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Chapter 1

Abstract

Multi-threaded programs are known to be prone to data races that are hard to find due to their
non-deterministic occurrence. This thesis implements a novel static analysis mechanism for de-
tecting low-level data races in the C# programming language. The tool works on the fly within
the Visual Studio integrated development environment using the Roslyn framework. Based on a
novel algorithm, the analysis employs conservative inter-procedural data-flow analysis considering
thread dependency graphs with start/join relations. The result is working prototype with a simple
architecture that efficiently detects potential data race issues by conveniently highlighting them in
the program source code.
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Chapter 2

Management Summary

2.1 Introduction

Multi-threaded programs are known to be prone to concurrency errors, in particular to data races.
These issues are hard to find due to a non-deterministic occurrence. Static analysis offers an ap-
proach for the systematic detection of such errors, conservatively finding all issues with possible
false positives. Most effectiveness can be achieved through an on-the-fly detection, working dir-
ectly within the programmer’s integrated development environment. Unfortunately, no such tool
currently exists for prominent programming languages such as C#.

2.2 Approach / Technologies

This thesis implements a static detection of low-level data races for the C# programming language.
This is realised as a Visual Studio plugin based on Roslyn, the new .NET compiler framework. The
tool is designed into abstraction layers: a generic inter-procedural data-flow analysis and a data
race checker on top. The data race detection employs a novel algorithm considering start/join
relations among threads.

2.3 Result

The result proves to be an efficient static checker that detects potential data races in C# program
code within Visual Studio, highlighting and marking such issues during code writing. In contrast
to other existing solutions, this checker performs a real static analysis (not only simple local bug
pattern location) as a practical Visual Studio plugin. Due to the generic architecture, the tool
could be extended to also support deadlock detection in the future.
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Chapter 3

Technical Report

3.1 Introduction

3.1.1 Problem

In today’s programming languages, such as C#, multiple threads potentially interact (explicitly or
implicitly) via shared resources, being variable state within the object heap. In contrast to purely
sequential programs, multi-threaded programs are prone to new archetypes of issues, so called
concurrency errors. As these errors occur non-deterministically, they are inherently hard to find
during execution and testing. These problems may take a long time to completely resolve and often
depend on a sequence of low-probability events, this increases the risk that errors will elude tests
yet make grand entrances when software is released to thousand of users. After fixing a defect, it
is difficult to ensure that the defect was truly rectified and not simply masked.

Concurrency errors can be classified into three categories: race conditions, deadlocks and star-
vations.

race condition

Data races, or its synonym race conditions, are erroneous program behaviour due to insuffi-
ciently synchronised concurrent accesses on shared resources.

deadlock

Deadlock is a situation in which two or more competing actions are each waiting for the other
to finish, and thus neither ever does. This usually occurs due to false mutual exclusion (lock)
ordering.

starvation

Thread starvation is a situation in which a thread is perpetually denied necessary resources
to proceed its work.

Low-level data races are characterised with regard to the memory model: They become manifest
in concurrent unsynchronised accesses on the same memory location, involving at least one write
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access. High-level data races may occur even despite the absence of low-level data races if the
critical sections are not synchronised as a whole but only governed by multiple smaller atomic
regions, i.e. the blocks of mutual exclusion are not sufficiently large.

Low-level data races can be formally determined, while high-level data races depend on the
program semantics. Hence, only low-level data races can be detected by machine tool, while
high-level data races can, in practice, only be determined by the programmer.

The .NET Framework offers a broad set of concurrency programming concepts, ranging from
explicit multi-threading with Threads and Task Schedulers or implicit multi-threading with libraries
such as Task Parallel Library (TPL) and Parallel Language-Integrated Query (PLINQ).[3] Each
concurrency concept is susceptible to the aforementioned errors, as all concepts are based on multi-
threaded execution. Due to the vast number of concurrency possibilities this thesis concentrates
on low-level data races in the C# programming language.

Verifying a concurrent application involves testing for correctness, performance, reliability and
scalability. The correctness of the application is determined using techniques such as dynamic
analysis, static analysis, and model checking.

dynamic analysis

In dynamic analysis, bugs are detected by looking at the execution behaviour, i.e monitoring
the effective execution. Online dynamic analysis inspects a program while it is executing
and offline dynamic analysis record traces and analyses them at a later time to detect bugs.
The analysis can only inspect taken execution paths, this lead to an incomplete analysis
and false negatives. Most dynamic analysis tools rely on a layer between the program and
operating system (i.e. custom virtual machine or code instrumentation, the latter being the
most common) that could modify the behaviour at run-time or lead to performance problems,
which is another drawback.

static analysis

Static analysis, used in this thesis, inspects code without actually executing the program,
i.e. at compile time. Static analysis can be complete (instead of merely thorough/detailed),
finding all potential issues but also false positives. Static analysis is also often very slow
because of the exponential state explosion problem.

model checking

Model checking is special case of static analysis and suffers from this exponential state explo-
sion problem. Model checking explores all states that can occur with concurrent execution
and checks them for concurrency correctness criteria. The extraction of the model - a simpli-
fied formal language faraway from a practically usable programming language - is complicated
in practice. Model checking may prove that the design is error free, but the implementation
may still be incorrect. In practice, model checking is useful only for small, critical sections of
a product. [10]
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3.1.2 Example

Listing 3.1: A very simple program that writes and reads a boolean (true/false) value concurrently
in several threads but in the process causes data races.

1 private static bool flag;
2 private static object myLock = new object ();
3
4 public static void Main()
5 {
6 var t1 = new Thread (() =>
7 {
8 lock (myLock)
9 {
10 flag = true;
11 }
12 });
13 var t2 = new Thread (() =>
14 {
15 lock (myLock)
16 {
17 var x = flag;
18 }
19 var t3 = new Thread (() => flag = false);
20 t3.Start ();
21 });
22 t1.Start();
23 t2.Start();
24
25 Console.WriteLine(flag); // output could be true/false
26
27 t1.Join();
28 t2.Join();
29
30 Console.WriteLine (!flag); // output could be true/false
31 }

The programmer has made an effort towards synchronised access (mutual exclusion) on flag:

• Line 10,17: Read/Write access to flag is protected through the lock statements (common
monitor lock).

• (Line 30: t1 and t2 have been joined. Therefore, flag should only be accessed by the Main
thread)

There are, however, several problems that have not been taken into account:

• Line 25: Output maybe true or false (read access flag) as t1/t3 (write access flag) is running
concurrently to the main thread and the mutual-exclusion lock is only supplied in t1 and t2.
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• Line 30: t1, t2 have been joined, t3 is however still potentially running. Output (read access
flag) could be either true or false.

3.1.3 Related Work

Existing Prototype

The existing concurrency checker prototype developed by the Institute for Software, HSR Hoch-
schule für Technik (IFS) engaged a novel conservative static analysis algorithm developed by Prof.
Dr. Luc Bläser. It considers inter-procedural thread dependency graphs with start/join relations
and supports various explicit and implicit thread entrance points, including the TPL. However, the
implementation of the prototype is currently quite limited as it is only based on a flow-insensitive
analysis.

Listing 3.2 would be considered race-condition-free by the prototype. The analysis is carried
out in a flow-insensitive manner - the syntax tree is analysed in a linear fashion, not considering
program paths or flows leading to inaccurate results due to both incomplete as well as inadequate
analysis.

Listing 3.2: Example of recursive thread creation that requires data-flow analysis to detect data
races.

1 static bool terminated = false;
2
3 static void Main(string [] args)
4 {
5 int i = 5;
6 Thread t1 = new Thread (() => { });
7 while (--i > 0)
8 {
9 t1.Start ();
10 t1 = new Thread (() => terminated = !terminated);
11 }
12 t1.Join();
13 Console.WriteLine(terminated);
14 }

As t1 is started and the reference replaced by a new Thread four times, only the fourth (and last)
created thread is joined with the Main thread, there are therefore potentially three other threads
running with data-accesses on terminated.
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Other Related Work

There are a number of concurrency testing tools, mostly based on either dynamic or static analysis.
Each tool researched concentrates on a particular concurrency error detecting area or programming
language.

