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Abstract

Breaking dependencies is an important task in refactoring legacy code and putting
this code under tests. Feathers’ seams help us here because they enable us to inject
dependencies from outside. Although seams are a valuable technique, it is hard and
cumbersome to apply them without automated refactorings and tool chain config-
uration support. We provide sophisticated support for seams with Mockator Pro, a
plug-in for the Eclipse C/C++ development tooling project. Mockator Pro creates the
boilerplate code and the necessary infrastructure for the four seam types object, compile,
preprocessor and link seam.

Although there are already various existing mock object libraries for C++, we believe
that creating mock objects is still too complicated and time-consuming for developers.
Mockator provides a mock object library and an Eclipse plug-in to create mock objects
in a simple yet powerful way. Mockator leverages the new language facilities C++11
offers while still being compatible with C++98/03.
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Management Summary

In this report we discuss the development of an Eclipse plug-in to refactor towards
seams in C++ and the engineered mock object solution. This master’s thesis is a con-
tinuation of a preceding term project at the University of Applied Sciences Rapperswil
by the same author.

Motivation

High coupling, hard-wired and cyclic dependencies lead to systems that are hard to
change, test and deploy in isolation. Unfortunately, legacy code often has these attrib-
utes. Feathers’ seam model helps us in recognising opportunities to inject dependencies
from outside, thus getting rid of fixed dependencies. There are different kinds of seam
types. In C++ we have object, compile, preprocessor and link seams. While object seams
based on inheritance are well-established, the others are lesser-known. Although seams
are a valuable technique, they are hard to apply without refactorings and tool chain
support. The latter is because preprocessor and link seams are highly dependent on
the chosen tool chain and require a significant amount of manual work to specify the
required options for the used tools. We are convinced that our IDE of choice Eclipse
CDT would benefit from supporting seams.

After we have applied seams in a legacy code base, we have an improved design and
remarkably enhanced the testability of our code base. When we want to test a piece
of code in isolation, we often cannot inject the real objects because they might have
non-deterministic behaviour, are slow or communicate with subsystems which we
want to avoid in our unit tests. This is where we use test doubles instead like fake and
mock objects. Although there are already various existing mock object libraries for C++,
we believe that creating mock objects is still too complicated and time-consuming for
developers. Most often, common mock object libraries tend to overuse macros and
hide the code from the developer which might lead to challenging debugging sessions
when problems arise. We think that it is better to have the code necessary for mock
objects beside our unit tests to enhance transparency and to increase the possibilities of
the programmer to adapt the code if necessary when our library does not provide a
solution for a particular problem. Beside this, we also believe that current mock object
libraries overuse inheritance and are lacking IDE support.

iii



Goals

The primary goal of this master’s thesis is to provide support for the four seam types
object, compile, preprocessor and link seam for Eclipse CDT. The other goals are
all related to our mock object solution. The existing C++11 based library should be
adapted in order to support C++03. To make the handling of mock objects easier, we
have to develop functionality to make the creation and adaption of mock objects more
comfortable.

Results

The engineered Eclipse plug-in is able to generate code and the necessary infrastructure
for all four seam types object, compile, preprocessor and link seam. To offer object
seams, we have developed a new refactoring to extract an interface. Mockator Pro is
able to recognise missing member functions in both object and compile seam classes. We
developed a useful implementation of preprocessor seams which are especially handy
for tracing system function calls. For our link seam implementation we provide three
types to shadow and wrap functions which work with static and shared libraries. We
tried to support both Linux and Mac OS X for our link seams wherever these platforms
and their corresponding GCC tool chain support them themselves. All implemented
seams can be disabled or removed easily when the need arises.

Our header-only mock object library now also supports C++03 beside C++11. The
Eclipse plug-in is able to generate code for both standards which can be chosen in the
project settings. Because we recognised that it is often beneficial to just mock a single
function instead of extracting an interface or a template parameter, we implemented
mocking of functions including wizard support for CUTE. We implemented various
convenience functions to make working with mock objects easier like moving them to a
namespace, converting fake to mock objects, toggle recording on a member function
level and recognising inconsistent expectations. Beside missing member functions and
constructors we now also recognise missing operators.

To make our work more popular, we presented Mockator Pro at the ICSE workshop
AST2012 located at University of Zürich Irchel. Additionally, we wrote an article for
the magazine Overload about refactoring towards seams with our Eclipse plug-in.
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1. Introduction

The present master’s thesis is a continuation of the preceding term project Mocka-
tor [Rü11] at the University of Applied Sciences Rapperswil. Its goal is to help C++
developers in applying seams in their code base and in creating mock objects for our
IDE of choice, Eclipse C/C++ Development Tooling (CDT).

In this chapter we will explain the problems of unwanted software dependencies, how
to get rid of them by making use of seams, and how we can use test doubles when the
real objects would be a burden for our unit tests. At the end of this chapter we will also
discuss the motivation and the goals of this thesis.

1.1. The Perils of Software Dependencies

A critical problem in software development are unwanted dependencies. Obviously,
dependencies are necessary to make software components work together. But high
coupling, hard-wired and cyclic dependencies between classes and subsystems are the
perils of software dependencies. They lead to applications that are difficult to change,
test and deploy in isolation.

Breaking unwanted dependencies is often a precondition to be able to change existing
code. Feathers has identified four triggers for changing existing code [Fea04]: adding
new functionality, fixing a bug, applying refactorings and code optimisations. What all
four triggers have in common is the fact that we should have tests in place before we
apply the changes.

According to Feathers’ definition, legacy code is code without unit tests [Fea04]. An
important preliminary to introduce unit tests is to break existing dependencies. This is
especially hard because before we change existing code we should have tests in place.
But in order to apply them, we first have to change the code. This dilemma is called
The Legacy Code Dilemma [Fea04].

Feathers’ seam model helps us to reason about the several possibilities that exist to break
dependencies.
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1. Introduction

1.2. Breaking Dependencies With Seams

The goal in breaking dependencies is to have a place where we can alter the behaviour
of a program without modifying it in that place — which is exactly the definition of
a seam. This is important because editing the source code is often not an option (e. g.,
when a function the code depends on is provided by a system library). Moreover, it
is often better to avoid making the changes inline because the code will otherwise get
longer and will never be properly tested1.

#include "creditcard.h"
void CreditCard::charge(double amount) {
if (!isValidAmount(amount)) {

throw InvalidAmountException();
}
verifyCredentialsOnline(cardHolder);
cardHolder.charge(amount);

}

Listing 1.1: Example of a C++ member function with a call to a global function which we want to avoid
in our unit tests. The question is if this code contains a seam.

Consider the code in listing 1.1 where the global function verifyCredentialsOnline
is used to communicate with another subsystem. We would like to avoid this during
our unit tests because communicating across a network is something we generally do
not want to do in our unit tests [Fea04]. What if we would like to circumvent the call
to verifyCredentialsOnline without changing the existing code? This leads to the
question if this code contains a seam. And indeed, there is a seam in the place where
we call verifyCredentialsOnline.

struct CreditCard {
// as before
virtual void verifyCredentialsOnline(CardHolder const&);

};
void CreditCard::verifyCredentialsOnline(CardHolder const& ch) {
::verifyCredentialsOnline(ch);

}
struct TestingCreditCard : CreditCard {
void verifyCredentialsOnline(CardHolder const&) {
}

};

Listing 1.2: Object seam to avoid the call to the global function verifyCredentialsOnline.

1This is why Feathers recommends the two techniques Sproud Method and Sproud Class in [Fea04] to
extract the necessary changes and delegate to them in the existing code instead of applying the changes
inline.
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1. Introduction

We can make use of this seam by providing a new virtual member function and del-
egate to the global function by using C++’s scope operator :: [Fea04]. To avoid the
call in our unit tests, we subclass CreditCard and override the member function
verifyCredentialsOnline, as it is shown in listing 1.2.

This type of seam is called object seam. C++ offers a great facility of language mechanisms
to create seams. Beside this classic way of using subtype polymorphism which relies
on inheritance, C++ also provides static polymorphism through template parameters.
With the help of the preprocessor or the linker we can use additional ways of seams.

1.3. Unit Testing With Test Doubles

Once we have achieved to break dependencies in our legacy code base, our code is
not relying on fixed dependencies anymore, but instead asks for collaborators trough
dependency injection. Not only our design has improved much, but we are now also
able to write unit tests for our code. Sometimes however, it is impractical or impossible
to exercise our code with real objects. In these situations, we might use test doubles, a
term used by Meszaros [Mes07].

A specific type of test doubles are mock objects. Mackinnon et al. introduced them in
the paper “Endo-Testing: Unit Testing with Mock Objects” [MFC01] presented at the
XP 2000 conference. They called it Endo-Testing2 because the mock objects are passed
to the target code which they test from inside. Mock objects are used as placeholders
for real objects and provide implementations to verify collaboration with other classes.
They have the same interface as real objects, which leads to the fact that client code
does not have to be aware if it works together with real or mock objects.

Mock objects are used in unit testing whenever it is impractical or impossible to exercise
real objects. If a real object possesses one or more of the following criterias, mock objects
might help in testing objects in isolation [Wik11]:

• supplies non-deterministic results (e. g., the current time)

• contains states that are difficult to create or reproduce (e. g., network errors)

• is slow (e. g., databases)

• does not exist yet or may change behaviour

• would need to have additional behaviour only necessary for testing purposes

According to Meszaros, we replace a component on which the target code depends
with a “test-specific equivalent” [Mes07]. Other types of test doubles are dummies, fake
objects and stubs. Test doubles come from the world of test-driven development (TDD)
and are closely related to class / responsibility / collaboration (CRC) cards [WBM03].

2“endo”: prefix derived from Greek, means “inside”.
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1. Introduction

The idea is that unit tests validate the responsibilities of a class whereas test doubles
take the part of the collaborators. To better understand these concepts, we are now
going to take a deeper look how unit testing with fake and mock objects works.

Figure 1.1 shows an example of a class relationship where LaserPrinter satisfies the
property of being slow, difficult to setup and hence hard to test. Consider that we
would like to test CheckIn in isolation. We somehow have to break the dependency
to LaserPrinter because we want to have fast and independent unit tests, otherwise
they cannot be considered as being real unit tests [Fea04]. Note that changing CheckIn
is hard because we are violating the open-closed principle [Mey00]. This is because if
we wish that Checkin uses another kind of printer it must be changed to use the name
of the new printer class — hence it is not closed for modifications.

CheckIn

scan(passengerId: string)

LaserPrinter

print(line: string)

Figure 1.1.: The hardwired dependency between CheckIn and LaserPrinter leads to a violation of
the open-closed principle.

One of the many possibilities to break hardwired dependencies is to extract an interface
and to inject the dependency into CheckIn, thus making use of an object seam. This
leads us to the design presented in figure 1.2.

CheckIn

CheckIn(printer: Printer)
scan(passengerId: string)
wasLastScanSuccessful(): bool

Printer
print(line: string)

LaserPrinter

print(line: string)

FakePrinter

print(line: string)
getLastPrintedLine(): string

Figure 1.2.: Extraction of the new interface Printer leads to this class hierarchy where we now make
use of an object seam.

We now have a new interface Printer and CheckIn only depends on this. The depend-
ency is injected via the constructor of CheckIn and is not fixed anymore. To mimic
the behaviour of LaserPrinter in our unit tests, we introduce a fake object called
FakePrinter3. To verify that CheckIn::scan calls Printer::print we also provide a
supplementary member function called FakePrinter::getLastPrintedLine. We are
now ready to test the functionality of CheckIn in isolation as shown in listing 1.34.

3Note that the definitions of fakes and stubs vary greatly in the relevant literature. [Mes07] would call
FakePrinter a stub, whereas [Fea04] names this a fake.

4We will use CUTE [Som11] for writing unit tests in all code examples of this report.
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void testScanPassenger() {
// setup
FakePrinter printer;
CheckIn checkin(printer);
// exercise
checkin.scan("132-763-945");
// verify
ASSERT(checkin.wasLastScanSuccessful());
ASSERT_EQUAL("132-763-945", printer.getLastPrintedLine());

}

Listing 1.3: State verification using the classic xUnit testing approach.

The unit test follows the typical work flow proposed by the xUnit pattern: setup,
exercise, verify and teardown ([Fow11]). In this example, we do not need a separate
teardown phase because we already got rid of the dependency to LaserPrinter which
would have made it necessary to close the printer connection — something we would
normally handle in C++ with Resource Acquisition is Initialisation (RAII) and the help
of automatic objects which are destroyed automatically at the end of the function
providing the possibility to release resources.

To make further explanations easier, we introduce a few important terms: CheckIn is
commonly referred as the system under test (SUT) whereas FakePrinter is a collaborator
or a replacement for a depended-on component (DOC) [Mes07]5. Because we are examin-
ing the state of the SUT and its collaborators after the exercising phase, Fowler calls
this kind of testing state verification [Fow11]. In contrast, he describes testing with mock
objects as behaviour verification.

The code in listing 1.4 is used to test the same example, but this time with the help
of mock objects. We use the mock object library Google Mock [Goo12] here because
we do not want to write the boilerplate code ourselves and we also want to show
how common mock object libraries work. The collaborator in this example is called
MockPrinter. As Google Mock is based on using inheritance, we inherit from the base
class Printer. Google Mock expects that we provide macros for all member functions
we want to get called during the exercise phase. The format of the mock definitions is
MOCK_METHODn(), where n stands for the number of function arguments.

The important part of this example is the specification of the expectations on the mock
object. These indicate which member functions should be called how many times
and which argument values are expected during the SUT is exercised. Google Mock
allows us to specify these expectations through a fluent interface API. In this example,
we specify that the method print has to be called exactly once with the argument
"132-763-945". After this, we specify the actions to be performed on the SUT. Here,

5A DOC is generally replaced by a test double whenever we cannot use the former.
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1. Introduction

we call the member function scan. The verification that all expectations have been
satisfied is automatically done by Google Mock when the mock object is destroyed.

#include "gmock/gmock.h"
struct Printer {
virtual ~Printer() {}
virtual void print(std::string) = 0;

};
struct MockPrinter : Printer {
MOCK_METHOD1(print, void(std::string));

};
void testScanPassenger() {
// setup
MockPrinter printer;
// expectations
EXPECT_CALL(printer, print("132-763-945")).Times(1);
// exercise
CheckIn checkin(printer);
checkin.scan("132-763-945");

}

Listing 1.4: Behaviour verification with Google Mock. Note the use of inheritance and the macro we
need to provide for every member function.

The key difference between state and behaviour verification is how we verify if CheckIn
did the right thing in its interaction with Printer [Fow11]: With state verification, we
executed asserts against the state of CheckIn and FakePrinter whereas with behaviour
verification we verified if CheckIn called the right member functions on Printer.

Behaviour verification is what makes mock objects different from its test double col-
leagues: Mock objects test interactions between objects which is done by recording
function calls and verifying that all expected communication happened as specified.
Both mock and fake objects stand in for the collaborators of the SUT, but only the mock
objects test the collaboration. Fake objects — on the other hand — just simulate the
collaborators and only implement a subset of their functionality [Mes07], e. g., to use a
fake database with hash tables in lieu of a real database connection. Therefore, they do
not need to be configured with collaboration expectations as it is the case with mock
objects.

TDD in combination with mock objects often results in compositions of objects com-
municating through narrowly defined interfaces and flat class hierarchies [FPM+04].
Nevertheless, we have to be aware that mock objects can couple unit tests closely to the
actual implementations when developers specify too detailed expectations about object
interactions which might result in brittle (i. e., unstable) unit tests.
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1.4. Motivation

Making use of seams is a valuable technique, but it is tedious to apply them without
automated refactorings and tool chain configuration support. As we will show in
chapter 2, applying seams often needs changes in the build settings of the project and
code that is hard and cumbersome to create by hand. So far, no C++ IDE is available to
support the developer in the extend we describe it here.

Although there are already various existing mock object libraries for C++, we believe
that creating mock objects is still too complicated and time-consuming for developers.
The overwhelming part of the existing C++ mock object libraries [Goo12, Pou11] relies
on inheritance which has the well-known software engineering problems which we
will discuss in section 2.2.1. Beside this, these libraries often lack an integration into an
IDE. This is especially cumbersome because they require us to write a lot of boilerplate
code.

As we have seen in section 1.3 with Google Mock, a programmer has to learn a new
domain-specific language (DSL) to specify behaviour and collaboration expectations.
Beside the time to get accustomed to the DSL the mock object library provides, the
programmer also needs to write the code for the interface for every new mock object
with all drawbacks more code brings with it.

Although Google Mock contains a Python tool that is able to generate the interface of the
mock object shown in listing 1.4, this would result in a disruption of the development
flow — especially with its lacking integration into an IDE. Beside this, Google Mock
also relies heavily on preprocessor macros, which makes it hard to understand and
debug. Furthermore, as the code is hidden behind them, we cannot easily adapt it to
our needs if the library does not offer a functionality we are looking for.

There are other C++ mock object libraries like amop [unk11a], MockitoPP [Pou11] and
Hippo Mocks [LB] which do not force us to derive from a base class as Google Mock
does. But these often depend on certain compiler-dependent features like run-time type
information (RTTI) .

Because of the mentioned drawbacks, we are really convinced that there is a need for
an integrated solution which is able to create fake and mock objects for Eclipse CDT.
Furthermore, the use of new C++11 language features will allow us to greatly reduce
the need for preprocessor tricks used by most of the existing mocking libraries. One
example is the application of variadic templates as we will see in chapter 3.

We also believe that both fake and mock objects are valuable and both need to be
supported to assist users practising TDD or putting their legacy code base under tests.
Sometimes we only want to specify the behaviour of objects for testing purposes. This
would call for fake objects, as it is the easiest thing to do. When we really want to verify
the collaborations of objects, we go for mock objects.

7



1. Introduction

1.5. Thesis Goals

Based on the results of the foregoing term project, the goal of this master’s thesis is to
make Mockator able to support the C++ developer in applying seams and creating test
doubles. This thesis can therefore be grouped into the two main objectives “Refactoring
Towards Seams” and “Enhanced Mock Object Support”, resulting in the new Mockator
Pro6.

1.5.1. Refactoring Towards Seams

The term project focused on compile seams only. C++ offers three other seam types
beside compile seams: object, preprocessor and link seams. Because all types of seams
can be valuable depending on the concrete scenario of breaking dependencies in existing
code, Mockator has to support these seam types as well.

For object seams a new refactoring to extract an interface from a given class has to be
written. This is the first step in applying object seams. The creation of a test double
making use of subtype polymorphism has to be offered for convenience. The existing
infrastructure to collect missing member functions in the injected test doubles via
template parameters has to be enhanced for subtype polymorphism.

Preprocessor seam is an important technique for debugging purposes like tracing
function calls and should be supported as well.

With link seams we alter the build system to prefer injected code instead of the pro-
duction one at link-time. Current solutions focus on the C programming language and
require a significant amount of manual work. Mockator should be able to automate
these tasks for the C++ programming language. Support for both static and shared
libraries for the code to be replaced is demanded.

For all supported seam types it is important to be able to temporarily deactivate them.

1.5.2. Enhanced Mock Object Support

The created mock object library of the term project was focused on C++11 and does not
work with the older C++ standards 98/03. Because the bulk of existing code is written
in C++98/03 and there will also be new projects still going to use these older standards,
Mockator needs to support these beside C++11.

Mockator was so far only able to mock classes and its member functions. Sometimes,
mocking a free function is easier and sufficient and should therefore be supported as
well.

6Note that we will usually apply the name Mockator in this thesis and only refer to Mockator Pro for
direct comparisons.
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1. Introduction

For the convenience of our users we should provide the ability to toggle mock support
on a member function level in the test double. If the developer manually adjusted
the registration of the function calls and forgot to adapt the expectations accordingly,
Mockator should be able to detect and correct this.

Mockator creates the test doubles in the function of the unit test as a local class. Al-
though this has the advantage of the enhanced locality that makes it easier to keep the
expectations and the test double in sync, this comes at the price of more code that is
placed in the unit test function compared to other mocking libraries where this is often
hidden behind macros. We therefore have to provide a functionality to move the test
doubles out of the functions. As a target we think it is appropriate to move them to a
namespace in the translation unit of the unit test.

The current solution detects missing member functions and constructors of the injected
test doubles which are used by the SUT. It does not recognise missing operators which
is a further goal for this thesis.

Other mock object libraries like Google Mock provide sophisticated instruments to
specify expectations. Mockator currently only supports comparisons based on equality
of the function arguments. To make the specification of expectations more powerful
and convenient, we have to implement the possibility to use regular expressions.

The current mock object library of Mockator is not thread-safe. This issue has to be
analysed in this thesis.

Because Mockator Pro will probably be bundled together with the CUTE testing frame-
work in the near future, its collaboration has to be improved. The project wizard of
CUTE has to be adapted via its extension points to add mock support to a new project.
Although we improve the collaboration with CUTE, Mockator should still be able to
work without it.

1.6. About This Report

In this report we describe goals, implementation details, solutions to encountered
problems and the outcome of this master’s thesis. In chapter 2 we describe the four
kinds of seam types object, compile, preprocessor and link seam. Myers and Bazinet
discussed link seams to intercept functions for the programming language C [MB11].
Our contribution is to show how link seams can be accomplished in C++ where name
mangling comes into play and how it is possible to shadow functions. Feathers presen-
ted object, preprocessor and link seams [Fea04], while the latter two are only discussed
briefly and we have chosen another approach to accomplish them. We also introduce
a fourth kind of seam called compile seam. For every seam we also discuss how we
implemented its support for Eclipse CDT.
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1. Introduction

In chapter 3 we present the C++ mock object library. We first introduce its basic
functionality, will then discuss the new support for the older C++ standards, specifying
expectations with regular expressions and the current thread-safety issues. The mock
object support for Eclipse CDT is discussed in chapter 4. In chapter 5 we show the
architecture of the developed Eclipse plug-in and a few important implementation
details. The final chapter 6 presents the project results, describes open problems
and possible enhancements, contributions made to conferences and magazines, and
concludes with a personal review and acknowledgement.
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2. Refactoring Towards Seams

In this chapter we present four kinds of seams that exist in C++ and the corresponding
refactorings we created for Eclipse CDT to achieve them.

2.1. Object Seam

In this section we discuss object seams which are probably the most common seam type
as they are based on inheritance.

2.1.1. Introduction

To start with an example, consider Listing 2.1 where GameFourWins has a hard coded
dependency to class Die.

