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Abstract

C++ allows the usage of templates to build functions and classes with generic types. This
gives the advantage that classes and functions only need to be defined once and can be
used for many containing data types without duplicating code. Templates can be hard
to work with because the compiler instantiates templates during the compilation process
which results in code that the developer cannot see.

Based on the passed, deduced arguments, defined functions, and class templates the
compiler selects different code that will be executed. Programmers using Eclipse CDT do
not have easy access to the instantiated templates and thus to information about select
function overloads and class template specializations. Programmers want to know what
the compiler finally chooses, especially in the case of nested template instantiations.

The goal of our bachelor theses is to extend the plug-in for Eclipse CDT we developed in our
term thesis. The existing plug-in is able to show the programmer simple function template
instantiations and should now be extended to support class template instantiations. The
outcome is a view that helps the programmer to examine function templates and their
deduced arguments, class templates and nested function calls. It offers interactivity to
recursively resolve function calls and class template instantiations for an arbitray nesting
level. The UI assists the user with a search function, jumping to the definition in the
C++ editor and displaying the resulting instantiations in a tree like hierarchy with many
UI features.
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Management Summary

This bachelor thesis builds on the results of our term project Templator [BS14]. The
goal of the term project was to write an Eclipse CDT plug-in that lets a user visualize
function template instantiations in his C++ code. In our bachelor thesis we want to
extend the functionality to also support class templates.

Motivation

The C++ programming language provides templates to build generic functions and classes
using compile-time parameters. A compiler will instantiate these templates by replacing
their parameters with actual arguments at compile-time. This internally generated code
can result in further nested template instantiations in the template function’s or class’
body. However, a programmer is not able to see this compiler-generated code unless it
generates a compile-error message. The language rules of C++ employed by the compiler
during template instantiation with respect to function overload resolution, template
argument deduction and class template specialization selection are complex and hard to
apply by a developer in his head. As a result, the invisible code resulting from template
instantiations can contain compile errors, or in the worst case, unintended run-time
behavior that is very hard to diagnose by the developer.

Programmers using the C/C++ Integrated Development Environment Eclipse CDT
should be able to obtain information about selected function overloads and class tem-
plate specializations, even in the compiler-internal only code resulting from template
instantiations.

Approach/Technologies

The Templator2 is a CDT plug-in extending the functionality of our previous Tem-
plator plug-in resulting from our term project [BS14]. Templator visualized function
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template instantiation and function overload selection, where Templator2 now extends
that functionality to class template instantiations and specialization selection. This
required extensive rework of the user interface to increase its usability and adapt it to the
increased functionality. To achieve the template instantiation visualization we analyze the
Abstract Syntax Tree (AST) of the template’s code for further template instantiations
and functions calls. They are then resolved to the finally chosen template definition or
function overload. From that information the underlying usually compiler-internal-only
class or function definition is formatted and shown to the developer.

Result

The Templator2 plug-in extends CDT with a view of template instantiations. A de-
veloper can select a starting point such as a function call or class template use for the
visualization in their C++ editor. One is now able to see the chosen function body or
class template instantiation. The developer can navigate deeper into nested function
calls and template instantiations to get a better understanding of what code the compiler
generates internally.
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The final Templator2 plug-in in Eclipse.
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1 Task Description

This chapter contains the description of our project and our goals for it. The already
implemented functionality by Templator plug-in from [BS14] is described first. After
that, problems that still exist even with the Templator are described and and finally
what our solutions for these problems are.

1.1 Previous Work

This bachelor thesis builds on the results of our term project Templator [BS14]. We
developed an Eclipse C/C++ Development Tooling (CDT) plug-in in the Java program-
ming language to add functionality to visualize template instantiations in C++. While
the main goal there was to support the visualization of function template instantiations,
the focus in this work are class templates and to improve the existing code.

The first version of the Templator plug-in has the following functionality and is shown in
Figure 1.1.

• Resolving a function call to the finally chosen function definition.

• Resolve all further function calls in the chosen function depending on the chosen
template arguments in the case of function template calls for an arbitrary number
of nesting levels.

• Visualizing the chosen function definitions in a view in a tree-like hierarchy.

– Show the chosen template arguments.

– Show the function definition code with syntax highlighting.
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– Interaction for the user to see further function calls, show their definition, and
jump to the code in his CDT editor.

Figure 1.1: The first version of our Templator plug-in from our term thesis ([BS14]).

1.2 Problem

C++ offers more template related functionality than just function templates. Classes can
also be parameterized with template parameters. This offers a developer the ability to
implement classes where the type is still open and will be determined at compile time.
This helps prevent duplicated code and is thus also as often used as function templates.
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Class templates are more complicated than function templates because they offer a
primary template, partial specializations and explicit specializations. The class template
specialization gets chosen based on the specified arguments and works like overloads for
functions where the most specialized version is selected by the compiler.

• Explicit (full) specialization

# include <string >

template <>

class Stack <std::string > {};

Listing 1.1: Fully specialized class template

This template gets chosen when instantiated via

Stack <std::string > stringStack {};

Listing 1.2: Instantiating a fully specialized class template.

• Partial specialization

template <typename T>

class Stack <T*> {};

Listing 1.3: Partially specialized class template

This template gets chosen when instantiated via

Stack <char const *> charSack {};

Listing 1.4: Instantiating a partially specialized class template.

Instead of char const * any other pointer type can be used to instantiate this
class template.
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• Primary template

template <typename T>

class Stack {};

Listing 1.5: Primary class template

This template gets chosen when none of the two above templates matches, e.g.

Stack <int > otherStack {};

Listing 1.6: Instantiating the primary class template.

The difficulty arises when working with nested class template instantiations. The finally
chosen specialization by the compiler can be hard to find out. Listing 1.7 shows a still
rather easy case. makeStack on line 30 shows a function template that creates a Stack

based on the type of the passed arguments. Stack has a primary template (Listing 1.5)
defined from line 6–15 and an explicit class template (Listing 1.1) for std::string from
line 17–26. Both constructors expect an std::initializer_list—a sequential list of
homogenous values.

1 # include <vector >

2 # include <deque >

3 # include <initializer_list >

4 # include <string >

5
6 template <typename T>

7 class Stack {

8 std::vector <T> elems;

9 public:

10 Stack(std:: initializer_list <T> elemList) :

11 elems { elemList } {}

12 void add(T elem) {

13 elems.push_back(elem);

14 }
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15 };

16
17 template <>

18 class Stack <std::string > {

19 std::deque <std::string > elems;

20 public:

21 Stack(std:: initializer_list <std::string > strings) :

22 elems { strings } {}

23 void add(std:: string elem) {

24 elems.push_front(elem);

25 }

26 };

27
28 template <typename F>

29 Stack <F> makeStack(std:: initializer_list <F> elemList) {

30 return Stack <F> { elemList };

31 }

32
33 int main() {

34 auto vec = makeStack( { 4, 8, 15, 16, 23, 42 });

35 vec.add (108);

36 auto deck = makeStack( { std:: string {"Hello"} });

37 deck.add(std:: string{"World"});

38 }

Listing 1.7: makeStack instantiates a Stack based on the passed argument type.

makeStack in Listing 1.7 is called twice. Since it is a function template it automatically
deduces the type of the passed argument ([BS14, 2.1.1, p. 13]) which the template
parameter F will be substituted with.

• line 34 : makeStack is called with a list of numbers and F is automatically deduced
to int. So the compiler creates a statement return Stack<int> elemList where
F was replaced by int. This statement will instantiate the primary Stack template
(line 6–15)). Further std::vector<T> with T=int is instantiated and add will
finally call std::vector<int>s member function push_back.
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• line 36 : makeStack is called with std::strings, thus the compiler will select the
explicit class template Stack<std::string> (line 17–26 ). Every deck.add(...)

call will result in std::deque<std::string>s push_front() to be called.

After these explanations and a bit C++ knowledge it is clear what vec.add(108) on
line 35 and deck.add on line 37 will call. But this code could be nested inside other
templates and the programmer would have problems finding out which Stack will be
instantiated and what add finally calls.

Our existing Templator plug-in only works for function templates. So the call makeStack
could be resolved and F deduced but not which template will be instantiated. CDT is
only able to resolve class templates for the first hierarchy level like function templates.
Here is where the new Templator2 plug-in will help CDT users.

1.3 Solution

Our Templator2 plug-in adds a new view to CDT to mainly visualize class template
instantiations and class template member function calls. If a CDT user wants to know
which Stack will be instantiated in main in Listing 1.7, he or she can visualize the main
definition with any further function calls and template instantiations. Figure 1.2 shows
this visualization in the “Template Information View”. There are two paths to see.

1. auto vec = makeStack({4,8,14,16,23,42}) statement with the further instan-
tiation of the primary Stack template in the upper part.

2. auto deck = makeStack( { std::string {"Hello"} }); statement with the
further instantiation of the specialized Stack<std::string> inside makeStack in
the lower part.
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Figure 1.2: Listing 1.7 class template instantiations visualized in the new Templator2
plug-in view.

Our plug-in also assists the user by showing which member function is called with the
chosen template arguments from the surrounding class template. Figure 1.3 shows both
calls to add from Listing 1.7. This also shows two known issues. First, our Templator2
plug-in needs a template-id like Stack<int> to deduce the type of vec and deck. It
does not work with auto. Secondly, the add for Stack<std::string> does not con-
tain the class name in the function declarator. The lower void add(std::string

elem) in Figure 1.3 should also contain the class name where it is defined—void

Stack<std::string>::add(std::string elem).

CDT users now have the possibility to visualize many class template instantiations,
(overloaded) member function calls and with the already done work in our term thesis
([BS14]) also function template instantiations. Working with templates in C++ is now
easier and unintentionally executed code may be reduced if the programmer uses our
Templator2 plug-in.

The target audience is every C++ programmer writing template code with Eclipse CDT.
The plug-in can also be used as educational tool in lectures about templates. Future HSR
students may see the Templator2 in use or use the plug-in themself to better understand
what the compiler instantiates and the compiler error messages.
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Figure 1.3: Listing 1.7 member function calls visualized in the new Templator2 plug-in
view.

1.4 Our Goal

The goal of our project is to extend our existing Templator plug-in to also show information
about class template instantiations and their member function calls. Especially for nested
instantiations in a function template or class template body if the instantiation depends
on a template argument.

If there is enough time, we plan to implement

• That the user can select a template-id, a variable of class template instance type
or a class template member function call to visualize the template instance in our
Eclipse view.

• Integrate the new functionality into the existing plug-in so it works also for nested
class template instantiations inside function templates and vice versa.

• Show the user possible other specializations beside the chosen one in the existing
or even a new view.

• A flow chart like process that shows why a specific class template specializations
gets chosen instead of another that could be used
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Our goal is not strictly defined. We will implement as much as possible in the given
time in an easily extensible way so the remaining requirements can be implemented by a
following work.

1.4.1 Focus for This Project

For this work our goal is to implement the above mentioned objectives partially. We will
not have enough time for everything but the goals provide ideas for the reader of what
still could be implemented in the future.

The main focus is on the two first points to support class templates without additional
features.

1.4.2 Postponed Requirements and Ideas

While the Templator2 plug-in already provides useful functionality there is much room
for improvements.

There are cases where extended functionality will not be handled by the plug-in. This
omission could be implemented in the future. The Templator2 cannot yet handle alias
templates or qualified type aliases. Further, there is Substitution Failure Is Not An
Error (SFINAE) which is something the compiler does but not yet implemented by CDT.
Substitution Failure Is Not An Error (SFINAE) should now be easier to implement with
the existing Templator2 plug-in since nested template instantiations are supported and
members in class templates can also be found. The last point is variadic templates that
are not yet supported.

1.5 Time Management

Our project started on the 16th of February, 2015. It takes 17 weeks and ends on June
the 12th, 2015 at 12:00 noon which is when the final release has to be submitted.
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2 Analysis

This chapter gives an overview about some of the possiblities a C++ developer has to
use class templates and instantiate them. It is not complete and only covers cases we
discovered and are relevant for the Templator2 plug-in. For each example, the created
Abstract Syntax Tree (AST) for the code is shown and described what CDT is already
able to resolve correctly. This helps to better understand some of the example in the
following chapters. At the end of this chapter is explained what the Templator2 plug-in
is able to find and resolve and how the existing Templator from [BS14] had to be changed
to support these new features.

An AST in CDT is a representation of C++ code and allows for easy analysis of code.
The definition of an AST and how it works in CDT is described in [BS14, 3.3, p. 25]. All
examples are defined in a source and not a header file where class templates are normally
declared. This is to hold the code more readable and the created AST smaller.

The AST is needed in the Templator2 plug-in to find relevant statements. Template
argument dependent statements and function calls should be shown to the user so he can
see what code is finally executed. All operations to find those relevant statements and
resolved them are done based on the created AST by CDT for the user’s C++ code. This
is why a deep understanding of nodes and their relation is needed. This chapter is hard
to difficult to read just at the start of this thesis because AST nodes are already used
but the chapter after this one builds on the knowledge from this chapter.

2.1 Class Template Instantiations in C++

When using a class template the compiler replaces its template parameters with the
chosen concrete types—called template arguments. This replacing process is called
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instantiation and results in an instance of a template [VJ03, p. 11]. Such a template
instance is only valid when all template arguments have a value. There exist 3 ways to
specify a template argument.

• Specify when using a class template.

• A template parameter has a default value.

• A partial specialization specifies a part of the template parameters with template
arguments.

First, template-ids are described since they are necessary to instantiate class templates.
After, these 3 described variants from above are explained in detail with the created AST
for the sample code.

2.1.1 Template-Id & Nested Template-Ids

A template-id is the class name of a class template with the used set of template arguments
listed in angle brackets <>. They are needed for an instantiation of a class template since
they specifiy the template arguments. One exception exists that is later explained.

Listing 2.2 shows an example of a simple template-id on line 5.

1 template <typename T>

2 struct Stack {};

3
4 int main() {

5 Stack <int > stack {};

6 Stack <Stack <int >> stack2 {};

7 }

Listing 2.1: Usage of a template-id Stack<int> that tells the compiler to instantiate
Stack with T=int. Stack<Stack<int» is a nested template-id and means
that T will be Stack<int>.
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It is also possible that template-ids can occur as template arguments in other template-ids.
This can be nested up to an arbitary level. Each template-id must be found independently.
This means the Templator2 plug-in must be able to find all those template-ids and maybe
instantiate class template recursively to determine a template argument. Listing 2.2 shows
also the usage of a nested template-id on line 6 and Figure 2.1 shows the corresponding
AST for the whole example code. To see is that the first ICPPASTTemplateId from line 5
just contains an ICPPASTSimpleDeclSpecifier for int while the second contains again
an ICPPASTTemplateId with an int.

1 template <typename T>

2 struct Stack {};

3
4 int main() {

5 Stack <int > stack {};

6 Stack <Stack <int >> stack2 {};

7 }

Listing 2.2: Usage of a template-id Stack<int> that tells the compiler to instantiate
Stack with T=int. Stack<Stack<int» is a nested template-id and means
that T will be Stack<int>.

Figure 2.1: The AST for the two type-specifiers from Listing 2.2. Marked are the two
ICPPASTTemplateIds and their sub nodes.
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2.1.2 Explicitly Specifiy a Template Argument on Usage

When using a class template it will be instantiated automatically by the compiler. A
developer does not need to start the instantiation process explicitly. The template
arguments can be specified inside angle brackets <> and separated by commas after
the class name as shown in Listing 2.3. Stack<int, double> instantiates Stack with
T=int and F=double. Meaning all occurences of T and F will be replaced with the chosen
argument by the compiler at compile-time.

