An Integration Job Engine for Everyone

Enhancing Apache Camel with
Data Mapping and Job Management

MIicHAEL GYSEL & Lukas KOLBENER

SEMESTER THESIS

University of Applied Sciences of Eastern Switzerland (HSR FHO)
Department of COMPUTER SCIENCE

in Rapperswil

Supervised by Prof. Dr. Olaf Zimmermann

May 2015

Contents

Abstract
1 Management Summary

2 Project Context

2.1 Business Background o
2.2 Technology Environment
2.3 Prestudy by SunGard
2.4 Apache Camel
2.5 Project Definitiono

3 Analysis
3.1 Enterprise Application Integration
3.2 Existing Apex Collateral Integration

4 Requirements

4.1 Personas e
4.2 Functional Requirementso oo
4.3 Non-Functional Requirements

5 Design and Implementation

5.1 Design Lo e
5.2 Project Structure
5.3 An Integration Job Engine using Apache Camel
5.4 Data Mapping e

iv

Contents

5.5
5.6
5.7
5.8
5.9
5.10
5.11

Job Triggers e

Job Templates
Metrics

Batch Processing

Performance

Deployment

Hawt.io Integration

6 Conclusion

6.1
6.2

Al
A2
A3
A4
A5

B.1
B.2
B.3
B4
B.5

Requirement Assessment

Future Work

Project Management

Project Management Methodology

Development Environment

Quality Management

Project Plan - Sprints

Risk Management

Evaluation of Libraries, Frameworks and Tools

Data Mapper Evaluation

Data Persistence

Application Context and Dependency Injection

Deployment

Build Automation

C Project Definition

D Results Prestudy by SunGard

Glossary

References

Literature

Online Sources

89

91

93

Abstract

Apache Camel is a comprehensive integration framework that leverages Enterprise Inte-
gration Patterns. However, data mapping and job management capabilities are lacking
in Apache Camel at present. In this semester thesis we conceptualised and implemented
Camel Jobs, an integration job engine based on Camel that allows system integrators to
build integration jobs as Camel routes. The routes are automatically enhanced with error
handling, monitoring, and trigger interfaces for HI'TP, JMX, and JMS. Furthermore we
integrated the Groovy-based data mapper Nomin in Camel Jobs. Nomin mappings can
be written by non-developers with ease, but still provide the power of the complete Java
language.

To replace SunGard’s long-established integration server for the Apex Collateral product,
we designed and implemented two SunGard specific layers that reside on top of Camel
Jobs. Apex Connectivity enhances Camel Jobs with job templates, support for the Apex
integration interfaces and batch management. A layer specific for each Apex Collateral
customer is used to build integration jobs and data mappings. Having been deployed into
an Apache Tomcat web server or operated as a standalone Java process, the new Apex
integration solution can be monitored in two ways: in custom management applications
integrated via a RESTful HTTP interface or in the Web-centric systems management
console hawt.io.

Camel Jobs has been released on GitHub! under the Apache 2.0 open source license.

!github.com/gysel /camel-jobs

https://github.com/gysel/camel-jobs

1. Management Summary

Context

The commercial banking software Apex Collateral, developed by SunGard, needs to
be in integrated into the IT environments of its customers — international banks and
insurance companies.

SunGard has entrusted us, Michael Gysel and Lukas Kélbener, to replace their current
integration solution in close collaboration with the Apex Collateral development team.

A Java-based integration solution has to be built serving two different user groups. Devel-
opers need to write complex integration jobs with the same product as business experts
define mappings to transform data from a customer specific to the Apex Collateral data
schema and vice versa.

Licensing a costly commercial data integration tool or spending a lot of time and money
in developing an own integration software is not an option for SunGard as data inte-
gration is not the focus of the Apex Collateral product team. SunGard therefore aims
to complete its Apex Collateral suite with a lightweight integration product which can
be maintained with ease and combines available and well established open source soft-
ware. SunGard’s prestudy found no suitable existing solution for its needs, but identified
Apache Camel as a promising basis framework.

Approach

We chose the iterative approach of Scrum to face the diverse requirements and to build
a solution with the most business value. Not knowing what exactly we were going to
build, the agile approach helped us to react quickly to new findings and to stay close to
SunGard’s needs through regular reviews.

In a complete analysis of the current Apex integration solution we listed its strengths
and weaknesses. A comparison with the Enterprise Integration Patterns by Gregor Hope
and Bobby Woolf[3] helped us engineer the requirements. Well defined personas guided
the requirement analysis and prioritisation throughout the project to satisfy the multiple
stakeholders interested in the solution.

1. Management Summary 2

Instead of focusing on writing a lot of code, we built multiple lightweight components
connecting mature open source tools and frameworks. An extensive evaluation was neces-
sary to find a data mapping solution to integrate with Apache Camel which was suitable
for both, developers and integration experts.

Result: Apex Connectivity Server

A layered architecture with three main layers allowed us to make every component shown
in Figure 1.1 as reusable as possible.

Camel Jobs is an integration job engine
built on Apache Camel. This module

contains job management, job triggers

Camel Context

(HTTP, JMS, and JMX interfaces), error
handling, storing of failed records, and
metrics. Additionally it supports Nomin
mappings, a Groovy-based mapping tool

Specific Mappings

Job A Job C

Specific Processors

Job B Job D

which business experts can use with ease

while it empowers developers with the .
imports templates

all the possibilities of the Java language.

|
v

Apex Connectivity Customer X

fSupport for hawt(.jio, a 1plc))welr;ul We]i) console Default Mappings | | Foute Contexts (Templates)
or monitoring Camel-based applications,
—~ Template A
makes Camel Jobs a reusable integration JRAERIicS
job engine for everyone. We published it on —— Tomp iz
GitHub. I |
Apex Connectivity builds Apex Collat-
eral product specific integration logic on _£
.. HTTP [0} HTTP(S)
top of Camel Jobs. This includes support 2| s Eobmggers e3
for the Apex integration interfaces, batch S JMX 8§ LS
management, job templates, and default 0 T T s JPA
data mappings which can be reused by & % —
etrics
multiple customers. ® Nomin Mapping ®
© <

Customer X is the main module de-
ployed to an Apex Collateral customer
environment either as a standalone process
or within an Apache Tomcat application
server. It contains all customer specific
job definitions and data mappings. Based
on Apex Connectivity, it can use or over-

ride features provided by the other modules.

Camel Components = |Beans, Processors

Resources

Figure 1.1: Apex Connectivity Server

Architecture

1. Management Summary 3

Together, the three layers build an instance of the new Apex Connectivity Server. Two
customer reference projects, Connectivity-Spirio-Bank and Connectivity-Vista-Bank, con-
tain reference jobs which show the ability of the Apex Connectivity Server and prove
that it satisfies the defined requirements.

Outlook

SunGard plans to use the Apex Connectivity Server in an integration project in the
next months and Camel Jobs has been published open source as a development release.
Many further development ideas like a better hawt.io integration or more powerful job
configurations have been documented.

2. Project Context

Industry partner for this semester thesis is the multinational technology company SunGard.
The software produced will be integrated into an existing architectural landscape. To en-
sure that all technological and economical decisions are aligned with the existing product
called Apex Collateral, SunGard provided the specifications documented in this chapter.

2.1 Business Background

Apex Collateral is a commercial banking product developed and marketed by SunGard,
a large multinational computer software company.

"Apex Collateral is SunGard’s innovative solution for collateral management,
optimisation and trading on a single platform. It helps collateral traders, risk
professionals, operations staff, and senior management manage and optimise
their collateral on an enterprise-wide basis." [17]

Several customers from Asia, Europe and North America run Apex Collateral on their
infrastructure. To integration the Java application with other related applications, some
of those customers rely on the data integration provided by SunGard using a tailored
Enterprise Application Integration (EAI) product.

The Apex Collateral integration solution, called EAI Server, is limited in its capabilities
and restricts integration experts to only use a single, standardised work flow and a limited
set of protocols. This forces the specialists working with this product to implement code
that is complex and hard to read. High integration cost and a lack of flexibility are the
resulting consequences.

SunGard intents to replace its integration server with a new solution based on established
open source components. This product will be called Apex Connectivity Server and
will completely replace the existing EAI Server.

2. Project Context 5

2.2 Technology Environment

Apex Collateral is a proprietary product and SunGard owns all its source code. Techno-
logical aspects are — whenever possible — implemented leveraging existing open source
software. Apex Collateral therefore is based on a set of popular open technologies.

o Spring Framework[53] for Dependency Injection

o Hibernate[33] for Object-Relational Mapping (ORM)
o Quartz[48] for task scheduling

o Apache Camel[10] for message translation and routing
» Apache POI[14] to create Microsoft Office documents
 Jasper Reports[36] to create PDF documents

o ActiveMQ[7] as a Java Message Service (JMS) broker

In this project, these technologies should be favoured to other products whenever possi-
ble.

2.3 Prestudy by SunGard

SunGard has conducted a prestudy and assessed a short list of four popular data in-
tegration tools prior to the start of this thesis in order to narrow down the project
definition.

1. Apache ServiceMix [15] bundles ActiveM@Q, Camel, CXF, and Karaf into an OSGi
powered platform. It is entirely released under the Apache license.

2. Red Hat Fuse [50] is an Enterprise Service Bus (ESB) built by RedHat based on
open source technologies. Fuse itself is a commercial product and may not be used
in productive environments without obtaining a license. It has a limited Eclipse-
based user interface to visualise Camel routes.

3. Talend Data Integration [55] is a commercial data integration platform and has an
Eclipse-based user interface.

4. Mule ESB [45] is a commercial ESB tooling with comprehensive graphical man-
agement. It is based on proprietary components.

The long list contained more tools that were not assessed in detail mostly as they did
not comply with the technology environment. WSO2 Carbon[58] for example was not
evaluated as it is not based on Apache Camel[10] but on Apache Synapse[16].

Further options would include to use an internal SunGard platform or implement a
custom solution. The exhaustive comparison of all options is attached in Appendix D.

2. Project Context 6

The key takeaways are the following:

o Commercial integration products charge around 2’000$ to 25’000$ per deployment
and therefore cut a significant part off the margin.

e Some vendors offer free editions. These version cannot be used as most of the
existing customers would not accept them.

e There is no open source component supporting graphical data mapping. Only the
commercial versions of Talend and Mule ESB do have such functionality.

e Apache Camel, CXF, ActiveMQ, and Karaf are used by all evaluated products
except Mule ESB.

SunGard therefore decided to attempt to build it’s own integration product and in-
structed the project team to evaluate and enhance existing open source libraries in order
to construct an integration product using open technologies.

2.4 Apache Camel

The prestudy has shown that Apache Camel is a popular library for comparable integra-
tion software. SunGard suggested to use Apache Camel as the basis for the new solution
unless the analysis finds severe reasons not to do so.

Claus Ibsen and Jonathan Anstey introduce Camel in their book Camel in Action[4] as
following:

"James Strachan, Rob Davies, Guillaume Nodet, and Hiram Chirino, within
the open source communities of Apache ActiveMQ and Apache ServiceMix,
brought the idea of Camel to life. Apache Camel is essentially an imple-
mentation of the EIP book[3], and in the summer of 2007 version 1.0 was
released.

Apache Camel is an integration framework whose main goal is to make in-
tegration easier. It implements many of the EIP patterns and allows you to
focus on solving business problems, freeing you from the burden of plumb-
ing. Using connectivity components has never been easier, because you do not
have to implement JMS message listeners or FTP clients, deal with convert-
ing data between protocols, or mess with the raw details of HT'TP requests.
All of this is taken care of by Camel, which makes mediation and routing as
easy as writing a few lines of Java code or XML in a Spring XML file.

Apache Camel has since become very popular and today has an ever-growing
community."[4, p. xxi]

2. Project Context 7

2.5 Project Definition

The goals and deliverables of this thesis are specified in the project definition which was
signed at the beginning of this project. A translated excerpt of the original document
written in German can be found in Appendix C.

After covering the project context, we introduce the broad field of Enterprise Application
Integration within SunGard in the next chapter. An analysis of the current integration
solution will lead us to the requirements for the new Apex Connectivity Server which
are followed by the Design and Implementation Chapter.

3. Analysis

The analysis introduces the wide area of EAI and describes the existing solution used
by the Apex Collateral product.

3.1 Enterprise Application Integration

EAT is about integrating applications with different protocols and formats as well as
handling remote procedure calls. In Apex Collateral, EAI is solely referred to data in-
tegration in the form of Enterprise Integration Pattern (EIP)[3, p. 147] Document Mes-
sages. Remote function calls (Command Message[3, p. 145]) are not supported by the
Apex Collateral interfaces.

As EAI is a complex field, solutions vary significantly in their complexity and approach.
Kay Wahner[24] has categorised integration products in three categories as illustrated
in Figure 3.1.

, includes
includes
Integration Enterprise Integration Suite
Framework Service Bus
) Complexity of
Integration
Low High

Figure 3.1: Illustration of integration framework, ESB and integration suite, taken from
InfoQ[24]

3. Analysis 9

We added native solutions as we have seen many integration needs solved without special
products. The following category descriptions are inspired by Kay Wéhner’s article on
InfoQ.com[24].

Native solution Data integration done without any integration tool or framework. The
solution builds on a native programming language and selected libraries for data
parsing and transformation.

Integration Framework An integration framework is a component developed to in-
tegrate applications with different protocols and technologies. It supports the de-
veloper with automatic parsing and conversion as well as concepts such as end-
points, producer and consumer and the Enterprise Integration Patterns[3]. Apache
Camel[10] is a popular example of an integration framework.

Enterprise Service Bus An ESB has the same core functionality as an integration
framework but is enhanced with remote procedure calls and tools for deployment,
administration, monitoring, and data transformation. The engineer using an ESB
does not need to be a skilled programmer. Many vendors offer commercial support
for their products.

Integration Suite Pure integration functionality as provided by an ESB is combined
with business process management, business activity monitoring, master data man-
agement and more high level integration topics.

An ESB and an integration suite both support remote procedure calls and complex tool-
ing for job orchestration. As Apex Collateral only needs to integrate data, the required
solution is categorised as an integration framework.

3.1.1 Industry Examples of Data Integration Solutions

We interviewed architects of different applications and companies to identify what kind
of data integration requirements they have and which approach they use to meet their
requirements. Table 3.1 shows an overview of these interviews.

3. Analysis 10
| Company | System Integration needs Integration approach
1 | Swisscom | Credit Risk | Integration of hetero- | Independent Web service
AG Product geneous data with two | implementation of inter-
different core banking | faces, no EAI tools
system
2 | Swisscom | Credit Risk | Periodical integration of in- | File upload and parsing
AG Product dustry statistics for calcula- | with native Java and an
tions Microsoft Excel Applica-
tion Program Interface
(API)
3 | Swisscom | Credit Risk | Import of customer specific | A well defined workflow
AG Product calculation parameters with a comma-separated
values (CSV) file uploaded
to an File Transfer Pro-
tocol (FTP) Server, pro-
cessed and transformed to
eXtensible Markup Lan-
guage (XML) by a Shell-
script and forwarded to a
webservice which writes the
data into a database
4 | SCS AG Public Trans- | Import of tariff data from | Independent parser and
port Ticket | different organisations in | translator for every organ-
Distribution several formats isation written in native
System Java
5 | SCS AG Public Trans- | Scheduled or realtime | Native Java solution with

port Customer
Information
System

import of heterogeneous
data from multiple or-
ganisations. Complex
data routing and trans-
formations as well as
multiple output channels
are required

open source APIs for ac-
cessing different endpoints

Table 3.1: Result of data integration interviews

Surprisingly, the solutions described in the interviews do not contain any usage of integra-
tion products. The interviewed architects gave revealing arguments for their approaches:

SCS AG architect referring to #5 "Java is a powerful and well known technology
for mapping and transforming data. An integration framework like Apache Camel
would impose a way of modelling and implementing work flows upon the developer.

3. Analysis 11

This might have a positive impact for structuring, but we do not see real advantages
that would compensate the complexity introduced by an extra layer."

Swisscom architect referring to #1 "The data mapping and routing for our inter-
faces to the core systems have a complexity which would justify an integration
framework. Nevertheless, the implementation of those interfaces has been done
once for each core system and is not changing frequently. So we do not see a need
to be more flexible in this area."

The Swisscom AG architect has identified a potential use case for an integration frame-
work in #3:

Swisscom architect referring to #3 "Our solution that integrates the customer spe-
cific calculation parameters has raised many issues. Customers have problems to
provide their data in the requested CSV format. The shell script transformer is
easy to deploy but difficult to maintain. An integration framework could simplify
the implementation and provide higher flexibility for our customers. As we imple-
ment only one workflow, the solution should be deployable standalone or in an
Apache Tomcat web server. Extra infrastructure for this integration workflow is
not acceptable."