// Die.h
#include <cstdlib>
struct Die {
int roll() const { return rand() % 6 + 1; }

};
// GameFourWins.h
#include "Die.h"
#include <iosfwd>
struct GameFourWins {
void play(std::ostream& os);

private:
Die die;

};
// GameFourWins.cpp
#include "GameFourWins.h"
#include <iostream>
void GameFourWins::play(std::ostream& os = std::cout) {
if (die.roll() == 4)
os << "You won!" << std::endl;

else
os << "You lost!" << std::endl;

}

Listing 2.1: Code with fixed dependencies harming testability.
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2. Refactoring Towards Seams

According to Feathers, the call to play is not a seam because it is missing the essential
property every seam has: an enabling point. We cannot alter the behaviour of the member
function play without changing its function body. One reason for this restriction is that
the member variable die is based on the concrete class Die. Furthermore, we cannot
subclass GameFourWins and override play since play is monomorphic1. This fixed
dependency also makes it hard to test GameFourWins in isolation because Die uses C’s
standard library pseudo-random number generator function rand. Although rand is a
deterministic function because calls to it will return the same sequence of numbers for
any given seed, it is hard and cumbersome to setup a specific seed for our purposes.

The classic way to alter the behaviour of GameFourWins is to inject the dependency from
outside by using subtype polymorphism2. We first have to apply the refactoring Extract
Interface [Fow99] to enable subtype polymorphism. Then we provide a constructor to
inject the dependency from outside3. The resulting code is shown in Listing 2.2.

//IDie.h
struct IDie {
virtual ~IDie() {}
virtual int roll() const =0;

};
//Die.h
#include "IDie.h"
#include <cstdlib>
struct Die : IDie {
int roll() const { return rand() % 6 + 1; }

};
//GameFourWins.cpp
#include "Die.h"
#include <iostream>
struct GameFourWins {
GameFourWins(IDie& die): die(die) {}
void play(std::ostream&) { /* as before */ }

private:
IDie& die;

};

Listing 2.2: Code after applying the refactoring extract interface to achieve an object seam.

This way we can now inject a different kind of Die depending on the context we need.
This is a seam because we now have an enabling point: The instance of Die that is
passed to the constructor of GameFourWins.

1Monomorphic as the opposite of polymorphic, hence not virtual. This is a term used by Martin
in [Mar08].

2Because of the way functions are resolved through the vtable at run-time, this type of polymorphism is
often also called run-time polymorphism. In type theory it is named inclusion polymorphism [CW85].

3We could also have passed an instance of Die to play directly.
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2. Refactoring Towards Seams

2.1.2. Use Case

The following use case describes the steps necessary to refactor towards an object seam
with Mockator:

UC 1 Create object seam
Primary Actor C++ Developer
Precondition The developer has a fixed dependency in the code which needs

to be replaced by an alternative implementation.
Postcondition An object seam exists that can be used with the alternative im-

plementation in the newly created subclass.
Main sequence

1. User: Extracts an interface from the chosen class (see 2.1.4).

2. System: Creates a new interface class which the chosen
class inherits from.

3. User: Provides a constructor or a member function in the
SUT with the interface parameter type to inject the depend-
ency.

4. User: Creates an instance of the SUT and injects a new class
name.

5. System: Shows marker with quick fix to create the object
seam class.

6. User: Applies the quick fix.

7. System: System creates the new local subclass and shows a
marker for every pure virtual member function that needs
to be implemented.

8. User: Applies one of the quick fixes (with or without re-
cording call support).

9. System: Creates the missing member functions.

10. User: Implements an alternative implementation for the
object seam in the member functions.

2.1.3. Implementation

After extracting an interface and providing a constructor or member function to inject a
dependency as shown in listing 2.2, we can use Mockator to create a local test double
class. Whenever an unresolved identifier is used as an argument for passing it to a
reference or pointer parameter of a constructor or member function and the class type

13
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of the parameter can be considered as a valid base class, Mockator creates a marker
with a quick fix (see listing 2.34). Obviously, we cannot use pass by value when we
want to make use of subtype polymorphism in C++ because of object slicing. Valid base
classes are all classes that have a virtual non-private destructor, as it is created by our
extract interface refactoring.

void testGameFourWins() {
GameFourWins game(

:::
die);

}

Listing 2.3: Using an unresolved identifier to the reference parameter of the constructor of the SUT
yields a CodAn marker.

After applying the quick fix corresponding to the marker, Mockator creates a local class
which inherits from the class type of the parameter it is injected to. Note that we define
an instance of the newly created class named according to the unresolved identifier, as
can be seen in listing 2.4.

void testGameFourWins() {
struct

:::
Die : IDie {

} die;
GameFourWins game(die);

}

Listing 2.4: After applying the quick fix to create a local subclass that is injected into the SUT Mockator
detects that an abstract class is instantiated and creates another marker.

Actually, there would be no need to name the local class in this example because after
the creation of the instance we never use it anymore. Therefore, we could create an
anonymous local class here. Because we need to define a constructor in the case we
have to call the constructor of the base class (when there is no default constructor in the
base class), we need a class name and therefore specify one.

Mockator detects that the abstract class Die is instantiated and therefore creates another
marker. After applying the marker, Mockator creates default implementations5 for all
pure virtual member functions of the base classes. Note that Mockator by default only
marks incomplete classes when they are part of or referenced by a test function. This
reduces the amount of analysis work that has to be done. A test function is defined as
a niladic function (i. e., a function with zero parameters [Mar08]). Which functions to
consider as test functions can be changed in the project settings where it is also possible
to recognise all functions as test functions. Note that we do not restrict test functions to
be free functions and therefore also support test functors from CUTE.

4Note the use of the red wave in the listing which we use to document code analysis (CodAn) markers in
this thesis.

5This happens in the case the user has not chosen to use recording support for mock objects, as we will
discuss in chapter 4.
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Listing 2.5 shows an example where we additionally have added a non-default con-
structor to the base class IDie, hence Mockator needs to create code to call the base class
constructor in the new local subclass to have no compile errors. If there are several base
class constructors, Mockator always calls the one with the least number of parameters.
Note the use of the default instantiations by using the new C++11 initialiser syntax.

struct IDie {
// as before
IDie(int i);

};
void testGameFourWins() {
struct Die : IDie {
Die() : IDie{int{}} { }
int roll() {
return int{};

}
} die;
GameFourWins game(die);

}

Listing 2.5: After applying the quick fix Mockator creates default implementations for all pure virtual
member functions.

2.1.4. Extract Interface Refactoring

When using object seams we want to apply the Liskov substitution principle and
subtype polymorphism and inject our test doubles as subclasses of the dependencies
the SUT works with. A preliminary for subclassing is to have a base class or interface
which the SUT works with. To achieve this, we implemented the new refactoring Extract
Interface [Fow99], as there is no such support in Eclipse CDT yet.

Introduction

In contrast to Java, C++ does not have a dedicated keyword to express interfaces. An
interface in C++ can be emulated by a class having nothing but pure virtual function
declarations. As there is not first class support for interfaces, we have to be aware of
a few specialities that otherwise can lead to problems, which we will discuss in this
section.

The use of interfaces in object-oriented designs has numerous advantages. When our
code depends on interfaces instead of concrete implementations, we normally have to
change our code less often because interfaces typically change far less [Fea04]. The use
of interfaces helps in applying the dependency inversion principle [Mar02], because
high-level and low-level modules depend upon abstractions. This decreased coupling
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again results in shorter build times because changes in the implementation classes are
separated from the interface and therefore code that is only working with the interface
is ideally not affected by these.

However — as it is often the case in programming — it is a matter of using the right
tool for the given job. In base classes with increased costs of change (e. g., in libraries
and frameworks), it is often advisable to make virtual functions non-public, making
use of the non-virtual interface pattern (NVI) instead of the approach with public virtual
functions presented here [Mey05, SA04].

Because we often encounter designs where interfaces are used sparingly in legacy
code and instead high coupling dominates, we need a refactoring for this job. Fowler
describes the mechanics of an extract interface refactoring in [Fow99] in four steps:

1. Create an empty interface

2. Declare the common operations in the interface

3. Declare the relevant class(es) as implementing the interface

4. Adjust client type declarations to use the interface

Use Case

UC 2 Extract interface
Primary Actor C++ Developer
Precondition The developer wants to extract an interface from a given class

due to hardwired dependencies to a collaborator.
Postcondition A class interface with the chosen member functions is generated

in a new header file. If desired, existing references are adapted
to use the interface class instead of the concrete one.

Main sequence
1. User: Selects a class name to extract an interface from.

2. System: Starts the refactoring process.

3. System: Asks the user for the name of the new interface,
which member functions should be specified in the inter-
face class and if existing references should be adapted.

4. User: Makes the decisions for the new class interface.

5. System: Shows a preview for the refactoring.

6. User: Accepts changes.

7. System: Creates an interface in a new header file and uses
the interface type wherever possible.
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Implementation

From the concrete class we extract an interface from, we collect all public non-static
member functions to use them as pure virtual member function declarations in the
interface class. Additionally, we create an empty implementation of a virtual destructor.
The latter is needed in order to let the destructors of derived classes be invoked properly
when a polymorphic object is deleted through a base class pointer, otherwise possibly
resulting in a resource leak [Mey05].

For the newly created interface class, we use the keyword struct because its default
visibility is public which allows us to avoid the clutter of defining a public visibility
label. For the concrete class, we add public inheritance to the newly created interface.
If we are extracting an interface from a class that uses the class keyword, we have to
explicitly use public inheritance to make it work.

//Foo.h
#include <map>
#include <string>
class A;
typedef std::map<std::string, std::string> KeyValStore;
namespace Ns {
struct Foo {
void bar(KeyValStore const& s);
void bar(KeyValStore const& s) const;

private:
void ignoreNonPublicMemFuns();
A* a;

};
}
//SUT.h
#include "Foo.h"
struct SUT {
SUT(Ns::Foo const& foo) : foo(foo) {}
void doit() {
KeyValStore kv;
foo.bar(kv);

}
private:
Ns::Foo const& foo;

};

Listing 2.6: Starting position to show several aspects of the extract interface refactoring. The initial text
selection is shown in yellow.

To assist the user in creating narrow interfaces, we only select member functions in
the refactoring dialog by default that are used in the SUT class for the selected class
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name6. As an example, consider the code in listing 2.6 where only the const version of
bar is used in the class SUT. In the refactoring dialog, only this member function will
therefore be selected by default. Listing 2.7 shows the result of the refactoring process
if the user accepts this suggestion.

#ifndef FOOINTERFACE_H_

#define FOOINTERFACE_H_

#include <map>
#include <string>
class A;
typedef std::map<std::string, std::string> KeyValStore;

namespace Ns {
struct FooInterface {
virtual ~FooInterface() { }
virtual void bar(KeyValStore const& kv) const =0;

};
}
#endif

Listing 2.7: Newly created interface class FooInterface with the used public member function bar
and the moved includes, forward declarations and the typedef.

For every newly created interface, a header file including appropriate include guards
is created, as can be seen in listing 2.7. If the class the interface is extracted from is
already part of a namespace as in this example, the newly created interface is put in
the same one too. In order to have necessary type definitions available, we move all
includes, forward declarations and typedef’s from the place where the concrete class
is defined to the newly created header file. This makes the header file of the interface
class self-sufficient. Although this might move dependencies that are only used in the
implementation to the interface file, we value correctness over optimisation here and
let other tools [Fel12] clean up unnecessary includes.

#include "Foo.h"
struct SUT {
SUT(Ns::FooInterface const& foo) : foo(foo) {}
void doit();

private:
Ns::FooInterface const& foo;

};

Listing 2.8: Replaced references to concrete class by using the new interface name FooInterface.

As a last step, we have to adapt all references to the chosen class and use the name
of the interface if possible. Wherever the chosen class name is used for a reference or

6This selection is visualised in the code listing by a yellow marker. We will use this to emphasise all
selections in this thesis.
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pointer type, we us the name of the new interface. Listing 2.8 shows how the class SUT
looks like after applying the refactoring.

Non-virtual Functions

In C++ we need to be aware of the potential side effects of extracting interfaces in
terms of non-virtual member functions. If the class we extract an interface from has
a subclass and we add the signature of a non-virtual member function to the newly
created interface, we can break existing client code. Consider listing 2.9 with the Die
class known from previous examples and AlwaysSixDie which — as its name implies
— always returns 6. Note that AlwaysSixDie::roll shadows Die::roll because it
has the same function signature and the latter is not defined virtual.

#include <cstdlib>
struct Die {
int roll() const {
return rand() % 6 + 1;

}
};
struct AlwaysSixDie : Die {
int roll() const {
return 6;

}
};

Listing 2.9: Subclassing with non-virtual member functions leads to shadowing.

If we now extract an interface for Die, Croupier in listing 2.10 is broken if we pass it
an instance of AlwaysSixDie. Behaviour changes because now subtype polymorphism
comes into play where before only the static type of Die was considered for resolving
member function calls (i. e., the call was statically bound). This happens in C++ because
if we make a member function virtual in a base class, all member functions that override
it in subclasses become virtual too7.

Of course, creating a member function in a derived class with an equal signature as a
non-virtual one in the base class is bad practice8 and should be avoided [Mey05]. But
we need to consider this case because preserving behaviour during refactoring is a very
important goal we try to achieve. We therefore create a warning in our refactoring
with an indication that it might be better to add a new virtual member function with a
different name and delegate to the non-virtual one [Fea04].

7This is in contrast to Java where all member functions are virtual by default.
8Eclipse CDT creates a marker for shadowing functions since version 8.0.0 that — when clicked — jumps

to the shadowed function.
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struct DieInterface {
virtual ~DieInterface() { }
virtual int roll() const = 0;

};
struct Die : DieInterface {
// as before

};
struct Croupier {
void doJob(Die const& die) {
if (die.roll() == 6) {
// jackpot

}
}

};

Listing 2.10: Change of behaviour in Croupier caused by the extract interface refactoring.

Public Virtual vs. Protected Non-virtual Destructor

It does not always make sense to have a virtual destructor. There are situations where
it is more beneficial for a class to have a non-virtual and non-public (i. e., protected)
destructor. This is the case when we do not intend to have pointers to a class inter-
face passed around our program, therefore the interface is not intended to be a usage
type [Rad11]. Listing 2.11 shows an example of a class interface that is not intended to
be a usage type. This is a typical scenario for mixin interfaces [Rad11].

#include <iosfwd>
struct Serializable {
virtual void load(std::istream& in) = 0;
virtual void save(std::ostream& out) = 0;

protected:
~Serializable();

};
struct DieInterface {
virtual ~DieInterface() { }
virtual int roll() const = 0;

};
struct Die : DieInterface, Serializable {
//...

};

Listing 2.11: Serializable is not a usage type and is better served with a protected non-virtual
destructor.

Although we originally planned to let the user decide if the destructor should be public
and virtual or protected and non-virtual, we decided against this approach because it
may be too hard for a programmer to make this decision upfront.
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Prohibit Incidental Assignments

We again consider the interface class DieInterface from listing 2.10. Written like this,
the compiler will provide a copy assignment operator, a default and a copy constructor.
Although interface classes are stateless and allowing assignment therefore is harmless,
prohibiting it would be a safety contribution to avoid errors. We think that a refactoring
should also enforce best practices where possible and reasonable and it would be
easy for us to do it here. Despite of this, an interface classes assignment semantics
can be considered inappropriate and irrelevant [Rad11]. We could make a proposal
in the refactoring dialog to enforce this which would result in the code shown in
listing 2.129.

struct DieInterface {
// as before

private:
DieInterface& operator=(const DieInterface&);

};

Listing 2.12: DieInterface with a private assignment operator to prohibit incidental assignments.

However, we decided against this approach because it might again be a design decision
that is too hard for a programmer to make at the beginning. An additional disadvant-
age would be that it has the side effect of prohibiting the use of the assignment in
subclasses.

Internal Design

In this section we describe the internal design of the implemented refactoring. To
explain the most important classes that an LTK (Language Toolkit) based refactoring
in CDT uses, we provide the class diagram of figure 2.1. The delegate for our UI
action to start the extract interface refactoring via the Eclipse menu is contained in the
class EIDelegate10 which is registered in our plugin.xml. The delegate creates an
instance of EIAction and calls run on it. This action then creates an EIRunner which
provides the wizard and the refactoring to run and finally initiates the wizard. Note that
its parent class RefactoringRunner2 provides the functionality to create and finally
dispose the RefactoringASTCache which is a CDT provided class to cache abstract
syntax trees (AST) for given translation units.

Our provided class EIRefactoring is responsible for checking pre- and postconditions
and the actual change generation for the refactoring. EIWizard controls the single
page for our refactoring which is provided by the class EIWizardPage. This class is
responsible for creating all the UI elements for the refactoring dialog.

9Note that in C++11 we would use the new delete keyword instead of declaring the assignment operator
private.

10We use the shortform EI for “ExtractInterface” in this section because of space reasons.
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CRefactoring2

MockatorRefactoring

EIRefactoring

CDT base classes with common
refactoring functionality

RefactoringRunner2

EIRunner

Action

RefactoringAction

EIAction IWorkbenchWindowDelegate

MockatorDelegate

EIDelegate

RefactoringWizard

EIWizard

UserInputWizardPage

EIWizardPage

Figure 2.1.: Extract interface refactoring class hierarchy. Yellow tagged classes are provided by Eclipse.

External Design

Figure 2.2 shows a screen mock-up for the new extract interface refactoring dialog. The
user can specify the name of the interface, if existing references to the concrete type
should be replaced by the interface class wherever possible and the member functions to
declare in the interface where the used member functions in the SUT are pre-selected.

Note that as explained in section 2.1.4, we do not offer the possibilities to choose the
visibility of the destructor and to create a private assignment operator because of the
complexity the user would have to cope with.

2.2. Compile Seam

Although object seams are the classic way of injecting dependencies, we think there is
often a better solution to achieve the same goals called compile seam. In this section we
will discuss the necessary steps and how Mockator can help to refactor towards this
seam type.
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Figure 2.2.: UI mock-up for the extract Interface refactoring dialog.

2.2.1. Introduction

Beside supporting subtype polymorphism with object seams, C++ also provides static
polymorphism11 with template parameters. They allow us to inject dependencies at
compile-time. We therefore call this seam type compile seam. Its essential precondition
is the application of the refactoring extract template parameter [Thr10]. The result of this
refactoring can be seen in Listing 2.13 where the class GameFourWins from Listing 2.1
was used to extract a template parameter. The enabling point of this seam is the place
where the template class GameFourWinsT is instantiated.

One might argue that the intrusion of testability into our production code is ignored
here: we have to template a class in order to inject a dependency, where this might
only be an issue during testing. The approach taken by the extract template parameter
refactoring is to create a type definition which instantiates the template with the concrete
type that has been used before applying the refactoring (here through the use of a default
template parameter). This has the advantage that we do not break existing code.

The use of static polymorphism with template parameters has some advantages over
object seams with subtype polymorphism. It does not incur the run-time overhead of

11Static polymorphism [SA04] is not a term one can usually find in type theory books. We used it
here in contrast to dynamic polymorphism. Other comparisons employ compile-time vs. run-time
polymorphism. In type theory, static polymorphism is referred to as parametric polymorphism.
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calling virtual member functions that can be unacceptable for certain systems. This
overhead results due to pointer indirection, the necessary initialisation of the vtable
(the table of pointers to its member functions) and the fact that virtual functions usually
cannot be inlined by compilers. Note that there is also an increased space-cost because
of the additional pointer per object that has to be stored for the vtable [DH96]. There are
also scenarios where it makes sense to do calculations during compile-time evaluations
upfront in order to avoid them being done at run-time.

#include <iostream>
class Die;
template <typename Dice=Die>
struct GameFourWinsT {
void play(std::ostream &os = std::cout){
if (die.roll() == 4) {
os << "You won!" << std::endl;

} else {
os << "You lost!" << std::endl;

}
}

private:
Dice die;

};
typedef GameFourWinsT<> GameFourWins;

Listing 2.13: Code after applying the refactoring extract template parameter to inject dependencies
through template parameters.

Beside performance and space considerations, inheritance brings all the well-known
software engineering problems like tight coupling12, enhanced complexity and fragility
with it [Szy98, SA04, Mey05]. Most of these disadvantages can be neglected with the
use of templates. Probably the most important advantage of using templates is that
a template argument only needs to define the members that are actually used by the
instantiation of the template. This can ease the burden of an otherwise wide interface
that one might need to implement in case of an object seam. The concept is known as
compile-time duck typing.

Although duck typing is mainly used in the context of dynamically typed programming
languages, C++ offers duck typing at compile-time with templates. Instead of explicitly
specifying an interface our type has to inherit from, the template argument just has
to provide the components that are used in the template definition. If we have a
template <typename T> void foo(T t), t can be of any type as long as it provides
the operations executed on it in foo. This is known as the implicit interface, whereas
with inheritance one has an explicit interface to implement.

Of course, there are also drawbacks of using templates in C++. They can lead to
increased compile-times, the known export and inline issues, code bloat when used

12Inheritance is the second strongest relationship in C++, only after friendship [Sut00].
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naively and (sometimes) reduced clarity. The latter is because of the missing support
for concepts even with C++11, therefore solely relying on the implicit interface with the
naming and documentation of template parameters. Furthermore, the use of new types
will force recompilation and redeployment, and types cannot change at run-time which
might be interesting for plug-in architectures. Apart from these objections, we are
convinced that compile seams should be often preferred over object seams in C++13.

2.2.2. Use Case

This use case describes the steps necessary to refactor towards compile seams:

UC 3 Create compile seam
Primary Actor C++ Developer
Precondition The developer has a fixed dependency in the code which needs

to be replaced by an alternative implementation.
Postcondition A compile seam exists that can be used with an alternative im-

plementation in the newly created class.
Main sequence

1. User: Extracts a template parameter from the SUT.

2. System: Creates a template parameter and a typedef for
clients that still want to use the class with the default col-
laborator.

3. User: Instantiates the SUT with an unknown identifier.

4. System: Shows marker with quick fix to create the compile
seam class.

5. User: Applies the quick fix.

6. System: System creates the class (either a local one for
C++11 or one in a namespace for C++03) and shows a
marker indicating all missing member functions that are
used in the SUT on the template parameter.

7. User: Applies one of the quick fixes (with or without re-
coding call support).

8. System: Creates the missing member functions.

9. User: Implements an alternative implementation for the
compile seam in the member functions.

13Of course, it is not all black or white. There are interesting applications of mixing the two paradigms
as stated in [Ale01]. Examples include command and visitor design patterns or discriminated union
implementations.
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2.2.3. Implementation

After applying the extract template parameter refactoring, the compile seam exists and
we can inject an alternative implementation. Mockator detects the usage of an unknown
identifier as a template argument and creates a marker with a corresponding quick fix
for this situation, as can be seen in Listing 2.14. The quick fix creates an empty class
with the name of the unresolved identifier. The target for this new class depends on the
chosen C++ standard.

template<typename T>
struct ShapePainter {
void paint() {
T shape(4);
int area = shape.area();
//...

}
};
void testShapePainterWithSquare() {
ShapePainter<

:::::::::::
SquareFake> painter;

painter.paint();
}

Listing 2.14: Dependency injection with template parameter and an unknown identifier used as template
argument yielding a marker.

In case C++11 is used, we create a local class right in front of the template instantiation.
Otherwise, the local class is wrapped in a namespace which name depends if the current
test function is registered in a CUTE suite or not. In case it is a registered test function,
we create a namespace with the name of the test suite and an additional one for the test
function. If not, we only create the latter. We use namespaces to encapsulate the test
doubles from the surrounding code and to avoid naming collisions. Both situations
are shown in Listing 2.15. Note that we create a using namespace declaration to have
access to our test double in the unit test function.