Static analysis

RacerX

RacerX is a static analysis tool that uses flow-sensitive, inter-procedural analysis to detect
both race conditions and deadlocks. [1] It is explicitly designed to find errors in large, com-
plex multi-threaded systems. It is designed for the C programming language and can be
re-targeted to system-specific locking functions. RacerX does not accurately determine con-
current program code pieces. It heuristically classifies code in sequential and concurrent, by
also neglecting thread start/join dependencies.

Chord

Checker of races and deadlocks (Chord) is a static flow-insensitive framework for Java. Chord
is intended to work on a variety of platforms, including Linux, Windows/Cygwin, and MacOS.
Chord’s race detection algorithm is context-sensitive but flow-insensitive. Its lack of flow-
sensitivity helps scalability but undermines the precision of the analysis causing many false
positives. It also does not consider start/join relations. [9]

Dynamic analysis

CHESS

CHESS created by Microsoft Research detects concurrency errors by systematically exploring
thread schedules and interleaving. It is a dynamic analysis tool, i.e. samples only selected
program paths and monitors their execution for correctness. It may inherently miss errors
unless all paths and interleavings are explored. The latter, however, takes (super-)exponential
time and is therefore practically impossible for larger programs. It was designed for the C/C++
programming languages and the Windows operating system. [6]

Eraser

Eraser is a dynamic analysis tool that detects data races by dynamically tracking the set of
locks held during program execution. [11] Eraser then uses these lock-sets to compute the
intersection of all locks held when accessing shared state. Shared locations that have an
empty intersection are flagged as not being consistently protected. As a dynamic analysis
tool, it only inspects taken execution paths thus potentially missing issues, it therefore does
not provide a complete analysis. It was designed in 1997 for the UNIX operating system.
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On-the-fly Object Race detection

Object Race detection by Christoph von Praun, ETHZ and Thomas R. Gross, ETHZ have de-
veloped an on-the-fly mechanism that detects access conflicts in executions of multi-threaded
Java programs and has been implemented in collaboration with an "ahead-of-time" Java com-
piler. It uses dynamic analysis to detect access conflicts but it only inspects taken execution
paths thus potentially missing issues, it therefore does not provide a complete analysis. [12]

On-the-fly Detection of Data Races

John Mellor-Crummey describes a dynamic on-the-fly techniques involving augmenting a
program to detect and report data races as they occur during its execution. These techniques
maintain additional information at run-time to determine when conflicting accesses to a
shared variable have occurred. It reports only feasible races. A prototype was developed in
parallel FORTRAN with limited support for simple programs only supporting intra-procedural
scoping. [8]

3.1.4 Goals

Flow-Sensitivity

Redesign the algorithm to become flow-sensitive and thus become complete and more precise than
the existing IFS prototype.

Simple Design

Introduce a simple abstraction layer based on generic data-flow analysis to simplify concurrency
checker and abandon unreadable visitor pattern code

Roslyn

Integrating the newest version of the .NET compiler platform ("Roslyn") to be compatible with
the newest version of Visual Studio (VS2015).

Visual Studio Integration Package

Create a Visual Studio Integration Package (VSIX) according to the newest best practises to enable
deployment of the concurrency checker to other installations.
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3.2 Data-Flow Analysis

3.2.1 Control Flow Graph (CFG)

A control flow graph (CFG) is a directed graph that models all paths that might be traversed
through a program during its execution [13], and is created for every method, property, constructor
and lambda expression. Each node in the graph represents a statement of code, directed edges are
used to represent jumps in the control flow. Statements are explicitly not condensed into a basic
block, i.e. a straight-line piece of code without any jumps or jump targets, in the CFG as it allows
for a more fine-grained analysis, i.e. access/concurrency errors per statement.

There are two specially designated nodes: the entry node, through which control enters and the
exit node, through which all control flow ends. Calls to other procedures (such as int.Parse(args[0])
in fig. 3.1) are always represented in their own nodes.

Listing 3.3: Excerpt of a simple program
with an if statement.

1 public static void Main(string [] ←↩
args)

2 {
3 var a = int.Parse(args [0]), b = ←↩

-1;
4 if (a > 5)
5 {
6 a = 0;
7 b = 2;
8 }
9 else

10 {
11 a = 1;
12 b = 0;
13 }
14 Console.WriteLine(a);
15 }

Figure 3.1: Resulting CFG of listing 3.3.
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If a statement has more than one outgoing edge, this indicates that the program will, at any one
point, take only one of the execution paths. This will generally occur when a condition must be
fulfilled either through an if, while or switch statement.

Figure 3.2: An excerpt of fig. 3.1 - multiple outgoing edges from an if statement indicating two
possible execution paths.

Multiple incoming edges on the other hand indicate two or more execution paths merging back to
the same execution path.

Figure 3.3: An excerpt of fig. 3.1 - multiple incoming edges merging to the same execution path.
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3.2.2 Intra-Procedural Data-Flow Analysis

Intra-procedural data-flow analysis focuses on gathering information about possible states per point
within a single procedure (method, property or lambda expression), characterised as a node in the
CFG. The generated CFG allows the analysis to take the order of statements (flow-sensitive) in a
procedure into account.

To perform data-flow analysis, functions are set-up for each node of the CFG and solved by
repeatedly calculating the output state from the input state locally at each node until the whole
system stabilises and reaches its fix-point. In each iteration, a statement is removed from the work
list/queue. Its out-state is computed. If the out-state changed, the statement’s successors are
added to the work list (as they require recalculation).

Each data-flow analysis type defines a configuration with its own transfer and join function as
well as providing an initial value for the input state. Due to this generic approach, the data-flow ana-
lysis algorithm can be used for any kind of flow-sensitive inference of state (e.g. "potentially taken
locks per program point", "potentially started threads", "guaranteed joined threads", "accessed
locks up to program point" etc.).

As the data-flow analysis uses forward flow analysis, the output state of a block b (a single
node in the CFG) is a function of the block’s input state. The transfer function works on the input
state (inb), returning the output state (outb).

outb = transf erb(inb)

Figure 3.4: Data-flow analysis transfer function

The join function combines the exit states of the predecessors yielding the input state. To
improve performance the join function is only applied if there is more than one incoming edge.

inb = joinp∈predecessorsb(outp)

Figure 3.5: Data-flow analysis join function
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Algorithm 1: Intra-procedural data-flow analysis algorithm. (Previous incremental method)

Data: A set of statements from CFG
Result: Intra-procedural data-flow analysis fix-point
OUT[ENTRY] = Ø;
for each statement S other than ENTRY do

OUT[S] = Ø;
end
while changes to any OUT occur do

for each statement S other than ENTRY do
IN[S] = join(OUT[predecessor statement]);
OUT[S] = transfer (IN[S]);

end
end

Algorithm 2: Intra-procedural data-flow analysis algorithm. (Worker list/queue method)

Data: A set of statements from CFG
Result: Intra-procedural data-flow analysis fix-point
for each statement S do

OUT[S] = init(S); WORKQUEUE.Enqueue(S);
end
while WORKLIST not EMPTY do

S = WORKLIST.Dequeue(); IN[S] = join(OUT[predecessor statement]);
OUT[S] = transfer (IN[S]);
if OUT[S] changed then

WORLIST.Enqueue(sucessor statement]);
end

end

Example

The data-flow analysis is configured to return a set of active threads through listing 3.4’s execution
path and is defined as followed:

state

The state is the set of potentially started threads. The initial state of every statement is
defined as an empty set.

transfer function

Returns the input state and if the Start method is called on a thread, the started thread is
added.

join function

15



If there is more than one input state, the set of all distinct elements (set union) in all the
preceding output states (sets of active threads) is taken.

Listing 3.4: Example code for data-flow analysis.