The given statements raise the question why SunGard looks for a new integration frame-
work whilst the interviewed architects seem to favour a native Java solution for their
data integrations.

We have identified the following conditions that indicate a need for an EAT solution with
an integration framework:

e Multiple heterogeneous interfaces are to be implemented to successfully integrate
an application with its peripheral systems.

e The application has to be integrated for multiple customer environments which
require different implementations of the interfaces.

e The data mapping and transformation requires deep understanding of the business
domain. The integration work is therefore not done by software engineers but
business analysts with varying knowledge of programming.

3.2 Existing Apex Collateral Integration

This section describes the current Apex Collateral integration product called EAI Server
and defines the scope of this thesis in more detail.

3.2.1 Overview

Figure 3.2 shows the system context diagram of the current Apex EAI solution.

3. Analysis 12

Apex Collateral EAIl Server
. . JMS
Business Services —>
Data Export Jobs JDBC
= <— > Connected
File Systems
Batch Framework
FTP/SFTP
Data Import Jobs
Data Import HTTP(S)
Validation

EAIl Tables

Figure 3.2: System Context Diagram

The existing environment consists of four components:

e The Apex Collateral core application connects to the EAI tables and ensures
data consistency. All records not conforming with the expected data format are
rejected.

e The EAI Tables which are part of an Apex Collateral release and define the foun-
dation of the integration process. This component represents a Shared Database
as described by Martin Fowler|[3, p. 47].

e The EAI Server connects the EAI Tables with customer specific systems and
resources.

e The connected systems are given by the customer environment. These interfaces
vary for every Apex Collateral installation.

On the Apex Collateral side, the core application imports and exports data from the EAI
Tables. On the customer side, the EAI Tables are accessed by a component providing data
transformation and routing. Larger customers tend to use their existing EAI solution
like a sophisticated ESB. Smaller customers often entrust SunGard with the task to
integrate Apex Collateral into their environment. In these cases, SunGard uses its own
solution called FAI Server.

3. Analysis 13

Martin Fowler recommends not to use a Shared Database and use Remote Procedure
Invocation or Messaging instead[3, p. 49]. This is design structure however is given in
the scope of this thesis and will not be changed as part of the solution design.

Transactions are used while importing data from the EAI Tables into the core Apex
Collateral database. One import or export consisting of one or many records is executed
in a transaction. When one job fails, the transaction is rolled back and the error code
of these particular records are set to failed in a new transaction. High volume jobs
can be configured to perform intermediate commits in order to prevent high memory
consumption.

The machine running the EAI Server is secured on an operating system level and only
entitled users may connect to it. Other than this no special precautionary measures
are taken. There is no authentication or authorisation concept implemented in the EAI
Server.

3.2.2 Scope of this Thesis

The mission of this semester thesis is to conceptualise and implement a solution that is
more flexible and powerful than the EAI Server. The other integration relevant compo-
nents like the EAI Tables and the Apex Collateral core are not scope of this thesis.

3.2.3 Stakeholders

There are several stakeholders having interests in the Apex Collateral EAI process:

o SunGard Professional Services (PS) Team: Employees implementing and
configuring the EAI Server for new or existing customers. PS members have a
well developed domain and business knowledge but often lack sophisticated pro-
gramming skills. Integration projects tend to have tight time schedules and limited
resources.

e SunGard Developer Team: Engineers implementing the Apex Collateral system
as well as the EAI Server. Developers are highly sophisticated software engineers
but lack in-depth domain knowledge. These specialists are called if a requirement
like a complex data mapping can not be met by the existing EAI Server and needs
to be implemented with a module written in Java. It has recently happened that
developers helped out in the PS Team to mitigate resource shortages.

« Apex Collateral Customer: The customer has a special interest in the EAI
Server as it may result in constraints on how to provide and receive business
data. Additionally a customer might have special non-functional requirements like
security constraints or monitoring demands on the EAI Server and its interfaces.

3. Analysis 14

3.2.4 The EAI Server

For every client integrating Apex Collateral in their environment, a set of integration
jobs are defined. A job can either run in realtime' mode or is triggered by another
system. When running a job in realtime mode, it polls the data source for new records
in a configurable time interval and processes those records immediately as opposed to
the batch mode in which the job needs to be explicitly triggered by a job trigger and
processes the data as a logical set of records.

Structure of a job

Figure 3.3 outlines the main components of an integration job within the EAT Server:

Input: Input Mapping: | (Data Output Output: Post

-CSV - Add Fields processing: Mapping: -CSV Processing:
- Fix Length | - Define Error - Reject Records |- Ordering - Fix Length | | Transform

- Database @ |Handling - CodeMapper - Database Data

- Message - Default Value | |- Transform Data - Message

Per Record with Fix
Workflow:
PRE - DO - POST

Figure 3.3: Integration Job in the EAI Server

Input/Output Modules In and out modules are adapters which provide a key-value
interface for different formats and protocols like CSV files, databases or message
queues.

Data Mapping In and out attributes can conveniently be mapped to each other with
a CSV mapping file. Out attributes with default values can be introduced without
having a corresponding input attribute.

Data Processors are called once for every input record and follow a fixed flow: In -
Process - Out. Multiple processors can be chained after each other. They are mostly
used to modify the data during an integration job.

1 Ad hoc is used instead of realtime later in this document as realtime is technically not precise.

3. Analysis 15

Post Processors are used to finalise data processing after all data has been stored in
the defined output sink.

For error handling, a job creates a file which consists of all records that produced an
error or had been selectively rejected. Exceptions are forwarded to the EAI Tables or
can be investigated in the EAI Server log files.

3.2.5 EAI Server Deficiencies

The current solution contains flaws so that some requirements are not satisfied.

Static Workflow

Data processors have a fixed workflow (In - Process - Out) and are stateless. This design
implies that mappings dependent on multiple records are not supported. Workarounds
overcoming this restriction tend to break or ignore the underlying architecture. Global
intermediate data stores, integrating logic in out modules and direct analysis on the raw
input data are some of the consequences.

The limitation of having only one out module led to the design of composed jobs like
the one described in Figure 3.4.

JobB —> File

Job A } Temp Table

JobC —>» JMS

Figure 3.4: Three jobs and a temporary table are required to write the data to two
different targets

This requirement matches the EIP Recipient List [3, p. 249].

How do we route a message to a list of dynamically specified
recipients? Define a channel for each recipient. Then use a Recipient List
to inspect an incoming message, determine the list of desired recipients, and
forward the message to all channels associated with the recipients in the list.
[3, p. 249]

3. Analysis 16

Recipient Channel

— —G)—
—*tﬂ—>=}—*

) —
—*tﬂ—>=}—*

Figure 3.5: Illustration of the pattern "Recipient List"

=<

Recipient List

L

Testability

Input and output data is stored and forwarded in object arrays visible for all components
of a job. Processors and modules are therefore highly coupled and very hard to test
in isolation. The current integration jobs are not covered with automatic test suites,
which makes it difficult to ensure correct behavior during release upgrades or changes in
downstream interfaces.

Complex Mappings

The mapping mechanism works well for what it is designed for. The PS team can con-
figure in and out attributes with their corresponding data formats. It is additionally
possible to define default values and code mappings. The latter are pre-defined map-
pings from one value to another. As an example, a value & of the attribute trade type is
always replaced by the a value secure_trade.

Nevertheless, more complex mappings are not possible and therefore need to be im-
plemented using data processors written in Java. A complex mapping may consist of
calculations or conditional mappings.

Two Examples showcase mappings that cannot be implemented using the current data
mapper:

e TRADE DATE of record A must be smaller than the corresponding value of
record B for A to be integrated.

e The value of PRICFE needs to be divided by 100.

3. Analysis 17

Usability and Simplicity

The current solution is not well documented and not self describing enough to be used
and understood by an average professional services member. Furthermore most inte-
gration projects have very tight schedules and limited resources. This results in code
duplication and therefore bad maintainability of the integration jobs.

Core and Customer Specific Code

The architecture of the EAI Server clearly separates core and customer specific code.
Nevertheless, due to the reasons described in the section above, this separation is often
broken due to the pressure of an integration project. The result is copied core code in
customer specific projects as well as customer specific code within the core code.

Fault Tolerance

The EAI Server does not have a robust error handling and is not able to handle mali-
cious messages properly. Therefore a malicious message may take an interface completely
down as the server tries to reprocess this message for an indefinite number of times. An
integration server should recover from invalid data formats, temporarily unavailable data
sources or unexpected message contents. A malicious message should be preserved for
manual review and the server should continue to process data from its interfaces. Some
sources or targets already have support for rejected messages. However this needs to be
facilitated by all possible protocols and formats.

Missing Adapters

The current solution supports CSV, Fix Length files and Key/Value formats which can
be accessed by direct file access, (S)FTP, Message Queues or Database Connections.
Support for Web services, XML or JavaScript Object Notation (JSON) are missing.
These missing adapters result in restrictions on the customer’s data interfaces.

Deployment

The EAI Server is currently a standalone Java application. Deployments into a Java
application server or an OSGi container are not possible.

The analysis of the EAI Server and especially identifying its flaws helped us to collect
and define requirements for the new Apex Connectivity Server. These requirements are
document in the following Chapter.

4. Requirements

These chapters describes the (non-)functional requirements of the target solutions and
the target users working with the end product.

The requirements in this chapter are not prioritised. As part of the sprint planning
meetings, these requirements are transformed and prioritised to user stories and tasks.
The description in this chapter is meant to provide a high level overview and establish
a common sense between all stakeholders of this project.

4.1 Personas

Even though an integration product is not a piece of software with users in a traditional
sense, there is a set of different people exposed to user experience questions throughout
the life cycle of the software.

Our personas are based on interviews with employees of SunGard that were part of
integration projects and have hands on experience in implementing interfaces between
software systems.

4.1.1 Characterisation Elements

Personas should cover the following areas.

Role describes the persons role within an integration project and the characteristics
commonly identifying such a person.

Programming skills outlines how much experience the person has with writing code
and which languages he is familiar with.

Business domain knowledge should summarise the subjects background on the busi-
ness domain. This includes his familiarity with business terms, calculations and
data standards.

Integration product experience describes whether this person is exposed to the in-
tegration product for the first time or whether he has been exposed to the product
before.

18

4. Requirements 19

Main goal identifies the main objective the person tries to achieve.

4.1.2 Frank Frontline

Frank is an integration expert. He is part of the team which is primarily focusing on
rolling out an already built software package in customer specific environment.

He is 35 years old and lives out of his suitcase. Every month he is working in a different
country of the world, following the trail of the successful sales team.

Using stackoverflow.com and similar sources he solves problems by writing his own code.
But his main area of expertise is his detailed knowledge about the products he has
already integrated in various customer environments.

His experience is based on working with multiple clients in very different environments.
This allows him to efficiently translate customer requirements into product functionality
and bridge the communication gap between the development team and the customers
very specific needs.

Frank has a broad knowledge about the product and the domain model used for integra-
tion. Not because he has a deep understanding of its architecture, but he knows every
flaw or problem that ever occurred within the integration projects.

The primary goal of his assignment is to finish the integration project on time.

Alex Allrounder

There are two type of Franks. The one described above has very basic programming
skills. Alex Allrounder however is just like Frank, but started his career in a technical
context rather than a business context and can therefore handle much more complex
technical challenges. Alex is familiar with software engineering topics like object-oriented
programming, unit testing, design patterns and has a basic understanding for software
architecture.

4.1.3 Paul Perfectionist

Paul is a developer. Most of his time he works on new features whilst ensuring a high
quality code base. He detects code duplication, missing test cases and inconsistent nam-
ing of components. As he has been maintaining parts of the integration product, he
knows its concepts and architecture quite well.

From time to time it happens that the integration team lacks resources and a developer
has to help out. Paul hardly travels to visit the customers but he talks to the integration
expert and takes specific tasks. Complex integration tasks that require sophisticated
modules are assigned to developers even more often.

4. Requirements 20

Paul has a major in computer science, has been writing code since many years and knows
several programming languages. He always chooses the right tool to solve problems. Since
he has been working on the same product for several years, he has a good understand-
ing of the underlying business domain. Nevertheless he sometimes has to validate his
solutions with a business analyst or an integration expert when facing detailed domain
questions.

His expertise is primarily the product he is working on and he is not very familiar
with alternate terminologies or different approaches on solving the same problems. He
therefore struggles sometimes when being exposed to customers directly.

Paul’s main objective is to keep a clean architecture resulting in good maintainability
within all software components.

4.1.4 Stephen Steward

Stephen is an operations manager. His goal is to keep the software and all interfaces up
and running.

Unlike Frank and Paul he is not employed by the software producing company but he
is part of the customer team. Every morning he ensures that all batch jobs finished
successfully and otherwise troubleshoots them. He works in a close collaboration with
the vendor support team to file bug reports and coordinate software updates.

He possess some knowledge about the business domain but his main strength is his
detailed familiarity with all infrastructure aspects. To him, the integration product is an
application like many others in his environment. His primary goal is to identify errors,
performance problems or resource shortages as quickly as possible. In case of an error
he sometimes needs to answer business related questions from product managers about
data errors or losses. Stephen therefore demands good technical and business related
monitoring interfaces provided by the applications he observes.

He is not a programmer but uses shell scripts to automate tasks on a regular basis. He is
only familiar with the integration product that is currently in place but knows exactly
how it works.

4.1.5 Doug Doityourself

Doug is an integration expert with a similar background and programming skills like
Frank Frontline. Unlike Frank is he is not part of the product team but an employee of
the customer company.

Doug knows the customer interfaces and environments well and has integrated a large
number of applications. He knows the connected applications with their requirements,
capabilities, interfaces, and flexibilities. Doug has acquired a deep knowledge about the

4. Requirements 21

product’s data model and its interfaces as he has been working in this environment for
several years.

Doug’s goal is to integrate the product in his company environment with as little help
by the product team as possible. Like this he avoids expensive and time-consuming
change requests. He therefore requires well documented and easy to use interfaces. Doug
loves standardised solutions as they make his life much easier. For interfaces defined
by industry standards he expects predefined jobs which can be enabled and configured
quickly.

4.1.6 Charles Counselor

Charles is an external consultant and is added to a project when there is an urgent need
for a specialist and his position cannot be filled with current employees.

He is an expert on the business domain and has worked with many customers as well as
most of the competitors. Charles supports the professional services team in integrating
the product into different customer environments. He therefore needs to define integra-
tion jobs whilst he - compared to Frank Frontline - lacks knowledge about the EAI Tables
model.

His primary goal is to satisfy his client, the product management and Frank with the
work he’s doing.

Charles Counselor is a person not yet existing in integration projects. Therefore his
persona is not described in detail. The product management is planing to engage Charles
to prevent resource shortages.

4.2 Functional Requirements

The Apex Connectivity Server faces the functional requirements presented in the follow-
ing section.

Some requirements are documented as user stories whilst others are not as we found
user stories only to be useful when there is an actual user role requesting this feature.
Solely technical requirements like job triggers or protocols are therefore not documented
as user stories but as bulleted lists, tables or using their textual representation.

4.2.1 Data Mapper

As Frank Frontline, I want to use an easy to use data mapper so that I can write or
adjust mapping logic without writing Java code.

4. Requirements 22

As Paul Perfectionist, I want to use a powerful data mapper so that I can handle
all mapping scenarios within the data mapper using configuration or a scripting
language.

Frank Frontline would mostly use basic features of the data mapper. Peter Perfectionist
will use a advanced features as well.

Basic Features

o Key mappings
The source attribute 'Price’ maps to the target attribute "Total’
o Type conversions
Convert the string '10.10.1973’ to a java.util. Date object
e (alculations on values
Divide the value of ’Price’ by 100 during the mapping
e Defaulting of empty or inexistent values
Insert the current date to the target attribute 'Created’
e Code mappings
If the value is ’3’ then replace it with ’Security’

Advanced Features

e Conditional calculations
If the value of "Currency’ is EUR, multiply the value ’Amount’ with 1.20

e Multi-record conditions or instructions
If the ’Date__Created’ value of record A is before 2014, set ’Archive’ value of record
A and B to 'True’

e Conditional mappings
If the "Type’ value is 'Partial’, map the value 'Part Price’ to 'Price’, otherwise
map “Total Price’ to ’Price’

o Extensible mappings
The option to write mappings of any complexity with a programming language like
Java

e Nested mappings
Nested data strcutures like a key-value map within a key-value map can be mapped

4. Requirements 23

4.2.2 Integration Workflow

As Paul Perfectionist, I want to create integration jobs based on patterns so that I
can reuse processing strategies.

