
“Parallel Protein Classification with
IBM BigInsights”

Semester Thesis

Department of Computer Science
University of Applied Science Rapperswil

Spring Term 2013

Authors: Christof Büchi, Susanne Mathys
Advisor: Prof. Josef M. Joller
Project Partner: IBM Switzerland
External Co-Examiner: Romeo Kienzler

Abstract

Abstract

Big Data is an expanding topic in information technology based on the huge collection of data which
is available today on IT systems all over the world. Processing huge amounts of large files and
analyzing unstructured data in real time could bring advantages for institutions or enterprise which
store a large volume of generated data from their transactions.
Dealing with the rapid growth of data and analyzing it is crossing the boundaries of the given IT
infrastructures. Google and Yahoo! have introduced their own way how to handle such datasets. A
completely new architecture beyond well-known established tools and principles is required to store
massive data efficiently in storage and process them with minimal overhead.
Big Data systems and frameworks such as IBM BigInsights with Hadoop provide a distributed fault-
tolerant file system running on commodity hardware. They also allow writing custom applications
in Java based on the MapReduce principle.
How difficult would it be to perform classification with a given single processing application on a Big
Data system? During our research we wanted to show that it is as simple as setting up a cluster and
running the tool out of a bash script that is used within a Hadoop streaming job. We took a look
at the overhead of using such a complex framework for processing simple applications in a parallel
manner. We also had a scope to the scale out characteristics of the cluster size.

i

Abstract

Declaration

We, Christof Büchi and Susanne Mathys declare:

� This term project and the work presented in it is our own, original work.

� All the sources we consulted and cited are clearly attributed. We have acknowledged all main
sources of help.

Rapperswil, May 31, 2013

Christof Büchi

Susanne Mathys

ii

Contents

Contents

1 Management Summary 1
1.1 Problem Definition . 1
1.2 Solution Proposal . 1
1.3 Sample Use Case . 1
1.4 Experiments . 1
1.5 Future Work . 1

2 Introduction 2
2.1 Objectives . 2
2.2 Motivation . 2
2.3 Ongoing situation . 2
2.4 Classification of proteins . 3

2.4.1 Amino acids . 3
2.4.2 Proteins . 3
2.4.3 Protein sequence databases . 4

2.5 FASTA-format . 5
2.5.1 Classification . 5
2.5.2 Structural analysis . 5
2.5.3 Sequence analysis . 5

3 System and Methods 6
3.1 Hadoop . 6
3.2 Hadoop Streaming . 6
3.3 IBM BigInsights . 6
3.4 IBM BigSheets . 7
3.5 Classifiers . 7

3.5.1 RaptorX - structural classification . 7
3.5.2 InterProScan - sequence analysis . 8

3.6 MapReduce tasks . 10

4 Configuration and setup 11
4.1 Hadoop cluster with IBM BigInsights . 11
4.2 Cluster hardware configuration . 12
4.3 Preparing input dataset for HDFS . 14
4.4 Load data to HDFS . 14
4.5 Running tasks with Hadoop Streaming . 14
4.6 Configuration parameters for Hadoop Streaming . 14
4.7 Generating output for IBM BigSheets . 15
4.8 Scale out with nodes . 15

5 Results 17
5.1 Facts . 17

iii

Contents

5.2 Cost of parallel processing . 18
5.3 Scale out . 20
5.4 Interpretation of the generated output files . 21

5.4.1 InterProScan . 21
5.4.2 RaptorX . 22

6 Discussion 23
6.1 Basic Hadoop . 23

6.1.1 HDFS - replication and blocksize . 23
6.1.2 CPU capacity utilization . 23

6.2 Hadoop Streaming framework . 23
6.2.1 Streaming mnnerism . 23
6.2.2 The Streaming adaptability . 24
6.2.3 Failure handling . 24

6.3 Conclusion . 24

A Program listings and bash scripts 25

B Streaming job output files 29

C Project documentation 41
C.0.1 Milestones . 41
C.0.2 Week by week breakdown . 41

D CD content 43

Glossary 47

Bibliography 48

iv

1 Management Summary

1 Management Summary

1.1 Problem Definition

In this project we will solve a large scale text classification problem using the massive parallel data
processing infrastructure based on IBM InfoSphere BigInsights. Focus will not be on the classification
algorithm itself but on ease of use in implementing such a system based on already existing classifiers
and data sources to be integrated. Therefore we will focus on scalability and reuse.

1.2 Solution Proposal

At the beginning the data has to be retrieved and imported into the system. Depending on the data
source, there are many options (e.g. BigInsights WebCrawler, Open Source Tools, HandWritten
Crawler, ..) and therefore an appropriate solution has to be chosen and implemented. Depending
on the type of data to be analyzed, the appropriate storage system has to be chosen (e.g. files
in HDFS, HBASE, HIVE, ..). Based on Hadoop-Streaming, a library capable of integrating any
UNIX command-line application able to read and write to Standard-Input/Standard-Output the
integration of existing classification algorithms/software packages should be shown.

1.3 Sample Use Case

As data source, a publicly available protein database will be used. In order to copy a large test data
set of protein sequences including their annotations into HDFS. Based on this protein sequence data
a classifier will be used to classify these proteins into the following subclasses based on their amino
acid sequence: alpha, beta, alpha + beta, alpha/beta, and zeta (irregular). Since the implementation
of the classifier itself is not in the scope of this work, the classification performance will not be
considered.

1.4 Experiments

The experimental evaluation will be performed in two dimensions: data set size and cluster size.
Based on these recordings, the scale out coefficient of the system will be determined. It will be
checked whether it holds the theoretical assumption of linear scale out, and if not, a bottleneck
analysis will be performed.

1.5 Future Work

A further extension to the sample use-case could be enriching the protein information with the
publication references. Based on the referenced abstracts and the already classified proteins, a text
analytics plugin (SystemT) provided by IBM BigInsights could be used to classify these abstracts as
well. The correlation between the protein classifier and the text classifier can also be drawn.

1

2 Introduction

2 Introduction

2.1 Objectives

During our research we covered the following goals:

� Demonstrating the simple use of IBM Biginsights

� Running an existing executable on the IBM BigInsights cluster

� Achieving linear scale out behavior in experiments

� Determining overhead of using Hadoop framework for parallel processing

For the present use case, a command-line tool was used to run the Hadoop Streaming [8] framework
in a cluster without considering the parallel implementation of the tool.

2.2 Motivation

In the past years science moved forwards thanks to improved technical capabilities. In the field of
genetics and genomics large amounts of raw data [?] has been retrieved. To take benefit of this
collection and draw some conclusions, all the data has to be analyzed for further insights.
It is still difficult to handle massive datasets. A lot of time is invested to scale out known algorithms,
such as classifying genoms and proteins. With our work, we want to show the simplicity of building
a distributed system.

2.3 Ongoing situation

To process a big set of input data in parallel system bears some problems.
First: The more different hardware components are used, the more hardware failures [18] are likely
to occur. Mitigating these can be handled by software.
Second: Big dataset have to be partitioned over several hosts for fault tolerance and raised I/O
operations per second. Third: After parallel processing on different systems, a task is needed that
aggregates the results of each system to one final result.
In 2008 [6] Google introduced the MapReduce principle for processing data on clusters. The Hadoop
[17] framework implements this principle.
IBM released InfoSphere BigInsights which is based on Hadoop and brings some additional features
[5] providing simplicity to manage Big Data.

2

2 Introduction

2.4 Classification of proteins

There are numerous schemes to classify a protein in different groups. The challenge is that all
implemented algorithms and tools do not provide as high a level of certainty and accuracy as
classification of the proteins by human experts. On the other hand, humans have a high time
consumption to complete such tasks.

2.4.1 Amino acids

Amino acids are essential elements of the organic system. Twenty three amino acids are known as
proteinogenic. These amino acids are found in proteins. There is an official representation for amino
acids which assigns a certain character to every amino acid.
Table 2.1 shows the IUB/IUPAC standard codes.[14]

Table (2.1) The IUB/IUPAC standard codes for amino acids

Code Meaning

A Alanine

B Aspartic acid or Asparagine

C Cysteine

D Aspartic acid

E Glutamic acid

F Phenylalanine

G Glycine

H Histidine

I Isoleucine

K Lysine

L Leucine

M Methionine

N Asparagine

O Pyrrolysine

P Proline

Q Glutamine

R Arginine

S Serine

T Threonine

U Selenocysteine

V Valine

W Tryptophan

Y Tyrosine

Z Glutamic acid or Glutamine

2.4.2 Proteins

Proteins are built as a chain of different amino acids. Some proteins are well-known and their
functions are clearly identified. A certain protein is classified by predicting its properties and function.
To predict a proteins’ function, an algorithm has to compare the sequence of amino acids with all
sequences in a database of already known proteins.

3

2 Introduction

2.4.3 Protein sequence databases

A number of databases which store information about proteins their amino acid sequences and
properties.
The UniProt knowledge base supports two different databases:

� Swiss-Prot database [19], where all 539,616 entries are manually annotated and reviewed.

� TrEMBL database [20] with 32,153,798 entries, which are automatically annotated and are
not beeing reviewed.

There are releases of the Uniprot database every four weeks. It is possible to download the whole
database as FASTA-file from Uniprot ’s FTP directory [4].

4

2 Introduction

2.5 FASTA-format

The FASTA-format [7] is used to store a sequence of amino acids. There are two different kinds of
records for each sequence:

� Header line
Contains the description and identification of the sequence starting with the symbol ”>”
directly followed by an ID of the database and then followed by a blank and a description
name.

� Sequence line
One or more lines with the sequence of amino acids. Each line should not be longer than 80
characters. The amino acids are written in the IUB/IUPAC [14] standard code of amino acids.