Figure 2.2 shows the created AST from this code. The definition of the class template is
inside an IPPClassTemplateDeclaration and its sub nodes.

1 template <typename T, typename F>

2 class Stack {};

3 int main() {

4 Stack <int , double > stack {};

5 }

Listing 2.3: Primary class template with two template parameters. The template Stack
is instantiated with int and double on 5.

Figure 2.2: The AST for the primary class template definition from Listing 2.3. Marked
are the node for the template definition and the template-id where the
template arguments int and double are specified.
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2.1.3 Default Template Arguments

A default template argument can be specified right in the template parameter declaration.
This template argument is used for instantiation if no one is specified when using the
class template. This is used by the std::vector for the second template parameter
where a allocator could be specified. In most cases the C++ developer does not care
about the allocator so a std::allocator is used as default template argument.

template <typename _Tp ,

typename _Alloc = std::allocator <_Tp > > class vector :

protected _Vector_base <_Tp , _Alloc > {/* ... */};

Listing 2.4: std::vector primary template definition with default template argument

A simpler example is shown in Listing 2.5. Again for our Stack which still declares two
template parameters T and F but when using this class template one only needs to specify
T since still are template arguments have a value.

1 template <typename T, typename F=double >

2 class Stack {};

3
4 int main() {

5 Stack <int > stack {};

6 }

Listing 2.5: Primary class template with two template parameters that is instantiated
with int and double on 5.

Figure 2.3 shows again the created AST for Listing 2.5 but with the definition collapsed
because it is almost the same as in Figure 2.2. New is the ICPPASTTypeId for the default
argument.
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Figure 2.3: The AST for the primary class template definition from Listing 2.5. Marked
is the node with the type for the default template argument.

Requirement for a Template-Id

A template-id is always needed for declaring a class template type , except for one special
case which is explained after this example that does not compile. Listing 2.6 shows a
case where both template parameters have a default type. Trying to instantiate it with
using Stack creates a compiler error and <> are needed even though they are empty.

1 template <typename T=int , typename F=double >

2 class Stack {};

3
4 int main() {

5 Stack stack {}; // error but Stack <> works

6 }

Listing 2.6: Primary class template with two default arguments so all template arguments
are known. But angle brackets <> are still needed for the instantiation on 5.

The usage of a class template name without angle brackets <> is only allowed inside a
class template declaration for the same type. This can be used for example for return
types for member functions as shown in Listing 2.7. Using only Stack is equivalent to
Stack<T,F>, meaning it uses the current context for T and F. The created AST is shown
in Figure 2.4.
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1 template <typename T, typename F>

2 class Stack {

3 Stack& operator =( const Stack& other) {}

4 };

Listing 2.7: The type-specifier for the return type is allowed without angle brackets. The
member function will return and accept as parameter argument a template
instance equal to Stack<T, F>.

Figure 2.4: The AST for Listing 2.7. Marked is the node with the type-specifier for the
return type which is an IASTName and not an ICPPASTTemplateId in this
special case.

2.1.4 Partial Specialization

When using a template they still need to be specified. But a partial class template can
explicitly define them so this specialization is chosen when the template is instantiated
with this argument. Some template parameters must still be defined when using them.
For the example in Listing 2.8, the template-id on line 8 is still a template-id with two
arguments.

1 template <typename T, typename F>

2 class Stack {};

3 template <typename T>

4 class Stack <T, char > {};
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5
6 int main() {

7 Stack <int , char > stack {};

8 }

Listing 2.8: Primary class template with two template parameters that is instantiated
with int and double on 5.

Figure 2.5 shows the created AST for Listing 2.8.

Figure 2.5: The AST for the partial class template definition from Listing 2.8. Marked
are the ICPPASTTemplateDeclaration that now only contains one template
parameter declaration and the class name is now an ICPPASTTemplateId.

2.1.5 Specialization Selection and Class Template Instantiation in CDT

The selection of the specialization and the instantiation is already handled by CDT for
the first hierarchy level. Meaning if templates are not nested. For any further nesting
level, Templator2 needs to provide CDT with the chosen template. With it, CDT can
still select the correct specialization and instantiate a template. Letting CDT know about
the template arguments is the difficult part and is later explained in Subsection 4.4.3
(Class Template Instantiation on page 68).

Members are another language feature for class templates and can be declared or defined
inside class templates as for normal classes. Features like member functions, member
templates, and type aliases are explained in the next section.
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2.2 Class Template Members

Class template members can be:

• Member functions that may use the template arguments from the class template or
not.

• Member templates that introduce new template arguments additionaly to the ones
from the class template. Like a function template inside a class template.

• Other members that define new template parameters like other class templates or
even a normal class, alias templates, or variable templates. They are not described
here as they are not supported by Templator2.

• Member variables and type aliases to ease the use inside the definition and for users
of this class.

Members do not have to use template arguments and can be completely independent
of them. A class template can contain other members like a normal class. This section
lists possible members we found with an example and the created AST for the C++

code. This section describes some of the above listed possible members with their AST
representation.

Just to note: The used example class Stack will from now on only have one template
parameter T because the second F is not needed anymore to demonstrate something. The
omission of F does not have another reason.

2.2.1 Member Functions

This subsection contains the description of how member functions can be augmented
with template arguments. In general, a member function call is appended with . or
-> to a variable of a class template instance type. Also a member function inherits the
template arguments from the class template. They can be used as parameters and return
types for member functions.
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For member functions, the template arguments must not be repeated before the definition
as long as the function is defined inline. Even if the member function is defined in a
source file the template arguments only have to be written for the template class.

Listing 2.9 shows a member function bar that is called twice in the main. Once with the
. syntax and the second time on a pointer with -> that first dereferences the pointer
and then calls bar.

1 template <typename T>

2 struct Stack {

3 T bar(T value) {

4 return value;

5 }

6 };

7 int main() {

8 Stack <int > foo {};

9 foo.bar (42);

10
11 Stack <int >* fooPrt = &foo;

12 fooPrt ->bar (42);

13 }

Listing 2.9: Simple class member function call.

Figure 2.6 shows the AST for the member function definition and Figure 2.7 the AST
for the first call foo.bar(42). The one for the call with -> on the pointer is the same
disregarding the call operator difference for . and ->. Interesting is, how the foo.bar

is modeled. The member function name bar has an ICPPASTFieldReference as parent.
From there the variable class template instance type foo can be extracted. From there
on, one will be able to extract the type-specifier for foo which is Stack<int>.

CDT is able to resolve member functions if their owner type is known. This is the
template instance the member function is called on (foo in foo.bar()). Meaning if the
owner depends on a template argument then CDT cannot resolve the call. Also if a
member function is overloaded CDT cannot find the correct function overload after the
first hierarchy level.
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Figure 2.6: The AST for the member function definition bar in Listing 2.9. Marked is the
node for the member function definition, the same as for a normal function
definition outside of a class.

Figure 2.7: The AST for the member function call foo.bar(42) in Listing 2.9. Marked
are the owner node foo and the member function name foo. Both are sub
nodes of ICPPASTFieldReference.

2.2.2 Member Templates

Member Templates are like function templates inside class templates. They can introduce
additionaly template parameters to the ones from the class template. The additional
arguments can be explicitly specified, implicitly deduced from the calls site or given as
default template arguments. They work the same way as template arguments for function
templates which are described in [BS14, 2.1, p. 13].

Listing 2.10 shows a defined member template f. The member template uses T from
Stack and introduces the new template parameter G. G is automatically and exclusively
deduced for the shown call. Meaning another call stack.f(false, 1); will result in
G=bool.

1 template <typename T>

2 struct Stack {

3 template <typename G>

4 void f(G param , T value) {
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Figure 2.8: The AST for the member template definition and call from Listing 2.10.
Marked are the ICPPASTTemplateDeclaration with the new template pa-
rameter G and the call again with the ICPPASTFieldReference.

5 }

6 };

7
8 int main() {

9 Stack <int > stack {};

10 stack.f(5.5, 1);

11 }

Listing 2.10: Member template call. T is still int and G is automatically deduced to
double.

Figure 2.8 shows the created AST. Instead of ICPPASTFunctionDefinition for normal
member functions, member templates are defined by an ICPPASTTemplateDeclaration.
The IASTName for the function name f again has a parent of type ICPPASTFieldReference.

CDT can also resolve member templates if the owner is known and the passed function
arguments does not depend on template arguments.
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2.2.3 Member Variables and Type Aliases

A class template can declare and define variables like a normal class. The only difference
is, that they can additionally depend on template arguments.

Listing 2.11 shows the class template Stack with its member variable elems. The
variable’s type is std::vector<T>. This means the instantiation for Stack<int> will
also trigger the instantiation of vector<int>.

The created AST shown in Figure 2.9 introduces a new node implementing IASTNode—an
ICPPASTQualifiedName. A qualified name is separated by :: into different segments.
Here it is used to tell the compiler that the definition of vector is in the namespace
std. This builds the first segment of the name. The second segment is again an
ICPPASTTemplateId with a template argument that depends on the chosen argument
for T.

1 # include <vector >

2 template <typename T>

3 class Stack {

4 std::vector <T> elems;

5 };

6 int main() {

7 Stack <int > mystack {};

8 }

Listing 2.11: Class template with a member variable that depends on the template
argument for T.

One does not always want to write std::vector<T> when using this type. For this reason
C++ offers the creation of aliases via the using and typedef keyword. Listing 2.12 shows
both of them in action. Both using and typedef are equivalent when defining an alias
and running the program. But as seen in Figure 2.10 they create different AST nodes.
A using statement creates an ICPPASTAliasDeclaration while a typedef creates an
IASTSimpleDeclaration. But they contain the same sub node for the type-specifier
which is an ICPPASTNamedTypeSpecifier. This means when retrieving the type-specifier
for the aliased type std::vector<T> they need to be distinguished.
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Figure 2.9: The AST for member variable elems with type std::vector<T> from List-
ing 2.11. Marked are the type-specifier in form of an ICPPASTQualifiedName
and the containing ICPPASTTemplateId which depends on T.

1 # include <vector >

2 template <typename T>

3 class Stack {

4 using cont=std::vector <T>;

5 typedef std::vector <T> cont_t;

6 cont elems; // cont_t elems is equivalent

7 };

8
9 int main() {

10 Stack <int > mystack {};

11 }

Listing 2.12: Class template with a type alias for std::vector<T> that is used for the
variable declaration.

Type aliases can make the code shorter and more readable. They are especially useful if
further members from vector are often used and can be aliased. A constructed example
in Listing 2.13 shows what is also possible with type aliases. This is more interesting
since it shows the complexity one can use his type aliases with to produce code that may
be hard to read but generally shorter.

Determining the type for elems is now more difficult and takes the following steps for
the compiler.
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Figure 2.10: The AST for Listing 2.12. using and typedef statements create different
nodes. The newly created alias cont is used as type-specifier for elems.

1. Get the type-specifier for elems which is cont.

2. cont itself is an alias for _b::const.

3. Get the type-specifier for _b which is Base<T>.

4. Instantiate Base<T> where T is the template argument Stack has been instantiated
which is int.

5. Now that _b is known and instantiated the compiler can search for a member
named cont in the class template definition for Base.

6. The aliased type for Base::cont is std::vector<T> where T is again int because
the compiler instantiated Base<int>.

1 # include <vector >

2
3 template <typename T>

4 struct Base { using cont=std::vector <T>; };
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5
6 template <typename T>

7 class Stack : Base <T>{

8 using _b = Base <T>;

9 using cont = typename _b::cont;

10 cont elems;

11 };

12
13 int main() {

14 Stack <int > mystack {};

15 }

Listing 2.13: Purposely complex example with type aliases to show what is possible.

This is often used in the C++ standard library and creates a challenge for CDT and the
Templator2 plug-in. Having a look at the relevant created AST nodes in Figure 2.11
reveals that again ICPPASTQualifiedNames were created. ICPPASTQualifiedName offers
getLastName() which returns the IASTName for the last segment. For _b::cont this is
cont. CDT is already able to resolve the correct type for cont if no segment depends on
T—which is not the case here. This means the Templator2 plug-in needs to perform the
above described steps to get the correct type for elems. This theoretically works endless,
so some kind of recursion is needed to resolve this. This is described in Section 4.4.3
(Deduce the Type for Any Template Argument on page 69). Compilers have a limit when
they stop instantiating nested templates.

C++ offers a wide range of language features for class templates. Based on the done
analyis and the created ASTs we will try to implement as many described features to
support class templates in the Templator2 plug-in so the user can visualize them. CDT is
only able to instantiate them on the first hierarchy level if a statement does not depend
on a template argument. This is where the Templator2 will help the user.
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Figure 2.11: The AST for Listing 2.12. using and typedef statements create different
nodes. The newly created alias cont is used as type-specifier for elems.

2.3 Supported Features in Our Templator Plug-in

The Templator2 plug-in supports:

• Instantiations of class templates that depend on template arguments.

• Correct specialization selection for any nesting level.

• Selection of correct member function overload.

• Argument deduction and instantiation for member templates.

• In some cases the resolving of aliased types.

Every point is only valid if the template argument does not come from a nested class
template, alias template or variable template. They are not supported yet respectively
only work in rare cases.

This chapter gave us the insight about the architecture changes we needed to adapt from
our term thesis’ class hierarchy and process. The next section describes our process of
developing an architecture that supports both function templates and class templates.
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2.4 Supporting Function Templates and Class Templates

With the architecture from our term thesis [BS14] we had various difficulties implementing
the new functionallity to support class templates with the Templator2 plug-in. We explain
the problems to support both of them with the existing architecture and what we finally
implemented.

2.4.1 The Existing Architecture

The existing process was to use a visitor to find all ICPPASTFunctionCallExpressions
and then store them in our own class FunctionCall. This class encapsulated the data
and functionality that represented a single function call. FunctionCall then had a list
of FunctionCalls that reperesented the found sub calls that were found in the parent’s
function definition.

The sub calls were strictly of type FunctionCall. This way we could not have class
template instantiations in function templates and vice versa. Our first idea was to
implement both worlds parallel which meant to write an own class ClassTemplate that
could have ClassTemplates as children. The plan was to introduce an abstract base
class so FunctionCall definitions and ClassTemplate could be mixed. The base class
then could have had children of itself. However, when we started writing methods to
search for further possible children we generated many duplicated lines of code. Because
the searching for functions and class templates in a definition was different. Searching
and accepting a found statement was also different for the first hierarchy level and for
all others. For the first level we want a statement that does not depend on an unknown
template argument but for later those statements should be found. This was the point
we noticed that it should be the same code for both cases

At this point we decided to write a new class that could support normal functions,
function templates, and class templates and especially search for every possible sub
statement with the same algorithm.
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2.4.2 The New Architecture

We started with a simple class that only consisted of a list of children of its own class
type. The key to make this work the same in the whole project was to make a factory
method. This factory then can be called from outside for the first level of deduction and
from the inside for all following levels. This way the deduction code was the same for all
cases.

Now came the problem to make this code working for all cases. We searched for
FunctionCalls with a visitor for ICPPASTFunctionCallExpressions as mentioned ear-
lier. Searching for a general AST node did not work for class templates. Resolving
the binding and maybe get the type specifier for a variable was necessary to find out
if a statement is class template related. We found out that we could extract all infor-
mation from IASTNames AST nodes. Still searching for function calls with a visitor for
ICPPASTFunctionCallExpressions was still easier. However, this would have meant to
traverse some IASTNodes twice.

So we built a visitor that traverses all IASTNames for a definition and then decides if the
statement is relevant for us. This way we were able to find functions, function templates
and class templates with the same algorithm and without duplicated code. This list of
IASTNames is all we needed for further processing.