The new Apex Connectivity Server needs to support the following EIP:

e Point to Point Channel
Read and write from one source to one target
o Recipient List
Write to multiple targets
o Aggregator
Combine individual but related records
e Splitter
Split one record into several records
e Message Filter
Filter records based on static criteria

o Content-Based Router
Route records to different targets based on the record content

Publish-Subscribe Channel has not been mentioned in the requirement workshops. How-
ever as it is such an important pattern in message based environments, it might also be
required at some point.

4.2.3 Protocols and Data Formats

As Frank Frontline, I want to read and write data from standardised protocols and
formats so that I can integrate as many data sinks as possible.

Interviews with SunGard employees have shown that the protocols and data formats
listed in Table 4.1 need to be supported for input and output interfaces.

4. Requirements 24

Protocol | yn19 | File | JDBC | FTP/SFTP | HTTP(S)

Format

CSvV X X X X
Fixed Length X X X b
XML X X X X b
SWIFT X X X X X
JSON X X X X
SOAP X
Key/Value X

Table 4.1: Table of required (x) protocol and data formats

4.2.4 Job Templates

As Frank Frontline, I want to reuse a job template when implementing a job that
adheres to a predefined standard so that I need less time to implement it and avoid
code duplication.

Some jobs are almost identical in all customer environments whereas other jobs vary
significantly depending on the context. Job templates should be provided that allow
reuse of workflow and mapping logic. A job template should provide a complete job
definition and data mapping that can be imported into a customer specific configuration.
Frank Frontline should then be able to optionally override the data mapping provided
by the job template to adjust to customer specific interface definitions.

Job templates should be versioned to support interface changes as part of major release
upgrades of Apex Collateral.

4.2.5 Job Execution

Integration jobs by the new Apex Connectivity Server need to be launched by two kind
of triggers:

External triggers are used when a job needs to run whenever new data is available,
which is when data must be delivered or requested promptly or when an integration
job is part of a broader workflow controlled by the customer company. The following
external triggers to start a job are required:

o A JMS message sent to a message queue by the Apex Connectivity Server.

e A RESTful HTTP call sent to a REST interface provided by the Apex Con-
nectivity Server.

4. Requirements 25

e A created or updated database record in the EAI Tables or downstream in-
terfaces.

e A new file in a local or remote folder matching a specific file name pattern.
The Apex Connectivity Server should continuously be listening on those channels
for new trigger objects. A runtime trigger has to provide feedback to the caller and
return the following information:

e Return code indicating whether the job succeeded or failed.

e Volume statistics with number of imported, failed, rejected, and ignored
records.

e Time duration needed to process the job.
Depending on the trigger, this information may be returned through a different

channel. For example, a job triggered by a JMS message may return the result
through a different channel using the request-reply pattern shown in Figure 4.1

— Lyl

Request Request

Channel
ﬁ
Requestor Channel Replier

Figure 4.1: Request Reply pattern, taken from the EIP book [3, p. 154]

An ad hoc trigger represents an Event-Driven Consumer[3, p. 498].

Scheduled triggers are supported by a scheduling infrastructure and start jobs when
specific points in time are reached. There are different ways to define a point in
time:

o A single date and time instance.

e A date and time instance with a reoccurring object, defining in which intervals
or on which specifics (like a weekday) points in time are reached.

e A timer, firing after a predefined amount of time has passed. Optionally the
timer can restart n times.

4. Requirements 26

4.2.6 Batch Processing

The EAT Tables and Apex Collateral core impose a batch processing concept which needs
to be followed.

Jobs in batch mode are used to process data files that are provided on a regular basis.
Data volumes in these jobs are usually large. Within the EAI Tables, records pro-
cessed in batch mode are linked to a set using a value in the column EATI_BATCH_ID
referring to a record in the table EAT_BATCH. Jobs in batch mode should support
intermediate database commits to reduce memory usage and optimise performance
as well as parallel processing to handle large volumes.

Jobs in ad hoc mode ! are triggered by new files or database records and import
usually small sets of data. The records in this mode are identifiable by the value
NULL in EAI_BATCH_1ID.

4.2.7 Delta Builder

In the old EAI Server, some jobs are implemented using a delta builder to skip the
import of all rows that have not been changed compared to the last import. The new
delta builder should be able to read data from Apex Collateral core tables and compare
it with the data being imported to determine whether the current record differs from
the present data. All records which contain data already available in the system should
be skipped during the import.

4.3 Non-Functional Requirements

The following non-functional requirements should be satisfied by the new Apex Connec-
tivity Server.

4.3.1 Usability

Referring to the personas 4.1 and stakeholders 3.2.3, some end users of the Apex Connec-
tivity Server do not necessarily possess sophisticated programming skills and are more
focused on business knowledge and project schedule. The new solution therefore needs
to be easy to understand and use even for non-developers. Integration jobs are to be
defined by configuration and should only need Java code extensions for uncommon and
complex use cases. To ensure the right level of abstraction, usability tests with members
of the professional services team need to be done when evaluating possible solutions.

!SunGard refers to this as realtime mode. Realtime however is guaranteeing strict timing contstraints
which is not the case here. We therefore decided to call them ad hoc jobs.

4. Requirements 27

e Frank Frontline 4.1.2 should be able to implement a data mapping for a job in an
hour.

e Alex Allrounder 4.1.2 should be able to implement a sophisticated workflow in a
day.

4.3.2 Simplicity

Visibility and simplicity of Apex Connectivity features must be guaranteed. Some fea-
tures of the current solution have been ignored and reimplemented because users have
not been aware of them.

Within the usability test described in Section 4.3.1, all of the existing features provided
by the new solution should be used if suited. Workarounds for requirements covered by
the solution show an incomplete application of this requirement.

4.3.3 Information Security

Outgoing connections need to support HTTPS and Secure File Transfer Protocol (SFTP)
as well as encrypted and authenticated JMS messaging.

Authentication and authorisation to schedule jobs is delegated to the underlying oper-
ating system of the server and does not need to be implemented in Apex Connectivity.

4.3.4 Separation of Concerns

Developers with Paul Perfectionist as a representative (see 4.1.3) and Professional Ser-
vice members like Frank Frontline (see 4.1.2) are the stakeholders working with the Apex
Connectivity Server on a regular basis. As they have different technical backgrounds, they
also handle very different tasks. Developers might enhance the Apex Connectivity code
with new features, fix bugs or write extensions for customer specific integration projects
when complex mappings or routings are required. PS members define integration jobs
or configure job templates for every single customer to be integrated.

This separation has to be incorporated in the software architecture of Apex Connec-
tivity. Core functionalities and customer specific mappings or extensions need to be
clearly separated. Changes to Apex Connectivity code therefore needs to be prohibited
for integration experts or at least validated by a developer responsible for the server.
Components not intended to be changed by an integration expert should therefore not
be visible for him.

4. Requirements 28

4.3.5 Open Closed Principle

Software entities should be open for
extension, but closed for modification.

Bertrand Meyer [5, p. 57-61]

Apex Connectivity needs to be open for extensions while it stays closed for unnecessary
workarounds as it was common in the old solution (see 3.2.5).

Open for extension means that at least developers have options to extend workflows
and data mappings by using native Java code when available features do not support
customer specific requirements. Special attention has to be paid if a third party software
for data mapping is used.

Closed for workarounds requires a prevention procedure that even within the pressure
of a integration projects hacks are introduced into integration jobs. Hacks are defined
as implementations which clearly violate the products software architecture or harm its
functionalities like testability or information security.

It is difficult to measure if this requirement is satisfied and a real test requires a real
integration project which is out of scope for this thesis. We therefore recommend a review
process where complex solutions which do not only consist of simple configurations and
mappings are reviewed by a person in charge of the Apex Connectivity Server.

4.3.6 Testability

Connecting different system implies a tight coupling to the interfaces of those systems.
Both sides, the Apex Collateral core and the connected systems on the customer’s side
might change behaviour, refuse connections or provide corrupt data. To handle such
an error prone environment, integration jobs need support by automatic test suites to
ensure their correct behaviour. This is especially necessary for release upgrades of the
Apex Collateral product. Test suites should be able to cover correct work flow, mapping
logic as well as failure scenarios.

The following layers of tests are required:
1. Unit tests to verify code in isolation.

2. Integration tests to verify the interaction of components.

3. Acceptance tests to verify behaviour of complete integration jobs using test sce-
narios.

4.3.7 Deployment

Different deployment models are possible for the new integration solution. It should be
runnable as a standalone Java application but also support at least one other deployment

4. Requirements 29

model. Currently discussed options are deployments into a Java application server or an
OSGi container. Whatever container is chosen, it must not interfere with the requirement
of simple installations.

Customer environments are diverse. It should therefore also be possible to support several
deployment options.

4.3.8 Performance and Throughput

Some of the interfaces need to process volumes with up to several million records. Those
jobs should be run in a reasonable time frame and without running into memory lim-
its. Therefore stream oriented and parallel processing needs to be supported. SunGard
expects that the new integration server supports the following operation numbers:

e 50 records per import as the lower limit.
e 3’°000°000 records per import as the upper limit.
e 10 to 50 different interface jobs in a typical installation.

o All of those imports should run in batch mode, roughly 30% of the imports should
also support an ad hoc mode that polls for new records and imports them auto-
matically.

« 15 seconds (lower limit) to 15 minutes (upper limit) for an import with 1°000°000
records.

4.3.9 Monitoring

The results code of job executions and occurred errors need to be accessible through an
API and, if possible, through a user interface. The status of such jobs is being monitored
on a daily basis by an Operations manager like Stephen Steward (see 4.1.4).

The following information should be available to an observer:
e List of jobs
o Last execution times per job

e Number of imported, skipped and rejected rows per run
e Errors and log messages of imports

4.3.10 Availability and Fault Tolerance

To ensure good availability, Apex Connectivity must implement a well planned fault
tolerance. These following Patterns by Robert Hanmer [2] help keeping the server running
even in a case of an error:

o Integration jobs implement a Unit of Mitigation. As a result, an error or exception
in an integration job does not affect other jobs.

4. Requirements 30

o Malicious records are rejected and handled properly. The system performs a Roll-
Forward to resume normal execution. The handling of failed records with the use
of a Quarantine should be possible and configurable on job level.

e Errors, failed records or complete failures of the server should be reported to a
Fault Observer. See the Section 4.3.9 Monitoring for more detail.

To guarantee correct implementation, test cases for the above scenarios should run ac-
cordingly.

4.3.11 Maintainability

Apex Collateral is a product which is strategically relevant to SunGard and plays an
important role to financial corporations all around the globe. The components used to
build Apex Connectivity must therefore ensure good maintainability.

SunGard generally prefers third party libraries and products over custom implementa-
tions to meet the defined requirements. Third party solutions need to have either a broad
community support or a long term product commitment by its vendor and an approved
Open Source license. Accepted licenses are the Apache license, MIT license, LGPL and
the BSD license. Probibited is the GPL. Other licenses need to be validated with the
SunGard legal team. Community versions of commercial products are not admitted as
customers generally do not accept them.

Custom implementations should be introduced only if requirements cannot be met by
suitable third party solutions. If still introduced, design decisions and code documenta-
tion have to been reviewed by SunGard developers to ensure maintainability beyond the
scope of this semester thesis.

4.3.12 Operations

Relevant job configurations should not be part of the Java jar file so that they can be
modified without rebuilding the delivery. This requirement includes:

e Changes in configuration of integration jobs need to be loaded and activated with-
out application restart. Configuration includes job triggers as well as workflow and
mapping configurations.

e Software installations and upgrades should be easy to perform in less than 10
minutes by an experienced technical user not familiar with the product.

4.3.13 Integrity Tests, Audits, Logs

Integrity tests may be required due to certain customer requirements. They should in-
clude verification of a XML schema, a SWIFT Message as well as custom implementa-
tions of checksums.

4. Requirements 31

Auditing of data is not required as relevant data is audited in the Apex Collateral product
using Hibernate Envers[32].

Apex Connectivity needs to support logs with configurable levels of granularity. All logs
should be based on the SLF4J API[56] in order to be independent of any logging library.

After defining all (non-)functional requirements, the next Chapter outlines design and
implementation steps which were taken to satisfy these requirements.

5. Design and Implementation

To satisfy all requirements defined in Chapter 4, the Apex Connectivity Server was built.
This chapter documents design and implementation aspects.

5.1 Design

Figure 5.1 introduces a high level architecture overview of the Apex Connectivity Server.
It places all individual functional items into a layered structure and therefore differen-
tiates Camel extensions from generic Apex Collateral specific functionality and pieces
that will only be used by a single customer.

The individual layers and components of the architecture are described in the following
sections about the implementation.

32

5. Design and Implementation

Apex Connectivity Customer X

Camel Jobs

33

Specific Mappings

Specific Processors

Camel Context

Job A Job C

Job B Job D

imports templates
|

Default Mappings

v

Route Contexts (Templates)

JPA Entities Template A
Entity Processor | Template B
Template C
Batch Context Management |
()]
=
—_—
HTTP D % Metrics Quartz
JMS [Job Triggers | & >
X 8 § JPA Log
©
Job Configurator | o) .
c JMS File
N I %
omin Integration
<CEJ_ HTTP(S) (S)FTP
Camel Components Resources

| Beans, Processors

5.1.1 Technology

Apex Connectivity is based on Java and Apache Camel as these technologies were im-
posed by SunGard for this project. We additionally decided (see B.3) to use the Spring
framework and Apache Maven as basis technologies to build Apex Connectivity. Ap-

Figure 5.1: Architecture Overview of the Apex Connectivity Server

pendix B.3 and B.5 discuss the evaluation of Spring and Maven.

5. Design and Implementation 34

Early in the project, the lack of a data mapping tool was identified as important miss-
ing feature of Apache Camel. Following an evaluation of several data mapping tools,
Nomin[46] was chosen as the data mapper. It is a Groovy based mapping library and
provides simple yet powerful mappings. Any technical project member as well as ex-

perienced developers are able to write mappings according to their skills. The detailed
evaluation is documented in appendix B.1.

5.1.2 Infrastructure

The Apex Connectivity Server is embedded into an existing infrastructure of servers and

components. The combination of these is very flexible. Figure 5.2 introduces a typical
infrastructure.

Windows Desktop

Java Virtual Machine

Apex Collateral
Client
i Linux Seryver Linux Server
Java Virtual Machine ‘ Oracle Database
—
e ——
(Apex Collateral —
<> -JDBCH
Apex Collateral
L Server Core Tables
JMS ™~
Broker -

Java Virtual Machine

—
.. N ——
Apex Connectivity osc —
1 Apex Collateral
Server EAIl Tables

Figure 5.2: Example infrastructure of Apex Collateral and Apex Connectivity Server

The infrastructure surrounding the Apex Connectivity Server was not scope of the
semester thesis and has not been dealt with.

5. Design and Implementation 35

We created a simplified deployment of Apex Collateral in order to develop the Apex Con-
nectivity Server against real interfaces. Figure 5.3 illustrates the setup on a Hochschule
fiir Technik Rapperwswil (HSR) Linux server and a developer desktop.

Windows Desktop

Java Virtual Machine Java Virtual Machine
Apex
Apex Collateral Conantlwt
Client Broker y
Server
X
Linux Server JDBC

Oracle Database
Java Virtual Machine \

N\ -— @ @
;/
JMS Apex Collateral || | =~ |=————
Broker Server A Tatioe
) ~N
JDBC

\/—\
S
e ————
—

Apex Collateral
Core Tables

4

Figure 5.3: Development infrastructure of Apex Collateral and Apex Connectivity Server

Several differences can be observed when comparing Figure 5.3 with Figure 5.2:

1. Apex Connectivity is running with an embedded JMS broker. The JMS broker
does not necessarily need to be the same as the one used by the Apex Collateral
Server. We separated it to keep this dependency on the same machine like the
Apex Connectivitiy Server.

2. Apex Connectivity is running on a different machine than Apex Collateral. This
reduced our development cycle as we did not need to deploy it to the project server
to test new versions.

3. The Oracle database is running on the same server as Apex Collateral. This setup
would be unusual for a real customer infrastructure.

5. Design and Implementation 36

The Apex Collateral Connectivity Server is a single tier application and can therefore not
be deployed in a distributed manner. All server components are operated in a Spring[53]
application context. This is abbreviated in all deployment diagrams.

5.2 Project Structure

Figure 5.4 outlines the Apache Maven projects and their dependencies. Vista and Spirio
bank are two fictitious bank names to illustrate the dependencies and positioning of
customer specific source code.

