
Term project

COAST Framework 64-Bit

Philipp Schönenberg, Patrik Wenger

supervised by

Marcel Huber, Prof. Peter Sommerlad

Spring 2016

Abstract

The IFS maintains a C++ web application framework called COAST. It was developed for 32-bit
hardware platforms and features an extensive collection of test suites. Our main task consists
of:

1. Adding support for 64-bit platforms, while ensuring correct functionality of at least a
predefined set of core tests.

2. Measure the performance differences for each of the ported test suites and explain the
causes.

The optional goals include porting additional test suites, creating a history of performance mea-
surements over time, improving one of the internal data structures, as well as preparing the code
base for modern C++.

The students approached this project by informing themselves about the difference between 32-
bit and 64-bit platforms and common porting issues. Subsequently, the affected tests were fixed
iteratively. Several performance measurement utilities, ranging from the simple time command
to more sophisticated solutions from the perf and Valgrind tool suites, have been evaluated and
applied appropriate.

Although easy to fix, the causes for most of the broken tests were hard to track down. They
consisted of data type discrepancies, disabled warnings, and a race condition, most of which
resulted from the assumption that long is always a 32-bit quantity. All tests from both the
mandatory and the optional goals, and the example application CoastRecipes work. On 64-bit,
where applications now have access to the full potential of 64-bit systems, including a much higher
memory limit, the memory footprint is roughly 1.5× the one on 32-bit. However, the speed-wise
performance differences are insignificant. The performance measurement scripts that have been
contributed can be used to selectively (e.g. a certain set of test suites) obtain differences between
32-bit and 64-bit, as well as a historical record of performance characteristics.

Contents

1 Scope 1
Goals . 1
Optional Goals . 2

I Management Summary 3
1.1 Initial Situation . 4
1.2 Software Development Process . 4
1.3 Project Phases . 4

1.3.1 Inception . 4
1.3.2 Elaboration . 5
1.3.3 Construction . 5
1.3.4 Transition . 6

1.4 Results . 6

II Technical Report 7

2 Context 8
2.1 Initial Situation . 8
2.2 Software Architecture . 9

2.2.1 Basic Layer . 10
2.2.2 System Layer . 11
2.2.3 Communication Layer . 11
2.2.4 Multi-Threading Blocks . 11

2.3 Problem Description . 11
2.3.1 Non-Functional Requirements . 12

3 About 32/64-Bit 13
3.1 History . 13
3.2 Advantages . 13
3.3 Disadvantages . 14
3.4 Motivation: Why 64-bit? . 14
3.5 Data Models . 14

4 64-Bit Port 16
4.1 Concept . 16
4.2 Common Issues . 17

4.2.1 Disabled Warnings . 17
4.2.2 Dynamic Size Types for Fixed Size Needs . 17
4.2.3 Pointer Arithmetic . 18
4.2.4 Alignment . 18
4.2.5 Numeric Constants . 18
4.2.6 Storing Integers in double . 19

i

4.2.7 Storing Pointers in int . 19
4.2.8 Bitwise Shifting . 19
4.2.9 Timestamps . 19
4.2.10 Integer Overflow . 20

4.3 Verification of 64-bit runtime . 21
4.3.1 Simple int Array . 21
4.3.2 Using Anything . 22

4.4 Implementation . 23
4.4.1 CoastFoundationBaseTest . 23
4.4.2 CoastStorageTest . 24
4.4.3 CoastCompressionTest . 25
4.4.4 CoastRegexTest . 25

5 Performance Measurements 26
5.1 Legacy . 26
5.2 Concept . 26

5.2.1 time . 27
5.2.2 gprof . 27
5.2.3 oprofile . 27
5.2.4 perf . 27
5.2.5 Valgrind . 28

5.3 Implementation . 28
5.3.1 Architecture . 28
5.3.2 First Script . 29

5.4 Results and Analysis . 31
5.4.1 Test Environment . 31
5.4.2 time . 31
5.4.3 perf . 32
5.4.4 Valgrind . 36

5.5 Conclusion . 42

6 Optional Goal: Performance History 44
6.1 Use Case #1: Analyzing a Range of Revisions . 44

6.1.1 Specifying Commit Ranges . 44
6.1.2 Interpolating Results . 45

6.2 Use Case #2: Analyzing a List of Revisions . 45
6.3 Use Case #3: Archiving the Results . 46
6.4 Non-Functional Requirements . 46
6.5 Concept . 46

6.5.1 File Format . 46
6.5.2 Applicability . 47

6.6 Implementation . 47
6.6.1 Using Current Script Revisions for Old Code 47

6.7 Usage . 48
6.7.1 Selecting the Measurement Method . 48
6.7.2 Selecting the Test Suites . 49
6.7.3 Selecting the Processor Architecture . 50
6.7.4 Example of Use Case #1 . 50
6.7.5 Example of Use Case #2 . 51
6.7.6 About Use Case #3 . 51

7 Optional Goal: Migrating Further Tests 52
7.1 Concept . 52
7.2 Implementation . 53

7.2.1 CoastSecurityTest . 53
7.2.2 CoastQueueingTest . 55

ii

7.2.3 CoastRendererTest . 55

8 Optional Goal: C++11/14 Support 59
8.1 Analysis . 59
8.2 About std::auto_ptr . 59

8.2.1 Migrating to std::unique_ptr . 60
8.2.2 Reducing Verbosity . 60

8.3 A More Transparent Alternative to Preprocessor Switches 61
8.3.1 Detailed Solution . 62

8.4 Removing Obsolete Information . 64
8.4.1 PC-Lint Magic Comments . 64
8.4.2 The register Keyword . 64

9 Optional Goal: Improving Anything Internals 65

10 Conclusion 66

III Appendix 67

A Self Reflection 68
A.1 Thank You . 68

B Formalities 69
B.1 Declaration of Originality . 69
B.2 Permissions . 70

C Project Plan 71
C.1 Organization . 71

D Infrastructural Problems 72
D.1 Redmine: MySQL driver . 72
D.2 Software Versions on VM: Upgrade . 72
D.3 Redmine Bugs and Another Upgrade . 72

D.3.1 Buggy Pre-Installed Version . 72
D.3.2 Gantt Charts . 73

D.4 SSH Access to VM . 73
D.5 Mails from Redmine . 73
D.6 Cevelop . 74
D.7 Jenkins . 74

E perf stat diff 75
E.1 CoastEBCDICTest . 75
E.2 CoastFoundationAnythingOptionalTest . 76
E.3 CoastFoundationBaseTest . 77
E.4 CoastFoundationIOTest . 77
E.5 CoastFoundationMiscellaneousTest . 78
E.6 CoastFoundationPerfTest . 79
E.7 CoastFoundationTest . 80
E.8 CoastFoundationTimeTest . 80
E.9 CoastMTFoundationTest . 81
E.10 CoastRegexTest . 82
E.11 CoastStorageTest . 83
E.12 CoastSystemFunctionsTest . 83

F COAST Setup Cookbook 84
F.1 Getting Started . 84

iii

F.1.1 About Boost . 84
F.1.2 Installing Dependencies . 84
F.1.3 Cloning COAST . 85
F.1.4 Further Dependencies . 86
F.1.5 Example Webapp: CoastRecipes . 86
F.1.6 Trouble Shooting . 86

F.2 Development . 87
F.2.1 Headless . 87
F.2.2 Getting and Running Cevelop . 87
F.2.3 Running Test Suites . 88
F.2.4 Trouble Shooting . 88

G Usage of perf/perf-history 89

H Usage of perf/with_* 91

iv

List of Figures

2.1 COAST’s architectural layers . 9

4.1 GZIP file format . 25

5.1 Massif output CoastSystemFunctions32 . 37
5.2 Massif output CoastSystemFunctions64 . 38
5.3 Massif output CoastBaseTest32 . 42
5.4 Massif output CoastBaseTest64 . 42

v

List of Tables

3.1 Data models in comparison . 15

4.1 Unix millennium bug illustration . 20

5.1 Valgrind Heap Summary . 40

vi

Listings

2.1 Example of an Anything configuration file . 10
4.1 Excerpt from REBitSetTest::GeneratePosixSet 17
4.2 Test case to test memory limit using int array . 21
4.3 Test case to test memory limit using an Anything vector 22
4.4 Test case PoolAllocatorTest::ExcessTrackerEltGetSizeToPowerOf2Test . . 24
4.5 Method ul_long ExcessTrackerElt::GetSizeToPowerOf2(size_t) 24
5.1 Example CSV file produced by with_time script . 30
5.2 Diff: time-based performance measurement of CoastFoundationPerfTest 31
5.3 Word diff: time-based performance measurement of CoastFoundationPerfTest . . 32
5.4 Example output of perf stat . 32
5.5 Simple perf diff of CoastFoundationPerfTest . 35
5.6 Detailed perf diff of CoastFoundationPerfTest . 35
5.7 Boost ’s Small Object Optimization temporarily disabled 39
5.8 Allocation optimization of String in coast/foundation/base/ITOString.cpp 40
5.9 Snippet of PoolAllocator ’s ctor . 41
5.10 Cause for a spike in memory consumption in 64-bit 41
6.1 Example performance history result (CSV) (perf-stat) 50
7.1 Overview of CoastSecurityTest’s test suites and their status 53
7.2 COAST’s MD5Context API . 53
7.3 OpenSSL’s MD5 API . 54
7.4 Fix for coast/modules/Security/Blowfish.h . 54
7.5 Broken method in coast/foundation/io/Resolver.cpp 56
8.1 Preprocessor switch to decide between std::unique_ptr and std::auto_ptr . . 62
8.2 New file coast/foundation/base/boost or std/type traits.h 62
8.3 New file coast/foundation/base/boost or std/memory.h 63
E.1 Diff: perf stat of CoastEBCDICTest . 75
E.2 Diff: perf stat of CoastEBCDICTest (#2) . 76
E.3 Diff: perf stat of CoastFoundationAnythingOptionalTest 76
E.4 Diff: perf stat of CoastFoundationBaseTest . 77
E.5 Diff: perf stat of CoastFoundationIOTest . 77
E.6 Diff: perf stat of CoastFoundationMiscellaneousTest 78
E.7 Diff: perf stat of CoastFoundationMiscellaneousTest (#2) 78
E.8 Diff: perf stat of CoastFoundationPerfTest . 79
E.9 Diff: perf stat of CoastFoundationPerfTest (#2) 79
E.10 Diff: perf stat of CoastFoundationTest . 80
E.11 Diff: perf stat of CoastFoundationTimeTest . 80
E.12 Diff: perf stat of CoastFoundationTimeTest (#2) 81
E.13 Diff: perf stat of CoastMTFoundationTest . 81
E.14 Diff: perf stat of CoastRegexTest . 82
E.15 Diff: perf stat of CoastRegexTest (#2) . 82
E.16 Diff: perf stat of CoastStorageTest . 83
E.17 Diff: perf stat of CoastSystemFunctionsTest . 83
G.1 Usage of perf-history script . 89
H.1 Usage of with_* performance measurement scripts 91

vii

Chapter 1

Scope

In brief, this term project consists of the migration of the COAST framework from 32-bit to
64-bit, measuring the difference in performance, as well as documenting the process.

The following two sections contain the mandatory and optional goals we formally agreed upon.

Goals

These are mandatory:

• The framework shall compile and work on both 32-bit and 64-bit platforms.

• Existing test suites1 shall be examined regarding 32-bit data types and migrated accord-
ingly.

– At least the following test suites must compile and pass on both 32-bit and 64-bit:

∗ CoastFoundationAnythingOptionalTest

∗ CoastFoundationBaseTest

∗ CoastFoundationIOTest

∗ CoastFoundationMiscellaneousTest

∗ CoastFoundationPerfTest

∗ CoastFoundationTimeTest

∗ CoastMTFoundationTest

∗ CoastCompressTest

∗ CoastStorageTest

∗ CoastSystemFunctionsTest

∗ CoastRegexTest

• For the aforementioned test suites, the following properties of the migration from 32-bit to
64-bit shall be documented:

– Differences in performance

– Differences in memory usage

1A list of existing test suites can be printed using scons -u --showtargets

1

• The methodology shall be documented properly.

• A howto will be written which documents how to setup the COAST framework on a
common Linux environment and, e.g., how to run the CoastFoundationBaseTest test suite.

Optional Goals

At least one of the following has to be achieved:

• Access functions of the Anything class are based on the 32-bit long int data type.
With the migration to 64-bit, the question arises whether to distinguish between 32/64-bit
access functions as well as the internal data representation (long int Ð→ long long int

). Solutions as to how to deal with this situation shall be suggested and, if possible, the
best one shall be implemented.

• The framework shall compile using the settings boost (default, scons --use-lang-features

=boost meaning -std=gnu++03) and -std=c++0x (scons --use-lang-features=c++0x).
However, it has to be ensured that it keeps working with the default setting boost. Any
necessary changes need to be documented or implemented in the code using #ifdef blocks.

• It shall be possible for the performance measurement results to be:

– archived as a history

– created retrospectively

The performance measurement results used for this can, but don’t have to come from
CoastFoundationPerfTest.

• The following test suites are to be migrated in the order they appear:

– CoastWDBaseTest

– CoastSecurityTest

– CoastHTTPTest

– CoastSSLTest

– CoastPerfTest

– CoastPerfTestTest

– CoastFunctionalActionsTest

– CoastWorkerPoolManagerTest

– CoastQueueingTest

– CoastNTLMAuthTest

– CoastAccessControlTest

– CoastHTMLRenderersTest

– CoastActionsTest

– CoastRendererTest

– CoastAppLogTest

– CoastStdDataAccessTest

– CoastStringRenderersTest

– CoastDataAccessTest

2

Part I

Management Summary

3

1.1 Initial Situation

The IFS has been maintaining the COAST2 framework since 2005. It is a flexible, highly config-
urable framework written in C++ and is still used by a business customer, where it’s deployed
as a frontend web server. The supported platforms include Linux and Solaris.

At the time being, it was implemented in the gnu++98 dialect of C++, meaning some modern
features known in C++11 and newer were not used. Furthermore, the code base was written
with only 32-bit hardware in mind, meaning some of the functions require the data types int

and long to be 32-bit quantities.

It has an extensive test suite which can be used to verify correct functioning. This is how we
knew for sure that COAST wouldn’t work properly when compiled and ran on a 64-bit system.

1.2 Software Development Process

RUP3 is used to plan and manage this term project. It’s an iterative process flexible enough
for this kind of project. It’s taught as part of the Software Engineering courses at HSR and is
thus considered the primary candidate for the software development process used for this project.

Another candidate was Scrum, which we decided against as it’s only useful for projects with
developer teams of three to nine people.

1.3 Project Phases

RUP splits a project life-cycle into four phases, namely Inception, Elaboration, Construction, and
Transition. In the next sections, we’ll briefly elucidate what we did during each phase.

1.3.1 Inception

This phase mainly only consisted of the kickoff meeting, which took place on February 25th, 2016.

With great help from Marcel Huber, we found our bearings within the COAST framework’s
code base. We set up the basic environment and got the COAST framework to compile on our
personal computers, which made us confident enough to proceed with it. This is a central part
of RUP’s Inception phase.

We also clarified a few things on the more administrative side like our availability hours, where
the time tracking takes place, that we’ll be using LATEX to write the documentation.

After the meeting, we immediately started working on the documentation and on refining the
term project goals, which already concludes this phase.

2https://coast-project.org
3Rational Unified Process

4

https://coast-project.org

Marcel Huber ordered an instance of the Software Engineering 2 VM for development purposes
(like Redmine and Jenkins), which was delivered practically over night.

1.3.2 Elaboration

As suggested by RUP, we sketched out a rough schedule during this phase. This schedule
consisted of five milestones and one week reserve:

1. Elaboration (due March 13th)

2. Construction: 64-bit Port (due April 3rd)

3. Construction: Performance Measurements (due April 24th)

4. Construction: Optional Goals (due May 15th)

5. Transition (due May 22nd)

As can be seen, we conveniently used some of RUP’s terminology to name the mile stones of this
term project.

By the end of this phase, we completed refining the term project goals and did most of the
groundwork for the project, which included:

• preparing the VM

• setting up Redmine

• getting COAST to compile on the VM (32-bit only, of course)

• creating the 2 Git repositories needed, namely:

– COAST with 64-bit support, hooked into Redmine, linked to the provided Gerrit
installation

– COAST-independent files like this documentation

• setting up the Jenkins build server

• outlining the parts, chapters, and sections of this document

During this phase, we ran into many problems around the VM, Redmine, and Jenkins. They’re
all documented in detail in the Problems chapter starting on page 72.

To prepare for the next phase, we also compiled COAST for 64-bit, run the extensive test suite,
and recorded each of the visible issues on the Redmine platform.

So far the general architecture of COAST and our development setup proved to be stable, so we
were all set to commence with the Construction phase. This insight and the resulting decision
are, again, a central part of RUP’s Elaboration phase.