The creation of the test doubles as local classes in the same function as the unit test code
leads to an increased locality that makes it easier to keep them in sync with the unit test
code. Although local classes can simplify implementations and especially enhance the
locality of symbols [Ale01], they are a lesser known and used language feature for most
C++ programmers. One of the reasons for this is that local classes had no linkage and
therefore could not be used as template arguments [ISO03, §14.3.1.2]. With C++11, this
has changed and the awkward restriction has been removed.

Nevertheless, local classes are still not first-class citizens even in C++11. Declarations in
local classes can only use type names, static and external variables, functions and enums
from their enclosing scope. Access to automatic variables is therefore prohibited [ISO11,
§9.8.1]. Furthermore, they are not allowed to have static members [ISO11, §9.8.4].
Unfortunately, they can also not have template members.
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namespace testSuite {
namespace testWhenCpp03IsUsed_Ns {
struct

:::::::::::
SquareFake {

};
}

}
void testWhenCpp03IsUsed() {
using namespace testSuite::testWhenCpp03IsUsed_Ns;
ShapePainter<SquareFake> painter;
painter.paint();

}
void testWhenCpp11IsUsed() {
struct

:::::::::::
SquareFake {

};
ShapePainter<SquareFake> painter;
painter.paint();

}
void runSuite() {
cute::suite testSuite;
testSuite.push_back(CUTE(testWhenCpp03IsUsed));

}

Listing 2.15: Creation of classes for compile seam for both C++ standards. Note the markers which are
created due to the missing member functions.

The next and final step for the programmer is to create the missing member functions
by using a quick fix for the marker shown in listing 2.15. The result of this quick fix is
presented in listing 2.16 for the case when C++11 is used.

void testWhenCpp11IsUsed() {
struct SquareFake {
SquareFake(int const&) {
}
int area() const {
return int{};

}
};
ShapePainter<SquareFake> painter;
painter.paint();

}

Listing 2.16: After applying the quick fix all missing member functions are provided.

2.2.4. Recognising Missing Concept Implementations

So far we have only talked about missing member functions and constructors. But there
are more language items that could be used in the SUT which we should provide in
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our injected test doubles. To formalise this discussion, we use the well-known idea of
concepts and also explain them here.

Introduction to Concepts

C++ supports generic programming with templates. A template can be either a function
or a class that is parametrized with one or more template parameters. The actual types
that are used for a template are called template arguments. The compiler creates a so
called template instantiation with the given arguments for a template. Beside this, the
compiler is also able to infer template arguments for function templates in case they are
not given.

Listing 2.17 shows the template definition of the function template min. T is the template
parameter and a and b are so called dependent types [VJ02] because they are of the type
of the template parameter T. The compiler is only able to verify the template definition
for syntactical correctness based on non-dependent names. Dependent names can only
be checked when the template is instantiated, which is the case in the given example.

template <typename T>
T const& min(T const& a, T const& b) {
return a < b ? a : b;

}
int typeInferenceWithCallingTemplateFunction() {
return min(3, 7);

}

Listing 2.17: Template function min which returns the smaller of the two given arguments as its result
including an instantiation making use of type inference.

operator< is used by the template to compare the given values and is expected to
be implemented for the template argument type given to min. Because operator< is
applied on values of type T, it is a dependent name. The example in listing 2.17 also
shows that the compiler is able to infer the type of T based on the arguments given.

Although its usefulness and its advantages over inheritance and virtual functions to
achieve polymorphism, templates also have a few subtle drawbacks as described in
section 2.2.1. One of them is the lack of an explicit contract between the template and
its users. Stroustrup and Dos Reis therefore conclude in [SR05]: “The near-optimal
performance offered by ISO C++ templates comes at the price of a very weak separation
between template definitions and their uses.” This problem manifests itself in the fact
that template definitions and their uses cannot be verified separately.

This is one of the reasons why we are confronted with long and hard to grasp compiler
error messages when templates are used wrongly. The canonical example is the incorrect
use of STL algorithms, as one example is shown in listing 2.18.
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#include <list>
#include <algorithm>
int main() {
std::list<int> numbers = {3, 1, 2, 5, 4};
std::sort(numbers.begin(), numbers.end());

}

Listing 2.18: Typical STL algorithm template function usage error.

Compiling this example with the GNU Compiler Collection (GCC) 4.7 yields an error
message chain of 46 text lines14. Of course, a developer familiar with the STL will find
the source of the problem quickly in the last part of the compiler error (see listing 2.19)15.
sort expects the passed iterators to be of the type RandomAccessIterator and there-
fore providing direct access to the underlying elements of the container with the help
of constant-time member function for moving forward and backward (as it is shown in
the error message, operator- is missing). This is clearly not the case with the iterators
std::list offers, which are of type BidirectionalIterator16.

c++/4.7.0/bits/stl_algo.h:5476: error: no match for
’operator-’ in ’__last - __first’
c++/4.7.0/bits/stl_iterator.h:329: note: template<class _Iterator> typename
std::reverse_iterator::difference_type std::operator-(const
std::reverse_iterator<_Iterator>&, const
std::reverse_iterator<_Iterator>&)

Listing 2.19: Last part of error message yielded by GCC 4.7 when given the code of Listing 2.18.

Although this constraint is implicitly remarked in the code of the function template
sort with a naming schema used by the STL for template parameters (see listing 2.20),
library designers cannot enforce that these rules are followed by their users in a simple
and compiler verifiable way.

template <class RandomAccessIterator>
void sort(RandomAccessIterator first, RandomAccessIterator last);

Listing 2.20: Template function signature of std::sort with argument requirements based on a
naming schema for STL iterators.

Concepts are able to make these requirements explicit. They basically offer a type
system for templates, thus make it possible for compilers to verify the types of the

14Note that GCC is not very good in producing concise error messages. With clang we often get much
better results which somehow lessen the need for concepts.

15Tools like gccfilter [Li12] can help a lot here in reducing the visual clutter of the error message and by
adding coloring. We tried this example with gccfilter --colorize --remove-instantiated-from
--remove-path --remove-template-args --remove-namespaces g++ -std=c++11 test.cpp

and could spot the error quickly.
16std::list has a special member function called sort which can be used instead of the STL algorithm.
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template definitions separately from their uses [GS06]. They are not a part of C++11
anymore, but may be included in a future C++ standard.

We now refer back to listing 2.17 again. With concepts, we can make the constraints
explicit that there must be a operator< present for the arguments of type T const&
and that the return type of operator< has to be convertible to bool. The original
proposal [GS06] offers a new syntax to write concepts as it is shown in listing 2.21.

auto concept LessThanComparable<typename T> {
bool operator<(T const&, T const&);

};

Listing 2.21: Concept definition LessThanComparable enforcing a corresponding operator<.

Instead of expecting an arbitrary type as it is denoted with the syntax typename T, a
library designer is now able to explicitly state that T must follow the constraints given
by the concept LessThanComparable, as it is shown in Listing 2.22.

template<LessThanComparable T>
T const& min(T const& a, T const& b) {
return a < b ? a : b;

}

Listing 2.22: Concept LessThanComparable applied to template function min.

Although concepts are not part of the new standard C++11 and are therefore not in-
cluded in compilers implementing the standard like GCC, we can still test our min func-
tion with ConceptGCC [ea11b]. This is an enhanced GNU C++ compiler which supports
concepts. Listing 2.23 shows the same example using the concept LessThanComparable
which is defined in the concepts header. If we compile this example, ConceptGCC
yields an error message like shown in listing 2.24 which clearly states that class X does
not fulfil the requirement given by the concept LessThanComparable.

#include <concepts>
template<std::LessThanComparable T>
T const& min(T const& a, T const& b) {
return a < b ? a : b;

}
struct X { };
void foo() {
X x1, x2;
X result = min(x1, x2);

}

Listing 2.23: Code for using min with ConceptGCC.

An important goal of using concepts is to make it easier for compilers to produce
better and shorter error messages. This can be achieved through early error detection
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and the obsolete creation of an instantiation stack [GS06]. The difference is that the
missing operator< was detected while instantiating min, while with concepts the error
is recognised at the call of min when the concept LessThanComparable could not be
satisfied.

min.cpp:20: error: no matching function call to "min(X&, X&)"
min.cpp:11: note: candidates are: const T& min(const T&,
const T&) [with T = X] <requirements>
min.cpp:20: note: no concept map for requirement
"LessThanComparable<X>"

Listing 2.24: Error message produced by ConceptGCC for the min example.

In the last example, this was not a big deal because even without concepts the error
message clearly indicated that class X was missing operator<. But if we compile the
code in listing 2.18 with ConceptGCC, we only get four lines (see listing 2.25) compared
to the 46 before and it is clearly described that std::list’s iterator type does not satisfy
the requirement of being a RandomAccessIterator.

sort.cpp: In function "int main()":
sort.cpp:6: error: no "sort(std::_List_iterator<long int>,
std::_List_iterator<long int>)"
stl_algo.h:2673:note:candidates are: void std::sort(_Iter, _Iter)
[with _Iter = std::_List_iterator<long int>] <requirements>
iterator_concepts.h:174: note: no concept map for requirement
"std::RandomAccessIterator<std::_List_iterator<long int> >"

Listing 2.25: Error message of ConceptGCC when compiling the code of listing 2.18.

Recognising Missing Concept Implementations in Mockator

The recognition of missing concept implementations and the creation of default imple-
mentations for them is the main part Mockator does in its support for compile seams.
Consider listing 2.27 which shows a SUT using the template parameter T to create an
object and calling member functions on it. The template class is instantiated with Fake
which is a local class lacking the implementation of the used constructor and member
functions.

auto concept FakeRequirements<typename T> {
T::T(std::string);
void T::foo1();
double T::foo2(char);
static void T::foo3();
char const* T::foo4(int);

}

Listing 2.26: Concept definition for class Fake of listing 2.27.
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To better understand the requirements Fake has to satisfy, we present these in concept
notation in listing 2.26. As we can see, Fake needs to provide a constructor taking
a std::string as its parameter and four member functions called foo1, foo2, foo3
(static) and foo4.

template<typename T>
struct SUT {
char const* bar() {
T t("test");
t.foo1();
double d = 3.1415 + t.foo2(’c’);
T::foo3();
return t.foo4(42);

}
};
void testSUT() {
struct

::::
Fake {

};
SUT<Fake> sut;
sut.bar();

}

Listing 2.27: Local class used as template argument to instantiate the template class SUT lacking one
constructor and four member functions

Mockator needs to recognise the missing concept implementations and provide default
implementations. Listing 2.28 exhibits how Fake needs to look like in order to compile
successfully.

#include <string>
void testSUT() {
struct Fake {
Fake(std::string const&) { }
void foo1() const { }
double foo2(char const&) const {
return double{};

}
static void foo3() { }
char const* foo4(int const&) const {
return nullptr;

}
};
// rest as before

}

Listing 2.28: Local class adhering to the requirements of the concept FakeRequirements.

Note that we have to deduce the return type from the context where the member
functions on the template parameter are called. Mockator uses the default value of the
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return type for the return value with C++11’s new initialiser syntax using curly brackets.
For pointer return types, we use the new nullptr. Also note that we currently make
all member functions and their parameters const, thus enforcing good coding rules by
using const whenever possible [Mey05].

template <typename T>
int sut(T const& t) {
return t.foo();

}
void testSUT() {
struct Fake {
int foo() const {
return int{};

}
};
sut(Fake());

}

Listing 2.29: Example of a template function used to inject a local class.

Beside template classes, Mockator also supports template functions to inject test doubles.
An example is shown in listing 2.29. There are several more complex cases we have to
consider while detecting missing concept implementations. Listing 2.30 presents some
of them, which we will discuss next.

(1) refers to the case where we need to resolve a typedef to recognize that Fake_type
actually is the template parameter T and therefore has to be considered in the analysis
of missing concept implementations.

(2) is a typedef used as the type of an argument to a member function of the local class.
To access the typedef, we could have used an explicit instantiation of the SUT with
the class Fake as its template argument type, but we do not do this as we will explain
when this is discussed. Therefore, we currently resolve the typedef to the underlying
type and use it as the type of the parameter (i. e., unsigned int).

In (3) we have to recognise the type of a temporary object. We also have to discover
function calls made on instances of the injected classes in complex expressions. (4) is a
situation where the call is done inside of an if statement and negated with the boolean
operator !, which leads to the possible return type bool for foo3.

(5) depicts the situation where the template member function is defined outside the
class declaration. In (6) we have to duduce the return type of a called function as the
type of the argument for the function call on the local class. Furthermore, its return
type must use the fully qualified name of A because it is located in a namespace.

In (7) we have to create a default constructor because there would be no default gener-
ated one by the compiler. Note that we would not create a solely default constructor
for fake objects in contrast to mock objects where the situation is different because we
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always have to do necessary registration work in the mock object constructors as we
will discuss in chapter 3.

#include <string>
#include <map>
namespace NS { struct A { }; }

template <typename T>
struct SUT {
typedef T Fake_type; // (1)
Fake_type fake;
typedef unsigned int Positive; // (2)
void bar() {
std::map<std::string, int> m;
T fake2(m);
fake.foo1(NS::A()); // (3)
fake.foo2(this);
Positive p = 42;
if (!fake2.foo3(p)) { return; }; // (4)
bar2();

}
NS::A bar2();

};
bool isPrime(int) { return false; }

template <typename T> // (5)
NS::A SUT<T>::bar2() {
return fake.foo4(true, isPrime(42)); // (6)

}

void handlingOfMoreComplexCases() {
struct Fake {
Fake() { } // (7)
Fake(std::map<std::string, int> const&) { } // (8)
void foo1(NS::A const&) const { }
void foo2(SUT<Fake> const*) const { } // (9)
bool foo3(unsigned int const&) const {
return bool{};

}
NS::A foo4(bool const&, bool const&) const {
return NS::A();

}
};
SUT<Fake> sut;
sut.bar();

}

Listing 2.30: More complex cases to consider when creating missing concept implementations.
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(8) presents the case where we use a std::map that uses two default template arguments
(comparator and allocator) which we do ignore when creating the parameter types
to have a shorter type. Note that we also always take the shortest (the one with
the least amount of characters) typedef that exists when creating parameter types.
Instead of using the real type std::basic_string<char>, we use the found typedef
std::string as the key of the map.

(9) Because we cannot have template member functions in local classes in C++, we
have to use the name of the local class to instantiate the class template for the template-
id of the function parameter. This has not been implemented and is discussed in
section 6.3.2.

2.2.5. Recognising Operators

So far Mockator was not able to detect missing operators in injected test doubles. This
has changed with Mockator Pro which now supports them. In listing 2.31 we present
a few usages of operators and how we create implementations for them. As can be
seen in this example, we have to handle prefix and postfix operators differently by
adding a parameter of type int in case of a postfix operator. For function calls, we
have to deduce the return type from the context of the call. Comparison operators
like the equality operator are created as class members, although the preferable way
of implementing these is as free functions because every additional member function
decreases encapsulation of the class and using a free function has the benefit that
comparisons work in both directions. But with Mockator we just create member
functions in the chosen test double and therefore ignore this issue.

A further important thing is that we declare the implemented operators only as const
if they are not supposed not change the internal state of the object. As an example,
compound assignment operators should not be declared const because of that reason.
Note that we return a reference to this in the case of operators that modify their
object.

2.3. Preprocessor Seam

C and C++ offer another possibility to alter the behaviour of code without touching it
in that place using the preprocessor, which we will discuss in this section.

2.3.1. Introduction

Although we are able to change the behaviour of existing code as shown with object and
compile seams before, we think preprocessor seams are especially useful for debugging
purposes like tracing function calls. An example of this is shown in listing 2.32 where
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template<typename T>
struct SUT {
bool bar() {
T fake1;
T fake2 = -fake1;
fake1 = fake2;
++fake1; fake1++;
fake1(42); &fake1;
fake1 == fake2; fake1 /= fake2;
if (!fake1 && !fake2)
return fake1[3];

return !(fake1 < fake2);
}

};
void createMissingOperators() {
struct Fake {
Fake operator -() const { return Fake{}; }
Fake& operator ++() { return *this; }
Fake operator ++(int) { return Fake{}; }
int operator ()(const int&) { return int{}; }
Fake* operator&() { return nullptr; }
bool operator ==(const Fake&) const { return bool{}; }
Fake& operator /=(const Fake&) { return *this; }
bool operator !() const { return bool{}; }
bool operator [](const int&) { return bool{}; }
bool operator <(const Fake&) const { return bool{}; }

};
SUT<Fake> sut; sut.bar();

}

Listing 2.31: Example for the use of operator overloading when used on an injected test double.

we exhibit how calls to C’s malloc function can be traced for statistical purposes. This
is additionally supported by making use of the file name and line number which are
available through the macros __FILE__ and __NAME__ of the C preprocessor cpp.

The enabling point for this seam are the options of our compiler to choose between the
real and our tracing implementation. The file malloc.h must be included into every
translation unit where malloc is used in order to redefine the call to our own version.
Note that we use #undef to still be able to call the original implementation of malloc.

We strongly suggest to not using the preprocessor excessively in C++. The preprocessor
is just a limited text-replacement tool lacking type-safety that causes hard to track bugs.
Nevertheless, it comes in handy for this task. Note that in case the statistical data (file
name and line number) is not used, it is better to apply a link seam because preprocessor
seams cause re-compilations of every translation unit that includes the header file with
the macro if changes in this occur.
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// malloc.h
#include <cstdlib>
#ifndef MALLOC_H_

#define MALLOC_H_

void *my_malloc(size_t size, const char* fileName, int lineNumber);
#define malloc(size) my_malloc((size), __FILE__, __LINE__)
#endif
// malloc.cpp
#include "malloc.h"
#undef malloc
void *my_malloc(size_t size, const char*, int) {
// remember allocation size and origin in statistics
return malloc(size);

}

Listing 2.32: Using the preprocessor to intercept function calls to malloc.

2.3.2. Use Case

This use case describes the steps necessary to refactor towards a preprocessor seam:

UC 4 Create preprocessor seam
Primary Actor C++ Developer
Precondition The developer wants to replace a fixed dependency by an al-

ternative implementation or wants to trace function calls for
statistical purposes.

Postcondition A preprocessor seam exists that can be used with the alternative
implementation.

Main sequence
1. User: Selects a function name and performs the trace func-

tion call action.

2. System: Creates a new source folder trace (if not already
existing) and two new files (one header and one source file)
with the redefinition of the function name and the source
file where the alternative implementation can be placed.

3. User: Inserts the alternative implementation.

4. System: Shows marker with quick fix to disable this seam.

2.3.3. Implementation

To discuss the implementation of this seam, we use another example that uses the
well-known algorithm to detect leap years shown in listing 2.33. Note the use of time
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to get the current time on the system. This call makes this code hard to test. Because
we do not intend to make changes in-place and use some global state to differentiate
between production and testing environment, we apply a seam here.

#include "leapyear.h"
#include <ctime>
unsigned int getYear() {

time_t now = time(0);
tm* z = localtime(&now);
return z->tm_year + 1900;

}
bool isLeapYear() {

unsigned int year = getYear();
if ((year % 400) == 0) return true;
if ((year % 100) == 0) return false;
if ((year % 4) == 0) return true;
return false;

}

Listing 2.33: Implementation of an algorithm to detect leap years using time making it hard to test.

To apply the refactoring, the user selects the call to time and Mockator creates the trans-
lation unit presented in Listing 2.34. To include the header file into every translation
unit of the chosen project, we make use of the option -include of GCC and add this
option to the configuration of the current project. To make it convenient to temporarily
disable the preprocessor seam, Mockator creates an info marker to toggle the activation
of the referred -include option.

//mockator_time.h
#ifndef MOCKATOR_TIME_H_

#define MOCKATOR_TIME_H_

#include <ctime>
time_t mockator_time(time_t* __timer, const char* fileName, int lineNumber);
#define time(__timer) mockator_time((__timer), __FILE__, __LINE__)
#endif
//mockator_time.cpp
#include "mockator_time.h"
#undef time
time_t mockator_time(time_t* __timer, const char*, int) {
return time(__timer); // replace with a hardcoded value like
// 986725194 = Sun Apr 08 2001 12:19:54 GMT+0200 (CEST)

}

Listing 2.34: Preprocessor seam to provide an alternative implementation of time.

Note that in this example it might have been better to shadow the function through a
link seam because we do not need the statistical data, but instead just want to replace
the time with some hard coded value. In case the function to be traced is part of a
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namespace, we pack the new function definition into the same and qualify the function
declaration accordingly. If the translation unit where the original function is defined is
part of the same project as the translation unit where the call occurs, we add an #undef
in order to not replace the definition with our replacement. One disadvantage of this
seam type is that we cannot redefine member functions. We therefore yield an error if a
user attempts to do this.

2.4. Link Seam

Beside the separate preprocessing step that occurs before compilation, we also have
a post-compilation step called linking in C and C++ that is used to combine the res-
ults the compiler has emitted. The linker provides another kind of seam named link
seam [Fea04].

We show three possibilities of using the linker to shadow or wrap function calls. Al-
though all of them are specific to the used tool chain and platform, they have one
property in common: Their enabling point lies outside of the code, i. e., in our build
scripts. A further commonality of link seams is that it is often preferable to create
separate libraries for code we want as a replacement. This allows us to adapt our build
scripts to either link to those for testing rather than to the production ones [Fea04].

Because we extensively work with the build system of Eclipse CDT in this section, we
give a short introduction here. CDT provides two different kinds of build systems for
C and C++ projects. The standard build system relies on the user supplied Makefiles
to build a project. For the second called managed build, CDT generates the Makefiles
based on the project type and tool chain (e. g., GCC Linux) for us. Because we are not in
charge of the user’s customised build, we will concentrate on the managed build here.
Note that there are three different types of managed build projects: executable, shared
library and static library.

2.4.1. Shadow Functions Through Linker Order

Introduction

In this link seam type we make use of the linking order. Although from the language
standpoint the order in which the linker processes the files given is undefined, it has
to be specified by the tool chain. For GCC this is described in [GS04] as follows: “The
traditional behaviour of linkers is to search for external functions from left to right in
the libraries specified on the command line. This means that a library containing the
definition of a function should appear after any source files or object files which use
it.”
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The linker incorporates any undefined symbols from libraries which have not been
defined in the given object files. If we pass the object files first before the libraries with
the functions we want to replace, the GNU linker prefers them over those provided by
the libraries. Note that this would not work if we placed the library before the object
files. In this case, the linker would take the symbol from the library and would then
yield a duplicate definition error when considering the object file.

// GameFourWins.cpp and Die.cpp as in shown in listing 2.1
// shadow_roll.cpp
#include "die.h"
int Die::roll() const {

return 4;
}
// test.cpp
void testGameFourWins() {
// code to test the GameFourWins class

}

Listing 2.35: Code for shadowing the member function Die::roll.