Sungard Layer
com.sungard.apexcollateral.connectivity. com.sungard.apexcollateral.connectivity.
connectivity-spirio-bank connectivity-vista-bank
A L

com.sungard.apexcollateral.connectivity
apex-connectivity

. Open Source Layer
v
ch.hsr.camel.jobs. PE S ch.hsr.camel.jobs.samples.
camel-jobs camel-jobs-samples

\%

org.apache.camel.component.
camel-nomin

Figure 5.4: Project structure and dependencies

The source code is split into several different projects to ensure separation of open
source and proprietary parts as well as to establish reusability of components such as
the Camel[10] integration of Nomin[46].

5. Design and Implementation 37

5.2.1 Open Source Components

All open source components are publicly available on GitHub!.

camel-nomin contains the Camel endpoint for Nomin and allows the developer to
use a Nomin mapping in a Camel URI.

camel-jobs enhances Camel with features for management and monitoring of inte-
gration jobs.

camel-jobs-samples showcases the capabilities of the camel-jobs module.

5.2.2 SunGard Proprietary Components

apex-connectivity contains all SunGard-specific code such as the interface structure
of the EAI Tables.

connectivity-spirio-bank showcases the capabilities of the solution for a fictive apex
customer called Spirio Bank.

connectivity-vista-bank-jee demonstrates the ability to deploy the Apex Connectiv-
ity Server into Apache Tomcat.

5.2.3 Shared Spring Context

All the components and Camel definitions are integrated using a Spring application
context. The configuration is based on a list of Spring XML files located in the different
the Maven projects. Figure 5.5 lists all projects and context configuration files.

H context.xml
Camel-jobs context-common.xml
| META-INF/spring/*.xml |
i . db.xml All XML files are loaded into the
apex-integration job-templates.xml " Spring Application Context.
integration-customer-x jobs.xml

Figure 5.5: Spring Context

!github.com/gysel /camel-jobs

https://github.com/gysel/camel-jobs

5. Design and Implementation 38

5.3 An Integration Job Engine using Apache Camel

This section describes how Camel is used in Camel Jobs to support management and
monitoring of integration jobs.

5.3.1 Integration Jobs modeled using Camel Routes

Data integration with Camel is based on Camel routes. A route is always triggered by a
single endpoint and then sends the exchanges to one or multiple other endpoints. Listing
5.1 shows a simple route reading from a JMS queue and forwarding the data to two Java
beans before logging the result.

Listing 5.1: Simple Camel route written in the Spring DSL

In Camel Jobs, routes are used for multiple purposes and should not be mistaken as
the same thing as an integration job. Listing 5.2 shows an example where the route
scheduler-fr-import periodically executes the route job-fz-import. While the first is merely
a trigger as described in Chapter 4, Section 4.2.5, the second is the actual execution route
containing the integration logic. Both routes together form an integration job.

Listing 5.2: Two Camel routes building an integration job

5.3.2 Route Definition DSL

Camel Routes can be defined using one of the following Domain Specific Language
(DSL)s:

5. Design and Implementation 39

Java DSL - A Java-based DSL using the fluent builder style.

Spring XML - A XML-based DSL in Spring XML files

Blueprint XML - A XML-based DSL in OSGi Blueprint XML files
Groovy DSL - A Groovy-based DSL using Groovy programming language
Scala DSL - A Scala-based DSL using Scala programming language

Furthermore it is also an option to design a new DSL specifically for integration jobs.

The chosen DSL should be based on a language that is known to most of the users. This
reduces the list of options to either a Spring XML or a Java DSL.

The following architectural decision is documented using the "Y-Template"[59].

In the context of choosing a suitable DSL facing the requirement of concise and
powerful route definitions, we decided for Spring XML-based route definitions and
neglected Java-based route definitions to achieve better readability and comprehen-
sibility for non-developers accepting the increased verbosity of XML and the slightly
reduced feature set.

5.3.3 Split the Camel Context to Support a Layered Architecture

Camel routes and configurations like exception handlers are defined within a Camel
context, which is built by a <CamelContert>-Tag in a Spring context file. The Camel
context needs to be shared between the multiple projects as shown in Figure 5.6.

5. Design and Implementation 40

Sungard Layer
com.sungard.apexcollateral.connectivity. Apex Specific RO —
connectivity-spirio-bank Error Handling P

\ ;/L ﬂ

com.sungard.apexcollateral.connectivity.

Customer Specific apex-connectivity

Job Definitions
Open Source Layer
-
; Error Handling
ch.hsr.car'neI.Jobs. & & Job Triggers
camel-jobs

Figure 5.6: Camel Context Definitions in different projects

The features visualised with clouds show which parts of an integration job is defined in
which project. Every part of a job is constructed with Camel routes either using the Java
DSL as in Camel Jobs or the Spring DSL as in the SunGard specific projects. In order
to construct integration jobs like this, all components need access to the same instance
of the Camel context.

Camel Limitation

Unfortunately, the architecture described is not supported by the Camel Spring DSL as
it is not possible to split <CamelContext> definitions over multiple files or projects’.
Doing so creates multiple Camel contexts running in parallel.

1See Claus Ibsen’s comment on our question regarding this limitation:
http://stackoverflow.com/questions/29900123 /split-camel-context-definition-into-multiple-files-
jars/29983577#29983577

5. Design and Implementation 41

Bypassing Context Limitation using the AdviceWith Feature

Camel provides a powerful feature called adviceWith[8], which enables changing Camel
routes during runtime using the Java DSL. While this feature was designed for test
purposes, it is used within Camel Jobs to enhance already defined routes. Like this, job
definitions can be written in a customer specific project and then enhanced with error
handling and other configurations within Camel Jobs.

Changing Camel routes during runtime might not pass a security audit as it would allow
an attacker to inject malicious steps into a running route.

Listing 5.3: adviceWith example

1 route.adviceWith(camelContext, new RouteBuilder() {

2 @Override

3 public void configure() throws Exception {

4 interceptFrom().setHeader("Executionld", simple("${routeld} —${date:now:yyyyMMdd—
HHmmss}"));

5

6 });

Listing 5.3 shows an example how a Camel route can be enhanced with a header con-
taining an Executionld.

<<interface>> <<interface>>
org.springframework.context. org.apache.camel.CamelContextAware
ApplicationListener<ContextRefreshedEvent>

+setCamelContext(context : CamelContext) : void
+onApplicationEvent(ContextRefreshedEvent event) void

<-... 4
camel-jobs BRRE /
<<interface>> JobConfigurator
ch.hsr.camel.jobs.configuration.
JobConfiguration -context : CamelContext

-1 - adviceRoute(RouteDefinition route) : void
\ - getListOfRoutes() : List<RouteDefinition>
+ shouldSendEmails() : boolean
+ getMailserverConnection() : String
A

integration-spirio- :

bank SpirioJobConfiguration

- mailserver: MailServerConfiguration

Figure 5.7: JobConfigurator.java class diagram

5. Design and Implementation 42

Figure 5.7 shows the class diagram for the job configuration. ApplicationListener and
CamelContextAware are already existing interfaces provided by the Spring framework
and Camel. Implementing these interfaces, a JobConfigurator object, being called after
context loading, enhances all existing jobs with an Executionld and handling for errors
and failed records. The JobConfigurator can be customised for every customer project
using a JobConfiguration object.

Using the Java DSL and the Camel AdviceWith feature within the JobConfigurator, we
were able to bypass the Camel Context limitation introduced by the Spring DSL.

5.4 Data Mapping

We did an extensive evaluation of data mapping tools that is documented in Appendix
B.1. The assessment did not reveal any satisfying graphical or configuration-based map-
ping tool. We therefore decided to use Nomin[46], a Groovy-based library.

The core of Nomin is written in Java and Groovy and is very simple to use as demon-
strated in Listing 5.5. The referenced mapping file map2car.groovy is shown in Listing
5.7.

Listing 5.4: A simple Nomin mapping in Java

Map<String, Object> in = new HashMap<>();
in.put("MARKE'", "Tesla");

in.put("MODELL", "Model S");
in.put("MOTORENTYP", "Elektrisch");

NominMapper nomin = new Nomin("map2car.groovy");
Car car = nomin.map(in, Car.class);

N O ok W N

5.4.1 Nomin Integration for Camel

To integrate Nomin into Camel routes without having Frank Frontline to write Java
code, we developed a Nomin extension for Camel. The Camel URI format is:

Listing 5.5: The Nomin URI format for Camel

nomin:destination?options I

The destination represents the fully qualified name of the class the message body
will be converted to.

Name | Default value Description
mapping | mapping.groovy | The file to read the mapping definition from.

Table 5.1: Nomin component options

5. Design and Implementation 43

The example route in Listing 5.6 converts a map into a car object using 5.7 as the
mapping logic.

Listing 5.6: A route using the Nomin component

A Nomin mapping starts with a list of imports followed by the mapping type instruction.
mappingFor declares the side a and side b. This mapping can then be used to convert
records from from a to b as well as vice versa.

Listing 5.7: map2car.groovy - The Nomin mapping file

This example can be found in the JUnit test suite in the class NominComponentTest
the the camel-nomin project.

5.4.2 Code Tables

The old SunGard EAI Server supports code tables to convert for example a numerical
value into the corresponding three letter currency code. This can be implemented in
Apex Connectivity using simple Nomin conversion as shown in Listing 5.8.

At the request by a Frank Fontline representative during the usability review documented
in B.1.3, we added a lookup feature which allows code mapping from a external property
file as shown in Listing 5.9 and 5.10.

Listing 5.8: Code mapping using Nomin conversions

5. Design and Implementation 44

Listing 5.9: A code lookup in a Nomin mapping

Listing 5.10: currencycodes.properties containing a list of codes

5.5 Job Triggers

The jobs can be triggered using a RESTful HTTP, a JMS message or a Java Management
Extensions (JMX) method invocation.

5.5.1 RESTful HTTP

The RESTful HTTP API runs on either an integrated Jetty server or using a servlet in
a servlet container.

The following operations are supported:

e GET /jobs returns a list of all jobs.
e GET /jobs/{jobName} returns details about one job.

e POST /jobs/{jobName} starts a job and returns the status as well as collected
metrics (see 5.7).

The placeholder { jobName} has to be replaced with the actual name of the job. JSON
and XML are supported formats and can be requested using the HT'TP Header Accept.

An example using the Linux bash to start the job job-fr-import in the connectivity-
spirio-bank reference project:

curl -X POST —-H "Accept: application/xml" /
http://localhost:8080/jobs/job-fx—import

5. Design and Implementation 45

5.5.2 JMS

An embedded JMS broker supports starting jobs by sending message to a queue named
JobTrigger providing the header JobName containing the name of the job to start.

When a ReplyTo is set on the message, the job execution details will be sent to the
specified destination.

5.5.3 JMX

A JMX MBean called ch.hsr.sa.eai.JobManagement is available to start jobs. The
exposed operation is called startJob and takes the job name as the only parameter.
This operations returns 0 as the status code for successful executions and 1 for failed
runs.

5.6 Job Templates

The requirement of job templates as described in 4.2.4 can be implemented using the
Camel route context feature as shown in Listing 5.11.

5. Design and Implementation 46

Listing 5.11: A job template defined with <routeContext>

Job templates are defined in the apex-connectivity project and imported by multiple
customer specfic projects as shown in Listing 5.12.

Listing 5.12: Import a template in a Camel context

If the integration job uses a Nomin data mapping, the mapping can be overriden by the
customer specific project by providing an identical named mapping file in the classpath.

5. Design and Implementation 47

5.7 Metrics

Camel offers a metrics component to collect data directly from routes as seen in 5.13.
Supported types are counter, histogram, meter and timers.

Listing 5.13: A metric of type counter

1 <to uri="metrics:counter:a—metric—name" />

We added to ability to link certain metrics to jobs and access them as part of the job
trigger APT (see 5.5)). We defined the following naming conventions of counter metrics
in order by expose them via the API.

Metric Name Description

job-{name}.successful | The record or message has been successfully processed.

job-{name}.failed An exception has occurred during process of the record or
message.

job-{name}.rejected The message or record contains an unexpected content or

format and should be examined.

job-{name}.ignored The message will not be processed as it was rejected by a
message filter.

Table 5.2: Metric naming conventions

Counter metrics are not bound to a route execution and therefore will by default never
be reset to zero. We implemented a component to erase the counter values in a regular
interval. The desired interval, e.g. once a day at midnight, can be configured using the
entry metrics.reset.cron in the application properties file which takes a Quartz
[48] cron expression.

5.8 Batch Processing

Batch processing is a SunGard specific concept imposed by the EAI Tables and docu-
mented as requirement in Chapter 4, Section 4.2.6.

Every interface table is mapped as a JPA entity and inherits from a common parent
EaiEntity. This class contains a reference to EaiBatch representing the record which
combines a set of data into one atomic import or export set. Those classes are visualised
in Figure 5.8.

5. Design and Implementation 48

com.sungard.apexcollateral.eai.entity. = com.sungard.apexcollateral.eai.entity.
EaiEntity EaiBatch

- eailnsertKey: Long - eaiBatchld: Long

- eaiSourceKey: Integer - status: Long

- eaiStatus: Integer - tableName: String

- eailnserted: Timestamp - startDate: Timestamp

- eaiProcessed: Timestamp - endDate: Timestamp

- eaiFunction: Integer

- eaiBatch: Long

T IS

com.sungard.apexcollateral.eai.entity. com.sungard.apexcollateral.eai.entity.
FxRate ExternalExposure

Figure 5.8: Batch job classes implemented in Apex Connectivity

The foreign key EaiEntity.eaiBatch is a weak reference and not a mapped @ManyToOne
relationship. This allows simpler handling in parallel contexts.

Listing 5.14 outlines a job using a batch context. The following pieces are required to
use batches.

An import of the create-batch-context route (line 10).

The header BatchTableName (lines 14-16).

The header BatchId (lines 17-19).

A message to direct:create-batch-context to create the batch record in
the database (line 21).

5. A call to the bean entityProcessor once for every record which sets the batch
id amongst other common fields (line 35).

Ll

Listing 5.14: Code example of a batch import

5. Design and Implementation 49

5.9 Performance

Apache Camel provides several building blocks to implement performing and scalable
routes to satisfy the requirement documented in Chapter 4, Section 4.3.8. The core of
scalable routes is formed by components supporting the parallel execution flag (e.g. the
Splitter) and the Staged Event-Driven Architecture (SEDA) component which is an
implementation of the SEDA framework suggested by David Welsh in his PhD]6].

The performance of Java applications is mainly dependent on the following key param-
eters:

1. Memory configuration (e.g. heap size, PermGen size)

2. Computational speed (e.g. number of CPUs and their clock rate)

3. Round-trip time between application components (e.g. application server and database)
4. Availability of pooled resources (e.g. database connection pool)

5. Design and Implementation 50

Assuming that all of the mentioned parameters are set to an optimal value, a second set
of criteria has to be considered.

1. Split work in smaller transactions
2. Process data in parallel transactions

Both splitting the work and processing it in parallel is configurable as demonstrated in
Listing 5.15. The optimal values of those parameters need to be obtained using experi-
mental testing.

Listing 5.15: Configuration file with performance related parameters

The thread pool related properties also need a thread pool profile configuration in the
Camel context as shown in Listing 5.16.

Listing 5.16: Thread pool profile definition

The Listing 5.17 showcases an import using two routes. The first route runs only once.
The second route is activated multiple times in parallel using a direct consumer and
processes a subset of records.

5. Design and Implementation 51

Listing 5.17: Code example of a batch import

This approach retains a synchronous approach. The first route only finishes once all
records have been processed. This guarantees that the job manager correctly recognises
the end time of the job. A better performance can be attained when using SEDA as
shown in Listing 5.18. However this means that this route is based on an asynchronous
approach and that the first route finishes even when the import has not ended yet.
Depending on the business context, this might be possible and the person developing
the job has to decide which approach is suitable to solve his business need.

5. Design and Implementation 52

Listing 5.18: Code example of a SEDA batch import

5.9.1 Performance Tests

A performance test with two physically separated machines running the application
server and the database server verified that used performance tuning efforts are suffi-
cient. A data set of 10’000 records can be imported in 15 seconds. It is safe to assume
that the execution time of imports scale in a linear way. 1 million records would therefore
be imported in approximately 25 minutes. This is lower than the initially defined target
of 3 million records in 15 minutes but SunGard accepted this reduced throughput. Fur-
thermore is it questionable whether it is possible to achieve a better performance than
the one measured using Hibernate and a remote database. Optimised JDBC code and
removing the network layer might be required to further improve import performance.

5.10 Deployment

Apex Connectivity can be deployed standalone as a shaded Apache Maven jar encapsu-
lating all dependent libraries. The other possibility is to package it into a .war file and
deploy it into a Java servlet container like Apache Tomcat.

