific algorithm itself
only and needs not to concern client classes thanks to this design aspect.

Iterator

Transforming iterator-based to value type-based access is, as this document’s analy-
sis chapter pointed out, a central aspect when eliminating custom instances of STL
algorithms. Therefore, this issue was addressed in the implementation by a separate
module dedicated to iterator transformation rules and techniques.
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Figure 3.13.: ch.hsr.ifs.ds8.transformation.iterator

A central role is accorded to the IIteratorToValueTypeConverter interface. It pro-
vides a generic replaceIteratorsByValueType that accepts any IASTNode, removes any
iterator occurrence by a value type and returns the node again. This replacement
functionality is implemented by means of an IteratorToValueTypeVisitor that tra-
verses the given node and replaces any child nodes identified as iterator accesses by
their value type equivalent. Listings 3.5 and 3.6 show one instance of such an iter-
ator to value type transformation. Matching code segments in the original and the
transformed block are highlighted with the same color.

1 vector<string > : : iterator it = getIterator ( ) ;
2 {
3 cout << *it << endl ;
4 cout << it->size ( ) << endl ;
5 }

Listing 3.5: Body with iterator semantics

1 vector<string > : : iterator it = getIterator ( ) ;
2 {
3 cout << it << endl ;
4 cout << it.size ( ) << endl ;
5 }

Listing 3.6: Body with value type semantics

NamedParametersIteratorToValueTypeConverter in this context represents the most
straightforward implementation of IIteratorToValueTypeConverter, where the respec-
tive iterator expressions to be replaced are known and can be passed as an argument.
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Functor

Chapter 1 pointed out that STL algorithms only allow functions or functors as argu-
ments. A very important focus is thus to be set on the transformation of statements
within a loop to equivalent function or functor, respectively. This can be achieved using
the options pointed out in section 1.3 - namely argument binding, lambda expressions
or of course explicit functions or functor classes. This idea represents the very purpose
of the functor module. This package’s IteratorStatementToLambdaFunctorConverter
illustrated in figure 3.14 serves two purposes. On the one hand, it transforms iterator-
based accesses previously included in the original loop statement by value type-based
operations. It does so using the iterator-transformation package. Afterwards, the new
statement is wrapped into a lambda expression taking an argument of the value type of
the iteration expression and returns this whole assembly as the result functor. Listings
3.7 and 3.8 show a comprehensive example of these two transformation steps. Match-
ing code segments in the original and the transformed block are highlighted with the
same color.

1 vector<string > : : iterator it = getIterator ( ) ;
2 // vector<s t r i ng > : : i t e r a t o r : : va lue type = std::string
3 {
4 cout << *it << endl ;
5 cout << it->size ( ) << endl ;
6 }

Listing 3.7: Original compound statement to transform to a lambda

1 [ ] ( std::string & it ) {
2 cout << it << endl ;
3 cout << it.size ( ) << endl ;
4 }

Listing 3.8: Resulting lambda expression
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Figure 3.14.: ch.hsr.ifs.ds8.transformation.functor.lambda

Other implementations within the package are SingleExpressionStatementToTr1Bind-
Functor and SingleExpressionStatementToStdBindFunctor shown in figure 3.15 and
figure 3.16 respectively. They allow the conversion of single expression statements (e.g.
a function call or a binary expression) to an equivalent bind expression. This process
is illustrated in the examples in listings 3.9 through 3.9. Matching code segments in
the original and the transformed block are highlighted with the same color.

1 vector<string > : : iterator it = getIterator ( ) ;
2 {
3 it−>reserve(100) ;
4 }

Listing 3.9: Original compound statement to transform to a bind expression

1 vector<string > : : iterator it = getIterator ( ) ;
2 bind2nd ( mem_fun_ref (&std::string::reserve) , 100) (∗ it) ;

Listing 3.10: Resulting STL bind expression

1 vector<string > : : iterator it = getIterator ( ) ;
2 bind (&std::string::reserve , _1 , 100) (∗ it) ;

Listing 3.11: Resulting TR1 bind expression
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Figure 3.15.: ch.hsr.ifs.ds8.transformation.functor.bind.stl
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Figure 3.16.: ch.hsr.ifs.ds8.transformation.functor.bind.tr1

Other possible converters not implemented during the scope of this project are con-
verters to new functor classes or new functions having the transformed statements as
body. Listings 3.12 and 3.13 repeat the previous examples to illustrate how prospective
follow-up projects should implement such a transformation.

1 void doReserve ( std : : string &it ) {
2 it . reserve (100) ;
3 }
4 // . . .
5 vector<string > : : iterator it = getIterator ( ) ;
6 doReserve (∗ it ) ;

Listing 3.12: Resulting free function
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1 c l a s s Reserver {
2 pub l i c :
3 void operator ( ) ( std : : string &it ) {
4 it . reserve (100) ;
5 }
6 } ;
7 // . . .
8 vector<string > : : iterator it = getIterator ( ) ;
9 Reserver ( ) (∗ it ) ;

Listing 3.13: Resulting functor class

Foreach

The first instance putting all previous transformation techniques together and instan-
tiating an actual STL algorithm transformation is instigated by the foreach module.

Figure 3.17.: Foreach transformation (ch.hsr.ifs.ds8.transformation.foreach)

An IForEachConverter is the combination of an IRangeDeducer and an IFunctor-
Converter. Thus, given a respective loop, IForEachCoverters are able to deduce both
a begin and end iterator equivalent to the range processed by the loop and instantiate
a functor implementing the same logic as the loop body. The helper class ForEachCall
uses this information to construct a call statement to for each with these very same
properties as function parameters. To achieve this, the DynamicForEachConverter
class can be configured with instances of these very same interfaces and uses them to
perform its transformation. Listings 3.14 and 3.14 illustrate this process, highlighting
matching code segments in the original and transformed block with the same color.

1 vector<string> data = getData ( ) ; f o r ( vector<string > : : iterator it = data.begin() ;
it != data.end() ; ++it ) {

2 it->clear();
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3 }

Listing 3.14: Original for each candidate

1 for_each (data.begin() , data.end() , bind(&std::string::clear, 1)) ;

Listing 3.15: Resulting for each call

Find and find if

The second major example of a transformation package summarizing multiple trans-
formation techniques to implement an STL algorithm is the find and find if package.

Figure 3.18.: FindIf transformation (ch.hsr.ifs.ds8.transformation.findif)

The IFindIfConverter again demands the implementation of an IRangeDeducer that
almost all loop-to-STL transformations require. Furthermore, it expects an imple-
mentation of an IFunctorConverter to be present. Different from the converter found
present in the for each conversion, however, this functor converter will identify condi-
tion statements within the transformed loop and express them as a functor expression
to be used as predicate within a find if call. This encompasses basically the same
techniques for functor transformation described previously in this section, with the
addition of e.g. introducing a return statement when creating a lambda functor. List-
ings 3.16 and 3.17 show this transformation, highlighting matching code segments in
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the original and transformed block with the same color.

1 vector<string> data = getData ( ) vector<string > : : iterator it ;
2 f o r ( it = data.begin() ; it != data.end() ; ++it ) {
3 i f ( it->empty()) {
4 break ;
5 }
6 }

Listing 3.16: Original for each candidate

1 vector<string> data = getData ( ) ;
2 vector<string > : : iterator it ;
3 it = find_if (data.begin() , data.end() , bind(&std::string::empty, 1)) ;

Listing 3.17: Resulting find if call

3.2.3. Eclipse integration

There exist two seam points this project’s plug-in implementation uses to interact with
the Eclipse Framework: The Eclipse static code analysis framework (CodAn, http:

//wiki.eclipse.org/CDT/designs/StaticAnalysis) and the Eclipse IMarkerResolution
interface. Both will be explained in detail in the following subsections.

CodAn Framework

The CodAn project basically provides a unified interface for static code analysis plug-
ins. Instead of working with resources and loading their contents manually, plug-in
developers are free to work directly on abstract syntax trees (AST, IASTTransla-
tionUnit). Same is true when the plug-in developer desires to place markers in the
resources once the static code analysis plug-in has detected an issue in one of the
traversed AST’s nodes. Usually, the plug-in developer would need to determine the
node’s actual location within the original file in order to create a marker. CodAn,
however, allows placing markers directly on AST nodes. In fact, if developers do not
explicitly wish to do so, they do not need to interact with raw IResources at all.