1 static void A(int a, int b)
2 {
3 if (a > b)
4 {
5 Thread t1 = new Thread (() => { });
6 t1.Start();
7 }
8
9 while(a < 5)
10 {
11 Thread t2 = new Thread (() => { });
12 t2.Start();
13 }
14
15 }

16



Figure 3.6: Resulting CFG of listing 3.4.

17



Figure 3.7: First pass through data-flow analysis.

The input state can be seen above a statement, the output
state directly below a statement after it has been through
the transfer function.
After the first data-flow analysis pass, the system is un-
stable as the output states differ after the t1.Start state-
ment from their initial value ({} -> {t1}).

Figure 3.8: Second pass through data-flow analysis.

During the second data-flow analysis pass, all statements
up to the while statement produce the same output state.
However, as the result of the while loop ({t1,t2}) is
joined with that of the if statement edges ({t1} ∪ {}),
a new output state is produced: {t1,t2}. This causes the
subsequent statements to also produces different output
states than during the first pass. When processed again,
the output states will be the same, signalling that the
intra-procedural data-flow analysis has stabilised and has
reached its fix-point.
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3.2.3 Inter-procedural Data-Flow Analysis

Inter-procedural data-flow analysis extends the scope of analysis across procedure boundaries and
incorporates the effects of procedure calls in the caller procedures, and calling contexts in the callee
procedures. Data-flow information is inherited through different procedures to obtain a complete
inter-procedural data-flow analysis. The inter-procedural analysis is confined per thread (not intra-
thread analysis), i.e. new Thread(lambda), the lambda will not be considered as executed code of
the data-flow.

Figure 3.9: Inherited and Synthesised Data-Flow Information. Figure taken from [5].

x Inherited by procedure Sr from call site ci in procedure Ss
y Inherited by procedure Sr from call site cj in procedure St
x ′ Synthesised by procedure Sr in Ss at call site procedure Ci
y ′ Synthesised by procedure Sr in St at call site procedure Cj

In fig. 3.9 ci is the invocation node for a procedure. Node C and R represent the call (C) and
return (R) of the procedure. These two nodes are implemented in the callee invocation node of
the CFG.

Inter-procedural analysis uses intra-procedural analysis of multiple CFGs. To perform inter-
procedural analysis, nodes in the CFG that reference other procedures join the current input state
of the node with the input state of referenced procedure node, residing in a different CFG. When
reaching an exit node the inherent output state is joined as the output state of the referenced
callee node. Alike the intra-procedural data-flow analysis, this is solved by repeatedly calculating
the output from the input for each callee node until the whole system stabilises and reaches its
fix-point.
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Algorithm 3: Inter-procedural data-flow analysis algorithm.

Data: A set of CFG
Result: Inter-procedural data-flow analysis fix-point
while changes to any OUT occur do

for each cfg C do
for each basic statement S do

if S is ’Invoke’ then
IN[ C[S] ] = join(OUT[predecessor statement]);

end
if S is ’Exit’ then

OUT[ REF[S] ] = join(OUT[predecessor statement]);
end

end
end

end

Example

The inter-procedural data-flow analysis example builds upon that of the intra-procedural data-flow
analysis example. Taking the following inter-procedural functions into account:

• When an Invoke node is reached in the CFG the current input state is joined with the input
state of the callee procedure.

• When the End node is reached in the CFG the output state is transferred (and joined) to
the originating Invoke node.

To simplify the example, only the thread names are placed in the set of active threads. In a proper
data-flow analysis, semantic information would be used to differentiate threads by their scope and
location, so that t1 in one procedure would not be considered equal to a different t1 in a different
scope.
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Listing 3.5: Example code for inter-procedural data-flow analysis.
1 static void A(int a, int b)
2 {
3 while (a > b)
4 {
5 B();
6 Thread t1 = new Thread (() => { });
7 t1.Start ();
8 }
9 }
10
11 static void B()
12 {
13 Thread t2 = new Thread (() => {});
14 t2.Start();
15 }

Figure 3.10: Resulting CFG of listing 3.5 (Method A). Figure 3.11: Resulting CFG of listing 3.5 (Method B).21



Figure 3.12: First pass through data-flow analysis
(Method A).

The input state can be seen above a statement, the output
state directly below a statement after it has been through
the transfer function.
After the first data-flow analysis pass the intra-procedural
data-flow analysis of A is unstable as the output states
differ after the Invoke(B()) statement ({} -> {t2}) and
t1.Start statement ({t2} -> {t1,t2}).

Figure 3.13: First pass through data-flow analysis
(Method B).

Notice how the input state ofMethod(B) is inherited from
Invoke(B()).
After the first data-flow analysis pass the intra-procedural
data-flow analysis of B is unstable as the output states
differ after the t2.Start statement from the initial value.
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Figure 3.14: Second pass through data-flow analysis
(Method A).

During the second data-flow analysis pass, all statements
up to the while statement produce the same output state.
However, as the result of the while loop ({t1},{t2}) is
joined with that of the predecessor output state ({}, {t1})
a new output state is produced: {t1,t2}. This causes the
subsequent statements to also produce different output
states than during the first pass. When processed again,
the output states will be the same, signalling that the
intra-procedural data-flow analysis for method A has sta-
bilised and has reached its fix-point.

Figure 3.15: Second pass through data-flow analysis
(Method B).

Notice how the new input state of Method(B) is inherited
from Invoke(B()). This causes the transfer function to
produce different output states than during the first pass.
When processed again, the output states will be the same,
signalling that the intra-procedural data-flow analysis for
method B has stabilised and reached its fix-point.
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3.3 Thread Analysis

The concurrency checker uses a novel static thread-start/join sensitive detecting for concurrency errors. This algorithm has
been invented and developed by Prof. Dr. Luc Bläser, and a patent has been submitted1. In this chapter, the algorithm used
for detecting low-level data races is explained. The algorithm engages the aforementioned data-flow analysis. The data race
detection is split into three stages and is designed to perform a real static concurrency analysis that considers inter-procedural
thread dependency graphs with start/join relations, a proper flow-sensitive analysis considering control statement as well as
supporting various explicit and implicit thread entrance point.

Stage 1
Gather all static threads and their
start/join relations.

Result
Graph with static threads as nodes and
edges representing mutual start/join
dependencies and collects access sets
incl. lock sets.

Figure 3.16: Static thread graph.

Stage 2
Data-flow analysis per thread

Result
Race conditions between threads and
their child threads and pairs of fully
parallel threads.

Figure 3.17: Intra-Thread data-flow
analysis per thread and child threads.

Stage 3
Fully parallel thread analysis

Result
Race conditions between fully parallel
thread pairs.

Figure 3.18: Intra-Thread data-flow
analysis for fully parallel pairs.

1Patent submitted, Swiss Federal Institute of Intellectual Property, 2015-05-04
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3.3.1 Stage 1: Transitive Child Thread Analysis

A thread graph is a directed graph representing threads in a program connected by edges containing
information about start/join states. The thread graph contains all potential starts and only
guaranteed joins guaranteeing a conservative analysis, these are defined later. Stage 1 also collects
all accesses with their corresponding lock sets (through inter-procedural data-flow analysis).

The first step in creating the thread graph is by resolving all thread graph nodes, such as
the program entry (i.e. Main) and lambda expressions from new thread instances, with an inter-
procedural data-flow analysis. These are "static threads", multiple instances of each of them may
be created at run-time (except for the program entry, i.e. Main).

Figure 3.19: Result of static thread resolution of listing 3.1.

There are currently no edges between the different node as the data-flow must first be analysed.
The analysis is done for each thread through inter-procedural data-flow analysis and resolves which
threads potentially start and are guaranteed to join.

Figure 3.20: Thread graph including start and join edges.
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In our example Thread t2 starts Thread t3, therefore as Main starts Thread t2 it also implicitly
starts Thread t3. This is important as the Thread t3 may have data accesses conflicting with
those of the Main thread. All threads that are started directly or indirectly are considered child
threads.