1.3.3 Construction

As shown in the aforementioned milestones, we divided the Construction phase across three sep-
arate milestones, in each of which our engineering methodology of the more technical side will
be required.

5

1.3.3.1 64-bit Port

For this milestone, we worked on the aforementioned issues created on the Redmine platform, one
by one, to find the root cause, decide on an appropriate fix, implement it, and document it clearly.

Technically adept readers can find said documentation in the corresponding chapter of the Tech-
nical Report on page 16.

1.3.3.2 Performance Measurements

The first of the two main tasks of this milestone was to come up with an appropriate method
for measuring the performance for each of the changed tests of the test suite, to find an analyze
any differences in both speed and memory usage.

Once we had a reliable way of getting the numbers, we were able to measure the performance
and document our findings. The detailed results of that can be found on page 26.

1.3.3.3 Optional Goals

All of the additional test suites of the optional goal have been migrated. The documentation can
be found on page 52.

An infrastructure to create a history of performance measurements has been added. This can be
done using any of the supported measurement methods, some simple, some more sophisticated.
Typical values of interest are extracted from the performance measurement results and combined
into a CSV for further processing and visualization, e.g. in a spreadsheet application. It’s easily
extensible to adapt it to other needs, such as extracting additional values from the results, or
adding new methods to measure performance.

1.3.4 Transition

The last project phase was mainly planned to be documentation and administrative work, as
well as holding the last meeting. As some of our last administrative duties, we wrote the abstract
and designed an A0 poster.

1.4 Results

The results of this term project are:

• mandatory and optional COAST modules work correctly in 64-bit mode

• performance differences of fixed modules analyzed and explained

• script infrastructure to analyze performance differences of revisions over time

• COAST compiles on C++11 and C++14

• this document

6

Part II

Technical Report

7

Chapter 2

Context

2.1 Initial Situation

COAST1, the C++ Open Application Server Toolkit, was developed in the late 1990s out of the
need for a general purpose web application framework. Reasons for developing something new
included Apache’s poor API and poor performance back then. Also, reasons not to use Java
were its lack of acceptance as well as its poor performance.2

It is based on earlier work done by André Weinand and Erich Gamma at Ubilab.

The goals for it were to

• have some general purpose application infrastructure,

• allow for simple introspection,

• provide a base for framework mechanisms, and to

• have minimal external dependencies.

Its strengths are:

• Simplicity

– a simple design, no code and interface bloat

– small server footprint

• Configurability

– dynamic reconfigurability without stopping the server, even DLL module loading

• Multi-Threading for high-efficiency

– Thread specific memory pools which allow for dynamic memory (no OS-level synchro-
nization required)

– low latency

• Unit tests

1https://coast-project.org
2The information about both Apache and Java back then has been taken from the Advanced Patterns and
Frameworks lesson about COAST.

8

https://coast-project.org

It features client protocols such as HTTP, HTTPS, and FTP, can access data from databases
like MySQL and LDAP servers, and even through SMTP. The supported output formats include
HTML and XML.

It’s supported on at least Linux and Sun Solaris, but it should be fairly easy to get it to run on
any POSIX compliant system.

Originally developed in the gnu++98 dialect of C++, modern features known from C++11 such
as move semantics were not used. The same goes for templates which, although available, were
a little understood concept of C++ back then. Even compilers used to have lots of problems
with templates.

At the time being, no one knew what 64-bit hardware was going to look like, and thus it was
developed with only 32-bit in mind. This means that, although it would compile for 64-bit,
much of its functionality depended on 32-bit specific data types. That it fails to work properly
on 64-bit can be seen when running the test suite.

Since 2005 it’s been maintained and further developed by the IFS.

2.2 Software Architecture

As shown in Figure 2.1, COAST features a layered architecture. This reduces the overhead for
simple applications, increases flexibility, and makes it easy to extend.

Below is a brief overview about COAST’s lower building blocks up to and including the multi-
threading block. The higher levels are of less significance regarding this term project.

Figure 2.1: COAST’s architectural layers

9

2.2.1 Basic Layer

2.2.1.1 Storage

For basic storage management, there is a static API similar to malloc /free known from C. It’s
implemented using an allocator, where coast::storage::Global() returns the global allocator
instance and coast::storage::Current() the thread-specific one for the current thread.

The class Allocator implements a wrapper for the C API, whereas PoolAllocator implements
an allocator for thread-specific storage using a bucket strategy.

2.2.1.2 String

String is a generic and safe character container. It’s memory safe for text and binary data.

2.2.1.3 Streaming

As a basic I/O streaming mechanism, there’s StringStream which uses a String as buffer,
and SocketStream , which is used for network communication.

2.2.1.4 Anything

The universal, self-describing data container Anything is used throughout the COAST frame-
work and features the ability to be read from and written to (configuration) files. It uses the
PImpl idiom to implement concrete types such as long , double , char* , String . It also
combines array and hashtable like behavior (associative access), and supports deep cloning and
boasts various comparison methods.

It comes with its own memory management to allow for scalability on multi-processor and multi-
core systems. It is not thread-safe due to its implementation being based on reference counting.
It therefore must not be used across thread boundaries.

Its primary use is to represent possibly hierarchical configuration information, as well as being
used as a flexible internal data structure for TmpStore , RoleStore , and SessionStore in
higher levels.

Example of a .any file:� �
{

/Text {

/First Chapter {

/Paragraph1 "As you can see this file has been stored as an Anything."

/Paragraph2 "Now it is read into the sessionstore."

}

/Second Chapter {

/Paragraph1 "Instead of this action you can test any existing action."

}

}

/Data {

/somedata { 12 43 56 90 34 }

/anydata { 90 98 54 22 44 }

/Port 55

}

}� �
Listing 2.1: Example of an Anything configuration file

10

2.2.2 System Layer

OS wrappers for streams, filesystem operations, processes environment, date / time, timers, and
Syslog support reside here.

2.2.3 Communication Layer

The Socket class provides access to socket level APIs, including polling mechanisms. Sockets
connections also provide iostream operations.

2.2.3.1 Connector

The Connector class can be used to establish a connection to an endpoint, and thus represents
the active side. The resulting socket stream can be read from and written to.

Acceptor is the passive counterpart to the Connector and listens for incoming connection
requests. It uses an AcceptorCallback to act on said requests.

2.2.4 Multi-Threading Blocks

2.2.4.1 Thread

A Thread is an abstraction decoupled from the OS used for starting, running, and stopping
threads. It features state semantics to reliably synchronize with itself and its clients. It supports
thread-local storage and the use of pooled memory. Hook methods can be used for state transition
handling.

2.2.4.2 Mutex

Next to basic locking and unlocking functionality, the Mutex class can be used as a scope guard
and also allows recursive locking with a small bookkeeping overhead.

2.2.4.3 Condition

A Condition can unlock the associated mutex when waiting for an event to happen, and
automatically lock said mutex when signaled. Timed waits are also possible.

Methods to signal a single or all (broadcast) waiters are available too.

2.2.4.4 ThreadPools

The ThreadPools class can be used to manage a pool of the same Thread objects to create,
initialize, run, join, terminate, and delete them. Threads can either get dispatched for a small
piece of work to be done, or get their workload on their own indefinitely.

2.3 Problem Description

The focus of this term project is the migration of the COAST framework from 32-bit to 64-bit,
as opposed to being merely a feasibility analysis. Furthermore, the migration’s effects on perfor-
mance (speed-wise and memory usage-wise) shall be examined and documented. The necessary

11

methods to measure performance will first have to be conceived.

2.3.1 Non-Functional Requirements

The only NFRs that apply for this project are:

• it must still be possible to compile COAST on C++03 (setting gnu++03)

• it must support Linux

• test quality must not decrease

• the CoastRecipes app still has to work

12

Chapter 3

About 32/64-Bit

For the unfamiliar reader, below are a few brief sections on the history and comparison between
32-bit and 64-bit systems.

3.1 History

From the mid 1980s up until the early 2000s, 32-bit processors were the norm. This means those
processors internally used 32-bit wide integer registers, 32-bit wide address buses and 32-bit
wide data buses, which means only up to 4 GiB of physical memory could be directly addressed.
Because of several other architectural limitations of mainstream computers such as 16-bit wide
ALUs or some of the buses actually being narrower than 32 bits, and the development of Physical
Address Extension, that memory limit did not require swift action.

Given the constant rise of memory needs and the falling prices, 32-bit addresses soon became
the bottleneck, as a single process wasn’t able to use more than 4 GiB of memory without some
tricky hacks, even though the whole system was.

With the mainstream adoption of 64-bit processors in the early 2000s, that memory limit was
lifted to a much higher amount of 16 EiB of theoretically addressable memory. In practice, it
is still less, such as 48 bits or 52 bits effectively used to address virtual and physical memory,
respectively [10, 4-Kbyte Page Translation, p. 132].

As of 2016, virtually all personal computer (stationary and mobile), as well as server processors
use a 64-bit architecture, even extending to some smartphones. More precisely, they run appli-
cations as well as kernels in 64-bit mode, which wasn’t usually the case for years.

As the ubiquitous x86-64 architecture was designed as an extension to the x86 instruction set,
most 32-bit applications will run on such 64-bit hardware without any modifications. However,
they won’t be able to make use of the full set of features available on 64-bit hardware.

3.2 Advantages

Hardware capable of running 64-bit applications offers more than just a larger address space.
Other features include:

13

• Some programs can greatly benefit from the wider registers (such as encoding, decoding,
and encryption software).

• The x86-64 architecture supports more general-purpose registers, which means there’s a
higher chance that a program’s data can fit and stay inside the processor’s registers rather
than being stored to and fetched from cache or even main memory later, which can result
in significant performance improvements, especially when the program contains tight loops.

• The portions of address space reserved by some operating systems is much smaller in
relativity to the whole address space.

• Memory mapped files over 4 GiB are much easier to implement on 64-bit hardware.

3.3 Disadvantages

The main disadvantage of 64-bit hardware is that the same amount of data will most likely
take up more memory space due to longer data types such as pointers, and memory alignment
padding. This is because of the different data models being used. This matter is further dis-
cussed below.

If a program can’t benefit from an address space larger than 4 GiB, or use the larger data types
and greater number of registers to its advantage, it’s probably not worth the effort to port it (in
case it had been designed specifically for 32-bit hardware).

That being said, it is, of course, still possible to develop a program that will compile on both 32
and 64-bit hardware by using data types such as int , long and fixed-size int32_t , int64_t
where appropriate, and thus exploit the best of both worlds (danger of premature optimiza-
tion).

3.4 Motivation: Why 64-bit?

The main motivation behind porting the COAST framework to 64-bit is to add proper support
for modern 64-bit hardware. The primary intent of this port is not a performance improvement,
as COAST’s main purpose is not the encoding/decoding/encryption of huge amounts of data. A
potential performance gain of COAST’s crypto subsystem would be considered merely an added
benefit.

3.5 Data Models

The C++ standard merely specifies in [5, Fundamental types, §3.9.1/2, p. 71] that sizeof(char)
≤ sizeof(short) ≤ sizeof(int) ≤ sizeof(long) ≤ sizeof(long long) . Due to this lax
specification different data models are being used. Win32 and 32-bit Unix-like systems use the
so-called ILP32 data model. ILP32 means that int , long , and pointers are 32-bit quantities.

On 64-bit hardware, Unix-like systems (including Linux, Solaris, OS X, BSD) use the LP64
model, whereas Microsoft Windows uses the LLP64 data model. LLP64 denotes that only
long long and pointers are 64 bit each, whereas within the LP64 data model even long is a
64-bit quantity. See Table 3.1 for a comparison, which also shows the typical memory alignment
requirements for each data type.

14

Data type ILP32 size ILP32 alignment LP64 size LP64 alignment
char 1 byte 1 byte 1 byte 1 byte
short 2 bytes 2 bytes 2 bytes 2 bytes
int 4 bytes 4 bytes 4 bytes 4 bytes
long 4 bytes 4 bytes 8 bytes 8 bytes
pointer 4 bytes 4 bytes 8 bytes 8 bytes
size_t 4 bytes 4 bytes 8 bytes 8 bytes
long long 8 bytes 4 bytes 8 bytes 8 bytes

Table 3.1: Data models in comparison

15

Chapter 4

64-Bit Port

4.1 Concept

COAST has a good set of unit tests to begin with and we are exploiting this fact. Without proper
unit tests we would have to write our own tests to find and fix 64-bit issues. Our approach is to
switch to archbits=64 and run the tests to find issues and fix them. The following test suites
worked out of the box in 64-bit mode:

• CoastFoundationAnythingOptionalTest

• CoastFoundationIOTest

• CoastFoundationMiscellaneousTest

• CoastFoundationPerfTest

• CoastFoundationTest

• CoastFoundationTimeTest

• CoastMTFoundationTest

• CoastSystemFunctionsTest

Of the tests that we’re required to fix, the following used to fail on 64-bit:

• CoastCompressionTest

• CoastFoundationBaseTest

• CoastRegexTest

• CoastStorageTest

How we fixed these is documented under the section 4.4 Implementation. As mentioned in the
Management Summary on page 4 already, we created an issue on the Redmine platform for each
of the failing test suites during the Elaboration phase so we were all set to fix them during the
Construction phase.

We also considered the online resources [16], [15], [19], [2] to get an overview of what to expect
and back up our decisions. What follows is a list of what seem to be the most common issues

16

when porting source code from 32-bit to 64-bit, along with examples directly from the COAST
code base, if possible.

4.2 Common Issues

Why can’t we just tell the compiler to compile for 64-bit and be done with it? Here we’ll
explain some of the typical issues to expect when migrating (or porting) software from 32-bit to
64-bit.

4.2.1 Disabled Warnings

As mentioned on [16, Off-warnings], disabled warnings are a very common reason for portability
issues. Actually this was the case in CoastStorageTest, as you can see later in subsection 4.4.2
on page 24.

The source line� �
return (1 << lMaxBit);// lint !e647� �
contains a portability issue (more on that later). Notice the comment. The documentation1 of
the static code analyzer PC-Lint states that this exact number causes truncation warnings to be
suppressed, which confirms the fact that this is a very common issue.

4.2.2 Dynamic Size Types for Fixed Size Needs

Sometimes the source code specifies a certain type, probably to get a certain bit-size, but the
type used actually doesn’t have a fixed size. Like unsigned long instead of uint32_t .

Consider this example from COAST:� �
cppfile << std::endl;

cppfile << "const unsigned long _dummy_" << pcName << " [] = {" << std::↩

Ç endl;

cppfile << s << "};" << std::endl;

cppfile << "const REBitSet " << pcName << "(_dummy_" << pcName << ");" <<↩

Ç std::endl;� �
Listing 4.1: Excerpt from REBitSetTest::GeneratePosixSet

The correct type in this case would have been const uint32_t .

C++ introduced the header cstdint , which defines fixed width integers like uint32_t with
C++11, see [9]. COAST needs to work with older standards, so we had to use the C header
stdint.h .

1http://www.gimpel-online.com/MsgRef.html

17

http://www.gimpel-online.com/MsgRef.html

4.2.3 Pointer Arithmetic

For both pointer arithmetic and array indexes, it used to be possible to use int on ILP32.
But in the LP64 data model, it’s recommended to use std::ptr_diff_t instead. This way,
destructive wrap arounds that could happen when looping through an array if the data type
used for the index is too small (e.g. unsigned short or unsigned int), can be avoided.

However, none of the tests we fixed suffered from this issue.

4.2.4 Alignment

Problematic is code that makes assumptions about the actual location or size of objects in mem-
ory. As can be seen in Table 3.1, not only the data type sizes, but also the memory alignment
restrictions differ between memory models.

Important is the following quote from the C++ standard [5, Class Members, §9.2/12, p. 219]:

“Nonstatic data members of a (non-union) class with the same access control (Clause
11) are allocated so that later members have higher addresses within a class object.
The order of allocation of non-static data members with different access control is
unspecified (Clause 11).”

This means that the compiler is generally not allowed to reorder the placement of data members
in memory. However, it is still allowed to insert unnamed data members, so called padding. This
is to ensure that the alignment requirements of the particular members can be met.

The performance of a data structure specifically crafted for high-performance on a system im-
plementing the ILP32 model might perform worse on LP64 because of different alignment re-
strictions.

4.2.5 Numeric Constants

Numeric constants, sometimes called magic numbers, can cause porting issues, because they
assume a certain type size. E.g. if on 32-bit originally all bits of an unsigned long would
have been set using the numeric constant 0xFFFFFFFFUL , only half of the bits would be set on
64-bit.

Instead, doing� �
unsigned int all_set = std:: numeric_limits <unsigned long >::max();� �
or even� �
unsigned int all_set = -1UL;� �
would be more portable.