Furthermore, CodAn provides a seamless UI integration for configuring the newly
created static code checker. Developers only need to state the name and data type of
properties they would like their users to be able to configure and CodAn will automat-
ically generate the respective UI elements. Figure 3.19 illustrates such automatically
generated UI elements based on one Boolean and two String properties.
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Figure 3.19.: Automatically generated CodAn UI elements.

IMarkerResolution

Once resource markers have been placed as explained in the previous section, seasoned
Eclipse users will realize that this is only half the story. Eclipse provides markers indi-
cating errors or warnings with quick-fixes to resolve the marked problems. Program-
matically speaking, these quick-fixes relate to IMarkerResolutions, which themselves
are generated by IMarkerResolutionGenerators. In fact, the complete transformation
module described in section 3.4 eventually boils down to a set of IMarkerResolution
implementations. IMarkerResolutionGenerators are registered as extension points in
the plugin.xml descriptor and should return the correct quick-fixes (or IMarkerResolu-
tions) based on the given problem id. Figure 3.20 shows an example of this resolution
provision in the UI.
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Figure 3.20.: Each quick-fix relates to a respective IMarkerResolution implementation

3.3. Code analysis module

Based on the identified analysis techniques in section 2.3, the following sections de-
scribe how the pattern-based approach has been instantiated in the actual program.
The metadata-based approaches have been omitted in the current version for they have
not been estimated beneficial enough for further investigation (directive from professor
P.Sommerlad, November 18 2010).

3.3.1. Pattern matching

To fit existing structures within the Eclipse plug-in framework and to provide the pat-
tern analysis functionality in all areas manipulating the analyzed program’s abstract
syntax tree, the tree regular expressions package is expected to meet an interface
specification as simple and easily usable as the following:

1 /∗∗
2 ∗ General i n t e r f a c e f o r t r e e pat t e rns used to v e r i f y whether a c e r t a i n node
3 ∗ f i t s a g iven s e t o f d i s t i n gu i s h i n g f e a t u r e s .
4 ∗/
5 pub l i c i n t e r f a c e IPattern {
6 /∗∗
7 ∗ Ve r i f i e s whether <code>node</code> f i t s the d i s t i n gu i s h i n g f e a t u r e s
8 ∗ s a t i s f y i n g t h i s pattern in s t ance .
9 ∗

10 ∗ @param node
11 ∗ The {@link org . e c l i p s e . cdt . core . dom. as t . IASTNode node} in
12 ∗ ques t ion .
13 ∗ @return <code>true</code> i f <code>node</code> s a t i s f i e s the pattern ,
14 ∗ <code>f a l s e </code> otherwi se .
15 ∗/
16 pub l i c boolean satisfies ( IASTNode node ) ;
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17 }

Listing 3.18: Desired regular expressions interface

Furthermore, the following pattern implementations are deemed mandatory for a suc-
cessful analysis of the use cases described in section 1.1.3:

• Domination
A node or tree can be required to dominate (i.e. be an ancestor of) a specific
subtree of nodes, possibly satisfying requirements of their own. This hierarchical
information is the one critical part the abstract syntax tree surpasses the analysis
information provided by a lexical representation.

• Binary predicates
Two nodes or trees must be comparable for equality or other predicates in terms
of various criteria. Such criteria may range from textual equality of the resulting
source code to node type and field equality.

• Sibship
The order of elements on the same layer must be identifiable and nodes must be
describable as left or right siblings of each other. This feature gains importance
e.g. when trying to identify the current value of a variable before the first
execution of a loop. Hence, the left siblings of the loop need to be identified and
analyzed.

The following subsections will describe a first attempt of implementing the previously
described requirements using synthetical metadata nodes within the abstract syntax
tree. This approach failed to meet all the desired requirements, which is explained
to more detail there. Afterwards, the successful second implementation approach is
explained in the remaining subsections.

Failed approach of metadata nodes

The first draft implementation of the patterns package was based upon the idea that
the abstract syntax tree should be amended by additional, synthetical metadata nodes
to form the actual tree regular expression. This approach is comparable to classic
regular expressions based on text data extended by metadata characters such as ., *
or ?. A possible tree pattern might thus look as described in figure 3.21.
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Figure 3.21.: Simple metadata nodes pattern for find if

This idea provided very promising results for patterns as simple as the previously
described one. However, as soon as non-deterministic patterns with wildcards and
repetitions enter the picture, the metadata approach proves itself far less applicable.
Figure 3.22 represents one such more elaborate case.
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Figure 3.22.: Extended metadata nodes pattern disqualifying loops unsuitable for a
conversion to for each. Please note that * instead of . was chosen as a
wildcard character in this figure for the sake of readability.

The pattern described in figure 3.22 is satisfied if the given for loop contains an
increment expression on the iteration expression within the body. Any node satisfying
this pattern thus cannot be transformed to an STL function call. Identifying nodes
that match patterns like this, however, may become increasingly difficult due to the
following problems:

• It is not clear whether wildcards should match single nodes or complete sub-
trees. Matching subtrees would represent an implicit repetition of its own and
would be difficult to express in combination with explicit repetitions. Matching
single nodes, however, ends up being an oversimplification and requiring pattern
specifications to be significantly more complicated than as seen in figure 3.22.

• Even for the simple case of a “contains ++it”-regular expression displayed in
figure 3.22, a non-deterministic pattern specification containing a possibly infinite
loop is necessary. Algorithms that preprocess the regular expression statement
before applying it to a node would need to be aware of this possibility, making
their implementation unnecessarily complicated.

• The last and most critical issue not directly depicted in figure 3.22 is the ques-
tion whether repetitions should relate to additional siblings to follow or instead
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additional child nodes to be allowed. Figure 3.23 illustrates this ambivalence
(please note that . identifies a wild card and {n} a repetition of n elements).
When finally asking the question whether a repeated child may have siblings as
well, the impression occurs that repetitions are a very unexpressive concept in
tree patterns.

Figure 3.23.: Ambivalence of repetitions in trees

Even though there may indeed exist feasible solutions to the problems described in
this section concerning metadata nodes, their implementation has been dropped for
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the scope of this project. Instead the focus of this project’s regular expressions im-
plementation was shifted from repetitions and metadata nodes over to another, very
promising concept: the pattern domination.

Pattern domination

Please note: “Pattern domination” is a term introduced during this thesis to describe
this very specific implementation of tree pattern matching. While tree pattern match-
ing is a concept often addressed in (natural) language processing [LA05], we have
been unable to identify software patterns equivalent to the one instantiated with this
implementation. Thus the software pattern “Tree pattern domination” or “Pattern
domination” respectively is introduced and referred to as such during the rest of this
report.

Repetitions focus on the idea of allowing a series of nodes between the actual nodes
of interest. A.*B, for example, would allow any content between the two nodes A and
B. This idea, however, puts the focus in an unnatural manner on the content to be
eventually ignored. The more important question in this context would be whether
B should be a sibling or a child of A - and whether it should be so immediately or
whether intermediate nodes are allowed. Pattern domination replaces the unnatural
repetition relationships from the tree regular expressions and introduces new, by far
more expressive relations to the pattern:

• A << B
A dominates B, i.e. B is a descendant of A.

• A < B
A immediately dominates B, i.e. B is a child of A.

• A << (B < C)
A dominates B, which itself immediately dominates C.

• A $++ B
A is a left sibling of B.

• A $+ B
A is an immediate left sibling of B.

Above list represents a subset of the relations implemented in Tregex [LA05, p.2].
The idea of one node dominating another one is promising, but by itself not sufficient

to represent all required patterns, as figure 3.24 illustrates.
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Figure 3.24.: Nested domination pattern

If a pattern can only express that a node A dominates a node B and a node B
equally dominates a node C, the question remains how these two patterns should be
connected, i.e. how node B should be guaranteed to be exactly the same node, so that
the original pattern as a whole is satisfied. While this example might be implemented
by an additional identity equality check, it points out that hierarchical relationships
may be required between patterns of nodes instead of nodes only. Figure 3.25 shows
this combination problem explicitly.
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Figure 3.25.: Pattern combination problem

The solution to this combination problem chosen in the implementation of this
project was to completely drop the concept of one node dominating another and in-
stead design structural relationships in a way that node patterns dominate other node
patterns. A pattern as illustrated in figure 3.24 might thus be represented in a pattern
form as shown by figure 3.26.
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Figure 3.26.: Pattern domination-design

Capturing and Referencing

Another concept borrowed from textual regular expressions is Capturing and Refer-
encing. Capturing allows to store matched portions of the complete expression and
extract them after the evaluation. This functionality proofs useful when trying to ex-
tract data of a certain pattern from a large amount of data. Referencing, on the other
hand, allows to access previously captured portions and use them in further expression
specifications. One example of such a reuse is to require a previously matched sub-
portion to occur again later in the complete data. Listing 3.19 provides an example
of a textual regular expression with one capturing group marked by parentheses and
one reference to that capturing group (\1). Listing 3.20 illustrate how this regular
expression would match against actual text.