1 >sp|P69905|HBA_HUMAN Hemoglobin subunit alpha OS

MVLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
KKVADALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTP

5 AVHASLDKFLASVSTVLTSKYR

Listing (2.1) FASTA-Format

2.5.1 Classification

The spotlight is set on two different classifications: structure analysis and sequence analysis.

2.5.2 Structural analysis

In structural analysis every amino acid is assigned in a different structural category. We focus on
the three classes: alpha-Helix(H), beta-Strand(E) and Loops(C). For structural analysis we take
advantage of the RaptorX command line tool.

Figure (2.1) Protein secondary structure [3]

2.5.3 Sequence analysis

In sequence analysis, the given amino acid sequence will be compared or aligned to all known
sequences and their properties. InterProScan will provide an ID and some references to the GO
database, so that some information about the properties of the given sequence is returned.

5

3 System and Methods

3 System and Methods

3.1 Hadoop

Based on the idea of the MapReduce principle from Google [6], Yahoo! began to build an open-source
alternative called Hadoop. Hadoop handles massive amounts of data in a distributed system.
It allows to develop applications based on the Hadoop framework to run their own tasks, which are
controlled by a central administration-node. It is built with a small amount of administration-nodes
and many worker-nodes. The administration-nodes are used as a job-tracker and namenodes to
distribute and manage tasks on the worker-nodes. If one worker-node fails, the task is marked as
incomplete and will be sent to another worker-node. This allows a network with heterogeneous
system as a cluster which carry on the same work. This calculation is normally done on one system
and sequential for all sequences.
The Hadoop Framework is partitioned into different components: HDFS, MapReduce and common
utilities. The HDFS provides an filesystem-layer over all distributed nodes. MapReduce allows one
to write custom software and to run map reduce jobs. Common utilities are used to manage, start
and stop a Hadoop cluster.

3.2 Hadoop Streaming

Hadoop provides a utility called Hadoop Streaming [8] to build map or reduce tasks in other
languages than Java. It is possible to build and run a map and reduce task without programming
and configuring Java Classes.
Hadoop Streaming asks for a executable or script which reads and writes to stdin and stdout. The
given task is then built, executed and monitored directly on the cluster.

3.3 IBM BigInsights

IBM BigInsights contributes an easy to use webconsole, web-installer and many analytic and
developer-related tools. It contains Apache Hadoop with associated products for a ready-to-use
environment. Futhermore, it bundles a specific version of Hadoop and its components such as hive,
flume, oozie, hbase and others within one component, which can be selected during the installation.
The following are the benefits [5] of using IBM BigInsights:

� Easy to use installer

� Realtime-view of cluster status and fine graded perspective on tasks and jobs

� Distribution of configuration-files over all nodes

� Scripts for cluster-management (adding node, healthcheck of cluster, complete cluster start
and stop)

� Enhanced security with LDAP -access

6

3 System and Methods

� Flexible job scheduling mechanism

� Developer related functions such as eclipse plugin for linking references and automatic upload
of code fragments

� Simple deployment and distribution of custom java applications on all nodes

� Already pre-deployed sample applications, such as wordcount

3.4 IBM BigSheets

IBM BigSheets allows one to use the output of the MapReduce task with a spreadsheet-like environ-
ment. For large output-files IBM BigSheets allows loading the data in a lazy-loading manner. It has
many functions built-in such as counting rows, sorting output and building charts based on files
inside HDFS based on MapReduce principle. IBM BigSheets is very useful where the data size is
larger than normal spreadsheet tools can handle.

3.5 Classifiers

While researching the topic of classifying proteins, the following two classifiers were found: Inter-
ProScan and RaptorX. Both process FASTA-files with their own implemented algorithm. The tools
were used within a Hadoop Streaming job to calculate the sequence of some proteins in a parallel
manner.

3.5.1 RaptorX - structural classification

With the help of co-examiner Romeo Kienzler we established a contact to Jinbo Xu 1.
Jinbo provided us the standalone RaptorX-Classifier, which we built into our Hadoop cluster.
RaptorX is used to predict the secondary structure [15] of a protein based on a pre-calculated library.
The following command shows the usage of this classifier:

1 ./buildFeature -i query.seq -c 2

Listing (3.1) Raptor-Command

The output is a long list of information. The relevant information for our work are the secondary
structures [15]. The structure is predicted from PSIPRED [15] based on the amino acid likelihood.
The amino acids are grouped the following subclasses:

� H (alpha helix)

� E (beta strand)

� C (loops)

The following table 3.1 (page 8) shows the output of the classifier

1 Jinbo Xu, main-author of the RaptorX Classifier, http://ttic.uchicago.edu/˜jinbo/

7

http://ttic.uchicago.edu/~jinbo/

3 System and Methods

Table (3.1) Three-class secondary structure prediction

Nr A-Acid Structure H-likehood E-likelihood C-likelihood

1 M C 0.000 0.000 1.000

2 K C 0.015 0.070 0.915

3 K C 0.036 0.219 0.745

4 I E 0.275 0.363 0.362

5 W H 0.463 0.409 0.128

6 L H 0.559 0.411 0.030

7 A H 0.575 0.404 0.022

8 L H 0.597 0.387 0.016

9 A H 0.610 0.376 0.014

10 G H 0.608 0.366 0.026

...

3.5.2 InterProScan - sequence analysis

InterProScan is the classifier provided by the European Bioinformatics Institute 1. It predicts not
only through one analysis, it also supports many different algorithms which can be used through a
single interface. All algorithm could be used at the same time for an optimal prediction. Figure 3.1
shows all the supported algorithms on InterProScan.

Figure (3.1) Supported algorithm on InterProScan [12]

Dr. Rémy Bruggmann 2 recommended to use the PfamA-26.0 algorithm which makes a prediction
about the appropriate family and domain of the input-sequence. The following command shows the
usage of InterProScan:

1 The European Bioinformatics Institute http://www.ebi.ac.uk/
2 Dr. Rémy Bruggmann, Group Leader Bioinformatics University of Berne, http://

www.bioinformatics.unibe.ch

8

http://www.ebi.ac.uk/
http://www.bioinformatics.unibe.ch
http://www.bioinformatics.unibe.ch

3 System and Methods

1 ./interproscan.sh -i query.fasta -appl PfamA-26.0 -f xml

Listing (3.2) InterProScan-Command

The command outputs an XML file with description about the family and domain:

<hmmer3-match evalue="2.5E-28" score="98.4">
<signature ac="PF00042" desc="Globin" name="Globin">
<entry ac="IPR000971" desc="Globin" name="Globin" type="FAMILY">
<go-xref db="GO" id="GO:0005506"/>
<go-xref db="GO" id="GO:0020037"/>

</entry>
<models>

<model ac="PF00042" desc="Globin" name="Globin"/>
</models>
<signature-library-release library="PFAM" version="26.0"/>
</signature>
<locations>

<hmmer3-location env-end="107" env-start="7" score="97.9"
evalue="3.6E-28" hmm-start="1" hmm-end="108" hmm-length="0"
start="7" end="107"/>

</locations>
</hmmer3-match>

9

3 System and Methods

3.6 MapReduce tasks

Figure (3.2) Workflow of Streaming job

Hadoop Streaming allows us using already existing executable binaries. Hadoop Streaming only
support read and write from stdin/stdout. Given the executables we used, only working with files
for input and output data we had to encapsulate those tools within a bash script. The script runs
after the mapping-process and covers following necessary actions:

� Reads the input stream and converts the one-line input (see section 4.3) to the necessary
FASTA-format(see section 2.5)

� Reads out the sequence-id of the stream for sequence recognition and creates a temporary-file

� Calls the classifier with this temporary-file

� Gets the output of the classifier and filters the necessary information

� Passes the id with classified information to stdout.

For all jobs only one reduce task is used to reduce all different output files on the workernodes to
only one output file in HDFS.
Referencing to Listing A.2 (appendix p. 25) for more information about our implementation of the
map task for the classifier RaptorX.
Further consult the Listing A.4 of InterProScan bash script (appendix p. 27) for more details.

10

4 Configuration and setup

4 Configuration and setup

To run the use-case on a Hadoop cluster the following tasks and steps are necessary:

� Setting up a cluster with IBM BigInsights

� Downloading all sequences in one large input-file

� Preparing and modifing the input file for saving on HDFS

� Loading data into HDFS

� Configuring a MapReduce job with Hadoop Streaming and running it on the system.

� Formatting Hadoop Streaming output to a CSV-output file for import in IBM BigSheets

� Interpreting the generated data

4.1 Hadoop cluster with IBM BigInsights

For a basic Hadoop runtime-environment, a single node cluster is needed at a minimum. IBM
BigInsights provides a single-node-cluster installation as a test-environment or as a complete
installation including worker-nodes through the installation wizard. The wizard made the installation
much easier.

11

4 Configuration and setup

4.2 Cluster hardware configuration

Thanks to IBM Switzerland we executed our experiments on a bladecenter hardware cluster.

Figure (4.1) Test enviroment: hardware cluster located at IBM Switzerland

To conduct performance analyzes, we chose ten worker nodes with an identical performance.
Hadoop has a primary focus on heterogeneous systems, to enable it to operate on different commodity
hardware. However, for our use-case that was less relevant, since we wanted to illustrate scale out
performance and the resulting overhead.

The following table lists hardware specification and the used role inside the Hadoop cluster for each
blade.