5.10.1 Standalone

Use Maven to create a . jar file with all dependencies embedded. This process makes
use of the Maven shade plugin[12]. For an example usage of the Maven shade plugin

5. Design and Implementation 53

see the pom.xml file in the connectivity-spirio-bank project. The Listings 5.19 and 5.20
demonstrate how to package and start the Apex Connectivity Server.

Listing 5.19: Use maven to create an executable jar file

1 cd connectivity—spirio—bank
2 mvn package

When starting the Java process, use —fa classpath*:META-INF/spring/*.xml
to instruct the main class org.apache.camel.spring.Main which Spring context
files to load.

Listing 5.20: Start the standalone server

1 java —jar connectivity—spirio—1.0.0.jar —fa classpathx:META—INF /spring/+.xml

5.10.2 Application Server

The project connectivity-vista-bank-jee demonstrates how to create a struc-
ture in order to package it into a servlet container.

The following building blocks are required:

1. pom.xml specifies the packaging (.war) and additional dependencies: camel-servlet
and spring-web.

2. src/main/webapp/WEB-INF /web.xml defines the Spring ContextLoaderListener
loading jee—context .xml.

3. src/main/webapp/WEB-INF/jee—-context.xml defines a Camel context and
loads all the necessary resources.

The only difference compared to a standalone Camel context is the REST configuration
using a servlet instead of Jetty to serve the HI'TP requests. Listing 5.21 illustrates such
a context.

5. Design and Implementation 54

Listing 5.21: A Java application server Camel context

Use the Maven package goal as shown in Listing 5.22 to create a .war file with all
dependencies embedded. This process makes use of the Maven WAR plugin[13].

Listing 5.22: Use maven to create an war file

The .war file generated in /target can be deployed to any Java application server from
which Apache Tomcat was specifically tested.

5.11 Hawt.io Integration

Hawt.io[31] is a web console to manage Java applications. It uses a Jolokia[39] agent to
communicate with the Java Virtual Machine (JVM) using JSON over HTTP.

The Apex Connectivity Server integrates Jolokia using the Spring agent. A simplified
version of context.xml is shown in Listing 5.23 .

5. Design and Implementation 55

Listing 5.23: A Spring-based Jolokia agent

Hawt.io can then be instructed to connect to the Apex Connectivity Server using HTTP
on port 8778.

Apache Camel[10], ActiveMQ[7] and Quartz[48] are supported by Hawt.io out of the
box. Integration jobs can be triggered using the JMX or the JMS API. An example of a
Camel route visualisation is shown in Figure 5.9.

4: Container ActiveMQ . Camel Health JMX Quarz Threads

" Fiter__ % v A = Artributes &l Route Diagram (3 Source
v "M Camel Contexts
v B camel
w B Routes
» & exposure-import
¥ % exposure-import-processing
v % feimport
Description
& wrnctrigger-fe-import
8 w2
3| cornvertBodyTol

unmarshall
&=, -

Figure 5.9: Hawt.io screenshot

5. Design and Implementation 56

Hawt.io is developed actively and has gained high popularity in the past years. Enhancing
it with additional plugins to support Camel Jobs specifics like job results and errors,
hawt.io could replace all other currently needed monitoring mechanisms. Our ideas for
enhancing hawt.io are documented in Section 6.2.

After covering the important design and implementation aspects, the next chapter as-
sesses the built solution described in this chapter against the defined requirements.

6. Conclusion

The detailed analysis in Chapter 3 of the integration solution currently used in Apex Col-
lateral has brought forward many flaws which influenced the requirements for Apex Con-
nectivity listed in Chapter 4. The empiric approach described in Appendix A, persona-
based requirements and detailed evaluations documented in Appendix B allowed us to
conceptually design and build Apex Connectivity — the new integration solution for the
Apex Collateral product.

The following requirement assessment proves that we were able to built a integration job
engine that satisfies most of SunGard’s needs and does not implicate the flaws identified
in the old solution. Two reference projects with three reference jobs were built to prove
the ability of the Apex Connectivity Server based on Apache Camel.

We are very satisfied with the Apache Camel as basis framework as it is extremely
powerful, well documented and easy to learn. The layered architecture allowed us to
publish the core integration job engine named Camel Jobs as open source software on
GitHub.

Nomin Mappings allow us to address both Paul Perfectonist and Frank Frontline with the
very same tool. As integration jobs can be reused from job templates, integration work
for a new Apex customer can be reduced significantly with the new Apex Connectivity
Server.

Nevertheless, the Apex Connectivity Server has to prove itself within a real integration
project. SunGard plans to use it for a first project within the next months.

6.1 Requirement Assessment

This section assesses the developed solution based on the defined requirements. The
example projects connectivity-spirio-bank and connectivity-vista-bank serve as test sce-
narios for the assessment.

All requirements are rated with a rating from 1-3:

1 The requirement is fully satisfied.
2 The requirement is partly satisfied.

57

6. Conclusion 58

3 The requirement is not satisfied.

6.1.1 Functional Requirements

Table 6.1 assesses the provided solution with the defined functional requirements de-
scribed in Chapter 4, Section 4.2.

Requirement Rating | Assessment

4.2.1 Basic Data Map- 1 Supported by Nomin and camel-nomin.

ping

4.2.1 Advanced Data 1 Supported by Nomin except Multi-Record Condi-

Mapping tions, which can be built using a Camel Aggrega-
tor.

4.2.2 Integration Work- 1 Supported by Camel Enterprise Integration Pat-

flow terns.

4.2.3 Protocols and 2 Camel supports endpoints for all required proto-

Data Formats cols and data formats. SOAP, FTP, and SFTP
have not been tested within the reference projects.

4.2.5 Job Triggers 1 JMS and REST triggers are implemented and
tested in Camel Jobs. The connectivity-spirio-bank
project contains examples for database, file, and
scheduled triggers.

4.2.5 Job Result 1 A JobResult is generated for every execution. If the
REST or JMS API are used as a trigger, the result
is returned to the caller in XML or JSON.

4.2.6 Batch Processing 1 Batch processing is implemented and tested by
the exposure-import-job in the connectivity-spirio-
bank project.

4.2.4 Job Templates 1 Job templates are realised with the Camel Route-
Context feature[21]. The apex-integration project
contains a reference implementation (see job-
templates.zml). Data mapping can be overridden
by the customer specific project using the template
by providing an identical named mapping file in the
classpath.

4.2.4 Delta Builder 3 Delta Builders have not been implemented within
the thesis project. This requirement is very
SunGard specific and has therefore been prioritised
lower than other features.

Table 6.1: Assessment of functional requirements

6. Conclusion 59

6.1.2 Non-Functional Requirements

Table 6.2 assesses the provided solution with the defined non-functional requirements
described in Chapter 4, Section 4.3.

Requirement Rating | Assessment

4.3.1 Usability 1 Representatives of Frank Frontline and Alex All-
rounder have approved that the usability of job
creation and data mapping is sufficient. See Ap-
pendix B.1.3 for minutes of meeting.

4.3.2 Simplicity 2 The outlined metrics have only been validated with
a feature walk-through. A verification using an ac-
tual user test has not happened as it was not given
a high priority in agreement with SunGard.

4.3.3 Information Secu- 2 An encrypted HTTPS connection is used in the
rity reference project connectivity-spirio-bank. Support
for encrypted JMS messaging and SFTP exists but
has not been tested in the reference projects.

4.3.4 Separation of 2 Separation is ensured by the project structure.
Concerns An integration expert works only with customer
specific projects and does not access the inter-
nals of Camel Jobs or the configuration done by
a developer in apex-integration. An exception is a
job template as route and mapping definitions are
placed within the apex-connectivity project

4.3.5 Open Closed 1 Java code can be used within the Nomin mappings
Principle and as a processor within Camel routes which leads
to great extensibility for integration jobs with spe-
cial requirements.

4.3.6 Testability 1 These test classes in the reference projects are ex-
amples for the test layers:
e Unit test: EntityTests.java (apex-con-
nectivity)
o Integration test: FxImportTest.java (con-
nectivity-spirio)
e Acceptance test: ExposurelmportTem-
plateTest.java (apex-connectivity)

6. Conclusion

60

4.3.7 Deployment

A build of the connectivity-spirio-bank project
generates a Java Archive (JAR) file that can be
run standalone. A build of the connectivity-vista-
bank project generates a Web application ARchive
(WAR) file that can be deployed to a web server
like Apache Tomcat.

4.3.8 Performance

As described in Chapter 4, Section 5.9, the perfor-
mance of the provided solution does not satisfy all
goals but is sufficient for SunGard. Memory usage
can become a problem when importing millions of
records in combination with the splitter feature.
A streaming approach described in Section 6.2.4
would solve this issue.

4.3.9 Monitoring

The RESTful HT'TP API provides the required in-
formation for monitoring. Exceptions are logged
and can optionally trigger email notifications.

4.3.10 Availability &
Fault Tolerance

The JobConfigurator class supports handling of
failed records, exceptions, and the possibility to re-
port to a Fault Observer by email.

4.3.11 Maintainability

All used libraries are licensed under either the
Apache license, the MIT license, the Eclipse Li-
cense, the BSD license or the LGPL. Therefore it
is possible to use Apex Connectivity in a commer-
cial environment without legal obstacles.

4.3.12 Operations

The simple and easy to use deployment process
described in 5.10 guarantees the installation of
Apex Connectivity within minutes. Hot deploy-
ment, meaning that mappings and job definitions
can be changed at runtime, is not yet supported as
it was prioritised low by SunGard. This feature is
only used for testing during the development pro-
cess.

4.3.13 Integrity Tests,
Audits, Logs

The Camel Log endpoint uses the SLF4J API[56]
for logging. Integrity tests have not been imple-
mented in the reference jobs but can be built using
Java code within a Camel processor endpoint.

Table 6.2: Assessment of non-functional requirements

6. Conclusion 61

6.1.3 Camel Jobs for Swisscom

In our interviews on data integration described in Chapter 3, Section 3.1.1, a Swisscom
architect told us about a use case within their software product that could benefit highly
from an integration job engine. In every product instance installed within a customer
environment, a Shell script reads a CSV file provided on a FTP server, transforms the
data to XML and sends it to a webservice provided by the product. The data mapping
done by the Shell script differs for every customer.

We requested a detailed specification document from Swisscom and analysed if the re-
quirements can be met by Camel Jobs. As this is clearly the case, Camel Jobs was
recommended to Swisscom as a replacement for the current solution.

6.2 Future Work

This section describes ideas for further development of Camel Jobs.

6.2.1 Hawt.io integration

Hawt.io already supports most of the technologies used by Camel Jobs. With additional
plugins for Camel Jobs, Stephen Steward could monitor and manage all aspects of in-
tegration jobs with hawt.io. The following enumeration lists ideas on improving hawt.io
for Camel Jobs.

e List job executions with their results in hawt.io.

e Access and inspect rejected records in hawt.io.

e List occurred exceptions grouped by job id.

o Trigger a job execution directly from hawt.io.

e Add Nomin support to view, debug, and modify mappings at runtime.

Furthermore, it should be possible to build Camel Jobs with an embedded hawt.io in-
stance to simplify deployment.

6.2.2 Automated Batch Processing

As described in Chapter 5, Section 5.8, every job supporting batch processing needs to
implement the following steps:

1. Set a header field BatchTableName
. Set a header field Batchld

2
3. Send a message to the create-batch-context route
4

. Send a message to the entityProcessor for every entity

6. Conclusion 62

Steps 2. and 3. could be automated using the Camel adviceWith feature in the same
way the JobConfigurator already uses it. A naming convention for batch jobs would
empower a BatchConfigurator bean in the apex-connectivity project to automatically
add the Batchld field and a message to create-batch-context for every batch job.

This requires Camel to handle multiple adviceWith calls correctly as it is planned for
Camel release 3.0. Apache has not yet published a release date for Camel 3.0.

6.2.3 Store Job Result in a Database

All job executions are handled by the JobManager bean. A job execution produces a
job result containing state, metrics and an execution id. Currently these information are
logged and if possible returned to the caller. For a production environment it would be
helpful to store every job result in a database for better monitoring and traceability.

6.2.4 Reduce Memory Usage

Camel currently reads all source data (for example a complete file) into memory for
processing. It can additionally occur that data is contained multiple times in memory
when using features like a splitter. To keep memory usage low it is necessary to provide
multiple small source files instead of one big one. A streaming approach that reads and
processes only parts of the source would solve this issue.

6.2.5 Abstraction Layer for Job Definitions

The Camel Spring DSL used to define integration jobs is easy to read and write for a
developer of any kind who is familiar with XML. But even if the DSL is well documented
and described with many examples, a non-developer like Frank Frontline might have
difficulties to write simple integration jobs with it. An additional abstraction layer, like
a simplified DSL on top of Camel, could help Frank Frontline to write integration jobs
without assistance by Paul Perfectionist.

6. Conclusion 63

6.2.6 Camel AdviceWith

AdviceWith[8] might impose a security risk to applications. When an attacker gains
access to the system, e.g. the management console, he might be able to modify the route
and inject malicious steps or remove critical parts.

A feasible solution to this issue would be to enhance Camel so that routes can be locked
preventing further modifications.

The presented assessment shows that Camel Jobs, an integration job engine for everyone,
is a promising approach to solve scenarios where a software product has to be integrated
in multiple customer environments. SunGard is going to use it as its new Apex Connec-
tivity Server, Swisscom might use it for its credit risk product and it is published on
GitHub for usage and further development in the open source community.

A. Project Management

This Appendix documents aspects of project management like methodology, roles, envi-
ronment, quality management, and risk management. The project was time boxed and
started on 16. February 2015 and ended on 29. May 2015 which implies 15 working
weeks.

A.1 Project Management Methodology

Scrum has been chosen as the project management methodology for this semester thesis.
Scrum specifies an iterative and incremental approach which encourages a high involve-
ment of the customer. This characteristics suit the requirements of a semester thesis well,
as it provides only a short project definition at project start and, in our case, requires
close collaboration with SunGard.

A.1.1 Scrum Sprints

Figure A.1 illustrates Scrum iterations, so called sprints. The Sprint length in the
semester thesis was agreed to be two weeks which resulted in seven sprints plus one
week for the final preparation of this documentation.

64

A. Project Management 65

Zd Houmws)
POTENTIALLY

FooouoT i HeiEEARLE
DAEKLEE PREEUET
INCREMENT

C2-4 WEEKS

Dorrmmary B QOIS Ao s Spar Bpresaes

Figure A.1: Scrum Sprint Overview[51]

The product backlog contains all requirement yet to be satisfied and is maintained within
this documentation throughout the project.

The sprint backlog contains all user stories partitioned into tasks for a given sprint. The
sprint backlog is managed within an Atlassian JIRA[19] instance provided by SunGard.
Figure A.2 shows a JIRA screenshot taken during sprint #7.

A. Project Management 66
HSR Thesis
SPRINT: Sprint 7 (11. May - 22 May) - QUICK FILTERS: Only My Issues Recently Updated
To Do In Progress In Review Done
~ [@ HSR-207 25 sub-tasks Documentation
@ HSR-209) HSR-228 n f) HSR-242 l [H5R-243 I
4 add minutes J review J+ create 4+ document
of meeting document comparison pre study of
4h structure 2h of 1h Sungard on
[HSR-227 n [HSR-239 n HSR-251 n Hizdiaeta
4+ abstract / 4 document J€ introduce 4 introduce
managemean project user stories camel pretty
t summary Bh organization (Bh in 1.25h early in the Oh
HSR-240 HSR-256 n o HSR-235 -
& document 4 Conclusion 4+ document
developmen chapter the decision

Figure A.2: Sprint Backlog in Atlassion JIRA[19]

A potentially shippable product increment is the result of every sprint. A simple integra-
tion job implementation with Apache Camel has therefore been implemented very early
in sprint #3 and enhanced in the subsequent sprints. A Jenkins[38] Continuous Integra-
tion (CI) server as shown in Figure A.3 ensures that the code always builds correctly
and all tests result positive.

A. Project Management 67

All +
S W Name | Last Success Last Failure Last Duration
g apex-connectivity 4 days 9 hr-#39 18 days - #19 1 min 24 zec
g camel-jobs 8 days 6 hr-#25 MN/A 55 sec
G camel-jobs-samples Bdays 5hr-#2 INA 17 sec

POOLD DD

;J camel-nomin 6 days 6 hr-#10 1mo 21 days -#1 32 sec
:g ' EEEEE‘CHVH\J'SﬁiriU' 4 dEI},-‘S 9 hr - #_3? 4 da":,"S 9 hr - #_36 1 min 9 sec
g . connectivity-vista-bank , days 9 hr-#12 4days 9hr-#11 26 sec

jee

Figure A.3: Jenkins Continuous Integration Overview

To satisfy all needs by all stakeholders, three regular meetings listed in Table A.1 have
been organised and conducted in each sprint.