We found some instances in COAST, were numeric constants were interpreted as int or explicitly
as long (e.g. 0L) that caused some issues on 64-bit. See: section 4.4 and chapter 7 for more
information.

18

4.2.6 Storing Integers in double

Apparently, some people used to do that, because a double (64-bit) uses 52 bit for the fraction,
and only the remaining 12 bit for the exponent, which means that, in the ILP32 data model, it’s
possible to fit a long (either signed or unsigned) into a double . However, because a long

in the LP64 data model is a 64-bit quantity, this is no longer possible.

We haven’t found anything like this in COAST. But still, it’s a common issue, apparently.

4.2.7 Storing Pointers in int

In the ILP32 data model, it’s possible to store a pointer into an int , both of which are 32-
bit quantities. Of course, this isn’t possible in the LP64 data model where pointers are 64-bit
quantities and int is still a 32-bit quantity. If, for some reason, one needs to treat pointers as
integers, one should just use intptr_t or uintptr_t , respectively.

We haven’t found anything like this in COAST.

4.2.8 Bitwise Shifting

Take the following code from the COAST codebase as an example:� �
return (1 << lMaxBit);� �
As long as the value of the variable lMaxBit is less than 32, everything goes well. But in case
it’s greater, like it happened to be in COAST’s CoastStorageTest when compiled for 64-bit, it
results in undefined behavior.

That’s because lMaxBit is actually the exponent to calculate the next power of two greater than
the value passed as a long , which can be up to 64 in the LP64 data model, whereas the integer
literal 1 is of type signed int , which is only a 32-bit quantity, even in the LP64 data model.
So when shifting to the left, which effectively means 1 ∗ 2lMaxBit, and the resulting value can’t
be represented in said type (signed int), it’s undefined behavior.

To cite the C++ standard on [5, Shift operators, p. 120]:

“The value of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are zero-
filled. If E1 has an unsigned type, the value of the result is E1∗2E2, reduced modulo
one more than the maximum value representable in the result type. Otherwise, if
E1 has a signed type and non-negative value, and E1 ∗ 2E2 is representable in the
corresponding unsigned type of the result type, then that value, converted to the
result type, is the resulting value; otherwise, the behavior is undefined.”

For more information about the CoastStorageTest, see subsection 4.4.2 on page 24.

4.2.9 Timestamps

On Unix-like operating systems, time is defined as the number of seconds since January 1st,
1970. To avoid hardware dependent assembler code in Unix, K&R invented the C program-

19

UTC Time Decimal Bytes
2038-01-19 03:14:07 +2147483647 0111’1111 1111’1111 1111’1111 1111’1111
2038-01-19 03:14:08 -2147483648 1000’0000 0000’0000 0000’0000 0000’0000

Table 4.1: Unix millennium bug illustration

ming language, which most of Unix’ codebase was written in. To represent those timestamps,
C uses the time_t type. According to the C standard [4, p. 388], the actual type of time_t
is “implementation-defined”. C++ inherited time_t , but C++11 introduced a type safe and
more sophisticated alternative, the chrono library [8].

Linux and BSDs use a signed long to implement time_t . As shown in the Table 3.1, a long

on 32-bit systems is only 32 bit wide. Table 4.1 illustrates a possible behavior (called wrap
around, see the subsection 4.2.10 below) when the maximum value of the timestamp is reached,
which will happen in January 2038.

Linux assumes that, as of 2038, most desktop and server systems will be 64-bit and thus the issue
will no longer be of any significance. For embedded systems, they are going to add a new interface
for 64-bit timestamps on 32-bit systems as explained on [17], which will be backwards compatible.

However, OpenBSD and FreeBSD [23] went the more radical path and broke backwards compat-
ibility by implementing time_t as a long long type.

As a side note, in case COAST will be used on Linux 32-bit systems in 2038 and later, it might
suffer from the Unix millennium bug.

4.2.10 Integer Overflow

The avid reader realizes that, very closely related to the issue in the previous section, an appli-
cation might depend on 32-bit behavior when it comes to integer overflows. To quote the C++
standard regarding unsigned integer arithmetic on [5, Fundamental types, §3.9.1/4, p. 72]:

“Unsigned integers shall obey the laws of arithmetic modulo 2n where n is the number
of bits in the value representation of that particular size of integer.48”

And the footnote:

“48) This implies that unsigned arithmetic does not overflow because a result that
cannot be represented by the resulting unsigned integer type is reduced modulo the
number that is one greater than the largest value that can be represented by the
resulting unsigned integer type.”

As for signed integer arithmetic, to quote the C++ standard again on [5, Expressions, §5/4,
p. 84]:

“If during the evaluation of an expression, the result is not mathematically defined
or not in the range of representable values for its type, the behavior is undefined.”

Bottom line is, when porting a 32-bit application to 64-bit, one has to make sure it doesn’t
rely on undefined behavior, and also doesn’t rely on 32-bit unsigned overflow behavior (wrap
around), which, although defined behavior, behaves very differently with 64-bit integers.

20

4.3 Verification of 64-bit runtime

To make sure we’re actually running in 64-bit mode, we created two tests. Both try to verify
that allocating more than 4 GiB of virtual memory will succeed.

Both tests were performed on a headless Ubuntu Linux VM running on OSX. The command
free -m reported a total of 7983 MiB main memory, and swap has been turned off for this test.
See here:� �
$ free -m

total used free shared buffers cached

Mem: 7983 216 7767 8 24

92

-/+ buffers/cache: 99 7884

Swap: 1019 0 1019� �
4.3.1 Simple int Array

The newly added test looks like this:� �
#include <cstring > // for std :: memset

void SystemBaseTest :: VerifyAllocationTest () {

int8_t* chunk = new int8_t [2147483647U]; // 2 GiB - 1 byte

std:: memset(chunk , 0xAA , sizeof(int8_t [2147483647U]));

delete [] chunk;

}� �
Listing 4.2: Test case to test memory limit using int array

The number 2147483647U is exactly 2 GiB - 1 byte (so 0b01111111111111111111111111111111).
This works in both 32-bit and 64-bit. On 64-bit, it also works when 4 GiB (4294967296 bytes)
or more is used. However, using an array length of 2147483648U or more (≥ 2 GiB) on 32-bit
results in the following error:� �
coast/foundation/base/Test/SystemBaseTest.cpp: In member function ’void ↩

Ç SystemBaseTest :: VerifyAllocationTest () ’:

coast/foundation/base/Test/SystemBaseTest.cpp :32:51: error: overflow in array ↩

Ç dimension

std:: memset(chunk , 0xAA , sizeof(int8_t [2147483648U]));

^

coast/foundation/base/Test/SystemBaseTest.cpp :32:51: error: size of array ’type ↩

Ç name ’ is too large� �
4.3.1.1 Multiple Allocations

It should be noted that going back to the allocation that worked under 32-bit (2 GiB - 1 byte)
and adding another allocation of 1.5 GiB — to arrive at a total of 3.5 GiB of allocated memory
for this test — worked as well. But it’s definitely impossible to pass 4 GiB on 32-bit.

21

4.3.2 Using Anything

A more realistic test was performed by creating as many Anything objects as possible, where
each is initialized with a freshly allocated String of 1 MiB. Here’s the test:� �
#include <iostream > // for std :: cout

#include <vector >

void SystemBaseTest :: VerifyAllocationWithAnythingTest () {

std::vector <Anything*> v = std::vector <Anything *>();

try {

while(true) {

const String* const s = new String (1024*1024);

v.push_back(new Anything(s->cstr()));

std::cerr << "Successful String allocations: " << v.size() << "\n";

}

} catch(std:: bad_alloc e) {

for (std::vector <Anything *>:: iterator it = v.begin(); it != v.end(); ++it) {

delete *it;

}

std::cerr << "All Strings deallocated .\n";

}

}� �
Listing 4.3: Test case to test memory limit using an Anything vector

There was a catch to this: To be able to actually catch a std::bad_alloc , a throw statement
had to be added in the String::alloc(long) function. Otherwise it would just log the error
but not actually throw an exception or exit immediately.

4.3.2.1 Result on 32-bit

See the shortened output of the test:� �
[...]

Successful String allocations: 4057

Successful String allocations: 4058

Successful String allocations: 4059

FATAL: GlobalAllocator ::Alloc malloc of sz :1048608 failed. I will crash :-(

ERROR: String :: alloc: Memory allocation failed!

All Strings deallocated.� �
This shows that it fails to allocate any more String objects shortly before reaching 4 GiB (of
course the process has allocated memory outside of this test as well).

Using stderr instead of stdout made sure we get, according to Unix conventions, unbuffered —
and thus correctly ordered — output. When using stdout, it tends to look like it keeps allocating
after the first failed allocation, which of course isn’t the case.

4.3.2.2 Result on 64-bit

The following output proves that our test has been able to allocate more than 4 GiB of virtual
memory in 64-bit. With 7658 ∗ 1 MiB allocations it came fairly close to the 7837 MiB of free
main memory reported by free -m, definitely passing the 4 GiB mark.� �
[...]

22

Successful String allocations: 7656

Successful String allocations: 7657

Successful String allocations: 7658

/home/paddor/SA/coast/tests/CoastFoundationBaseTest/scripts/Linux_glibc_2 .9-↩

Ç x86_64 -64 _debug/CoastFoundationBaseTest.sh: line 223: 2737 Killed ↩

Ç "$CMD" "$@"
scons: building terminated because of errors.� �
As can be seen, the process wouldn’t even get a chance to cleanup. It gets killed by the Linux
Out Of Memory killer (normally referred to as the OOM killer), as can be confirmed by taking
a look at the syslog:� �
May 5 14:50:25 alpha SysLogTest [22956]: Message as error

May 5 14:50:31 alpha kernel: [130591.339369] CoastFoundation invoked oom -killer↩

Ç : gfp_mask =0x201da , order=0, oom_score_adj =0

May 5 14:50:31 alpha kernel: [130591.339373] CoastFoundation cpuset=session -14.↩

Ç scope mems_allowed =0

[...]� �
Of course the OOM killer acted correctly by identifying and killing the process responsible
for the out of memory condition, given the test is literally designed to allocate all available
memory.

The reason why the kernel entered the out of memory condition is this, quoted from [18]:

“By default, Linux follows an optimistic memory allocation strategy. This means
that when malloc() returns non-NULL there is no guarantee that the memory really
is available. In case it turns out that the system is out of memory, one or more
processes will be killed by the OOM killer.”

According to man 5 proc (see [22]), this so-called heuristic overcommit behavior can be disabled
and instead a more pessimistic approach can be chosen by running echo 2 /proc/sys/vm/

overcommit_memory as root. This will cause Linux to always check whether the requested
memory is actually available and never overcommit. Using this setting, the test terminates
gracefully on 64-bit as well:� �
Successful String allocations: 4609

Successful String allocations: 4610

Successful String allocations: 4611

FATAL: GlobalAllocator ::Alloc malloc of sz :1048624 failed. I will crash :-(

ERROR: String :: alloc: Memory allocation failed!

All Strings deallocated.� �
Strangely though, it happens much earlier, although still well north of the 4 GiB mark. The
reasons to this are outside of the scope of this document.

4.4 Implementation

This section covers in detail how the broken tests were fixed.

4.4.1 CoastFoundationBaseTest

The first failing test was hard to find but easy to fix. In AnythingParserTest::parseSimpleTypeLong

two assertions failed. The test tried to read the string of a long numeric value into an Anything

, after which the behavior of reading this string into a long variable was tested. Whereas in
ILP32 the size of a long variable is 32 bits, this failed as expected. In contrast, with LP64 ’s

23

long being a 64-bit quantity, the test was able to store the value into a long variable without
the desired overflow. We fixed this test by creating the numeric value as follows:� �
"1" + std:: numeric_limits <long >::max();� �
This way we are even ready for more exotic platforms, where a long is neither 32 bit nor 64 bit
wide, paving the way for the coming 128-bit port in a century.

The hard part was to search in the right place. After studying [19] and [15], we only looked for
typical problems in porting to 64-bit, but forgot that the test might just be plain wrong. But it
was a good lecture and opportunity to put our nose into CoastFoundationBase and the testing
framework in general.

4.4.2 CoastStorageTest

Consider the following test:� �
void PoolAllocatorTest :: ExcessTrackerEltGetSizeToPowerOf2Test ()

{

StartTrace(PoolAllocatorTest.ExcessTrackerEltGetSizeToPowerOf2Test);

ExcessTrackerElt aDfltCtor;

// [...]

assertEqualm (2147483648UL, aDfltCtor.GetSizeToPowerOf2 (1073741825 UL), "↩

Ç expected correct size");

}� �
Listing 4.4: Test case PoolAllocatorTest::ExcessTrackerEltGetSizeToPowerOf2Test

And the method being tested:� �
ul_long ExcessTrackerElt :: GetSizeToPowerOf2(size_t ulWishSize)

{

long lBitCnt = 0L, lMaxBit = 0L;

while (ulWishSize > 0) {

++ lMaxBit;

// count bits to see if the wish size is already an exact power ↩

Ç of 2

lBitCnt += (ulWishSize & 0x01);

ulWishSize >>= 1;

}

// adjust bitcount if wish size is already an exact power of 2

if (lBitCnt == 1) {

--lMaxBit;

}

return (1 << lMaxBit);// lint !e647

}� �
Listing 4.5: Method ul_long ExcessTrackerElt::GetSizeToPowerOf2(size_t)

Here, the number of bits set in a number passed as a size_t parameter are counted. This is
needed to deduce the next power of two greater than the given value ulWishSize . As you can
see, at the end of the method ExcessTrackerElt::GetSizeToPowerOf2 , the desired value is
derived using a single bitwise shift operation.

Unfortunately, the result type in this case is int instead of long , which means shifting more
than 31 bits will result in undefined behavior in the ILP32 data model (since the result type is
signed). That’s because the integer literal 1 is of type signed int , which is a 32-bit quantity

24

in both the ILP32 and the LP64 data models. But long is a 64-bit quantity in LP64. For the
relevant definitions in the C++ standard, see subsection 4.2.8 on page 19.

To fix the test, we changed the line to:� �
return (1L << lMaxBit);// lint !e647� �

By doing this, the integer conversion of the result and thus the undefined behavior is avoided, as
the result type is changed to the desired long .

This slight type discrepancy existed in the 32-bit version of COAST, too, but was insignificant.
The reason why is that in the ILP32 data model, both int and long are 32-bit quantities.

4.4.3 CoastCompressionTest

This is how virtually all tests in this suite work: Feed the class with some sample data and
compare the resulting stream with a binary string. We noticed there are lots of zeros in the
actual stream causing the fail. Figure 4.1 shows the GZIP binary format. We had some issues
with the gray fields.

MTIME (modification time) is a time_t , which is unspecified and glibc [25] uses long . Se-
rializing a long on 64-bit systems results in a 64-bit timestamp, but GZIP requires a 32-bit
timestamp. For more information about Unix timestamps, see subsection 4.2.9 on page 19.

The field CRC32 has the same problem. GZIP expects 32-bit but a long now is 64-bit on LP64.
CRC16 is not affected because it’s already a short which is 16 bit on LP64 as well. See Table 3.1.

8-bit
ID1

8-bit
ID2

8-bit
CM

8-bit
flags

32-bit
MTIME

8-bit
XFL

8-bit
OS

8-bit
XLEN

N-bit
XLEN+

8-bit
filename

8-bit
filecomment

16-bit
CRC16

N-bit
comp

32-bit
CRC32

32-bit
ISIZE

Figure 4.1: GZIP file format

4.4.4 CoastRegexTest

CoastRegexTest suffered from the usual problem that long is a 64-bit quantity on in the LP64
data model (see Table 3.1). The first bunch of tests were easy to fix by changing some long to
int32_t . But then things got exciting.

All tests using regular expressions containing character classes such as \S and \W were failing.
RECompiler and REBitSet seemed to work fine. A generated file named REPosixBitSets.h
containing the bit representation of isalnum , isalpha , etc. stored them as long[] arrays,
which had to be changed to int32_t[] as well. This was tricky to find, as we expected the issue
to be in the BitSet or Compiler .

25

Chapter 5

Performance Measurements

Part of the mandatory goals is to analyze the performance for each of the modified test suites
and illustrate the differences between the 32-bit and the 64-bit builds, as well as finding and
explaining their causes.

For the scope of this project, we’ll use the term performance as any unit allowing us to compare
the execution time and memory footprint.

5.1 Legacy

This has been done in a way before, but the results are produced by COAST code itself, partic-
ularly the CoastFoundationPerfTest test suite. This means there exists a significant dependency
on the code itself; only what the test suite has been programmed for will be measured.

Furthermore, this restriction also makes it impossible to use new or otherwise different methods
of performance measurement to get performance characteristics of old code, let alone over time
(which is one of the optional goals of this term project).