Static Threads

During analysis threads are static, i.e. "places of thread instantiation in code". The same "static
thread" could lead to multiple "thread instances" at run-time. This implies that the thread graph
can have cycles.

Listing 3.6: Example code with cycle.
1 public static void Main(string←↩

[] args)
2 {
3 Func();
4 }
5
6 public static void Func()
7 {
8 new Thread (() => Func()).←↩

Start ();
9 }

Figure 3.21: Thread graph with cycle

In listing 3.6 new Thread() defines a "static thread" this leads to a graph with a node for
this static thread - the static thread starting itself. This becomes a chain of thread instances at
run-time.

Potential Start

If a thread is started during any of the program’s execution paths, this will be considered as a
potential thread start. This conservative approach is taken in order not to miss any potential
concurrency.

Listing 3.7: An example of a potential thread start.

1 var t1 = new Thread (() => { });
2 bool start = Random.Next()%2 == 0;
3
4 if (start)
5 t1.Start ();
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Guarenteed Joins

If a thread joins all started instances of a static thread in all execution paths, this will be considered
a guaranteed thread join. This conservative approach is taken in order not to miss any remaining
potential concurrency.

Listing 3.8: An example of a thread join that cannot be guaranteed.
1 var t1 = new Thread (() => { });
2 t1.Start ();
3
4 if (a > b)
5 {
6 t1.Join();
7 }
8 // t1 join not guaranteed

Multiple Start

If a thread is started several times, the thread becomes unjoinable and any subsequent joins to the
thread will be ignored as joining cannot be guaranteed. This can occur if a reference to a thread
is overridden before it has been joined.

Listing 3.9: An example of a thread started multiple times. An undefined number of threads are
produced, due to a data race and only the last thread can be joined.

1 bool terminated = false;
2 Thread t2;
3
4 while (! terminated)
5 {
6 t2 = new Thread (() => terminated = !terminated);
7 t2.Start ();
8 }
9
10 t2.Join();
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3.3.2 Stage 2: Inter-Thread Data-Flow Analysis per Thread

This stage finds all data races among parent-child threads, being sensitive to thread starts and
joins. For each thread, the child threads are computed by data-flow analysis. Active threads are
directly started threads and indirectly started threads (extrapolated from the thread graph). Again,
potential starts and guaranteed joins are used as concepts. As depicted in listing 3.1 thread t1
and t2 are child threads of the Main thread, and thread t3 is a child thread of t2. Thread t3 is
therefore started indirectly from the Main thread.

Each read/write access in a statement, is compared against the active child threads defined
for that statement. If there is any data race conflict - access to the same memory location (i.e.
variable), involving at least one write access - it is reported.

Result

As depicted in Listing 3.10 the variable x is modified (line: 5) before the child thread is started -
which therefore does not cause a data race. The read-access (line: 7) on the other hand is a clear
data race with the child thread t1 (line: 4).

Listing 3.10: An example indicating the importance of flow-sensitive data-flow analysis.
1 static void Main(string [] args)
2 {
3 int x = 0, y = 5;
4 Thread t1 = new Thread (() => x = 1);
5 x = y;
6 t1.Start ();
7 Console.WriteLine(x);
8 }

The result in Visual Studio depicts a data race warning for x through the inter-thread data-flow
analysis.

Figure 3.22: Data races from listing 3.10 depicted in Visual Studio 2015.
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Inference of fully parallel threads

"Child threads" before and after statements are compared. For each new child thread after the
statement that does not yet exist before the statement, a pair is added between this new thread
and all previous child threads.

As thread t1 and thread t2 are both child threads of the Main thread and active at the same
time in listing 3.1 they become a fully parallel pair. Thread t3 is a child thread of t2, this results
in thread t1 and thread t3 becoming a fully parallel pair.

Figure 3.23: Complete thread graph with start/join states, implicit starts and fully parallel refer-
ences.
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3.3.3 Stage 3: Fully-Parallel Analysis

With the new information in the thread graph won in stage 2, it is now known which thread pairs
run unconditionally in parallel, i.e. without any parent/child relation. Each fully-parallel-pair’s entire
access sets are compared for conflicts.

Result

As depicted in listing 3.11 there are two data-accesses on x from t1 and t2. As there is no data-
access for x on the main thread stage 2 does not detect a conflict with its child threads. Only by
comparing the access sets of the fully parallel pair (t1 and t2) is the data race found.

Listing 3.11: An example of two fully-parallel threads.
1 public static void Main()
2 {
3 bool flag;
4 var t1 = new Thread (() => flag = true);
5 var t2 = new Thread (() => flag = false);
6 t1.Start();
7 t2.Start();
8 }

The result in Visual Studio depicts a data race warning for x through the fully-parallel analysis.

Figure 3.24: Fully-Parallel data races depicted in Visual Studio 2015.
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3.4 Implementation

3.4.1 Architecture

The concurrency checker has an architecture in which the data race analyser, data-analysis, cor-
responding configurations, control graph generator and graph utilities are segregated into different
logical layers.

Figure 3.25: Dependency diagram of the core project generated with ReSharper 9.1
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3.4.2 Roslyn

The .NET Compiler Platform ("Roslyn") includes self-hosting versions of the C# and VB.NET
compilers – compilers written in the languages themselves. The compilers are available via the tra-
ditional command-line programs but also as APIs available natively from within .NET code. Roslyn
exposes modules for syntactic (lexical) analysis of code, semantic analysis, dynamic compilation to
IL, and code emission [7].

At the time of writing, the concurrency checker uses the release candidate 2 (RC2) version of
Roslyn. RC2 is to be considered stable and no public API changes should occur until v1 has been
released and fully integrated into Visual Studio 2015 as the default compiler.

As Roslyn does not provide a native CFG implementation, nor a public inter- or intra-data-flow
analysis, the concurrency checker must take advantage of the Roslyn’s Compiler API to generate
its own CFG and implement its own data-flow analysis.

Figure 3.26: An overview of available API’s from Roslyn’s code analysis (Compiler API).

Syntax Tree API

The Syntax Tree API exposes the syntax tree of the source code, containing every bit of
information in a code file, including elements like comments or whitespace. Writing a syntax
tree to text will reproduce the exact original text that was parsed. In Visual Studio the syntax
tree is regenerated after nearly every new character.

Symbol API

The Symbol API provides the semantic model for a syntax tree and is essential for enriching
the CFG and data-flow analysis as it is possible to query the following:

• What names are in scope at this location?

• What members are accessible from this method?

• What variables are used in this block of text?

• What does this name/expression refer to?

Visual Studio refreshes the semantic model after (nearly) every statement change. The
syntax tree is updated more often that the semantic model, it is however guaranteed due to
Roslyn’s immutable data structures that semantic model and syntax tree correlate.

The concurrency checker has been implemented so that it only relies on the Roslyn API (and
not the Visual Studio APIs). It is, therefore, possible for the concurrency checker to be used as a
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library and is not bound to Visual Studio. This could be useful, for example, in creating an online
service that checks code for concurrency errors.

3.4.3 Control Flow Graph

As Roslyn does not provide a CFG implementation, it has to be generated from the AST (Abstract
Syntax Tree) using visitors. After creation of the CFG, visitors are no longer required in the analysis.

Syntax Tree

The Syntax Tree API provides several methods of accessing/traversing the abstract syntax tree
generated by Roslyn. Each node of the tree denotes a construct occurring in the source code.
Roslyn offers several ways to traverse the abstract syntax tree, either through a visitor (SyntaxVis-
itor), walker (SyntaxWalker) or LINQ.

Figure 3.27: Visual representation of the syntax tree for listing 3.12 generated in Visual Studio,
Trivia has been omitted for better readability

The SyntaxWalker represents a SyntaxVisitor that descends an entire SyntaxNode graph visiting
each SyntaxNode and its child SyntaxNodes and SyntaxTokens in depth-first order. It however
explicitly processes and includes TriviaNodes (comments, whitespaces, etc.) that are not necessary
in the generation of the CFG.