Day Meetings Description

#1 Sprint planning meeting Team internal meeting to partition the planned backlog
items into estimated user stories and tasks.

#2 Sprint status meeting Meeting with HSR supervisor Olaf Zimmermann to re-
view the project status according to HSR requirements.
#10 Sprint review meeting Meeting with HSR supervisor and SunGard representa-

tives to assess the work done and prioritise backlog items
for the next sprint.

Table A.1: Sprint Meetings

A.1.2 Scrum Roles

Scrum defines three project roles — the product owner, the scrum master and the de-
velopment team. As the semester thesis is an academical project, the scrum roles could
not be mapped one to one. This Section introduces the involved persons and their roles
in the project.

A. Project Management 68

HSR Supervisor

Prof. Dr. Olaf Zimmermann is the HSR supervisor of this thesis and
incorporates both, the role of the product owner and scrum master.
Product in this context refers to the thesis itself and not the functional
product. He ensures that all requirements by HSR for a semester thesis
are met and decides in last instance about the scope of the thesis. As
supervisor and coach of the development team, prof. Zimmermann also
performs part of the scrum master role as he coaches the development
team.

SunGard Representatives

Project Team

Marcel Roth’s role is the Scrum product owner. He represents SunGard
and focuses on generating as much business value as possible. To
achieve this, he is responsible to define and prioritise backlog items
as well as reviewing the product increment after each sprint. Marcel
Roth incorporate both, Alex Allrounder and Paul Perfectionist, in
one person as he worked as developer and professional service team
member within the Apex Collateral team.

Three other SunGard employees, representing Frank Frontline, Alex
Allrounder and Paul Perfeconist attended the biweekly sprint review
meetings to define and prioritise requirements and assess the provided
solutions.

Michael Gysel and Lukas Ko6lbener formed the development team. They worked as an
interdisciplinary team in which both were responsible for each part of the project. Both
being Certified ScrumMasters®[22], they incorporated part of the scrum master role as
they helped maintaining the product backlog and organised everything for correct sprint

A. Project Management 69

operation.

Lukas Kolbener is an information technology student at HSR in his 8"
semester. He works part time as Java developer for Super Computing
» = Systems AG in Zurich, building ticket vending machines for the public
" transport industry.

S

Michael Gysel is an information technology student at HSR in his 8"

semester. He works part time as Java Developer for SunGard in the
Apex Collateral team. He could therefore provide many insights in
SunGard’s expectations towards the new solution.

A.2 Development Environment

Figure A.4 outlines all components of the development environment. Apex Connectivity
is developed with Java 7 using Eclipse Luna. HSR has provided a Virtual Machine (VM)
on which an instance of Apex Collateral including the EAT Tables is installed. On the
same server a CI Jenkins server pulls for changes from the Git repositories on GitHub
to build and test the different projects. Table A.2 indicates the software installed by us
on the server. [28]

Software Version
Apex Collateral 15.1.4
Oracle 11.2
Java 1.7
Jenkins 1.607

Table A.2: Installed software on sinv-56056.edu.hsr.ch (152.96.56.56)

A. Project Management 70

0%
v

[o
Jenkins
JIRA >
http://sinv-56056.edu.hsr.ch/

https://issue.finacesolution.com/browse/HSR/

ull
sprint and work management P

- I push / pull ®

- / eAa-aai
——] gysel/hsr-sa-eai-sungard
- eClese /gysel/hsr-sa-eai-code

A

read and write to EAl Tables

A
=

HSR VM with
Apex Collateral instance
(sinv-56056.edu.hsr.ch)

Figure A.4: Development Environment

A.3 Quality Management

To ensure a good quality of the produced software, we adopted several measures such as

unit testing, code reviews and guidelines as well as CI.

A. Project Management

A.3.1 Unit Testing

71

All written source code is ideally covered with JUnit[40]. Table A.3 lists the reached
coverage. The Eclipse plugin EclEmma[27] was used to measure the code coverage.

Project Coverage | Total Instructions | Remarks

camel-nomin 91% 89

camel-jobs 7% 1474

apex-connectivity 53% 506 Get.tf:rs and setters of JPA
entities are not covered.

connectivity-spirio 87% 174

connectivity-vistabank-jee | - - | Contains no Java code.

Table A.3: Code coverage by JUnit tests

Unit Tests are developed using the following test frameworks:

Gt N

A.3.2 Reviews

JUnit[40] as the central test framework.
Mockito[43] to mock dependencies and test units in isolation.
Hamcrest[30] to write expressive assertions.

Camel[10] Test to write Camel specific test cases.

Spring[53] to manage the test container for integration tests.

Every coding task was moved from the JIRA status "in progress" to "in review" and then
assigned to the other team member in order to verify the source code for correctness and

good coding style.

A.3.3 Code Guidelines

We agreed to use the Camel Checkstyle[23] rules as our coding guidelines. The XML
configuration file can be found in the Camel source code!.

The following Checkstyle rules do not make sense in our development environment and
we have therefore skipped them.

1. Tab indentation rule (we have used the Eclipse formatter)

2. Apache license header enforcement

3. Import grouping and order
4. Avoid start import (we have enhanced the whitelist with Hamcrest and Mockito)

"https://github.com/apache/camel /blob/master /buildingtools/camel-checkstyle.xml

A. Project Management

72

A.3.4 Continuous Integration

A Jenkins installation connected to the GitHub repositories is running on the HSR
project server (see Appendix A.2) . This continuous integration setup guarantees that
failing test cases as well as compilation errors are noticed swiftly.

A.4 Project Plan - Sprints

As part of this thesis project a set of milestones as listed in Table A.4 were reached.

Milestone Name | Sprint | Description

Route DSL Sprint 3 | Decided not to build a new abstraction layer for Apache Camel
Data Mapper Sprint 4 | Nomin was approved as the Data Mapper

Feature Freeze Sprint 7 | Work on all product backlog items was finished

Project end Sprint 8 | Code and documentation were delivered to SunGard and HSR.

Table A.4: Milestones

We structured the thesis project into 7 Sprints to collect the requirements and build the
functionality. The 8" and last Sprint was exclusively used to finish the thesis document.
Table A.5 lists all sprints and their functional scope.

A. Project Management 73

Sprint Start | End | Stories Hours Worked
Sprint 1 | 16.02. | 01.03. | Write Case Study 62
Domain Analysis
Sprint 2 | 02.03. | 15.03. Complle anc% Document Requirements 64
Project Environment
First Prototype
. Evaluation Data Mapper
Sprint 3 | 16.03. | 29.03. Enhance Prototype 63
. Test Usability
Sprint 4 | 30.03. | 12.04. Job Scheduling 59
Sprint 5 | 13.04. | 26.04. Monitoring, Management and Operational 57
Aspects
Job Templates
Sprint 6 | 27.04. | 10.05. | Performance Tests 82
Batch Processing
Sprint 7 | 11.05. | 24.05. | USer Manual 101
Deployment
Sprint 8 | 25.05. | 29.05. | Finish and Review Thesis Document 60

Table A.5: Sprint List

Michael Gysel worked a total of 261 hours, Lukas Kélbener worked a total of 285 hours.

Figure A.5 reveals the worked hours per epic.

Hours worked per epic

67:12%
| - 124:23%

m Admin

m Build

| m Documentation
170;31% Requirements

~_186; 34%

Figure A.5: Hours worked per epic

A. Project Management

A.5 Risk Management

74

To assess the risk associated with this project, a comprehensive list of possible risks and
their mitigations is described in the following Section.

The risk assessment shown in Table A.8 is based on a literature survey[18] taken in 2011.
Two custom lists of project specific risks are documented in Table A.6 and Table A.7.

| Risk Impact Evaluation & Mitigation

1 | Stakeholders It is impossible to prioritise Discuss implementation ap-
have opposing requirements. proaches and priorities in
requirements. meetings with all stakehold-

ers present.

2 | Wrong priori- Important features are left Validate priorities and func-
ties are defined out. tionality with all stakeholders
and unimpor- on a regular basis.
tant features
implemented
first.

3 | The domain area The implementation takes The iterative approach helps
is more complex more time than expected and to focus to maximize business
than expected. not all required features can value at all times.

be implemented.

4 | A team member The project scope is impossi- The project scope has to be
faces health is- ble to fulfilled. renegotiated with SunGard
sues and cannot and HSR.
continue to work
on the project.

5 | Project infras- JIRA, GitHub or Project All components are sup-
tructure outage Server goes down and the ported by a company and

project is therefore delayed. professional support should
therefore be available quickly.

6 | Personal infras- A personal laptop of one HSR desktops are available

tructure failure

of the team members stops
working.

and can be used as replace-
ment hardware.

Table A.6: Project-Specific Management Risks

A. Project Management

75

Risk

Impact

Evaluation & Mitigation

Functional prob-
lems with Camel

Technical de-
ficiencies of
Camel

Unstable devel-

opment environ-
ment

Architectural

decisions intro-
duce
sary complexity.

unneces-

Developed
source code is
not covered with
unit tests.

The project goal to build an
integration job engine on top
of Camel can not be reached.

Analysing problems and the
implementation of fixes take
too much time.

Analysing and fixing prob-
lems takes too much time and
causes a delay in the project
plan.

Development of functional-
ity takes too much time and
the know-how transfer to the
SunGard team is difficult.

Future refactorings are hard
to perform without appropri-
ate test coverage. Unit tests
serve as a functional docu-
mentation as they specify the
intended behaviour of a piece
of code.

Camel is likely able to cover
most of the functional re-
quirements as tools like Red
Hat Fuse ESB[50], Apache
ServiceMix[15] andTalend
[55] are all based on top of
Camel (see Appendix D).
Develop technical prototypes
early in the project to verify
the capabilities of Camel and
related libraries.

Make use of established de-
velopment tools and agree on
a common version of Java, the
IDE and plugins.

Assess every architectural de-
cision regarding its impact to-
wards the complexity. Where
possible prefer simple solu-
tions over rich but heavy
handed libraries.

All written software should
be covered with automated
unit tests using the test-
ing capabilities of Camel and
Spring[53].

Table A.7: Project-Specific Technical Risks

A. Project Management

76

Risk

Impact

Evaluation & Mitigation

Misunderstanding
of requirements

Lack of man-

agement com-
mitment and
support

Lack of adequate

user involvement

Failure to gain
user commit-
ment

Failure to man-
age end user ex-
pectation

Changes to re-
quirements

Lack of an ef-
fective project
management
methodology

The final product consists of
features that do not comply
with the requirements of the
customer.

The project lacks funding or
resourcing.

Requirements and solutions
cannot be validated with
users.

End users may not be able
to provide required progress
reviews or required contri-
butions towards the require-
ment specification.

End users may not be able to
use the product or refuse to
do so.

Already implemented func-
tionality turns out to be un-
necessary or based on wrong
specification.

Project is delayed and gen-
erated business value is im-
pacted.

User Stories are reviewed by
the customer prior to the
implementation and review
meetings are held at the end
of every sprint.

Project management and
stakeholders committed
to attend review meetings
whenever allowed by their
schedules.

User base is small and avail-
able for interviews and re-
views. Reviews to validate the
progress will be performed on
a regular basis.

End user contributions and
management reassurance will
be obtained early in the
project.

The end users can influence
the priorities of the user sto-
This ensures that the
most relevant features will be
tackled first.

Likely to happen as the stake-
holders have varying priori-
ties and conceptions of the
product to be developed. Has
to be mitigated by review-
ing user stories as part of the
biweekly meetings. Absent
stakeholders need to be in-
formed of all decisions taken
at such meetings.

The project will be managed
using Scrum, a methodology
that is already known to all
involved parties.

ries.

Table A.8: Top Software Risks Evaluation

A. Project Management 7

A.5.1 Risk Assessment

As all mitigation measurements described in the last Section were implemented and
therefore none of the described risks put the project seriously at risk. The following risks
impacted the project nevertheless:

Risk #4 of Table A.6 Both team members fell ill and were not able to participate in
the project for several days including a sprint review meeting each. This shortage
of resources however did not require renegotiation with SunGard and HSR.

Risk #1 of Table A.7 Camel does not support route definitions in multiple Spring
context files, which makes it impossible to enhance to Camel routes in different
projects. We were able to work around this limitation using the adviceWith feature
as described in Chapter 5.

Risk #3 of Table A.8 Some important stakeholders within SunGard were often ab-
sent as they were travelling for their projects. Reviews therefore needed to be
planned early and some technical reviews did not happen as it was impossible to
find time when specific stakeholders were available.

All taken measures and used methodologies proved to be good choices to ensure good
project management. The project did not suffer from management overhead nor were
important aspect left out or forgotten during the project.

B. Evaluation of Libraries,
Frameworks and Tools

This chapter outlines all evaluation decisions that influenced solution approaches. The
architectural decisions in this chapter are documented using the "Y-Template'[59].

B.1 Data Mapper Evaluation

Mapping data from one format to another has been identified to be a critical feature.
Therefore a careful evaluation of available data mapping tools has been conducted.

Through discussion with other engineers, research using Google’s search engine, and
with the help of other research results we found on the web (see [54] and [37]), a list of
found data mappers has been consolidated. Some tools listed in Appendix B.1.2 have
not been assessed in detail as they did not match at least one of the important criterion.
The mapping features used for comparison are described in Chapter 4, Section 4.2.1.

Evaluation has shown that most tools belong to one of two categories. The first contains
Java mapping tools to map from one Java object to another with mapping definitions in
a separated configuration file. These tools can easily be integrated into Java processes
and Camel routes but lack extensive mapping features and Frank Frontline friendly
configuration syntax. The second half are more sophisticated integration suites or Extract
Transform Load (ETL) tools — so called Doodleware!. They offer powerful graphical
editors for mappings and support many of the advanced features listed in Chapter 4,
Section 4.2.1. Unfortunately, these Doodleware systems are either standalone software
or part of bigger proprietary integration suites and therefore troublesome to integrate
with Camel routes.

All evaluated tools show one of these major disadvantages. In a second research cycle
a different approach was found, which is to use a DSL for mappings. A library called
Nomin which uses a Groovy DSL has been evaluated and proofed to satisfy all important
criteria as shown in Appendix B.4.

Visual development environment for integration jobs or transformation logic. The term was intro-
duced by Jason Boro and further discussed by Gregor Hohpe[34].

78

B. Evaluation of Libraries, Frameworks and Tools 79

B.1.1 Evaluation Details

This Section documents the detailed evaluation of the investigated data mappers.

Dozer and Data Mapper

Dozer[26] is an open source Java bean to bean mapper. It allows to map one entity to
another, using a provided configuration. Data type conversion and nested objects are
handled by Dozer. With the Data Mapper[25] JBoss provides some enhancements and
an integration into their JBoss Developer Studio[49] to Dozer. Table B.1 outlines the
result of the evaluation.

‘ Dozer ‘ Data Mapper
Mapping features
Calculations on values Java, expressions Java, expressions
Default values Yes Yes
Code mappings No No
Type conversions Yes Yes
Multi-record conditions No No
Conditional mappings No No
Multiple sources / targets No No
Maps (Key,Value), nested mappings Yes Yes
Usability
User Interface XML or Java JBoss Developer Studio
Java extensibility Yes Yes
Integration
Formats XML, Java XML, JSON, Java
Camel integration Yes Yes
Miscellaneous
Complexity Low Low
Price Free Free
License Apache 2.0 License Apache 2.0 License
Technology stack Java Java, Dozer
Testability Yes Yes
Changes without compilation Yes Yes

Table B.1: Evaluation of Dozer and Data Mapper

Dozer is easy to use and has an active user base on their mailing list. However functional
development has almost stopped and the support of default values, static values and
code mappings is missing or cumbersome to use. Data Mapper provides a graphical user
interface for data mapping and adds some new features like generating Java-based models

B. Evaluation of Libraries, Frameworks and Tools 80

from XML or JSON schemas. The main gaps of Dozer are still present. We therefore
concluded that Dozer does not fit the requirements.

MapForce by Altova

Table B.2 shows the capabilities of MapForce by Altova. MapForce is proprietary tool
which runs standalone with a sophisticated user interface. It allows data transforming
from and to many different formats.