Figure 2.12 shows the final class hierarchy we used to model the statements. Each
concrete class knows how to get the definition for the set binding. A factory method in
AbstractStatementInfo creates the concrete sub class. AbstractStatementInfo offers
searchSubstatements() to start searching for further sub statements.

The following chapters describe how we found the needed information to display in the
User Interface (UI) and stored them into these classes. The gained knowlegde from this
chapter helped us to extract these information from the AST.
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Figure 2.12: Our final class hierarchy to model found statements.
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3 Finding Further Relevant Statements

How does a user get from his code in Listing 3.1 in his CDT C++ editor to the
“Template Information View” containing information about the mystack variable and
further statements shown in Figure 3.1?

1 # include <vector >

2 template <typename T>

3 class Stack {

4 std::vector <T> elems;

5 };

6 int main() {

7 Stack <int > mystack {};

8 }

Listing 3.1: Own class stack contains a std::vector which depends on the chosen
template argument for Stack.

Figure 3.1: Resulting “Template Information View” contributed by the Templator2 plug-
in when visualizing the mystack variable from Listing 3.1
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First, the user selects a name he or she wants to visualize. This triggers the execution of
4 steps in the Templator2 plug-in until the definition with further template instantiations
and function calls will be shown. They are shown in Figure 3.2. The goal is to create an
instance of our own class AbstractStatementInfo with other AbstractStatementInfos
as sub statements. These 4 necessary steps to create this instances are described in the
following 4 chapters.

1. Getting the defintion for the selected statement and finding further statements
inside this definition. Save the results in our own AbstractStatementInfo class.
This is described in this chapter.

2. Create an AbstractStatementInfo for each statement and resolve it to the selected
specialization or function. This is described in Chapter 4 (Template Resolution on
page 55).

3. Use the ASTWriter to match found sub statements from step 2 to find the regions
they will appear in the view. This position is needed to show the user where he
can click to open further sub statements.

4. Use the AbstactStatementInfo from step 1 and all sub entries from step 2 and
visualize them in the “Template Information View”. This is described in Chapter 6
(User Interface on page 78).

This chapter first describes how the definition for the user selected statement is found and
then continues how we find further instantiations and function calls inside this definition.
The terms identifier, IASTName, bindings and binding resolution are frequently used in
this chapter and are explained in [BS14, p. 28].
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Figure 3.2: Rough overview of the steps performed by the Templator2 plug-in to get from
the selected statement to the final view.

3.1 Starting Point

A Templator2 user can select a statement and then start the visualization. We first need
to find the corresponding definition to the selected statement to start the visualization.
However, there may be statements that result in an ambiguous definition.
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3.1.1 Possible Starting Points for Visualization

There are restriction on what can be selected as starting point. The statement has to be
an instance of the CDT class IASTName and has to be fully resolvable by CDT, i.e. the
name cannot depend on a template argument. Listing 3.2 serves as example code to
demonstrate what the user can select as starting point and what not.

1 # include <vector >

2
3 template <typename T>

4 class Stack {

5 std::vector <T> elems;

6 };

7
8 int main() {

9 Stack <int > mystack {};

10 mystack;

11 }

Listing 3.2: Stack<int> or mystack can be used as starting points. std::vector<T> and
elems cannot because they depend on a yet unknown template parameter T.

The following IASTNames cannot be used as starting point.

• line 1 : The IASTName in #include <vector> marks an include possibly containing
type declarations and can thus not be selected. It does not identify a type or
function.

• line 3 : T in typename T could potentially be a type that can be visualized but at
this point it is unknown what the current context is. T has not been substituted by
anything at this point and just serves as declaration for the template parameter.

• line 4 : The class name Stack. This is just the name of the class and the current
context is not known. The name resolves to the template declaration itself and not
to a template instance.
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• line 5 : std::vector<T> and elems both have the same type. elems’ type-specifier
is std::vector<T> so they both resolve to an ICPPDeferredClassInstance. This
means the IASTName depends on a yet unknown template argument for the param-
eter T.

The user will get an error dialog (Figure 3.3) if one of the above IASTNames was used as
starting point.

Figure 3.3: Shown error dialog when the user selects an invalid starting point when trying
to visualize the statement with the Templator2 plug-in.

On the other hand, the remaining names can be used as starting point.

• line 8 : The function name main is a non-template-function and thus declares no
template parameters. All further function calls and template instantiations in the
body can be resolved by CDT.

• line 9 : Stack<int> and mystack have the same type: A template instance for
Stack<int>, meaning the current context is now T=int.

• line 10 : mystack has the same type as the two names from the previous line. It is a
useless statement here but demonstrates a possible starting point without bloating
up the example code.

However, there are still other cases we need to consider. The general algorithm for
determining if a IASTName is described in Section 3.2 (Find Relevant Sub Statements on
page 48) and should now be easier to understand after the above explanation for each
case. The goal is always to get a type-specifier represented by an ICPPASTTemplateId,
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at least for the first hierarchy level. Later it is possible that a class name is used without
the angle brackets <> specifying the arguments.

After this step, our Templator2 plug-in knows that the selected name is resolvable and
will result in a definition we can find.

3.1.2 Find the Definition for the Starting Point

Now that we have a IASTName thatCDT can fully resolve, the corresponding type identifier
has to be found first. As described in Subsection 4.4.3 (Class Template Instantiation
on page 68), we need a template-id which is a represented by an ICPPASTTemplateId

to instantiate the class template. After having the template instance we can use our
DefinitionFinder.findDefinition(IBinding) to get the IASTName from the class
template definition.

3.1.3 Retrieve Type-Specifier for a Statement

Listing 3.3 shows three possible starting points from Listing 3.2. The relevant part of the
AST for these two lines is shown in Figure 3.4. When selecting any of these 3 IASTNames
(Stack<int>, mystack in the first or second line), they should all have Stack<int> as
type so they resolve to the class template specialization for Stack<int>. To achieve this
for any selected IASTName in the example code the following needs to be done.

1 Stack <int > mystack {};

2 mystack;

Listing 3.3: Excerpt with line 9 and 10 from Listing 3.2.

CDT offers functionality to get the nearest enclosing node as described in [BS14, 5.2.2, p.
53]. The user does not have to select the whole node, for example for Stack, it is enough
if the cursor is inside the Stack.

• User selects Stack<int>: Nothing to be done. This is already an ICPPASTTemplateId.
Resolving this template-id will result in a CPPClassInstance where T=int. This
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Figure 3.4: Created AST for the two statements in Listing 3.3.

is the result of instantiating a class template.

• Selecting only Stack: This IASTName is a sub node of the ICPPASTTemplateId.
Resolving this IASTName would result in a CPPClassTemplate which represent the
class template Stack itself but not a specific instance of it. For this case we can
just get the parent node from the AST to get the template-id and through it the
type which resolves to a template instance.

• mystack from the first line: The result when resolving this IASTName is a variable
represented by CPPVariable. A CPPVariable knows its type and we would be able
to get the CPPClassInstance for Stack<int> but we need the template-id for later
resolving—especially in the case of nested template instantiations. Getting the type
from the CPPVariable would only work for the first hierarchy level. So we need to
get the ICPPASTTemplateId to get the type and thus the template instance.

To achieve this we need to extract the type-specifier, which is ICPPASTTemplateId
for this declaration statement from the AST. This is shown in Listing 3.4.

• mystack from the second line: The resulting binding is also the same CPPVariable
like in the last case. But to get the ICPPASTTemplateId we first need to get the
mystack IASTName from the first line. For this we used our existing functionality
from [BS14, 4.2, p. 38] which we changed so we could pass any binding to get the
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definition name from and not just functions. Our clas DefinitionFinder offers
findDefinition(IBinding) and returns the IASTName in the definition statement
for any binding. So we can call findDefinition with the CPPVariable which is
an IBinding. In return we get the same IASTName mystack from the last described
case from the first line. After that, the procedure is the same as described above to
get the ICPPASTTemplateId with Listing 3.4.

1 IASTSimpleDeclaration decl = firstAncestorByType(varName ,

IASTSimpleDeclaration.class , 3);

2 IASTNamedTypeSpecifier spec = decl.getDeclSpecifier ();

3 ICPPASTTemplateId type = spec.getName ().getLastName ();

Listing 3.4: Simplified version of our code to get the type-specifier from a variable
IASTName. All other cases to find a specific AST node from a given point
work like this. First find the ancestor with a specific type and after that use
the nodes methods to get specific sub nodes.

After we retrieved the type-specifier we can call resolveBinding which is existing CDT
functionality to select the correct class template specialization and instantiate it.

Get the Definition for a Class Template Instance

Now that we have the correct binding for a class template instance represented by an
ICPPClassSpecialization it is easy to get the definition for it. There are only two
things to consider.

First, we need to distinguish instances for fully specialized class templates and the
rest. As described in this cdt-dev mailinglist entry [Rid15a], a fully specialized class
template results in an CPPClassInstance instead of an CPPClassSpecialization.
This is something we did not expect because a fully specialized class template like
template<> struct Stack<std::string> does not need to be instantiated since it
contains no template parameters. As further described in the mailinglist entry this
specialization can be distinguished from real template instances with CPPClassInstance.

isExplicitSpecialization(). This is needed for the next step to find the template
declaration.
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Secondly, we need to get the specialized binding for template instances but not for explicit
specializations. For explicit specializations we can just call our DefinitionFinder.

findDefinition with the CPPClassInstance. As result we get the IASTName Stack

for the fully specialized template<> struct Stack<std::string> {};. From there on
we can just find the first ancestor with type ICPPASTTemplateDeclaration with our
ASTTools.findFirstAncestorByType to get the whole class declaration.

For template instances—i.e. the ones that really get instantiated when using the pri-
mary or partially specialized class template—the specialized binding is needed. A
CPPClassInstance represents a specific instance but we need the declaration for the
used class template that was instantiated. This is the specialized binding of type
CPPClassTemplate for an instance we need to find the template declaration. Listing 3.5
shows an example when resolving the IASTName Stack in the template declaration on
line 2 and Stack<int> on line 3.

1 template <typename T>

2 struct Stack {}; // CPPClassTemplate=specialized Binding

3 Stack <int > m{}; // Stack <int > resolves to CPPClassInstance

Listing 3.5: Resolving the IASTName Stack results in a CPPClassTemplate which is the
specialized binding for the CPPClassInstance when resolving Stack<int>.

The CPPClassTemplate will be set as specialized binding in the CPPClassInstance

and to find the definition we need the CPPClassTemplate. CPPClassInstance imple-
ments ICPPSpecialization which offers the method getSpecializedBinding(). Since
class template instances can be inside other class template instance, we need to call
getSpecializedBinding recursively to get the innermost specialized binding. Now we
can do the same thing as for explicit specializations to find the definition and then search
the ICPPASTTemplateDeclaration ancestor.

3.1.4 Save the Information

Now we have every information we need for the starting point. An instance of our
AbstractStatmentInfo is created with the following information.
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• The original selected IASTName by the user,

• The type-specifier that is finally used for resolving to get the CPPClassInstance,

• the CPPClassInstance itself and

• the ICPPASTTemplateDeclaration

This AbstractStatementInfo serves as context for the containing statements in the
ICPPASTTemplateDeclaration. CPPClassInstance offers getTemplateParameterMap()
containing a mapping from template parameters to template arguments which is used
to instantiate further statements that depend on a template argument. Further rel-
evant statements can now be searched in the template declaration since we have the
ICPPASTTemplateDeclaration which is described in the next section.

3.2 Find Relevant Sub Statements

The class template definition is now found and saved in an AbstractStatementInfo

and further relevant statements can be searched in this definition. Found relevant sub
statements are later shown to the user as clickable rectangles (Section 6.2.4 (Rectangle
on page 89)) to open the definition for this sub statement. Note that this example here
works with a class template definition represented by an ICPPASTTemplateDeclaration

but works exactly the same for other definitions like ones from functions or function
templates.

First is described what a relevant statement is for the Templator2 because the described
steps after that are easier to understand.

The whole process to determine if a statement is relevant for us is visualized in Figure 3.5.
Actually the same algorithm is used to determine if a user can visualize the selected
statement or not that is described in Subsection 3.1.2 (Find the Definition for the
Starting Point on page 44). The only difference there is that we deferred bindings
are not allowed ther but they are as sub statements. This algorithm is implemented
in our ASTAnalyzer.extractResolvingName(IASTName, boolean) where the second
parameter is a flag for accepting deferred bindings or not.
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Figure 3.5: Process the determine if a IASTName is relevant. If the name is relevant an
AbstractStatementInfo is created, otherwise null meaning not relevant.
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3.2.1 Determining if a Statement is Relevant

A sub statement is actually also an IASTName and the Templator2 decides based on the
type of the resolved binding if it is relevant for us. IASTName.resolveBinding() returns
a class implementing IBinding. Resolving param in void foo(int param) for example
returns an ICPPParameter. Using Java’s instanceof operator we check for its relevancy
for our Templator2 plug-in.

• IFunction: Every function resolves to an IBinding implementing IFunction.
Since we use IFunction and not ICPPFunction we are also able to find and later
resolve C and not only C++ functions.

• ICPPSpecialization: Every instance where the template parameters can be
determined implements this. Meaning every function template that has been fully
resolved and every class template binding. Every class template has the same
template parameters thus the ICPPTemplateParameterMap can already be built
but contains types dependending on the chosen template arguments. Partial and
explicit specializations class templates cannot introduce new template parameters
but can specialize the already existing ones.

• ICPPUnknownBinding: If a function call is deferred and depends on a template
argument then it resolves to a class implementing ICPPUnknownBinding. This
binding does not implement ICPPSpecialization because it is unknown if it
finally resolves to a normal function or a function template.

We do not yet support

• ICPPUnknownMemberClass: Every member that is defined inside a class template
that is yet deferred, meaning the template has to be instantiated first The exception
are unknown member functions CPPUnknownMethod we are able to find and resolve.

• ICPPUnkownMemberClassInstance: Represents a class template inside a yet de-
ferred class template.

The Templator2 is already able to resolve most of them but our current architecture
with AbstractStatementInfo and subclasses does not support them unfortunately. This
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resolving is described in Section 4.4.3 (Deduce the Type for Any Template Argument on
page 69)

If an IBinding is relevant according to the above list, we process it further. The User
can select the IASTName that resulted in this IBinding at the end in the “Template
Information View”. If not, the IASTName is ignored and the next one is processed.

3.2.2 Find the Relevant IASTName to Check for Relevancy

Now to be able to check if an IASTName is relevant we first need to get the correct
IASTName to resolve the binding on.

The algorithm shown in Figure 3.5 is easier to understand with examples. Especially
why we need to check three times if a binding is relevant. The first example shows a
simple variable that is used and the second one with a parameter where the type is an
alias that does not work yet with our Templator2 plug-in.

Working Example With Variable of Class Template Instance Type

Suppose the user selected intStack as starting point in Listing 3.6. We know that
ICPPASTTemplateDeclaration and its sub nodes for Stack from line 3–10 needs to be
searched for further sub statements. This ICPPASTTemplateDeclaration was found in
the last steps and stored in AbstractStatementInfo.

1 # include <vector >

2
3 template <typename T>

4 struct Stack {

5 std::vector <T> elems;

6
7 void add(T elem) {

8 elems.push_back(elem);

9 }

10 };
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11
12 int main() {

13 Stack <int > intStack {};

14 }

Listing 3.6: elems is an instance variable for with type std::vector<T>.

This example especially shows the processing of elems on line 8. All other nodes are pro-
cessed in a similar way. We iterate over all IASTNames in ICPPASTTemplateDeclaration

with the visitor pattern. Now when we get to elems we do the following steps.