5.2 Concept

Since we’ll need an independent way of measuring performance, both for speed and memory
consumption, we’ll look for simple as well as sophisticated software solutions available to sample
an existing process and report statistics on it. The process in question will be any of COAST’s
existing test suites, as these are well known packages of functionality, which can be run in isola-
tion as many times as needed.

Research on performance measurement methods concluded that there are multiple methods avail-
able which seem promising. We’ve discussed these with Marcel Huber and decided on which ones
to give a try. How we integrated them into the COAST repository in the form of reusable scripts
is elucidated in the next section.

Below we briefly explain the available measurement methods and our decisions.

26

5.2.1 time

This is a very basic way to get timing and memory statistics. The time command can show
CPU time spent in user and system mode, real elapsed time (wall-clock time), as well as memory
usage information such as maximum size of the resident data. The accuracy isn’t perfect, as the
manpage on Debian/Ubuntu states, because the elapsed time isn’t collected atomically with the
execution of the program. Furthermore, most of the information shown by time is based on the
wait(2) system call.

The idea is to get a rough impression about any performance differences between the 32-bit and
the 64-bit builds, and whether they’re consistent and make sense at all.

5.2.2 gprof

GNU Profiler1 looked promising but we rejected it because it can’t handle shared object files.
Since COAST consists of many shared objects, it renders gprof unusable for this case.

There is an analogous utility called sprof which claims to be able to use shared objects, but
available documentation is scarce, which made us look for further alternatives.

5.2.3 oprofile

Marcel Huber pointed us to oprofile, which looked promising.

The problem was that it’s an old Master thesis from 2001. While its documentation is considered
to be comprehensive, it’s also known to be unstable. perf emerged as its successor with support
from the Linux kernel team itself. Thus, we immediately discarded oprofile in favor of perf.

5.2.4 perf

The perf utility for Linux is a modern tool collection used for performance analysis. It gets
its information from the performance counters, which are a kernel-based subsystem that covers
hardware features (like built into the CPU) as well as software features (like software counters
and tracepoints).

Compared to software profilers, the hardware based approach allows low-overhead access to
detailed performance information. Another great benefit is that no source code adaptation is
needed.

perf consists of multiple sub tools which are invoked in a git-like manner, e.g. perf stat ...

or perf record ... followed by a perf report

perf was developed and is still used by the Linux kernel [20]. Since then, we found talks from
Netflix [13] and Google [7] employees using perf as a performance measurement tool. It seems
to be good choice compared to the previous alternatives.

1https://sourceware.org/binutils/docs/gprof/

27

https://sourceware.org/binutils/docs/gprof/

5.2.5 Valgrind

Valgrind2 is an essential, and truly valuable tool for any C/C++ programmer. Valgrind is known
to be used as a memory leak detection tool.

From its manpage3:

“Valgrind is a flexible program for debugging and profiling Linux executables. It con-
sists of a core, which provides a synthetic CPU in software, and a series of debugging
and profiling tools. The architecture is modular, so that new tools can be created
easily and without disturbing the existing structure”

Because of all this instrumentation, it is considered slow, but we will be using its heap summary
to get an impression of the memory usage.

5.2.5.1 Memory Consumption

For further and detailed investigation, we plan to use valgrind --tool=massif which provides
detailed information on which function uses how much memory.

Massif can be instructed to sample the process in intervals of milliseconds (wall-clock), number
of instructions, or bytes allocated/deallocated. We plan to instruct Massif to use bytes as time-
unit because it’s a lot easier to compare in short running programs instead of ms or number of
instructions. With ms or instructions the shape of the graphs do vary greatly.

We plan to generate graphs using massif-visualizer, an interactive visualization for .massif
files.

5.3 Implementation

5.3.1 Architecture

Several shell scripts written to integrate the various performance measurement methods and to
make the functionality easily accessable will be discussed in this chapter. To get a genereal idea
what to expect, they are:

• perf/with massif

• perf/with perf

• perf/with perf stat

• perf/with time

• perf/with valgrind

As you can see, these shell scripts all reside in the newly created perf directory within COAST’s
repository. Furthermore, since they share common functionality, this shared functionality resides
in the library script perf/lib/measure utils.sh.

2http://valgrind.org
3http://linux.die.net/man/1/valgrind

28

http://valgrind.org
http://linux.die.net/man/1/valgrind

5.3.1.1 Naming

The name of the scripts has been chosen look similar to plain Unix commands, meaning we
didn’t include a certain filename extension. This has the advantage that later on, in case the
need arises, they can be transparently replaced with other solutions based on Python, C++ or
any other language, while their usage (the interface to the user) can stay exactly the same.

5.3.1.2 A Note on Portability

On a side note, all the shell scripts created within the scope of this term project, and discussed
in this chapter, are written for the Bourne shell. The Bourne shell is seen as the lingua franca of
shells on Unix systems. This has the benefit that it’ll take little to no effort to make the scripts
run on any Unix-like system (e.g. Solaris).

5.3.1.3 Usage

The full usage text (59 lines) can be found in Appendix H. It’s the same for all performance
measurement scripts discussed in this chapter.

Here’s the synopsis from ./with_perf --help:� �
SYNOPSIS

(1) ./ with_perf

(2) ./ with_perf TEST ...

(3) ./ with_perf --all -tests

(4) ./ with_perf --diff=TEST

(5) ./ with_perf --export [--all -tests | TEST ...]� �
By default, any of them will build, run, and measure the set of core test suites for both 64-bit
and 32-bit.

Different test suites can be specified as arguments, if necessary. If all possible test suites should
be run, --all-tests can be passed, which makes the scripts use a scons command to dynami-
cally deduce a complete list of all test targets.

Using --diff=TEST, a command will be printed. When executed, that command will show you
the recorded performance differences between the 32-bit and 64-bit builds for the specified test
suite.

The more speed related performance methods (as opposed to memory consumption) will run
the test executable once before the actual measurement, as a warmup. By doing so, the next
initialization of the test suite should take up as little time as possible, and also more accurately
resembles a production environment.

5.3.2 First Script

We wrote a fairly simple shell script perf/with time that will:

1. get list of all COAST tests

2. remember the current timestamp

29

3. for 32-bit and 64-bit builds, do:

(a) for each of the tests mentioned in the mandatory goal, do:

i. build test with --build-cfg=optimized

ii. create CSV with header line if it doesn’t exist yet

iii. run test 20 times and measure timing using just one time command

iv. append the results to a CSV file

To be clear, most of this functionality is, of course, reusable and actually resides in the shared
library file. Merely the specifics of the time-based approach are in the script with time. Thus,
only the implementation of this script is explained in detail. The others are virtually the same.

5.3.2.1 Details

The optimized build configuration has been chosen because debug information is not needed
in the time-based approach and, more importantly, to more accurately simulate a production
environment.

The relevant scons command is essentially:� �
scons --run -force --runparams="-x /usr/bin/time -x ’-f’ -x ’$START_TIME ,%U,%S,%↩

Ç e,%P,%M,%t,%D,%p,%W’ -x ’--output=$TIME_RESULT ’ -x ’--append ’ -x $NTIMES -↩

Ç x $TIMES -- -all" $TESTNAME >$PERF_DIR/time/${TESTNAME}-${ARCHBITS}_${↩
Ç BUILDCFG }.log� �

Here’s an example of such a resulting CSV file:� �
$ cat perf/perf_results/time/CoastStorageTest -64 _optimized.csv

start_time ,times_run ,user[s],system[s],real[s],cpu ,maxres[KB],avgres[KB],↩

Ç avgunshared[KB],avgunsharedstack[KB],swaps

2016 -04 -21 10:47:57 ,20 ,2.41 ,0.21 ,3.21 ,98% ,45236 ,0 ,0 ,0 ,0

2016 -04 -23 09:06:18 ,20 ,2.35 ,0.22 ,2.61 ,98% ,72772 ,0 ,0 ,0 ,0

2016 -04 -23 14:28:01 ,20 ,2.30 ,0.25 ,2.61 ,97% ,72772 ,0 ,0 ,0 ,0

2016 -04 -23 14:51:33 ,20 ,2.34 ,0.22 ,2.62 ,97% ,72704 ,0 ,0 ,0 ,0

2016 -04 -24 00:55:07 ,20 ,4.91 ,0.39 ,5.40 ,98% ,72720 ,0 ,0 ,0 ,0� �
Listing 5.1: Example CSV file produced by with_time script

This format turns out to be versatile enough to be imported into a statistical software or a
spreadsheet application to create diagrams based on the data.

5.3.2.2 Challenges

Unfortunately it initially wasn’t that easy to avoid end up measuring either Python’s or dash

’s statistics, as the time command ignores child processes created by the main command it is
passed. The shell script generated by SConsider is needed to prepare the execution environment
(change directory, set library related environment variables, . . .) before starting the actual test
executable, so we couldn’t just circumvent that. We needed a way to pass a command just before
the actual binary executable. Fortunately though, the option -x allows us to do just that.

30

After integrating the time command right before the invocation of the test binary itself, and
thus circumventing SCons’s overhead, we realized that most of the tests are very quick. Quick,
as in a typical test would finish in around 0.01 seconds. That’s simply too short for time to
measure appropriately. Its time granularity just isn’t high enough.

Using the --runparams="-x ... -x ..." method, it’s not straight-forward to run the test bi-
nary multiple times, because enclosing it in for i in ‘seq 10‘; do test_command; done or
using a pipeline like seq 10 | xargs -n1 -I{} test_command are both impossible.

We came up with a tiny shell script that does the trick. It’s called ntimes and does just that: It
takes as arguments a number and a command and just runs that command n times. It’s unique
feature is that it doesn’t require any pipeline syntax, nor does it require any enclosing syntax. It
just needs to be prepended to the command that should be executed multiple times. The vari-
able $NTIMES shown above contains its resolved path, whereas $TIMES contains an integer like 20.

5.4 Results and Analysis

5.4.1 Test Environment

The test environment is a Lenovo X1 Carbon with 8 GiB RAM, 4xi7-4550U CPU @ 1.50GHz on
Ubunutu 15.10 64-bit. To run the tests, we switched to tty1, killed X using sudo systemctl

stop lightdm.service and ran the tests through the respective script.

5.4.2 time

In order to get a general idea, the time-based approach was a moderate success.

The results clearly show a consistent difference in memory usage between the 32-bit and 64-bit
builds. But the timings are not precise enough for a speed comparison.

Here’s an example output of git diff --no-index4 for one of the tests, namely CoastFounda-
tionPerfTest:� �
diff --git a/CoastFoundationPerfTest -32 _optimized.csv b/CoastFoundationPerfTest -64 _optimized↩

Ç .csv
index 6440020.. e968611 100644
--- a/CoastFoundationPerfTest -32 _optimized.csv
+++ b/CoastFoundationPerfTest -64 _optimized.csv
@@ -1,5 +1,5 @@
start_time ,user[s],system[s],real[s],cpu ,maxres[KB],avgres[KB],avgunshared[KB],↩

Ç avgunsharedstack[KB],swaps
-2016 -04 -23 00:06:18 ,9.84 ,3.86 ,14.25 ,96% ,36616 ,0 ,0 ,0 ,0
-2016 -04 -23 00:28:01 ,10.27 ,3.92 ,14.84 ,95% ,37788 ,0 ,0 ,0 ,0
-2016 -04 -23 00:51:33 ,8.99 ,3.76 ,13.47 ,94% ,38720 ,0 ,0 ,0 ,0
-2016 -04 -23 00:55:07 ,20.76 ,7.96 ,30.42 ,94% ,40640 ,0 ,0 ,0 ,0
+2016 -04 -23 00:06:18 ,6.68 ,1.49 ,8.41 ,97% ,56612 ,0 ,0 ,0 ,0
+2016 -04 -23 00:28:01 ,6.68 ,1.53 ,9.06 ,90% ,57256 ,0 ,0 ,0 ,0
+2016 -04 -23 00:51:33 ,6.73 ,1.54 ,8.68 ,95% ,58748 ,0 ,0 ,0 ,0
+2016 -04 -23 00:55:07 ,14.57 ,2.92 ,19.77 ,88% ,61176 ,0 ,0 ,0 ,0� �

Listing 5.2: Diff: time-based performance measurement of CoastFoundationPerfTest

4--no-index allows Git to compare files that aren’t known to Git, which is the case for these result files

31

As you can see, Git recognized all lines as changed and thus there’s a bunch of green lines followed
by a bunch of red lines. To avoid this behavior and improve readability, a more sophisticated
diff can be performed with� �
git diff --no-index --word -diff -regex="[^,]+|," \

perf/perf_results/time/CoastFoundationPerfTest -* _optimized.csv� �
which will tell Git what a word in this case consists of, instead of just runs of non-whitespace
characters. The output look like this, which would be fairly readable with more space avail-
able:

diff --git a/CoastFoundationPerfTest -32 _optimized.csv b/CoastFoundationPerfTest -64 _optimized↩
Ç .csv

index 6440020.. e968611 100644
--- a/CoastFoundationPerfTest -32 _optimized.csv
+++ b/CoastFoundationPerfTest -64 _optimized.csv
@@ -1,5 +1,5 @@
start_time ,user[s],system[s],real[s],cpu ,maxres[KB],avgres[KB],avgunshared[KB],↩

Ç avgunsharedstack[KB],swaps
2016 -04 -23 00:06:18 ,[-9.84 -]{+6.68+},[-3.86 -]{+1.49+},[-14.25 -]{+8.41+},[-96% -]{+97%+},[-↩

Ç 36616 -]{+56612+} ,0,0,0,0
2016 -04 -23 00:28:01 ,[-10.27 -]{+6.68+},[-3.92 -]{+1.53+},[-14.84 -]{+9.06+},[-95% -]{+90%+},[-↩

Ç 37788 -]{+57256+} ,0,0,0,0
2016 -04 -23 00:51:33 ,[-8.99 -]{+6.73+},[-3.76 -]{+1.54+},[-13.47 -]{+8.68+},[-94% -]{+95%+},[-↩

Ç 38720 -]{+58748+} ,0,0,0,0
2016 -04 -23 00:55:07 ,[-20.76 -]{+14.57+},[-7.96 -]{+2.92+},[-30.42 -]{+19.77+},[-94% -]{+88%+},[-↩

Ç 40640 -]{+61176+} ,0,0,0,0

Listing 5.3: Word diff: time-based performance measurement of CoastFoundationPerfTest

To be precise, adding the option --word-diff=color would make the output even more readable
by leaving out the extra enclosing characters and instead just colorize the differing values. But
doing so would have made colorizing this listing impossible.

As this was just a way to get a general idea, and the time-based approach is rather limited, we
kept looking for more sophisticated tools. Read on.

5.4.3 perf

To get an overview of the performance differences between the 32-bit and 64-bit builds, we used
perf stat as shown in Appendix E. The command internally used is:� �
scons --ignore -missing --with -src -boost=3 rdparty/boost \

--with -src -zlib=3 rdparty/zlib --with -bin -openssl =3 rdparty/openssl \

--build -cfg=optimized --archbits =64 --run -force \

--runparams="-x perf -x stat -x --debug -x ’--output \$RESULT ’ \

-x ’--repeat 20’ -- -all"\

$TESTNAME� �
The option --detailed stands for detailed output, --output $RESULT denotes the result file,
and --repeat 20 causes the test to be run 20 times by perf.

Example output:� �
81.437651 task -clock (msec) # 0.350 CPUs utilized

135 context -switches # 0.002 M/sec
1 cpu -migrations # 0.012 K/sec

1303 page -faults # 0.015 M/sec
191305663 cycles # 2.258 GHz (50.01%)

<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend

457793461 instructions # 2.07 insns per cycle (62.97%)
123582091 branches # 1458.496 M/sec (62.91%)

32

344673 branch -misses # 0.28% of all branches (65.30%)
177554196 L1-dcache -loads # 2095.465 M/sec (56.92%)

1444585 L1-dcache -load -misses # 0.90% of all L1 -dcache hits (25.88%)
286722 LLC -loads # 3.384 M/sec (24.72%)

5160 LLC -load -misses # 3.36% of all LL -cache hits (36.07%)

0.232891130 seconds time elapsed (+- 1.87%)� �
Listing 5.4: Example output of perf stat

To understand the meaning of the output, it’s necessary to know what each of the counters
mean. A legend for those, including a general introduction to perf stat can be taken from [13,
Perf Examples] and [21, Perf Stat].

Here’s a quick overview for the counters and their meanings:

task-clock (msec)
Time in msec spent on profiled task (like CPU time, but measured with dedicated hardware
support), where less is better, and how parallel (how many CPUs the task’s load was
distributed to), where more is better.

context-switches
How often the kernel switched from one process/thread to another one. Less is better.

cpu-migrations
Kernel moves a thread from one CPU to another CPU. Less is better.

page-faults
Accesses to memory pages which are in virtual address space but not loaded in main
memory (traps). Less is better.

cycles
Total cycles spent. Less is better, but can be irrelevant for performance (in case of other
bottlenecks).

instructions
Instructions per cycle. Generally, more is better, but beware, e.g. spin locks5 could lead
to high values too.

branches
How many jumps/loops in code. Not directly relevant for performance.

branch-misses
Incorrectly predicted branches. Less is better.