To demonstrate this kind of link seam, consider the commands used in listing 2.36 for
the code shown in listing 2.35. The order given to the linker is exactly as we need it to
prefer the symbol in the object file because the library comes at the end of the list. This
list is the enabling point of this kind of link seam. If we leave shadow_roll.o out, the
original version of roll is called as defined in the static library libGame.a.

$ ar -r libGame.a Die.o GameFourWins.o
$ g++ -Ldir/to/GameLib -o Test test.o shadow_roll.o -lGame

Listing 2.36: GNU tool chain commands for shadowing functions. Note that object files are passed before
the libraries to make this work.

As we have noticed, the GNU linker of Mac OS X needs the shadowed function to
be defined as a weak symbol; otherwise the linker always takes the symbol from the
library. Weak symbols are one of the many function attributes GCC offers. If the linker
comes across a strong symbol (the default) with the same name as a weak one, the latter
will be overridden. In general, the linker uses the following rules to select a symbol in
case of naming conflicts [BO10]: 1. Not allowed are multiple strong symbols. 2. Choose
the strong symbol if given a strong and multiple weak symbols. 3. Choose any of the
weak symbols if given multiple weak symbols.

struct Die {
__attribute__((weak)) int roll() const;

};

Listing 2.37: Weak declaration to shadow functions in Mac OS X which uses a different linker for GCC.
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With the to be shadowed function defined as a weak symbol, the GNU linker for Mac
OS X prefers the strong symbol with our replacement code. Listing 2.37 shows the
function declaration with the attribute weak.

Shadowing functions has one big disadvantage: It is not possible to call the original
function anymore. This would be valuable if we just want to wrap the call for logging
or analysis purposes or do something additional with the result of the real function.

Use Case

This use case describes the steps necessary to shadow a function with Mockator:

UC 5 Shadow function
Primary Actor C++ Developer
Precondition The developer has a fixed dependency in the code which needs

to be replaced by an alternative implementation.
Postcondition A new translation unit with the shadowed function is created

where the developer can place an alternative implementation.
Main sequence

1. User: Selects a function name in a translation unit of a
library project and performs the shadow function action.

2. System: Creates a new source folder shadows (if not already
existing) in the referencing executable project and creates
a new translation unit with the shadowing function defini-
tion where the alternative implementation can be placed.

3. User: Inserts an alternative implementation.

Implementation

Consider listing 2.38 where the code is shown that Mockator creates for the example
introduced in listing 2.33. Note that we first have to check if the translation unit of the
selected function is a library project and has a referencing executable project. Otherwise,
we yield an error to the user.

#include <ctime>

time_t time(time_t*) throw() {
return time_t { };

}

Listing 2.38: Shadowed time function generated in new translation unit by Mockator.
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As we have discussed in section 2.4.1, a fundamental precondition of shadowing
functions is that the linker is called with the object files containing the shadowed
function definitions before the libraries with the to be replaced function definitions.
The generated Makefile of CDT’s managed build supports this, as can be seen in
Listing 2.39 for the case where the GCC tool chain is used and g++ is called with the
object placeholder $(OBJS) before $(LIBS).

g++ -L"workspace/ShadowFunctionLib/Debug" -o ShadowFunction
$(OBJS) $(USER_OBJS) $(LIBS)

Listing 2.39: Linker call with placeholders in the Makefile for a managed executable project
ShadowFunction and a referencing shared library project ShadowFunctionLib.

An important restriction of all three link seams in this chapter is that they do not work
with inline functions. Obviously, inline functions do not have a separate symbol that is
accessible for the linker because the compiler eliminates the call to the function17. We
therefore yield an error to the user if an attempt to shadow or wrap an inline function
is done.

In case Mac OS X is used, we add __attribute__((weak)) before the function declar-
ation if it is part of a translation unit in the current workspace to make shadowing work.
Note that this could have potential side effects on production code we currently do not
warn the user about.

Removing the shadowed function feature is just a matter of deleting the translation
unit in the folder shadow. But note that it is not possible in Eclipse CDT to remove the
source folder itself as this messes up the include paths (known bug in Eclipse CDT, see
section J).

2.4.2. Wrapping Functions With GNU’s Linker

Introduction

The GNU linker ld provides a lesser-known feature which helps us to call the original
redefined function. This feature is available as a command line option called wrap.
The man page of ld describes its functionality as follows: “Use a wrapper function for
symbol. Any undefined reference to symbol will be resolved to __wrap_symbol. Any
undefined reference to __real_symbol will be resolved to symbol.”

ld allows us to call the real function by using __real_symbol which is useful to
intercept function calls (e. g., for logging purposes) and then call the real function. For
shadowing we do not need this, as we want to circumvent the “real” functionality.
But sometimes it can be handy to call custom code before and after the execution of

17Note that we could make use of GCC’s -fno-inline option which is turned on by default when no
optimisations are used (O0 compiler option) to disable the inlining of functions to avoid this restriction.
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a certain function. This is a form of code instrumentation which can be used e. g. to
perform performance analysis or to try out some new API functions.

FILE* __wrap_fopen(const char* path, const char* mode) {
log("Opening %s\n", path);
return __real_fopen(path, mode);

}

Listing 2.40: Intercepting fopen with the __real_symbol functionality.

Consider listing 2.40 which shows an example of an instrumented call to fopen. Note
that we do not have to mangle fopen as this is the symbol name of a C function. As
an example for a C++ function, we compile GameFourWins.cpp from listing 2.1. If we
study the symbols of the object file, we see that the call to Die::roll — mangled as
_ZNK3Die4rollEv according to Itanium’s Application Binary Interface (ABI) that is
used by GCC v4.x — is undefined (nm yields U for undefined symbols).

$ gcc -c GameFourWins.cpp -o GameFourWins.o
$ nm --undefined-only GameFourWins.o | grep roll
U _ZNK3Die4rollEv

Listing 2.41: Undefined symbol in object file GameFourWins.o enabling GNU linker’s wrapping
function feature.

This satisfies the condition of an undefined reference to a symbol. Thus we can apply a
wrapper function here. Note that this would not be true if the definition of the function
Die::roll would be in the same translation unit as its calling origin. If we now define
a function according to the specified naming schema __wrap_symbol and use the linker
flag -wrap, our function gets called instead of the original one.

Listing 2.42 presents the definition of the wrapped function. To prevent the compiler
from mangling the mangled name again, we need to define it as a C code block.

extern "C" {
extern int __real__ZNK3Die4rollEv();
int __wrap__ZNK3Die4rollEv() {
// our functionality here
return __real__ZNK3Die4rollEv();

}
}

Listing 2.42: Definition of the wrapped function for Die::roll and the declaration for calling the
original version in a C code block.

Note that we also have to declare the function __real_symbol which we delegate to
in order to satisfy the compiler. The linker will resolve this symbol to the original
implementation of Die::roll. Listing 2.43 demonstrates the command line options
necessary for this kind of link seam.
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$ g++ -Xlinker -wrap=_ZNK3Die4rollEv -o Test test.o GameFourWins.o Die.o

Listing 2.43: GNU linker call with -wrap option for the wrap function link seam type.

Alas, this feature is only available with the GCC tool chain of Linux. The GNU linker
of Mac OS X does not provide this option. Additionally, when the function to be
wrapped is part of a shared library, we cannot use this seam type. Finally, because of
the mangled names, this type of link seam is much harder to achieve by hand compared
to shadowing functions which makes tool support necessary.

Use Case

This use case describes the steps necessary to wrap a function with Mockator:

UC 6 Wrap function
Primary Actor C++ Developer
Precondition The developer has a fixed dependency in the code which needs

to be replaced by an alternative implementation.
Postcondition The code to wrap the function and to call the original one includ-

ing the necessary linker options is created.
Main sequence

1. User: Selects a function name and performs the wrap func-
tion action.

2. System: Checks that the project of the chosen function has
a GCC Linux tool chain. Creates the code for wrapping
functions and adds the necessary linker options to the
project. Additionally, an information marker is created
with a quick fix to toggle the activation of the wrapped
function and to delete it.

3. User: Inserts an alternative implementation.

Implementation

Because all three link seams also support shadowing or intercepting operators, we
present an example in listing 2.44 where we wrap operator new. Mockator’s wrap
function refactoring creates the code in listing 2.45. We first verify that the function
definition is not in the same translation unit as its declaration because this seam type
does not allow this. If this is the case, we abort the refactoring with an error. Note that
we also create the delegate to the original function so that the user does not need to do
this manually.
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struct Bird {
void* operator new(size_t);

};
void createBird() {
Bird* bird = new Bird;
// ...

}

Listing 2.44: Wrapping operator new of class Bird. The current selection is shown in yellow.

Due to the fact that wrapping functions only works with the GNU linker on Linux, we
verify the tool chain of the chosen project. In case the tool chain is not supported, we
create a dialog with a corresponding information message that can be suppressed for
further attempts in the same project and where we store the decision of the user. Note
that — instead of checking this precondition as part of the refactoring and aborting
it — we used this approach to make it possible for other tool chain clients to see the
generated code.

#ifdef WRAP__ZN4BirdnwEm
extern "C" {
extern void* __real__ZN4BirdnwEm(size_t);
void* __wrap__ZN4BirdnwEm(size_t sz) {
return __real__ZN4BirdnwEm(sz);

}
}
#endif

Listing 2.45: Wrapping of the operator new mangled according to Itanium’s ABI name mangling rules.

Because wrapping functions does not work with shared libraries, we create a run-time
function interception as explained in section 2.4.3 when the user applies this action in a
shared library project.

Name Mangling for Itanium C++ ABI

For wrapping functions we have to mangle C++ functions. Because we did not want
to call the compiler and analyse the result with a tool like nm which would lead to
both performance problems and unnecessary tool dependencies, we decided to imple-
ment name mangling according to the Itanium ABI [ea12] which is used by GCC 3.x
and 4.x. Despite its name, the Itanium C++ ABI is not limited to Itanium hardware
platforms [Fog12].

Beside name mangling, an ABI also specifies the representation of member pointers,
exception handling, function calling conventions, virtual tables, RTTI and a few other
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aspects. The Itanium ABI was created in order to reduce vendor coupling and — except
Microsoft and a few others — a lot of compiler companies use it.

Name mangling is used to generate unique names [Kef12]. C++ is by far not the only
language which makes use of it. Java uses name mangling to create unique names for
anonymous and inner classes. Python mangles class attributes with names starting by
two underscores. In C++, name mangling is used because of historical reasons and its
compatibility with the C programming language. Linkers in general do not support
C++ symbols. This is why language features that have an impact on naming symbols
and that are unique to C++ and not available in C like function overloading need to be
specially addressed.

To make it possible for the linker to differentiate between different functions with the
same name, but different parameters, C++ compiler mangle their name and include
the type information of their parameters. As discussed before, this process is highly
compiler-dependent and there exist various schemes how this can be done.

For Mockator, we implemented most of the rules the Itanium ABI has. We ignored
mangling of function templates because they are not supported anyway by our link
seams (see section 6.2.1). Beside the basic mangling rules, we also have implemented
the abbreviation rules that are part of the compression rules which are used to minimise
the length of external names [ea12]. This was important to support names from the std
namespace. We also implemented the substitution encodings to eliminate repetition
of equal types in function parameters. To give an example how name mangling is
implemented in the Itanium ABI, we mangle the function shown in listing 2.46.

void foo(int&) { }

Listing 2.46: Example of a simple function foo with a reference to int as parameter type.

To demonstrate the process, we use the following reduced set of mangling rules of the
Itanium ABI written in Extended Backus–Naur Form (EBNF):

〈mangled-name〉 → Z_ 〈encoding〉
〈encoding〉 → 〈name〉 〈bare-function-type〉
〈bare-function-type〉 → 〈type〉 {〈type〉}
〈type〉 → R 〈type〉 | 〈builtin-type〉
〈builtin-type〉 → i
〈name〉 → 〈unscoped-name〉
〈unscoped-name〉 → 〈unqualified-name〉
〈unqualified-name〉 → 〈source-name〉
〈source-name〉 → 〈number〉 〈identifier〉
〈number〉 → [n] 〈digit〉 {〈digit〉}
〈identifier〉 → 〈unqualified source code identifier〉
〈digit〉 → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
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The deduction of the grammar rules finally leads to the mangled name _Z3fooRi. Note
that bare-function-type consists of at least one type because empty parameter lists
are encoded with the parameter specifier v for a void parameter.

2.4.3. Run-time Function Interception

Introduction

If we have to intercept functions from shared libraries, we can use this kind of link seam
instead of wrapping functions as explained in section 2.4.2. Intercepting library calls
with our own provided wrapper code is useful in many situations, especially during
testing. As an example, we can use our own implementations of malloc or free to log
memory use without the need to recompile or relink with this link seam type.

This link seam is based on the fact that it is possible to alter the run-time linking
behaviour of the dynamic linker loader ld.so in a way that it considers libraries that
would otherwise not be loaded. This can be accomplished by the environment variable
LD_PRELOAD the loader ld.so interprets18. Its functionality is described in the man
page of ld.so as follows: “A white space-separated list of additional, user-specified,
ELF shared libraries to be loaded before all others. This can be used to selectively
override functions in other shared libraries." With this we can instruct the loader to
prefer our function instead of the ones provided by libraries normally resolved through
the environment variable LD_LIBRARY_PATH or the system library directories19.

Now consider we want to intercept a function foo which is defined in a shared library.
We have to put the code for our intercepting function into its own shared library (e. g.,
libFoo.so). If we call our program by appending this library to LD_PRELOAD as shown
in listing 2.47, our definition of foo is called instead the original one.

$ LD_PRELOAD=path/to/libFoo.so executable

Listing 2.47: Call of an executable with LD_PRELOAD set to our intercepting shared library.

Note that environment variables have different names in Mac OS X. The counterpart of
LD_PRELOAD is called DYLD_INSERT_LIBRARIES. This additionally needs the environ-
ment variable DYLD_FORCE_FLAT_NAMESPACE to be set [MB11].

The solution is not perfect yet because it would not allow us to call the original function.
To accomplish this, we can use the following four library functions ld.so provides to
manually load and access symbols from a shared library: dlopen, dlclose, dlsym and
dlerror. With dlsym we can look up our original function by a given name. It takes
a handle of a dynamic library we normally get by calling dlopen and yields a void

18Valgrind makes use of this feature to load itself with any dynamically linked library [Dev11].
19Note that we can have a similar effect in Java by tweaking the environment variable CLASSPATH to prefer

certain directories for looking up Java classes.
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pointer for the symbol as its result. Because we try to achieve a generic solution and do
not want to specify a specific library here, we can use a pseudo-handle that is offered
by the loader called RTLD_NEXT. With this, the loader will find the next occurrence of a
symbol in the search order after the library the call resides [MB11].

#include <dlfcn.h>
int foo(int i) {
typedef int (*funPtr)(int);
static funPtr orig = nullptr;
if(!orig) {
void *tmp = dlsym(RTLD_NEXT, "_Z3fooi");
orig = reinterpret_cast<funPtr>(tmp);

}
// our functionality here
return orig(i);

}

Listing 2.48: Calling the original function with POSIX’ dlsym.

As an example, consider listing 2.48 which shows the definition of the intercepting
function foo and the code necessary to call the original function. Note that we cache
the result of the symbol resolution to avoid the process being made with every function
call. Because we call a C++ function, we have to use the mangled name _Z3fooi as the
symbol.

As it is not possible in C++ to implicitly cast the void pointer returned by dlsym to a
function pointer, we use an explicit cast. Furthermore, dlfcn.h has to be included and
the compiler flag -ldl is necessary for linking to make this work as can be seen from
the GCC command in listing 2.49.

$ g++ -std=c++0x -shared -ldl -fPIC foo.cpp -o libFoo.so

Listing 2.49: GCC command necessary to create a shared library that makes use of ld.so’s symbol
handling functions.

The advantage of this solution compared to the first two link seams is that it does not
require relinking. It is solely based on altering the behaviour of ld.so. A disadvantage
is that this mechanism is unreliable with member functions, because member function
pointers are not expected to have the same size as a void pointer. There is no reliable,
portable and standards compliant way to handle this issue. Even the conversion of
a void pointer to a function pointer was not specified in C++03. This has changed
now with C++11 where it is implementation-defined [ISO11, §5.2.10.8]20. Due to this
problems, dlsym will change its interface in a future version to return function pointers
instead of a void pointer, as it is promised in its manpage [IG12].

20GCC 4.7 yields the warning “ISO C++ forbids casting between pointer-to-function and pointer-to-object”
when the compiler options -std=c++0x -pedantic are used.
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Intercepting function calls with ld.so has a few important limitations. It is not possible
to intercept dlsym itself. A further constraint is given due to security concerns: the man
page states that LD_PRELOAD is ignored if the executable is a setuid or setgid binary. It
is also not possible to intercept internal function calls in libraries. One example might
be that if a function in the GNU C library calls time we cannot wrap it with our own
version.

Use Case

This use case describes the steps necessary to intercept a function with Mockator:

UC 7 Intercept function
Primary Actor C++ Developer
Precondition The developer has a fixed dependency in a shared library which

needs to be replaced by an alternative implementation.
Postcondition The code to intercept the function and to call the original one is

created in a new shared library project including the necessary
run-time configuration changes for the executable project.

Main sequence
1. User: Selects a function name in a shared library project

and performs the intercept function action.

2. System: Checks that the project of the chosen function
has a GCC Linux or Mac OS X tool chain and that the
selected function name is part of a shared library. Creates
the code for intercepting functions in a new shared library
project and adds the necessary changes to the run-time
configuration of the associated executable project.

3. User: Inserts the alternative implementation.

Implementation

If the user attempts to intercept a function call, Mockator first checks if the function is
part of a shared library and that the tool chain is either Linux or Mac OS X GCC. If the
latter is not the case, we yield an error dialog with decision memory as discussed in
section 2.4.2. If all these checks are successful, we create a new shared library project
and the code as shown in listing 2.48 in a new translation unit. Because the shared
library project makes use of the dynamic linker functions, we have to add the library
dl to its CDT project configuration.

The final step is to alter the run-time configuration of the referencing executable project
to add the LD_PRELOAD environment variable to the newly created shared library. This
makes it possible that this code is used instead of the one from the shared library where
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the original code relies. Additionally, we also need to add the new shared library
to the environment variable LD_LIBRARY_PATH. Because we also support Mac OS X
for this seam type, we set the environment variables DYLD_INSERT_LIBRARIES and
DYLD_FORCE_FLAT_NAMESPACE in case a Mac OS X GCC tool chain is used.

Although intercepting member functions is not reliable, we have decided to experi-
mentally support them as well. The code in listing 2.50 shows how we achieve that.
Note that we again need the mangled name of the function to be called when using
dlsym. Furthermore, we cannot cast the void pointer yielded by dlsym to a member
function pointer and therefore copy the address with the help of memcpy.

//foo.h
struct Foo {
int getValue(int);

};
//bar.cpp
#include "foo.h"
int bar() {
Foo foo;
return foo.getValue(3);

}
//getValue.cpp
#include "foo.h"
#include <dlfcn.h>
#include <cstring>
int Foo::getValue(int i) {
typedef int (Foo::*funPtr)(int);
static funPtr origFun = nullptr;
if(!origFun){
void *tmpPtr = dlsym(RTLD_NEXT, "_ZN3Foo8getValueEi");
memcpy(&origFun, &tmpPtr, sizeof(&tmpPtr));

}
return (this->*origFun)(i);

}

Listing 2.50: Code for intercepting the member function Foo::getValue(int).

Because we allow the user to easily deactivate or remove all discussed seams, we
create a context menu entry for executable projects that have referencing shared library
projects that make use of function intercepting. This context menu is filled with all these
shared library projects and every entry has a checkbox to toggle its activation status.
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In this chapter we will first discuss the basics and inner workings of the original,
C++11 based header-only mock object library of Mockator. We will then explain how
we achieved to support C++03, regular expressions and thread-safety with Mockator
Pro.

3.1. Basics And Inner Workings

This section discusses the basics of the engineered C++ mock object library which
includes how we record function calls, what the requirements are for the test double
classes to make this work, how expectations can be specified and how these can be
made order-independent.

3.1.1. Recording Function Calls

An important part of a mock object implementation is the recognition of the function
calls the SUT makes on the mock object while the unit test runs. Beside the sequence and
number of calls, we are also often interested in their argument values. We therefore have
to store these facts to be able to later compare the calls with the users expectations.

In Mockator, we use an abstraction named call for this purpose which represents a
call of a member function. Its basic functionality is shown in listing 3.1. A function
call consists of the signature of the function and its argument values. Because we have
to allow arguments of any type, we use a template parameter for the arguments in
the constructor of call. Due to the fact that we do not want to restrict the number of
arguments, we use a variadic template parameter pack.

The constructor of call uses the variadic template member function record to re-
cursively process the arguments of the function call. record(Head const&, Tail
const&) is used as the recursion step whereas record() handles the basic case of the
recursion. Note the use of template parameter unpacking in the sizeof call to separate
the argument values with commas and for the recursive call in record.

As can be seen, call uses a std::string object to store the function signature and the
argument values. This is used to remember the values of any possible argument type
and to give the user as much information as possible when a comparison fails.
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#include <string>
#include <sstream>
struct call {
template<typename ... Param>
call(std::string const& funSig, Param const& ... params) {
record(funSig, params ...);

}
template<typename Head, typename ...Tail>
void record(Head const& head, Tail const& ...tail) {
std::ostringstream oss;
oss << toString(head);
if (sizeof...(tail)) {
oss << ",";

}
trace.append(oss.str());
record(tail ...);

}
void record() {
}
std::string trace;

};

Listing 3.1: call class in Mockator used to record function calls on mock objects.

On the client side, the code for using mock objects with Mockator is presented in
listing 3.2. We think it is worthwhile to have the code for the mock object in the unit
test without hiding it behind macros as other mock object libraries do. This yields more
transparency and exploits the full power of the host language when the library does
not provide a desired feature.

We use the macro INIT_MOCKATOR to import a couple of names from the namespace
mockator and from Boost in case C++03 is used. Note that we have to make the vector
allCalls static because of the shortcomings local classes still have (see section 2.2.3).
We create the vector initially with a size of one. Index 0 is reserved for calls of static
member functions on the mock object. Note that every mock object has a mock ID
which is used to access the calls made by the SUT on every instance of the mock object
class.

Another important thing to explain is the use of the function reserveNextCallId. This
is used to initialise the ID of the mock object and to add another call vector to the
allCalls vector which collects all calls made on all instances of the mock object class.
In the registrations of the function calls, we use the ID of the mock object to store the
call for the corresponding mock object instance. Finally, we assert the calls made with
the index 1 (we only have one instance of MockExchange) with our expectations.