1 . ∗ ( ‘ ‘ empty ’ ’ \ . ) .∗\1

Listing 3.19: Textual regex with captures and references

1 This sentence ends with “empty”.
2 This one does not.
3 This, however, does again end with “empty”.
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Listing 3.20: Matched text

The very same functionality is available for any pattern in the tree patterns package.
Every pattern can be wrapped by a Capture decorator, storing the matched node in
case of a successful match. Equally, references are available as adapted version of
equality comparison and represent themselves patterns that can be matched against.
Figure 3.27 displays an example of a pattern featuring one capture and one respective
reference.

Figure 3.27.: Capturing and referencing

Please note that the two capture nodes are highlighted by the same color to illustrate
that these are indeed references to the very same object. This implementation also
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requires all references to captures to appear during in-order traversal strictly after
their respective capture nodes.

Backtracking inversion

While the concept of decorator classes for capturing and referencing described in sec-
tion 3.3.1 provides and elegant and flexible implementation of such functionality, it
provides one natural drawback. Using two different wrapper nodes for capturing and
referencing leaves them only very loosely coupled to each other. Explicitly, the match
of a capturing node is completely independent of the match of a corresponding ref-
erence. This may represent a very undesirable situation, if one e.g. tries to search a
C++ program for a variable name declared within a for loop init-statement and sub-
sequently used within the loop body. The declaration would refer to a capturing node,
and the usage within the body of the loop would correspond to a reference. Listing
3.21 illustrates one such code snippet.

1 vector<int> vec = getData ( ) ;
2 f o r ( vector<int > : : iterator it = vec . begin ( ) , it2 = vec . begin ( ) ; it2 != vec . end

( ) ; ++it2 ) {
3 cout << ∗ it2 << endl ;
4 }

Listing 3.21: Situation for backtracking inversion

A naive pattern to match the declaration and subsequent usage within the body shown
in listing 3.21 may be implemented as illustrated in figure 3.28.
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Figure 3.28.: Naive referencing

It is important to notice, however, that the pattern from figure 3.28 will not match
the code in listing 3.21. This is due to the fact that the two branches of the And node
are independent from each other. The left branch will search for an IASTName and
find it by capturing the name “it”, whereafter the right branch is traversed. There,
however, it occurs that “it” cannot be located within the body and the match will fail.
In this situation, the And node’s left branch has no incentive whatsoever to backtrack
to its previous capturing of “it” and search for another IASTName descendant, namely
“it2”. The backtracking inversion technique was introduced to provide this incentive.

Within the current tree patterns implementation, there exists one measure to impose
natural backtracking functionality: Hierarchy. If a child pattern fails to match, the
Dominates or DominatesImmediately pattern will search for another descendant and
try to match it against the respective sub-pattern. As long as the reference is a
descendant of the capture, backtracking works flawlessly. In the example provided
in listing 3.21 and figure 3.28, the capturing and referencing take place on the same
level within the pattern - naturally so, because the for-init-statement and the loop
body are located on the same level below the for-statement within the AST as well.
Using backtracking inversion and the isDominatedBy pattern, however, it is possible
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to introduce an artificial hierarchy to our pattern enabling the backtracking behavior.
Figure 3.29 describes this concept.

Figure 3.29.: Backtracking inversion

Thanks to isDominatedBy and the additional reference to the original for statement,
the reference node becomes a descendant of the capture node and backtracking will
work as desired.

For each tree pattern implementation

Figure 3.30 illustrates a simplified form of the tree pattern used to recognize for each
candidates. Pleas note that structural metadata nodes, such as Dominates, have been
illustrated as arrow connectors. The shown pattern matches iterator variables declared
before the loop that are incremented once within the loop and dereferenced at least
once within the body. The final pattern in the plug-in code is extended by several
alternatives (e.g. having the iterator declaration in the for-init statement), but their
general make-up remains the same.
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Figure 3.30.: For each tree pattern

Find if tree pattern implementation

In figure 3.31 a simplified version of the find if pattern is shown. It recognizes for
loops dominating if statements which themselves dominate either a break or return
statement. In the final plug-in code, several variations of this pattern are used for the
eventual recognition, but the general implementation method remains as described in
the figure.
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Figure 3.31.: Find if tree pattern

3.3.2. Iterator compatibility

When trying to identify variables suitable to be used as iterators within a C++ pro-
gram, it remains important to notice that in C++, other than in Java, there exists
no explicit interface for iterators. Instead, all STL algorithms accepting iterators are
template-based and implicitly demand certain operators to be present. The STL al-
gorithm for each, as an example, uses the following operators in its implementation
when used with a type T :

• operator != (T)

• operator ++

• operator *
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These three operators thus also exactly represent the three operations the current
analysis system’s implementation expects to be present in order to consider a variable
an iterator variable candidate.

3.4. Code transformation module

Once a loop and possibly some of its siblings have been identified as candidates for an
STL function call refactoring, the second major module of this thesis’ program steps
into action. The transformation module identifies the range covered by the loop and
transforms its body to an equivalent functor to be used with the STL function call.

3.4.1. Range deduction

Loops working on containers or other sets of values iterate over a more or less implicit
range of elements. This range begins with the actual value of the iteration variable
before the first execution of the loop body and is terminated by the first iteration
variable value that no more satisfies the loop’s continuation condition. In feature-rich
languages such as C++, however, these two values are not always trivial to deduce,
which is why the range deduction module’s architecture assumed the presence of many
different deduction algorithms (see section 3.2.2).

The most important approach to this deduction in the scope of this thesis is the
idea of searching for initialization values and assignment expressions to the iteration
expression before the loop (or possibly within the initialization statement in a for loop)
and select the last value as the begin of the range. The terminating iteration expres-
sion value may be extracted from the loop’s condition expression, which is expected
to be a comparison expression between the iteration expression and the terminating
value. A very simple approach, this idea is able to determine the range of a variety
of loop statements correctly and before expanding this deduction algorithm to more
complex predicates, index-based access to iterator transformation may provide refac-
toring support for far more loop instances than the support for arbitrarily complex
iterator range deduction (see also 2.4.2).

3.4.2. Iterator to value type access

When transforming an iterator-based loop’s body statement to a lambda functor, the
need to replace iterator accesses by value type-based operations becomes apparent.
Iterators embrace a pointer akin syntax of dereferencing (* ) and member access (→).
The code examples in listings 3.22 and 3.23 illustrates this issue.

1 vector<string> vec ;
2 f o r ( vector<string > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
3 cout << ∗it << endl ;
4 it−>clear ( ) ;
5 }

Listing 3.22: Iterator access syntax
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1 for_each ( vec . begin ( ) , vec . end ( ) , [ ] ( string &it ) {
2 cout << it << endl ;
3 it . clear ( ) ;
4 }) ;

Listing 3.23: Transformed iterator access

The two loops in listing 3.22 and 3.23 and are equivalent and represent the mapping
this project’s transformation module is expected to introduce. However, there exist
transformations that may be considered equally trivial, but must not be performed by
the system. Listing 3.24 presents these cases.

1 void registerValue ( const string &) ; // over load #1
2 void registerValue ( const vector<string > : : iterator &) ; // over load #2
3 vector<string> vec ;
4 f o r ( vector<string > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
5 registerValue ( it ) ; // uses over load #1
6 }
7 for_each ( vec . begin ( ) , vec . end ( ) , [ ] ( string &it ) {
8 registerValue ( it ) ; // uses over load #2
9 }) ;

Listing 3.24: Disallowed iterator transformations

At first glance, a prospective transformation system will find itself bewildered by the
usage of it without a data access operator (* or →). It would for all intents and
purposes be possible to advise the system to determine whether there exists an overload
of registerValue, accepting also the value type of the iterator. Since registerValue could,
however, implement completely different semantics for the two overloads or one of the
overloads could even get changed by the unsuspecting developer, equivalence of the
two loops in listing 3.24 is no more guaranteed. Transformation systems that desire
to focus on loops and have no interest in significantly changing a developer’s class
members should thus resign upon such code constructs. There exist other cases that
shape up as very inopportune to emphvalue type-based access, as listing 3.25 shows.