L1-dcache-loads
L1 data cache loads. More is better.

L1-dcache-load-misses
L1 missed data cache loads. Less is better.

LLC-loads
Last level cache loads. More is better.

LLC-load-misses
Missed last level cache loads. Less is better.

seconds time elapsed
Wall clock of time elapsed while running the given task.

5https://en.wikipedia.org/wiki/Spinlock

33

https://en.wikipedia.org/wiki/Spinlock

Most of the perf stat results (detailed diffs in Appendix E) of the COAST test suites are quite
similar. It looks like the switch to 64-bit does not have a big impact on performance. Generally
there are more cache misses and instructions on 64-bit but also higher instructions per seconds
and better branch prediction, which evens it out.

The differences for the following tests are significant enough to give them a closer look. We
decided to rerun them and then analyze them with perf record and perf report if deemed
necessary. Overall, the test system seemed to have less load during the second run. But the
numbers stayed stable which allowed a comparison. Here’s a short summary of the outliers in
the 64-bit build:

• CoastFoundationMiscellaneousTest (details in Listing E.6)

– High standard deviation

– More page faults

– Same seconds time elapsed

– Kind of same in the second perf stat run (see Listing E.7). Further investigation
hasn’t been successful, as test is too short and consists mainly of memory allocations.

• CoastEBCDICTest (details in Listing E.1)

– High standard deviation

– 1.35× slower

– Looks a lot better after the second perf stat run (see Listing E.2), and thus there’s
no need to further analyze the results.

• CoastFoundationPerfTest (details in Listing E.8)

– High standard deviation

– 1.9× faster

– Less page-faults

– More context switches

– More L1 dcache misses

– Less LLC cache misses

– Kind of same in the second perf stat run (see Listing E.9). See the further investi-
gation in subsubsection 5.4.3.1

• CoastRegexTest (details in Listing E.14)

– Some deviation

– Looks better in the second perf stat run (see Listing E.15).

• CoastFoundationTimeTest (details in Listing E.11

– Same time

– More L1 dcache misses (time_t now 64-bit?)

– Looks better in the second perf stat run (see Listing E.12).

5.4.3.1 Detailed Analysis: CoastFoundationPerfTest

The perf diff output in Listing 5.5 tells us that the test spent 17.93% less time in the kernel
in 64-bit mode. The handling of page faults in Listing 5.6 in 32-bit mode seems to have the
biggest impact. CoastFoundationPerfTest is mainly testing memory handling of the Anything

34

and String classes, particularly the Anything::IFAHash function.

Some ideas as to why much less time is spent in the kernel on 64-bit include:

1. larger buffers

2. better implementation

3. Given the fact that the test has been run on a 64-bit system:

(a) expensive syscall conversions on 32-bit

(b) 64-bit hardware, although just an extension to x86, might be optimized specifically
for 64-bit code

These are just ideas and we have no proof for any of them. Attempts to contact a professor at
HSR whose work involves Linux kernel hacking remained without success.

� �
$ sudo perf diff -f --sort comm ,dso CoastFoundationPerfTest -32 _optimized.perf ↩

Ç CoastFoundationPerfTest -64 _optimized.perf

Event ’cycles ’

#

Baseline Delta Command Shared Object

........

#

44.40% -2.83% CoastFoundation libCoastFoundationBase.so

23.22% -17.93% CoastFoundation [kernel]

20.38% +4.58% CoastFoundation libc -2.21. so

8.27% +7.23% CoastFoundation libstdc ++.so .6.0.21

3.73% +7.22% CoastFoundation libCoastFoundationMiscellaneous.so

+1.73% CoastFoundation CoastFoundationPerfTest� �
Listing 5.5: Simple perf diff of CoastFoundationPerfTest

� �
$ sudo perf diff -f CoastFoundationPerfTest -32 _optimized.perf CoastFoundationPerfTest -64↩

Ç _optimized.perf | c++filt
Event ’cycles ’
#
Baseline Delta Shared Object Symbol

18.65% +3.44% libc -2.21. so [.] 0x000000000006ff61
8.25% -5.87% [kernel] [k] page_fault
3.92% [kernel] [k] clear_page_c_e
3.83% -0.38% libCoastFoundationBase.so [.] IFAHash(char const*, long&, ↩

Ç char , char)
3.43% libCoastFoundationBase.so [.] __x86.get_pc_thunk.bx
2.78% -0.43% libCoastFoundationBase.so [.] String ::Set(long , char const*, ↩

Ç long)
2.42% libCoastFoundationBase.so [.] AnyIndTable ::At(long)
2.08% +2.52% libCoastFoundationBase.so [.] AnyKeyTable :: DoHash(char const↩

Ç *, bool , long , unsigned long) const
2.05% libCoastFoundationBase.so [.] Allocator :: Calloc(int , unsigned↩

Ç int)
1.76% +1.12% libstdc ++.so .6.0.21 [.] __dynamic_cast
1.38% libCoastFoundationBase.so [.] Allocator :: Malloc(unsigned int)
1.37% libCoastFoundationBase.so [.] Anything :: SetAllocator(↩

Ç Allocator *)
1.37% libstdc ++.so .6.0.21 [.] std:: basic_ostream <char , std::↩

Ç char_traits <char > >& std:: __ostream_insert <char , std:: char_traits <char > >(std::↩
Ç basic_ostream <char , std:: char_traits <char > >&, char const*, int)

1.26% +0.37% libCoastFoundationBase.so [.] String :: IntReadFrom(std::↩
Ç basic_istream <char , std:: char_traits <char > >&, char)

1.07% [kernel] [k] get_mem_cgroup_from_mm
1.04% -0.46% libCoastFoundationBase.so [.] coast :: storage :: Current ()
1.03% libCoastFoundationBase.so [.] Allocator :: RealMemStart(void*)
1.03% libstdc ++.so .6.0.21 [.] std:: basic_ostream <char , std::↩

Ç char_traits <char > >::sentry :: sentry(std:: basic_ostream <char , std:: char_traits <↩
Ç char > >&)

1.03% libCoastFoundationMiscellaneous.so [.] PoolAllocator :: Alloc(unsigned ↩
Ç int)

1.03% +2.98% libstdc ++.so .6.0.21 [.] std:: basic_ostream <char , std::↩
Ç char_traits <char > >::put(char)

35

1.02% +0.09% libCoastFoundationBase.so [.] AnyArrayImpl ::~ AnyArrayImpl ()
1.02% libCoastFoundationBase.so [.] String ::~ String ()
1.02% -1.00% libCoastFoundationBase.so [.] AnythingToken :: isNameDelimiter(↩

Ç char)
1.02% libCoastFoundationMiscellaneous.so [.] PoolAllocator :: FindBucketBySize↩

Ç (unsigned int)
0.79% +0.36% libCoastFoundationBase.so [.] Anything :: operator =(Anything ↩

Ç const&)
[...]� �

Listing 5.6: Detailed perf diff of CoastFoundationPerfTest

5.4.4 Valgrind

Based on the Valgrind Heap Summary in Table 5.1, memory consumption usually seems to be
1 − 1.6× higher in 64-bit. Since long often was used as a substitute for int in the COAST
framework, that’s surprising. We expected a much higher memory usage instead. We decided
to take a closer look at some outliers, namely CoastFoundationMiscellaneousTest and Coast-
SystemFunctionsTest. All other tests with a ∼ 1.5 factor do not have a specific reason for the
increased memory usage — it’s just general higher memory consumption.

Both CoastFoundationMiscellaneousTest and CoastSystemFunctionsTest show the same graph,
as can be seen in Figure 5.1 and Figure 5.2. The initial spike, which is ∼ 2.7− 3.5× higher on 64-
bit, is not caused by the COAST framework directly. Instead, its root cause is the call_init()

function of glibc-2.21. See subsubsection 5.4.4.1 for our further investigations on this.

Another try was to examine what other shared object files (.so) were loaded and whether there is
a difference between the tests: cat /proc/PID/maps, interesting is the increased size of libm.so
from 302 KiB in 32-bit to 1.1 MiB on 64-bit. But other tests load this .so too, so it can’t be the
culprit. SCons also uses -fPIC in order to avoid loading those libraries into the process memory.

5.4.4.1 About call_init()

The GNU C Library6’s function call_init() (defined in dl-init.c) is what caused the initial
spike in memory usage.

Unfortunately, we were unable to find any useful documentation about this function or other
helpful information on this specific effect. Furthermore, COAST loads shared objects using the
class AppBooter , but neither of the two affected tests make use of it.

So we looked into alternative implementations of the C standard library, namely musl libc7 and
µClibc8, to find any clues as to the purpose of this function. Unfortunately neither of them have
this function.

Even though musl libc provides a gcc command, to transparently use musl libc, unfortunately
it’s only for C. The other library doesn’t provide anything like this. So integrating either of the
two turned out to be unfeasible within a reasonable time frame.

6https://www.gnu.org/software/libc/
7http://www.musl-libc.org
8https://uclibc.org

36

https://www.gnu.org/software/libc/
http://www.musl-libc.org
https://uclibc.org

Figure 5.1: Massif output CoastSystemFunctions32

37

Figure 5.2: Massif output CoastSystemFunctions64

38

5.4.4.2 SBO/SSO

Interesting is that some tests (including EBCDIC, FoundationBase, FoundationMiscellaneous,
and others) result in less total allocations. One explanation we figured out in meeting #9, is the
small buffer optimization (SBO) and short string optimization (SSO). ITOString uses some-
thing similiar to this technique as shown in Listing 5.8. Both long members in StringImpl

doubled in size in 64-bit, which means every allocated string may have 8+ bytes more. Because of
capacity = GetAllocator()->SizeHint(capacity); the actual allocation size might differ,
because sometimes capacity in 64-bit will allocate the next bigger bucket and sometimes it will
still fit in the same bucket as with 32-bit. Our test, where we changed both long members to
int , shows a bit lower memory consumption but no difference in the number of allocations.

Another idea is boost::function . We temporarily got rid of the Small Object Optimization as
shown in Listing 5.7. This change led to more allocations. CoastFoundationBaseTest used to re-
sult in 3’479’836 as opposed to 3’479’803 allocations with this change. As another test, we added
a 4-byte int member to the struct function_buffer which led to 3’479’833 allocations. It
looks like we found one of the culprits.

� �
template <typename F>

struct function_allows_small_object_optimization

{

BOOST_STATIC_CONSTANT

(bool ,

- value = ((sizeof(F) <= sizeof(function_buffer) &&

- (alignment_of <function_buffer >:: value

- % alignment_of <F>:: value == 0))));

+ value = false);

};� �
Listing 5.7: Boost ’s Small Object Optimization temporarily disabled

Explanation for the columns in Table 5.1:

B in use at exit: Bytes in use after exit of program (usually pools)

#allocs: Total of allocations

#frees: Total of frees

allocated: Total allocated bytes in runtime

checked: Total scanned bytes

39

COAST Testsuite B in use at exit #allocs #frees B allocated checked
EBCDIC 32 70’208 7’896 7’841 545’150 144’724
EBCDIC 64 126’224 7’894 7’839 704’725 186’032
Difference 56’016 -2 -2 159’575 41’308
Factor 1.798 1 1 1.293 1.285
Foundation 32 18’944 62’214 62’213 3’091’841 116’164
Foundation 64 72’704 62’214 62’213 4’822’353 157’472
Difference 53’760 0 0 1’730’512 41’308
Factor 3.838 1 1 1.56 1.356
FoundationAnythingOptional 32 18’944 50’357 50’356 2’640’173 99’812
FoundationAnythingOptional 64 72’704 50’357 50’356 4’098’891 128’816
Difference 53’760 0 0 1’458’718 29’004
Factor 3.838 1 1 1.553 1.291
FoundationBase 32 18’944 3’479’808 3’479’807 395’955’577 128’516
FoundationBase 64 72’704 3’479’803 3’479’802 418’179’124 169’824
Difference 53’760 -5 -5 22’223’547 41’308
Factor 3.838 1 1 1.056 1.321
FoundationIO 32 18’944 74’255 74’254 21’220’485 132’532
FoundationIO 64 72’704 74’257 74’256 22’865’257 173’840
Difference 53’760 2 2 1’644’772 41’308
Factor 3.838 1 1 1.078 1.312
FoundationMiscellaneous 32 18’944 1’059 1’058 108’488 103’940
FoundationMiscellaneous 64 72’704 1’051 1’050 185’704 132’944
Difference 53’760 -8 -8 77’216 29’004
Factor 3.838 0.992 0.992 1.712 1.279
FoundationPerf 32 18’944 1’856’644 1’856’643 2’878’515’070 103’908
FoundationPerf 64 72’704 1’842’175 1’842’174 2’927’396’552 132’928
Difference 53’760 -14’469 -14’469 48’881’482 29’020
Factor 3.838 0.992 0.992 1.017 1.279
FoundationTime 32 18’944 62’214 62’213 3’091’841 116’164
FoundationTime 64 72’704 62’214 62’213 4’822’353 157’472
Difference 53’760 0 0 1’730’512 41’308
Factor 3.838 1 1 1.56 1.356
MTFoundation 32 23’950 166’317 166’210 31’424’965 137’324
MTFoundation 64 81’122 166’234 166’127 35’786’710 183’256
Difference 57’172 -83 -83 4’361’745 45’932
Factor 3.387 1 1 1.139 1.334
Regex 32 19’616 728’601 728’597 44’530’017 120’148
Regex 64 73’952 728’601 728’597 59’841’461 169’632
Difference 54’336 0 0 15’311’444 49’484
Factor 3.77 1 1 1.344 1.412
Storage 32 20’128 2’450’204 2’450’199 124’924’687 137’596
Storage 64 74’560 2’450’205 2’450’200 194’316’177 183’440
Difference 54’432 1 1 69’391’490 45’844
Factor 3.704 1 1 1.555 1.333
SystemFunctions 32 18’944 207 206 29’990 99’732
SystemFunctions 64 72’704 207 206 88’038 128’736
Difference 53’760 0 0 58’048 29’004
Factor 3.838 1 1 2.936 1.291
Total: 32 285’454 8’939’776 8’939’597 3’506’078’284 1’440’560
Total: 64 937’490 8’925’212 8’925’033 3’673’107’345 1’904’392
Difference 652’036 -14’564 -14’564 167’029’061 463’832
Factor 3.284 0.998 0.998 1.048 1.322

Table 5.1: Valgrind Heap Summary

� �
void String :: alloc(long capacity)

{

// this method is extremely performance sensitive

// beware of overhead

// make initial capacity some power of 2 for saving allocs with short

// strings , only if we have fixed size initializers string buffers

// smaller than cStrAllocMinimum are created

if (capacity <= 0) {

capacity = cStrAllocMinimum;

}

capacity += sizeof (* fStringImpl); // add tara

40

capacity = GetAllocator ()->SizeHint(capacity);

fStringImpl = static_cast <StringImpl *>(fAllocator ->Calloc(capacity , ↩

Ç sizeof(char)));

if (! fStringImpl) {

// --- allocation failed

SystemLog ::Error("String :: alloc: Memory allocation failed!");

} else {

// subtract to get net capacity again.

fStringImpl ->fCapacity = capacity - sizeof (* fStringImpl);

// length is 0 by using Calloc

}

}

//! struct that uses a space efficient trick to implement string

struct StringImpl {

//! the size of the allocated buffer

long fCapacity;

//! the length of the String as perceived by the user of this class

long fLength;

//! the allocated characters follow just after this so the start of the ↩

Ç characters is (char *)(fStringImpl +1);

char *Content () {

return reinterpret_cast <char *>(this + 1);

}

//! the allocated characters follow just after this so the start of the ↩

Ç characters is (char *)(fStringImpl +1);

const char *Content () const {

return reinterpret_cast <char const *>(this + 1);

}

} *fStringImpl;� �
Listing 5.8: Allocation optimization of String in coast/foundation/base/ITOString.cpp

Massif shows 64-bit consumption is similarly shaped, but generally higher, as can be seen in
Figure 5.3 and Figure 5.4.

Figure 5.4 (64-bit) shows an interesting extra spike. To analyze this spike, we reran massif with
--detailed-freq=1 to get more details about where this spike comes from. The following listing
shows the respective source code from PoolAllocator.cpp:� �
// PoolAllocator :: PoolAllocator (long , unsigned long , unsigned long) on line 256

fPoolMemory = :: calloc(fAllocSz , 1);

PoolBuckets = (PoolBucket *):: calloc(fNumOfPoolBucketSizes + 1,

sizeof(PoolBucket));� �
Listing 5.9: Snippet of PoolAllocator ’s ctor

. . . which has been called by the test case AnythingDeepCloneTest::DeepCloneBug232Test()

(AnythingDeepCloneTest.cpp:527) by the line PoolAllocator p(1, 16384, 20); .