In the classic mock object approach the unit test does not exercise any assertions [Mes07].
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#include "mockator.h"
#include "nasdaq.h"
template<typename STOCKEXCHANGE=Nasdaq>
struct Trader {
void sell(std::string const& symbol, unsigned int amount) {
Share share = lookupBy(symbol);
STOCKEXCHANGE s;
s.sell(share, amount);

}
};
void testSellShare() {
INIT_MOCKATOR();
static std::vector<calls> allCalls{1};
struct MockExchange {
MockExchange() : mock_id{reserveNextCallId(allCalls)} {
allCalls[mock_id].push_back(call{"MockExchange()"});

}
void sell(Share const& share, unsigned int amount) const {
allCalls[mock_id].push_back(call{"sell(Share const&, unsigned int)

const", share, amount});
}
const size_t mock_id;

};
Trader<MockExchange> trader;
trader.sell("FB", 1000000);
calls expected = {{"MockExchange()"}, {"sell(Share const&, unsigned int)

const", "FB", 1000000}};
ASSERT_MATCHES(expected, allCalls[1]);

}

Listing 3.2: Example of a test case where the mock object library is used.

This is entirely handled by the mock object which — when called during SUT execution
— compares the actual arguments received with the expected arguments using equality
assertions and fails the test if they do not match. We have decided against this common
approach and exercise the assertions in the unit test itself because we want to be
independent of the underlying unit testing framework. We therefore do not assert for
equality in the mock object member functions, but instead compare the string traces in
the unit test.

3.1.2. Requirements on Function Parameter Types

To store the argument values in a string, we expect that types used for the function
arguments implement a corresponding operator<<(ostream&, Type). To prevent
compiler errors if this is not the case, we use some template meta programming tricks
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taken from the Boost library [ea11a]1. This is done in the function mockator::toString
which uses the stream output operator in case it is defined and otherwise writes a

message into the stream to inform the user about the missing operator, as both can be
seen in listing 3.3.

void missingStreamOperator() {
struct Person { unsigned int age; };
Person p = { 42 };
std::ostringstream oss;
oss << call{"foo(int)", 42}; // yields "(foo(int), 42)"
oss << call{"foo(Person p)", p}; // yields "(foo(Person p), operator<<
// not defined for type missingStreamOperator()::Person)"

}
//This is how we would implement an ostream operator:
std::ostream& operator<<(std::ostream& os, Person const& p) {
return os << p.age;

}

Listing 3.3: This code shows the result of calling the stream operator with the call instances. Note the
warning text that is yielded in case a type does not implement a corresponding stream operator.

3.1.3. Specifying Expectations With Initialiser Lists

When unit testing our objects, we want to compare a list of function calls against our
expectations. C++ always allowed to initialise plain old data (POD) types and arrays
with initializer lists, i. e., to give a list of arguments in curly brackets. But it was not
possible in the old standard to use initialiser lists with regular (non-POD) classes. This
has changed with C++11 where we are now able to instantiate regular classes with
initialiser lists. This is especially useful for initialising STL container types.

calls expected = {
{"foo(int i)", 42},
{"bar(char c)", ’x’},
{"foo(std::string s, double d)", "mockator", 3.1415}

};

Listing 3.4: Specifying expectations with initializer lists.

In Mockator we use initialiser lists for specifying expectations the SUT has to fulfil.
Listing 3.4 shows this with a simple example. Note that calls is defined as a typedef
for std::vector<call>. In order to make comparisons work, we have to provide an
equality operator for call. This is shown in listing 3.5. operator== just delegates the
work to the equality operator of std::string to compare the traced function call.

1The interested reader might want to have a look at the file is_output_streamable.hpp in a recent
Boost library version to see how this works.
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bool operator==(call const& lhs, call const& rhs) {
return lhs.getTrace() == rhs.getTrace();

}

Listing 3.5: operator== based on function call string traces.

CUTE prints a string representation of the object under consideration if a comparison
fails. To support this, we provide a stream operator for call as shown in listing 3.6.

std::ostream& operator<<(std::ostream& os, call const& c) {
os << c.getTrace();
return os;

}

Listing 3.6: operator<< for call as a debugging help when comparisons fail.

3.1.4. Support For Order-independent Comparisons

Mockator is order-sensitive and therefore uses strict mock objects [Mes07] by default.
But sometimes we do not care about the order the function calls happened on our
mock objects2. To allow to compare function calls order-independent, we offer a helper
function which is presented in listing 3.7.

bool equalsAnyOrder(calls const& expected, calls const& actual) {
return std::multiset<call>(expected.begin(), expected.end())

== std::multiset<call>(actual.begin(), actual.end());
}
bool operator==(call const& lhs, call const& rhs) {
return lhs.getTrace() == rhs.getTrace();

}
bool operator<(call const& lhs, call const& rhs) {
return lhs.getTrace() < rhs.getTrace();

}

Listing 3.7: Helper function to compare calls order-independent.

A STL multiset helps us here because it has two important properties for our pur-
poses [Jos99]: It is ordered and it allows — in contrast to an ordinary set — duplicates.
The first property we need in order to get the same result using two call vectors with
different ordering. The second is necessary because the same calls can happen multiple
times which we need to record. Note that in order to use call instances with a std
::multiset, we have to provide an operator< which allows to compare and hence
order elements based on their string trace.

2Meszaros calls these lenient mock objects [Mes07].
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3.2. Support for C++03

As we have mentioned in the preceding section, the existing mock object library uses
various features of the new C++11 standard. Because there is a tremendous amount
of existing code written in the old standards C++98 and C++03 and a lot of developers
are not able to upgrade to the new standard yet, we also want to support them. In this
section we will therefore analyse how we provide the same functionality with the old
language features.

3.2.1. s/Variadic Templates/Boost Preprocessor Library/

We use variadic templates to record the function calls made by the SUT on the mock
object. Variadic templates basically address two limitations we have with the old C++
standards [GJP06] to implement the recording: The impossibility to instantiate class
and function templates with arbitrary long parameter lists and to pass an arbitrary
amount of arguments to a function in a type-safe manner.

struct call {
template<typename T0>
call(T0 const& t0) {
}
template<typename T0, typename T1>
call(T0 const& t0, T1 const& t1) {
} //etc.

};

Listing 3.8: Attempt to mimic the behaviour of variadic template functions by manual overloads.

To simulate the behaviour of variadic templates, we might offer overloaded template
functions as shown in listing 3.8. Of course, an implementation like this would have
various drawbacks compared to variadic templates: It leads to code repetition, long
type names in error messages and long mangled names [GJP06]. Apart from this, it is
obvious that it has a fixed upper limit on the number of template arguments.

Unfortunately, we are not able to solve all these issues with the old C++ standards, but
we can at least get rid of the tedious code repetition with the help of the Boost Pre-
processor library [Unk11b]. Consider listing 3.9 which shows the use of the three
Boost Preprocessor macros BOOST_PP_REPEAT, BOOST_PP_ENUM_TRAILING_PARAMS
and BOOST_PP_ENUM_TRAILING_BINARY_PARAMS to generate a fixed amount of tem-
plate constructors.

We will now have a closer look at the three used macros with examples and also show
the expanded result generated with the run of the GNU preprocessor (see listing 3.10).
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#include <boost/preprocessor/repetition.hpp>
#include <string>
#include <sstream>
#ifndef MAX_NUM_OF_PARAMETERS
# define MAX_NUM_OF_PARAMETERS 10
#endif
#define PRINT_CALL(z, n, name) << "," << toString(name ## n)
struct call {
#define MAKE_CALL(z, n, unused) \
template<typename T BOOST_PP_ENUM_TRAILING_PARAMS(n, typename T)> \
call(T t BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(n, T, t) ) { \
trace.append("("); \
std::ostringstream oss; \
oss << toString(t) BOOST_PP_REPEAT(n, PRINT_CALL, t); \
trace.append(oss.str()); \
trace.append(")\n"); \

}
BOOST_PP_REPEAT(MAX_NUM_OF_PARAMETERS, MAKE_CALL, ~)
std::string trace;

};

Listing 3.9: Use of the Boost Preprocessor library to avoid the code repetition.

The first macro BOOST_PP_ENUM_TRAILING_PARAMS(count, param) is used to gener-
ate a comma-separated list of parameters with a leading comma. count is used to define
the number of parameters to generate and param describes the text of the parameter.
Listing 3.11 shows an example of this macro.

g++ -P -E -I/usr/include/boost example.cpp

Listing 3.10: Run of the GNU preprocessor cpp.

The BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(count, p1, p2) macro is used to
generate a comma-separated list of binary parameters. This list starts with a comma
too. count describes the number of parameters to generate, p1 is the first and p2 the
second part of the parameter. Listing 3.12 shows that this is especially useful for setting
default template parameters. In order to intercept numeric concatenation for the default
parameter, we use the macro BOOST_PP_INTERCEPT which expands to nothing.

#include <boost/preprocessor/repetition/enum_trailing_params.hpp>

template <typename First BOOST_PP_ENUM_TRAILING_PARAMS(3, typename T)>
// expands to:
template <typename First, typename T0, typename T1, typename T2>

Listing 3.11: Example usage of the Boost Preprocessor macro BOOST_PP_ENUM_TRAILING_PARAMS.
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BOOST_PP_REPEAT(count, macro, data) has one single purpose: It repeatedly in-
vokes a macro named by its second argument (we use PRINT_CALL). It could therefore
be described as a higher-order macro in terms of functional programming. The first
argument count denotes the number of these repetitions and data is used to pass data
to the invoked macro. In our case we do not need this and use ~ because it is part of
the basic character set of C++ implementations and not subject to macro expansion.
Listing 3.13 presents a simple scenario for BOOST_PP_REPEAT where ## is used for
concatenating strings.

#include <boost/preprocessor/facilities/intercept.hpp>
#include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
struct NullType {};

template<typename X BOOST_PP_ENUM_TRAILING_BINARY_PARAMS(4, typename
T, = NullType BOOST_PP_INTERCEPT)>
struct call {};
// expands to:
template<typename X , typename T0 = NullType , typename T1 =
NullType , typename T2 = NullType , typename T3 = NullType >
struct call {}

Listing 3.12: Example usage of the macro BOOST_PP_ENUM_TRAILING_BINARY_PARAMS.

It must be noted that this solution makes Mockator dependent on Boost which was not
the case before. Because Mockator will be bundled with CUTE which has a dependency
to Boost anyway and because we use Boost Assign as a replacement for initializer lists,
this is not a serious drawback. Furthermore, the dependency will only affect users of
the old C++ standard3.

#include <boost/preprocessor/repetition/repeat.hpp>
#define DECL(z, n, text) text ## n = n;

BOOST_PP_REPEAT(5, DECL, int x)
// expands to:
int x0 = 0; int x1 = 1; int x2 = 2; int x3 = 3; int x4 = 4;

Listing 3.13: Example of the Boost Preprocessor macro BOOST_PP_REPEAT [Unk11b].

3.2.2. s/Initialiser Lists/Boost Assign/

With C++03, we are not able to use initialiser lists to specify expectations. Instead, we
use Boost to improve the readability of our code. It offers a library called Assign [Ott11]

3But note that we will introduce a mandatory dependency to Boost Regex for both C++ standards as
explained in section 3.3.
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which facilitates the addition of elements to STL containers. Consider listing 3.14 which
shows how easily we can set our expectations with its help.

using namespace boost::assign;
calls expected;
expected += call("SquareMock(int)", 4),

call("area() const");

Listing 3.14: Specifying expecations with the help of Boost Assign.

Sometimes we want to be able to specify that a SUT is expected to call a member function
a specific number of times. Instead of adding it manually the necessary number of
times, we can use Boost Assign’s repeat function, as presented in listing 3.15.

calls expected;
expected += call("SquareMock(int)", 4),

repeat(5, call("area() const"));

Listing 3.15: Using Boost Assign’s repeat function.

Consider the benefit this has compared to the classic way of using the STL vector
member functions in listing 3.16.

calls expected;
expected.push_back(call("SquareMock(int)", 4));
expected.insert(expected.end(), 5, call("area() const"));

Listing 3.16: Specifying expectations with the classic member functions the STL vector class provides.

Note that we can achieve a similar effect with C++11 and handle this like presented in
listing 3.17.

calls expected = {5, {"area() const"}};

Listing 3.17: Specifying repeating expecations with C++11.

3.2.3. Setup of Mockator Infrastructure

The Mockator library consists of one header file called mockator.h. We do not want
to have separate header files for C++11 and the old standard because this would blow
up our setup and would make things more complicated than necessary. We prefer the
approach of verifying which standard is used to differentiate which code to use by
checking if a special GCC compiler define is set called __GXX_EXPERIMENTAL_CXX0X__

or the standard __cplusplus is set to a value greater than 201103L4 as shown in

4The GNU C++ compiler defined __cplusplus to be 1 which was a long-time bug first reported in
2001 [Mau11]. This has been fixed with GCC 4.7.
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listing 3.18. The latter is only the case if GCC is called with the program argument
std=c++0x or std=c++11.

#if defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L
// use call class with variadic templates
#else
#include <boost/preprocessor/repetition/repeat.hpp>
#include <boost/preprocessor/repetition/enum_trailing_binary_params.hpp>
#include <boost/preprocessor/repetition/enum_trailing_params.hpp>
// use the call class with boost preprocessor library
#endif

Listing 3.18: Precompiler conditions to verify if the compiler support for C++11 is enabled or not.

3.3. Specifying Expectations With Regular Expressions

With the existing Mockator library it was only possible to do exact comparisons based
on string equality of the expectations and the actual arguments of the calls. Sometimes
however, we do not want to be that strict, e. g. because our tests would get fragile other-
wise. With Mockator Pro, the user can specify regular expressions for the expressions
instead. An example can be seen in listing 3.19 which uses the code of listing 3.2.

calls expected = {{"MockExchange()"}, {"^^sell(Share const&, unsigned
int) const,[A-Z]\\{2\\},[0-9]\\{1,10\\}$"}};
ASSERT_MATCHES(expected, allCalls[1]);

Listing 3.19: Example of using regular expressions to specify expectations for the code shown in
listing 3.2.

We use POSIX Basic Regular Expressions (BRE) for this because in that case the function
signature can stay the same and does not need to be escaped — with one exception:
asterisks for pointers still need to be escaped, but this can be neglected because they are
used far less5 than parentheses in the function signatures. This is because parentheses
are no special characters in BRE’s compared to the Extended Regular Expressions (ERE)
where they are used to refer to matched sub-expressions.

We interpret all expectations with a leading ^ as a regular expression. Note that we
could also have used the character classes [:alpha:] and [:digit:] in this example.
When using regular expressions, we have to use the macro ASSERT_MATCHES that is
provided by Mockator instead of CUTE’s ASSERT_EQUAL for comparisons based on
equality.

Mockator Pro yields a mockator::RegexMatchingFailure in case a regular expression
would not match the given function signature. For debugging purposes, we also pass

5At least, we advocate for this very much.
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the expected and actual value with the exception, as can be seen in the example given in
listing 3.20 where we have used a one-letter symbol instead of the required two symbol
characters.

’^sell(Share const&, unsigned int) const,[A-Z]\{2\},[0-9]\{1,10\}$’ did
not match ’sell(Share const&, unsigned int) const,F,1000000’

Listing 3.20: Message yielded when a regular expression does not match a function signature.

Note that we use Boost’s regular expressions even in the case when C++11 is activated.
This is because we experienced problems with GCC’s regex support even with version
4.7. We therefore add the Boost regex library to the CDT project in our Eclipse plug-in.

3.4. Multi-threading Support

Mockator’s mock object library is not thread-safe. The registration of the function calls
are read from and written to an unprotected std::vector. If the SUT uses multiple
threads which access the injected test double, inconsistent registrations due to race
conditions might appear. To prevent this, we use the classic way of dealing with
problematic race conditions [Wil12] and protect the initialisation of the mock ID and
the registration of the calls with a mutex. The most important code parts for supporting
thread-safe registrations is shown in listing 3.21.

namespace mockator {
#if defined(USE_STD11)
using std::lock_guard; using std::mutex;

#else
using boost::lock_guard; using boost::mutex;

#endif
struct NullMutex {
void lock() { }
bool try_lock() { return true; }
void unlock() { }

};
template<typename T>
size_t reserveNextCallId(std::vector<calls>& allCalls, T& _calls_mutex) {
lock_guard<T> lock(_calls_mutex);
size_t counter = allCalls.size();
allCalls.push_back(calls());
return counter;

}}
#define NULL_MUTEX NullMutex _calls_mutex
#define REAL_MUTEX mutex _calls_mutex
#define INIT_MOCKATOR_MT() USE_MOCKATOR_NS USE_BOOST_NS REAL_MUTEX

Listing 3.21: Thread-safe call registrations by using protected access to the underlying call vector.
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For C++11, we use the new std::mutex and when using C++03 we rely on boost::
mutex. We introduce a new macro called INIT_MOCKATOR_MT the user should apply
instead of INIT_MOCKATOR when multiple threads are used. The reservation of the
next available mock id in reserveNextCallId is protected because when another
thread is simultaneously modifying the calls vector race conditions might occur. Note
that we also provide a NullMutex that makes use of the Null Object pattern [Mar02].
This mutex is used when single threading is requested through the use of the macro
INIT_MOCKATOR. We do this because we do not want to duplicate code for single- and
multi-threading-support.

static const unsigned int NUM_OF_THREADS = 100;
template<typename T>
struct SUT {
void bar() {
std::vector<std::thread> threads;
for (int i = 1; i < NUM_OF_THREADS; ++i) {
threads.push_back(std::thread([]() {
T mock;
mock.foo();

}));
}
for (auto &t : threads) { t.join(); }

}
};
void test_multi_threaded() {
INIT_MOCKATOR_MT();
static std::vector<calls> callsMock{1};
struct Mock {
Mock() : mock_id{reserveNextCallId(callsMock, _calls_mutex)} {
lock_guard<mutex> lock{_calls_mutex};
callsMock[mock_id].push_back(call{"Mock()"});

}
void foo() const {
lock_guard<mutex> lock{_calls_mutex};
callsMock[mock_id].push_back(call{"foo() const"});

}
const int mock_id;

};
SUT<Mock> sut;
sut.bar();
calls expected = { {"Mock()"}, {"foo() const"} };
for (unsigned int i = 1; i < NUM_OF_THREADS; ++i) {
ASSERT_EQUAL(expected, callsMock[i]);

}
}

Listing 3.22: Example of using a SUT that makes use of threads and a unit test that asserts the calls
being made.
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To test the new library changes, we use the unit test in listing 3.22. We start the threads
in the SUT and make calls on the injected test double. With the help of the member
function thread::join we wait for all threads to end their processing. In the mock
object, we protect the registration with the help of a mutex.

As one can see, there would be a couple of code changes necessary for the client to
achieve thread-safety. We think that a better approach would be to use a concurrent
data structure like Intel’s tbb::concurrent_vector[Cor12] for the calls vector instead
of enforcing this work on the client. Although we could generate this code in our
plug-in, there is still a significant amount of visual clutter that comes with this. For
Mockator Pro, we therefore do not provide this and hence thread-safety is not given
yet.
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The mechanisms discussed in chapter 2 are used to make legacy code testable. We are
now able to inject dependencies from outside. When we intend to inject mock objects,
Mockator Pro supports us in creating and maintaining them which is the topic of this
chapter.

4.1. Creating Mock Objects

In chapter 2 we discussed how to create object and compile seams and how to inject a
test double. We then used Mockator to create the missing member functions, but we
did not use the recording function calls support. In this section we will show how our
Eclipse plug-in assists the user in this process.

template<typename T>
struct ShapePainter {
void paint() {
T shape(4);
int area = shape.area();
//...

}
};
void testWhenCpp11IsUsed() {
struct

:::::::::
ShapeMock {

};
ShapePainter<ShapeMock> painter;
painter.paint();

}

Listing 4.1: Starting point for creating member functions with recording calls support. Note the marker
that is created due to the missing member functions.

Consider listing 4.1 which uses the ShapePainter example from chapter 2 together
with a compile seam. The marker is created by Mockator because the injected test
double is missing a constructor and a member function. Mockator offers three types of
quick fixes for this situation. The first one called “Add missing member functions” is
used to create the missing member functions with an empty implementation — except
the case where a return statement is necessary where we create one with the default
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value of the return type. While this quick fix is used for applying fake objects, the next
two come into play when we need mock objects.

The first of these two is called “Record calls by choosing function arguments” and is the
default when order dependent assertions are used. The result of this quick fix is shown
in listing 4.2 when C++11 is used. Mockator creates default values for all arguments of
the missing functions and starts a linked mode for the user where these defaults can be
adapted. The second kind of quick fix for using mock objects just creates the function
signatures with no default arguments. When this quick fix is applied, the linked mode
allows to alter the ordering of the functions as we expect them to occur.

#include "painter.h"
#include "cute.h"
#include "mockator.h"
void testWhenCpp11IsUsed() {
INIT_MOCKATOR();
static std::vector<calls> allCalls{1};
struct ShapeMock {
const size_t mock_id;
ShapeMock(const int& i) : mock_id{reserveNextCallId(allCalls)} {
allCalls[mock_id].push_back(call{"ShapeMock(const int&)", i});

}
int area() const {
allCalls[mock_id].push_back(call{"area() const"});
return int {};

}
};
ShapePainter<ShapeMock> painter;
painter.paint();
calls expectedShapeMock = {{"ShapeMock(const int&)", int {}},

{"area() const" }};
ASSERT_EQUAL(expectedShapeMock, allCalls[1]);

}

Listing 4.2: Result of applying quick fix “Record calls by choosing function arguments” for a compile
seam when C++11 is used.

Note that we create an include for the mock object header file. For both quick fixes
the linked mode also offers to choose between the three assertion kinds ASSERT_EQUAL,
ASSERT_ANY_ORDER and ASSERT_MATCHES. We consistently use C++11’s initialiser list
syntax where possible. Because we cannot access automatic variables from a local class,
we have to make the vector allCalls static. Furthermore, in case there are only static
member functions in the mock object, we create the assertion by using index 0 of the
vector allCalls because this is where static calls reside with Mockator’s mock object
library.

In listing 4.3 we show a similar example, but use an object seam instead of a compile
seam and have requested support for C++03 in the project settings of Mockator which
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can be seen by the fact that we do not use C++11’s initialiser list syntax anymore and
apply Boost Assign’s vector initialisation. Note that we do not register calls of the
constructors in the test double anymore because — in contrast to compile seams — the
instances of the mock objects are always created outside of the SUT when object seams
are used.

#include "cute.h"
#include "mockator.h"
struct Shape {
virtual ~Shape() {}
virtual int area() const =0;

};
struct ShapePainter {
void paint(Shape const& shape) {
shape.area();

}
};
void testWhenCpp11IsUsed() {
INIT_MOCKATOR();
static std::vector<calls> allCalls(1);
struct ShapeMock : Shape {
const size_t mock_id;
ShapeMock() : mock_id(reserveNextCallId(allCalls)) { }
int area() const {
allCalls[mock_id].push_back(call("area()"));
return int();

}
} shapeMock;
ShapePainter painter;
painter.paint(shapeMock);
calls expectedShapeMock;
expectedShapeMock += call("area()");
ASSERT_EQUAL(expectedShapeMock, allCalls[1]);

}

Listing 4.3: Result of applying quick fix “Record calls by choosing function arguments” for an object
seam when C++03 is used.