1. Resolve the binding and check if it is already relevant. This identifier resolves to a
CPPField, so not relevant yet.

2. Get the definition for this CPPField. This returns the IASTName elems from the
definition on line 5.

3. We resolve the identifier again which yields the same CPPVariable as before but
this resolving is needed for other cases.

4. Now check if the CPPField implements IVariable which is the case. We now know
that an ancestor of elems is an IASTSimpleDeclaration.

• This is why the distinction between parameters and normal variables is
necessary. The type-specifier for parameters is retrieved differently from
the AST than for variables and typedefs.

5. Retrieve the type-specifier std::vector from the IASTSimpleDeclaration.

6. Create an AbstractStatementInfo with the original IASTName from line 8, the
type-specifier std::vector<T> and the resolved ICPPDeferredClassInstance for
the type-specifier.

7. Return the created AbstractStatementInfo meaning the original IASTName is
relevant and we will resolve it later.
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Non Working Aliases

Now to an example where we find out if an IASTName is relevant or not but cannot resolve
it later.

1 # include <vector >

2
3 template <typename T>

4 struct Stack {

5 // std::vector <T> = finally resolved binding

6 // which is relevant

7 using container_type = std::vector <T>;

8
9 void copy(container_type other) {

10 other; // IASTName to check

11 }

12 };

13
14 int main() {

15 Stack <int > stack {};

16 }

Listing 3.7: other is a parameter and its type is an alias for std::vector<T>.

Suppose the user selected stack as starting point in Listing 3.7. We already know from
the created AbstractStatementInfo that the ICPPASTTemplateDeclaration for Stack
from line 3– 12 needs to be searched for further sub statements.

The IASTName param resolves to an ICPPParameter. That means the definition name
for this binding is needed. Calling our DefinitionFinder.findDefinition with the
ICPPParameter returns the IASTName in void copy(container_type param) from line
9. Knowing that the found IASTName is inside a parameter declaration we can extract
the type-specifier container_type.

Now here is where our problem lies. We use CDT’s existing method SemanticUtil.

getUltimateType to resolve all typedefs and usings, pointers and so on to get the ulti-
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mate type behind a binding. This way we check if std::vector<T> resolves to a relevant
binding but without having the actual used type-specifier std::vector<T>, we only have
the resolved binding of it and do not look for the used IASTName that resulted in this
binding. So SemanticUtil.getUltimateType returns an ICPPDeferredClassInstance

std::vector<#0,std::allocator<#0» where #0 means that the template argument is
unknown. This means we have to resolve it later which will fail because we have saved
container_type as type-specifier.

The alias in Listing 3.7 would be possible to handle and would fit into our classes. But this
would have caused further ugly code that was just inserted to be able to resolve something
quickly rather than fully refactored into nice methods. And we already had enough of
this ugly code at the end we were not able to refactor so we decided against implementing
this feature. Also, an alias can be defined depending on other aliases and can be qualified.
This means this would not have fitted into our existing architecture because we cannot
model qualified name segments besides the last name of an ICPPASTQualifiedName. For
typedef _Base::_Tp_alloc_type::other we can only model other but not seperately
_Base or _Tp_alloc_type. We only considered this cases 3 weeks before delivery and
were not able to change the existing code to support them nicely.

3.2.3 Conclusion

We are able to find many relevant IASTName but not all of them can be resolved later
because we save the wrong type-specifier in some cases. To determine the correct type-
specifier we would need to change the our classes and architecture which we did not
have time for unfortunately. But we still added the finding of these IASTNames for later
because at the end of our thesis it was already clear that we will expand the Templator2
after this thesis.

Every IASTName where the type is not an alias (typedef or using) or a qualified name
is correctly found for later and will be resolved.
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4 Template Resolution

Now that all relevant sub statements have been found, they need to be resolved in the
next step further. The saved binding in AbstractStatementInfo may still be deferred if
they depend on a template argument. The final resolving of deferred bindings is explained
in this chapter. The correct binding is needed to know which class template specialization
or function overload is chosen so the corresponding template declaration for the sub
statement can be shown in the Templator2 “Template Information View”.

CDT is already able to resolve nested data members and member functions inside a
class template instance which is explained first. But the Templator2 plug-in needs to
resolve far more IASTNames than just members. Template names can appear inside of
functions, as type specifiers in parameters, or return types. This chapter continues with
the description why the existing functionality was not enough and how we resolve these
bindings.

4.1 Existing Resolving Functionality

CDT already offers functionality to get all data members and member functions for a
class. This also works for class templates, i.e. template dependent data member and
member functions that depend on a template argument are also specialized and resolved
correctly.

1 # include <vector >

2 template <typename T>

3 class Stack {

4 std::vector <T> elems;
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5 };

6
7 int main() {

8 Stack <int > intStack {};

9 Stack <int > boolStack {};

10 }

Listing 4.1: vector<T> elems depends on the chosen argument for the surrounding
template instance for Foo.

The example in Listing 4.1 will completely be resolved by CDT. Meaning that the
IASTName intStack on line 9 will be resolved to a CPPClassInstance and the containing
std::vector<T> elems on line 5, that depends on the chosen template argument T,
can be resolved to a CPPClassInstance vector<int>. Listing 4.2 shows how to get the
CPPClassInstance for the elems data member in the Stack<int> instance.

1 IASTName name = getSelectedName ();

2 IBinding binding = name.resolveBinding ();

3 IType classType = (( ICPPVariable) binding).getType ();

4 IField [] fields = (( ICPPClassType) classType).getFields ();

5 IField elemsMember = fields [0];

6 CPPClassInstance instance = (CPPClassInstance)

elemsMember.getType ();

Listing 4.2: Getting the binding for the template argument dependent name elems in
Listing 4.1. Simplified without type checking and casts.

• line 1 : Retrieve the selected name, in this case intStack.

• line 2 : Resolve the name to get the corresponding variable binding. Bindings are
explained in [BS14, p. 28].

• line 3 : Get the type of this variable, i.e. the resolved binding from the type-specifier
Stack<int> which is a CPPClassInstance.

• line 4 : Get all class members (=fields) from the template instance for Stack<int>.
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• line 5 : Retrieve the first data member named elems.

• line 6 : Get the type of this variable as on line 3, i.e. resolving the binding for
std::vector<T>. Because the binding is resolved inside a CPPClassInstance,
CDT knows that the template parameter T was substituted by int. So instance

now holds a CPPClassInstance for vector<int>.

The same can be done for the IASTName boolStack. instance then is a CPPClassInstance
for vector<bool> which is a fully specialized template for vector.

4.2 Resolving Other Template Names

But template names can appear at other places than just type-specifiers for class members.
For example, as type of a parameter. CDT offers functionality to specialize them but
does not do it by default.

Listing 4.3 shows the usage of the template dependent initializer_list<T> on line 8
which is represented by an ICPPASTTemplateId. If the name std::initializer_list<T>
will be normally resolved by CDT, it creates a deferred binding indicating that the name
depends on a template argument and thus cannot be fully resolved now. If T is known
later it can be specialized.

1 # include <vector >

2
3 template <typename T>

4 class Stack {

5 std::vector <T> elems;

6 public:

7 Stack(std:: initializer_list <T> elemList) {

8 elems = std::vector <T> { elemList };

9 }

10 };

11
12
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13 int main() {

14 Stack <int > intStack { 4, 8, 15, 16, 23, 42 };

15 }

Listing 4.3: Nested class template that dependends on a template argument.

On the other hand, nested template names that do not depend on a template argument
can be resolved by CDT. initializer_list<int> on line 8 in Listing 4.4 does not
depend on T. Resolving this template-id results in a CPPClassInstance, so the binding
is not deferred.

1 # include <initializer_list >

2
3 template <typename T>

4 class Stack {/*... */};

5
6 template <>

7 struct Stack <int > {

8 Stack(std:: initializer_list <int > elemList) {}

9 };

10
11 int main() {

12 Stack <int > intStack { 108 };

13 }

Listing 4.4: Nested class template with a concrete type that does not depend on another
template argument.

The summary is that CDT is now only instantiating a class template if it does not
depend on other template parameters or is a class member. So the same as with function
templates as described in [BS14]. But for the Templator2 plug-in to work, class templates
need to be instantiated for any nesting level, i.e. even if they are dependent on template
arguments from the surrounding function or class.

The next section describes that there is already CDT functionality to also resolve
initializer_list<T>in Listing 4.3 but why this was not sufficient for us and what we
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implemented to further resolve more function templates, fix errors from the existing
Templator plug-in, and resolve class templates and their members correctly.

4.3 Problems With Existing Functionality

Using the already built in functionality described in Section 4.1 came with the problem,
that the template declaration for the IBinding could not be found in a later step. Thus
resulting in no showable code in the view. It is first described how the instantiation
of nested template dependent names would have worked and second why this was no
solution for us.

4.3.1 Instantiating Nested Template Dependent Names

The initializer_list<T> on line 8 in Listing 4.5 could already be resolved correctly
with ICPPClassSpecialization.specializeMember.

1 # include <initializer_list >

2
3 template <typename T>

4 struct Stack {

5 Stack(std:: initializer_list <T> elemList) {}

6 };

7
8 int main() { Stack <int > intStack { 4, 8}; }

Listing 4.5: Nested class template that dependends on a template argument. Shortened
version from Listing 4.3 (Nested class template that dependends on a template
argument on page 57).

To try and resolve this with existing CDT functionality the following steps need to be
done. Listing 4.6 shows the code to specialize the nested class template followed by a
description of the code.
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1 ICPPASTTemplateId intStack = getStackIntTemplateId ();

2 CPPClassInstance stack = intStack.resolveBinding ();

3 ICPPASTTemplateId initList =

getDependentInitializerListName ();

4 IBinding deferredInitList = initList.resolveBinding ();

5 IBinding intInitList =

stack.specializeMember(deferredInitList , initList);

Listing 4.6: Getting the specialized binding for the template argument dependent name
initializer_list<T> in Listing 4.5. Shortened without type checks and
casts.

• line 1 and 2: Get the Stack<int> name and resolve it.

– Resolving the ICPPASTTemplateId Stack<int> results in a binding of type
CPPClassInstance.

– CPPClassInstance implements ICPPClassSpecialization which provides
specializeMember(IBinding, IASTNode). So a class instance serves as con-
text (the template parameter T is int) and provides a method to specialize
any binding inside the class Stack where T is substituted with int.

• line 3 and 4: Get the ICPPASTTemplateId for initializer_list<T> and resolve
it to a ICPPDeferredClassInstance.

• line 5: Specialize the deferred binding.

– Since it is called on the CPPClassInstance for Stack<int>, T will be substi-
tuted with int.

– The result is an ICPPClassSpecialization for initializer_list<int>.
ICPPClassSpecialization is a sub class of ICPPClassInstance.
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4.3.2 Problems

This seems like we could use it but there are two problems with this solution which are
described in the following.

1. It may influence other plug-ins because the binding is cached.

Each CPPClassInstance has a cache that maps the original binding with the spe-
cialized. So a call instance.specializeMember(originalBinding, node) will
put originalBinding with the specialized returned binding in a map. This should
speedup further member specializations for the same originalBinding. However,
this may influence CDT or other plug-ins that may call specializeMember with the
exact same originalBinding on the same instance. So they might get a wrong
specialized binding for the wrong context. If the Templator2 plug-in adds a deferred
binding for the context T=int to the map, any other plug-in resolving exactly the
same ICPPASTTemplate initializer_list<T> and calling specializeMember on
the same CPPClassInstance will also get a binding for initializer_list<int>—
even though T might be substituted for something else in their context. And our
plug-in should not influence other plug-ins.

2. The template declaration for the binding cannot be found.

specializeMember just calls CPPTemplates.createSpecialization besides the
caching. So only calling this method to get the correct binding would solve the
above problem. But as described in Section 3.1.3 (Get the Definition for a Class
Template Instance on page 46), sometimes getSpecializedBinding() needs to
be used to find a template definition. createSpecialization sets the binding
returned by getSpecializedBinding just to the original binding we passed, i.e.
the deferred binding. CDT cannot find the definition for a deferred binding because
it is unknown which class template got chosen.

Finding the template declaration is essential for our plug-in because otherwise no further
template instantiations and function calls can be visualized for the user. If this would
not have worked, the Templator2 plug-in would have only been able to show the first
hierarchy level—which is exactly what Eclipse is now able to do.
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CDT is able to instantiate them correctly in the background so this might be a feasible
solution in the future. But the way we call and used it caused the above problems. Since
we already had the solution that is described in the following section, and did not have
enough time, we did not further follow the above solution.

4.4 Instantiation of Templates in Templator2

This section describes the solution to instantiate nested templates in Templator2 and
specialize members.

To be able to show the user the resolved template for Listing 4.3 (Nested class template
that dependends on a template argument on page 57), we must instantiate a template with
consideration of the current context. Resolving a template name in CDT means that the
template will be instantiated in the background resulting in an ICPPTemplateInstance.

The problem we needed to solve was to resolve a template argument dependent IASTName
to get a Java class of type ICPPTemplateInstance that is not an ICPPUnknownBinding.
Meaning the binding is not deferred so it is actually known which template specialization
or function overload was chosen so we can get the template definition (=code) and show
it to the user in our view.

We first describe how we improved the resolving of function templates from our term
thesis ([BS14]) and then the resolving of class templates via reflection to call CDT
private methods.

4.4.1 Resolving and Instantiating Function Templates

The old solution to get the template parameter map ([BS14, 4.1.4, p. 33]) was to build it
by ourselves as described in [BS14, 4.1.5, p. 34]. This caused some function templates
to only work on the first hierarchy level. Because the template arguments for function
template calls are sometimes deduced ([BS14, 2.1.1, p. 13]) from the call site there are
many cases to consider. And our code to deduce the arguments did only handle the
simplest cases. If there were further dependend function templates inside this call, they
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could not be resolved. This cases are described in the last paragraph in [BS14, 2.2.2, p.
20].

Because the three described cases can be crucial, this was an unacceptable situation and
we already planned to switch to CDT functionality to build the template parameter map
in our term thesis ([BS14, 7.7.2, p. 68]).

4.4.2 Instantiating Function Templates

CDT already offers the private method CPPTemplates.instantiateForFunctionCall

to instantiate a function template and returns on success an ICPPSpecialization

instance. ICPPSpecialization offers the method getTemplateParameterMap() with
the correctly deduced template arguments, the ones we deduced by ourselves until now.

Implementing the same functionality again by ourselves when there is already a CDT
method that does the same was counterproductive. We decided to call the private

method CPPTemplates.instantiateForFunctionCall via reflection. Even thoug reflec-
tion can be bad since method signature changes do not result in a compile time error but
in a runtime error, it was the better solution than implementing the whole deduction
process again.

Following now two cases that are documented in [BS14, 2.2.2, p. 20] because they did not
work yet in our term thesis. By using this new method instead of our template deduction
process the first two cases now worked. And with it probably many other function
template related argument deductions like the occurence of pointer and references in
template arguments.

CDT implements the described deduction from the C++ standard described in [ISO11,
[temp.deduct.call]].

Deducing Non-Type Template Arguments

C++ offers other template parameter types than template <typename T>. Non-type
parameters like template <int n> can be used to deduce other information.
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A usage example is the first case from [BS14, 2.2.2, p. 20] which is shown in Listing 4.7
to deduce the size of an array.