1 vector<string> vec ;
2 f o r ( vector<string > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
3 i f ( increment ( ) ) {
4 ++it ;
5 ]
6 i f ( decrement ( ) ) {
7 −−it ;
8 }
9 // . . .

10 }
11 f o r ( vector<string > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
12 i f ( it != vec . begin ( ) ) {
13 clog << ∗it << endl ;
14 ]
15 }
16 f o r ( vector<string > : : iterator it = vec . begin ( ) + 1 ; it != vec . end ( ) ; ++it ) {
17 clog << (∗ it + ∗( it − 1) ) << endl ;
18 }

Listing 3.25: Unremunerative transformations
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The loops in listing 3.25 are allowedly exaggerated examples, but they clearly represent
the semantic loss faced when moving from iterators to value types, as described in
section 2.4.2. To still provide a suitable transformation, any such system would have
to introduce additional complexity (e.g. in form of a counting variable), which is why
these cases are not considered worthwile in the this project’s implementation.

3.4.3. Function parameter types deduction

When creating functors and functions during a transformation, the plug-in must be
able to deduce their parameter types depending on the loop to be transformed. This
usually involves the deduction of the iteration variable type and the return type of
its operator * function, if the iteration variable represents a pointer or iterator type.
The Eclipse SDK provides each expression node within the abstract syntax tree with
a function getExpressionType. For any given expression node, this method returns
the correct IType definition of the relative C++ type. When creating functors and
functions, the plug-in relies on this functionality by applying the following steps:

• Deduce the iteration variable var (either a pointer or iterator type, see 3.26)

• Create a synthetic, unary expression “*var” (see 3.27, step #2)

• Retrieve the IType object using getExpressionType (see 3.27, step #3)

• Construct the parameter declaration using the DeclarationGenerator interface

The above approach is as generic as the iterator interface and thus can process any
range and iteration types that can be handled by STL algorithms. Listings 3.26 and
3.27 illustrate this behavior.

1 vector<string> vec ;
2 f o r ( vector<string > : : iterator it = vec . begin ( ) ; it != vec . end ( ) ; ++it ) {
3 // ” i t ” i s deduced to be the i t e r a t i onExp r e s s i on
4 }

Listing 3.26: Function parameter type deduction (source)

1 IASTNode parent = iterationExpression . getParent ( ) ;
2 IASTExpression expression = iterationExpression . copy ( ) ;
3 ICPPASTUnaryExpression operatorStar = new CPPASTUnaryExpression (

IASTUnaryExpression . op_star , iterationExpression ) ; // step #2
4 operatorStar . setParent ( parent ) ;
5 IType valueType = operatorStar . getExpressionType ( ) ; // step #3

Listing 3.27: Function parameter type deduction (plug-in code)

3.4.4. Function parameter types in template environments

Section 3.4.3 pointed out techniques to identify function parameter types in general.
There exist situations in the C++ programming language that do not allow the explicit
deduction of the target type name, as listing 3.28 illustrates.
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1 template<c l a s s T>
2 void doSomething ( T &container ) {
3 f o r ( typename T : : iterator it = container . begin ( ) ; it != container . end ( ) ; ++it

) {
4 doIt (∗ it ) ;
5 }
6 }

Listing 3.28: Infeasible Function parameter type deduction

When transforming above loop to a call to for each, the plug-in finds itself in the
uncomfortable situation of being unable to deduce the type name of the expression
*it. If doSomething was called using a vector<string>, the respective type would be
string. If it was called using a vector<int>, the type would expand to int. Since the
respective type cannot be deduced using a definitive type name, the transformation
needs to rely on the C++ compiler and defer the type deduction to it, as shown in
listing 3.29 [ISO10a, dcl.type.simple, section 4].

1 template<c l a s s T>
2 void doSomething ( T &c ) {
3 for_each ( c . begin ( ) , c . end ( ) , [ ] ( decltype (∗ container . end ( ) ) &it ) {
4 doIt ( it ) ;
5 }) ;
6 }

Listing 3.29: Defer type evaluation to compiler

3.4.5. Associate equivalent type names

Apart from the notions of sections 3.4.3 and 3.4.4, there remains a simple, but sig-
nificant extension to the type name deduction process. While the evaluation of an
expression against a certain IType provides a general and universally applicable tech-
nique, the results may not always prove to be favorable, as listing 3.30 explains.

1 vector<string> data ;
2 vector<string > : : iterator it = data . begin ( ) ;
3 cout << ∗it << endl ;
4 // getExpress ionType r e tu rns ” std : : b a s i c s t r i n g<char , std : : c h a r t r a i t s<char>,

s td : : a l l o c a t o r<char> >”

Listing 3.30: Expanded type names by getExpression

Strictly speaking, the type deduced in 3.30 is perfectly correct and can be compiled in
this form as well without any errors. However, it would obviously proof simpler and
more understandable to use the typedef string instead of the explicit base type. Thus,
the plug-in searches the current translation unit for any typedef that fits the explicit
type and uses it, should it render shorter than the original.
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4. Conclusion

When reviewing the initial task description of this project, explaining that the solution
should be programmed as an Eclipse plug-in, “if one such implementable technique is
found”, it becomes obvious that no one at the beginning of this projected expected
it to actually prosper and unfold as it has. The following sections will thus reflect
on the results the project has put forth and where there still exists room for further
development.

4.1. Results

During this master thesis, the areas of semantic code analysis, code transformation and
the details of an appropriate Eclipse integration have been explored. The following
sections highlight the progress made during this project in the respective areas. The
resulting program’s development name was DeepSpace-8 and is referred to as such in
the following or by its abbreviation DS-8.

4.1.1. Semantic analysis

Despite the very harsh limitations semantic code analysis faces in today’s program-
ming world (see section 1.4), the project has shown that analysis techniques such as
tree pattern matching or to some extent also natural metadata analysis can proof
themselves invaluable tools in focused areas of program analysis. The most important
drawback faced when applying tree pattern matching is the fact that there exist in
principle an infinite amount of false negatives the system fails to recognize. On the
other hand, if a respective code matches the tested pattern, experiences made during
this project suggest that false positives and faulty transformations hardly ever occur.
This leads to the conclusion that pattern-based analysis serves best when trying to
avoid the repetition of known errors rather then the recognition of new weaknesses in
our code.

4.1.2. Code transformation

In contrary to code analysis, actual code transformation has shown to be indeed a
deterministic and thoroughly implementable task. Its possibilities, however, remain
bound to the capabilities of the respective code analysis modules. Once a loop e.g. has
been identified as a find if candidate and its range has been positively determined, the
actual transformation of the loop body to a bind- or lambda-based predicate and the
transformation of the loop itself to a find if function call proved surprisingly trivial.
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4.1.3. Eclipse integration

Before the beginning of this project, the Eclipse refactoring plug-in has not yet fully
explored the subject of functor conversions. As an example, the refactoring plug-
in’s ExpressionWriter first needed an enhancement to support the newly introduced
lambda expressions. Furthermore, too many type- and name-related operations within
Eclipse have been implemented on text-based algorithms that render useless for ad-
vanced transformation tasks. There exist at least three implementations converting an
IASTName to a “::“-separated, fully-qualified name, but not a single one converting
it to a ICPPASTQualifiedName. This lack exists probably due to the fact that string-
based operations are essentially easier to program than proper ones using IASTNames.
The DS-8 project should set a good example of how proper, AST-based implementa-
tions can be achieved and how the existing, string-based operations can be reused
using rewriting and re-parsing methods.