4.2. Move Test Double to Namespace

The test doubles created by Mockator in the unit tests are very flexible because the
user can alter the code as necessary and does not need to use macros to specify their
behaviour, but instead can apply the full power of C++. However, this comes at the
price of more code that is placed in the unit test functions compared to other mocking
libraries where this is hidden behind macros. Because of that, we provide a source
action to move a test double out of the function to a namespace. Note that this is done
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automatically whenever compile seams are used together with C++03 because of the
restrictions mentioned in section 2.2.3.

#include "painter.h"
#include "cute.h"
#include "mockator.h"
namespace testWhenCpp11IsUsed_Ns {
namespace ShapeMock_Ns {
INIT_MOCKATOR()
std::vector<calls> allCalls{1};
struct ShapeMock {
const size_t mock_id;
ShapeMock(const int& i) : mock_id{reserveNextCallId(allCalls)} {
allCalls[mock_id].push_back(call{"ShapeMock(const int&)", i});

}
int area() const {
allCalls[mock_id].push_back(call{"area() const"});
return int{};

}
};

}
}
void testWhenCpp11IsUsed() {
using namespace testWhenCpp11IsUsed_Ns::ShapeMock_Ns;
ShapePainter<ShapeMock> painter;
painter.paint();
calls expectedSquareMock = {{"ShapeMock(const int&)", int {}},
{"area() const" }};

ASSERT_EQUAL(expectedSquareMock, allCalls[1]);
}

Listing 4.4: Code of listing 4.2 after applying the move to namespace source action.

Consider listing 4.4 which shows the result of applying the move to namespace source
action on the code in listing 4.2. Note that we remove the INIT_MOCKATOR call and the
calls vector from the test function and instead create a using namespace declaration. In
the newly created namespace we do not make the calls vector static anymore because
this restriction is only necessary with local classes.

4.3. Converting Fake to Mock Objects

Sometimes we might start with a fake object to inject into the SUT but then encounter
that we actually also need to verify the collaboration between them. For this case, we
provide a source action to convert an existing fake to a mock object. This includes the
registration of the calls as well as the complete infrastructure that is necessary to use
our mock object library.
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#include "gamefourwins.h"
#include "cute.h"
namespace testGameFourWins_Ns {
namespace FakeDie_Ns {
struct FakeDie {
int roll() const { return 4; }

};
}

}
void testGameFourWins() {
using namespace testGameFourWins_Ns::FakeDie_Ns;
GameFourWinsT<FakeDie> game;
std::ostringstream oss;
game.play(oss);
ASSERT_EQUAL("You won!\n", oss.str());

}

Listing 4.5: Fake object before applying the source action to convert it to a mock object.

Listing 4.5 shows the situation before applying the source action to convert the fake to
a mock object. After the conversion to a mock object, the code as shown in listing 4.6 is
created. Note that we now insert a constructor when a compile seam is used to register
the class instantiation.

4.4. Toggle Mock Support For Functions

Because we think it might be useful to enable or disable the recording of function calls
for a member function in mock objects, we have implemented a source action to do so.
This is not only a matter of removing the recording in the member function, but also to
adapt the expectations accordingly. To show an example, we take the code in listing 4.6
and apply the toggling mock support action on the member function roll. Listing 4.7
contains the resulting diff of this source action. Note that the registration of the function
call has been deleted and the expectation for the member function roll is removed.

d
< allCalls[mock_id].push_back(call{"roll() const"});
c
< calls expectedFakeDie = { { "FakeDie()" }, { "roll() const" } };
---
> calls expectedFakeDie = { { "FakeDie()" } };

Listing 4.7: Diff of applying toggle mock support on the member function roll of listing 4.6. Note that
we removed the line and column numbers in the diff because they are not of interest here.
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#include "gamefourwins.h"
#include "cute.h"
#include "mockator.h"
namespace testGameFourWins_Ns {
namespace FakeDie_Ns {
INIT_MOCKATOR()
std::vector<calls> allCalls{1};
struct FakeDie {
const size_t mock_id;
FakeDie() : mock_id { reserveNextCallId(allCalls) } {
allCalls[mock_id].push_back(call{"FakeDie()"});

}
int roll() const {
allCalls[mock_id].push_back(call{"roll() const"});
return 4;

}
};

}
}
void testSUT() {
using namespace testGameFourWins_Ns::FakeDie_Ns;
GameFourWinsT<FakeDie> game;
std::ostringstream oss;
game.play(oss);
ASSERT_EQUAL("You won!\n", oss.str());
calls expectedFakeDie = { { "FakeDie()" }, { "roll() const" } };
ASSERT_EQUAL(expectedFakeDie, allCalls[1]);

}

Listing 4.6: Resulting mock object after the conversion.

As the name of this source action implies, it is also possible to add the recording again.
This includes the linked edit mode where the user can change the function arguments
if this is activated in the project settings.

4.5. Registration Consistency Checker

The user might sometimes manually adapt the registrations in the member functions
of the mock object or the expectations which could lead to the situation where the
expectations and the actual registrations are not consistent anymore. Because this could
lead to tedious debugging sessions, we provide a CodAn checker with a quick fix to
correct these inconsistencies.

Note that we sometimes want to test that the SUT does not call a certain member
function. In this situation, the user would either use assert(expected != allCalls
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[1]) or ASSERT(expected != allCalls[1]) depending if CUTE is used or not and
we will not create a marker. Another situation is the use of regular expressions in
the expectations. In this case, we will not analyse for inconsistencies because it is not
possible to this without knowing the actual function calls with its arguments executed
on the injected mock object.

4.6. Mock Functions

So far we have only mocked classes when we applied object and compile seams.
Sometimes it would be tedious to apply one of these two seams where we just want
to mock a function to see if the SUT calls it correctly. This is also true if we cannot
change the code at all. For these cases, we have implemented mocking of functions by
leveraging the shadow function link seam. We used this kind of link seam because it is
the easiest one that fulfils our requirements and because we do not intend to call the
original function. Instead, we just record the call to have it available for assertion in our
mock object implementation.

#include "draw_funs.h"
#include "crossplanefigure.h"
void CrossPlaneFigure::rerender() {
// draw the label
drawText(m_nX, m_nY, m_pchLabel, getClipLen());
drawLine(m_nX, m_nY, m_nX + getClipLen(), m_nY);
drawLine(m_nX, m_nY, m_nX, m_nY + getDropLen());

if (!m_bShadowBox) {
drawLine(m_nX + getClipLen(), m_nY, m_nX + getClipLen(), m_nY +

getDropLen());
drawLine(m_nX, m_nY + getDropLen(), m_nX + getClipLen(), m_nY +

getDropLen());
}

// draw the figure
for (int n = 0; n < edges.size(); n++) {
//...

}
//...

}

Listing 4.8: CAD code that is hard to test because it uses a third-party drawing library.

Feathers discussed the example of a CAD application that uses a separate third-party
drawing library in [Fea04]. The code for this example is shown in listing 4.8 where the
member function CrossPlaneFigure::rerender executes various of these drawing
functions. One way of testing this member function would be to look at the computer
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screen when the figures are redrawn [Fea04]. Of course, this is not what we want.
Instead we can use our implemented mock function implementation. If the user selects
one of the calls to the function drawLine and applies our mock function feature, we
generate the code in listing 4.9.

//drawline.h
#include "cute_suite.h"
extern cute::suite make_suite_drawLine();

//drawline.cpp
#include "crossplanefigure.h"
#include "draw_funs.h"
#include "cute.h"
#include "mockator.h"

namespace testdrawLine_Ns {
mockator::calls allCalls;

}

void drawLine(int firstX, int firstY, int secondX, int secondY) {
testdrawLine_Ns::allCalls.push_back(mockator::call{"drawLine(int,int,int,

int)",firstX,firstY,secondX,secondY});
}

void testdrawLine() {
INIT_MOCKATOR();
calls expected = {{"drawLine(int,int,int,int)",int{},int{},int{},int{}}};
// call SUT
ASSERT_EQUAL(expected, testdrawLine_Ns::allCalls);

}

cute::suite make_suite_drawLine() {
cute::suite s;
s.push_back(CUTE(testdrawLine));
return s;

}

Listing 4.9: Generated code of our mock function implementation. Note that the comment has been
manually inserted to show where we would need to call our SUT CrossPlaneFigure::rerender.

As one can see from this code, we shadow the original implementation of drawLine
and register the calls in a vector. What is left to the user is calling the SUT and adapting
the expectations in the test function testdrawLine.

Note that our implementation registers a test function in a CUTE suite in case the action
is executed in a CUTE project. This suite is then linked to a CUTE runner. This process
is supported by a dialog that we have taken from the CUTE plug-in where the user can
choose the name and destination of the new suite and the runner to link the suite to.
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The code for linking the suite to a runner is shown in listing 4.10. Note that we created
an include for the header file where the function that creates our suite is declared.

#include "cute.h"
#include "ide_listener.h"
#include "cute_runner.h"
#include "drawline.h"
void runSuite() {
cute::suite s;
cute::ide_listener lis;
cute::makeRunner(lis)(s, "The Suite");
cute::suite drawLine = make_suite_drawLine();
cute::makeRunner(lis)(drawLine, "drawLine");

}
int main() {
runSuite();
return 0;

}

Listing 4.10: Newly created suite for the mock function test linked to the chosen runner.

In case the chosen project where the mock function action is applied does not have a
CUTE nature, we create the code of listing 4.11.

//drawline.cpp
#include "crossplanefigure.h"
#include "draw_funs.h"
#include <cassert>
#include "mockator.h"
namespace testdrawLine_Ns {
mockator::calls allCalls;

}
void drawLine(int firstX, int firstY, int secondX, int secondY) {
testdrawLine_Ns::allCalls.push_back(mockator::call{"drawLine(int,int,int,

int)",firstX,firstY,secondX,secondY});
}
void testdrawLine() {
INIT_MOCKATOR();
calls expected = {{"drawLine(int,int,int,int)",int{},int{},int{},int{}}};
// call SUT
assert(expected == testdrawLine_Ns::allCalls);

}
//drawline.h
extern void testdrawLine();

Listing 4.11: Generated code for mock function when the action is applied in a project without CUTE
nature.
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The following sections describe the architecture and some important implementation
details of the Mockator Eclipse plug-in. We also discuss a few problems that came up
during the development of our plug-in.

5.1. Plug-in Architecture

The Eclipse plug-in of Mockator consists of ten main Java packages. These packages
and their relationships are shown in the package diagram of figure 5.1. Note that we
do not show dependencies to the package base because of space reasons as all other
packages dependend on that one.

baseextractinterface

fakeobjectincompleteclass

linker mockobject

preprocessor

project

refsupport

testdouble

Figure 5.1.: Java package overview of the Mockator Eclipse plug-in. Note that we do not show dependen-
cies to the package base because of space reasons.
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base provides functionality that is used by all other packages like internationalisation,
utility classes for string handling and easier use of Java collections, support for pro-
gramming with higher-order functions like map, filter and fold and implementations
of an option type and a tuple library.

extractinterface contains our implementation of the extract interface refactoring.
incompleteclass handles the process of recognising missing member function im-
plementations and to provide default implementations for both object and compile
seams, as it is described in chapter 2. fakeobject is used to create the necessary code
for providing fake objects as it is discussed in section 2.2.4. mockobject includes the
functionality to create the infrastructure that is necessary for the Mockator library and
all supplementary source actions which we have described in chapter 4. testdouble
contains common functionality which both fake and mock objects use and the imple-
mentations for creating test doubles and moving them to a namespace.

The package linker contains our implementations of the three link seam types shadow,
wrap and intercept function as explained in section 2.4. preprocessor provides the
implementation of the preprocessor seam as discussed in section 2.3. In the package
project we have put all classes that are related to modifying and accessing Eclipse CDT
projects. These include altering the options of the compiler and linker, our nature and
the necessary classes to extend the CUTE project wizard. Finally, refsupport contains
classes that are necessary for all refactorings like the handling of includes, the lookup
of names, the creation of translation units and the common quick fix infrastructure.

5.2. Used Eclipse Extension Points

Contributions to Eclipse are done through so called extension points. In this section
we will show the extension points the Mockator Eclipse plug-in uses to provide its
functionality.

5.2.1. org.eclipse.cdt.codan.core.checkers

We use this extension point to provide all of our checkers to the CodAn framework. This
extension point also allows to offer a new code analysis problem category to CodAn,
which we have done as well (“Mockator problems”). The checkers we contribute have
different kinds of severities. While the missing object and compile seams and the
missing member functions in them yield errors because the code would not compile
without applying the quick fix, others like the GNU link seam and the preprocessor
checker use an information severity because they are just used to toggle their activation
status. For inconsistent expectations we create markers as warnings.
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5.2.2. org.eclipse.cdt.codan.ui.codanMarkerResolution

This extension point is used for the various quick fixes Mockator provides. Note that
we sometimes have several quick fixes for one specific problem ID. This can be done
by providing multiple resolution tags with the same problem ID, but a different class
implementing the quick fix (see example in listing 5.1).

<resolution
class="ch.hsr.ifs.mockator.plugin.fakeobject.FakeObjectQuickFix"
problemId="ch.hsr.ifs.mockator.StaticPolyMissingMemFunsProblem">

</resolution>
<resolution
class="ch.hsr.ifs.mockator.plugin.mockobject.qf.

MockObjectByFunArgsQuickFix"
problemId="ch.hsr.ifs.mockator.StaticPolyMissingMemFunsProblem">

</resolution>

Listing 5.1: Offering multiple resolutions for a given problem ID with CodAn.

5.2.3. org.eclipse.ui.popupMenus

We use this extension point to provide our source actions in the CDT source context
menu, the extract interface refactoring in the CDT refactoring context menu and for the
toggling of Mockator support on an Eclipse project.

5.2.4. org.eclipse.ui.bindings

For all our source actions we defined keyboard shortcuts like Ctrl+Alt+C to convert a
fake to a mock object. Listing 5.2 shows how this can be done in the plugin.xml.

<key
commandId="ch.hsr.ifs.mockator.convertToMockObjectCommand"
contextId="org.eclipse.cdt.ui.cEditorScope"
schemeId="org.eclipse.ui.defaultAcceleratorConfiguration"
sequence="M1+M3+C">

</key>

Listing 5.2: Keyboard shortcut for the source action to convert fake to a mock object.

5.2.5. org.eclipse.core.resources.natures

We provide our own nature with the ID ch.hsr.ifs.mockator.MockatorNature. This
nature is dependent on the ID org.eclipse.cdt.core.ccnature because Mockator
does only work with C++ projects.
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5.2.6. org.eclipse.ui.propertyPages

For projects that have our nature we also offer a properties dialog where the settings
for Mockator can be altered like which C++ standard we should generate code for and
a few other settings.

5.2.7. org.eclipse.help.toc

This extension point allows plug-ins to provide their own help documentation which
is included in the Eclipse help system [CR09]. Mockator uses this extension point to
provide the pages with the links to the screen casts and a changelog.

5.2.8. org.eclipse.ui.intro.configExtension

Our Eclipse plug-in contributes by the use of this extension point to the Eclipse welcome
screen. We use both an overview and a tutorials section to link to our help pages.

5.3. Collaboration With CUTE

Although our plug-in is not dependent on CUTE and only has an optional bundle de-
pendency to it, we do want to ease the collaboration with it. We therefore hook our plug-
in into the CUTE project creation wizard by using the extension point ch.hsr.ifs.cute
.ui.wizardAddition. With this, CUTE allows us to provide our own UI elements in
this wizard by specifying a class that implements the interface ICuteWizardAddition.
Our contribution is that a user can add support for Mockator to a new CUTE project
and choose which C++ standard we generate code for.

The addition of UI elements to the CUTE project creation wizard is handled by the
interface ICuteWizardAddition by its method createComposite. With the help of
this we can add our UI elements to the composite. The handling of the chosen settings in
the wizard is done by implementing the interface ICuteWizardAdditionHandler and
adding our nature in the method configureProject. The bridge between these two
classes is created by implementing the method getHandler in the class implementing
the interface ICuteWizardAddition.

5.4. CDT Project Settings

Mockator makes heavy use of the various settings Eclipse CDT provides for the tools
of a particular tool chain (e. g., GCC). Because of that, we show a few important facts
about collecting CDT project information and how these settings can be altered. We use
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as an example the option “other flags” CDT provides for a compiler and add support
for C++11 when GCC is used as shown in listing 5.3.

void addCpp11SupportForGcc(IProject project) throws CoreException {
IManagedBuildInfo info = ManagedBuildManager.getBuildInfo(project);
IConfiguration config = info.getDefaultConfiguration();
String gnuCompilerId = "cdt.managedbuild.tool.gnu.cpp.compiler";
String otherGnuCompilerFlags = "gnu.cpp.compiler.option.other.other";
for (ITool tool : config.getToolChain().getTools()) {
if (gnuCompilerId.equals(tool.getId()) {
IOption option = tool.getOptionBySuperClassId(otherGnuCompilerFlags);
String newFlags = flagsOption.getStringValue() + " std=c++0x";
ManagedBuildManager.setOption(config, tool, option, newFlags);
ManagedBuildManager.saveBuildInfo(project, true);

}
}

}

Listing 5.3: Example of adding support for C++11 to a project with the help of CDT’s managed build
system. Note that we have omitted exception hanlding and null checks because of space reasons.

The starting point for all operations is to get the build information for a managed
project which is provided by the interface IManagedBuildInfo. With its help we
can either get all configurations attached to a managed build configuration by using
getManagedProject().getConfigurations() or — if we are just interested in the
default configuration of the project — execute getDefaultConfiguration(). With the
configuration we can fetch all tools that are associated to the used tool chain of the
configuration. As we only want to alter the options of the compiler, we compare its ID
with the one of the GCC compiler. An option has different kinds of possibilities to fetch
its values depending on its type. For “other flags”, the value is just a plain string which
we can get with the help of getStringValue(). Finally, we set the option and save it
by issuing the corresponding methods on the ManagedBuildManager class.

boolean isExecutable(IConfiguration config) {
return config.getBuildArtefactType().getId().equals(
ManagedBuildManager.BUILD_ARTEFACT_TYPE_PROPERTY_EXE);

}

Listing 5.4: Example of detecting if the project build artefact is an executable in Eclipse CDT.

Another often necessary step is to detect the artefact type of a certain project. This
can be either an executable, a static or a shared library for a managed build project
in CDT. The class ManagedBuildManager can help here again as can be seen in list-
ing 5.4. Note that every configuration has a build artefact type which also has an ID.
ManagedBuildManager also provides constants for the artefact types which we can use
here.
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5.5. Creating Run-time Configurations

For the run-time function interception link seam described in section 2.4.3 we have to
alter the launch configuration of the referencing executable project to tweak the envir-
onment variables of the dynamic linker. The process of retrieving these configurations
and altering them is described in this section. The first step is to collect all launch
configurations which have the launcher type of the CUTE plug-in which is shown in
listing 5.5. Note that the necessary interfaces and classes are provided by the plug-in
org.eclipse.debug.core.

Collection<ILaunchConfiguration> getCuteLaunchConfigs(IProject proj) {
ILaunchManager manager = DebugPlugin.getDefault().getLaunchManager();
ILaunchConfigurationType cuteType = manager.getLaunchConfigurationType(
"ch.hsr.ifs.cutelauncher.launchConfig");

return filter(manager.getLaunchConfigurations(cuteType),
new F1<ILaunchConfiguration, Boolean>() {
@Override public Boolean apply(ILaunchConfiguration config) {
ICProject cProject = CDebugUtils.getCProject(config);
return proj.equals(cProject.getProject());

}
});

}

Listing 5.5: Example of collecting all CUTE launch configurations for a given project. Note that this
example makes use of the filter function provided by our HigherOrderFunctions class.

After we have the launch configurations, we want to change them. Listing 5.6 shows the
process of adding the dynamic linker environment variable LD_PRELOAD with a value
of a custom shared library to every CUTE launch configuration of the given project.

for (ILaunchConfiguration config : getCuteLaunchConfigs(proj)) {
ILaunchConfigurationWorkingCopy wc = config.getWorkingCopy();
Map<String, String> envs = wc.getAttribute(
ILaunchManager.ATTR_ENVIRONMENT_VARIABLES,new HashMap<String,String>());

envs.put("LD_PRELOAD", "libRand.so");
wc.setAttribute(ILaunchManager.ATTR_ENVIRONMENT_VARIABLES, envs);
wc.doSave();

}

Listing 5.6: Example of adding an environment variable to all launch configurations.

Note that the second attribute of the method getAttribute is used as the default value
in case there is no value with the given key so far.
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5.6. Executing Refactorings in Eclipse Jobs

Refactorings are executed by created a change object and calling perform on it. The
methods necessary to accomplish this are provided by CDT’s class CRefactoring2.
Often we also want to use the change object afterwards, e. g. to fetch the necessary
details from it to provide a linked mode. Listing 5.7 shows the basic actions. Note
however that this procedure is different when using the LTK framework.

RefactoringASTCache astCache = new RefactoringASTCache();
try {
MyRefactoring refactoring = new MyRefactoring(file, selection, astCache);
Change change = refactoring.createChange(pm);
change.perform(pm);
// do something with the change object, e.g. using it for a linked mode

catch (CoreException e) {
//error handling omitted

} finally {
astCache.dispose();

}

Listing 5.7: Basic procedure to execute a refactoring in Eclipse CDT.

The problem with this approach is that refactorings executed like this from a delegate
class are performed in the UI thread. Because every long running action that is run in
the UI thread harms the user experience, we decided to execute all our refactorings in
separate Eclipse jobs which are run by a job manager in an own thread. This excludes
the extract interface refactoring, because this is executed by the runner infrastructure of
LTK.

<T> void runInDisplayThread(final F1V<T> callBack, final T param) {
Runnable runnable = new Runnable() {
@Override public void run() {
callBack.apply(param);

}
};
Display display = getDisplay();
if (isDisplayThreadCurrentThread(display))
runnable.run();

else
display.syncExec(runnable);

}

Listing 5.8: Running a function in the UI thread we used for providing linked modes.

To run actions like the execution of the linked mode in the UI thread, we provide a
method to register a callback for this purpose, as can be seen in listing 5.8. Note that
we have experienced problems with not releasing the lock the index is protected with
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when the RefactoringASTCache was not disposed before running the linked mode.
We therefore make sure that this happens by executing it in a finally block before the
UI callback is executed.

5.7. Missing Preprocessor Support in AstRewriter

Although preprocessor statements like #include or #define are part of the AST in
Eclipse CDT (the base interface is IASTPreprocessorStatement), CDT’s ASTRewrite
class does not support them and yields an IllegalArgumentException when we
attempt to insert, replace or delete them. Because of this, we had to insert our includes
and #undef’s as literal nodes.