1 template <typename T,unsigned n>

2 unsigned array_size(T (&value)[n]) { return n; }

3
4 template <typename T=int >

5 void outer () {

6 int arr[] = {1,2,3};

7 array_size(arr); // array_size <int ,3>

8 }

9 int main() { outer(); }

Listing 4.7: Array size deduction with a function template that did not work in our term
project but does now.

The deduction of these non-type parameters now works because of the newly used method
from CPPTemplates.instantiateForFunctionCall.

Function Template Calls As Function Arguments

A programmer can pass the return value of a function call as argument for another
function call as shown in Listing 4.8. This already worked in our term thesis.

1 double sqr(double d) {

2 return d*d;

3 }

4 void calculate(double d) { /* ... */ };

5
6 int main() {

7 calculate(sqr (2.4));

8 }

Listing 4.8: The passed argument to calculate is the returned value of sqr.
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However it did not work if the return type was dependent on a template argument as
described in the second case in [BS14, 2.2.2, p. 20] and shown in Listing 4.9. The user
could not inspect the inner function definition because outer could not be resolved.
The Templator plug-in did not know if the normal function outer(int) was chosen or
the function template. This now also works with the newly used method.

1 template <typename T>

2 void outer(T value) {}

3 void outer(int value) {}

4
5 template <typename T>

6 T id(T value) { return value; }

7
8 template <typename T>

9 void inner(T value) { outer(id(value));}

10
11 int main() { inner (5); }

Listing 4.9: The call to outer depends on the return value of id which depends on the
template argument for T.

Selecting Function Overload Based on the Value Category

Every expression in C++ has a value category as described in [ISO11, [basic.lval]]. The
compiler will consider this category when selecting a function overload.

Our advisor gave us a C++ quiz from [Mau14, Quiz #3] which is shown in Listing 4.10.

1 # include <iostream >

2 # include <utility >

3
4 void y(int&) { std::cout << ’1’; }

5 void y(int&&) { std::cout << ’2’; }

6
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7 template <typename T> void f(T && x) { y(x); }

8 template <typename T> void g(T && x) { y(std::move(x)); }

9 template <typename T> void h(T && x) {

y(std::forward <T>(x)); }

10
11 int main() {

12 int i = 42;

13 y(i), y(42); // 1 2

14 f(i), f(42); // 1 1

15 g(i), g(42); // 2 2

16 h(i), h(42); // 1 2

17 }

Listing 4.10: Pubquiz #3 from [Mau14] where functions are called based on the value
category.

The results are written as comments beside their call. The trick is that std::move

and std::forward may change the value category based on the category for the passed
argument. But the details do not matter here but rather that the existing Templator2
did resolve the last 4 calls (g to h) wrong even after the description in the last section
(Section 4.4.2). The calls from y to f were correctly resolved since they did not depend
on the return type of a function template.

So using CPPTemplates.instantiateForFunctionCall did not solve all overload selec-
tion errors yet. The problem was that the value category for the returned type was not set.
As briefly described in [BS14, 4.1.5, p. 34] we use our class TemplateContextLookupData
to inject data about nested function template instantiations into the CDT resolving
process. TemplateContextLookupData extends the existing LookupData and is used by
CPPSemantics.resolveFunction(LookupData, ICPPFunction[], boolean))) to get
the passed arguments for a function call. TemplateContextLookupData now replaces
the returned type when depending on a template argument.

This was the status after the term thesis. Each call just returned the correct type
but did not store any information in the TemplateContextLookupData about the re-
placed types. resolveFunction also uses the value category of the passed arguments
to find the best matching overload. Since the replaced types were not stored in the
TemplateContextLookupData, this means the yet unknown value category for the tem-
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plate parameter was used which defaulted to an lvalue. The solution included to go
through all passed arguments, replace them with the correct template arguments or the
return types of another function call, and set the value category and other data based on
these new types. Pubquiz #3 can now be fully resolved wtih this extension.

Overload Selection for Member Functions

Extending TemplateContextLookupData by replacing other members of LookupData

also helped to resolve other bindings. The resolving of overloaded member functions also
works with resolveFunction and uses LookupData.fImpliedObjectType which is the
type of the owner, where the member function is called on. The owner binding is already
resolved in another part but was also not yet stored in TemplateContextLookupData.
However just replacing the fImpliedObjectType is not enough. The qualifiers of this
type needs to be preserved as they are used for overload selection. Listing 4.11 shows
such an example. stack.foo() calls the first foo because stack (=fImpliedObjectType)
is not const. The second one is called on con which is const hence the second foo is
called.

1 # include <iostream >

2 template <typename T>

3 struct Stack {

4 void foo() { std::cout << "1"; }

5 void foo() const { std::cout << "2"; }

6 };

7
8 int main() {

9 Stack <int > stack {}; stack.foo(); // 1

10 const Stack <int > con {}; con.foo(); // 2

11
12 }

Listing 4.11: Member function overload selection based on qualifiers.

A type like Stack<int> can be wrapped into a container like a CPPPointerType,
CPPReferenceType, or CPPQualifierType that saves the original type Stack<int>. The
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fImpliedObjectType needs to be replaced considering all possible containers and set
member attributes to preserve all qualifiers. SemanticUtil.replaceNestedType luckily
already offers exactly this to replace only the innermost type in a type container.

Such overloads as shown in Listing 4.11 now also work for any nesting level with the
replacement of the TemplateContextLookupDate.fImpliedObjectData.

4.4.3 Class Template Instantiation

The best and easiest solution to resolve and instantiate class templates is again by
reflection. We did not find any other method in CDT to easily resolve deferred
class templates where the Templator2 could replace template parameters with tem-
plate arguments. The next sections describes what the Templator2 does to resolve
ICPPDeferredClassInstances.

CPPTemplates.createBinding(ICPPASTTemplateId does exactly what was needed to
resolve a type-specifier. Expanding this method would have been convenient. Getting
code into CDT is difficult, especially when we cannot guarantee that it works for all class
templates. That is why we needed another solution. One with injecting something like
our TemplateContextLookupData as we do for function template did not work for this
method. The method checks at one point if a template argument depends on another
template argument. If this is the case, an ICPPDeferredInstance is returned—the one
we already have and want to fully resolve. Our final solution to this was to

• Copy the whole CPPTemplates.createBinding method into a class of our own.

• Replace all private method that createBinding calls in CPPTemplates with
reflection calls for these private methods.

• Replace the dependent types and instantiate the class template.

The disadvantage of this solution is the maintainability. Every time CPPTemplates.

createBinding changes, our method has to be updated. The whole extension with the
replacing of an argument is extracted into a single method which will make the updating
easier but it is still an ugly solution and hard to maintain.

68



We distinguish three different cases for the argument to replace in our added code to
createBinding.

• The argument is of type ICPPTemplateParamater. For this case the corresponding
argument from the current context (=the parent AbstractStatementInfo) will be
retrieved.

• The argument is a ICPPASTTemplateId. We instantiate all ICPPASTTemplateIds
recursively to get the ultimate type for these nested template-ids.

• The argument is defererred but not an ICPPASTTemplateId. We try to retrieve
the type from the a parameter, variable, aliased type etc. This algorithm works
recursively and is described in the next section.

Deduce the Type for Any Template Argument

Deducing the type for any IASTName can be hard. This could resolve to a parameter, a
variable, or an aliased type or a parameter/variable with an aliased type. This is a feature
that we implemented in the second last week before the final release. The implementation
is not yet finished but serves as good starting point to resolve other types in the future
and caching them will also be easy. There was just no time before the final release to
implement all this.

Lets consider Listing 4.12. The template argument for std::vector<cont> is cont which
has to be fully resolved first. An IType is needed so the existing template argument can
be replaced.

1 # include <vector >

2
3 template <typename F>

4 struct Base {

5 using cont=std::vector <F>;

6 };

7
8
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9 template <typename T>

10 class Stack : Base <T>{

11 using _b = Base <T>;

12 using cont = typename _b::cont;

13 std::vector <cont > elems;

14 };

15
16 int main() {

17 Stack <int > mystack {};

18 }

Listing 4.12: Aliased type

Our StatementTypeDeducer executes the following steps to deduce the type of cont to
std::vector<int> so we finally have std::vector<std::vector<int>.

1. Resolve the IASTName cont which results in an ITypedef.

2. Get the IASTName for the type alias in the alias declaration with DefinitionFinder.

findDefininition. This returns cont from line 11.

3. Now that we know we resolved an ITypedef we try to get the type-specifier for
the aliased type.

4. We notice that the type-specifier is an ICPPASTQualifiedName. So iterate over all
name segments.

5. First check _b and also get the type-specifier for this aliased type which is Base<T>.

6. Instantiate Base<int> because we instantiated Stack<int> and thus T=int.

7. Save this Base<int> template instance because the next qualifier segment cont is
a member of this class template instance.

8. Instantiate the member with CPPTemplates.instantiateBinding which does not
have the described problems from Subsection 4.3.1 (Instantiating Nested Template
Dependent Names on page 59) and is our solution to this.
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9. Create a new AbstractStatementInfo for the created Base<int> instance that
will serve us as new context. The next step explains why.

10. Find the definition for the instantiated member binding cont. This returns the
IASTName cont from line 5. Now all further templates must be instantiated with
F=int because we switch to a new ICPPASTTemplateDeclaration which introduces
a new parameter F.

11. Resolve the binding to see that it is an ITypedef.

12. Retrieve the aliased type-specifier std::vector<F> from line 5.

13. Instantiate std::vector<F> with F=int. The result is an CPPClassInstance

which implements IType.

14. Replace the argument cont in std::vector<cont> on line 12 with this type
CPPClassInstance std::vector<int>.

This case was rather easy. Our StatementTypeDeducer can also handle nested classes
and alias templates. The difficult part is handling these instantiations and context
changes recursively. Section 2.3 (Supported Features in Our Templator Plug-in on page
35) describes that nested class templates and alias templates are not supported. Also,
that such qualified type aliases do not yet work with the Templator2 plug-in. The correct
wording is: Many of these language features can be correctly resolved but they are not
shown to the user. This was the last implemented feature and to support these language
feature to be shown to the user, some bigger architecture changes were necessary. There
was no time for this. This means for the user that he may need to define an alias type
and use this aliased type as template argument to see what it resolves to.

Resolving Without a Template-Id

A class template name can be used without <> inside the class template. This is described
in Section 2.1.3 (Requirement for a Template-Id on page 24) and means the current
context from the surrounding class template is used. Stack is used as type-specifier in
Listing 4.13, so the corresponding node is an IASTName but the Templator2 needs an
ICPPASTTemplateId to resolve the class template binding.
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1 template <typename T, typename F>

2 class Stack {

3 Stack& operator =( const Stack& other) {}

4 };

Listing 4.13: Type-specifier for the return type is allowed without angle brackets. The
member function will return and accept as parameter argument a template
instance equal to Stack<T, F>.

One solution would have been to just clone the parent AbstractStatementInfo. We
decided us to get the type-specifier from the parent which will resolve to the current
class template again. The current solution resolves the ICPPASTTemplateId again but
caching can be implemented easily later.

4.4.4 After the Resolving

This step was a success if the binding is not deferred or unknown. If this is still the case
the AbstractStatementInfo is thrown away and the user will not be able to click on
this statement later in the view. However, he will see in the “Template Information View”
that the resolving was not successful for this IASTName.

If the statement is resolved to its final binding considering template argument, the
definition for it is searched as described in Section 3.1.3 (Get the Definition for a Class
Template Instance on page 46). Now the AbstractStatementInfo for a sub statement
is final. One thing needs to be done before the AbstractStatementInfo for the starting
point is shown in the UI. The matching information of AST nodes of sub statements
with their string representation is needed. This is described in the following chapter.
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5 AST Node and Text Matching

To show the user which function gets called or which class template is instantiated, we
show the function or class definition in an Eclipse view. This is done by printing an
IASTNode with the existing ASTWriter.write(IASTNode) which just returns a string.
This string is then shown in the view. The final goal is to frame template depending
nodes to indicate the user that he can click on them. We needed to achieve a match
between the IASTNodes and their string representations.

This section describes why we had to change our existing solution from the term thesis
[BS14], what we tried, why it did not work and finally the implemented solution.

The result is shown in Figure 5.1. At the end the region (offset and length) for each
sub statement should be found so it can be passed to the UI to draw rectangles. They
indicate to the user that he or she can click on it to open the definition.

Figure 5.1: The goal of this chapter: Find the regions for vector<T> and elems. Finding
the position for each sub statement to later draw a rectangle around it.
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5.1 The Existing Solution

The solution implemented in [BS14] was string matching. This was enough because we
formatted the text so, that each call had the template-id even if it was not in the original
call.

This lead to a search string in the form of function name + template id + passed

arguments. Listing 5.1 shows the existing solution with their search strings as com-
ments.

1 template <typename T>

2 T id(T value) { return value; }

3
4 template <typename T>

5 T sqr(T value) { return value*value; }

6
7 template <typename T>

8 void start(T value) {

9 // searchstring:

10 id(value); // id <int >( value)

11 sqr(value); // sqr <int >( value)

12 id(value); // id <int >( value)

13 }

14
15 int main() { start (4); }

Listing 5.1: Code example with the existing search strings.

After each found string, we continued searching for the string after the last found string
position. With this approach id<int> (value) is correctly found twice on line 10 and 12.
This method only failed if this exact same string was in a string literal like Listing 5.2.

std:: string s {"id <4>( value)"};

Listing 5.2: Search string in string literal where the existing solution failed.
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This problem only occured if the literal is exactly between the last matched string and
the actual function call.

This solution worked for almost all function template calls except for the above mentioned
string literals.

5.2 Problem With Class Templates

This method however was not enough for class templates. Our plug-in should be able
find declarations, class template instance variables, the class name used as type inside the
class and more that depends on template arguments. The latter two, instance variables
and class names, had a very high fault rate. In our manual tests in our test classes, we
were still able to find most strings correctly but in std::vector for example we had
around 10% wrong matches.

Considering the declaration for the std::vector copy constructor in Listing 5.3.

vector(const vector& __x);

Listing 5.3: std::vector copy constructor declaration.

The parameter type const vector& is dependent on the template argument. So we use
“vector” as search string and find the constructor name instead of the parameter type.
This could happen on many locations because the search string is so short and not as
unique as with function template calls.

Since the region matching needed to be fully deterministic, we had to find another
solution.

5.3 Search for the Parent Nodes String Representation

The next idea was to call IASTNode#getParent() to get the direct parent or even
grandparent node and use its string representation as search string. We then used this

75



search string to search in the whole class. Figure 5.2 shows that the parent is the node for
const vector and its parent is the whole parameter declaration const vector& __x.

Figure 5.2: AST for parameter type vector in Listing 5.3

This solution worked for this and many other cases but it was still possible that the
grandparent node would have been the whole IASTTranslationUnit. Because of this
the search result would have been worse. Usually the search offset was always increasing.
In the case when we found the whole translation unit this offset was reset to 0. This
made the search offset decreasing. In this case the search of the next string would have
started at the beginning of the translation unit again.

This solution reduced the number of errors but we wanted a solution where we could
guarantee that each node we frame is certainly correct. This was not possible with this
solution.

5.3.1 Writing Node for Node

The optimal solution was to know the offset for each written IASTNode. So a mapping
from each IASTNode to the offset in the written string by ASTWriter.write(IASTNode)

would be possible. The problem with the ASTWriter is that the class has no configuration
options or flags that could be set.

It was assumed that it would not work but we wanted to be shure. We tried to write
node for node instead of the whole ICPPASTTemplateDeclaration to be able to build a
map in the background that stores the offset for each node. We tried to write only the
leaf nodes but it failed. Obviously, the parent nodes contain more information which is
lost when only writing the leaf nodes.