4.1.4. Actual plug-in functionality

To conclude this summary of the achieved results during this project, the following list
once more explicitly states the features and concepts elaborated during this master
thesis:

• Analysis

– Recognition on possible for each candidates based on pre-defined patterns.
(3.3.1)

– Recognition on possible find/find if candidates based on pre-defined pat-
terns. (3.3.1)

– Recognition of compound statements convertible to lambda functors. (3.2.2)

– Recognition of compound statements convertible STL or TR1 functors using
argument binding. (3.2.2)

– Deduction of iterator ranges traversed by iterator-based loops. (3.4.1)

– Identification of variables suitable for usage as iterators. (3.3.2)

• Transformation

– Transformation of iterator-based compound statements to value type-based
compound statements. (3.4.2)

– Transformation of compound statements to lambda functors. (3.2.2)

– Transformation of compound statements to STL or TR1 functors using
argument binding. (3.2.2)

– Extended deduction of expression types, including the search for equivalent,
shorter typedefs. (3.4.5)

– Replacement of loops by for each function calls. (3.2.2)
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– Replacement of loops by find/find if function calls. (3.2.2)

• Eclipse integration

– Support operations for proper, AST-based name and type resolution (in
contrary to the existing, text-based solutions) (3.4.3)

– Support operations for providing text representations of nodes (e.g. type
declarations) with the necessary environment to make up a full translation
unit and be parsed using the CDT parser. (3.4.3, 3.4.5)

– Framework and easily extensible interfaces for semantic analyzers developed
in future projects. (3.2.1)

4.2. Goal achievement

This section is dedicated to comparing mandatory and optional goals stated in the
original task description and judge their fulfillment.

4.2.1. Mandatory

The list below states that all mandatory goals have been achieved and verified:

• Statistical analysis of existing code

2� Textual search in open source projects for matching loops

2� Analysis of the results to project use-of-potential analysis

• Research and formulate transformation systems

2� Pattern matching analysis

2� ASTRewrite-based transformation

• Implement proposed systems

2� iterator-to-value-type transformation

2� loop body to lambda conversion

2� for each conversion

4.2.2. Optional

Furthermore, once optional goals are attended, it shows that with few exceptions also
these optional taks have been completed. The only topics left out were the explicit
function/functor class conversion, which was considered simple enough to be imple-
mented in a term project. Apart from that remain only the generate and transform
conversions, which have been dropped in favor of the various bind conversions. They
too, however, should provide no issues to be implemented as follow-up term projects
when using the for each and find/find if implementations as a reference.
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• Research and formulate transformation systems

2� Natural metadata-based analysis

• Implement proposed systems

2� typedef resolution

2� loop body to TR1 bind conversion

2� loop body to STL bind conversion

2 loop body to explicit function/functor class conversion

2� find if conversion

2� find conversion

2 generate conversion

2 transform conversion

4.2.3. Summary

Putting all the features listed in sections 4.2.1 and 4.2.2 together, this master the-
sis yielded a fully functional Eclipse code analysis plug-in. When activated, users get
prompted as soon as any loop the user has written resembles a for each or find if algo-
rithm. They then have the choice to automatically transform these loops to respective
STL function calls. While doing so, they get to select the kind of functor should used
for the STL call. The three supported kinds in this context are Lambda functors, STL
bind1st & bind2nd functors as well as TR1 bind functors.

4.3. Outlook

Apart from having instantiated a working and usable implementation of loop-to-STL
transformations, this master thesis also provided the basis for a variety of follow-up
studies and tasks that find themselves listed in the following sections.

4.3.1. Implement skipped features

Section 4.2.2 listed some optional tasks that have been skipped during this project.
These include namely:

• loop body to explicit function/functor class conversion

• generate conversion

• transform conversion

Based on the existing for each and find/find if implementations, the generate and
transform implementation provide an excellent task for students yet unfamiliar with
Eclipse CDT plug-in development. It is safe to assume that they both can be completed
during one respective term project.
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4.3.2. Follow-up on natural metadata analysis

While the concept of natural metadata analysis has been defined and evaluated in
theory in section 2.3.2, no statistical analysis of its possible benefits or practical im-
plementation have followed this evaluation. Future code analysis projects may want
to further explore this topic and how this metadata may be used to augment the
possibilities and reliability of various refactoring tasks.

4.3.3. Broaden usage of existing concepts

The analysis infrastructure and transformation techniques established during this mas-
ter thesis may provide valuable benefits for other areas of the refactoring plug-in.
Most custom search visitors frequently used in test cases, as an example, could easily
be refactored to use a PatternSearchVisitor, greatly reducing the resulting amount
of code. Furthermore, a follow-up project ot this thesis should focus on whether
some transformation algorithms could be called explicitly by the user, say to replace a
marked statement by a lambda or STL/TR1 bind functor. Such features could provide
remarkable benefits to usability and broad acceptance of these concepts. Since they
would not require any implementation but a UI integration of existing transformation
features, such a follow-up project would even be suitable for small term projects.

4.3.4. Textual syntax for pattern definition

Other tree pattern implementations such as Tregex support a textual syntax for pat-
tern definition [LA05, p.2]. These syntaxes usually feature a textual representation
for each pattern class, so e.g. << would refer to domination, $++ to sibship. An
according pattern syntax implementation for the DS-8 patterns module may simplify
the introduction of new analysis patterns substantially. On a MSc-level project, this
task may represent a very promising follow-up project to the current implementation.

4.3.5. Semi-automatic pattern generation for existing code

The implemented patterns for for each and find if recognition have been created based
on effective code snippets. While doing so, it has appeared that these patterns very
much resemble their code templates. It is imaginable that a semi-automatic trans-
formation of a given algorithm implementation to a relative tree pattern is possible.
Semi-automatic, because the user would need to amend the generated pattern by meta-
data information, such as e.g. replacing an effective variable name by a wildcard. This
task would bear two challenging areas: the pattern generation from a given abstract
syntax tree and the creation of a suitable user interface providing sophisticated graph-
ical support for this process. Both tasks, probably placed best within a master-level
project, would simplify the creation of future analysis modules significantly.
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4.3.6. Efficient pattern search algorithm

The current implementation of the pattern search is, as practical as it may be, a
very trivial approach based on the visitor pattern. Its complexity strictly amounts
to O(n) where n would represent the number of nodes in the abstract syntax tree.
Based on the work of Wuu, Lu and Yang [WtLY00], the implementation of a better
performing algorithm could be covered as bachelor thesis or master term project.
Since performance has not yet been an issue with the current tree pattern matching
algorithm during experiments, that project would probably be conducted for the sport
of it rather than for actual, practical purposes.

4.3.7. Pattern search mask in Eclipse

As pointed out in chapter 2, tree patterns provide tremendous benefits for plug-in
developers, allowing them to traverse trees and extract parts of it very elegantly. But
not only plug-in developers, but also Eclipse CDT end-users could use this functionality
in various situations. An extension of the default Eclipse search mask, possibly using
the syntax recommended in section 4.3.4, could simplify many extended search tasks
where simple textual regular expressions fail.

4.3.8. Just about any other plug-in!

While reviewing the goals achieved during this project, I have no doubt that the
patterns module has been the one driving force that assured its eventual success.
After the patterns module had been implemented, not a day passed without finding
another situation or refactoring possibility in any of the plug-in modules, where a
PatternSearchVisitor could reduce two dozen lines of code to merely three. Just as
programmers working in the field of text recognition and manipulation should at the
very beginning get accustomed to textual regular expressions, tree pattern matching
should be a starting point for every developer planning to take on the Eclipse CDT
and its abstract syntax trees.

4.4. Personal review and acknowledgement

A bit more than five months ago, we approached the DS-8 project exceptionally hum-
ble, not sure what to expect in results of such a challenging task. Looking back at
these past months, it was indeed uncertain whether or not this project would yield
any usable product at all. Many of the concepts elaborated during this master thesis
have hardly been attended by anyone before, especially not in an Eclipse environment.
Many parts of the resulting program, from tree pattern matching algorithms to lambda
expression support in Eclipse, needed to be created from scratch, for no comparable
functionality was available at that point. Even worse, the available algorithms and
framework features never seemed to fit the project’s actual requirements, e.g. provid-
ing string-based operations where proper abstract syntax trees were necessary.
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Nevertheless, there also have been positive aspects to the Eclipse environment found
present. The unsatisfying framework operations could eventually be reused by re-
parsing their textual results into actual AST entities. Additionally, the CodAn frame-
work represented one of the few Eclipse resources that fitted the project’s requirements
like a glove, greatly simplifying the integration of the created algorithms into Eclipse.
At this point I would also like to thank Emanuel Graf, Lukas Felber, Mirko Stocker
and the whole IFS team at HSR Rapperswil for always extending a helping hand in
order to master the Eclipse plug-in development environment. Thanks also to Michael
Rüegg for his elaborate review of this report and professor Dr Josef Joller for his sup-
port in redefining the tree patterns package. And finally, I also thank my professor,
Peter Sommerlad, who supported and encouraged me during this project from the very
beginning.