12

4
C

o
n

fi
g

u
ratio

n
an

d
setu

p

Table (4.1) The servers of our test environment

Server Model Function CPU Memory IP FQDN

Blade1 IBM HS21 task node, data node 4 12 GB 10.110.20.101 Sa-biginsights-110-20-101-rh5.tec.app.ibm.com
Blade2 IBM HS21 task node, data node 4 12 GB 10.110.20.102 Sa-biginsights-110-20-102-rh5.tec.app.ibm.com
Blade3 IBM HS21 task node, data node 4 12 GB 10.110.20.103 Sa-biginsights-110-20-103-rh5.tec.app.ibm.com
Blade4 IBM HS21 task node, data node 4 12 GB 10.110.20.104 Sa-biginsights-110-20-104-rh5.tec.app.ibm.com
Blade5 IBM HS21 task node, data node 4 12 GB 10.110.20.105 Sa-biginsights-110-20-105-rh5.tec.app.ibm.com
Blade6 IBM HS21 task node, data node 4 12 GB 10.110.20.106 Sa-biginsights-110-20-106-rh5.tec.app.ibm.com
Blade7 IBM HS21 task node, data node 4 12 GB 10.110.20.107 Sa-biginsights-110-20-107-rh5.tec.app.ibm.com
Blade8 IBM HS21 task node, data node 4 12 GB 10.110.20.108 Sa-biginsights-110-20-108-rh5.tec.app.ibm.com
Blade9 IBM HS21 task node, data node 4 12 GB 10.110.20.109 Sa-biginsights-110-20-109-rh5.tec.app.ibm.com
Blade10 IBM HS21 task node, data node 4 12 GB 10.110.20.110 Sa-biginsights-110-20-110-rh5.tec.app.ibm.com
Blade14 IBM HS22V job tracker, name node 16 30 GB 10.110.20.114 Sa-biginsights-110-20-114-rh5.tec.app.ibm.com

1
3

4 Configuration and setup

4.3 Preparing input dataset for HDFS

In HDFS all files are stored over different nodes. The default block-size in IBM BigInsights is
configured with 128MB memory. To process an input dataset, Hadoop reads the file block by block
and delivers this to the map task. There are different input-formats, per default the file content is
provided line by line to the map task.
The input of the classifier has to be in FASTA-format [7]. However the FASTA-format consists of
more than one line text-input for a protein sequence.
This problem was solved by writing a short C++ program that reads FASTA-input file which was
downloaded from UniProt [4] and wrote out one line for each sequence. Whereas the one-line record
had to be split afterwards back to FASTA-format, we added as delimiter symbol ”%” after the
header line to differ the headline with the sequence.
For more information about our program refer to the listing A.1 in the Appendix (page 25).

4.4 Load data to HDFS

To load some data into HDFS IBM BigInsights provides an upload function in the web console. This
also can be done by simple line commands [10]:

1 hadoop fs -put localfile /user/hadoop/hadoopfile

Listing (4.1) HDFS put

4.5 Running tasks with Hadoop Streaming

Thanks to the Hadoop Streaming utility, a map task can be specified through any executable or
script.
The following is an example of the command that was issued during performance tests:

1 hadoop jar /opt/ibm/biginsights/IHC/hadoop-streaming.jar -input /user/biadmin/
fasta/input/db_dump_short -output output_10run -mapper /opt/scripts/raptorX-
run.sh

Listing (4.2) Streaming Job

4.6 Configuration parameters for Hadoop Streaming

Within the Hadoop Streaming command it is feasible to adjust parameters of the Hadoop instance
for the current running job.
In Table 4.2 (page 15) all parameters that were used by us are descripted.

14

4 Configuration and setup

Table (4.2) Used parameters for Hadoop Streaming job

Parameter Description

-D mapred.map.tasks=* defining number of Map Tasks based on input sequences

-D mapred.task.timeout=* for RaptorX set timeout to a value above 5 min

-D keep.failed.task.files=true If true, the files for failed tasks will be kept

-D mapred.map.max.attempts=* maximal attempt of restart a failed task(default 4)

-D stream.non.zero.exit.is.failure=false ignore non zero return code of executable(default false)

4.7 Generating output for IBM BigSheets

Hadoop writes the result of the mapping task to it’s file-system. With IBM BigInsights these output
files can be imported to BigSheets with a single click in the web console.
Simply write output to stdout in CSV format and import the file from HDFS to IBM BigSheets.
The CSV from our project is generated by writing the sequence id and the information gained from
the output of the classifier.

4.8 Scale out with nodes

IBM BigInsights provides shell scripts for managing the amount of nodes on a cluster. The following
command removes nodes from the cluser:

1 /opt/ibm/biginsights/bin/removenode.sh sa-biginsights-110-20-110-rh5.tec.app.ibm.
com

Listing (4.3) remove node

To evade the default replication factor within HDFS, the force option on the command has to be
issued:

1 /opt/ibm/biginsights/bin/removenode.sh hadoop -f sa-biginsights-110-20-109-rh5.
tec.app.ibm.com

Listing (4.4) force remove node

Using the force option automatically decrements the value of replica of files in HDFS. (If the number
of nodes fall off the defined property.) The property is named dfs.replication and the default value is
three.
To change the replication factor on files, the following command can be used:

1 hadoop dfs -setrep -R -w 1 /user/biadmin/

Listing (4.5) change replication factor to one for directory /user/biadmin

Adding nodes is also performed with scripts:

15

4 Configuration and setup

1 /opt/ibm/biginsights/bin/addnode.sh hadoop sa-biginsights-110-20-110-rh5.tec.app.
ibm.com,pw

Listing (4.6) add node

Other management commands are starting and stopping the cluster:

1 /opt/ibm/biginsights/bin/start-all.sh

Listing (4.7) start the cluster

1 /opt/ibm/biginsights/bin/stop-all.sh

Listing (4.8) stop the cluster

16

5 Results

5 Results

5.1 Facts

Below are the measurements of the experiments with the InterProScan tool

Table (5.1) Measurements InterProScan

sequences native 1 node 5 nodes 10 nodes

1 117 133 138 137

5 585 617 136 139

10 1167 1217 253 251

40 4661 4842 1092 622

100 11673 12082 2541 1369

250 29146 30194 6449 3246

500 58314 62348 12828 6261

1000 116622 124537 25773 12497

Below are the measurements of the experiments with the RaptorX tool

Table (5.2) Measurements RaptorX

sequences native 1 node 5 nodes 10 nodes

1 425 442 441 472

5 2128 2157 443 509

10 4304 4306 876 515

40 17026 17191 3459 1767

100 42569 44137 9065 4548

250 106427 110557 22409 11572

17

5 Results

5.2 Cost of parallel processing

Figure 5.1 and 5.2 demonstrate the overhead of processing the sequences with InterProScan on our
Hadoop cluster.

Figure (5.1) Mean-overhead of a InterProScan run with 100 various sequences

Figure (5.2) Mean-overhead of a InterProScan run with 250 various sequences

18

5 Results

Figure 5.3 and 5.4 demonstrate the overhead of processing the sequences with RaptorX on our
Hadoop cluster.

Figure (5.3) Mean-overhead of a RaptorX run with 100 equal sequences

Figure (5.4) Mean-overhead of a RaptorX run with 250 equal sequences

The values are calculated by following formula:

measured time / amount of sequences * cluster size

Adding more nodes raises the CPU-power for handling more sequences in parallel. On the other
hand managing more nodes will increase the average calculation time for one sequence, which results
in a higher overhead per sequence.

19

5 Results

5.3 Scale out

Scale out describes performance characteristics of adding more nodes to a cluster. This development
is preferable linear, which means adding one more host to an already existing one node cluster results
in double computing power. The additional needed power to distribute the tasks is called overhead
and should be as less as possible.

Figure (5.5) Throughput of InterProScan with 250 various sequences

As displayed in figure 5.5 the scale out behavior is almost linear. Adding more nodes results in
linear less compution time. We normalized the measurement values with the formula:

number of sequences / (measured time / 60)

The calculated values describes the throughput. The throughput itself describes the possible sequence
calculation per minute.
As displayed in figure 5.6 the scale out behavior on our cluster with the usage of RaptorX for equal
100 sequences and equal 250 sequences is also almost linear.

Figure (5.6) Throughput of RaptorX

20

5 Results

5.4 Interpretation of the generated output files

5.4.1 InterProScan

As mentioned in section (System and Methods) InterProScan will provide us IDs of the InterProScan
database and of the GO database. To give an overview of the used GO-IDs and IPR-numbers on
the InterProScan output file, we ran the sample application “WordCount” on cluster.
The following charts expose the occurencye of the GO-ID that InterProScan reported for 500
randomly choosen sequences:

Figure (5.7) Occurency of GO-IDs

The GO-ID “GO:0005524” had the greatest occurence with 62 counts. The entry is associated
with the property “ATP binding”. The second most occurence was the GO-ID “GO:0005622” with
the property “intracellular”. 227 GO-IDs appread only once.
In Table B.1 (appendix p. 30) all GO-IDs with three or more occurences of GO-IDs in the output
file are listed.
The following chart illustrate the frequency of the IPR-numbers that InterProScan reports from 500
sequences:

21

5 Results

Figure (5.8) Occurency of IPR-numbers

Five of the 500 sequences belong to the domain “RNA-binding S4”, which was reported through
IPR-number IPR002942 and four of 500 sequences were asigned to the family “Ribosomal protein
L5”, which is indicated by IPR-number IPR002132. The IPR-numbers are more specific and detailed
entries than the GO-IDs. They provide a family or a domain to a certain protein.
All IPR-numbers with two or more appearances in the output file of InterProScan run were listed in
Table B.2 (appendix p. 33) and Table B.3 (appendix p. 34).

5.4.2 RaptorX

To interpret the output of the RaptorX tool, the frequency on the three different structures is
counted and reported for each sequence.
The loop structure appeared at minimum five times in all of the 247 different sequences of amino
acids. There were 10 sequences without a alpha helix structure and 30 sequences without a beta
strand structure.
All details about the amount of these structures per sequences are listed in Table B.4 (appendix p.
35).

22

6 Discussion

6 Discussion

6.1 Basic Hadoop

6.1.1 HDFS - replication and blocksize

An important idea behind the worker-node is locality of the data and the processing of the same
data. It is important to process the data on the node where it resides. The locality is a big benefit
for I/O-intensive applications. In best practices [11], the input data is split in 64 MB or 128 MB
blocks. All of these blocks are replicated over three worker-nodes for fault tolerance.
In our case, the input size is much smaller than in usual use-cases: A 2000 sequence file uses about 1
MB of disk space and need 2.5 hours to process it with InterProScan on our 10node cluster.