By implementing a custom SyntaxVisitor that visits the entire SyntaxNode graph instead of just
a single SyntaxNode, execution time was reduced by ca 50% compared to utilising a SyntaxWalker
(this was mainly part to Roslyn not having to re-parse the source for the TriviaNodes).
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Statements

Each C# statement is represented by its own statement class inside the syntax tree. Statements
such as foreach, switch, try, catch have been not been implemented in this thesis due to their com-
plexity. The following statements, defined in the C# language specification [2], can be processed
by the CFG.

If-Else, Else-If

An if statement identifies which statement to run based on the value of a Boolean expression.
Because the condition cannot be simultaneously true and false, the then-statement and the
else-statement of an if-else statement can never both run.

Listing 3.12: If-Else statement
1 if (a == b)
2 {
3 c *= 2;
4 }
5 else
6 {
7 a -= 1;
8 }

Figure 3.28: Partial CFG for listing 3.12

As an if statement can only have a single then- and else-statement ’else if’ is transformed to
a nested if-else statement.

Listing 3.13: If-Else If-Else statement
1 if (a == b)
2 {
3 c *= 2;
4 }
5 else if (a > b)
6 {
7 a -= 1;
8 }
9 else
10 {
11 b -= 1;
12 }

Figure 3.29: Partial CFG for listing 3.13
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Switch

A switch statement includes one or more switch sections. Each switch section contains one
or more case labels followed statements. By the use of goto statments the exection can jump
to another section. When reaching break statements the switch section is exited.

Listing 3.14: Switch statement

1 switch (i)
2 {
3 case 1:
4 j++;
5 goto case 3;
6 break;
7 case i % 2 == 0:
8 j /= 2;
9 break;
10 case 3:
11 case 5:
12 j--;
13 break;
14 case 7:
15 j += 7;
16 goto default;
17 default:
18 j *= 2;
19 break;
20 }

Figure 3.30: Partial CFG for listing 3.14
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While

The while statement executes a statement or a block of statements until a specified expression
evaluates to false.

Listing 3.15: While statement
1 while (a > 0)
2 {
3 a--;
4 }

Figure 3.31: Partial CFG for listing 3.15

Do-While

The do statement executes a statement or a block of statements repeatedly until a specified
expression evaluates to false. A do loop executes one or more times.

Listing 3.16: Do statement
1 do
2 {
3 c++
4 }
5 while(c < 0)

Figure 3.32: Partial CFG for listing 3.16

For

The for statement executes a statement or a block of statements repeatedly until a specified
expression evaluates to false. Unlike a do or while statement, a for statement has a initialiser
section that sets the initial conditions and an iterator section that defines what happens after
each iteration of the body of the loop.

Listing 3.17: For statement
1 for (var i = 0; i < b; i++)
2 {
3 c *= a;
4 }

Figure 3.33: Partial CFG for listing 3.17
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Foreach

The foreach statement repeats a group of embedded statements for each element in an array
or an object collection that implements the IEnumerable interface. The foreach statement
is used to iterate through a collection but can not be used to add or remove items from the
source collection to avoid unpredictable side effects. Each foreach statement is transformed
into while-statement enclosed by a try-finally statement. For simplicity the try-finally was
omitted.

Listing 3.18: Foreach statement
1 foreach (var e in list.←↩

ToArray ())
2 {
3 if (e%2 == 0)
4 {
5 Test(e);
6 }
7 else
8 {
9 continue;
10 }
11 }

Figure 3.34: Partial CFG for listing 3.18

Lock

The lock keyword marks a statement block as a critical section by obtaining the mutual-
exclusion lock for a given object, executing a statement, and then releasing the lock.

Listing 3.19: Lock statement
1 lock (myLock)
2 {
3 a = 5;
4 }

Figure 3.35: Partial CFG for listing 3.19

37



Jump Statements

Jump statements cause an immediate transfer of the program control. As the syntax tree visitor
is depth-first, there is a stacked scoping to handle jump statements. The stack is manually pushed
and popped depending on the current syntax node, this requires that the first node passed to the
CFG generator be a scoping (method, lambda, property) node. Failure to pass a scoping node may
cause jump statements not to be processed correctly/completely, due to missing scopes.

Break

The break statement terminates the closest enclosing loop or switch statement in which it
appears. Control is passed to the statement that follows the terminated statement, if any.

Listing 3.20: While statement with break
1 while (a > 0)
2 {
3 a--;
4 if (a%2 == 0)
5 break;
6 }

Figure 3.36: Partial CFG for listing 3.20

Continue

The continue statement passes control to the next iteration of the enclosing while, do, for,
or foreach statement in which it appears.

Listing 3.21: While statement with con-
tinue

1 while (b > 0)
2 {
3 if (b%2 == 0)
4 continue;
5 c += b;
6 }

Figure 3.37: Partial CFG for listing 3.21
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Return

The return statement terminates execution of the method in which it appears and returns
control to the calling method.

Listing 3.22: For statement with return
1 for (var i = 0; i < b; i++)
2 {
3 if (i%3 == 0) return;
4 c -= i;
5 }

Figure 3.38: Partial CFG for listing 3.22
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Intra-Procedural CFG

To extend the scope of the data-flow analysis across procedure boundaries a Control Flow Graph
Container separates each procedure into its own control flow graph (CFG). A map is created to
reference caller with the callee instead of inserting the procedure’s CFG directly into the main
CFG. This methodology was preferred as recursive procedures would cause an infinitely-long and
indeterminate CFG. A typical example of recursive procedural calls is the fibonacci sequence:

Figure 3.39: CFG of main method. Figure 3.40: CFG of the recursive fibonacci
method.

Invoke nodes (in red) are reference nodes that map with their method node (in black) in a
corresponding CFG. Currently only procedures resolvable in the current abstract syntax tree are
supported, neglecting precompiled IL-binaries (such as Console.WriteLine(fib10) in fig. 3.39).

As a performance optimisation CFGs are built only when needed. This reduces the memory
foot-print to a minimum and would also allow for better caching.
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3.4.4 Data-Flow

Configuration

As the data-flow analysis is generic, allowing it to be used for any kind of flow-sensitive inference
of state, it accepts a configuration to process a specific type of data-flow analysis.

The configuration is defined for each data-flow analysis with its own transfer and join function -
each function returning the state defined by the configuration - as well as providing an initial value
for the input state.

Figure 3.41: UML class diagram of configuration interface.

Any class with the configuration interface can be used for the data-flow analysis, this has the
advantage that the class can be set up before being used, i.e. providing context information such
as the current thread or the thread graph.

There currently exists three configurations used in the concurrency checker:

Name Purpose Used in
ThreadStartJoinConfiguration Calculates thread state (start/join) Stage 1
VariableUsageConfiguration Calculates what variables are read / written and

their locks
Stage 1

InterThreadConfiguration Calculates race conditions between child-threads Stage 2

Further configurations such as for pointer analysis or deadlock analysis can easily be added in
the future.

State

As each configuration calculates different values, the values composing the (input/output) state of
each configuration need to be definable by the configuration but understandable for the data-flow
analysis (i.e. checking to see if the output states have changed), otherwise the fix-point cannot be
reached. This is accomplished by implementing the generic IEquatable(T) interface that defines
a type-specific method for determining equality of instances.
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3.4.5 Visual Studio Integration

Diagnostic Analyser

Diagnostic analysers are available as of Visual Studio 2015 and allow for interaction with Roslyn’s
Compiler API. Developers can ship domain-specific code analysis as part of their NuGet packages,
providing warnings or even errors for their package, assuring correct usage of their code. Code-fixes
can also be provided, helping the developer even further. Diagnostic analysers can react to different
Compiler API events such as when the syntax tree has been built, the semantic model is available
or when compilation has occurred. Important to understand is that warnings and errors are not
passed directly to Visual Studio but are added to Roslyn’s API pipeline allowing for other diagnostic
analysers to react on further information.