When printing only the leaf nodes for the copy constructor declaration (Listing 5.3) the
result would have been vector vector &__x. The indentation, newlines, parentheses
and other missing characters would have been missing with this approach.
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5.3.2 Hooks in the ASTWriter

Our only possibility was to use the ASTWriter directly because it was writing the code
and so it would be the only way to somehow gain a perfect mapping between IASTNodes
and regions.

The ASTWriter uses the ChangeGeneratorWriterVisitor to traverse the AST. We cre-
ated a sub class of it that overrode the visit(IASTName) function. In this function, before
we call super.visit(name); we could finally make a deterministic mapping between the
IASTNode and the current offset in the text. The current offset was easy to determine.
We could read it out of the scribe with the function scribe.getBuffer().length().

We stored the mapping between the IASTNodes and their offset in a map. Since the
ASTWriter was processing a copied AST, it was also necessary to store the original node
for every IASTName. This was finally the deterministic mapping that we were looking
for.

There is one drawback to this solution. Names in macros are not processed in the
ChangeGeneratorWriterVisitor. If the ChangeGeneratorWriterVisitor processed a
macro, it copies the source code of the macro from the source file and writes it. This is
done with the code in Listing 5.4.

protected int writeMixedStatement(IASTStatement statement) {

String code = statement.getRawSignature ();

scribe.println(code);

return ASTVisitor.PROCESS_SKIP;

}

Listing 5.4: The ChangeGeneratorWriterVisitor simply copies macros from the source
file.

Because of this, template dependant names in macros are not found with the Templator2
plug-in. Besides this issue, this is the perfect solution for this problem.
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6 User Interface

Eclipse’s Standard Widget Toolkit (SWT) is a heavyweight widget toolkit for Java. In
addition, JFace adds an additional abstraction layer and richer widgets with even more
UI classes. But none of the existing widgets had the functionality we needed to show the
template instantiation to the user, so we had to build it ourselves.

This chapter describes the evolution of our UI. First we discuss why we had to rework
the UI in this semester. Then we go over the concepts we followed when implementing
the view and finally we will talk about the challenges that we encountered during the
implementation.

6.1 From the Old to the New View

In this section we will discuss why we had to rework the UI in this semester thesis. It
explains the problems that we found with our old view and gives an overview what we
wanted to accomplish with our new version of the view.

6.1.1 Problems with Our Existing View

The view as it was in the final version of the plugin from the term thesis was already
very robust. In this thesis during the first few weeks we could research class templates
and use the existing view to visualize our findings. This was mainly possible because of a
single inteface ViewData that coupled the data with the UI. The interface only contained
a handful of functions. We just had to implement these functions to have the possibility
to visualize class templates. For the first few weeks of the semester this was absolutely
sufficient.
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But when we started to examine files from the standard library we started to notice that
the view was very confusing for big files (Figure 6.1). This was because the connection lines
between the nodes went from the originating rectangle to the middle of the destination
entry in the next column. For files with for example 1000 lines of code, these connection
lines where almost vertical and the user could not gain any information out of them. The
problem is illustrated in Figure 6.2.

This was bad, because the connection lines are our main way to communicate the tree
like structure of the template deduction. It was also very circumstantial to close a link
because the user had to click the correct rectangle in the originating entry to close an
open link. This forced the user to scroll hundreds of line to find the correct rectangle.

Figure 6.1: Screenshot of the old version of view
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Figure 6.2: Illustration of the problem with big files that we encountered with the old
version of view

So we had noticed that our view was working fine for small classes and functions but
was not sufficient for big classes or functions. We now had to find a solution that was
almost the same for small files but offered more flexibility and comfort for big files. This
was due to the fact we wanted to keep the majority of the code from our old view. Since
the code was already very clean we only wanted to rewrite a few of the existing classes.
But at this point it was clear that we had to get our hands dirty in this semester thesis
for UI. The usability of out plug-in was always a big focus for us next to the logical
functionallity.
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6.1.2 Paper Prototyping the View Concepts

We created a paper prototype that showed several concepts for the view. We discussed
these proposals with Thomas Corbat. He agreed that the current version of our UI was
not sufficient to offer an acceptable support for class templates. He preferred variant 2 of
the sketches that are illustrated in Figure 6.3. He gave us green light to start working on
a prototype. With a interactive prototype it would be a lot easier to imagine how the
view would turn out.

Figure 6.3: Paper Prototyping of UI improvement planning
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Vision of the New View—Resizable Source Boxes

The vision for our new view was to visualize the code in small Boxes that are connected
with Bézier lines. It must be possible to resize the boxes and add a simple way to
minimize and maximize them. When all boxes are minimized, the visualization should
look like a tree to give the user an overview of the call hierarchy. He then can further
examine nodes that he is interessted in.

Figure 6.4: An overview of the new view

In the next chapter we are discussing the concepts that we followed when we where
implementing the new version of the UI. It also gives a brief overview about the process
of the implementation.

6.2 The Evolution of the view

In this chapter we give a overview of the developement process of the new UI. We explain
the evolution from the old to the new view and describe the design of the new view.
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6.2.1 Problems with Old View

The top level layout is the outermost layout that defines how the components of the view
are arranged and how the view reacts to scaling. Most applications use a layout manager
like for example a grid layout for their top level layout. The advantage of this is that
that the layout manager calculates the position and size of all components of the UI
itself. Therefore layout managers are very easy to use.

But this simplicity comes with the cost of flexibility. Mainly the fact that the layout will
resize all its content on its own makes it impossible to achieve the resizing feature that
we where planing. Because of this we needed a new approach for the top level layout.

In our previous version of the view, we where using nested grid layouts to achieve the
column layout, that is characteristical for our view. This solution was woking but very
complex to implement. Also the realization of our very simple needs with an existing
layout manager lead to a hudge overhead in code because the layout manager was not
designed to solve our needs. And now that we additionally needed to have resizable
components in the view, nested grid layouts where not an option anymore.

We also wanted to reuse most of our component classes. Most of them where offering a
specific functionality that was needed for the new view as well. Since the majority of the
components are encapsulated in small classes we could leave most of them the way they
are because they where designed to be interchangable. They could be reused more or
less directly in our new view. The remains where a few top level layout classes that we
had to rewrite.

6.2.2 Developing a New Top Level Layout

After the first few weeks in this thesis we knew pretty well what we wanted to achieve
with the new view. When we started with the implementation of the new view we
concentrated on the most important part of the UI - the top level layout. As a first step
we made it possible to places composites of different sizes on a ScrolledForm which we
used as root composite. ScrolledForm is offered by SWT and has the advantage that is
has scroll bars built-in. We did not have a layout manager for this form. We calculated
the coordinates of all composites ourselves. This is what a layout manager does.
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The piece of code that substitutes the layout manager is a relatively simple nested for
loop that is shown in Listing 6.1. It iterates over all columns of entries that need to be
shown (Line 5). It then iterates over all entries of this column (Line 9). For every entry
it sets its position according to following rules:

• Left offset: Accumulated width of every previous column where the width is the
width of the broadest entry in the column (Line 13-15).

• Top offset: Accumulated height of every entry in the current column. The top
offset is reset to zero after every column (Line 6).

This assures that the columns do not overlap. Figure 6.5 shows a sample of how the view
could look like with a few uneaven sized entries.

1 public void recalculateLayout () {

2 int currentLeft = BORDER_MARGIN;

3
4 List <TreeSet <TreeEntry >> columns = entries.getColumns ();

5 for (TreeSet <TreeEntry > column : columns) {

6 int maxWidth = 0;

7 int currentTop = BORDER_MARGIN;

8
9 for (TreeEntry entry : column) {

10 entry.setLocation(currentLeft , currentTop);

11 currentTop += entry.getSize ().y + MARGIN;

12
13 if (entry.getSize ().x > maxWidth) {

14 maxWidth = entry.getSize ().x;

15 }

16 }

17 currentLeft += maxWidth + CONNECTION_COLUMN_WIDTH;

18 }

19 }

Listing 6.1: Entry coordinate calculation.

84



Figure 6.5: Visual explanation of the algorithm variables

Since this piece of code took care of almost all of our layout problems we could throw a
big chunk of code away that was responsible to manage the top level layout in the old
version of the view. We did not take this step immediately after implementing the new
version as we explain in Subsection 6.2.3.
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6.2.3 Keeping Support for Our Old Layout

To have as few changes as possible we first extended our plugin. We introduced the
possibility to have multiple views on the same data and the view was easy to interchange.
This facilitated us to work on the resolving and deduction of templates and on the new
view at the same time because the old view was still fully operational. But we did not
add simultaneous support for both views because eventually the old view was removed
anyway. Instead we had one point in code where we could easily change between the two
(Listing 6.2).

1 public static void showTemplateInfoUnderCursor () {

2 TreeTemplateView view =

openView(TreeTemplateView.VIEW_ID);

3 // TemplateView view = openView(TemplateView.VIEW_ID);

4 initTemplateView(view);

5 }

Listing 6.2: Interchanging the view.

The possibility to make the view interchangable seemed like a good idea to us since it
would later be possible to build a new view on the same data.

Originally we planed to keep the old view in the plugin. But this would have meant that
we had to refactor several components to support both versions of the view. This would
have lead a lot of gratuitous work.

Finally we decided to get rid of the old view completely and optimized the components
for the new view.

6.2.4 Components of New View

In this setion several terms will be explained that are used frequently in the UI docu-
mentation.

This is a list of the most important components of the UI. Each one will now be explained
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in its own paragraph.

• View

• ViewEntry

• SubEntry

• Rectangle

• Link

View

The view is the visual representation of our plugin. It is a tab in eclipse and can be
arranged according to the affectation of the user. The view can be understood as an
empty plane that can be filled with content (Figure 6.6).

Figure 6.6: The empty view
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ViewEntry

A ViewEntry is one code box (Figure 6.7). The view typically consists of multiple
ViewEntrys. These are the only components that our view can contain. The ViewEntry
consists of a header area and a source area. The source area shows the pice of code the
ViewEntry is representing. The header area displays additional information about the
code and also several tools to assist the user. These tools also help the user to find out
about actions he can perform with the ViewEntry.

Figure 6.7: A single ViewEntry

Sub Entry

Sub entires are also ViewEntrys. The difference is, that they belong to a parent ViewEntry
(Figure 6.8). This means that they are hard wired with their parent. If a ViewEntry is
closed all its sub entries are closed with it.
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Figure 6.8: A minimized and a normal sub entry

Rectangle

Rectangles (Figure 6.9) mark text sections in the source code area that are interessting
for the user. Their visible representation is a colored border around the text. They offer
interactivity to the user and are therefor clickable.

Figure 6.9: Rectangles in a ViewEntry
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Link

A link (Figure 6.10) is a connection between a ViewEntry and its sub entires. They are
not interactive. They are often called Bézier lines. The vertical line at the origin of a
link marks the line in the source code where the originating rectangle is located.

Figure 6.10: Links between a ViewEntry and its sub entries

6.2.5 Visual Improvements

Out goal was to make a plug-in that is visually appealing and comfortable to use. This
implies that every action that the user can perform needs a visual feedback. This is the
main reason an application is easy to learn und intuitive to understand. Visual feedback
was sometimes difficult to achieve because it felt wrong when the look and feel differed
to moch from a standard Eclipse plug-in. That is why we invented new visual concepts
for some features.

The most obvious visual improvement are the scroll animations. When a new ViewEntry

is opened the view smoothly scrolls to this entry opposed to just jump to it. This is
important because jumping makes the user loose track of where his attention is in the
view. This is the most important visual improvement.
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6.2.6 Sorting of Columns

One major requirement for the view is the sortig of entries in one column. This was
already disussed in our term thesis thesis ([BS14, 5.3.3, p.58]). The problem remained
the same and since we had already solved it in our term thesis it was relatively simple to
adapt the solution for the new view.

The sorting relies on a array of integers for each ViewEntry that represents its weight.
The integers in this weight array are derived from the indices of all rectangles that where
opened to reach the actual ViewEntry. This is shown in Figure 6.11.

We will explain the sorting with a simple example: The first entry (root entry) is alone
in its column and therefore has a weight array of size 0 because it is not originating from
a rectangle. Lets say the sub entry number 3 of the root entry was opened. The new
ViewEntry will be added to column number 1 and therefor have a weight array of length
one. The weight array contains the single number [3]. If then the sub entry number 4 of
the just opened ViewEntry is opened it is added to column 2 and has a weight array of
length 2 that contains [3,4]. The wight arrays are also shown in Figure 6.11.

It is simple to sort the ViewEntrys in one column with these weight arrays. To compare
two ViewEntrys all the integers in the weight array are compared from left to right. As
soon the weight integer differs the order of the ViewEntrys is defined. The smaller weight
comes before the heigher weight.

This ordering technique also offers some nice side effects. The length of the weight array
corresponds with the index of the column that contains the ViewEntry. The last weight
integer in the weight array corresponds with the originating sub entry index in the parent
ViewEntry. These side effects help to gain performance in the ViewEntryCollection

that is described in Subsection 6.2.7.
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Figure 6.11: Weight arrays of ViewEntry that are used for ordering

6.2.7 Entry Collection

To keep the TemplateView class simple we introduced the ViewEntryCollection class
that is a specialized collection to store ViewEntrys. It encapsulates the sorting code and
offers a two dimensional list of ViewEntrys to the view (Listing 6.3). This list is already
sorted and the view can diretly arrange the ViewEntrys in the view according to this
list. The arranging algorithm is described in Listing 6.1.

1 public List <TreeSet <TreeEntry >> getEntries ();

Listing 6.3: Get the ViewEntry list from the ViewEntryCollection.

The ViewEntryCollection also offers a set of simple functions to add and remove
ViewEntrys.

Internally the ViewEntryCollection operates with ViewEntryNodes. These nodes en-
capsulate the tree like hierarchy of regular ViewEntrys. The ViewEntry itself has no
knowledge of its ancester and children.

Since a ViewEntryNode knows its parent and children it is very simple to perform a
recursive remove operation. This is neccesary because without a parent ViewEntry a sub
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entry cannot exist. That is why all sub entires have to be removed from the view as well
when a ViewEntry is closed. The simplified removal algorithm is shown in Listing 6.4.
This is the main purpose of the ViewEntryNode class.

1 private void remove(ViewEntryNode node) {

2 removeChildren(node);

3 // destroy the node

4 }

5
6 private void removeChildren(ViewEntryNode node) {

7 for (ViewEntryNode childNode : node.getChildren ()) {

8 remove(childNode);

9 }

10 }

Listing 6.4: Recursive removal of ViewEntryNode.

6.3 New UI Features

After we have been working on the new view for about two weeks, we had all features
from the old view integrated in the new view. At that time we had the base functionallity
and could start adding new features to the UI.

6.3.1 Using CSourceEditor

Originally where where using a basic StyledText from SWT to display the code. The
StyledText class allows to format the text that it is displaying.

We used this feature to implement syntax highlighting since it is a must have feature
when displaying code. The problem with a native StyledText was that we had to use a
regex to find the correct words to highlight. Also the user settings for the editor where
not affecting our view.
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We could solve this by using the CDT built-in class CSourceEditor. This class performed
syntax highlighting on its own and all the user settings from the editor where taken into
account automatically.

Although the CSourceEditor was causing two problems and one of them we could not
solve.

The first problem was caused by the built-in scroll bars of the CSourceEditor. The scroll
offset of the built-in scroll bars was not added to the rectangle coordinates. Because of
this the repainting of the rectangles did not works as expected. This could be seen as a
weird effect where the rectangles position did not match the text.