In this situation Hadoop allows us the following options to tune I/O access time:

� Use a very small blocksize (around a few kilobytes) which results that our file is split into
multiple blocks and those blocks could be local processed.

� Replicate our data to all nodes to guarantee that tasks would be scheduled on all nodes equal
at the beginning of the Hadoop Streaming job.

We decided to not consider I/O access time. The time for the TCP connection to send a few
characters and metadata in relation to the processing time was very small. The jobs were much
more CPU-intensive then I/O-intensive.

6.1.2 CPU capacity utilization

During our research and experiments we had a lot of timeouts from the task-node. First we optimized
our cluster for maximum performance. All four cores on our machines were used. The nodes had
four tasks with 100 percent CPU usage. The task-tracker could not respond to heartbeats from
the management node which resulted in the worker-node being marked as offline/unreachable.
In default-settings of IBM BigInsights, the formula is “quantity of cores - 1” for the quantity of
maximum mapping tasks. We ran one task per node with three cores (from available four).

6.2 Hadoop Streaming framework

6.2.1 Streaming mnnerism

The Hadoop Streaming framework allows to execute an external executable as a MapReduce job.
Negative aspects of this option are that the executable has to be distributed to all worker-nodes. For a
small executable such as the UNIX cat-command, the parameter -file= exists which copies the file to
the worker-node. In our case that was inappropriate because our tools (RaptorX and InterProScan)
using libraries in background with many thousands of files (totally a site of approximately 40
gigabytes).
A speciality of the Streaming framework is to provide the input data as stdin and receive the output
of the executable as stdout. To receive the data from input stream is unhandy for executable which

23

6 Discussion

uses a file for their calculations. Both of our used classifiers needed a file, because they could process
different algorithms in background which read the file many times. That made a virtual file also
impossible, because a virtual file based on a stream could only be read once. At second reading
the data would be different to the former reading. To meet our requirements we had to pack our
executable in shell scripts. In the beginning of the script we processed the input stream and wrote it
to a temporary file, which was then used by the executable, and then the output file piped to stdout.

6.2.2 The Streaming adaptability

Hadoop Streaming allowed us to use all available Hadoop job parameters for our task. We used a
few in our jobs such as “-D mapred.map.tasks=500”. This was necessary because Hadoop Streaming
has a default value of two map tasks. It is not the idea of Hadoop to generate large map tasks. For
example: With a 500 sequence input file two nodes are calculating 250 sequence as one map task.
Hadoop likes small tasks which can be redistributed to another node at failure. As a result, we ran
at a minimum as many map tasks as sequences on our input file.

6.2.3 Failure handling

Hadoop has a primary viewpoint of failure handling. A failure does not mean a complete job-failure.
It tells the management-node that the worker-node was unnable to complete the given task and the
management-node distributes the task to another worker-node. If a failure occurs four times in a
row, the task is killed but the job continues. If a task contains bad input, the task will fail every
time it is executed. Executing it on a different node has no other result. It will fail again and again.
There are some possibilities to tell Hadoop that a non zero return code of the executable has not to
be marked as failed attempt. One is to set the property “mapred.max.map.failures.percent”, which
is unfortunately not supported by the Hadoop version (Hadoop 1.0.3) we used. The second option is
to set the property “stream.non.zero.exit.is.failure=false” to ignore a non zero return code. We had
to change this property dependent on the task. It was set to false only for the RaptorX runs. We
also decremented the number of maximum task attempts “mapred.map.max.attempts” to a value of
two because one bad input sequence could easily generate a useless server-run of about one hour
when using RaptorX.

6.3 Conclusion

At the beginning, we were able to obtain initial success within short time. The good documentation
of Hadoop Streaming let us take the first steps quickly. Without completely understanding the
Hadoop ecosystem, we created some simple MapReduce jobs. Based on the information of the job
tracker site, we gained insight into the complete task-handling and execution of MapReduce jobs.
This disclosed the important facts about task trackers, datasets and the capabilities of the cluster.
During our experiments, IBM Biginsights facilitated the distribution of cluster related settings.
The benefit of Hadoop is a flexible configuration of parameters to fit the different needs of use
cases. In summary, there are about 160 available properties to configure for the cluster and its
dependencies. Some of the default configurations were inaccurate for our usage. Nevertheless, setting
the correct parameters was difficult and had to be based on experience [1]. We think it will going
to be a time consuming task to find best practice values for other use-cases. We conclude it is not
a considered task when attempting to install and use a Big Data system like Hadoop. Although
Hadoop is discussed in a lot communities [16] [9], there are only a few statements about best practices
[13] [2]. We expect that the increasing use of Hadoop in real production environments will improve
knowledge about best practices.

24

Appendix A Program listings and bash scripts

Appendix A

Program listings and bash scripts

1 #include <iostream>
using namespace std;

int main() {
5

std::string s{};
int c = 0;
while(getline(std::cin,s)) {

if (s.front() == '>') {
10 if (c != 0)

std::cout << endl;
else

c = 1;
std::cout << s << "%";

15 } else {
std::cout << s;

}
}
return 0;

20 }

Listing (A.1) C++ Programm FASTA2oneLine

1 #!/bin/bash
aufruf mit cat file | ./raptorX-run.sh >> output.csv

1.) read stdin
5 # 2.) for each sequenz save ID and store as $seqID, write ID to stdout as csv-

detail-line
3.) create a file with the sequence in FASTA format in temp folder
4.) run raptorx, and filter output and writes out for csv-detail-line

#echo "seqID, H-value-count, E-value-count, L-value-count"
10 while read sequence

do

2. Sequenz ID
idx=`expr index "$sequence" " "`

15 seqID=${sequence:1:$idx-2}
seqID=$(echo "$seqID" | tr '|' '-')
echo -n "$seqID,"

3. create FASTA file
20 OIFS=$IFS

25

Appendix A Program listings and bash scripts

IFS='%'
arr2=$sequence
count=0
for x in $arr2

25 do
if [$count -eq 0]
then
echo "$x" > /opt/temp/$seqID

else
30 echo "$x"| sed -e "s/.\{60\}/&\n/g" >> /opt/temp/$seqID

fi
count=`expr $count + 1`

done
IFS=$OIFS

35

4. raptorX && # 5. filter output
cd /opt/CNFsearch1.4/
./buildFeature -i /opt/temp/$seqID -o /opt/temp/$seqID.tgt -c 1 >> /dev/null &&

/opt/scripts/raptorX-output-filtern.sh /opt/temp/$seqID.tgt

40 done

Listing (A.2) Bash-script RaptorX run

1 #!/bin/bash
#process last part of .tgt file fromraptorX
#filters secondary structure information
#and counts the occurance of H,E and L values and write it to STDOUT as csv-

detail-line
5

swDO=''
countH=0
countE=0
countL=0

10

while read line
do
echo $line | grep -q "ˆ//////////// Original SS3+SS8+ACC file"
if [$? -eq 0]

15 then
swDO='1'
read line
read line
read line

20 fi

if ["$swDO" = "1"]
then
if ["${line:0:1}" != "#"]

25 then
Hvalue=${line:0:5}
Evalue=${line:6:5}
Lvalue=${line:12:5}

30 compare_result=`echo "$Hvalue > $Evalue" | bc`
if [$compare_result -eq 1]

then
compare_result=`echo "$Hvalue > $Lvalue" | bc`

26

Appendix A Program listings and bash scripts

if [$compare_result -eq 1]
35 then

countH=`expr $countH + 1`
else

countL=`expr $countL + 1`
fi

40 else # Hvalue < Evalue
compare_result=`echo "$Evalue > $Lvalue" | bc`

if [$compare_result -eq 1]
then

countE=`expr $countE + 1`
45 else

countL=`expr $countL + 1`
fi

fi
else

50 swDO=''
fi

fi

done < $1
55 echo "$countH"",""$countE"",""$countL"

Listing (A.3) Bash-script RaptorX output filter script

1 #!/bin/bash

1.) read stdin
2.) for each sequenz save ID and store as $seqID, write ID to stdout as csv-

detail-line
5 # 3.) create a file with the sequence in FASTA format in temp folder
4.) run interproscan, filter output and writes out for csv-detail-line
while read sequence
do

10 # 2. Sequenz ID
idx=`expr index "$sequence" " "`
seqID=${sequence:1:$idx-2}
seqID=$(echo "$seqID" | tr '|' '-')
echo -n "$seqID,"

15

3. create FASTA file
OIFS=$IFS
IFS='%'
arr2=$sequence

20 count=0
for x in $arr2
do
if [$count -eq 0]
then

25 echo "$x" > /opt/temp/$seqID
else
echo "$x"| sed -e "s/.\{60\}/&\n/g" >> /opt/temp/$seqID

fi
count=`expr $count + 1`

30 done
IFS=$OIFS

27

Appendix A Program listings and bash scripts

4. interproscan mit seqID file aufrufen
cd /opt/interproscan-5-RC5/

35 echo "$seqID" >> /opt/temp/interproscan_log
./interproscan.sh -i /opt/temp/$seqID -appl PfamA-26.0 -f xml >> /opt/temp/

interproscan_log && cat /opt/temp/$seqID.xml | /opt/scripts/interproscan-
output-filtern.sh

done

Listing (A.4) Bash-script InterProScan run

1 #!/bin/bash
search all GO-IDs and IPR-IDs and write them to STDOUT
while read line
do

5 echo -n $line | grep -o -e "GO:[0-9]\+" -e "IPR[0-9]\+" | tr '\n' ,
done

echo -e "\n"