This was of course inconvenient, but it is even worse when we try to delete a macro
as it is the case with INIT_MOCKATOR in the move test double to namespace refactoring
explained in section 4.2. The solution we found was to get the offset and the length of
the INIT_MOCKATOR macro and to create a DeleteEdit instance with this information.
Furthermore, we had to pack this DeleteEdit into a TextFileChange object to yield it
from CRefactoring2’s method createChange.

Note that the handling with text edits which are used to apply elementary text manipu-
lation operations on documents is not as convenient to work with as the rewriter. It
would be therefore beneficial to support preprocessor nodes in the rewriter.

5.8. Checking Refactoring Pre- and Postconditions

An important part of every refactoring is that all pre- and postconditions are veri-
fied correctly. LTK’s class Refactoring provides two methods for this process called
checkInitialConditions and checkFinalConditions. While the former is used to
perform initial checks right after the refactoring has been started like if the selected
element is of the correct type, the latter is used to execute checks after the user has
provided all necessary information to execute the refactoring.

As we have used these checks often in our refactorings, we show its usage with an ex-
ample for the extract interface refactoring in listing 5.9. Note that a RefactoringStatus
object is used as the result of a condition checking operation in LTK. It consists of a
number of RefactoringStatusEntry objects which describe a problem that was de-
tected. Every problem has one of the following serverities: ok, info, warning, error or
fatal. In case we are not able to detect the class in the current selection which we should
extract an interface from, we cannot perform the refactoring and have to abort it. For a
situation like this the status fatal is the one to choose.
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@Override
public RefactoringStatus checkInitialConditions(IProgressMonitor pm)
throws CoreException {
RefactoringStatus status = super.checkInitialConditions(pm);
if (!selectionContainsValidClass()) {
status.addFatalError("No class found to extract an interface from!");

}
return status;

}
@Override
protected RefactoringStatus checkFinalConditions(IProgressMonitor pm,
CheckConditionsContext checkContext) throws CoreException {
RefactoringStatus status = checkContext.check(pm);
if (chosenMemberFunctionsContainShadows()) {
status.addWarning("Member function A::b shadows C::d"); //example

}
return status;

}

Listing 5.9: Checking pre- and postconditions of refactorings.

In the postcondition check we verify if one of the chosen member functions for the new
interface shadows a function in one of the subclasses which would lead to behaviour
changes in case we make this member function virtual in the base class. Although we
have used warning here, we could also have yielded error which is normally taken when
behaviour changing problems arise — but in this case we have decided against it as we
think the problem is not that serious.
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In this chapter we present our achieved project results, show known issues and possible
improvements and conclude with personal impressions made during the last couple
of months. Beside this, we also write about other contributions we have made for
conferences and magazines during this thesis.

6.1. Project Results

Reflecting on the problem outline listed in section 1.5, all goals of the project have
been reached. Mockator Pro is able to create all refactorings necessary for the four
seam types object, compile, preprocessor and link seam. To achieve an object seam, we
have implemented a new extract interface refactoring. Beside compile seams that were
already supported with Mockator, we now also recognise missing member functions
in object seams. We achieved a useful implementation of preprocessor seams which
are especially helpful in tracing function calls. Although not requested as mandatory,
we have implemented three kinds of link seams which can be used to shadow or wrap
functions in static and shared libraries. For the preprocessor and link seam types
which require a significant amount of manual work to deactivate or remove them we
implemented quick fixes to automate this task. We provided support for Linux and
Mac OS X for our seam types wherever these platforms and their corresponding GCC
toolchain support them itself.

The mock object library now also supports C++03 beside C++11. Our Eclipse plug-in is
able to generate code for both standards which can be chosen in the project settings.
Because we recognised that it is often beneficial to just mock a single function instead of
extracting an interface or a template parameter, we implemented mocking of functions
including wizard support for CUTE. We implemented various convenience functions to
make working with mock objects easier like moving them to a namespace, converting
fake to mock objects, toggle recording on a member function level and recognising
inconsistent expectations. Beside missing member functions and constructors we now
also recognise missing operators.

Because our old implementation was only able to do comparisons of recorded function
calls and expectations by equality which can sometimes be limiting, we also imple-
mented support for specifying expectations with regular expressions. We analysed the
thread-safety issues of our mock object library and worked out solutions to make it
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thread-safe. We improved the collaboration with CUTE by extending its project wizard
while still not requiring its installation to work with Mockator.

6.2. Possible Improvements

This section outlines possible improvements for Mockator which we think would be
useful to implement in the future.

6.2.1. Support For Template Functions in Link Seams

We currently do not support template functions in our implementation of link seams, al-
though from a language and compiler view it would be technically possible. To achieve
that for wrapping functions, we would have to create explicit template instantiations
and provide support for templates in our name mangling implementation. Listing 6.1
shows how it is possible to wrap the template function max with the link seam described
in section 2.4.2.

//max.h
template<typename T>
T max(T const&, T const&);

//max.cpp
#include "max.h"
template<typename T>
T max(T const& a, T const& b) {
return a < b ? b : a;

}
template int max(int const&, int const&); // explicit instantiation

//foo.cpp
#include "max.h"
#ifdef WRAP__Z3maxIiET_RKS0_S2_

extern "C" {
extern int __real__Z3maxIiET_RKS0_S2_(int const&, int const&);
int __wrap__Z3maxIiET_RKS0_S2_(int const& a, int const& b) {
return __real__Z3maxIiET_RKS0_S2(a, b);

}
}
#endif
void foo() {
max(42, 3);

}

Listing 6.1: Example of wrapping a template function by using an explicit instantiation.
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Because of the reasons we mentioned in section 2.4.2, we cannot use template functions
when the inclusion model [VJ02] is used with definitions included in the translation unit
where we attempt to wrap the function. Instead, the user has to split the declaration
and definition in the usual way as it is done with non-template functions, but with an
additional explicit instantiation of the template function which results in a symbol that
we can wrap with the linker later.

Although the separation of declaration and definition and the explicit instantiation is
out of the scope of Mockator, we should make sure that our name mangling routine
supports template functions. With this, we would at least allow this to work when the
user does the separation manually.

6.2.2. Include Header File Only Where Necessary in Preprocessor Seam

To make the preprocessor seam work, we add an include of the header file with the
macro that redefines a function with our mocked version to the Eclipse CDT project
settings which results in the use of the GCC compiler option -include file. This has
the same effect as if we would add an #include "file" into every translation unit of
the project as the first line. Although this works, every call to the original function will
be mapped and we additionally have to add an #undef before the original function
definition because otherwise we would violate the one definition rule of C++.

At the end of this thesis, we discovered that it is possible in CDT to specify tool options
for single translation units and not only for the containing project. This would allow us
to just redefine the function in the translation unit the user has chosen. We think that
this would be a useful addition beside the redefinition of functions on a project level.

Altering tool options can be done by creating an IFileInfo object and passing this
to the ManagedBuildManager instead of a IConfiguration as explained in section 5.4.
An example for adding an include file for the CDT compiler options is shown in
listing 6.2. What is left to be analysed is if this still works if translation units are moved
to another folder or are simply renamed.

IConfiguration config = // config to alter
ITool tool = // GCC compiler
IOption option = // GCC include file option IOption.INCLUDE_FILES
String[] newIncludes = // new includes
IFileInfo fInfo = config.createFileInfo(new Path("path/to/tu.cpp"));
ManagedBuildManager.setOption(fInfo, tool, option, includes);

Listing 6.2: Example of altering CDT tool options for single translation units.
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6.2.3. Support More Tool Chains

Mockator currently only supports the GCC tool chain for its preprocessor and the three
link seam types. This is because these seam types rely on the usage of certain compiler
and linker options. To achieve a wider acceptance with Mockator, we should try to
support other tool chains beside GCC. Important additional tool chains to support
would be Clang [unk12] and Microsoft’s Visual C++.

We have already prepared support for additional tool chains in our implementation
of the project.cdt.toolchains package. Note that Micrsoft Visual C++ does not
support wrapping functions with the -wrap compiler option and does also not have
a pendant to LD_PRELOAD. But in [MB11] it is written that there is an implementation
of intercepting win32 functions with the Detours package [Res12] which works by
rewriting the in-memory code of the target functions.

Another important aspect is name mangling. If other tool chains provide functionality
for wrapping functions and these would use a different name mangling strategy than
Itanium ABI, then we also need to enhance our name mangling implementation.

6.2.4. Recognise More Concept Kinds

Mockator recognises missing member functions, constructors and operators the SUT
calls on the injected test double and creates default implementations for them. Addi-
tionally, it might be also useful to support missing member variables and typedef’s.
To have an example, consider listing 6.3 where we use the local class Fake as the traits
template parameter of std::basic_string instead of the default char_traits<char>
and char_traits<wchar_t>, respectively.

#include <string>
void testWithBasicString() {
struct Fake {
typedef char char_type;
static int compare(char_type const*, char_type const*, size_t) {
return int{};

}
};
std::basic_string<char, Fake> str1;
std::basic_string<char, Fake> str2;
str1.compare(str2);

}

Listing 6.3: Example showing that we would need to create a typedef which is used by basic_string.

Because basic_string is using the typedef of the traits template parameter as its
value type (see listing 6.4), we have to provide this in our local class.
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template<typename _CharT, typename _Traits, typename _Alloc>
class basic_string {
typedef typename _Traits::char_type value_type;
//...

}

Listing 6.4: Extract of basic_string showing the use of the typedef of the traits template parameter.

6.2.5. Thread Safety

As we have outlined in section 3.4, Mockator’s mock object library is not thread-safe.
We discussed the approach of making the call registrations thread-safe by using a
mutex. We came to the conclusion that there would be too much code needed in the
test doubles to achieve this and that a better solution is to use a thread-safe container
like Intel’s tbb::concurrent_vector. For a future productive release of Mockator, we
have to either clearly communicate that our library is not thread-safe or to use this
container in our mock object library and declare tbb as a dependency of Mockator.

6.3. Known Issues

This section presents some unresolved problems or bugs which could not be fixed
during this thesis.

6.3.1. Dead File When Refactoring is Aborted

For our extract interface refactoring, we have to create a new header file where our
interface class is declared. CDT provides the class CreateFileChange for this pur-
pose which extends the LTK class Change. Although CreateFileChange returns a
DeleteFileChange instance in the method perform as its undo change object, if the
user aborts a refactoring in the dialog before clicking “Finish”, an empty file remains in
the workspace. As this is more an issue of CDT, we have not tried to fix this.

6.3.2. Passing this in SUT

As explained in section 2.2.3, local classes are not allowed to have template members.
We therefore have to use the concrete type used by the instantiation of the SUT template
as the parameter type in the injected test double when this is passed in the SUT.
Listing 6.5 depicts this situation. Mockator does not support this yet.

86



6. Conclusions

template <typename T>
struct SUT {
void bar() {
T::foo(this);

}
};
void testSUT() {
struct Fake {
static void foo(SUT<Fake> const*) {
}

};
SUT<Fake> sut;
sut.bar();

}

Listing 6.5: Passing this in the SUT on the injected test double should use the concrete type in the
template-id of the function parameter type.

6.4. Articles and Conference Contributions

To make our work more popular, we decided to create a paper for the 7th International
Workshop on Automation of Software Test (AST) [Com12] which is a workshop part of
the 34th International Conference on Software Engineering (ICSE). Our paper of seven
pages which is mainly about the topics discussed in chapter 2 got accepted and will
be published in the ICSE 2012 conference proceedings in IEEE Digital Libraries. To
achieve this, we also had to present our paper in the workshop which was located at the
University of Zürich Irchel. The workshop consisted of the sessions security, surveys,
industrial case studies, input generation / selection, GUI testing and designing for
test. Our presentation was part of the latter and we had the opportunity to present
our work during about half an hour on a Sunday in front of a mostly academical
audience. Overall, we think it was a great opportunity to make people aware of the
issues of designing code for testability and how this can be achieved with seams and
our refactorings.

To reach a wider audience which is more aware of the tricks used to achieve seams
in C++, we also decided to submit an article for the magazine Overload which was
published in its issue 108 [Rü12]. The editor of Overload1 agreed to a subsequent article
which is about using mock objects in C++ and is planned for issue 110.

Beside this, we also had the opportunity to present Mockator at the Workshop on Re-
factoring Tools 201 which was held at the University of Applied Sciences in Rapperswil.
Furthermore, Prof. Peter Sommerlad introduced Mockator beside other topics at a
Google talk held in January 2012 and at the ACCU conference in April 2012.

1Personal communication with the editor of Overload Ric Parkin.
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6.5. Personal Review and Acknowledgements

Looking back to the past couple of months, I think this project was overall a great
experience and I am happy with its outcome. This thesis was kind of special to me
because of its long duration that is due to the fact that I did it part-time. It was not
easy to keep the motivation high during 38 weeks of work without being challenged by
team members. But I am proud that I managed to constantly work highly motivated on
this thesis for such a long time.

I think I learned a lot about C++, Eclipse CDT and build related topics like name
mangling, shared libraries and how linkers work. From my point of view, especially
the latter topics are very important and a basic understanding of these is essential for
every non-trivial C++ software project.

A great experience was the publication of a scientific paper. This was the first time
for me to go through the whole application process for a publication which was both
interesting and challenging. From the abstract to the first draft, the corrections based
on the reviews of the conference committee, to re-submissions and the camera-ready
version and finally the actual presentation in front of an academic audience was an
opportunity I would not like to have missed.

I also enjoyed the communication and the feedback of the editors of the Overload
magazine. They helped me to constantly improve my article. It was a great feeling
when I finally got my copy of the magazine with my article in there.

Personally I think it was the right decision to continue the term project as my master’s
thesis. The new functionality of supporting seams goes hand in hand with using test
doubles and I think they really belong together. The practices of preprocessor and link
seams have been used since decades, especially by Unix and Linux programmers, but
have so far involved a lot of tedious work which is now done by Mockator. I am really
looking forward to apply the refactorings in the practice.

At this point I want to thank my advisor, Prof. Peter Sommerlad, for all the help,
valuable remarks and impulses he gave me. I especially appreciate that he motivated
me for publishing my work in a magazine and for a scientific conference. I would also
like to thank Thomas Corbat for proofreading my paper for the AST conference and
for helping me when CDT problems came up. Last but not least I also thank Lukas
Felber for the discussions we had about the Eclipse CDT testing infrastructure and for
providing me the code to use external files in refactoring tests.
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A. User Guide

A.1. Installation of the Plug-in

Mockator needs Eclipse Indigo (3.7) with CDT 8.0.0 installed. This can be done either
by installing a bundled “Eclipse IDE for C/C++ developers CDT distribution” from the
Eclipse downloads page1 or by installing CDT from an existing Eclipse installation by
using its update site2.

Afterwards, the Mockator plug-in can be installed. Choose the menu “Help”, “Install
New Software...” and type the URL of the Mockator update site3 into the address bar.

A.2. Use of the Plug-in

Due to the fact that some of the processes to achieve seams and mock objects are
complex we think that screen casts are better suited as helping material than a textual
description with screen shots. We therefore have created two detailed screen casts
including audio explanations for both refactoring towards seams (~30 minutes) and
mock objects (~20 minutes). We then split the screen casts with the help of mencoder
(see chapter I) into chunks for every important subtopic. These chunks are only about 3
– 4 minutes long and assist the user in learning a specific application area of Mockator.
In the Eclipse help of Mockator, we link to these screen cast chunks. The following list
shows the topics we provide as tutorials in our Eclipse help:

• Refactoring Towards Seams (Introduction, object seam, compile seam, prepro-
cessor seam, link seams)

• Mock Objects (How to create mock objects, converting fake to mock objects, mov-
ing mock object to namespace, toggling mock support, consistency of registrations,
mocking functions, using regular expressions for expectations)

1http://www.eclipse.org/downloads
2http://download.eclipse.org/tools/cdt/releases/indigo
3http://sinv-56033.edu.hsr.ch/mockator/repo. Note that this is a temporary virtual server that

will be removed a couple of weeks after this thesis is finished.
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B. Organisational

This chapter describes how this project was organised. We present the used environment
and tools, show the planning of the project and how much time was invested.

B.1. Project Environment

This section presents the used software components for this project. Beside the ones
for the continuous integration server we will also show the development environment
used to implement the plug-in and to write the project report.

B.1.1. Continuous Integration Server

This project used the virtual server sinv-56033.edu.hsr.ch hosted at the University
of Applied Sciences Rapperswil as its continuous integration server. The virtual server
runs in a VMWare virtual infrastructure cluster, has Ubuntu 64 Bit 10.04.1 installed,
about 512 MB memory and 10 GB disk space. The software installed on this machine
can be seen in table B.1.

Tool Version
Git 1.7.0.4
Trac 0.12.2
Jenkins 1.412
Apache 2.2.14
TeX Live 2009-7
Java Run-time Edition 1.6.0_24
Maven 3.0.2

Table B.1.: Software installed on the CI environment.
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B.1.2. Development Environment

To produce the 28’000 lines of Java, the 502 lines of C++ code1 and the 34’051 words for
this report, a Lenovo T420s notebook (Intel i7-2640M CPU with 2.80GHz, 4 GB physical
memory, SSD) with ArchLinux and the following software was used:

• Eclipse Indigo 3.7.2 with CDT 8.0.2 as the development environment for the
plug-ins.

• Emacs with AUCTeX 11.86 - the best editor mixed with the most compelling LATEX
support in the world.

• VIM with Trac Plug-in 0.3.6 to maintain the Trac Wiki and the tickets.

• Git 1.7.10.1 as the source control management system.

• Inkscape 0.48 to create some of the images for this report.

• ganttchart 2.1 as a TikZ based LATEX package used for drawing the Gantt chart in
this chapter.

• LibreOffice 3.5 to fill out the project assignment (which was a MS Word template)
and to create the diagram for the work distribution over the weeks and the project
plan.

• MetaUML 0.2.5 to create the class and package diagrams in this report.

B.2. Project Plan

At the start of the project a project plan was created which has been slightly revised
several times during the project. Due to the nature of this project which is based on a
preceding term project, the actual requirements were quite clear at the beginning and
the working packages did not change in a significant way over the time. The resulting
version of the project plan which is reduced due to space reasons looks as follows:

1Both calculated with sloccount.
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2011 2012

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

Refactoring towards seams
Extract interface

Object seam support
GNU wrapping function

Shadow function
Preload run-time wrapping
Preprocessor seam support

Mock object support
C++03 support

Toggle mock support
Registration checker

Move test double to ns
Recognise missing operators

Mock function support
Expectations with regex

Analysis multi-threading
Other activities

Setup and initialisation
CUTE wizard integration

AST 2012 paper and conference
Overload article

Bugfixing
Screen casts

Poster and documentation
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B.3. Time Schedule

The recommended duration of a master’s thesis in the Master of Science in Engineering
program is 810 hours of work (27 ECTS * 30 hours). I worked 996.5 hours over the past
38 weeks. This thesis was done part-time during two terms. The distribution over the
project weeks can be seen in table B.2 and as a diagram in figure B.1.

Week Hours Week Hours Week Hours Week Hours
1 25 11 27.5 21 24 31 28
2 24 12 29 22 25 32 29
3 24 13 27.5 23 28 33 27
4 32.5 14 21 24 24 34 26
5 30 15 13 25 27.5 35 26
6 27 16 11 26 34 36 21
7 29 17 25.5 27 28 37 26
8 25 18 26 28 33.5 38 33
9 30 19 24.5 29 25
10 26.5 20 25.5 30 28
Total: 996.5

Table B.2.: Distribution of the work time over the project weeks.

The increased time effort results mainly because of the various activities that have been
done beside the actual master’s thesis like writing the paper for the AST workshop,
the article for the Overload magazine, the presentations held at the ICSE (Refactoring
workshop and AST) conferences, the submissions of abstracts for further conferences
(ECSE, ACCU). Furthermore, the screen casts took much more time (finally about 50h)
than originally planned. Note that the reduced amount of work during the project
weeks 15 and 16 resulted due to Christmas holidays.
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Figure B.1.: Hours of work per project week. The total amount of 996.5 hours results in an average of
26.25 hours per week.

94



C. Continuous Integration Setup

For every development project it is crucial to build and test the software on a regular
basis. In this project we used a continuous integration server with several components
to guarantee the requested quality. The build process and the execution of our 602 unit
tests was controlled by Maven/Tycho and triggered by Jenkins. For source management
we used Git. For project management and bug tracking Trac with Apache came into
play. This chapter gives an overview about the various steps necessary to setup these
components.

C.1. Trac

Trac is a Python based project management and bug tracking tool. In this project it was
used as a Wiki, to browse the Git repository and to view the build status of the Jenkins
server. Trac runs as an Apache module, therefore we have to install Apache first. Trac
can be installed easily as a Python module with the help of Python’s installer pip:

% aptitude install apache2
% aptitude install python-pip
% pip install Trac

To be able to run Python applications in the Apache webserver as a module, we have to
install libapache2-mod-python and enable it:

% aptitude install libapache2-mod-python
% a2enmod mod_python

The next step is the creation of the Trac project:

% mkdir -p /var/lib/trac/mockator
% trac-admin /var/lib/trac/mockator initenv
% chown -R www-data /var/lib/trac/mockator

What is left is the installation of the various Trac plug-ins used to browse the Git re-
pository, view the Jenkins build status and to use vim as a front-end for Trac through
XML-RPC which can be downloaded from [Rie10], [roa10] and [ea10]. The configura-
tion of Trac can be done in the file trac.ini of the project location.
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To create a backup of the Trac project, we used the hotcopy functionality of trac-admin
and invoked it with a daily cronjob:

% crontab -e
# insert the following in the editor:
# back slashes in the date format field are important: percent
# characters are otherwise interpreted as newlines in a cronjob!
0 1 * * * trac-admin /var/lib/trac/mockator/ hotcopy

/home/mru/trac-backup/$(date +"\%d\%m\%Y")

C.2. Git

We use Git as our source repository tool. The package git-core provides everything
we need:

% aptitude install git-core

Then we create a new remote repository:

$ mkdir mockator.git && cd mockator.git
$ git init --bare
Initialized empty Git repository in /home/mru/mockator.git

To clone the new repository on the client we use this:

$ git clone mru@sinv-56033.edu.hsr.ch:mockator.git

C.3. Jenkins

Jenkins is used to build our plug-ins, to execute the unit tests and to build the project
report and the poster on a daily basis. The installation of Jenkins is easy:

$ wget -q -O - \
> http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key | \
> apt-key add -
% vi /etc/apt/sources.list
# insert the following in the editor:
deb http://pkg.jenkins-ci.org/debian binary/
% aptitude update
% aptitude install jenkins
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The configuration of Jenkins can be done by its convenient web front-end. There, we
have defined our build jobs and when and how to run them. To build our plug-ins,
Jenkins checks the code out of our Git repository and builds them in its workspace.
In order to allow Jenkins to checkout code from our Git repository, we have to define
the user name and email address for the repository (run these commands as user
jenkins):

$ git config user.email "mrueegg@hsr.ch"
$ git config user.name "mru"

To run our plug-in unit tests on the headless CI environment, we have to install a X
virtual screen buffer. We decided to use Xvnc for this. Beside Xvnc, we also need a
X11 window manager (e. g., metacity). The following command shows how both are
installed:

% aptitude install vnc4server metacity

Afterwards, we have to set a password for Xvnc. This is done with vncpasswd which
has to be executed as user jenkins:

% su jenkins -c vncpasswd

Then we have to install the Xvnc Jenkins plugin and configure it for the build, which is
both done in the Jenkins web frontend. We have used the following Jenkins plug-ins:

• Task Scanner: Shows statistics about TODO’s in our code base.