MapForce

Mapping features

Calculations on values Yes

Default values Yes

Code mappings Yes

Type conversions Yes

Multi-record conditions Yes

Conditional mappings Yes

Multiple sources / targets Yes

Maps (Key,Value), nested map- | Yes

pings

Usability

User Interface Graphical, job export as Java

Java extensibility No, closed system

Integration

Formats XML, DB, EDI, File, WSDL, XLS, JSON
(missing: Java, JMS, REST)

Camel integration No (Implementation of a specific endpoint
to integrate exported mappings is possi-
ble.)

Miscellaneous

Complexity High

Price 799$ for Enterprise Edition, 399$ for Pro-
fessional Edition

License Altova License

Technology stack Proprietary

Testability -

Changes without compilation Yes but Camel integration requires jobs to
be exported again.

Table B.2: Evaluation of MapForce

B. Evaluation of Libraries, Frameworks and Tools 81

Featurewise MapForce is powerful enough to cover all requirements. However the missing
integration with Camel, the lack of support for Java objects and JMS messages are major
obstacles. MapForce is a properitary tool and costs 799% per license. Floating licenses
are available starting from 4’000$.

We recommend not to use MapForce as it is a fully fledged ETL tool and not intended
to be used as a data mapping component in Camel routes.

Talend Open Studio

Table B.3 shows the capabilities of the Talend Open Studio for Data Integration. Like
MapForce, Talend Open Studio is a proprietary software providing a sophisticated stan-
dalone user interface. Talend Open Studio integrates with many other EAT tools provided
by Talend.

B. Evaluation of Libraries, Frameworks and Tools 82

Talend Open Studio

Mapping features

Calculations on values Yes

Default values Yes

Code mappings Yes

Type conversions Yes

Multi-record conditions Yes

Conditional mappings Yes

Multiple sources / targets Yes

Maps (Key,Value), nested map- | Yes

pings

Usability

User Interface Talend Open Studio (based on Eclipse)
Java extensibility Yes (Java-based mapping enhancement)
Integration

Formats All

Camel integration No. (Jobs can be exported as jar or OSGi

bundle, but OSGi bundles require the Tal-
end environment to run properly.)

Miscellaneous

Complexity Medium

Price Free (Community Edition)

License Apache v2, LGPL and GPLv2 License (de-
pending on component)

Technology stack Open Source Technologies

Testability Only in Enterprise version

Changes without compilation Yes but Talend requires jobs to be ex-

ported again.

Table B.3: Evaluation of Talend Open Studio

Talend Open Studio has a sophisticated user interface for creating mappings and routes.
It supports all needed connectors for different formats, but lacks integration possibilities
to Camel. The open source version is a Community Edition which implies problems de-
scribed in Chapter 4, Section 4.3.11. Furthermore, exported jobs are difficult to integrate
into solutions other than Talend products. For example it is not possible to use them in
a Camel-based integration toolkit.

Nomin

Groovy is a script language that runs within a JVM. Mappings written in Groovy can
therefore be changed without a need to recompile them. Furthermore they run seamlessly

B. Evaluation of Libraries, Frameworks and Tools 83

in the JVM and do not need a separate infrastructure. Nomin[46] is a Java mapping
framework based on a Groovy DSL and supports almost all of the required features as
described in Table B.4.

A well-designed DSL can enable stakeholders like Frank Frontline 4.1.2 to write code
themselves and can become a shared living specification of the data mapping system [1,
p. 12 - 13].

Nomin

Mapping features

Calculations on values Yes

Default values Yes

Code mappings Yes

Type conversions Yes

Multi-record conditions No

Conditional mappings Yes

Multi sources / targets Yes

Maps (Key,Value), nested map- | Yes

pings

Usability

User Interface Groovy scripts

Java extensibility Yes (Java code can be used)

Integration

Formats Key/Value, Java objects *

Camel integration No (Custom endpoint can be written with
little effort.)

Miscellaneous

Complexity Medium

Price Free

License Apache v2

Technology stack Java, Groovy

Testability Yes

Changes without compilation Yes

Table B.4: Evaluation of Nomin

B.1.2 Other Data Mappers

Apart from the tools analysed in the detailed comparison, the following tools were taken
into consideration but no comprehensive analysis has been performed.

2 All other formats can be supported through Camel endpoints.

B. Evaluation of Libraries, Frameworks and Tools 84

« Smooks[52] is an extensible framework for processing XML and non-XML which
can also be used for data transformations.

The learning curve of Smooks is too steep to enable users like Frank Frontline
to make changes to mappings. The Eclipse plugin has been decommissioned since
August 2011.

o Liquid Studio[41] is a graphical XML mapping tool but does not support to map
other formats.

o Jamper[35] is a Java-based application for creating XML transformation rules. It
can not be used as a transformation engine nor map other formats than XML

o Oakland’s Data Transformer[47] is a Java-based data transformation tool with
a graphical user interface. There was no trial version available and the project has
not been updated since 2011.

o BeanlIOJ20] is a Java bean binding framework to marshal and unmarshal Java
beans from different formats. BeanIO does not support mapping from one bean to
another.

« Apache Camel Bindy[9] is a Java bean binding framework for unstructured data.
Based on annotations it does not allow mapping changes without recompilation
and does not support mapping between beans.

o Apache Common BeanUtils[11] is a bean mapping and morphing library. With
mapping logic written in Java it does not support mapping changes without re-
compilation.

o MapStruct[42] is a bean mapping and morphing library. Based on annotations it
does not support mapping changes without recompilation.

o EZMorph[29] is a bean mapping and morphing library. With mapping logic writ-
ten in Java it does not support mapping changes without recompilation.

o Mule Studio[45] is designed to be used with a Mule ESB and data mappings
cannot be extracted from its environment.

e Pentaho Kettle is a powerful graphical ETL tool using a metadata-driven ap-
proach.

Kettle requires its own runtime and can not be integrated into Camel routes.

o ModelMapper[44] is a bean mapping library. With mapping logic written in Java

it does not support mapping changes without recompilation.

B.1.3 Detailed Nomin Evaluation

The sample implementation of a data mapping using Nomin shown in Listing B.1 has
been validated with the stakeholders and proved to satisfy functionality and usability.

Listing B.1: Example of a data mapping with Nomin

1 import com.sungard.apexcollateral.integration.entity.*
2 import java.sql.Date
3 import java.sql. Timestamp

B. Evaluation of Libraries, Frameworks and Tools 85

We conducted review meetings on the example mapping with Nomin with different
stakeholders from SunGard as documented in the subsequent Sections.

Meeting with Frank Frontline

Date: 31.3.2015
Attendees: Michael Gysel, a SunGard employee representing Frank Frontline.

Meeting minutes:

e Frank is capable to write mappings using the DSL.

B. Evaluation of Libraries, Frameworks and Tools 86

e He needs file-based value lookups as some of them are based on large value ta-
bles. The value lookup integrated in Nomin is not sufficient. The existing solution
provides lookups with values defined in text files. (e.g. 1=TYPE-A)

o Frank is able to read the XML DSL to define the routes. He would likely be able
to customise them as well.

e The ability to change mappings without recompiling the jar files is crucial to Frank.
Using script files to map data allows Frank to change even advanced mappings.
This is very useful to tailor data integration logic in a customer environment.

Meeting with Alex Allrounder

Date: 30.3.2015

Attendees: Michael Gysel, Lukas Koélbener, a SunGard employee representing Frank
Frontline.

Meeting minutes:

e The DSL is exactly what Alex needs.

e XSLT is a requirement as well. however this would not be handled in Nomin but
rather as an integrated camel component.

e The same row needs to be sent to several targets. This is possible using a multicast
in Camel.

e A row needs to be duplicated and some small adjustments need to be done. The
two rows need to be sent to the same target. This might be possible using a splitter
or a custom camel component. Either of the solutions are acceptable to Alex.

Meeting with Sungard Architect

As soon as the functional match was verified, Nomin was suggested to the Apex Collateral
product architect. His evaluation of Nomin from a technical point of view is documented
in Table B.5.

B. Evaluation of Libraries, Frameworks and Tools

Good

Bad

Reasonable, small codebase.

No activity (neither on GitHub
nor on the mailing list).

Good functional documentation.

Mixture of Java and Groovy.

Most of the classes are small and
do just one thing, good use of in-
terfaces, keeping things simple.

As far as I was able to tell, not
that much unit test coverage.

Some reasonable functional / in-
tegration tests that test mapping
functionality.

Mockito is used in some tests.

Summary: All in all I'd say the project looks to be in a decent
shape but could use someone actually taking care of it.

Table B.5: Nomin assessment of a SunGard architect

B.1.4 Decision for Nomin

87

In the context of evaluating a data mapping tool facing the requirement of configurable
mappings, we decided for Nomin, a Groovy DSL-based tool, and neglected commercial
ETL tools, as well as configuration-based data mapping tools, to achieve flexible but
powerful mapping functionality accepting the need to learn a DSL for the users.

B.2 Data Persistence

The database tables that need to be accessed can be categorised into two kinds:

e EAI Tables with a known set of columns forming the standardised way of im-
porting and exporting data from and into Apex Collateral.

e Customer specific tables with a format that is unique to one client installation.

B.2.1 Interface Tables

In the context of access to standardised interface tables facing the requirement of
documented and reusable persistance access, we decided for JPA-based database ac-
cess and neglected SQL-based database access to achieve code reusability accepting
the need for additional application libraries.

B. Evaluation of Libraries, Frameworks and Tools 88

B.2.2 Customer Specific Integration Tables

In the context of access to customer specific tables facing the requirement of loose
coupling, we decided for SQL-based database access and neglected JPA-based database
access to achieve less development effort accepting the need to write SQL statements.

B.3 Application Context and Dependency Injection

In the context of application frameworks facing the need for a Dependency Injection
container, we decided for the Spring Framework and neglected lightweight containers

to achieve conformity with the Apex Collateral product and better integration with
Camel accepting the increased complexity.

B.4 Deployment

In the context of production deployments facing the need for an application container,
we decided for a plain Java process and neglected OSGi to achieve a simplified

deployment accepting that dynamic loading and disposal of application components
s not possible.

OSGi was not evaluated in detail as no functional or non-functional requirement indi-
cated that dynamic loading and disposal of application components was required.

B.5 Build Automation

In the context of the development environment facing the need for build automation,
we decided for Apache Maven and neglected other tools to achieve less time spent
on evaluation accepting that there might have been a better tool.

C.

Project Definition

The following project definition is a translated excerpt of the original project definition
written in German.

C.0.1 Goals

The following goals are to be met:

1.

Analyse the current problems, limitations and code smells of the existing EAI
Server and integration modules as part of a case study.

Collect requirements from stakeholders and document them as user stories.

. Define the scope of the new solution following an agile approach (collaborative

prioritisation of user stories).

. Implement and test a reference implementation of at least one existing job in a

specified reference environment.

C.0.2 Deliverables

The following items have to be created and delivered:

1.
2.

Document describing the results of the analysis.

Compiled functional and non-functional requirements aligned with the stakeholders
needs.

. Design and implementation according to the defined user stories.

Design, implementation, and documentation of the reference implementation.

. Suitable software documentation of all developed components (JavaDoc, UML,

test cases, context overview).

C.0.3 Success Metrics

A successful implementation accommodates the following metrics:

89

C. Project Definition 90

1. Established open source solutions provide the basis of the new EAI Server (e.g.
Apache Camel, Apache ActiveMQ, Apache CXF).

2. An additional layer or components enhance or complement the chosen open source
technologies to simplify the definition of integration jobs.

C.0.4 Environment

Apex Collateral is based on a Java technology stack and uses several open source so-
lutions like the Spring Framework[53], Hibernate[33], Quartz[48], ActiveMQ[7] amongst
many others. It can be operated using an Oracle or Microsoft database server.

$000,0€ - $000,0T 3344 a8uesadud| €¢
(4e2A/4Nn3 000,005<) W3O 19poN-diysiauried
(43][252Y pappy-anjep) YVA é I9pON-asuddI| 2T
ON S3IA aaunos-uado| 1z
S13410 [4
(Azeyondoud) gs3 ann| (Asersudoud) gs3 sinAl 19heq puid)| T'T
(Aserondoud) gs3 snn| (Asersudoud) gs3 sinAl 19hAeq sadinues| z'T
(Aserandoud) gs3 ainn| (Asersndoud) gs3 ainiy 19Aeq uoneonddy| €1
8ui88ngaq |ensin
3|NpoA 8uissad0.d yoleg
asuaseleq /m saddeeleq (3Q) @sd1p3)
(3@1 9sd1123) o1pms 1ulodAuy o1pnis ulodAuy Sujoo) @ Juawdojensa| v'1
(XIAIf) uoneIUBWINIISU| BART
(Aojdaq) |041u0d |euonRISdO
Sulio}UOW 3JUBWIOHI
(xAjuo uneid) Anjigejieay ysiH (XA
3|0suo) Jusawaseueln 3NN uol1eIUBWINIISU| BABS, Sunojuo @ JuswasSeuey| ST
Suljoo] B yJomawely T

D. Results Prestudy by SunGard

The following tables summarise the results of the prestudy performed by SunGard. Please

note that it is slightly shortened and desensitised. The prices are only represented as price
ranges. None of the mentioned vendors provides quotes on their websites and SunGard

had to request them.

91

92

D. Results Prestudy by SunGard

$000,02 - $000,0T 3344 $000,0T - $000,T 3344 a8ues adlid| €7
N30 paouenpy (z Apeay (T |9poN-diysiauried
(49]|259Y pappy-an(eA) YVA é ASI aydedy I9PON-asUddIT| T°T
(saunieay asudiaiul) ON ‘(3402) SIA S3A S3A S3A ?2unos-uado| T'Z
sS40 [4
Je||9) ayoedy Je|[3) saydedy
JeJey| ayoedy Jeuey ayoedy Jesey ayoedy Jeue) aydedy Jahe pusd)l| T'T
(Apeay asudisiug 1eHpay)
4X2 ayoedy 4X2 ayoedy 4X2 ayoedy 4X2 ayoedy
jswe) ayoedy |awe) ayoedy |awe) ayoedy]swe) ayoedy
DINRAAY aydedy DINRAIDY aydedy DINRANDY aydedy DINRANY aydedy 19heq sad1nias| 2T
19Aeq uoneoddy| €1
(" *sj004@ ‘Ndgl ‘s|ooL
J2MB3IA BIEP SAIIDRIIU| |awe)) yoe3s uones8alu| sjooy ssogr
‘uiuny pue ui88ngap ‘Sunsa) (3q1 @sd1p3)
gs3 asudiajug pusje olpnis uadQ pusjel olpnis Jadojansq ssogr - 8ujoo) g usawdojenag| v'1
19018}
‘Buipuejeq peoj ‘Aljigejieae ySiH
‘J23U3) UONRASIUIWPY pus|e] = ‘8u1j00] JaAISS
‘9]0su0) Suonuo A AlARY ‘8o1iqe4 asn4
453 asiudiaiug puajel 35 953 pusjel :5]00] ssogr - Sunonuo g Juswaseuey| ST
Suijoo] 3 yJomawe.y T

Glossary

Descriptions of Glossary items have mainly been taken from Wikipedia.org.

Apache Maven Apache Maven is a software project management and comprehension
tool. 33, 36, 52

Apache Tomcat A lightweight open source implementation of the Java Servlet tech-
nology. 52

API Application Program Interface. 10, 29, 47, 94

Camel context The main Camel component used to build and execute routes. 40
CI Continuous Integration. 66, 69, 70
CSV comma-separated values. 10, 11, 14, 17, 61

Dependency Injection A design pattern that implements inversion of control for soft-
ware libraries. The caller delegates the discovery of dependencies to the framework
5, 88

DSL Domain Specific Language. 38, 40, 41, 62, 72, 78, 83

EAT Enterprise Application Integration. 4, 8, 10-13, 81

EAI Tables A fixed set of database tables used to import and export data from and
to Apex Collateral. 26

EIP Enterprise Integration Pattern, defined by Hohpe/Woolf[3]. 8, 15, 23
ESB Enterprise Service Bus. 5, 8, 9, 12, 84
ETL Extract Transform Load. 78, 81, 84

FTP File Transfer Protocol. 10, 58, 61
Groovy A scripting language for the JVM. 42, 78

HSR Hochschule fiir Technik Rapperwswil. 35, 67-69

HTTP Hypertext Transfer Protocol, an application protocol and the foundation of data
communication for the World Wide Web [57] 24, 44, 53, 54, 94

93

Glossary 94

HTTPS Secured HTTP 27, 59

JAR Java Archive. 60

JDBC Java DataBase Connectivity, a standardised API to connect to a relational
database 24, 52

JMS Java Message Service, a Java message-oriented middleware application program-
ming interface for sending messages between two or more clients. 5, 24, 25, 27, 35,
38, 44, 45, 55, 58, 59

JMX Java Management Extensions, a Java technology to manage and monitor JVM
based applications. 44, 45, 55

JSON JavaScript Object Notation. 17, 44, 54, 58

JVM Java Virtual Machine. 54, 82, 83, 94

ORM Object-Relational Mapping. 5
OSGi A modular system and service platform for the Java language. 88

PS Professional Services. 13, 16, 27

REST REpresentational State Transfer, an architectural style for creating web services.
Typically communicates over HT'TP. 24, 53, 58

SEDA Staged Event-Driven Architecture, documented by Matthew David Welsh in
2002. 49, 51

SFTP Secure File Transfer Protocol. 27, 58, 59

SOAP Originally an acronym for Simple Object Access Protocol, is a protocol specifi-
cation for exchanging structured information in the implementation of web services

using XML. 58

Spring An open source application framework and inversion of control container for the
Java platform. 33, 37, 39, 42, 88

SWIFT Message A message containing financial data, standardised by the Society for
Worldwide Interbank Financial Telecommunication (SWIFT). 30

VM Virtual Machine. 69
WAR Web application ARchive. 60

XML eXtensible Markup Language. 10, 17, 30, 37, 44, 58, 61, 62, 71, 84

References

Literature

EONS)

ENET

Fergal Dearle. Groovy for Domain-Specific Languages. 2010-06-01 (cit. on p. 83).
Robert Hanmer. Patterns for Fault Tolerant Software. 2007-11-28 (cit. on p. 29).

Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns. 2003-10-10 (cit.
on pp. 1, 6, 8,9, 12, 13, 15, 25, 93).

Claus Ibsen and Jonathan Anstey. Camel in Action. 2010-10-01 (cit. on p. 6).
Bertrand Meyer. Object-Oriented Software Construction. 1998-11-02 (cit. on p. 28).

Matthew David Welsh. “An Architecture for Highly Concurrent, Well-Conditioned
Internet Services”. PhD thesis. University of California at Berkeley, 2002 (cit. on
p. 49).

Online Sources

[11]

ActiveM@. An open source messaging server. URL: http://activemq.apache.org/
(visited on 2015-03-18) (cit. on pp. 5, 55, 90).

Apache Camel. A rule-based routing and mediation engine which provides a Java
object-based implementation of the Enterprise Integration Patterns. URL: http://
camel.apache.org/ (visited on 2015-04-13) (cit. on pp. 5, 9, 36, 55, 71).

Apache Camel AdviceWith Feature. URL: http://camel.apache.org/advicewith.html
(visited on 2015-05-10) (cit. on pp. 41, 63).

Apache Camel Bindy. Allow the parsing/binding of non-structured data (non-XML
data) to and from Java Beans using annotations. URL: http://camel.apache.org/
bindy.html (visited on 2015-03-30) (cit. on p. 84).

Apache Commons BeanUtils. A bean mapping and morphing library. URL: http:
/ /commons.apache.org/proper/commons-beanutils/ (visited on 2015-03-30) (cit. on
p. 84).

95

http://activemq.apache.org/
http://camel.apache.org/
http://camel.apache.org/
http://camel.apache.org/advicewith.html
http://camel.apache.org/bindy.html
http://camel.apache.org/bindy.html
http://commons.apache.org/proper/commons-beanutils/
http://commons.apache.org/proper/commons-beanutils/

References 96

[12]
[13]
[14]
[15]
[16]

[17]

[18]

Apache Maven Shade Plugin. URL: https://maven.apache.org/plugins/maven-shade-
plugin/ (visited on 2015-05-10) (cit. on p. 52).
Apache Maven WAR Plugin. URL: https://maven.apache.org/plugins /maven-war-
plugin/ (visited on 2015-05-10) (cit. on p. 54).

Apache POI. A Java API for Microsoft Documents. URL: https://poi.apache.org/
(visited on 2015-05-11) (cit. on p. 5).

Apache ServiceMiz. An open-source integration container. URL: http://servicemix.
apache.org/ (visited on 2015-05-23) (cit. on pp. 5, 75).

Apache Synapse. A lightweight Enterprise Service Bus. URL: http://synapse.apache.
org/ (visited on 2015-05-26) (cit. on p. 5).

Apex Collateral. A solution for collateral management, optimization and trading.
URL: http://financialsystems.sungard.com /solutions/ collateral-management / apex-
collateral (visited on 2015-02-23) (cit. on p. 4).

Tharwon Arnuphaptrairong. Top Ten Lists of Software Project Risks. English.
2011-03. URL: http://www. uio.no /studier /emner / matnat /ifi / INF5181 / h14 /
pensumliste / microsoft - word --- iaeng - top - ten - lists - of - software - project - risk1 ---
imecs2011_pp732-737.pdf (visited on 2015-03-09) (cit. on p. 74).

Atlassian Jira. A project tracking software. URL: https://www . atlassian.com /
software/jira (visited on 2015-05-19) (cit. on pp. 65, 66).

BeanlO. An open source Java framework for marshalling and unmarshalling Java
beans from different formats. URL: http://beanio.org/ (visited on 2015-03-30) (cit.
on p. 84).

Camel RouteContext feature. URL: http://camel.apache.org/how-do-i-import-
routes-from-other-xml-files.html (visited on 2015-05-26) (cit. on p. 58).

Certified ScrumMaster (CSM). URL: https://www.scrumalliance.org/certifications/
practitioners/certified-scrummaster-csm (visited on 2015-05-19) (cit. on p. 68).

Checkstyle. A tool to enforce Java coding style. URL: http://checkstyle.sourceforge.
net/ (visited on 2015-05-25) (cit. on p. 71).

Data Mapper. A Camel component to create, configure, and test data transfor-
mation. URL: https://github.com /fabric8io/data-mapper/ (visited on 2015-03-24)
(cit. on p. 79).

Dozer. A Java bean to bean mapper. URL: http://dozer.sourceforge.net/ (visited on
2015-03-24) (cit. on p. 79).

EclEmma. An Eclipse plugin to measure Java code coverage. URL: http://www.
eclemma.org/ (visited on 2015-05-25) (cit. on p. 71).

Eclipse Luna. An integrated development environment for Java. URL: https://www.
eclipse.org/luna/ (visited on 2015-05-19) (cit. on p. 69).

EZMorph. A Java library to transform a Java object to another object. URL: http:
//ezmorph.sourceforge.net/ (visited on 2015-03-30) (cit. on p. 84).

https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-shade-plugin/
https://maven.apache.org/plugins/maven-war-plugin/
https://maven.apache.org/plugins/maven-war-plugin/
https://poi.apache.org/
http://servicemix.apache.org/
http://servicemix.apache.org/
http://synapse.apache.org/
http://synapse.apache.org/
http://financialsystems.sungard.com/solutions/collateral-management/apex-collateral
http://financialsystems.sungard.com/solutions/collateral-management/apex-collateral
http://www.uio.no/studier/emner/matnat/ifi/INF5181/h14/pensumliste/microsoft-word---iaeng-top-ten-lists-of-software-project-risk1---imecs2011_pp732-737.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5181/h14/pensumliste/microsoft-word---iaeng-top-ten-lists-of-software-project-risk1---imecs2011_pp732-737.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5181/h14/pensumliste/microsoft-word---iaeng-top-ten-lists-of-software-project-risk1---imecs2011_pp732-737.pdf
https://www.atlassian.com/software/jira
https://www.atlassian.com/software/jira
http://beanio.org/
http://camel.apache.org/how-do-i-import-routes-from-other-xml-files.html
http://camel.apache.org/how-do-i-import-routes-from-other-xml-files.html
https://www.scrumalliance.org/certifications/practitioners/certified-scrummaster-csm
https://www.scrumalliance.org/certifications/practitioners/certified-scrummaster-csm
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
https://github.com/fabric8io/data-mapper/
http://dozer.sourceforge.net/
http://www.eclemma.org/
http://www.eclemma.org/
https://www.eclipse.org/luna/
https://www.eclipse.org/luna/
http://ezmorph.sourceforge.net/
http://ezmorph.sourceforge.net/

References 97

[30]
[31]

32]

33]

[34]

[35]

Hamcrest. A set of expressive matchers to be used in unit tests. URL: http://
hamcrest.org/ (visited on 2015-05-25) (cit. on p. 71).

Hawt.io. A modular web console to mange Java application. URL: http://hawt.io/
(visited on 2015-05-28) (cit. on p. 54).

Hibernate Envers is a Hibernate module to preserve the history of changes of JPA
entities. URL: http://hibernate.org/orm /envers/ (visited on 2015-04-12) (cit. on

p. 31).
Hibernate ORM. Domain model persistence for relational databases. URL: http:
//hibernate.org/ (visited on 2015-03-18) (cit. on pp. 5, 90).

Gregor Hohpe. Hohpe Ramblings: Doodleware. 2003-11-01. URL: http://www.
eaipatterns.com /ramblings /02 _doodleware. html (visited on 2015-04-07) (cit. on
p. 78).

Jamper. A Java-based application for creating XML transformation rules. URL:
http://jamper.sourceforge.net/ (visited on 2015-03-30) (cit. on p. 84).

JasperReports. An open source reporting engine. URL: http://community.jaspersoft.
com/project/jasperreports-library (visited on 2015-05-11) (cit. on p. 5).

Javacodegeeks: List of Data Mapping Tools. URL: http://www.javacodegeeks.com/
2013/10/java-object-to-object-mapper.html (visited on 2015-03-16) (cit. on p. 78).

Jenkins. A Continuous Integration tool. URL: https://jenkins-ci.org/ (visited on
2015-05-19) (cit. on p. 66).

Jolokia. An agent to expose JMX MBeans over HTTP. URL: https://jolokia.org/
(visited on 2015-05-28) (cit. on p. 54).

JUnit. A Java framework to write repeatable tests. URL: http://junit.org/ (visited
on 2015-05-25) (cit. on p. 71).

Liquid Studio. A data mapping and zml mapping tool. URL: http://www.liquid-
technologies.com /xmldatamapper.aspx (visited on 2015-03-30) (cit. on p. 84).

MapStruct. A code generator which greatly simplifies the implementation of map-
pings between Java bean types-based on a convention over configuration approach.
URL: http://mapstruct.org/ (visited on 2015-03-30) (cit. on p. 84).

Mockito. A mocking framework for unit tests. URL: http://mockito.org/ (visited on
2015-05-25) (cit. on p. 71).

Model Mapper. A Java bean to bean mapper. URL: http://modelmapper.org/ (visited
on 2015-03-24) (cit. on p. 84).

Mule Studio. A Java ESB that supports data mapping. URL: https://www.mulesoft.
com/studio (visited on 2015-03-30) (cit. on pp. 5, 84).

Nomin. A mapping engine for the Java platform transforming object trees according
to declarative mapping rules. URL: https://github.com /dobrynya/nomin (visited on
2015-03-30) (cit. on pp. 34, 36, 42, 83).

http://hamcrest.org/
http://hamcrest.org/
http://hawt.io/
http://hibernate.org/orm/envers/
http://hibernate.org/
http://hibernate.org/
http://www.eaipatterns.com/ramblings/02_doodleware.html
http://www.eaipatterns.com/ramblings/02_doodleware.html
http://jamper.sourceforge.net/
http://community.jaspersoft.com/project/jasperreports-library
http://community.jaspersoft.com/project/jasperreports-library
http://www.javacodegeeks.com/2013/10/java-object-to-object-mapper.html
http://www.javacodegeeks.com/2013/10/java-object-to-object-mapper.html
https://jenkins-ci.org/
https://jolokia.org/
http://junit.org/
http://www.liquid-technologies.com/xmldatamapper.aspx
http://www.liquid-technologies.com/xmldatamapper.aspx
http://mapstruct.org/
http://mockito.org/
http://modelmapper.org/
https://www.mulesoft.com/studio
https://www.mulesoft.com/studio
https://github.com/dobrynya/nomin

References 98

[47]

[48]

Oakland Data Transformer. A Java-based data transformation tool with a graphical
user interface to define the mapping rules. URL: http://www.oaklandsoftware.com/
data-transformer (visited on 2015-03-30) (cit. on p. 84).

Quartz. A job scheduler. URL: http://quartz-scheduler.org/ (visited on 2015-03-18)
(cit. on pp. 5, 47, 55, 90).

Red Hat JBoss Developer Studio. URL: http://www.jboss.org/products/devstudio/
overview/ (visited on 2015-03-24) (cit. on p. 79).

Red Hat JBoss Fuse. URL: http:/ /www.redhat.com /en /technologies / jboss -
middleware/fuse (visited on 2015-05-11) (cit. on pp. 5, 75).

Scrum images by Mountain Goat Software. URL: http://www.mountaingoatsoftware.
com/agile/scrum/images (visited on 2015-05-19) (cit. on p. 65).

Smooks. An extensible framework for processing XML and non XML. URL: http:
//www.smooks.org/ (visited on 2015-03-30) (cit. on p. 84).

Spring Framework. Supports dependency injection, transaction management, web
applications, data access, messaging, testing and more. URL: http://projects.spring.
io/spring-framework/ (visited on 2015-03-18) (cit. on pp. 5, 36, 71, 75, 90).

Stackoverflow: Data Mapping Tools. URL: http:/ /stackoverflow.com /questions /
1432764 /any-tool-for-java-object-to-object-mapping (visited on 2015-03-16) (cit. on
p. 78).

Talend Data Integration. An Eclipse-based ETL tool. URL: https://www.talend.
com/products/data-integration (visited on 2015-03-30) (cit. on pp. 5, 75).

The Simple Logging Facade for Java (SLF4J) serves as a simple facade or abstrac-
tion for various logging frameworks allowing the end user to plug in the desired
logging framework at deployment time. URL: http://www.slf4j.org/ (visited on
2015-04-12) (cit. on pp. 31, 60).

Kai Wéhner. Choosing the Right ESB for Your Integration Needs. URL: http://
www.infoq.com/articles/ESB-Integration (visited on 2015-02-20) (cit. on pp. 8, 9).

Wikipedia: Hypertext Transfer Protocol. URL: http:/ /en . wikipedia . org / wiki /
Hypertext_ Transfer_Protocol (visited on 2015-05-09) (cit. on p. 93).

WS02 Carbon. An OSGi-based middleware product. URL: http: / / checkstyle .
sourceforge.net/ (visited on 2015-05-26) (cit. on p. 5).

Olaf Zimmermann. Making Architectural Knowledge Sustainable: The Y-Approach.
SATURN Conference. Software Engineering Institute CMU. 2012-05-07. URL: http:
/ / resources . sei . cmu . edu / library / asset - view . cfm ? assetid = 31345 (visited on
2015-04-05) (cit. on pp. 39, 78).

http://www.oaklandsoftware.com/data-transformer
http://www.oaklandsoftware.com/data-transformer
http://quartz-scheduler.org/
http://www.jboss.org/products/devstudio/overview/
http://www.jboss.org/products/devstudio/overview/
http://www.redhat.com/en/technologies/jboss-middleware/fuse
http://www.redhat.com/en/technologies/jboss-middleware/fuse
http://www.mountaingoatsoftware.com/agile/scrum/images
http://www.mountaingoatsoftware.com/agile/scrum/images
http://www.smooks.org/
http://www.smooks.org/
http://projects.spring.io/spring-framework/
http://projects.spring.io/spring-framework/
http://stackoverflow.com/questions/1432764/any-tool-for-java-object-to-object-mapping
http://stackoverflow.com/questions/1432764/any-tool-for-java-object-to-object-mapping
https://www.talend.com/products/data-integration
https://www.talend.com/products/data-integration
http://www.slf4j.org/
http://www.infoq.com/articles/ESB-Integration
http://www.infoq.com/articles/ESB-Integration
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=31345
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=31345

	Abstract
	Management Summary
	Project Context
	Business Background
	Technology Environment
	Prestudy by SunGard
	Apache Camel
	Project Definition

	Analysis
	Enterprise Application Integration
	Existing Apex Collateral Integration

	Requirements
	Personas
	Functional Requirements
	Non-Functional Requirements

	Design and Implementation
	Design
	Project Structure
	An Integration Job Engine using Apache Camel
	Data Mapping
	Job Triggers
	Job Templates
	Metrics
	Batch Processing
	Performance
	Deployment
	Hawt.io Integration

	Conclusion
	Requirement Assessment
	Future Work

	Project Management
	Project Management Methodology
	Development Environment
	Quality Management
	Project Plan - Sprints
	Risk Management

	Evaluation of Libraries, Frameworks and Tools
	Data Mapper Evaluation
	Data Persistence
	Application Context and Dependency Injection
	Deployment
	Build Automation

	Project Definition
	Results Prestudy by SunGard
	Glossary
	References
	Literature
	Online Sources