If there are any lessons to be learned from this master thesis, it is the fact that
semantic code analysis lives up to its reputation of being an unsolvable and therefore
infinitely complex task. And the fact that, nevertheless, no one should shy from this
task, since projects such as DS-8 prove that there can still be remarkable results and
practical benefits to gain.
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A. Development environment
installation

The following sections provide a complete installation guide for all relevant systems
and programs used during this master thesis. This description is intended to support
future students in preparing their working environment and to allow them to focus on
the actual task at hand.

A.1. SVN server

Striving to meet the technological standards of a University of Applied Sciences, this
project emphasizes the use of an SSL-enabled access to an HTTP-based SVN server.
Based on the following installation guides, Apache 2 has been used as a basis for
aforesaid configuration:

• http://ubuntuforums.org/showthread.php?t=51753

• https://bugs.launchpad.net/ubuntu/+source/apache2/+bug/77675/+attachment/88984/

+files/apache2-ssl.tar.gz

A.2. Hudson build server

During the early phases of this master thesis, it remained still unsure whether there
would even follow an actual implementation of the researched transformation tech-
niques. It was sure, however, that if there were any development tasks, they would
have to comply to the test-driven continuous development methodology HSR Rapper-
swil is renowned for. Against this backdrop, Hudson CI was chosen as build server
software for its formidable integration with the Apache Maven build system (see also
A.5) (http://hudson-ci.org/).

A.3. Trac

To provide access to shared documentation entities and progress reports, the open
source project managament and bug-tracking tool TRAC has been used (http://trac.
edgewall.org/).
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A.4. Eclipse PDE

The Eclipse plug-in development environment (PDE) all by itself is a very simple con-
struct. It basically represents a default Eclipse platform having additional plug-ins
useful for Eclipse plug-in development installed. Apart from the very simple installa-
tion, the only matter to be aware about in this context is which PDE version to select
for development.

A.4.1. Automatic dependency resolution

When developing an Eclipse plug-in from within Eclipse, it is important to notice that
many plug-ins and libraries the newly created plug-in might depend on are already
loaded within the running Eclipse environment. This allows Eclipse to satisfy them
automatically wherever possible. While this may provide remarkable convenience to
the user, it is also a source of potential errors when developing in a team with differ-
ent Eclipse versions installed or when trying to create the plug-in on a build server,
where no Eclipse installation is present and this automatic resolution fails. Version
mismatches can lead to anomalities where the build may succeed on one computer,
but fail on others or the build server.

Eclipse proposes multiple solutions for dependency-aware development:

• Use a separate Eclipse installation as a target platform, which has to be exactly
the same for all contributors

• Provide exact dependency specifiers in the MANIFEST.MF file for every depen-
dency present - even Eclipse core plug-ins.

• Agree on a specific CVS version level both as development environment and
target platform and use repository-based dependency resolution

Using separate target platforms introduces additional complexity to the project as
well as more room for version mismatch-based errors. Additionally, it provides little
to no support for running an automated build server. Exact dependency specifiers in
the MANIFEST.MF unnecessarily increase the complexity of the dependency hierar-
chy and are error-prone when it comes to indirect dependencies, where again version
mismatches may occur.

The most conservative and successful conclusion in this context is the idea that
Eclipse’s automatic dependency resolution by itself is very reliable and comfortable.
The only necessities are assuring that the build environment complies to the resolved
libraries and that a build server without Eclipse installed has access to them. This
strategy is called repository-based dependency resolution and implemented by the
Eclipse Tycho plug-in [Son10].

A.4.2. Selecting a version

According to the findings in the previous subsection, it is important to download an
Eclipse PDE version from the Eclipse download page that is as compatible as possible
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to a recent source code version in the Eclipse CVS repository. As this master thesis
focuses on developing Eclipse CDT plug-ins, the repository in question will be the
Eclipse CDT repository (:pserver:anonymous@dev.eclipse.org:/cvsroot/tools). To
download the initial set of all necessary plug-ins for CDT development, Eclipse CDT
developers have provided a project set file that automatically downloads and installs
the plug-ins as workspace projects when opened with Eclipse (http://www.eclipse.
org/cdt/psf/cdt-main.psf).

After having created these plug-ins projects, their CVS version can be switched
using the “Team” context menu, as figure A.1.

Figure A.1.: Switch CVS version

As mentioned before, the version selected here should be as recent as possible and
yet as compatible as possible to a downloadable Eclipse PDE distribution (http://
download.eclipse.org/eclipse/downloads/). “Compatible” in this context describes
version number similarity. Figure (A.2) provides an example of an Eclipse installation
where a very close match has been achieved.
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Figure A.2.: Eclipse installation with very close match between program and CVS
version

Once downloaded and successfully installed, Eclipse will use the installed projects
to satisfy its dependencies. Note that the method described in this section actually
requires an Eclipse PDE version already installed for browsing the CVS repository for
compatible versions. This PDE installation is afterwards replaced by the chosen one.
Alternatively, any other CVS browser can be used to determine the desired version.

A.4.3. Additional plug-ins

The additional Eclipse plug-ins listed in table A.1 have been used for all development
tasks during this master thesis:
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Name Description URL
Subclipse Subclipse is an Eclipse

Team Provider plug-in
providing support for
Subversion within the
Eclipse IDE.

http://subclipse.tigris.org/update_1.6.x

m2eclipse Maven build system inte-
gration for Eclipse.

http://m2eclipse.sonatype.org/sites/m2e

FindBugs Static analysis program to
identify bugs in Java code.

http://findbugs.cs.umd.edu/eclipse

EclEmma Free Java code coverage
tool for Eclipse.

http://update.eclemma.org

Eclipse Metrics Code Metrics and depen-
dency analysis tool.

http://metrics.sourceforge.net/update

Table A.1.: Additional Eclipse plug-ins used

A.5. Tycho

As introduced in section A.4.2, Tycho is a repository-based dependency resolution and
build environment for Eclipse plug-ins [Son10]. It is implemented as Apache Maven
plug-in (http://maven.apache.org/) and provides the following features to an Eclipse
project:

• Dependency resolution using Maven and Eclipse (p2) repositories
(http://wiki.eclipse.org/Equinox_p2_Getting_Started)

• Integrated Eclipse plug-in tests including Surefire test report generation
(http://maven.apache.org/plugins/maven-surefire-plugin/)

• Plug-in feature generation and publication

• Eclipse update site compilation

These remarkable features come by the negligible price of adhering strictly to the
Tycho project layout. Unfortunately, Tycho has just yet been accepted as official
Eclipse project and is thus still very poorly documented. A complete description
of the required project layout and meta-files is therefore provided in the following
subsections.

A.5.1. Project layout

A full Tycho-based build requires your project to be shaped in the following manner:

• Parent
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– Meta-data-only Eclipse project without any natures (even Java), summa-
rizing all participating sub-projects in a single POM-file for Maven to run.

• Main plug-in

– “Eclipse plug-in” project, containing the plug-in under development.

• Plug-in tests

– Test project containing all unit tests for the main plug-in. This project
should be of the “Eclipse plug-in” project type and runnable as Eclipse
plug-in unit test.

• Feature

– “Eclipse feature” project, referencing the main plug-in project.

• Update site

– Referencing both the main plug-in and feature projects, this artifact of type
“Eclipse update site” project generates a directly accessible update site for
convenient installation.

Figure A.3 provides a graphical example of a Tycho-based Eclipse project layout.
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Figure A.3.: Example project featuring Tycho layout

A.5.2. Maven POM configuration files

Each of the previously describe projects requires a separate pom.xml descriptor for
being built by Maven. Fortunately, none of these descriptors contains more than half
a dozen configuration properties and look almost the same for every possible project.
The different descriptors are thus listed in the following and their contents explained
where applicable.