As the concurrency checker requires semantic information to build the CFGs an event is re-
gistered to be notified when the semantic model is available. This event may be triggered every few
seconds. Once notified that the semantic model is available a CancellationToken is provided. If the
provided semantic model and syntax tree become obsolete due to a large quantity of changes, a
cancellation request is issued via the CancellationToken to stop further analysis. As Visual Studio
queues events until the previous event has been processed, respecting cancellation requests causes
diagnostic information (such as warnings or errors) to appear faster and more accurate to the user.

Error handling is very important as Roslyn uses best guesses in the abstract syntax tree if code
is incomplete or contains syntactical errors. This causes exceptions in the CFG generation as the
syntax tree is incomplete/erroneous. A global try-catch clause in the diagnostic analyser makes
sure that no exceptions are thrown, as this could cause the diagnostic analyser, and even the
plug-in, to be unloaded by Visual Studio.

VSIX Package

A Visual Studio Integration Extension (VSIX) package is a compressed file that follows the Open
Packaging Conventions (OPC) standard [4]. The package contains binaries and supporting files,
together with metadata required to classify and install the extension. VSIX packages can be
distributed manually, through private galleries or published to Microsoft’s Visual Studio Gallery.

By placing NuGet packages inside a VSIX package it becomes globally available in Visual Studio
(instead of just on a project to project basis). These two components must be implemented as
two separate projects (best practice).
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3.5 Results

3.5.1 Precision

Due to the flow-sensitive redesign, the algorithm has become more precise than the existing IFS
flow-insensitive prototype. The existing prototype would not be able to detect the data races in
listing 3.23, this is no longer the case with the new concurrency checker as it now supports a
flow-sensitive algorithm.

However, the concurrency checker does not fully account for all data races as pointer analysis
would be required to detect references being replaced during execution, as can be seen in fig. 3.42.

Listing 3.23: Example code with multiple data races
1 static bool terminated = false;
2
3 static void Main(string [] args)
4 {
5 int i = 5;
6 Thread t1 = new Thread (() => { terminated = !terminated; });
7 while (--i > 0)
8 {
9 t1.Start();
10 t1 = new Thread (() => { terminated = !terminated; });
11 }
12
13 Console.WriteLine(terminated);
14 }

Figure 3.42: Data races detected in Visual Studio for listing 3.23.
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3.5.2 Examples

Based on the following examples the analysis in the concurrency checker worked as expected.

Simple

Listing 3.24: Example code with a single data race
1 static bool terminated;
2
3 static void Main(string [] args)
4 {
5 Thread t = new Thread (() => {
6 while (! terminated) Console.Write("."←↩

);
7 });
8 terminated = false;
9 t.Start ();
10 terminated = true;
11 }

Figure 3.43: Data race detected in Visual Studio for list-
ing 3.24.
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Locks

Listing 3.25: Example code with several data races, also
includes a mutual exclusion (lock)

1 private static bool flag;
2 private static object myLock = new object ();
3
4 public static void Main()
5 {
6 var t1 = new Thread (() => {
7 lock (myLock)
8 {
9 flag = true;
10 }
11 });
12 var t2 = new Thread (() => {
13 lock (myLock)
14 {
15 var x = flag;
16 }
17 var t3 = new Thread (() => flag = true←↩

);
18 t3.Start();
19 });
20 t1.Start();
21 t2.Start();
22 Console.WriteLine (!flag);
23 t1.Join();
24 t2.Join();
25 Console.WriteLine (!flag);
26 }

Figure 3.44: Data races detected in Visual Studio for list-
ing 3.25.
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Fully-Parallel

Listing 3.26: Example code with a single data race in a
fully-parallel pair

1 static bool flag;
2 public static void Main()
3 {
4 Thread t1 = new Thread (() => { flag = ←↩

false; });
5 t1.Start ();
6
7 Thread t2 = new Thread (() => {
8 Console.WriteLine(flag);
9 });
10 t2.Start();
11 t1.Join();
12 }

Figure 3.45: Data races detected in Visual Studio for list-
ing 3.26.
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Inter-Procedural

Data races are found on field balance in listing 3.27 through inter-procedural data-flow analysis.

Listing 3.27: Example code with data races caused in a
different procedure

1 class Bank
2 {
3 private int balance;
4 public void Deposit(int amount)
5 {
6 balance += amount;
7 }
8 public int Balance
9 {

10 get { return balance; }
11 }
12 }
13 static void Main()
14 {
15 Bank bank = new Bank();
16 Thread t1 = new Thread (() => {
17 bank.Deposit (100);
18 });
19 Thread t2 = new Thread (() => {
20 bank.Deposit (50);
21 });
22 t1.Start ();
23 t2.Start ();
24 Console.WriteLine(bank.Balance);
25 }

Figure 3.46: Data races detected in Visual Studio for list-
ing 3.27.
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3.5.3 Performance

To test the performance of the algorithm a code example with mutual exclusions and two fully-
parallel pairs was used. The computing time was calculated for each stage of the algorithm. The
following aspects were not factored into the results: compile time, syntax tree and semantic model
generation as well as passing diagnostic reports to Roslyn.

This thesis bases its findings for performance testing on a small example to classify the relative
cost distribution of the algorithm. A more detailed evaluation on the performance and scalability
of the algorithm requires further research.

Listing 3.28: Example code used to test performance
1 var t1 = new Thread (() => {
2 lock (myLock)
3 {
4 flag = true;
5 }
6 var t4 = new Thread (() => flag = false);
7 t4.Start();
8 });
9 var t2 = new Thread (() => {
10 lock (myLock)
11 {
12 var x = flag;
13 }
14 var t3 = new Thread (() => flag = true);
15 t3.Start();
16 });
17 t1.Start ();
18 t2.Start ();
19 Console.WriteLine (!flag);
20 t1.Join();
21 t2.Join();
22 Console.WriteLine (!flag);

Iterative Algorithm

In total, the iterative algorithm completes in 0.18 s, stage 1 being the most and stage 3 the least
compute intensive. Surprisingly, after analysing execution logs, after the first CFG is generated
the same CFG only takes a fraction of the time to generate, this is most likely due to a internal
caching function in Roslyn.
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Figure 3.47: Percentage of time used for each stage in the algorithm

56%

Data-Flow Analysis Stage 1

26%

Control Flow Graph Stage 1

1%

Data-Flow Analysis Stage 3

16%

Data-Flow Analysis Stage 2

1% Control Flow Graph Stage 2

As can be interpreted from fig. 3.47, the most performance gain could be achieved by optimising
the CFG generation. This would entail caching a CFG once it has been generated. In total each
procedure’s CFG was generated 6 times during execution.

Moreover, the data-flow analysis could profit from a work list, only calculating the output states
for changed predecessors as some data-flow configurations in stage 2 took 6 full iterations until it
reached its fix-point.

Worker List

In total, the worker list algorithm completes in 0.01 s - a 10x performance gain of the iterative
algorithm.
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3.5.4 Future Work

The concurrency checker works in its core properties. There are, however, various possibilities for
further improvement, that were not addressed in this thesis.

General

• Implicit thread support (i.e. TPL)

• Support for delegates in Thread constructor

• Variable definitions are found by analysing the syntax-tree’s predecessors, for a more flow-
sensitive approach this should be done via the CFG

• Further scalability and performance evaluation of the algorithm

Control Flow Graph

• Implement a memory or file cache, as the same CFGs are calculated multiple times during
analysis

• Support for conditional operators (?:,??,?.)

• Support for foreach, try-catch and switch statements

• Support for constructor and field declarations

Data-Flow Analysis

• Analysis of pre-compiled IL-binaries by using reference source, meta-files or IL-parser (increase
precision of data-flow analysis)

• Pointer aliasing (increase precision of data-flow analysis)

• Context-sensitive inter-procedural data-flow analysis - segregate state by call location, (in-
crease precision of data-flow analysis)

• Introduce a work list: In each iteration, a block is removed from the work list. Its out-state
is computed. If the out-state changed, the block’s successors are added to the work list (as
they require recalculation).