Our solution for the first problem was to use a ScrolledComposite that encapsulated the
CSourceEditor. The scroll bars of the ScrolledComposite where taken into account by
the rectangle painter just fine. This structure was solving the rectangle paint problem.

But the second problem remained. Since the CSourceEditor had no scrollbars itself
anymore, it was messing up the calculation of the maximal line length. Then it was
cutting all code that is longer than this maximal line length (Figure 6.12). We could not
find out how the CSourceEditor was calculating this maximal line length. It seemed
that it was only taking the first few lines into account because long lines at the beginning
of a piece of code are working just fine.

Since files rarely have such long lines, we decided leave this bug in the plug-in. For
normal use, this should never be a problem. We also did not want to waste to much time
researching this issue since it was happening very seldom.

Also the user still has the possibility to resize the ViewEntry to an extent that he can
see the cut code.
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Figure 6.12: Text is cut after a certain line length

6.3.2 ActionButtons

Every ViewEntry has a set of ActionButtons. They offer the possibility to minimize,
maximize and close a ViewEntry.

Or intention was to give the user the functionality that he is accustomed to from the
Microsoft and Apple operating systems. We tried to make the ActionButtons as similar
to those operating systems as we could. In the next paragraphs we will explain the
difference to the regular behaviour.

The close button works straight forward. It closes the ViewEntry. It only closes the
visual representation of a ViewEntry but not its underlying Data. This has the effect
that opening an entry for the second time is significantly faster.

The minimize button resizes an entry to the smallest possible size. On a minimized
entry only the header is visible. The user can still see the name of the entry but the
code is hidden. We decided to implemented this in a very simple way. Upon pressing
the minimize button the ViewEntry changes its size to the minimal size it can be. The
outcome is the same as if the user would have resized the ViewEntry with the mouse.
This means that it is still possible to resize the ViewEntry with the mouse when it
is minimized. We found a more complicated solution unnecessary because we would
have had to introduce a special mode for a minimized ViewEntry. It would have been
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Figure 6.13: Minimizing a ViewEntry

complicated to add and remove the source area and therefor we implemented the simple
solution. In the end, both solutions would have looked the same anyway but the simple
solution also offers more flexbility. The outcome of a minimize operation is shown in
Figure 6.13.

The maximize button changes the size of the ViewEntry to its optimal size. If possible
the whole code is visible. The optimal size of the ViewEntry is determined by the optimal
size of the source area and the size of the header area. If the code is very large the size
caps at the default size. In this case, the scrollbars are shown. When the ViewEntry

is maximized the user can still increase its size manually. The outcome of a maximize
operation is shown in Figure 6.14.

Figure 6.14: Maximizing a ViewEntry
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Look and Feel of ActionButtons

Our goal was to make the ActionButtons as similar to the original Eclipse minimize and
maximize buttons as possible. The problem was that the standard SWT buttons have
a completly different look and feel. They are permanently visible and have the three
different modes: normal, hover and pressed. The Eclipse minimize and maximize buttons
however only have their outline visible when the user hovers them with the mouse. Any
other time, only the icon without the outline is visible. This makes the buttons look
much more lightweight.

We wanted to have this effect for our ActionButtons as well. But SWT is not offering a
native solution for this button style. This is why we had to come up with a solution our
own. It was also not possible to just use the Eclipse solution. The Eclipse minimize and
maximize buttons are tightly integrated in the Eclipse view. They do not offer a way to
use them outside a view.

In the end we found a tricky solution that resulted in the look end feel for the ActionButtons
we where aiming for. Per default we hid all ActionButtons. On the same location as
the button we just paint the exact same icon that is shown on the button. Then we
introduced a MouseMoveListener to determin if the Mouse was entering the Area where
the invisible button is. When that happens we just make the button visible. The visible
button then is covering the icon that is painted below it. It is important that the position
of the painted icon and the icon on the button match exactly. For the user, it is looking
that just the outline of the button is appearing when he hovers the button. Finally when
the mouse is leaving the area of the button, it has to be set invisible again. This could
be done with a MouseTrackListener that fires an event when the mouse is leaving the
button area. Sadly the mouse track listener is only working for the exit event since it
does not fire the enter event on a invisible button. The outcome of our solution is shown
in Figure 6.15.
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Figure 6.15: Different modes of the ActionButtons

This solution lead to a small problem that we did not solve because it is not occuring very
often and it is not disturbing the user experience. If the view is scrolled automatically
and the cursor lands on a ActionButton, it is not made visible. The reason for this is
that the enter event is only fired when the mouse is moved over the button.

This problem also exists for the drop down menu. When the user clicks the menu button,
the menu it is shown below it. This is also the way it looks in Eclipse. If the user does
not select a menu option and closes the menu by clicking on the exact same spot again,
the button is not shown again. It stays hidden until the mouse is moved again. Becase
this is a minor issue that are not crucial for the user experience, but would take a lot of
effort to solve, we did not solve it.

ActionButtons Dropdown Menu

To offer some additional functionallity for every ViewEntry we added one additional
ActionButton that opens a dropdown menu. It offers further options for the correspond-
ing ViewEntry (Figure 6.16). The menu makes it possible to add an arbitary number
of additional actions for every ViewEntry. This menu is the only possibility to perform
actions on the ViewEntry itself.
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Figure 6.16: DropdownMenu of the ActionButtons

Since it is good practice, we made all possible UI actions avalible in dropdown menu.

The most important option is the navigate to source option. Until now it was only
possible to navigate to sub entries via their rectangles. This was very inconvenient in the
old view since the user had to find the originating rectangle to navigate to the source.

The search option displays the search bar for the ViewEntry. Another possibility to
display it is the shortcut Crtl-F. The search bar is explained in Subsection 6.3.11.

The other dropdown commands are pretty self explaning: Close, minimize and maximize
all sub entries. Minimizing and maximizing of ViewEntrys is explained in Subsec-
tion 6.3.4.

6.3.3 Improved Bézier Lines

The Bézier lines where already feature of the old view. But because of the big class
problem that is explained in Subsection 6.2.1 they where not particulaty useful in the
old version of the view. They would extend over multiple screens and the origin was not
easy to find. In our new view this problem solved itself because the ViewEntrys are a lot
smaller by default and because of that the Bézier line look a lot more natural.

In our term thesis we had the promlem that the Bézier lines started outside of the view
entry. This made it hard to tell from wich rectangle the Bézier line originated. Back
then we connected the rectangle with a dotted line with the bezier line. This line went
horizontlly through the whole ViewEntry (Figure 6.17). This was looking very ugly
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Figure 6.17: Old unreadable version of the horizontal Bézier line connections

and also not very understandable . In the case where alot of lines went through the
ViewEntry, they where crowding the code.

In this semester thesis a classmate had an awsome idea when we showed him our plugin.
Because we are displaying vertical lines to indicate the destination view entry of a open
link he mentioned that he was missing this lines on the originating side of the link. That
brought us to the idea to mark the link on the originating side also with a vertical line.
This apporach is very readable and looks very nice (Figure 6.18).
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Figure 6.18: New version of the Bézier lines
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To improve the look and feel of the view we also added the ability for the Bézier lines
to change their start and end point dynamically. This is something that the user is
expecting because the resizing of a ViewEntry would change origin and destination points
of the Bézier lines. To make this possible, we have to repaint the whole view when a
ViewEntry is resized. This leads to a slight performance loss, because of the increased
number of drawcalls.

The dynamic repainting of the Bézier lines also caused another problem. The lines started
to flicker because the number of the high number of draw calls. The solution for this was
very simple because SWT offers the possibility to make a component double buffered.
With bouble buffering enabled, all the Bézier lines are painted on a offscreen image and
is drawn to the screen all at once. This made the flickering vanish entirely.

Scrolling the Bézier Lines

Because in the new version of the view, a ViewEntry could be scrolled we had to implement
another feature for the Bézier lines. Now it was possible that the origin of a Bézier line
would not always be inside the visible section of the source area of a ViewEntry. We had
to improve the rendering algorithm to support the case when the origin of the Bézier
line was off screen. We solved this i a very natural way. When the line start was scrolled
out of the ViewEntry we capped it on the top or bottom edge of the ViewEntry. This
also lead to the effect that when a ViewEntry is minimized, all Bézier lines start at its
bottom edge (Figure 6.19). We decided to leave it this way because it was looking good
and it was the native solution.
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Figure 6.19: Bezier lines for minimized ViewEntry

6.3.4 Resizing ViewEntries

Resizing is the core feature of the new view. Resizing caused one show stopping issue that
we had to solve to make the view vaiable. The problem occured when the user wanted
to resize one of the outermost ViewEntry. With the native SWT resizing solution this
problem was impossible to solve.

The first implementation of the resize feature was relying on the native SWT built in
resize functionality. when the user was holding down the mouse button anywhere on the
border of the ViewEntry, the resizing gizmo was shown. This gizmo had the shape of
a rectangle and the size of the ViewEntry that was resized. The user could move the
mouse to change the size of the gizmo. When the mouse was released, the size of the
resizing gizmo was set to the ViewEntry. This can be seen in Figure 6.20. With this
resizing functionality it was not possible to resize a ViewEntry over the screen edge.
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Figure 6.20: SWT built in resizing functionality

Another akward thing about the SWT resize feature is, that after the mouse is pressed
to start the resize, the mouse cursor jumps to a corner of the ViewEntry. The corner is
determined by first mouse movement after the mouse was pressed. For example if the
user was pressing on the top left corner and then moved the mouse down, the mouse was
jumping accross the whole ViewEntry to the bottom right corner. This behaviour felt
very strange.

The most simple way to solve these problems was to implement the resize feature
completely ourself. This was possible with only a few lines of code. With our own resize
functionality we gained alot of flexibility that we needed to implement the crucial ’resize
a ViewEntry over the border’ feature.

The outcome of our own resizing feature is very nice. It behaves exactly as the user
would expect it. The user can now start a resizing operation by clicking the right or
bottom edge of the ViewEntry. The mouse is not jumping anymore and the cursor is
changing according to the resize operation that is possible.

With the new resize feature it was now possible to drag the edge of a ViewEntry over
the screen edge. As soon as the cursor approaches the edge of the screen, the size of the
view is smoothly extended and the ViewEntry is resized. This lead to a very natural
user experience for resizing that the user might know from other programs.
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We added another resizing feature that is very convenient for the user. He can double
click on the border or the header of the ViewEntry. This action has the same effect as
the maximize ActionButton.

Introducing a Minimal Size

The most challenging feature of the new view was to introduce a minimal size for a
ViewEntry. This was because it was interfering with alot of other areas of the UI. When
we finally had it implemented we saw the problems it caused.

The motivation to introduce a minimal size in the first place was because when the user
can freely change the size of a ViewEntry, nothing would keep him from reducing the
size to zero. With a size of zero the ViewEntry was invisible. In that state it could not
be closed or resized again because it was not clickable anymore.

In the first approach to implement the resize feature we changed the size according to
the relative move of the mouse. This approach lead to a lot of variables to store all
the relevant data like the initial mouse position when the resize started, the location
of the entry, the origin of the view and so on. The crux was that we had calculated
all coordinated relative to the screen instead of relative to the view what made the
calculations very complex. The code got very messy what propably would have lead to
a lot of bugs and problems. At this point it was easier to throw away this big ball of
mud and implement a clean solution. The clean solution was done very quickly because
during the developement the resize feature all its requirements became very clear.

In the final solution of the resize feature we followed an approach that was possible
because of a nice effect of SWT’s MouseListener and MouseMotionListener. When
the resize operation was started, the mouse down event was fired. After this event the
mouse move event was fired as long as the mouse button was held down. On releasing the
mouse button, the mouse up event was fired. The most important thing here was, that
the events kept firing after the mouse down event regardless of the mouse leaving the
Entry or not. This was exactly what we needed, because now we had absolute coodinates
of the mouse relative to the ViewEntry. This coordinates now exactly matched the new
size of the ViewEntry without any calculation. Another advantage of this approach was
that the coordinates could be capped easily to minimal size.
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Figure 6.21: Ordering of overlapping rectangles: If the mouse leaves the innermost
rectangle the next rectangle on the stack is highlighted

6.3.5 Highlighting Rectangles

Our advisor Prof. Peter Sommerlad had the idea to make the hovered rectangles much
more visible by highlighting their background in the color of their borders. Although it is
a simple feature we experienced some issues during the implementation. The reason for
the issues was the CSourceViewer that we use to show the code. The CSourceViewer is
relying on the SWT component StyledText to alter the font and do syntax highlingting
according to the user preferences. The CSourceViewer internally uses StyleRanges to
accomplish syntax highlighting. This is why we could not just create a new StyleRange

for the background since this would have overwritten the syntax highlighting.

To solve this we had to store all existing StyleRanges so we would later be able to reset
them. Then to change the background color, we could take the original StyleRange,
alter it as needed and set it again for the correct text range.

So now, when the mouse is entering a rectangle, we copy the original style, alter it and
set it again. When the mouse is leaving again, we set the original style again.

There was one additional problem that we encountered. We also had nested rectangles
and their StyleRanges would overlap. So if we directly changed between nested rectangles
the style of the outer rectangle was overriding the inner style and on mouse exit, the
inner style was not correctly reset.

We solved this by introducing a stack like collection that kept track of all currently
colored rectangles that where overlapping. When a rectangle was left, we could then find
out what rectangle was lying under it and recolor it again. This is shown in Figure 6.21.
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Figure 6.22: Border margin at the edge of the view

6.3.6 Border Margin

Originally, the view was over right behind the last ViewEntry. This made it not very
comfortble to resize ViewEntrys when they where sticking at the edge of the view. A
simple but very helpful improvement was to introduce a small border at the edge of the
view so ViewEntrys at the edge could be resized easier. For the top and left margin
it was very simple. All we had to do was to add the border width to the calculated
coordinates of the ViewEntrys. For the right and bottom margin it was a little bit more
complicated because the view calculates its size to fit its content exactly. Because of
this we added a invisible composite with the shape of a quare and the size of the border
margin. It was placed behind the last enties as shown in Figure 6.22.

107



6.3.7 Mouse Wheel Global Scrolling

Originally it was only possible to scroll the code inside a ViewEntry with the mouse
wheel and the trackpad. Since we where really missing the possibility to scroll the whole
view, we made it possible that the user can click on the empty space in the view and
when scroll the whole view with the mouse wheel.

We also added a nifty little feature where the user can hold down the Ctrl Button to
scroll the view horizontally. This might not be very intuitive for the user to find out,
but it is a very helpful feature since it it often necessary to scroll the view horizontally.
Sadly we could not test this feature on an Apple computer.

When we tested horizontal scrolling on a Linux operating system, we discovered that
pressing Ctrl does not disable the standard scrolling behaviour. This has the efect so
the view is scrolled in both directions vertical and horizontal at the same time. This
makes the feature useless on Linux operating systems. We did not found out why this is
happening but it appears that SWT behaves different on different opperating systems in
this area.

6.3.8 Scrolling Labels

For testing new UI features we always used small test classes. When we then tested
the UI with a large class with a very long template argument we found an annoying
bug that we had to solve. If the text in header labels was very long, the ActionButtons
disappeared because the where outside the ViewEntry. Fixing this was a lot of work.

The bug is caused by SWT’s GridLayout. The user would expect the ActionButtons to
be on the right side of the header area and always visible. To accomplish that we put
them in the second column of the grid layout and the labels for title and description
in the first column. Upon resizing, the rightmost column disappears first. This means
that as soon as the width of the ViewEntry was smaller then the width of the title label,
the ActionButtons in the second column would disappear. This was very inconvenient
because the user would expect the ActionButtons to be always visible. Especially
because the template arguments are often very long the ActionButtons disappeared very
frequently. This problem is shown in Figure 6.23.
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Figure 6.23: ActionButtons are not visible because the label text is too long

We now had a dilemma that there is no perfect solution for this problem. It was clear
that the ActionButtons need to be always visible, but this meant, that the label had
to be cut in some way. It would have been confusing to indicate it with three dots
(. . . ) to the user that the text is cut because that could have been mistaken for variadic
templates. We decided to just cut the text. Since there is no perfect solution for this
problem anyway, we found that this is the best compromise.