1 <p ro j e c t xmlns=”ht tp : //maven . apache . org /POM/4 . 0 . 0 ” xmlns :x s i=”ht tp : //www.w3 .
org /2001/XMLSchema−i n s t ance ”

2 xs i : s chemaLocat ion=”ht tp : //maven . apache . org /POM/4 . 0 . 0 h t tp : //maven . apache .
org /maven−v4 0 0 . xsd”>

3 <modelVersion>4 . 0 . 0</modelVersion>
4 <groupId>ch . hsr . ifs</groupId>
5 <a r t i f a c t I d>ch . hsr . ifs . ds8 . parent</ a r t i f a c t I d>
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6 <ve r s i on>0 . 0 . 1</ ve r s i on>
7 <packaging>pom</packaging>
8 <p r op e r t i e s>
9 <tycho−ve r s i on>0 . 9 . 0</tycho−ve r s i on>

10 </ p r op e r t i e s>
11 <r e p o s i t o r i e s>
12 <r e po s i t o r y>
13 <id>helios−release</ id>
14 <u r l>http: // download . eclipse . org / releases / helios /</ u r l>
15 <l ayout>p2</ layout>
16 </ r epo s i t o r y>
17 <r e po s i t o r y>
18 <id>helios−cdt−release</ id>
19 <u r l>http: // download . eclipse . org / tools / cdt / releases / helios /</ u r l>
20 <l ayout>p2</ layout>
21 </ r epo s i t o r y>
22 </ r e p o s i t o r i e s>
23 <modules>
24 <module> . . / ch . hsr . ifs . ds8</module>
25 <module> . . / ch . hsr . ifs . ds8 . tests</module>
26 <module> . . / ch . hsr . ifs . ds8 . feature</module>
27 <module> . . / ch . hsr . ifs . ds8 . update</module>
28 </modules>
29 <bu i ld>
30 <p lug in s>
31 <plug in>
32 <groupId>org . sonatype . tycho</groupId>
33 <a r t i f a c t I d>tycho−maven−plugin</ a r t i f a c t I d>
34 <ve r s i on>\${ tycho−version }</ ve r s i on>
35 <ex t en s i on s>true</ ex t en s i on s>
36 </ p lug in>
37 <plug in>
38 <groupId>org . sonatype . tycho</groupId>
39 <a r t i f a c t I d>target−platform−configuration</ a r t i f a c t I d>
40 <ve r s i on>${ tycho−version }</ ve r s i on>
41 <c on f i gu r a t i on>
42 <r e s o l v e r>p2</ r e s o l v e r>
43 <environments>
44 <environment>
45 <os>linux</ os>
46 <ws>gtk</ws>
47 <arch>x86</ arch>
48 </ environment>
49 <environment>
50 <os>linux</ os>
51 <ws>gtk</ws>
52 <arch>x86_64</ arch>
53 </ environment>
54 <environment>
55 <os>win32</ os>
56 <ws>win32</ws>
57 <arch>x86</ arch>
58 </ environment>
59 <environment>
60 <os>win32</ os>
61 <ws>win32</ws>
62 <arch>x86_64</ arch>
63 </ environment>
64 <environment>
65 <os>macosx</ os>
66 <ws>cocoa</ws>
67 <arch>x86_64</ arch>
68 </ environment>
69 </ environments>
70 </ con f i gu r a t i on>
71 </ p lug in>
72 </ p lug in s>
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73 </ bu i ld>
74 </ p r o j e c t>

Listing A.1: Tycho parent POM example

Listing A.1 shows an example parent POM configuration, whereof the following
fields have been highlighted in red:

• Bundle version

– Chosen version number. Should match the version specifiers in MANI-
FEST.MF.

• Tycho version

– Defined as an environment variable, this version number is assured to be
the same in all sub-configuration files and in this example equals to 0.9.0,
at the time of writing Tycho’s latest release candidate.

• Repositories

– Depending on the type and version of the plug-in in development, addi-
tional Eclipse p2 repositories should be configured here, allowing Tycho to
implement its automatic dependency resolution.

• Modules

– Only a matter of formality, all collaborating POMs for this build are to be
registered in this section with there relative paths.

• Environments

– All desired target platforms are to be configured in this section. Tycho
will then build the plug-in for each platform using the platform-dependent
Eclipse packages and check for build warnings and errors.

1 <p ro j e c t xmlns=”ht tp : //maven . apache . org /POM/4 . 0 . 0 ” xmlns :x s i=”ht tp : //www.w3 .
org /2001/XMLSchema−i n s t ance ”

2 xs i : s chemaLocat ion=”ht tp : //maven . apache . org /POM/4 . 0 . 0 h t tp : //maven . apache .
org /maven−v4 0 0 . xsd”>

3 <modelVersion>4 . 0 . 0</modelVersion>
4 <parent>
5 <groupId>ch . hsr . ifs</groupId>
6 <a r t i f a c t I d>ch . hsr . ifs . ds8 . parent</ a r t i f a c t I d>
7 <ve r s i on>0 . 0 . 1</ ve r s i on>
8 <r e l a t i v ePa th> . . / ch . hsr . ifs . ds8 . parent</ r e l a t i v ePa th>
9 </ parent>

10 <groupId>ch . hsr . ifs</groupId>
11 <a r t i f a c t I d>ch . hsr . ifs . ds8</ a r t i f a c t I d>
12 <ve r s i on>0 . 0 . 1 . qualifier</ ve r s i on>
13 <packaging>eclipse−plugin</packaging>
14 </ p r o j e c t>

Listing A.2: Tycho main plug-in POM example

The configuration file in listing A.2 presents itself already more straightforward than
its predecessor. Important fields are highlighted in red and described in the following:
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• Parent

– A pendant to the parent POM’s “modules” field, this setting should provide
a link to the project’s parent POM.

• Packaging

– Tycho uses Eclipse-specific packaging types, each accounting for a specific
Eclipse artifact. The packaging type for the main plug-in is called eclipse-
plugin.

1 <p ro j e c t xmlns=”ht tp : //maven . apache . org /POM/4 . 0 . 0 ” xmlns :x s i=”ht tp : //www.w3 .
org /2001/XMLSchema−i n s t ance ”

2 xs i : s chemaLocat ion=”ht tp : //maven . apache . org /POM/4 . 0 . 0 h t tp : //maven . apache .
org /maven−v4 0 0 . xsd”>

3 <modelVersion>4 . 0 . 0</modelVersion>
4 <parent>
5 <groupId>ch . hsr . ifs</groupId>
6 <a r t i f a c t I d>ch . hsr . ifs . ds8 . parent</ a r t i f a c t I d>
7 <ve r s i on>0 . 0 . 1</ ve r s i on>
8 <r e l a t i v ePa th> . . / ch . hsr . ifs . ds8 . parent</ r e l a t i v ePa th>
9 </ parent>

10 <groupId>ch . hsr . ifs</groupId>
11 <a r t i f a c t I d>ch . hsr . ifs . ds8 . tests</ a r t i f a c t I d>
12 <ve r s i on>0 . 0 . 1 . qualifier</ ve r s i on>
13 <packaging>eclipse−test−plugin</packaging>
14 <bu i ld>
15 <p lug in s>
16 <plug in>
17 <groupId>org . sonatype . tycho</groupId>
18 <a r t i f a c t I d>maven−osgi−test−plugin</ a r t i f a c t I d>
19 <ve r s i on>${ tycho−version }</ ve r s i on>
20 <c on f i gu r a t i on>
21 <t e s t Su i t e>ch . hsr . ifs . ds8 . tests</ t e s t Su i t e>
22 <t e s tC l a s s>ch . hsr . ifs . ds8 . tests . TestSuite</ t e s tC l a s s>
23 <useUIHarness>true</useUIHarness>
24 </ con f i gu r a t i on>
25 </ p lug in>
26 </ p lug in s>
27 </ bu i ld>
28 </ p r o j e c t>

Listing A.3: Tycho test plug-in POM example

Listing A.3 illustrates an example of a Tycho test project configuration. Settings to
notice by possible users are highlighted in red and listed below:

• Parent

– A pendant to the parent POM’s “modules” field, this setting should provide
a link to the project’s parent POM.

• Packaging

– The Tycho eclipse-test-plugin package automatically creates a set of surefire
XML reports from the TestSuite stated in the build configuration.

• TestSuite
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– Represents a reference to the eclipse-plugin-test module’s name, i.e. should
equal “artifactId”

• TestClass

– Java class reference to your JUnit test suite class
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B. Project management

Given the fact that this project set foot in relatively unknown ares, a large portion
of the planned work load has been allotted towards research tasks. In fact, the initial
project plan proposed equal shares of research and implementation tasks, as shown by
the project plan snapshot in figure B.1.