• Implement deadlock and thread starvation detection configurations

Visual Studio Integration

• Detect program entry through default project in Visual Studio configuration

• Look into possible automatic code-fix providers for concurrency errors

• Highlighting in Visual Studio could be improved to visualise the execution path taken, by
marking where a procedure was called from. As of current, it is not clear to the user which
caller(s) is/are causing the data race

50



3.6 Conclusion

The resulting tool proves to be an effective flow-sensitive static checker that detects potential data
races in C# program code within Visual Studio, highlighting and marking such issues during code
writing in a non-disruptive manner.

With its flow-sensitive design taking all execution paths into account, low-level data races are
detected with a higher precision than with the existing concurrency checker.

In contrast to other existing solutions, this checker performs a real static analysis (not only
simple local bug pattern location) as a practical Visual Studio 2015 plugin compatible with the
newest version of .NET’s compiler platform "Roslyn". Due to the generic data-flow based archi-
tecture, the tool could be extended to also support deadlock detection in the future.
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Appendix A

Task Description1

A.1 Supervisor

This bachelor thesis is conducted on an internal research project of the HSR Institute for Software.

A.1.1 Supervisor HSR

Prof. Dr. Luc Bläser, Institute for Software (IFS), lblaeser@hsr.ch

A.2 Task Setting

The HSR Institute for Software hosts the concurrency lab of Prof. Bläser that is active in research
on concurrency and parallelization with a particular focus on the .NET technology. The lab has
built a prototype of an efficient on-the-fly static concurrency checker for Visual Studio .NET.
The checker currently detects potential race conditions in C# code within the Visual Studio IDE,
highlighted and marked even during code writing. In contrast to other existing solutions, this checker
performs a real static concurrency analysis (not only simple local bug patterns) as a practical Visual
Studio plugin. The implementation is based on the Microsoft Roslyn compiler framework that is
integrated by default in the upcoming Visual Studio 2015 edition.

The checker engages a novel conservative static analysis algorithm that considers inter-procedural
thread dependency graphs with start/join relations and supports various explicit and implicit thread
entrance points, including the .NET Task Parallel Library (TPL). However, the implementation
of the checker is currently still strongly limited: it lacks (1) a proper dataflow-sensitive analysis
considering control statements, (2) an advanced pointer- and shape-analysis, (3) an incremental
analysis across multiple assemblies, (4) the detection of further errors, such as deadlocks, starvation
etc., (5) the support of other .NET languages apart from C# as well as analysis of precompiled
IL assemblies. Moreover, the current prototype could profit from a proper documentation, cer-
tain implementation redesigns, and GUI extensions towards concurreny problem visualizations and
explanations.

1As defined by: Prof. Dr. Luc Bläser
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A.3 Thesis Objectives

This bachelor thesis aims to improve the existing .NET Concurrency Checker prototype in some of
the most important, though certainly not all, of the aforementioned limitations. The overall goal
lies on extending and altering its design towards a clean support of dataflow-sensitive analysis.
The specific work packages of this thesis are:

1. Study of the existing checker analysis and prototype implementation.

2. An academic description of the underlying analysis algorithm.

3. Redesign towards a general dataflow analysis layer replacing the explicit use of visitors.

4. Improving the accuracy with regard to control statements and method on this layer.

5. Evaluation of the accuracy and impact on performance and memory for sample cases.

6. Optional: further improvements and/or redesigns as described above.

The corresponding goals that should be addressed are:

1. An improved concurrency checker with a sound and complete conservative flow-sensitive
inter-procedural analysis. More advanced path- or context-sensitive analysis would be plus
but are not required, neither pointer aliasing or shape analysis.

2. A technical report with an adequate description of the overall analysis including the specific
enhancements made incl. an evaluation and discussion of related works.

Ideally, an academic paper intended for a research workshop and/or conference could emerge
from this work.
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Appendix B

Personal Report

At the time of writing I am nearing the end of my studies. I found my bachelor thesis very interesting
but also very demanding. Although I have been programming with C# for many years, my thesis
gave me an in-depth insight into the programming language and its inner workings.

The first several weeks were sometimes frustrating as the underlying layers are very abstract
and results hard to visualise. A notable moment during development was the integration into
Visual Studio, where the fruits of my labour became visible - indicating the concurrency errors of
a program.

During my thesis I took part in Microsoft’s dotnetConf 2015 (March 18-19) with talks on
Roslyn, Visual Studio integration as well as new C# 6.0 features. I found the talks helpful in
understanding cutting edge best practises advised by the developers behind Roslyn and Visual
Studio, as well as understanding some of the more undocumented features.

The notion that my work could eventually result in a product used by many affected me tre-
mendously, motivating me to produce some of my best work to date. It is however a shame that
there was not enough time to develop more concurrency configurations (deadlock detection, etc)
as part of my bachelor thesis.

As in previous academic work, I could always rely on the excellent care and support of Prof.
Dr. Luc Bläser. As a supervisor he always took the time, even outside of the weekly meetings,
to answer any unclarities or lingering questions and provided valuable feedback which I learnt a lot
from.

To conclude: I feel that I have put the available time to good use and have tried my best to
extensively complete the goals defined in the task description. The result of my work is a stable
application, which provides a good basis for any continued research.
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Appendix C

Declaration of Independent Work

I hereby declare,

• that I have carried out this work myself and unaided, except for persons which are explicitly
mentioned in the assignment or have been agreed with the supervisor in writing,

• that I have mentioned all sources used and specified correctly in accordance to current sci-
entific citation,

• that I have used any copyrighted materials (eg pictures) in this work in an unauthorized
manner.

Rapperswil, 15. June 2015

Thomas Charrière
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Appendix D

Meeting Records

The student and the HSR supervisor generally had weekly meetings to check and discuss the thesis
progress. On three occasions meetings had to be cancelled for the following reasons:

• 17.04.2015 due to military service - Thomas Charrière

• 24.04.2015 due to Prof. Dr. Luc Bläser participation at a conference in Karlsruhe, DE

• 08.05.2015 due to military service - Thomas Charrière

D.1 2015-02-20 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• Approval of project plan

• Definition of algorithm

• Admin (project expert, signing of documents)

Protocol

Signing of bachelor thesis agreement between Prof. Dr. Luc Bläser and Thomas Charrière.

Project plan

• Increase Elaboration phase by one week (aim: more detailed prototype);

• Push "Construction I" back by one week;

• "Construction II" will be reduced by one week;

• Milestones reduced to four;
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• There will be two Code-Reviews (end of Elaboration and Construction I) as per request.

Short discussion on principles of semantic and syntax analysis.

Defined an example for discussion on proposed algorithm by Prof Dr. Bläser

Open issues for next meeting

• Read through paper on RacerX, to be discussed in next meeting

• Expert for review of bachelor thesis (Prof. Dr. Bläser)

• Root Suffix Visual Studio -> Roslyn?

D.2 2015-02-27 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• RacerX, learnings of

• Visitor vs Walker

Protocol
Discussion of the RacerX paper (belief analysis, meta data usage).

Clarification of advantage SyntaxVistor compared to SyntaxWalker -> single node vs whole
tree including trivia (bad).

Further reading as suggested by Prof Dr. Luc Bläser.

• Object race detection (Christoph von Praun and Thomas R. Gross);

• Effective Static Race Detection for Java (Mayur Naik, Alex Aiken, John Whaley);

• Data-flow Analysis (Wikipedia)

Open issues for next meeting

• TFS Build-Server (CI?)
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D.3 2015-03-06 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• CFG status

• DFA Architecture (Configurations)

Protocol

Discussion of inter-procedural data flow analysis (reading from last week). Possible Intra-
Procedural DFA implementation.