• Xvnc: Allows us to run our UI based unit tests in a headless environment with
the help of the Unix VNC server Xvnc.

• ChuckNorris: To have an inspiring hero to look up to.

• Various static code analysis tools: Findbugs, PMD, Checkstyle

Jenkins can be restarted like this:

% /etc/init.d/jenkins restart

C.4. Apache

Apache is used as our web server which redirects the incoming requests to Jenkins and
Trac. The Apache configuration file for Trac /etc/apache2/sites-enabled/trac is
shown next:
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<VirtualHost *:80>
ServerAdmin mrueegg@hsr.ch
ServerName sinv-56033.edu.hsr.ch
DocumentRoot /var/www
ErrorLog /var/log/apache2/error.trac.log
CustomLog /var/log/apache2/access.trac.log combined
DirectoryIndex index.html index.htm

<Location />
SetHandler mod_python
PythonInterpreter main_interpreter
PythonHandler trac.web.modpython_frontend
PythonOption TracEnv /var/lib/trac/mockator
PythonOption TracUriRoot /
PythonOption PYTHON_EGG_CACHE /tmp
DirectoryIndex index.html index.htm

</Location>

<Location /login>
AuthType Basic
AuthName "trac"
AuthUserFile /etc/apache2/trac.passwd
Require valid-user

</Location>

<Location /mockator>
SetHandler file

</Location>
</VirtualHost>

The location /mockator is used to store the generated project report, the poster, the
screen casts and the p2 repository for the Mockator features and plug-ins. After config-
uration changes we should force Apache to reload its configuration files:

% /etc/init.d/apache2 reload

A new user for Trac can be created as follows:

% cd /etc/apache2
% htpasswd trac.passwd <user>
enter password for <user>
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D. Building With Maven And Tycho

In Eclipse, the smallest modularization unit is the plug-in. When we talk about plug-ins
we also need to discuss what OSGi bundles are because the two terms are almost
interchangeable and often both are used to refer to the same entity. An OSGi bundle is
basically just a .jar file with meta information. This meta information is stored in a file
MANIFEST.MF in a directory called META-INF. Part of this file is the definition of the run-
time dependencies a certain bundle has to other bundles. On the other hand, Eclipse
projects have compile-time dependencies when it comes to the building process. The
big question for all Eclipse build systems is how they manage these dependencies.

To continuously build our plug-ins and to provide a p2 update site where users can
install these from, we use Tycho which got a lot of attention recently and is now also an
Eclipse project in the incubation phase. Tycho is a bunch of Maven plug-ins to build
OSGi bundles with Maven. It uses a so called Manifest-first approach [Tho10]. This
means that the OSGi manifest is the primary descriptor of the build process. Tycho
uses Maven (it needs at least version 3.0) as its underlying build system. The central
configuration file of Maven is the POM file. With Tycho, we have a POM file for
every project, but this only describes Maven-related concepts. The dependencies are
entirely taken from the OSGi manifest. Additionally, Tycho also considers the file
build.properties where build related issues are defined.

Before we get to an example, we need to define two more important concepts. Reposit-
ories are used to get the artefacts necessary for the build which can exist locally on the
hard disk or somewhere on a web server. The important benefit we gain when using
Tycho is that we can access p2 repositories in the same way as we can with Maven based
repositories. The second concept is the target platform which is the Eclipse installation
where the developed plug-ins will be deployed. It is important that the dependencies
of the bundles can be resolved through this target platform.

As an example, we will now create the POM for a plug-in with Tycho:

$ mvn org.codehaus.tycho:maven-tycho-plugin:generate-poms \
> -DgroupId=ch.hsr.ifs.mockator.plugin \
> -Dtycho.targetPlatform=/opt/eclipse

As a result of this command, Tycho generates a pom.xml for our project and for the
parent project in the current directory. We now have a look at the one generated for
our plug-in project (because of space reasons we omitted the namespace and schema
header definitions):
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<?xml version="1.0" encoding="UTF-8"?>
<project>
<parent>
<artifactId>ch.hsr.ifs.mockator</artifactId>
<groupId>ch.hsr.ifs.mockator</groupId>
<version>0.0.1-SNAPSHOT</version>

</parent>
<artifactId>ch.hsr.ifs.mockator.plugin</artifactId>
<packaging>eclipse-plugin</packaging>

</project>

As we can see, the packaging type of the plug-in is eclipse-plugin. Tycho currently
supports the following set of packaging types for the various Eclipse artefacts [Son10]:

• eclipse-plugin

• eclipse-test-plugin

• eclipse-feature

• eclipse-repository

• eclipse-update-site1

• eclipse-application

To build and deploy our plug-in, we can use the following command:

$ mvn -e clean install

In this manner we created POM files for all our plug-ins, test fragment projects, features
and update sites. The following build script is used to make the update site available
on our project server:

#!/bin/sh
THIS=$(readlink -f $0)
UPDATE_SITE_DIR="‘dirname $THIS‘/ch.hsr.ifs.mockator.updatesite"
BUNDLE_ROOT="$UPDATE_SITE_DIR/target/repository"
PUBLISH_DESTINATION=/var/www/mockator
cp -r $BUNDLE_ROOT/* $PUBLISH_DESTINATION/repo
cp $UPDATE_SITE_DIR/category.xml $PUBLISH_DESTINATION/repo

1This packaging type is deprecated and will soon be removed. Instead, eclipse-repository should be used.
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Mockator consists of various Eclipse project types which are summarized in figure E.1.

Eclipse project name Description
ch.hsr.ifs.mockator.feature Feature for the Mockator plug-in
ch.hsr.ifs.mockator.help Mockator’s Eclipse help with its tutorials
ch.hsr.ifs.mockator.lib C++ mock object library including its unit

tests
ch.hsr.ifs.mockator.plugin The Mockator Eclipse plug-in
ch.hsr.ifs.mockator.swtbottest SWTBot UI tests for Mockator
ch.hsr.ifs.mockator.tests Eclipse plug-in tests
ch.hsr.ifs.mockator.updatesite Eclipse update site

Table E.1.: Overview of the various Eclipse projects of Mockator.

As mentioned in chapter D, Eclipse’s most basic modularization unit is the plug-in. A
feature groups together a set of plug-ins in a way that a user can conveniently load,
manage and brand these as a single unit [CR09]. Although we could deliver our features
as a ZIP file to our users, Eclipse provides a much more elegant solution to solve the
distribution problem: update sites. An update site is a special website which includes all
our plug-ins and features. The content of an update site is described by a manifest file.
Clients can use an update site to download our features and keep them up to date.

There are several possibilities in Eclipse projects where to put test code [Pau07]:

• Place tests and source code into a single plug-in: This basically corresponds to the
project structure Maven uses as default. Beside being a simple solution, this
variant has the advantage that all our code is loaded by the same classloader
which has the effect that we can access non-public methods from our tests. But
there are serious disadvantages with this approach: we would have dependencies
in our plug-ins to JUnit and additional used mocking libraries and would need to
include the tests into our deployable plug-ins if we want to run them as part of
our building process.

• Use separate plug-ins for source and tests: The disadvantage of this method is that we
have no access anymore to non-public methods of our classes under test. Instead,
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we need to export all the packages where we use classes from our tests which is
something we typically want to minimise to keep our API as small as possible1.

• Place tests in fragment project: Basically, when a fragment is loaded, its capabilities
are merged with those of its host plug-in. Fragments extend the functionality of
another plug-in which is most typically used for language packs, maintenance
updates and platform-specific implementation classes [CR09]. A fragment and its
host plug-in are loaded by the same classloader which allows us to call non-public
methods. We also do not need to export packages anymore for our classes under
test.

Because of its various advantages we have decided to use an Eclipse fragment project
for our tests. Note that we have experienced an issue related to fragment projects when
we upgraded from Tycho version 0.11 to 0.14. This is because the handling of optional
dependencies has changed in a way that indirect optional bundle dependencies are now
always always. This issue came up because we have an optional dependency to CUTE
in our fragment host plug-in. With the upgrade, our unit test fragment project did not
have access to the CUTE bundle anymore. The solution was to add the dependencies to
CUTE in the Manifest file of the unit test fragment project as required bundles.

1There is a workaround for this issue: We could define the packages of classes we want to test from as
friends of our test plug-in. But this has other disadvantages like the pollution of our manifest file and
the fact that we do not want too many friends [Pau07], something which also applies to C++.
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F. Build And Execution of Mock Object
Library Tests

For our header-only mock object library, we implemented unit tests in CUTE to verify
its correct behaviour. To build our unit tests, we used the following Makefile:

CC = g++
CXXFLAGS = -Wall -Wextra -Werror -ansi -pedantic
LDFLAGS = -lboost_regex

ifeq ($(USE_STD11), 1)
CXXFLAGS += -std=c++0x

endif

all: mockator_tests

mockator_tests: mockator_tests.o
$(CC) $(LDFLAGS) -o $@ $^

mockator_tests.o: mockator_tests.cpp mockator/mockator.h
$(CC) $(CXXFLAGS) -isystem cute/ -c -o $@ $<

clean:
rm -f mockator_tests mockator_tests.o test_results*.xml

.PHONY: all clean

Note that we use the highest warning levels of GCC including treating warnings as
errors and use the flag pedantic to issue all the warnings demanded by strict ISO C++.
Because we only want to have errors reported in our mock object library, we use the
flag isystem to treat the CUTE header files as system directories which has the result
that warnings in there are not yielded by the compiler.

We run our unit tests with our Jenkins build. In order to have test failures reported in
a similar way as we are used to from running JUnit based tests, we applied the JUnit
XML output emitter developed by Boris Zweimüller [Zwe12] and specified the path to
the generated XML file in the Jenkins configuration.
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G. Dependency Analysis With JDepend

There are numerous metric tools to test the quality of Java package designs. One of the
most prominent is JDepend [CC09]. JDepend uses the approach described by Martin
in [Mar02]. The higher-level goal of his recommendations concerning package design
is that low-abstraction (i. e., concrete) packages should depend on high-abstraction
packages, therefore inverting package dependencies [Mar02]. This allows to reuse the
high-abstraction packages independently, which leads to the conclusion that dependen-
cies on them are considered to be stable and therefore desirable.

To enforce these goals, we have decided to run these metrics as part of our unit tests,
leading to a red bar and a broken build if we violate these. JDepend can be used
by putting its JAR file into the classpath of the unit tests. Its configuration and start
procedure can be packed in the setup code of the unit test. The following code snippet
additionally shows how we can use package filters. These are necessary because we
only want to measure our code:

@Before protected void setUp() throws IOException {
PackageFilter filter = new PackageFilter();
filter.addPackage("java.*");
filter.addPackage("javax.*");
filter.addPackage("org.*");
jdepend = new JDepend(filter);
jdepend.addDirectory("classes");
jdepend.analyze();

}

Packages that are not expected to change can be specified with a volatility value. This
value is either 0 or 1, whereas 0 means the package is not going to change at all. This
leads to the conclusion that it will fall directly on the main sequence, a term also
described in Martin’s book meaning that the package is optimal with respect to its
abstractness and stability. The following code demonstrates the configuration of the
volatility value:

JavaPackage stable = new JavaPackage("x.y.z");
stable.setVolatility(0);

With the following code we are able to test the conformance of the distance from the
mentioned main sequence. Every package will be tested with a specified threshold if it
conforms to this important metric by the following test [CC09]:
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G. Dependency Analysis With JDepend

@Test public void conformanceOfDistanceFromMainSequence() {
double ideal = 0.0;
double tolerance = 0.5;
for (JavaPackage p : packages) {
assertEquals(ideal, p.distance(), tolerance);

}
}

Another important property of a good package design is that there are no dependency
cycles. We can achieve this with the following piece of code that reports all packages
that are part of a cycle, finally leading to a broken test if a cycle has been detected:

@Test public void noCyclicPackageDependencies() throws Exception {
StringBuilder s = new StringBuilder();
for (JavaPackage p : packages) {
List<JavaPackage> cycles = new ArrayList<JavaPackage>();
if (p.collectCycle(cycles)) {
s.append(String.format("\n$ %s $ [", p.getName()));
for (int i = 0; i < cycles.size(); i++) {
if (i > 0) s.append(" -> ");
s.append(cycles.get(i).getName());

}
s.append("]");

}
}
assertEquals("Cycles:" + s.toString(), false, jdepend.containsCycles());

}

To enforce these important checks, we decided to run them as part of every commit with
the help of Git’s commit hooks. As the checks are reasonable fast (about 1-3 seconds), it
does not stop us from committing often. The following shell script runs these checks
when it is placed in the directory .git/hooks and allows commits only if these have
been successful:

#!/bin/sh
SRC_DIR=source/plugins/ch.hsr.ifs.mockator
PLUGIN_DIR=$SRC_DIR/ch.hsr.ifs.mockator.plugin
TESTS_DIR=$SRC_DIR/ch.hsr.ifs.mockator.tests
METRICS_TESTS=ch.hsr.ifs.mockator.plugin.metrics.MetricsTests
CLASS_PATH=$TESTS_DIR/lib/junit4.jar:$TESTS_DIR/lib/hamcrest-core.jar:

$TESTS_DIR/bin:$TESTS_DIR/lib/jdepend-2.9.1.jar:$PLUGIN_DIR/bin
if [ -f ${TESTS_DIR}/bin/${METRICS_TESTS//.//}.class ]; then
echo "Running metric tests..."
java -cp $CLASS_PATH org.junit.runner.JUnitCore $METRICS_TESTS
exit $?

fi
exit 0
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H. Style Checking Tools For Writing Good
English

Although we use style checkers and static analysis tools for our code since a long time,
we have never used tools to check the style of our documentation. We started to think
about this also because of the article and the paper we have written. There is active
research ongoing in this area like the development of TextLint, a rule-based tool to
check for common style problems in natural language [PRR12]. They provide various
checkers which are based on common style guides like “The Elements of Style” [JW00]
and “On Writing Well” [Zin01]. Although we have analysed this tool shortly, we would
rather like to use smaller tools that are dedicated to a certain job instead of a huge
Smalltalk package.

There are open source Unix tools available to help us here which exist since decades.
Two of these tools are called diction and style [Haa05]. Diction checks for weasel
words1 and misused phrases in a text. It also uses the principles of “The Elements
of Style” to mark style problems and is able to detect duplicate words. We have the
following two phony targets in the Makefile to build our documentation that make use
of it:

doubled-words:
@echo "doubled words: "
@diction *.tex | egrep -n -i --color ’Double word’

misused-phrases:
@diction -L en_GB --beginner --suggest *.tex | less

To give an example, we execute diction on a sentence that contains a weasel word and
makes the error of using “it’s” instead of “its”.

$ diction --beginner --suggest
We are mostly convinced that Mockator helps us in writing better unit
tests with it’s seam implementation.
(stdin):1: We are [mostly -> (avoid)] convinced that Mockator helps
us in writing better unit tests with [it’s -> = "it is" or "its"?]
seam implementation.

1A weasel word is a vague or ambiguous claim.
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H. Style Checking Tools For Writing Good English

With style we can analyse our writing style and uses several metrics to yield numbers
which can be compared against recommended thresholds. We use the following phony
target to find difficult to understand sentences in our report:

diffcult-sentences:
@echo "Difficult sentences (ARI > 18):"
@style -L en_GB --print-ari 18 *.tex | less

Note that we use the Automated Readability Index (ARI) here with style which produces
an approximation of the grade level in the United States of America that is necessary to
understand a given text [Sen67].

Finally, we give a few statistics about our project report with the following figures:

$ style report.tex
readability grades:

Kincaid: 13.0
ARI: 15.1
Coleman-Liau: 13.1
Flesch Index: 46.2/100
Fog Index: 15.6
Lix: 53.5 = school year 10
SMOG-Grading: 13.2

sentence info:
174293 characters
34051 words, average length 5.12 characters = 1.60 syllables
1367 sentences, average length 24.9 words
52% (713) short sentences (at most 20 words)
17% (236) long sentences (at least 35 words)
386 paragraphs, average length 3.5 sentences
0% (2) questions
53% (732) passive sentences
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I. How to Make Screencasts With Open
Source Command-Line Tools

At the University of Applied Sciences Rapperswil, every student writing a bachelor
or master’s thesis is required to provide a screen cast about its outcome. We started
with using the open source tool recordMyDesktop but soon found it limiting. We
therefore engineered a script that creates a video by using ffmpeg and records audio
with arecord. We will discuss the most important parts in this chapter.

We record the audio and the video separately which has certain benefits. Among others,
it allows us to modify the two parts independently and merge them together later:

arecord --quiet -f dat -D hw:0,0 > screencast.wav &
ffmpeg -y -f x11grab -s ${GRAB_W}x${GRAB_H} -r ${FPS} -i
:0.0+${X_OFFSET},${Y_OFFSET} -aspect ${ASPECT} -vcodec libx264
screencast.avi &

To reduce noise in the recorded audio, we use sox — the Swiss army knife of audio
manipulation — which is first used to take a sample of the audio file and to create a
noise profile. We then execute it on the recorded audio and it filters the noise:

sox screencast.wav noiseaud.wav trim 0 1
sox noiseaud.wav -n noiseprof noise.prof
sox -v 2.0 screencast.wav screencast-clean.wav noisered noise.prof 0.3

Finally, we create a mp3 file with lame and merge audio and video together:

lame -h -m j --vbr-new -b 128 screencast.wav -o screencast.mp3
mencoder -ovc copy -oac copy -audiofile screencast.mp3 \

screencast.avi -o screencast-final.avi

mencoder is a very powerful tool. Beside merging, we also used it to split and shorten
our screen casts:

# Shorten video by only taking the first minute of it:
mencoder -endpos 60 -ovc copy -oac copy video.avi-o shortened.avi
# Split videos after a minute:
mencoder -endpos 60 -ovc copy -oac copy video.avi -o first_half.avi
mencoder -ss 60 -ovc copy -oac copy video.avi -o second_half.avi
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J. Bugs Raised for CDT, CUTE and
CloneWar

During this thesis, we updated the following bugs in Eclipse CDT’s Bugzilla:

• Bug 372807 “Deleting a folder corrupts the Path and symbols”: We recognised this bug
when we tried to remove shadowed functions. Because we create all shadowed
functions in a separate source folder, the easiest way of removing them is to just
delete the folder. Unfortunately, this does not work properly because after the
deletion, include paths in the project settings are messed up.

• Bug 256763 “Can’t build Shared Library project on x86_64 without -fPIC parameter for
compiler”: For our run-time function interception seam we create a shared library
project where the intercepting function is defined. Because shared libraries need
the -fPIC parameter be set when compiled on x86_64 Linux systems with GCC,
we do it in Mockator as CDT does not have this as a default which we propose as
a solution.

The following feature requests and bug reports have been raised for CUTE:

• Feature 66 “Feedback of test result when views are minimised”: While creating our
screen casts and also during demos we have noticed that when we minimised the
view bar including the CUTE test results view we do not get any visual feedback
about our test results. We therefore think it would be great if either the CUTE test
results view is shown when a test run is finished or the icon of the view would
emphasise if the test run was successful or not (similar to the JUnit plug-in).

• Bug 65 “Test registration checker does not work together with Boost assign”: Because we
initially used Boost assign to add our tests for the mock object library to the CUTE
suite, we experienced that CUTE’s test registration checker (which assures that
all test functions are properly registered in a test suite) marked all our functions
as not being registered. An example is given here:

void
::::::::::::::::::
testGameFourWins { /* ... */ }

void runSuite() {
cute::suite s;
s += CUTE(testGameFourWins);
cute::ide_listener lis;
cute::makeRunner(lis)(s, "The Suite");

}
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• Bug 64 “Registered test function checker fails if CUTE suite is not fully qualified”:
The following two test suite registrations both yield a CodAn marker for an
unregistered test function although the test function is properly registered in both
of them (probably due to a not fully qualified CUTE suite):

void
::::::::::::::::::
testGameFourWins { /* ... */ }

void runSuite1() {
using cute::suite;
suite s;
s.push_back(CUTE(testGameFourWins));

}
void runSuite2() {
using namespace cute;
suite s;
s.push_back(CUTE(testGameFourWins));

}

The following bug has been raised for the extract template parameter refactoring
(codename CloneWar [Thr10]):

• Bug 63 “Renaming of template parameter breaks generation of default template parameter
argument”: Renaming of the template parameter breaks the generation of a default
template argument under these circumstances: 1. Select an instance member
variable and choose “Extract Template Parameter”. 2. Change type name in the
field “type after extraction” 3. Click “Next>” => default template argument is not
generated. This is not the case when we click on the table row of the template
parameter after the renaming and before we click on “Next>”.
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K. Content From Term Project

In order to have a more consistent and understandable documentation, we decided
to include some sections of the master term project documentation [Rü11] into this
report:

• Section 1.3 with some minor adjustment to explain the need for mock objects and
to show how competitors (i. e., Google Mock) work.

• Parts of section 2.2.1 to explain the advantages and disadvantages of static poly-
morphism with templates.

• Parts of section 2.2.4 to formalise the discussion about missing member functions
with the help of concepts.

• Parts of section 3.1.1 to explain the inner workings of the C++ mock object library.

• The explanation of the used Eclipse extension points in section 5.2 has been
updated with the newly used ones.

• The possible enhancement to recognise more concept kinds discussed in sec-
tion 6.2.4 as this was already an open point in the term project.

• The problem of passing this in the SUT explained in section 6.3.2 as this was
already recognised as a bug in the term project.

• Section B.1 and chapter D with the project environment and the build infrastruc-
ture including a few minor updates.

• Chapter G was updated with the newly developed git hook.
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Nomenclature

ABI Application Binary Interface

AST Abstract Syntax Tree

BRE Basic Regular Expressions

CDT Eclipse C/C++ Development Tooling

CodAn Code Analysis, Eclipse CDT’s code analysis framework

CRC Class / Responsibility / Collaboration cards

DOC Depended-On Component

DSL Domain Specific Language

EBNF Extended Backus–Naur Form

ERE Extended Regular Expressions

GCC GNU Compiler Collection

LTK The Language Toolkit: An API for automated refactorings in Eclipse-based
IDEs

OSGi Open Services Gateway initiative framework

p2 Stands for provisioning platform and is the engine used to install plug-ins
and manage dependencies in Eclipse

POD Plain Old Data

RAII Resource Acquisition Is Initialisation

RTTI Run-Time Type Information

SUT System Under Test

TDD Test-Driven Development
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