Now that we needed to make the label smaller we encountered another problem. Usually
a label in a layout would always adjust its size according to its content. Now since the
labels must be smaller so the ActionButtons would stay visible, we needed to find a
way to make the label smaller. The solution for this was to calculate the optimal width
that label would have if all text was displayed. This width was in proportion to the full
number of characters of the full length text. We could calculate the width that the label
needs to have so the ActionButtons would stay visible. With these results we then could
calculate the number of chars that must be displayed so the label would have the correct
size. This lead to the simple equation:

optimalW idth
neededW idth = totalNumberOfChars

neededNumberOfChars

With this simple equation it was possible to calculate the number of chars that needed
to be displayed in the Label so the width would be correct. So the label would store the
original string but only the calculated neededNumberOfChars is shown (Figure 6.24).
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Figure 6.24: Only a portion of the text is visible on the label

To further assist the user we implemented the feature that gave the labels their name:
ScrolligLabel. Since we had the full text stored, it was simple to adjust the starting
index of the displayed text so the user can scroll through the text. We only needed a way
to make this interactive. To achive that we implemented a MouseListener that reacted
on mouse clicks and a MouseMoveListener that reacted on mouse movement. When the
user had clicked the label the text scrolled according to the mouse movement. With the
mouse movement and a scroll speed, the new staring index of the displayed text could be
calculated. This made it possible for the user to scroll through the text.

One problem was still remaining. No user would ever try to click and drag the label. To
conquer this we abused the mouse cursor. When the user hovers over a ScrollingLabel

with the mouse (In case the text is cut) the cursor changes to an open hand to indicate
that the mouse can be presses. If the user then presses the left mouse button, the mouse
cursor changes to a closed hand to indicate that the user can drag the text.

One thing is still a little bit awkward with this solution. The user will always try to drag
the mouse vertical and not horizontal as inteded. Dragging vertically will have no effect
and this will appear like a bug to the user. We hope that the user will find out about
the feature himself sooner or later.

6.3.9 Global Toolbar

As another helpful feature we added some buttons to the global toolbar. The advantage
of this is that those buttons do not occupy space in the view because they reside in the
tab bar of the view.
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Figure 6.25: Buttons in the global toolbar

The buttons offer the possibility to Minimize/Maximize/Close all ViewEntry. We also
added a refresh button that loads the view with the currently selected name in the editor
again. This is also helpful for a new user to find out that he can open template dependent
names with the Templator2.

6.3.10 Auto Scrolling After Opening a New ViewEntry

One feature that was on our list for a very long time was auto scrolling. Until now
the user had nearly no feedback where a newly opened ViewEntry was located. The
only thing that happened was a change in in scroll bar selection. This was almost not
noticeable.

It was therefore mandatory that we implemented a scrolling mechanism that navigated
the view to a newly opened ViewEntry. If the view would have just jumped to the new
ViewEntry in an instant, the user would have lost track of where he is in the view. To
tackle this we introduced a scrolling animation that was slowly sliding the view to the
newly opened ViewEntry in a short timespan. We also added a bit of acceleration the
scroll animation to give it a more natural feeling and also that the user does not have to
wait all that long for the animation to finish.
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6.3.11 Searching in a ViewEntry

As a final feature we implemented the possibility for the user to perform a text search in
a ViewEntry. There are literaly thousands of possibilities of how to realize the search.
We decided to make it similar to the search in the Chrome browser. The search bar can
be seen in Figure 6.26.

Figure 6.26: Components of the SearchBar

Showing and Hiding the Search Bar

To begin, we needed to be able to show and hide the SearchBar. The most natural way
seemed to show it below the header area and above the source area. The problem with
this was that it is not possible to set the size of a composite in a GridLayout to zero.
This means that we could not make the SearchBar invisible by changing its size. The
solution is to create a new SearchBar anytime it is shown. After the creation of the
SearchBar it needs to be moved up in the rendering order so it is drawn between the
header area and the source area.
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We offer two ways of displaing the SearchBar. The first os obviously the Ctrl+F shortcut.
For the shortcut to work the cursor has to be in the source area of the ViewEntry. If
the SearchBar is invisible and the shortcut is pressed, it is shown. When it is already
visible, the focus is set to the search text field in the search bar. The second way to show
the search bar is to access it via the ViewEntry Context menu.

The Search bar can be closed either by pressing ESC or the X button on the search
bar.

How the search works

Whenever the user alters the text in the search text field, the whole source area is searched
for that text.

If there is any search result, the occurance label is updated and the first occurance is
marked in the source area. The user then can navigate through the results either by
pressing the Next and Previous buttons or by pressing Enter.

It would have been nice if we could have colored all findings in the source area with
a gray background but this would have had interfered with the coloring of the hover
rectangles (Subsection 6.3.5). It would have been a lot of effort to get both of them up
and running parallel.

Scrolling to Search Result

Scrolling the search results, that are selected into the visible area of the source area is a
problem that has no perfect solution. As a rule of thumb we decided that if the result
that has to be marked is already inside the visible area, no scrolling is be performed at
all.

As an outcome of this, there are two situations where scrolling is needed. The first
situation is when the search result is below or above the visible area of the source area.
In this case the view is scrolled that the search result is on the first line of the source
area (Figure 6.27).
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Figure 6.27: Search result outside the visible source area: vertical case

The second situation is when the search result to mark is outside the right border of the
source area. In this case the view is scrolled to the right just as much so the reach result
is in the visible area again (Figure 6.28). But whenever possible the source area gets left
aligned again.

Figure 6.28: Search result outside the visible source area: horizontal case
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This scrolling approach tries to scroll as few times as possible to cause as little disturbance
for the user as possible.

6.4 Background Loading

One requirement was that Eclipse would not freeze when something is opened with the
Template Information view. At one point we had to tackle this problem, so we researched
how we could make our view more responsive.

We found out, that several more or less time consuming tasks that had to be performed
to open one ViewEntry:

• Deduce and resolve the clicked name itself

• Search deduce and resolve all substatements

• Format the AST

• Rewrite the code

• Create a ViewEntry

At first is seemed nice to do all this tasks in the background so we would not block the
UI thread at all. But it would have meant that the AbstractStatementInfo that was
holding all the template relevant imformations would not have been completly initialized
after construction. This was something we did not wanted so we took a deeper look in
the loading process.

It turend out that the majority of time was consumed while all substatements where
examined. The examining task consumes so much time that all the other tasks can be
ignored regarding time consumption.

Originally the search sub templates function was called in the constructor of ViewData
that was holding the AbstractStatementInfo. The easiest solution was to move this
expensive function and all the minor tasks that followed after it to the prepareForView
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function. Now this function could be called from outside. With this in place the
ViewData could be created very fast end the time consuming load task was extracted to
the prepareForView function. The prepareForView function now is the long running
task that can be processed asynchronous.

With this in place everything was set up for background loading. The loading is done
with a standard Eclipse background job. As a nice side effect it also shows up in the
Eclipse process monitor.

6.4.1 Background Loading Visualisation

Our plan was to show a empty ViewEntry with a loading indicator that could be added
to the view instantly. After the loading is finished, the final components of the ViewEntry
should be created and filled with the data that was loaded asynchronous.

For the loading indicator we tested the spinning loading indicator that is well known
from the iPhone. But we soon noticed that it was difficult to get the animation running
smooth and so we decided to use the standard eclipse progress bar the show the loading
progress. Now we only needed some loading progress callback from the ViewData when
it was loaded. Since almost all time was consumed during sub template deduction and
resolving it was not a very difficult task to get the progress relative to the number of
sub statements. The only thing that we had to change was to alter the visitor to return
a flat list of all names that had to be further examined. This made the visitor rather
simplistic because before it was alrady preselecting names that where interessting for us.
The loding bar can be seen in Figure 6.29.

Figure 6.29: Loading bar that is shown when a new ViewEntry is loaded
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In the end, introducing background loading of ViewEntrys was a simpler task then we
imagined. The steps that where described above could be implemented in a few days.

But by the nature of parallel programming, there where alot of problems that we did
not thought of in the first place. The major problem that we discovered occurs when
the user closes the view while a ViewEntry is loaded in the background. In this case two
things happen.

The first one is relatively easy to cover. As the background job is finished it tries to
write the result to the view. Since the view is disposed at that time, there is nothing the
result can be written to. Thankfully the references to the view objects still exist and
the callback can detect that they are disposed. In this case no action is taken and the
callback does nothing. Only when Eclipse is closed completly then those references do
not exist anymore. In this case we can not to anything. But in that case the user does
not care about the data anyway.

The second problem is a lot more severe. When the view is closed, our AST helper classes
are cleaned up. At this point the background job can’t access them anymore. This leads
to a lot of problems.

We decided to not solve the second problem because if the user closes the view he most
likely dosn’t care anymore about the data. But the problem should be carefully examined
before the plugin would ever go live. But this research is out of scope for our Bachelor
Thesis. It is always bad when exceptions happen in the background that are not caught.
We think that nothing serious is happening but we have no proof for this.
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7 Testing

We describe how we tested our application and on which systems we tested the Templator2
plug-in.

7.1 Manual testing

For the most of the project, we tested our features manually by starting a CDT instance
with our plug-in loaded and own code examples. These examples were created mostly
by us and some by our advisor Prof. Peter Sommerlad. Prof. Peter Sommerlad mostly
created with the unit testing framework CUTE (http://cute-test.com/).

We tested with Windows and libstdc++ from gcc Version 5.1 and with libc++ 3.5-2 on
Linux Ubuntu. We set CDT so that C++11 was used. For both operating systems we
used Eclipse 4.4 and Java 7.

7.2 Unit testing

We extended some test classes from the term thesis [BS14] to test some changed and
newly implemented methods. Since we changed our whole class hierarchy and architecture
(Subsection 2.4.2) almost all existing unit tests had to be rewritten.

Unfortunately we did not have enough time to write extensive tests for the new functionaly
to resolve class template. Only the correct selection of class template specializations is
unit tested.
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8 Conclusion

This chapter describes the results of our thesis, known issues and also what else could be
done in the future to extend the plug-in with more functionality.

8.1 Achievements

The result is a useful plug-in for Eclipse CDT that helps C++ developers visualizing hard
to understand nested template instantations, selected overloads, and specializations. It
adds a new view to CDT where the user can visualize almost all function calls and many
class template instantiations.

The Templator2 is robust and user-friendly and therefore usable by users that were not
involved in the development of this plug-in. We hope it will be used by many developers
and helps preventing unintended run time behaviour. Because the plug-in does not crash
but rather collects the errors, the plug-in can be used for demonstrations and integrated
in the near future into Cevelop (http://cevelop.com)—an Integrated Development
Environment (IDE) based on Eclipse CDT.

We managed to already implement some features for future workers on this plug-in. Many
features are already implemented and just need to be exposed to the user later on.

8.2 Future Work

As mentioned in the last section, our plug-in supports many function templates and class
templates. However, there are some more complex C++ language features the plug-in does
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not handle yet and cannot show the user the correct definition. This section describes
how the plug-in could be extended in a future project or by another thesis.

8.2.1 SFINAE

Substitution Failure Is Not An Error is a technique where the compiler removes candidate
functions for a template instantiation if a substituted template argument would result in
an error [VJ03, p. 106]. Removing the function from the candidate list is not done by
our plug-in yet and can be added to show the actually called function by the compiler
and not the one selected by CDT that might be wrong.

Adding support for SFINAE should be possible with the current Templator2 functionality.
The Templator2 is able to find all identifiers for a template paramater. Trying to specialize
the member could then be used to check if all member exists in the chosen template
argument and if not, remove this template from the candidates list.

8.2.2 Variadic Templates

Variadic templates allows compile time typesafe functions with an arbitrary number of
arguments. The compiler generates as many function definitions in the background as
there are passed arguments. The plug-in is required to create the AST definitions to be
able to show them to the user with the right amount of parameters and their correct
types. Probably it is enough to just show the parameter pack and the last argument that
is used as tail. Based on the wanted visualization (showing each instance vs. showing
only the definition from the C++ editor) this is also formatting feature that the plug-in
should implement.

Templator2 passes a default value of 0 as pack offset for some methods to instantiate
function templates. This pack offset can be used to correctly instantiate the variadic
template for the correct amount of remaining template arguments. CDT should be able
to select the correct overload for every pack offset. This is a guess and not tested.
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8.2.3 Support for Normal Classes

The plug-in could easily be extended to also support non-template classes. The Templator2
would then work as visualization of a call hierarchy for every possible statement with a
definition. This already exists in CDT but is not able to resolve templates for an arbitrary
nesting level and the user has a UI that helps him. The existing CDT functionality is
just a textual tree hierarchy.

8.3 Known Issues

The following list is for known issues where our plug-in does not work like expected.
This list is not about new features that could be implemented but only about plug-in
behaviours that seem like bugs.

8.3.1 Declarations With auto

The Templator2 plug-in needs a ICPPASTTemplateId to be able to instantiate class
templates. When using the auto keyword to automatically deduced the type by the
compiler, there is no template-id and thus the class template cannot be instantiated.

8.3.2 Member Function Calls Where the Owner Is a Template Argument

Member function called on a type that is a template argument will not be resolved.

8.3.3 Unknown Member Function Calls in Non-Template-Classes

A function call resolves to an unknown member function if the owner is a template
argument. This unknown method is treated as class template member function even
thought it may be defined in a non-class-template. This messes up the formatter that is
responsible for writing out the template-id with the deduced template arguments.
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8.3.4 Formatting of Member Function Declarator in Class Template Explicit
Specialization

When opening a member function definition by itself (not the whole class declaration) the
class name with the template paremeters is added to the function declarator. However,
the template-id is not added if the function definition is inside a class template explicit
specialization.

This is because a member function call for a class template explicit specialization is
wrongly tagged as normal function call by us. Changing this would require a bigger
change in our class hierarchy or many more instanceof checks. This is something we
noticed in the last week before the final release and we did not want to potentially break
existing functionality just for this to work.

8.3.5 Rectangles for Deduced Template Arguments for Function Templates

Automatically deduced template arguments for function templates will be added to the
function call expression. If a deduced argument is a class template, the user cannot click
on the IASTName. But if the same IASTName were somewhere other, the name would be
found, resolved and the user click on it. This is because the relevant names are searched
before the formatting happens.

Added arguments in the formatting process need to be added manually to our found list
of relevant IASTNames if they are template argument dependant.

8.3.6 Definitions Outside of Class Template Definition

While the declaration of a member function must be inside the ICPPASTTemplateDeclaration
for a class template it can be defined outside the class with the classes name qualifier.
The Templator2 only processes and shows the class definition and does not consider this
outside definitions. The functionality to find those definitions is already implemented in
our ASTAnalyzer.searchFunctionDeclarationsToDefinitions but not yet used. The
time to format these definitions into the ICPPASTTemplateDeclaration and consider
the definitions when searching for sub statements was not available.
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List of Abbreviations

AST Abstract Syntax Tree

CDT C/C++ Development Tooling

IDE Integrated Development Environment

HSR Hochschule für Technik Rapperswil

SFINAE Substitution Failure Is Not An Error

SWT Standard Widget Toolkit

UI User Interface
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