Listing (A.5) Bash-script InterProScan output filter script

28

Appendix B Streaming job output files

Appendix B

Streaming job output files

29

A
p

p
en

d
ix

B
S

tream
in

g
jo

b
o

u
tp

u
t

fi
les

Table (B.1) Table of GO-ID and their Term name

GO-ID Occ. Term name

GO:0005524 62 ATP binding

GO:0005622 45 intracellular

GO:0003735 42 structural constituent of ribosome

GO:0006412 42 translation

GO:0005840 41 ribosome

GO:0016020 35 membrane

GO:0005737 34 cytoplasm

GO:0055114 33 oxidation-reduction process

GO:0003677 26 DNA binding

GO:0005975 22 carbohydrate metabolic process

GO:0003824 19 catalytic activity

GO:0016021 19 integral to membrane

GO:0003723 18 RNA binding

GO:0006351 17 transcription, DNA-dependent

GO:0003899 16 DNA-directed RNA polymerase activity

GO:0005525 16 GTP binding

GO:0008152 16 metabolic process

GO:0005515 14 protein binding

GO:0006355 12 regulation of transcription, DNA-dependent

GO:0000166 11 nucleotide binding

GO:0006508 10 proteolysis

GO:0004812 9 aminoacyl-tRNA ligase activity

GO:0008270 9 zinc ion binding

GO:0016491 9 oxidoreductase activity

GO:0017038 9 protein import

GO:0051536 9 iron-sulfur cluster binding

GO:0003700 8 sequence-specific DNA binding transcription factor activity

GO:0009058 8 biosynthetic process

GO:0016868 8 intramolecular transferase activity, phosphotransferases

GO:0006520 7 cellular amino acid metabolic process

GO:0009055 7 electron carrier activity

3
0

A
p

p
en

d
ix

B
S

tream
in

g
jo

b
o

u
tp

u
t

fi
les

GO:0016787 7 hydrolase activity

GO:0000287 6 magnesium ion binding

GO:0003924 6 GTPase activity

GO:0008137 6 NADH dehydrogenase (ubiquinone) activity

GO:0019843 6 rRNA binding

GO:0046872 6 metal ion binding

GO:0046983 6 protein dimerization activity

GO:0003676 5 nucleic acid binding

GO:0003968 5 RNA-directed RNA polymerase activity

GO:0005198 5 structural molecule activity

GO:0005506 5 iron ion binding

GO:0005576 5 extracellular region

GO:0006164 5 purine nucleotide biosynthetic process

GO:0006415 5 translational termination

GO:0006418 5 tRNA aminoacylation for protein translation

GO:0006810 5 transport

GO:0007165 5 signal transduction

GO:0008033 5 tRNA processing

GO:0015078 5 hydrogen ion transmembrane transporter activity

GO:0016620 5 oxidoreductase activity, acting on the aldehyde or oxo group of donors, NAD or NADP as acceptor

GO:0016740 5 transferase activity

GO:0016874 5 ligase activity

GO:0042773 5 ATP synthesis coupled electron transport

GO:0043039 5 tRNA aminoacylation

GO:0055085 5 transmembrane transport

GO:0004197 4 cysteine-type endopeptidase activity

GO:0004222 4 metalloendopeptidase activity

GO:0005215 4 transporter activity

GO:0006396 4 metalloendopeptidase activity

GO:0006457 4 protein folding

GO:0010181 4 FMN binding

GO:0015986 4 ATP synthesis coupled proton transport

GO:0015991 4 ATP hydrolysis coupled proton transport

GO:0016114 4 terpenoid biosynthetic process3
1

A
p

p
en

d
ix

B
S

tream
in

g
jo

b
o

u
tp

u
t

fi
les

GO:0016743 4 carboxyl- or carbamoyltransferase activity

GO:0016773 4 phosphotransferase activity, alcohol group as acceptor

GO:0016887 4 ATPase activity

GO:0043565 4 sequence-specific DNA binding

GO:0000105 3 histidine biosynthetic process

GO:0003747 3 translation release factor activity

GO:0003774 3 motor activity

GO:0004019 3 adenylosuccinate synthase activity

GO:0004252 3 serine-type endopeptidase activity

GO:0004814 3 arginine-tRNA ligase activity

GO:0006139 3 nucleobase-containing compound metabolic process

GO:0006364 3 rRNA processing

GO:0006420 3 nucleobase-containing compound metabolic process

GO:0006526 3 arginine biosynthetic process

GO:0008685 3 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase activity

GO:0009405 3 pathogenesis

GO:0016597 3 amino acid binding

GO:0016616 3 oxidoreductase activity, acting on the CH-OH group of donors, NAD or NADP as acceptor

GO:0016829 3 lyase activity

GO:0016876 3 ligase activity, forming aminoacyl-tRNA and related compounds

GO:0017111 3 nucleoside-triphosphatase activity

GO:0019028 3 viral capsid

GO:0020037 3 heme binding

GO:0030976 3 thiamine pyrophosphate binding

GO:0045263 3 proton-transporting ATP synthase complex, coupling factor F(o)

GO:0046080 3 dUTP metabolic process

GO:0051287 3 NAD binding

3
2

Appendix B Streaming job output files

Table (B.2) Table of IPR-number and their Domain

IPR-number Occ. Domain

IPR002942 5 RNA-binding S4 domain

IPR001750 4 NADH:ubiquinone/plastoquinone oxidoreductase

IPR001912 4 Ribosomal protein S4/S9, N-terminal

IPR003439 4 ABC transporter-like

IPR000352 3 Peptide chain release factor class I/class II

IPR000640 3 Translation elongation factor EFG, V domain

IPR000795 3 Elongation factor, GTP-binding domain

IPR001450 3 4Fe-4S binding domain

IPR003526 3 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase

IPR004161 3 Translation elongation factor EFTu/EF1A, domain 2

IPR005824 3 KOW

IPR006073 3 GTP binding domain

IPR011115 3 SecA DEAD-like, N-terminal

IPR011116 3 SecA Wing/Scaffold

IPR011130 3 ecA preprotein, cross-linking domain

IPR012947 3 Threonyl/alanyl tRNA synthetase, SAD

IPR013842 3 GTP-binding protein LepA, C-terminal

IPR018449 3 NIL domain

IPR020069 3 Ribosomal protein L9, C-terminal

IPR020070 3 Ribosomal protein L9, N-terminal

IPR000022 2 Carboxyl transferase

IPR000073 2 Alpha/beta hydrolase fold-1

IPR000157 2 Toll/interleukin-1 receptor homology (TIR) domain

IPR000194 2 ATPase, F1/V1/A1 complex, alpha/beta subunit,nucleotide-binding domain

IPR000305 2 GIY-YIG nuclease superfamily

IPR000534 2 Semialdehyde dehydrogenase, NAD-binding

IPR000713 2 Mur ligase, N-terminal

IPR000722 2 RNA polymerase, alpha subunit

IPR000793 2 ATPase, F1/V1/A1 complex, alpha/beta subunit, C-terminal

IPR000836 2 Phosphoribosyltransferase domain

IPR001347 2 Sugar isomerase (SIS)

IPR002319 2 Phenylalanyl-tRNA synthetase

IPR002379 2 V-ATPase proteolipid subunit C-like domain

IPR003594 2 Histidine kinase-like ATPase, ATP-binding domain

IPR003661 2 Signal transduction histidine kinase

IPR004088 2 K Homology domain, type 1

IPR004100 2 ATPase, alpha/beta subunit, N-terminal

IPR004101 2 Mur ligase, C-terminal

IPR004115 2 GAD domain

IPR004364 2 Aminoacyl-tRNA synthetase, class II (D/K/N)

IPR004365 2 Nucleic acid binding, OB-fold, tRNA/helicase-type

IPR005139 2 Peptide chain release factor

IPR005798 2 Cytochrome b/b6, C-terminal

IPR005843 2 Alpha-D-phosphohexomutase, C-terminal

IPR005844 2 Alpha-D-phosphohexomutase, alpha/beta/alpha domain I

33

Appendix B Streaming job output files

IPR005845 2 Alpha-D-phosphohexomutase, alpha/beta/alpha domain II

IPR005846 2 Alpha-D-phosphohexomutase, alpha/beta/alpha domain III

IPR006131 2 Aspartate/ornithine carbamoyltransferase,Asp/Orn-binding

IPR006132 2 Aspartate/ornithine carbamoyltransferase,carbamoyl-P-binding

IPR006674 2 HD domain

IPR007066 2 RNA polymerase Rpb1, domain 3

IPR007080 2 RNA polymerase Rpb1, domain 1

IPR011260 2 RNA polymerase, alpha subunit, C-terminal

IPR011261 2 DNA-directed RNA polymerase, dimerisation

IPR011262 2 DNA-directed RNA polymerase, insert domain

IPR011576 2 Pyridoxamine 5’-phosphate oxidase-like, FMN-binding domain

IPR013022 2 Xylose isomerase-like, TIM barrel domain

IPR013106 2 Immunoglobulin V-set

IPR013221 2 Mur ligase, central

IPR013317 2 Chromosomal replication control, initiator

IPR013520 2 Exonuclease, RNase T/DNA polymerase III

IPR018164 2 Alanyl-tRNA synthetase, class IIc, N-terminal

IPR018484 2 Carbohydrate kinase, FGGY, N-terminal

IPR018485 2 Carbohydrate kinase, FGGY, C-terminal

IPR018948 2 GTP-binding protein TrmE, N-terminal

IPR020603 2 MraZ domain

IPR021131 2 Ribosomal protein L18e/L15P

IPR022666 2 Ribosomal Proteins L2, RNA binding domain

IPR022669 2 Ribosomal protein L2, C-terminal

IPR024567 2 Ribonuclease HII/HIII domain

IPR024951 2 Sulphate adenylyltransferase catalytic domain

IPR025867 2 tRNA modification GTPase MnmE C-terminal domain

IPR025980 2 TP-sulfurylase PUA-like domain

Table (B.3) Table of IPR-number and their Family

IPR-number Occ. Family

IPR002132 4 Ribosomal protein L5

IPR000630 3 Ribosomal protein S8

IPR001114 3 Adenylosuccinate synthetase

IPR001705 3 Ribosomal protein L33

IPR002501 3 Pseudouridine synthase II

IPR003509 3 Uncharacterised protein family UPF0102

IPR004506 3 tRNA-specific 2-thiouridylase

IPR008180 3 DeoxyUTP pyrophosphatase

IPR000146 2 Fructose-1,6-bisphosphatase class 1/Sedoheputulose-1,7-bisphosphatase