Since PoolBucket is a struct (Listing 5.10) containing two size_t , one void pointer and two
pointers for boost::shared_ptr [3], and all of these types are bigger quantities in LP64, this
struct now has 5 times the size. This is one possible cause for the spike.� �
struct PoolBucket {

size_t fSize;

size_t fUsableSize;

void *fFirstFree;

Allocator :: MemTrackerPtr fBucketTracker;

};� �
Listing 5.10: Cause for a spike in memory consumption in 64-bit

41

Figure 5.3: Massif output CoastBaseTest32

Figure 5.4: Massif output CoastBaseTest64

5.5 Conclusion

As we have seen in subsection 5.4.4, most tests use 1− 1.5× more memory in 64-bit, with the ex-
ception of the two outliers discussed earlier. That’s clearly less than we expected, since COAST
used long as a replacement for int , which doubles in size in the LP64 data model.

Performance-wise in terms of speed, a port to 64-bit is negligible. Some system calls are faster

42

on 64-bit but we’ve been unable to find explicit proof or documentation about it. Nor have we
been able to get professional insights about it, as mentioned before.

Both performance and memory consumption are highly sensitive to numerous factors and there
is no easy answer. If performance matters, you have to measure, optimize and tune your appli-
cation for your system and target machine.

43

Chapter 6

Optional Goal: Performance
History

This goal consists of working out a way to get and store the history of performance measure-
ments over time, for example to allow visualizing them later on. This could prove helpful when
trying to track down a commit which had a negative impact on performance.

Below are three more specific use cases which describe when the performance history could be
useful.

6.1 Use Case #1: Analyzing a Range of Revisions

Given a range of revisions, or in Git jargon called a commit range, one wants to analyze per-
formance difference imposed by the commits. This could help track down a certain commit as
described at the beginning of this chapter.

One example for a commit range could be the last 50 commits on the master branch. Based on
this range, the performance effect of said commits could be computed iteratively.

6.1.1 Specifying Commit Ranges

It turns out that Git has very sophisticated commit selection capabilities, including the selection
of a range of commits or a certain subset thereof (more on this later). A commit range such as
old..new selects all commits reachable (“ancestors of”) from new, excluding the ones reachable
from old.

Consider the following commit history:

A----B----D----F----H

\

\

C----E----G

Every letter denotes a Git commit. The time line is from left to right. Commit H is the tip of the
mainline branch, usually called master. Commits C, E, and G make up a branch (e.g. featureX)

44

which has descended from commit B. Commit G represents the tip of that branch.

Selecting the range B..H, would return the commit set (D,F,H). This is because it’s really
just shorthand for H ^B, which translates to “all commits reachable from H without the commits
reachable from B”.

It goes quite a bit further than that1. For example, specifying G...H (three dots) only selects
commits that are reachable by either G or H, but not both. This effectively lists all divergent
commits between the two branches (G,E,C,H,F,D).

6.1.2 Interpolating Results

The analysis described above could either be done for all commits of a given commit range, which
can take a long time, or it could be done just for a subset thereof to save (build) time. In the
latter case, the intermediate measurement results can be interpolated, for example using a trend
line in the diagram of a spreadsheet application.

Imagine one wants to create performance history data for the time span of a whole year (assuming
that the selected test suites haven’t changed significantly within that time). Does one really need
to build and run the test suite(s) for every commit done in this time span? Not to get a general
idea of the performance characteristics, like whether the memory consumption or execution time
went generally up or down. A subset of the commit range would suffice. For this example, a
subset of maybe 32 data points would be by far enough for interpolation to notice a general
trend.

Git has the answer: Passing the option --bisect-all to git-rev-list will list the commits in
bisect order, which is effectively binary search order, where it lists the commits with the largest
distance to either boundary first, then the ones whose distance is half as large, and so on. By
limiting the number of selected outputs using --max-count, it essentially lets us select an ap-
propriate subset of commits to be able to create an interpolated graph subsequently.

Ideally, one might want to choose the number of commits to be a power of two. This would
ensure a fairly equal (topological) distance between each pair of commits, if so desired.

6.2 Use Case #2: Analyzing a List of Revisions

Given a list of commits (not a range), the performance of the software at exactly those commits
shall be analyzed. This can be useful to show the effects of a single commit, compared to its
parent. For this case, the commit and its parent have to be specified.

It could also be useful for an arbitrary set of commits, possibly related to each other in a more
complex way. E.g. one needs to take advantage of the full power of git-rev-list, and not only
it’s ability to enumerate over a range of commits.

1https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

45

https://www.kernel.org/pub/software/scm/git/docs/gitrevisions.html

6.3 Use Case #3: Archiving the Results

Properly archiving the results of this script can be necessary to process it in another application,
or simply to have it outside of the repository, respectively the master branch.

6.4 Non-Functional Requirements

Marcel Huber requested that the solution shouldn’t be based on Perl, rather preferring Python
or a pure shell script.

6.5 Concept

For the same reasons as described in section 5.1, independent measurement methods will be used.
COAST’s existing performance related test suites won’t be treated in any special way. Instead,
the newly created performance measurement scripts will be reused. Of course, they can also be
used to analyze the performance related test suites.

The idea is to write an additional shell script perf-history that will:

1. process the options and arguments passed

2. deduce a list of desired commits

3. create a new directory (all information related to this run)

4. get confirmation from the user to proceed

5. iterate through each commit:

(a) create a result directory for the commit

(b) run the chosen measurement script, which will:

i. build the necessary executables

ii. run the appropriate test suites and measure performance

iii. write the results to a file within the newly created directory

iv. extract desired measurement values

v. append to an accumulated CSV file

Needless to say, the functionality to build, run, and measure performance of certain test suites
can be reused from the existing script solutions described in chapter 5.

6.5.1 File Format

Again, CSV is a very versatile format, even more than something like JSON/YAML, as even these
seemingly simple formats require specialized commands to be processed on the command line.
As one of the Unix philosophies recommends the use of [14, The Unix Philosophy, p. 76]

“common underlying format—the line-oriented, plain text file”

It can still be converted to anything else later if necessary.

46

6.5.2 Applicability

Given the current set of lower-level performance measurement scripts, this script only makes
sense in combination with:

• time

• perf-stat

• valgrind

It does not make sense in conjunction with either perf itself or Valgrind ’s memory consumption
analyzing tool Massif. This is because their results are not suitable to be exported to CSV.

6.6 Implementation

Of course, the new script has been written to be Bourne shell compatible to ensure the best pos-
sible portability across Unix systems. In addition to that, only standard versions of sed and grep
were used. We deliberately avoided using GNU extensions of said utilities (as GNU is Not Unix).

6.6.1 Using Current Script Revisions for Old Code

Because of the very nature of this utility, namely jumping back and forth between revisions, we
had to find a way to ensure that only the newest version of the performance measurement scripts
are used. We had two options:

1. Git Sparse Checkouts

This is a feature of Git [12, Sparse checkout] which lets you do sparse checkouts. It
means only files that have been deemed interesting by configuration is actually checked out
when checking out a specific commit. This turns out to be a very complex feature, and
once enabled, it’s not straight forward to just disable it. Fully repopulating the working
directory would require:

(a) changing the configuration: making all files interesting again

(b) checking out the working directory

(c) disabling the sparse checkout feature

So this feature is not only complex, but also impairs the agility when working with Git.

2. Simply freezing the scripts

By simply copying the existing scripts to the newly created directory, we can guarantee
that the current version is used for all commits checked out during the process of creating
the performance analysis. It might also make later diagnostics and debugging easier. This
is because there could be a dated, accumulated CSV file made up of old columns, which is
preferably extended by scripts of the corresponding version.

This option is simple and pragmatic.

Needless to say, we decided to implement the second option.

47

6.7 Usage

Here’s the synopsis from perf/perf-history --help:� �
SYNOPSIS

(1) ./perf -history [--method=METHOD] [--max -count=N] <commit >...

(2) ./perf -history [--method=METHOD] --stdin� �
The full usage text (116 lines) can be found in Appendix G.

The two forms listed directly correspond to the use cases #1 and #2.

6.7.1 Selecting the Measurement Method

As shown in the previous section, using the option --method the performance measurement
method can be specified. By default, it’s time. All currently supported methods are:

• --method=time

• --method=perf_stat (for perf-stat)

• --method=valgrind

6.7.1.1 Extensibility

As you can see, these values exactly correspond to the previously added, lower-level performance
measurement scripts. That’s because that’s exactly how they’re selected: The method name
given is taken into account when looking up the lower-level script. It’s expected that it (or a
symlink to it) exists next to the perf-history script itself, starting with with_. For example,
running perf/perf-history --method=foo will make it look for a script called perf/with foo.

This makes extending this infrastructure trivial. An additional method really only needs to be
able to do two things:

1. hook into a scons command and measure a given test suite

2. export the result as CSV on STDOUT (including a header) if the --export option was
given

Common functionality like deducing a list of desired test suites, iterating over the desired pro-
cessor architectures, building the executables, performing a warmup round, printing progress
information, etc. can simply be loaded and reused.

6.7.1.2 Example Extension

As a matter of fact, it should be fairly trivial to define an additional lower-level script which
merely acts as a wrapper around COAST’s test suites, but provides the ability to export the
already printed run durations as CSV. It could be called with self, and use something like the
following sed script to filter and transform the relevant lines from the test suite output:

� �
sed -n ’s/^--\(\w\+\) \.\(\w\+\) --\s*(\([[: digit :]]\+\) ms).*/\1 ,\2 ,\3/p’� �

48

Consider the following input:� �
Running RegexTest

--RegexTest.MatchLiteral -- (0ms)

--RegexTest.MatchDot -- (0ms)

--RegexTest.MatchDotDotDot -- (0ms)

--RegexTest.MatchDotStar -- (0ms)

--RegexTest.MatchAStar -- (0ms)

--RegexTest.LargeLiteralTest -- (10ms)

--RegexTest.BackRefTest -- (0ms)

--RegexTest.ShortLiteralTest -- (20ms)

--RegexTest.LargeDotStarTest -- (10ms)

--RegexTest.MatchConfig -- (0ms)

--RegexTest.MatchFlagsTest -- (0ms)

--RegexTest.SplitTest -- (0ms)

--RegexTest.SubstTest -- (0ms)

--RegexTest.GrepTest -- (0ms)

--RegexTest.GrepSlotNamesTest -- (0ms)

--RegexTest.GetMatchTest -- (0ms)

OK (16 tests and 456 assertions in 40 ms)� �
The input would be transformed into the following CSV records:� �
RegexTest ,MatchLiteral ,0

RegexTest ,MatchDot ,0

RegexTest ,MatchDotDotDot ,0

RegexTest ,MatchDotStar ,0

RegexTest ,MatchAStar ,0

RegexTest ,LargeLiteralTest ,10

RegexTest ,BackRefTest ,0

RegexTest ,ShortLiteralTest ,20

RegexTest ,LargeDotStarTest ,10

RegexTest ,MatchConfig ,0

RegexTest ,MatchFlagsTest ,0

RegexTest ,SplitTest ,0

RegexTest ,SubstTest ,0

RegexTest ,GrepTest ,0

RegexTest ,GrepSlotNamesTest ,0

RegexTest ,GetMatchTest ,0� �
Notice that the superfluous lines at the top and bottom have been skipped.

6.7.2 Selecting the Test Suites

By default, all tests from the mandatory goal are taken. They’re called core tests in the usages.
They’re simply the list of test suite names stored in perf/lib/core tests.txt.

If one wants to run the performance analysis for a certain set of test suites, the environment
variable TEST_NAMES can be set to point to a file containing the desired list.

6.7.2.1 Example

To run all test suites, the appropriate file containing all tests can easily be created in advance
like this:

� �
scons -u --showtargets | grep ’^ - .*Test$ ’| cut -d’ ’ -f3 > all_tests.txt� �

49

Afterwards, the performance history script can be started like this:� �
TEST_NAMES=all_tests.txt ./perf -history [<option >...] [<commit >...]� �
6.7.3 Selecting the Processor Architecture

By default, executables are only built for the current processor architecture (unlike the perfor-
mance measurement scripts used standalone, which will build for 64-bit and 32-bit by default).

To change the default, set the environment variable ALL_ARCHBITS.

6.7.3.1 Example

To build and measure every selected test suite for both 32-bit and 64-bit, use the following
command structure:� �
ALL_ARCHBITS="32 64" ./perf -history [<option >...] [<commit >...]� �
6.7.4 Example of Use Case #1

Assuming one wants to create a performance analysis using perf over the range of commits B..H
(as described above), the following command can be used:� �
./perf -history --method=perf B..H� �
This will check out and measure up to 16 commits by default.

The values from the first column of Listing 5.4 will be extracted and combined into the file
perf/history-YYYYMMDD-XXXXXX/result.csv, where YYYYMMDD is the current date and XXXXXX

is a random sequence of characters (the effect of mktemp -d).

Here’s an example of the resulting CSV:� �
commit ,testname ,archbits ,buildcfg ,method ,times_run ,elapsed_time[s],elapsed_time_derivation↩

Ç [%], task_clock[msec],context_switches ,cpu_migrations ,page_faults ,cycles ,↩
Ç stalled_cycles_frontend ,stalled_cycles_backend ,instructions ,branches ,branch_misses ,↩
Ç l1_dcache_loads ,l1_dcache_load_misses ,llc_loads ,llc_load_misses

5709245 , CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.095087504 ,0.49 ,69.906876 ,143 ,0 ,1303 , , , , , , , , ,

4162373 , CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.098277338 ,0.83 ,69.808484 ,135 ,0 ,1299 , , , , , , , , ,

ad5e2b8 ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.097705799 ,0.61 ,75.112279 ,136 ,0 ,1303 , , , , , , , , ,

62c0932 ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.096450159 ,0.81 ,69.602125 ,412 ,0 ,1300 , , , , , , , , ,

74c415d ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.097863627 ,0.90 ,70.066295 ,135 ,0 ,1303 , , , , , , , , ,

f4c8ee9 ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.098398006 ,1.03 ,77.321331 ,399 ,0 ,1299 , , , , , , , , ,

5b36c3b ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.094257277 ,1.06 ,72.752429 ,135 ,0 ,1300 , , , , , , , , ,

acdbd99 ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.096416857 ,0.68 ,70.069705 ,372 ,0 ,1303 , , , , , , , , ,

66ae973 ,CoastRegexTest ,64,optimized ,perf_stat↩
Ç ,20 ,0.098175875 ,1.08 ,70.042155 ,135 ,0 ,1300 , , , , , , , , ,� �

Listing 6.1: Example performance history result (CSV) (perf-stat)

50

Of course this is just an example, limited to one single test suite.

As you can see, some of the columns were left empty. That’s because perf-stat reported <not

supported> for those fields. That’s probably because it was run on a VM which doesn’t have
proper access to the lower level performance counter system. But the extraction logic is there
and would extract the values accordingly, if they were reported by perf-stat.

Using a spreadsheet application, one could now filter/sort by any of the columns, including but
not limited to:

commit the commit SHA1

testname the test suite name

archbits processor architecture such as 32 or 64

archbits build configuration such as debug or optimized

times run how many times the test suite executable has been run

elapsed time[s] elapsed time (wall-clock time) in seconds

6.7.5 Example of Use Case #2

Assuming has a certain set of commits ready in a file my commits.txt and wants to use Valgrind
to analyze the performance of each of the commits, the following command will be helpful:� �
./perf -history --method=valgrind --stdin < my_commits.txt� �
This will extract Valgrind ’s LEAK SUMMARY and HEAP SUMMARY values and combine them into the
resulting CSV file perf/history-YYYYMMDD-XXXXXX/result.csv.

6.7.6 About Use Case #3

Here, it’s really up to the user what to do with the resulting CSV file. They might decide to
either:

• just leave it where it was created (maybe add its directory to .gitignore),

• fill it into a DBMS, or

• put it into its own branch dedicated to archived performance measurements.

The third option could be done using the following command:� �
git checkout --orphan perf_archive� �
This will create a completely independent branch (not descending from a given commit) called
perf archive which could be used to keep the data in a safe, rather isolated place.

51

Chapter 7

Optional Goal: Migrating Further
Tests

7.1 Concept

The same concept as in chapter 4 was used to migrate the remaining tests.

The following test suites worked out of the box in 64-bit mode:

• CoastWDBaseTest

• CoastHTTPTest

• CoastSSLTest

• CoastPerfTest

• CoastPerfTestTest

• CoastFunctionalActionsTest

• CoastWorkerPoolManagerTest

• CoastNTLMAuthTest

• CoastAccessControlTest

• CoastHTMLRenderersTest

• CoastActionsTest

• CoastAppLogTest

• CoastStdDataAccessTest

• CoastStringRenderersTest

• CoastDataAccessTest

The next section covers in detail how the broken tests were fixed.