Figure B.1.: Project plan snapshot (September 30, 2010)

This estimation proved to be very accurate. The relation between research and im-
plementation work shifted slightly towards more implementation work as the project
evolved, since many research tasks represented explorative work that issued practical
benefits for the implementation part as well. However, this did not affect the over-
all picture of the work load distribution, as the last iteration meeting’s project plan
snapshot in figure B.2 illustrates. Both research and implementation tasks remained
throughout the whole project two equally important working areas.
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Figure B.2.: Project plan snapshot (February 8, 2011)

HSR Rapperswil awards a Master thesis with 27 ECTS-credits, which should amount
to approximately 810 working hours. Split over a period of 20 weeks, this results to a
minimum of 40.5 hours per week. The effective time invested into this project exceeds
this minimum easily: Approximately 930 working hours have been invested into this
master thesis. Figure B.3 shows this relation graphically.

Figure B.3.: Working hours per week

Figure B.3 features two remarkable work load peaks in weeks 12 and 15. The first
one relates to the implementation of the tree patterns package, which has been consid-
ered too challenging to be implemented during this project. Thanks to one student’s
stubbornness and a tremendous increase in work load, this has been proven to be un-
true. The second peak in week 15 relates to the “evaluation” of bind transformations,
which in the end became a fully-fledged implementation of both TR1 bind and STL
bind1st/bind2nd transformations.
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Concludingly, it is safe to say that the project plan has been very accurate and the
work load played out almost exactly as predicted. Nevertheless, without the extra
time invested into this project, the plug-in would not provide the remarkable features
it does now. Therefore, I leave it to Leonard Bernstein [Thi10] to conclude this section:

“To achieve great things, two things are needed: a plan, and not quite enough time.”

Date: February 9, 2011 Page 102 of 104



Loop Analysis and Transformation towards STL Algorithms

Bibliography

[ACEP10] Mahmood Ali, Telmo Correa, Michael D. Ernst, and Matthew M. Papi.
The checker framework: Custom pluggable types for java. Technical report,
University of Washington, 2010.

[Baj01] Samir Bajaj. C++ and STL: Take advantage of STL algorithms by im-
plementing a custom iterator. MSDN Magazine, April 2001. http://msdn.

microsoft.com/en-us/magazine/cc301955.aspx.

[Cor10a] Microsoft Corporation. Expressions (C++). Website access October 11 2010,
2010. http://msdn.microsoft.com/en-us/library/625x66bt.aspx.

[Cor10b] Microsoft Corporation. Statements (C++). Website access October 11 2010,
2010. http://msdn.microsoft.com/en-us/library/bzzyh1y4.aspx.

[Fet09] David Fetter. High performance SQL with postgreSQL 8.4. Website access
November 2 2010, 2009. http://assets.en.oreilly.com/1/event/27/High%

20Performance%20SQL%20with%20PostgreSQL%20Presentation.pdf.

[HO82] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern matchin in trees.
Technical report, Purdue University, 1982.

[HS08] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combina-
tors: An Introduction. Cambridge University Press, second edition, August
2008.

[ISO10a] ISO. Programming languages - C++. Technical report, International Orga-
nization for Standardization, 3 2010.

[ISO10b] ISO. Working draft, standard for programming language C++. Technical
report, International Organization for Standardization, 11 2010.

[LA05] Roger Levy and Galen Andrew. Pattern matchin in trees. Technical report,
University of Edinburgh and Microsoft Research Team, 2005.

[Lov10] Tim Love. CUED talk: C++ and the STL (standard template library).
Technical report, University of Cambridge, January 2010. http://www.eng.

cam.ac.uk/help/tpl/talks/C++.html.

[Mad05] John Maddock. TR1 by subject - function object binders. Website access
October 10 2010, 2005. http://www.boost.org/doc/libs/1_39_0/doc/html/

boost_tr1/subject_list.html#boost_tr1.subject_list.bind.

Date: February 9, 2011 Page 103 of 104

http://msdn.microsoft.com/en-us/magazine/cc301955.aspx
http://msdn.microsoft.com/en-us/magazine/cc301955.aspx
http://msdn.microsoft.com/en-us/library/625x66bt.aspx
http://msdn.microsoft.com/en-us/library/bzzyh1y4.aspx
http://assets.en.oreilly.com/1/event/27/High%20Performance%20SQL%20with%20PostgreSQL%20Presentation.pdf
http://assets.en.oreilly.com/1/event/27/High%20Performance%20SQL%20with%20PostgreSQL%20Presentation.pdf
http://www.eng.cam.ac.uk/help/tpl/talks/C++.html
http://www.eng.cam.ac.uk/help/tpl/talks/C++.html
http://www.boost.org/doc/libs/1_39_0/doc/html/boost_tr1/subject_list.html#boost_tr1.subject_list.bind
http://www.boost.org/doc/libs/1_39_0/doc/html/boost_tr1/subject_list.html#boost_tr1.subject_list.bind


Loop Analysis and Transformation towards STL Algorithms

[Mar10] Alessio Marchetti. Hyperlinked C++ BNF grammar. Website access October
11 2010, May 2010. http://www.nongnu.org/hcb.

[Mey01] Scott Meyers. Effective STL: 50 Specific Ways to Improve Your Use of the
Standard Template Library. Addison-Wesley Professional, June 2001.

[Mic10] Daniel Michel. Lambdas in modern programming languages. Technical re-
port, Hochschule für Technik Rapperswil, 2010.

[Sip06] Michael Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, second edition, 2006.

[Son10] Inc. Sonatype. Tycho overview, 2010. http://tycho.sonatype.org/.

[Thi10] ThinkExist. Leonard bernstein quotes. Website access February 2 2011,
2010. http://thinkexist.com/quotes/leonard_bernstein/.

[Wil05] Brian Wilson. Why C++ templates (and STL) are bad. Website access
September 27 2010, 5 2005. http://www.ski-epic.com/templates_stl_rant/

index.html.

[WtLY00] Hsiao-Tzu Lu Wuu, Hsiao tzu Lu, and Wuu Yang. A simple tree pattern-
matching algorithm. In In Proceedings of the Workshop on Algorithms and
Theory of Computation, 2000.

[WY07] Daniel Waddington and Bin Yao. High-fidelity C/C++ code transformation.
Science of Computer Programming, 68(2):64–78, September 2007. http:

//portal.acm.org/citation.cfm?id=1288023.

Date: February 9, 2011 Page 104 of 104

http://www.nongnu.org/hcb
http://tycho.sonatype.org/
http://thinkexist.com/quotes/leonard_bernstein/
http://www.ski-epic.com/templates_stl_rant/index.html
http://www.ski-epic.com/templates_stl_rant/index.html
http://portal.acm.org/citation.cfm?id=1288023
http://portal.acm.org/citation.cfm?id=1288023

	Introduction
	Task description
	Initial position
	Problem definition
	Objectives of thesis
	Expressive examples

	The Standard Template Library (STL)
	Overview
	Algorithms library
	Containers library
	Benefits and liabilities

	C++ and C++0x
	Argument binding
	Lambdas
	Type inference

	Natural limits of code analysis
	Assumptions
	Proof of non-existence of a general algorithm
	Implications for this project


	Analysis
	Properties of loops in C++
	Syntactical properties
	Semantic properties
	Conclusion

	Use-of-potential analysis
	Considered categories of transformations
	Code base analysis results
	Estimated potential

	Analysis techniques
	Pattern-based analysis
	Natural metadata interpretation

	Transformation techniques
	Index-based access to iterators
	Iterators to value_type


	Implementation
	Overview
	Architecture
	Analysis
	Transformation
	Eclipse integration

	Code analysis module
	Pattern matching
	Iterator compatibility

	Code transformation module
	Range deduction
	Iterator to value type access
	Function parameter types deduction
	Function parameter types in template environments
	Associate equivalent type names


	Conclusion
	Results
	Semantic analysis
	Code transformation
	Eclipse integration
	Actual plug-in functionality

	Goal achievement
	Mandatory
	Optional
	Summary

	Outlook
	Implement skipped features
	Follow-up on natural metadata analysis
	Broaden usage of existing concepts
	Textual syntax for pattern definition
	Semi-automatic pattern generation for existing code
	Efficient pattern search algorithm
	Pattern search mask in Eclipse
	Just about any other plug-in!

	Personal review and acknowledgement

	Development environment installation
	SVN server
	Hudson build server
	Trac
	Eclipse PDE
	Automatic dependency resolution
	Selecting a version
	Additional plug-ins

	Tycho
	Project layout
	Maven POM configuration files


	Project management