IPR000276 2 G protein-coupled receptor, rhodopsin-like

IPR000850 2 Adenylate kinase

IPR001015 2 Ferrochelatase

IPR001063 2 Ribosomal protein L22/L17

IPR001209 2 Ribosomal protein S14

IPR001518 2 Argininosuccinate synthase

IPR001585 2 Transaldolase

34

Appendix B Streaming job output files

IPR001763 2 Rhodanese-like domain

IPR001872 2 Peptidase A8, signal peptidase II

IPR002146 2 ATPase, F0 complex, subunit B/B’, bacterial/chloroplast

IPR002180 2 6,7-dimethyl-8-ribityllumazine synthase

IPR002220 2 Dihydrodipicolinate synthetase-like

IPR002305 2 Aminoacyl-tRNA synthetase, class Ic

IPR002423 2 Chaperonin Cpn60/TCP-1

IPR004214 2 Conotoxin

IPR004401 2 Nucleoid-associated protein YbaB

IPR004881 2 Ribosome biogenesis GTPase RsgA, putative

IPR006032 2 Ribosomal protein S12/S23

IPR007457 2 Fe(II) trafficking protein YggX

IPR008735 2 Beta-microseminoprotein

IPR013025 2 Ribosomal protein L25/L23

IPR018317 2 Queuosine biosynthesis protein QueC

Table (B.4) Secondary structure prediction

sequence ID alpha helix beta strand loops

sp A0JX91 RS4 ARTS2 71 27 110

sp A0RRG4 END4 CAMFF 103 27 152

sp A1AFE8 FETP ECOK1 44 1 46

sp A1B9H4 RL27 PARDP 0 36 54

sp A1JP96 XNI YERE8 109 25 117

sp A1RED3 RL15 SHESW 21 27 96

sp A1RT13 SYA PYRIL 328 134 430

sp A1UZV8 COXX BURMS 212 2 86

sp A1VER5 MNME DESVV 195 67 195

sp A1VYR0 EFP CAMJJ 8 87 94

sp A2AKB9 DCA10 MOUSE 0 202 364

sp A2BUD7 NU1C PROM5 257 6 109

sp A3Q6V2 RL332 MYCSJ 0 24 30

sp A4FZ98 COFD METM5 96 56 157

sp A4IIT5 OLM2A XENTR 107 122 413

sp A4QKC9 RR12 BARVE 7 36 80

sp A4W778 QUEA ENT38 65 78 213

sp A4WD10 MNTH ENT38 311 1 100

sp A4XHM5 RISB CALS8 74 25 57

sp A4YXQ6 SYA BRASO 338 126 427

sp A5F5P1 SECA VIBC3 459 52 392

sp A5G6H1 LPXK GEOUR 108 61 191

sp A5UBA3 Y3135 HAEIE 304 61 186

sp A6L0A5 PNP BACV8 211 131 369

sp A6LPU7 RS9 CLOB8 45 20 65

sp A6VKC6 RL7 ACTSZ 59 11 52

sp A7FME9 TAL YERP3 165 22 130

sp A7MFI9 TIG CROS8 201 64 167

35

Appendix B Streaming job output files

sp A7VN14 MSMB2 PROFL 15 23 71

sp A7X3H9 Y1729 STAA1 105 64 116

sp A7ZJJ0 MOAA ECO24 99 36 194

sp A8ES24 HIS4 ARCB4 79 52 104

sp A8H1E5 HCP SHEPA 254 40 260

sp A8HS90 NDK AZOC5 59 18 63

sp A8KZF0 PDXT FRASN 60 49 94

sp A8SEC9 PSBB CERDE 149 88 271

sp A8Z4G7 MURC STAAT 149 94 194

sp A9A5I4 RL24 NITMS 33 37 98

sp A9LYX9 F16PA NEIM0 95 70 159

sp A9MEJ1 PURR SALAR 140 50 151

sp B0VBY5 MNMA ACIBY 80 96 201

sp B1HMT3 GLMM LYSSC 167 63 220

sp B1I956 MRAY STRPI 203 19 104

sp B1IIL4 RSGA CLOBK 75 69 148

sp B2A4C3 RL33 NATTJ 0 20 29

sp B2VJA4 PURT ERWT9 125 88 179

sp B3Q5X2 RL20 RHOPT 90 0 29

sp B3R808 Y3032 CUPTR 35 33 63

sp B4T750 NANA SALNS 137 35 125

sp B5F4C2 YJHX SALA4 27 17 41

sp B5F5J1 ARGO SALA4 191 0 20

sp B5FJK3 RL24 SALDC 0 49 55

sp B5XAM2 ICT1 SALSA 70 22 99

sp B5XJ20 PUR9 STRPZ 176 75 264

sp B5XJP1 NANE STRPZ 91 37 106

sp B5YH59 DNAK THEYD 213 111 308

sp B7GJC8 UPPP ANOFW 199 0 74

sp B7H9V0 Y577 BACC4 97 38 104

sp B7J6C1 PUR7 ACIF2 65 44 131

sp B7L649 RISB ECO55 72 26 58

sp B7M3B3 MTFA ECO8A 110 17 138

sp B7VH36 Y2060 VIBSL 12 7 40

sp B8GVN4 RL9 CAUCN 63 42 89

sp B8HYL7 DAPA CYAP4 131 34 129

sp B8ZSA6 RS14Z MYCLB 29 0 32

sp B9LPW4 RPON HALLT 34 0 30

sp C0QB49 PURA DESAH 121 74 234

sp C0QQN7 RS8 PERMH 31 35 70

sp C0SDJ3 COQ4 PARBP 156 0 129

sp C1A051 ASSY RHOE4 154 68 177

sp C1CPR4 RNH3 STRZT 126 46 121

sp C1ETQ0 Y4566 BACC3 99 35 91

sp C4ZRB8 PYRB ECOBW 115 40 156

sp C5A083 K6PF ECOBW 136 51 133

36

Appendix B Streaming job output files

hline sp C5CV58 DCD VARPS 12 71 105

sp E1WAB4 ORGB SALTS 152 22 52

sp F7D4X9 SIR5 MONDO 91 29 195

sp O22431 RL10 PINTA 43 44 141

sp O23324 APS3 ARATH 145 67 253

sp O24385 CPI7 SOLTU 0 66 112

sp O31609 YJBK BACSU 49 61 80

sp O43002 SC61B SCHPO 38 7 57

sp O61069 KAD TRYBR 93 13 103

sp O74759 NTO1 SCHPO 228 27 512

sp O79213 CYB OCETR 228 0 152

sp O94225 HOSM PENCW 168 49 257

sp P01667 KV3AF MOUSE 0 36 75

sp P03330 GAG WMSV 202 4 306

sp P09125 MSP8 EIMAC 12 15 232

sp P0A6H9 CLS ECOL6 229 80 177

sp P0A7I2 RF1 ECO57 177 29 154

sp P0AA49 YFDV ECOLI 258 0 56

sp P0AAS2 YLAC SHIFL 85 22 49

sp P0ABB4 ATPB ECOLI 119 96 245

sp P0C2Z9 ATPH ORYSA 69 0 12

sp P0C5Q6 YM94A YEAST 17 28 29

sp P0CG46 CKBR CONSL 54 0 49

sp P0CP10 NAR1 CRYNJ 188 71 391

sp P13198 LMP1 EBVR 160 0 226

sp P15276 ALGP PSEAE 97 0 255

sp P21238 CPNA1 ARATH 267 66 253

sp P22087 FBRL HUMAN 42 70 209

sp P25508 COCA1 BOVIN 0 0 86

sp P25779 CYSP TRYCR 112 57 298

sp P27581 ADH2 DROAR 112 35 107

sp P29363 THRC PSEAE 214 59 196

sp P31552 CAIC ECOLI 160 86 271

sp P36512 UDB13 RABIT 250 62 219

sp P40219 OSW5 YEAST 83 2 63

sp P42528 ARP3 DICDI 113 59 246

sp P46950 SNG1 YEAST 266 30 251

sp P46953 3HAO RAT 27 99 160

sp P48377 RFX1 MOUSE 285 10 668

sp P53573 ETFA BRAJA 91 76 147

sp P53948 YNF7 YEAST 0 55 55

sp P55919 CXCR1 GORGO 213 15 122

sp Q72J71 VATF THET2 45 18 41

sp P57087 JAM2 HUMAN 7 144 147

sp P57103 NAC3 HUMAN 279 201 447

sp P58063 TRUB CAUCR 61 79 170

sp P59511 ATS20 MOUSE 93 385 1428

37

Appendix B Streaming job output files

sp P61806 DAD1 MESAU 81 2 30

sp P76241 YEAM ECOLI 102 45 126

sp Q566C7 NUDT3 RAT 32 48 88

sp B4SJB0 GLYA STRM5 177 30 210

sp P83038 HDAC4 CHICK 378 33 669

sp P84391 UL13 EHV1V 124 64 406

sp P93746 EC1 ARATH 0 9 75

sp P96602 DCTR BACSU 100 37 89

sp Q00408 VHUD METVO 51 21 62

sp Q00758 SP5B BACSU 457 0 61

sp Q01JR9 MRS2D ORYSI 211 17 206

sp Q02944 URED KLEPN 29 118 123

sp Q02DE9 ATPL PSEAB 73 0 12

sp Q02VS5 MUTL LACLS 185 107 364

sp Q03667 MIC17 YEAST 60 0 96

sp Q03DS8 GLPK PEDPA 172 54 278

sp Q03QT7 TRUB LACBA 67 74 162

sp Q06199 YL456 YEAST 34 62 108

sp Q07ZS6 UVRC SHEFN 241 81 288

sp Q086C3 NUSB SHEFN 90 0 44

sp Q0ARD7 PDXH MARMM 56 58 108

sp Q0C5F3 SUCC HYPNA 140 78 179

sp Q0G9M8 RPOC1 LIRTU 211 69 401

sp Q0TQ59 BIOB CLOP1 133 23 163

sp Q0VSV6 HEMH ALCBS 148 42 151

sp Q13478 IL18R HUMAN 50 228 263

sp Q14032 BAAT HUMAN 81 105 232

sp Q1CFH7 METN2 YERPN 114 86 143

sp Q1CNS4 G6PI YERPN 255 40 253

sp Q1GBJ2 RPOA LACDA 76 81 155

sp Q1I0V1 VP1 MPRVN 171 692 1034

sp Q1J570 GATB STRPF 194 43 242

sp Q1PEW8 FB127 ARATH 106 0 57

sp Q21276 YZVL CAEEL 295 20 171

sp Q21L55 Y1312 SACD2 89 41 179

sp Q256C3 CLPX CHLFF 149 49 223

sp Q27288 OBP2 HELVI 118 0 44

sp Q2FIC3 MNHA1 STAA3 537 19 245

sp Q2JPT2 TRPF SYNJB 74 38 121

sp Q2K4E6 Y3534 RHIEC 149 0 55

sp Q31XD9 RL19 SHIBS 22 51 42

sp Q31ZS3 YCHJ SHIBS 45 22 85

sp Q39837 ALB1 SOYBN 34 17 68

sp Q3B8E9 IFT43 XENLA 72 0 129

sp Q3K0D3 AROD STRA1 89 41 95

sp Q3Z0K4 COBT SHISS 165 21 173

38

Appendix B Streaming job output files

sp Q47LL2 RL15 THEFY 22 28 99

sp Q493M5 CSRA BLOPB 14 27 20

sp Q4FVP3 SSTT PSYA2 290 7 103

sp Q4KKT0 DNAA PSEF5 265 32 216

sp Q58350 Y940 METJA 248 0 70

sp Q5DU25 IQEC2 MOUSE 337 23 1118