52

7.2 Implementation

7.2.1 CoastSecurityTest

The following listing shows the initial situation when compiled with 64-bit. Some tests pass,
some merely fail and others core dump with an segmentation fault.� �
void setupRunner(TestRunner &runner)

{

// ok

ADD_SUITE(runner , Base64Test);

// core dump

ADD_SUITE(runner , MD5Test);

// failures

ADD_SUITE(runner , BlowfishTest);

// core dump

ADD_SUITE(runner , ScrambleStateTest);

// ok

ADD_SUITE(runner , TableCompressorTest);

// core dump

ADD_SUITE(runner , NewRendererTest);

// core dump

ADD_SUITE(runner , UniqueIdGenTest);

} // setupRunner� �
Listing 7.1: Overview of CoastSecurityTest’s test suites and their status

7.2.1.1 MD5

Some test suites in the CoastSecurityTest simply failed and others even crashed with a core
dump. Both md5 and blowfish core dumped which was unacceptable when other modules de-
pend on them. Since we are by far no security experts and COAST already depends on the
OpenSSL library, we asked our supervisor Marcel Huber if we could just replace the algorithms
with the OpenSSL implementation. He agreed under the condition that we must not introduce
a new dependency.

Because COAST ’s and OpenSSL’s interfaces are so similar (see Listing 7.2 and Listing 7.3), this
switch was quite easy. There is one discrepancy though: The function MD5_Final() erases
the context. This means the MD5Context object is not usable after a call to MD5_Final() .
We could fix this by either explicitly requiring a call to MD5Context::Init() and make this
invariant explicit, or call MD5Context::Init() in MD5Context::Final() after MD5_Final() to
reinitialize the invariant. The first solution would require some changes and the second solution
imposes an unnecessary performance hit. Since this class is already being used correctly and
merely an implementation detail in MD5.cpp, we decided to write a comment and live with this
discrepancy.� �
class MD5Context {

MD5Context(const MD5Context &);

MD5Context &operator =(const MD5Context &);

public:

MD5Context ();

void Init();

void Update(const unsigned char *buf , unsigned len);

void Final(unsigned char digest [16]);

void Transform(uint32 buf[4], const uint32 in [16]);

protected:

53

uint32 fBuf [4];

uint32 fBits [2];

unsigned char fIn [64];

};� �
Listing 7.2: COAST’s MD5Context API

� �
int MD5_Init(MD5_CTX *c);

int MD5_Update(MD5_CTX *c, const void *data , unsigned long len);

int MD5_Final(unsigned char *md, MD5_CTX *c);� �
Listing 7.3: OpenSSL’s MD5 API

The structure of MD5Context looks quite similar to Colin Plumb’s MD5 implementation [1].
This class also has the same disadvantages; that an 32-bit integer data type and compile-time
endianness configuration is required. OpenSSL’s implementation fixed both issues.

To be able to use OpenSSL’s crypto library, we had to add -lcrypto. Since it’s already a
dependency and known to SConsider, this adjustment in CoastSecurity.sconsider was simple:
’linkDependencies’: [’CoastWDBase’, ’openssl’]

After the switch to openssl’s implementation of MD5, all tests failing with core dumps are now
“just failing” or in case of MD5Test and UniqueIdGenTest even fixed.

7.2.1.2 Blowfish

Similar to the MD5 test suite, other test suites, classes and modules in CoastSecurity make use
of the BlowfishScrambler . So it’s a natural choice to fix this module in case of dependent
errors. We found out, that only a minor fix was required. See here:� �
diff --git a/coast/modules/Security/Blowfish.h b/coast/modules/Security/Blowfish.h
--- a/coast/modules/Security/Blowfish.h
+++ b/coast/modules/Security/Blowfish.h
@@ -11,6 +11,8 @@

#include "SecurityModule.h"

+#include <stdint.h>
+
//---- BlowfishScrambler ---
class BlowfishScrambler : public Scrambler
{

@@ -28,7 +30,7 @@ public:
#define BF_ROUNDS 16
#define BF_BLOCK 8
#if !defined(BF_LONG)

-#define BF_LONG unsigned long
+#define BF_LONG uint32_t
#endif

struct BlowfishKey {
BF_LONG P[BF_ROUNDS +2];� �

Listing 7.4: Fix for coast/modules/Security/Blowfish.h

After that fix, all remaining test suites in CoastSecurityTest are executed successfully.

7.2.1.3 Switch to OpenSSL

Since OpenSSL is already a dependency of COAST and we also introduced this dependency in the
CoastSecurityModule with the MD5 fix, we tried to switch the inhouse Blowfish implementation
to OpenSSL’s implementation. The main motivation was that OpenSSL is actively developed

54

and should be more secure with less maintenance overhead. Using our perf-history script
described in chapter 6, we even could have compared both implementations under performance
aspects.

The port to OpenSSL of the Blowfish ECB mode was quite trivial; change some function calls, re-
move old stuff and everything worked out of the box. But the Blowfish CBC mode in the COAST
implementation seems to have a different padding and endianness handling than OpenSSL’s im-
plementation. This caused 408 failures in the CoastSecurityTest. Fixing these tests without
breaking backwards compatibility and introducing new security issues was too risky, so we de-
cided to keep the COAST’s handcrafted implementation.

7.2.1.4 Suggestion

We also believe that the effort would better be spent in switching to a more modern encryption
algorithm like AES. To quote Bruce Schneier in 2007 [6, Bruce Schneier interview]

“At this point, though, I’m amazed it’s still being used. If people ask, I recommend
Twofish instead.“

In addition to that, given the severe security flaws of the ECB (Electronic Code Book) mode,
we advise to remove it completely.

7.2.2 CoastQueueingTest

The tests in this suite failed in nondeterministic manner, e.g. seg faults, random fails etc. We
decided to use the testcase void QueueWorkingModuleTest::GetAndPutbackTest() to track
down the cause, because this was the first test we found which simply failed without core dumps.
Instrumenting this test and using the COAST tracing framework, we managed to track down
the error to the sema macros in SystemAPI.h. The semaphores are initialized by int sem_init(

sem_t *sem, int pshared, unsigned int value) [11], the unsigned int value parameter
in particular. COAST’s class QueueBase used to have a long as size_type .

Since an unsigned int overflow is well defined behavior, as discussed in subsection 4.2.10, the
semaphores used this value, but the entire synchronization logic was undermined, resulting in all
sorts of weird threading issues (race condition, dead locks, etc).

We fixed this by changing size_type to int . unsigned int can’t be used, because -1 is used
as a sentinel value indicating “queue has shut down already”.

7.2.3 CoastRendererTest

This test failed with three failures, all of them concerning domain names. At a first glance, it
looked like a configuration problem, but strangely it only happened in 64-bit, so that possibility
was been ruled out. See this listing:� �
!!! FAILURES !!!

Test Results:

Run: 1 Failures: 3 Errors: 0

(204 assertions ran successfully in 180 ms)

There were 3 failures:

1) NewRendererTest.TestCases: coast/wdtest/bases/NewRendererTest.cpp :67:

Difference at position 1

55

expected | differences

5B 64 2D 70 68 73 2E 64 61 74 61 6C 61 6E 2E 63 [d-phs.datalan.c | .. 6C 6F 63 ↩

Ç 61 6C 68 6F 73 74 5D localhost]

68 5D h] |

; NewRendererTestConfig.any:0 at TestCases.GetThisHostNameRendererFullTest

2) NewRendererTest.TestCases: coast/wdtest/bases/NewRendererTest.cpp :67:

Difference at position 1

expected | differences

5B 64 2D 70 68 73 5D [d-phs] | .. 6C 6F 63 ↩

Ç 61 6C 68 6F 73 74 5D localhost]

; NewRendererTestConfig.any:0 at TestCases.GetThisHostNameRendererHostTest

3) NewRendererTest.TestCases: coast/wdtest/bases/NewRendererTest.cpp :67:

Difference at position 1

expected | differences

5B 64 61 74 61 6C 61 6E 2E 63 68 5D [datalan.ch] | .. 5D ↩

Ç]

; NewRendererTestConfig.any:0 at TestCases.GetThisHostNameRendererDNSTest� �
The affected function of COAST is:� �
bool LinuxResolver :: IP2DNS(const String &ipAddress , unsigned long addr)

{

StartTrace1(Resolver.IP2DNS , "<linux > ip [" << ipAddress << "]");

struct hostent he;

struct hostent *res = 0;

int err = 0;

const int bufSz = 8192;

char buf[bufSz];

int result = gethostbyaddr_r ((char *)&addr , sizeof(addr), AF_INET , &he , ↩

Ç buf , bufSz , &res , &err);

if (result == 0 && err == NETDB_SUCCESS) {

extractFromHostent (*res);

return true;

}

return false;

}� �
Listing 7.5: Broken method in coast/foundation/io/Resolver.cpp

According to [11], the function int gethostbyaddr_r(const void *addr, ...) takes a const

void *addr as the first parameter. COAST used to pass an unsigned long * as that pa-
rameter, which used to work on 32-bit, since an unsigned long in the ILP32 data model is a
32-bit quantity, just like an IPv4 address.

However, on 64-bit, this makes the function return the error 2 , which translates to the unhelpful
error message

“TRY AGAIN - A temporary error occurred on an authoritative name server. Try
again later.”

Changing the unsigned long * to uint32_t , which is appropriate for IPv4 addresses no mat-
ter the memory model actually being used, fixes the problem.

On a side note: Limiting support to only IPv4 addresses is appropriate in this case, as the third
parameter (hard-coded to AF_INET) explicitly denotes the IPv4 address family.

56

7.2.3.1 Discovery of a COAST Bug

Unrelated to any porting issues, we’ve discovered a new bug. It’s reproducible on both 32-bit
and 64-bit and makes this test crash with a segmentation fault when run with --runparams="-

d -d -- ", which causes the test binary to be executed with GDB :� �
Program received signal SIGSEGV , Segmentation fault.

0x00000000 in ?? ()

20160526152440: ========== GDB backtrace ==========

#0 0 x00000000 in ?? ()

No symbol table info available.

#1 0 xf7dcd956 in coast :: memory :: safeFree (a=0 x80c9a10 , ptr =0 x80c9ca0) at coast/↩

Ç foundation /base/ ITOStorage .cpp :273

__PRETTY_FUNCTION__ = "void coast:: memory :: safeFree(Allocator*, void*)"

#2 0 xf7dbb7a6 in coast :: SegStorAllocatorNewDelete <AnyKeyAssoc >:: operator delete↩

Ç [] (ptr =0 x80c9ca4) at coast/ foundation /base/ SegStorAllocatorNewDelete .h:85

__PRETTY_FUNCTION__ = "static void coast :: SegStorAllocatorNewDelete <T>::↩

Ç operator delete [](void*) [with T = AnyKeyAssoc]"

realPtr = 0x80c9ca0

a = 0x80c9a10

#3 0 xf7db872b in AnyArrayImpl ::~ AnyArrayImpl (this =0 x80d1c30 , __in_chrg =<↩

Ç optimized out >) at coast/ foundation /base/AnyImpls.cpp :600

j = 0

#4 0 xf7db884f in AnyArrayImpl ::~ AnyArrayImpl (this =0 x80d1c30 , __in_chrg =<↩

Ç optimized out >) at coast/ foundation /base/AnyImpls.cpp :619

No locals.

#5 0 xf7dc7c9c in AnyImpl :: Unref (this =0 x80d1c30) at coast/ foundation /base/↩

Ç AnyImpls.h:67

No locals.

#6 0 xf7dc0114 in Anything :: operator= (this =0 x80c4adc <coast :: utility ::↩

Ç singleton_default <CacheHandlerImpl >:: instance ():: obj+28>, a=...) at coast/↩

Ç foundation /base/Anything.cpp :1155

al = 0x80c9a10

oldImpl = 0x80d1c30

#7 0 xf7dc110d in Anything :: clear (this =0 x80c4adc <coast :: utility ::↩

Ç singleton_default <CacheHandlerImpl >:: instance ():: obj +28 >) at coast/↩

Ç foundation /base/Anything.cpp :1566

No locals.

#8 0 xf7cfc91c in CacheHandlerImpl ::~ CacheHandlerImpl (this =0 x80c4ac0 <coast ::↩

Ç utility :: singleton_default <CacheHandlerImpl >:: instance ()::obj >, __in_chrg↩

Ç =<optimized out >) at coast/wdbase/ CacheHandler .cpp :36

No locals.

#9 0 xf7e29c63 in ?? () from /coast/lib/ Linux_glibc_2 .9-x86_64 -32 _debug_trace /↩

Ç libc.so.6

No symbol table info available.

#10 0 xf7e29cc1 in exit () from /coast/lib/ Linux_glibc_2 .9-x86_64 -32 _debug_trace /↩

Ç libc.so.6

No symbol table info available.

#11 0 xf7e1374a in __libc_start_main () from /coast/lib/ Linux_glibc_2 .9-x86_64 -32↩

Ç _debug_trace /libc.so.6

No symbol table info available.

#12 0 x08053921 in _start ()

No symbol table info available.

eax 0x0 0

ecx 0x80c9ca8 135044264

edx 0x0 0

ebx 0xf7df90ac -136343380

esp 0xffffd96c 0xffffd96c

ebp 0xffffd988 0xffffd988

esi 0x80c9ca8 135044264

edi 0xf7fb241c -134536164

eip 0x0 0x0

eflags 0x10296 [PF AF SF IF RF]

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x63 99

57

=> 0x0: /tmp/CoastRendererTest.sh_23292 :35: Error in sourced command file:

Cannot access memory at address 0x0

scons: done building targets.� �
There might be a latent bug lurking, but time is running out, which renders an in-depth analysis
impossible.

58

Chapter 8

Optional Goal: C++11/14
Support

8.1 Analysis

We compiled COAST with scons --use-lang-features=c++0x (where c++0x is equivalent to
c++11) and it did compile without changes, although with quite a few warnings about the now
deprecated std::auto_ptr . However, all of these warnings came from the Boost library, par-
ticularly its file boost/smart ptr/shared ptr.hpp.

Strictly speaking, no changes were necessary to make the code conform to C++11. However,
we made a few changes to improve on the warning situation and reduce code complexity, as
documented below in section 8.2. We also removed obsolete keywords and magic comments, as
described in section 8.4.

With these changes implemented, we also compiled the COAST framework for C++14 (scons --

use-lang-features=c++14), which behaved the same as on C++11. So COAST now conforms
to C++11 as well as C++14.

8.2 About std::auto_ptr

All occurrences of std::auto_ptr within COAST used to be wrapped in #if s, which has been
discussed before and shown in Listing 8.1. This has been the case since the upstream COAST
commit cd7f51d1.

std::auto_ptr (declared in the <memory> header) has been deprecated since C++11 and will
be removed in C++17. It’s a smart pointer that used to provide the means to perform automatic
object destruction and a way to enforce unique object ownership before C++ had move seman-
tics. However, the safer alternative std::unique_ptr , introduced in C++11, is the preferred
choice to achieve the same in modern C++.

std::unique_ptr is considered superior because its API leaves no ambiguity — ownership has
to be transferred explicitly using std:move() as opposed to implicitly using a copy assignment

. Furthermore, it supports arrays which have to be deallocated using delete[] , whereas std::
auto_ptr would always attempt to use delete .

1https://gerrit.coast-project.org/gitweb?p=coast.git;a=commit;h=cd7f51d1d3e41b7678238f3502773c8053e05ac2

59

https://gerrit.coast-project.org/gitweb?p=coast.git;a=commit;h=cd7f51d1d3e41b7678238f3502773c8053e05ac2

8.2.1 Migrating to std::unique_ptr

Generally, no issues should occur when migrating from std::auto_ptr to the safer alternative.
However, there is one caveat: std::auto_ptr treated copies as moves by modifying (nullifying)
the rhs during a copy assignment and during copy construction. This was a way to emulate the
now standardized move semantics to enforce unique ownership of an object.

Any legacy code that relies on this nullifying behavior won’t compile anymore, which is a good
thing since it doesn’t just silently break functionality. The affected code will have to be changed
to use std::move() to explicitly nullify the rhs. So the following code:� �
std::auto_ptr <T> p(new T);

std::auto_ptr <T> p2 = p;� �
. . . would have to be changed to:� �
std::unique_ptr <T> p(new T);

std::unique_ptr <T> p2 = std::move(p);� �
8.2.2 Reducing Verbosity

To disable the warnings about Boost ’s use of the deprecated std::auto_ptr when compiling,
we had the following options:

1. Setting the macro definition BOOST_NO_AUTO_PTR to make Boost avoid using std::auto_ptr
in C++11 and on.

The build system would make it easy to set this definition in the build environment using
the CPPDEFINES2 key.