Definition of DFA Configuration Interface (Transfer, Join, NewState)

Further reading sugguested by Prof Dr. Luc Bläser

• Principles of Program Analysis (ISBN 978-3-642-08474-4);

Open issues for next meeting

• Implementation Control-Flow-Graph (CFG)

• Data-Flow Analysis in combination with CFG

D.4 2015-03-13 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• CFG status

• Data-Flow-Analyzer (DFA)

• Thesis expert and revisor expectations

Protocol

After showing Prof Dr. Luc. Bläser a stack based CFG for Do,For,Foreach,If,Switch,While
we discussed how to implement jump statments such as continue, break, return.
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Discussion on how to solve return edge problem for multiple calls to same procedure inside
CFG. Solved by creating a mutlipe CFG (1 per Method,Lambda,Property) and create a
reference node.

Data flow analysis optimization for reverse edge lookup - control flow graph requires directed
graph to depict flow of execution but data-flow analysis requires predecessors.

Advise on Graph implementation (use msdn example or custom).

Defined scope of what can be expected from reviser and expert during the bachelor thesis.

Open issues for next meeting

• CFG with jump statements

• Multiple CFG in DFA

D.5 2015-03-20 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• CFG status

Protocol

CFG can be exported to the directed graph meta language (dgml) that allows for a visual
representation in Visual Studio.

Discussion on the finer points of Foreach (try, finally), how to implement try,catch in CFG.
Advised by Prof. Dr. Luc. Bläser to create a stack free CFG to reduce subsequent errors
when parsing the syntax tree and to reduce the number of empty blocks (nodes without
statement: EndIf, EndWhile, etc).

Open issues for next meeting

• CFG without stack

• CFG Node reduction
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D.6 2015-03-27 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• CFG status

• Appointment for mid-term presentation

Protocol

CFG completely rewritten to recursive depth-first visitor pattern by removing stack and re-
placing walker with visitor. Reduction of empty statements (EndIf, EndWhile) - also in part
to recursive architecture.

Prof. Dr. Luc Bläser suggests how to solve thread semantic information problem for threads
not assigned to variables (fire and forget).

Open issues for next meeting

• Futher CFG optimization

• DFA

D.7 2015-04-02 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• DFA

• Mid-term presentation

Protocol

Discuss how to reduce the usage of separate in and out states: in states only to be used for
statements without predecessors (method, lambda, property start/definition), other in states
can be deduced from previous out states of predecessor nodes.
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Prof. Dr. Luc. Bläser advises on how to solve intra-procedural data-flow analysis without
going through all CFGs when a state changes.

Review of ThreadStartJoinConfiguration for supplying more information to the thread graph
in stage 2 of the algorithm.

Open issues for next meeting

• Mid-term presentation

D.8 2015-04-10 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• DFA

• VariableUsage

• Recap Mid-term presentation

Protocol

Prof. Dr. Luc. Bläser advises what to improve for the next presentation at end of semester:
comparison of old and new, explain data-flow analysis with simple example, live example in
Visual Studio.

Review of custom variable usage (read/write on variable in statement) as Roslyn’s imple-
mentation provides accesses up to statement in method not actual statement (this caused
errors in detection of data-races).

Open issues for next meeting

• DFA complete
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D.9 2015-05-01 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• DFA

Protocol

Prof. Dr. Luc Bläser reviews code for stage 2 of thread analysis and advises on methods for
intra-thread data-flow analysis.

Next steps are defined in agreement with Prof. Dr. Luc Bläser: Visual Studio integration,
code review and documentation.

Open issues for next meeting

• Visual Studio integration

D.10 2015-05-13 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• Code Review

• Visual Studio integration

Protocol

Concurrency checker now integrated into Visual Studio 2015 RC2 with Roslyn RC2. Both
I and Prof. Dr. Luc Bläser are very happy with outcome, information for user needs to be
polished.

Defined scope of code review (19.05.2015) and prerequisites.

Open issues for next meeting

• Submission for code review
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D.11 2015-05-22 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• Code Review

• Visual Studio integration

Protocol

Review of refactorings according to suggestions provided by Prof. Dr. Luc Bläser.

Integration into Visual Studio is more polished offering the user better and more detailed
information of data races.

Prof. Dr. Luc Bläser advises on implementation of Fully-Parallel thread analysis.

Open issues for next meeting

• Timeline Documentation

D.12 2015-05-29 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• Documentation

Protocol

Prof. Dr. Luc Bläser advises to split data-flow analysis and thread analysis into separate
chapters for better understanding.

Discussion of several points in documentation review such as visualisations and related work.
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D.13 2015-06-05 Weekly meeting

Participants

• Prof Dr. Luc Bläser

• Thomas Charrière

Talking points

• Documentation

• Abstract submission

Protocol

Developed an examples for both intra- and inter-data-flow analysis with suggestions from
Prof. Dr. Luc. Bläser.

Review of final ToDos in thesis, abstract submission for the HSR and A0-Poster.
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Appendix E

Project Plan

Project start: 16.02.2015
Project end: 14.06.2015
Project duration: 17 Weeks

The project phases after which work is carried out comply with the Rational Unified Process
(RUP) was developed at the beginning of the thesis, to promote continuous and visible work pro-
gress. In agreement with Prof. Dr. Luc Bläser the elaboration phase will take up most of the
available time.

Figure E.1: Project plan for thesis
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E.1 Phases / Iterations

E.1.1 Inception (W1)

• Study of the existing checker analysis and prototype implementation

• Project plan

• Setup of developer tools, build server

• Risk analysis

E.1.2 Elaboration (W2-W12)

• An academic description of the underlying analysis algorithm

• Control Flow Graph generation

• Redesign towards general data-flow analysis layer replacing the explicit use of visitors

• All technical risks eliminated

E.1.3 Integration (W13-W15)

• Visual Studio integration (VSIX)

E.1.4 Transition (W16-W17)

• Final polish

• Thesis

• Admin

66



E.2 Milestones

E.2.1 M1: Prototype

Deadline: 12.04.2015
Goals:

• Basic CFG generation

• Data Flow Analysis prototype

• Mid-term presentation

Deliverables:

• Mid-term presentation for reviser

E.2.2 M2: Redesign to data-flow analysis layer

Deadline: 10.05.2015
Goals:

• CFG generation for set of examples

• Data Flow Analysis (Stage 1 - 3) complete

Deliverables:

• Code Package for Code-Review

E.2.3 M3: Integration complete

Deadline: 31.05.2015
Goals:

• Integration into Visual Studio 2015 as native add-in

• Concurrency warnings are presented to the user in a understandable form.

Deliverables:

• VSIX Package
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E.2.4 M4: Thesis complete

Deadline: 13.06.2015
Goals:

• TBD

Deliverables:

• Thesis (pdf), as well as eprints version

• A0-Poster

• Final Code Package
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Glossary

.NET

.NET (pronounced dot net) Framework is a software framework developed by Microsoft that
runs primarily on Microsoft Windows. Programs written for .NET Framework execute in a
software environment, known as Common Language Runtime (CLR). 7, 32, 51, 72

C#

C# (pronounced as see sharp) is a multi-paradigm programming language encompassing
strong typing, imperative, declarative, functional, generic, object-oriented (class-based), and
component-oriented programming disciplines. It is one of the programming languages de-
signed for the Common Language Infrastructure. 6, 7, 32, 34, 54, 72

CFG

control flow graph. 12, 14, 15, 17, 19–21, 32–34, 38, 40, 42, 48–50, 69, 72

deadlock

is a situation in which two or more competing actions are each waiting for the other to finish,
and thus neither ever does. 6, 72

IDE

integrated development environment. 72

IFS

Institute for Software, HSR Hochschule für Technik. 9, 11, 43, 72

NuGet

is the package manager for the Microsoft development platform. 42, 72

PLINQ

Parallel Language-Integrated Query. 7, 72
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race condition

is a situation in which threads are dependent on the sequence or timing of other uncontrollable
events. Low-level data races become manifest in concurrent synchronised accesses on the
same memory location, involving at least one write access. 6, 72

starvation

is a situation in which a thread is perpetually denied necessary resources to proceed its work.
6, 72

TPL

Task Parallel Library. 7, 9, 50, 72

VSIX

Visual Studio Integration Package. 11, 72
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