sp Q5E218 MURI VIBF1 114 39 109

sp Q5HG77 TKT STAAC 271 54 337

sp Q5KQS4 FETC GLOBR 49 88 187

sp Q5LLT4 TRUB RUEPO 64 75 164

sp Q5M5L0 ARGJ STRT2 131 84 182

sp Q5PBP7 CTAA ANAMM 240 0 101

sp Q5RA17 RRP7A PONAB 102 38 140

sp Q5VYY2 LIPM HUMAN 172 43 208

sp Q5XTY7 RL17 FELCA 66 26 92

sp Q63811 CANB2 MOUSE 89 9 81

sp Q63H76 RS8 BACCZ 30 36 66

sp Q6ANN6 NUON DESPS 355 0 115

sp Q6FPK6 RGI1 CANGA 31 35 91

sp Q6FSP5 CSM2 CANGA 91 32 91

sp Q6GJ03 SARX STAAR 93 5 21

sp Q6GZM8 097R FRG3G 107 0 30

sp Q6LME3 Y3228 PHOPR 36 34 55

sp Q70RT7 CYB PLAMN 226 1 152

sp Q71W03 Y2748 LISMF 71 29 76

sp Q73PM9 RL2 TREDE 3 75 198

sp Q746Q5 RSMG GEOSL 82 42 93

sp Q7N364 END4 PHOLL 107 29 144

sp Q7TX80 THTR2 MYCBO 79 29 212

sp Q7V336 LEUC PROMP 150 64 255

sp Q7VJY0 YIDC HELHP 201 87 303

sp Q7VKF7 RS4 HAEDU 75 28 105

sp Q7VZG1 KCY BORPE 102 24 97

sp Q7YQM2 AFF2 PANTR 189 2 1081

sp Q7Z2W4 ZCCHV HUMAN 145 113 644

sp Q7Z408 CSMD2 HUMAN 13 1151 2323

sp Q82S93 COAX NITEU 93 61 102

sp Q83CV9 DEF1 COXBU 39 51 80

sp Q87E80 RL23 XYLFT 16 32 52

sp Q88AI5 MSRA PSESM 53 28 134

sp Q88QV5 PQQB PSEPK 53 68 182

sp Q8CTB2 METN1 STAES 116 90 135

sp Q8E5P8 GLMS STRA3 228 109 267

sp Q8FQ24 ATPF COREF 162 0 28

sp Q8JTH2 PHOSP ABLVH 105 13 179

sp Q8KE85 Y805 CHLTE 54 20 37

39

Appendix B Streaming job output files

sp Q8LPJ4 AB2E ARATH 186 96 323

sp Q8NVL8 LUKL2 STAAW 27 129 194

sp Q8WJ37 MATK ANEAN 142 73 288

sp Q8WVZ7 RN133 HUMAN 73 65 238

sp Q8WYJ6 SEPT1 HUMAN 151 48 168

sp Q8Y2E1 KPRS RALSO 93 66 157

sp Q8Y4B6 ATP6 LISMO 167 8 63

sp Q8Y9D6 METX LISMO 122 47 199

sp Q8YFN7 RL9 BRUME 57 41 91

sp Q8YIS0 Y373 BRUME 49 0 5

sp Q8ZCC1 HDA YERPE 111 20 108

sp Q8ZGV8 BETI YERPE 146 0 52

sp Q925N2 SFXN2 MOUSE 183 11 128

sp Q96RD1 OR6C1 HUMAN 162 25 125

sp Q99WT9 ESSC STAAN 446 301 732

sp Q9BPB1 O226A CONTE 35 0 37

sp Q9BW60 ELOV1 HUMAN 170 16 93

sp Q9DHP6 VHR2 YLDV 14 84 80

sp Q9FI78 HST ARATH 108 88 237

sp Q9GQ38 MAB21 CAEBR 152 40 172

sp Q9HM28 Y042 THEAC 61 58 86

sp Q9KD76 LEPA BACHD 146 130 333

sp Q9M4C0 RR4 HAPHO 61 28 113

sp Q9MUL9 CYST MESVI 189 14 66

sp Q9N0Z0 CXCR6 CERAT 206 15 122

sp Q9NR97 TLR8 HUMAN 148 119 774

sp Q9PA83 RL1 XYLFA 68 44 120

sp Q9PTU1 DBX1A DANRE 37 4 273

sp Q9RQQ9 DIVL CAUCR 340 169 260

sp Q9U0M8 YPF06 PLAF7 142 24 418

sp Q9UTI7 TYSY SCHPO 160 72 393

sp Q9Y6L6 SO1B1 HUMAN 295 38 358

sp Q9ZKW7 MURJ HELPJ 392 0 68

sp Q9ZPY1 PPOX2 ARATH 40 64 94

40

Appendix C Project documentation

Appendix C

Project documentation

C.0.1 Milestones

� MS0 19.02.2013 Project start, Kick-Off meeting

� MS1 13.04.2013 Status meeting with Prof. Joller and Romeo Kienzler

� MS2 07.05.2013 Setup hardware cluster

� MS3 14.05.2013 Start experiments

� MS4 28.05.2013 Hand over for abstract and A0 poster

� MS5 31.05.2013 Project end

C.0.2 Week by week breakdown

week 1 (18.02)
setting up a wiki website and redmine
getting an overview about all the required parts in the documentation

week 2 (25.02)
getting started with the subject of MapReduce
research about the classifier RaptorX
overview about Hadoop framework, HDFS and Streaming
phone-call mit Romeo und Rémy Bruggmann, introducing InterProScan analysis tool

week 3 (04.03)
reseach about InterProScan tool
gaining information about uniprot/swissprot database and how we can get the files
research for FASTA-file format
getting started with documentation
tool RaptorX is runnable on CLI with one sequence
setup a virtual cluster with IBM BigInsights

week 4 (11.03)
two single node clusters were installed and configured for first step and try out Hadoop Streaming
the input file in FASTA-format has two sequences,
but files in Hadoop are read block by block and are splitted line after line,
so input file has to be transformed before loading it into Hadoop

week 5 (18.03)

41

Appendix C Project documentation

starting with writing bash scripts
meeting with Rémy Bruggmann about possible interpretation of InterProScan output files

week 6 (25.03)
bash script which writes every FASTA-sequence in one-line. But it runs extremly slow.
we write down the required steps in our bash script which will be used as mapper function on the
Hadoop Streaming job

week 7 (01.04)
replace the bash script for one-line FASTA-record by a C++ program
run a Streaming job with 15 sequences and getting an output file with the filtered information of
RaptorX output file
run InterProScan on cluster
some of the sequences are difficult to calculate for RaptorX and take extremly long
experiments should show overhead of using Hadoop vs. native runs and scale out has to be linear

week 8 (08.04)
setting up eclipse with BigInsights plugin
writing a FASTA-input file reader is not so simple, because different Hadoop versions supports
different classes of lineReader

week 9 (15.04)
update documentation according the template we get from Prof. Joller
change properties of InterproScan for single threaded runs
RaptorX run on a cluster with more than one node

week 10 (29.04)
InterProScan runs correctly on 1 node cluster
updating documentation
week 11 (06.05)
setting up hardware cluster and distribution of all required files for RaptorX and InterProScan on
all nodes
running tests with bash scripts on a cluster with more than one node

week 12 (13.05)
plan the measurements
review documentation and discusion on the conclusion section at the documentation
restart experiments on cluster, because of incorrect settings on InterProScan properties and too
many map tasks per node.
try out RaptorX runs with additional parameters because of the failing tasks

week 13 (20.05)
analysing experiment-results
updating documentation
started with design of poster and writing the abstract

week 14 (27.05)
completing documentation

42

Appendix D CD content

Appendix D

CD content

Table (D.1) CD content

file description

./semesterThesisBuechiMathys.pdf Documentation

./sa-Poster.ppt A0 Poster

./summary.doc summary of our project

./Documentation/ LATEX-Documentation-files

./fasta-sequences/ Used input files for experiments

./gnuplot/ gnuplot source files

./scripts/ used bash scripts

43

List of Figures

List of Figures

2.1 Protein secondary structure [3] . 5

3.1 Supported algorithm on InterProScan [12] . 8
3.2 Workflow of Streaming job . 10

4.1 Test enviroment: hardware cluster located at IBM Switzerland 12

5.1 Mean-overhead of a InterProScan run with 100 various sequences 18
5.2 Mean-overhead of a InterProScan run with 250 various sequences 18
5.3 Mean-overhead of a RaptorX run with 100 equal sequences 19
5.4 Mean-overhead of a RaptorX run with 250 equal sequences 19
5.5 Throughput of InterProScan with 250 various sequences 20
5.6 Throughput of RaptorX . 20
5.7 Occurency of GO-IDs . 21
5.8 Occurency of IPR-numbers . 22

44

List of Tables

List of Tables

2.1 The IUB/IUPAC standard codes for amino acids . 3

3.1 Three-class secondary structure prediction . 8

4.1 The servers of our test environment . 13
4.2 Used parameters for Hadoop Streaming job . 15

5.1 Measurements InterProScan . 17
5.2 Measurements RaptorX . 17

B.1 Table of GO-ID and their Term name . 30
B.2 Table of IPR-number and their Domain . 33
B.3 Table of IPR-number and their Family . 34
B.4 Secondary structure prediction . 35

D.1 CD content . 43

45

Glossary

Glossary

FQDN
FQDN means fully qualified domain name which represents the system/node in the domain
name system hierarchy.

GO database
GO database stores ontology and annotation files which are contributed by the GO Consortium.
the following url points to the online websearch at the GO Database:
http://amigo.geneontology.org/cgi-bin/amigo/go.cgi

GO-ID
Every entry in the GO database has an unique identification number. It starts witch the term
“GO:” and is followed by a number.

HDFS
HDFS (Hadoop Distributed File System) is a part of the Hadoop framework. It is a dristributed
file system which is fault tolerant and designed to store big datasets in parts of the different
nodes of a cluster.

IPR-number
Every entry in the InterProScan database has a unique identification number. It starts witch
the term “IPR:” and is followed by a number.

MapReduce
MapReduce is a pattern introduced by Google for calculating huge dataset on parallel systems.

47

Bibliography

Bibliography

[1] allthingshadoop.com.
Tips, tricks and pointers when setting up your first hadoop cluster to run map reduce jobs.
http://allthingshadoop.com/2010/04/28/map-reduce-tips-tricks-your-

first-real-cluster/, 2010.
[Online; accessed 28-May-2013].

[2] Milind Bhandarkar, Suhas Gogate, and Viraj Bhat.
Hadoop performance tuning: a case study.
http://stevereads.com/papers to read/hadoop performance tuning a case study.pdf.
[Online; accessed 28-May-2013].

[3] J. G. Burrell.
Click4biology - secondary structure.
http://click4biology.info/c4b/7/images/7.5/tertiary.gif, 2002.
[Online; accessed 30-May-2013].

[4] UniProt Consortium.
ftp://ftp.expasy.org/databases/uniprot/current release/knowledgebase/

complete.
[Online; accessed 30-April-2013].

[5] IBM Cooperation.
http://www-01.ibm.com/software/data/infosphere/biginsights/

features.html.
[Online; accessed 28-May-2013].

[6] Jeffrey Dean and Sanjay Ghemawat.
Mapreduce: simplified data processing on large clusters.
51(1):107–113, 2008.

[7] The National Center for Biotechnology Information.
Fasta-format.
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml.
[Online; accessed 28-May-2013].

[8] The Apache Software Foundation.
Hadoop Streaming.
http://hadoop.apache.org/docs/stable/streaming.html.
[Online; accessed 27-May-2013].

[9] The Apache Software Foundation.
Hadoop user groups.
http://wiki.apache.org/hadoop/HadoopUserGroups.
[Online; accessed 30-May-2013].

[10] The Apache Software Foundation.
hdfs commands.
http://hadoop.apache.org/docs/r1.1.2/file system shell.html.

48

http://allthingshadoop.com/2010/04/28/map-reduce-tips-tricks-your-first-real-cluster/
http://allthingshadoop.com/2010/04/28/map-reduce-tips-tricks-your-first-real-cluster/
http://stevereads.com/papers_to_read/hadoop_performance_tuning_a_case_study.pdf
http://click4biology.info/c4b/7/images/7.5/tertiary.gif
ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete
ftp://ftp.expasy.org/databases/uniprot/current_release/knowledgebase/complete
http://www-01.ibm.com/software/data/infosphere/biginsights/features.html
http://www-01.ibm.com/software/data/infosphere/biginsights/features.html
http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml
http://hadoop.apache.org/docs/stable/streaming.html
http://wiki.apache.org/hadoop/HadoopUserGroups
http://hadoop.apache.org/docs/r1.1.2/file_system_shell.html

Bibliography

[Online; accessed 30-April-2013].

[11] The Apache Software Foundation.
Performancetuning hadoop wiki.
http://wiki.apache.org/hadoop/PerformanceTuning.
[Online; accessed 30-May-2013].

[12] The European Bioinformatics Institute.
overview of the different databases used on interpro.
http://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/

files/user/84/documents/figure interpro.png.
[Online; accessed 30-May-2013].

[13] Shrinivas B. Joshi.
Apache hadoop performance-tuning methodologies and best practices.
In Proceedings of the 3rd ACM/SPEC International Conference on Performance Engineering,

ICPE ’12, pages 241–242, New York, NY, USA, 2012. ACM.

[14] Shonda A. Leonard.
IUPAC/IUB Single-Letter Codes Within Nucleic Acid and Amino Acid Sequences.
John Wiley Sons, Inc., 2002.

[15] Dapeng Li, Tonghua Li, Peisheng Cong, Wenwei Xong, and Jiangming Sun.
A novel structural position-specific scoring matrix for the prediction of protein secondary

structures.
Bioinformatics, 2011.

[16] Yahoo! Developer Network.
Apache hadoop: Best practices and anti-patterns.
http://developer.yahoo.com/blogs/hadoop/apache-hadoop-best-practices-

anti-patterns-465.html, 2010.
[Online; accessed 28-May-2013].

[17] Owen O’Malley.
Introduction to hadoop, 2008.

[18] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso.
Failure trends in a large disk drive population.
In Proceedings of the 5th USENIX conference on File and Storage Technologies, pages 2–2, 2007.

[19] UniProtKB Swiss-Prot release 2013/04.
http://web.expasy.org/docs/relnotes/relstat.html.
[Online; accessed 30-April-2013].

[20] UniProtKB TrEMBL release 2013/04.
http://www.ebi.ac.uk/uniprot/TrEMBLstats.
[Online; accessed 30-April-2013].

49

http://wiki.apache.org/hadoop/PerformanceTuning
http://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/files/user/84/documents/figure_interpro.png
http://www.ebi.ac.uk/training/online/sites/ebi.ac.uk.training.online/files/user/84/documents/figure_interpro.png
http://developer.yahoo.com/blogs/hadoop/apache-hadoop-best-practices-anti-patterns-465.html
http://developer.yahoo.com/blogs/hadoop/apache-hadoop-best-practices-anti-patterns-465.html
http://web.expasy.org/docs/relnotes/relstat.html
http://www.ebi.ac.uk/uniprot/TrEMBLstats

	Contents
	1 Management Summary
	1.1 Problem Definition
	1.2 Solution Proposal
	1.3 Sample Use Case
	1.4 Experiments
	1.5 Future Work

	2 Introduction
	2.1 Objectives
	2.2 Motivation
	2.3 Ongoing situation
	2.4 Classification of proteins
	2.4.1 Amino acids
	2.4.2 Proteins
	2.4.3 Protein sequence databases

	2.5 FASTA-format
	2.5.1 Classification
	2.5.2 Structural analysis
	2.5.3 Sequence analysis

	3 System and Methods
	3.1 Hadoop
	3.2 Hadoop Streaming
	3.3 IBM BigInsights
	3.4 IBM BigSheets
	3.5 Classifiers
	3.5.1 RaptorX - structural classification
	3.5.2 InterProScan - sequence analysis

	3.6 mapRed tasks

	4 Configuration and setup
	4.1 Hadoop cluster with IBM BigInsights
	4.2 Cluster hardware configuration
	4.3 Preparing input dataset for HDFS
	4.4 Load data to HDFS
	4.5 Running tasks with Hadoop Streaming
	4.6 Configuration parameters for Hadoop Streaming
	4.7 Generating output for IBM BigSheets
	4.8 Scale out with nodes

	5 Results
	5.1 Facts
	5.2 Cost of parallel processing
	5.3 Scale out
	5.4 Interpretation of the generated output files
	5.4.1 InterProScan
	5.4.2 RaptorX

	6 Discussion
	6.1 Basic Hadoop
	6.1.1 HDFS - replication and blocksize
	6.1.2 CPU capacity utilization

	6.2 Hadoop Streaming framework
	6.2.1 Streaming mnnerism
	6.2.2 The Streaming adaptability
	6.2.3 Failure handling

	6.3 Conclusion

	A Program listings and bash scripts
	B Streaming job output files
	C Project documentation
	C.0.1 Milestones
	C.0.2 Week by week breakdown

	D CD content
	Glossary
	Bibliography