Unfortunately it’s unfeasible to do this consistently, as the user is given the choice to use
COAST’s own 3rd party repository of Boost, or use the one provided by the system. If
only Boost ’s header files would be used, it might have been debatable. But COAST also
makes use of Boost ’s Regex and System libraries, which could be compiled externally where
SConsider isn’t used and thus can’t ensure the same build environment. We cannot risk
incompatibilities like this.

2. Passing -Wno-deprecated-declarations to GCC.

This option3 disables all warnings about deprecated declarations including functions, vari-
ables, and types. By default, these warnings are enabled.

However, the indirection introduced by the build system makes this unmanageable without
changing SConsider itself.

It also entails the significant drawback that these kinds of warnings would most likely be
disabled for more files than actually needed, which could lead to issues later on as discussed

2https://coast-project.org/projects/sconsider/wiki
3https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

60

https://coast-project.org/projects/sconsider/wiki
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

before in subsection 4.2.1 on page 17.

3. Selectively disabling these warnings.

It turns out there’s a way to selectively pass certain compiler options to just parts of the
code base using the #pragma directive.

Fortunately, this option does not entail the previous options’ drawback because it can be
used very selectively, effectively ignoring -Wdeprecated-declarations in only the affected
source code sections of Boost where std::auto_ptr is used.

Of course, we agreed upon the third option which solves the problem in a reasonably pragmatic,
yet responsible way.

The following snippet (from boost/shared ptr.hpp) shows how the option -Wdeprecated-declarations

is ignored and then unignored after the affected source file has been included:� �
+// BEGIN ignore deprecation warnings about std:: auto_ptr
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wdeprecated -declarations"
+
#include <boost/smart_ptr/shared_ptr.hpp >

+// END ignore deprecation warnings about std:: auto_ptr
+#pragma GCC diagnostic pop� �
This patch has been handed over to Marcel Huber to be applied in COAST’s 3rd party Boost
repository.

8.3 A More Transparent Alternative to Preprocessor Switches

The COAST framework was already making use of an intelligently defined namespace called
boost_or_tr1 , defined in coast/foundation/base/ITOTypeTraits.h, as can be seen here:� �
#if defined(USE_TR1)

#include <tr1/type_traits >

namespace boost_or_tr1 = std::tr1;

#elif defined(USE_STD0X) || defined(USE_STD11) || defined(USE_STD14) ||\

defined(USE_STD17) || defined(USE_STD1y) || defined(USE_STD1z)

#include <type_traits >

namespace boost_or_tr1 = std;

#else // USE_STD03

#include <boost/type_traits.hpp >

namespace boost_or_tr1 = boost;

#endif� �
Depending on the correct definitions of USE_STD03 , USE_TR1 , USE_STD11 and friends, this acts
as an elegant compile-time switch to be able to transparently use more recent features from the
<type_traits> header. The actual implementation would either be provided by the standard
library itself, in case it’s compiled on C++11 or newer, by the Technical Report 1 C++ library
extensions, if available, or by Boost libraries.

However, considering that TR1 was only a proposal and mainly existed to ease the transition to
C++11, this namespace was misnamed and thus has been renamed to boost_or_std .

61

Furthermore, and in a more serious matter, it can’t be used for std::unique_ptr which is
because neither Boost, nor TR 1 can provide it on C++ versions older than C++11. Consider
this code snippet from coast/modules/Queueing/QueueWorkingModule.h, which is just one of
many occurrences (11 of this kind across 9 files):� �
#if __cplusplus >= 201103L

typedef std:: unique_ptr <QueueType > QueueTypePtr;

typedef std:: unique_ptr <Context > ContextPtr;

#else

typedef std::auto_ptr <QueueType > QueueTypePtr;

typedef std::auto_ptr <Context > ContextPtr;

#endif� �
Listing 8.1: Preprocessor switch to decide between std::unique_ptr and std::auto_ptr

This increases code complexity unnecessarily and is error prone. So we wanted to work out a
solution to reduce code complexity in a similar fashion as above. Using the solution, which is
described in the next section, this has been refactored to:� �

typedef boost_or_std ::auto_ptr <QueueType > QueueTypePtr;

typedef boost_or_std ::auto_ptr <Context > ContextPtr;� �
Of course this refactoring has been applied to all other occurrences of this kind of code smell as
well.

8.3.1 Detailed Solution

Two new header files have been created. One is for the intelligent definition of <type_traits>
features, the other one for the intelligent definition of <memory> features.

The original preprocessor switch has been extracted to its own file and slightly changed to
this:� �
#ifndef BOOST_OR_STD_TYPE_TRAITS_H

#define BOOST_OR_STD_TYPE_TRAITS_H

#if defined(USE_TR1)

#include <tr1/type_traits >

namespace boost_or_std {

using namespace std::tr1;

}

#elif defined(USE_STD0X) || defined(USE_STD11) || defined(USE_STD14) ||\

defined(USE_STD17) || defined(USE_STD1y) || defined(USE_STD1z)

#include <type_traits >

namespace boost_or_std {

using namespace std;

}

#else // USE_STD03

#include <boost/type_traits.hpp >

namespace boost_or_std {

using namespace boost;

}

#endif

#endif // BOOST_OR_STD_TYPE_TRAITS_H� �
Listing 8.2: New file coast/foundation/base/boost or std/type traits.h

62

The header file for <memory> features is:� �
#ifndef BOOST_OR_STD_MEMORY_H

#define BOOST_OR_STD_MEMORY_H

#if defined(USE_TR1)

#include <tr1/memory >

namespace boost_or_std {

using std:: auto_ptr;

using std::tr1:: shared_ptr;

}

#elif defined(USE_STD0X) || defined(USE_STD11) || defined(USE_STD14) ||\

defined(USE_STD17) || defined(USE_STD1y) || defined(USE_STD1z)

#include <memory >

namespace boost_or_std {

template <class T, class Deleter = std:: default_delete <T> >

using auto_ptr = std:: unique_ptr <T, Deleter >;

using shared_ptr = std:: shared_ptr;

}

#else // USE_STD03

#include <boost/shared_ptr.hpp >

#include <memory >

namespace boost_or_std {

using std:: auto_ptr;

using boost:: shared_ptr;

}

#endif

#endif // BOOST_OR_STD_MEMORY_H� �
Listing 8.3: New file coast/foundation/base/boost or std/memory.h

Notice how neither of them declares the boost_or_std namespace as an alias for another names-
pace anymore, but instead declares a fresh one and uses using other_namespace; in it. This
is to ensure that both new headers can be included together. More importantly, it also avoids
polluting well-known namespaces, which is not allowed for std .

As you can see, both boost_or_std::auto_ptr and boost_or_std::shared_ptr are declared
intelligently in a similar fashion, based on the current build environment. They’re either aliases
for their implementations in the standard library/TR 1 and Boost (in legacy compiler versions),
or as alias templates4 for std::unique_ptr and std::shared_ptr (in C++11 and newer).

The reason why the name boost_or_std::auto_ptr has been used — as opposed to boost_or_std
::unique_ptr — is because it is the common denominator. The idea is to make it obvious that
this kind of smart pointer does not guarantee the safer semantics of std::unique_ptr . It could
behave like the deprecated std::auto_ptr (in case of C++03), or it just might behave like the
safer alternative (in case of modern C++).

The consequences are that COAST must not make use of the copy assignment semantics of std
::auto_ptr , which it currently doesn’t anyway. In addition to that, it also means that COAST
has to keep using boost_or_std::auto_ptr until it eventually drops support for C++03, at
which point all occurrences of boost_or_std::auto_ptr can safely be replaced with std::

unique_ptr .

4http://en.cppreference.com/w/cpp/language/type_alias

63

http://en.cppreference.com/w/cpp/language/type_alias

8.4 Removing Obsolete Information

8.4.1 PC-Lint Magic Comments

There were quite a few of left over magic comments which disabled warnings from the static
code analyzer PC-Lint. These were obsolete, because the IFS doesn’t use that software any-
more. More importantly, it was also the cause for at least one of the porting issues, as discussed
before.

We removed all of them at once using the following sed one-liner:� �
sed -i ’s,[\t]*// lint.*,,’ $(git grep -l //lint)� �
8.4.2 The register Keyword

There were a few occurrences of the register keyword. It’s been deprecated for quite a while
and will actually lose even its historical meaning with C++17. Prof. Sommerlad advised us to
remove it completely, along the lines of [24, Keywords: The Lesser Ones]:

“Never write register . It’s exactly as meaningful as whitespace.”

This was not as easy as a sed one-liner, but easy enough:� �
vi $(git grep -l ’\<register\>’)� �
This at least opened all files containing the word register at once. Using simple Vim commands,
it was a matter of seconds.

64

Chapter 9

Optional Goal: Improving
Anything Internals

We discussed this goal and the consensus was the same, as Prof. Sommerlad’s decision. The
internals are long int members and the interface is AsLong() . Most parts of the application
do not care if it’s a 32- or 64-bit integer, there is no discrepancy. Code that depends on the
size is less common and often low-level functionality not using Anything . Another point is,
that such a change would have a huge impact on all modules, since Anything is a commonly
used data structure in COAST. So for the sake of simplicity, we chose not to optimize for 32-bit
integers.

65

Chapter 10

Conclusion

The COAST framework has successfully been ported to 64-bit while maintaining compatibility
with 32-bit systems. Of all adapted test suites, the difference in performance characteristics
have been analyzed and explained. The newly added infrastructure to measure performance is
completely independent of the COAST code itself, which means low coupling and maintenance.

The optional goal Performance History has been completed as well. Using its functionality, ar-
bitrary combinations of test suites, revisions and performance measurement methods can be ran
to produce a result in the versatile CSV format.

All new scripts have been developed with portability in mind. This means that they’ll run on
any Unix system, provided the required performance measurement tools (and Git) are available.

Another optional goal, the porting of additional test suites, has been achieved. All optional tests,
have been ported.

All non-functional requirements have been met: COAST runs on Linux, can still be compiled on
C++03, and the example application CoastRecipes still works. The test quality did not decrease,
as they’ve merely been fixed.

Furthermore, the code base has been analyzed and prepared for C++11/14.

66

Bibliography

[1] [A portable, fast, and free implementation of the MD5 Message-Digest Algorithm (RFC
1321)]. url: http://openwall.info/wiki/people/solar/software/public-domain-
source-code/md5.

[2] Harsha S. Adiga. Porting Linux applications to 64-bit systems. Oct. 2007. url: http:

//www.ibm.com/developerworks/library/l-port64/index.html.
[3] boost::shared ptr.hpp. url: http://www.boost.org/doc/libs/1_60_0/boost/smart_

ptr/shared_ptr.hpp.
[4] C committee. ISO C standard. Apr. 2011. url: http://www.open-std.org/jtc1/sc22/

wg14/www/docs/n1570.pdf.
[5] C++ committee. ISO C++ standard. Mar. 2014. url: https://github.com/cplusplus/

draft/blob/b7b8ed08ba4c111ad03e13e8524a1b746cb74ec6/papers/N3936.pdf.
[6] Dahna McConnachie (Computerworld). Bruce Almighty: Schneier preaches security to

Linux faithful. Dec. 2007. url: https://www.computerworld.com.au/article/46254/
bruce_almighty_schneier_preaches_security_linux_faithful/?pp=3.

[7] CppCon 2015: Chandler Carruth ”Tuning C++: Benchmarks, and CPUs, and Compilers!
Oh My!” url: https://youtu.be/nXaxk27zwlk.

[8] cppreference.com. Chrono: date and time utilities. url: http://en.cppreference.com/
w/cpp/chrono.

[9] cppreference.com. Fixed width integer types. url: http://en.cppreference.com/w/cpp/
types/integer.

[10] Advanced Micro Devices. AMD64 Architecture Programmer’s Manual, Volume 2: System
Programming. Oct. 2013. url: http://developer.amd.com/wordpress/media/2012/10/
24593_APM_v21.pdf.

[11] gethostbyname r(3) - Linux man page. url: http://linux.die.net/man/3/gethostbyname_
r.

[12] git-read-tree(1) Manual Page. url: https://www.kernel.org/pub/software/scm/git/
docs/git-read-tree.html.

[13] Brendan Gregg. Linux perf examples. url: http://www.brendangregg.com/perf.html.
[14] Andrew Hunt and David Thomas. The Pragmatic Programmer: From Journeyman to Mas-

ter. Oct. 1999. url: https://books.google.ch/books?id=5wBQEp6ruIAC&pg=PA76&
redir_esc=y#v=onepage&q&f=false.

[15] Andrey Karpov. Viva64. Sept. 2009. url: http://www.viva64.com/en/a/0050/.
[16] Andrey Karpov and Evgeniy Ryzhkov. 20 issues of porting C++ code on the 64-bit plat-

form. url: http : / / www . gamedev . net / page / resources / _ / technical / general -

programming/20-issues-of-porting-c-code-on-the-64-bit-platform-r2419.
[17] kernelnewbies.org. Linux y2038. url: http://kernelnewbies.org/y2038.
[18] malloc(3): Linux man page. url: http://linux.die.net/man/3/malloc.
[19] Stephen B. Morris. Migrating C/C++ from 32-Bit to 64-Bit. Mar. 2015. url: http://

www.informit.com/articles/article.aspx?p=2339636.
[20] Perf Wiki. url: https://perf.wiki.kernel.org/index.php/Main_Page.
[21] PerfTools Compendium. url: https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/

Compendium/PerfTools.
[22] proc(5): Linux man page. url: http://linux.die.net/man/5/proc.

67

http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
http://www.ibm.com/developerworks/library/l-port64/index.html
http://www.ibm.com/developerworks/library/l-port64/index.html
http://www.boost.org/doc/libs/1_60_0/boost/smart_ptr/shared_ptr.hpp
http://www.boost.org/doc/libs/1_60_0/boost/smart_ptr/shared_ptr.hpp
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
https://github.com/cplusplus/draft/blob/b7b8ed08ba4c111ad03e13e8524a1b746cb74ec6/papers/N3936.pdf
https://github.com/cplusplus/draft/blob/b7b8ed08ba4c111ad03e13e8524a1b746cb74ec6/papers/N3936.pdf
https://www.computerworld.com.au/article/46254/bruce_almighty_schneier_preaches_security_linux_faithful/?pp=3
https://www.computerworld.com.au/article/46254/bruce_almighty_schneier_preaches_security_linux_faithful/?pp=3
https://youtu.be/nXaxk27zwlk
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/chrono
http://en.cppreference.com/w/cpp/types/integer
http://en.cppreference.com/w/cpp/types/integer
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf
http://linux.die.net/man/3/gethostbyname_r
http://linux.die.net/man/3/gethostbyname_r
https://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html
https://www.kernel.org/pub/software/scm/git/docs/git-read-tree.html
http://www.brendangregg.com/perf.html
https://books.google.ch/books?id=5wBQEp6ruIAC&pg=PA76&redir_esc=y#v=onepage&q&f=false
https://books.google.ch/books?id=5wBQEp6ruIAC&pg=PA76&redir_esc=y#v=onepage&q&f=false
http://www.viva64.com/en/a/0050/
http://www.gamedev.net/page/resources/_/technical/general-programming/20-issues-of-porting-c-code-on-the-64-bit-platform-r2419
http://www.gamedev.net/page/resources/_/technical/general-programming/20-issues-of-porting-c-code-on-the-64-bit-platform-r2419
http://kernelnewbies.org/y2038
http://linux.die.net/man/3/malloc
http://www.informit.com/articles/article.aspx?p=2339636
http://www.informit.com/articles/article.aspx?p=2339636
https://perf.wiki.kernel.org/index.php/Main_Page
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/PerfTools
https://doc.zih.tu-dresden.de/hpc-wiki/bin/view/Compendium/PerfTools
http://linux.die.net/man/5/proc

[23] Theo de Raadt. Going long long on time t to cope with 2,147,483,647+1. url: http:

//www.openbsd.org/papers/eurobsdcon_2013_time_t/.
[24] Herb Sutter. Keywords That Aren’t (or, Comments by Another Name). Mar. 2003. url:

http://www.drdobbs.com/keywords-that-arent-or-comments-by-anoth/184403859.
[25] The GNU C Library — Date and Time. url: ftp://ftp.gnu.org/old-gnu/Manuals/

glibc-2.2.3/html_chapter/libc_21.html.

68

http://www.openbsd.org/papers/eurobsdcon_2013_time_t/
http://www.openbsd.org/papers/eurobsdcon_2013_time_t/
http://www.drdobbs.com/keywords-that-arent-or-comments-by-anoth/184403859
ftp://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_21.html
ftp://ftp.gnu.org/old-gnu/Manuals/glibc-2.2.3/html_chapter/libc_21.html

Part III

Appendix

69

Appendix A

Self Reflection

As discussed in one of the meetings, we tend to create Redmine issues which impose too much
work. We could have benefitted from smaller work packages, as it would avoid the situation of it
looking like we’re stuck somewhere or, even worse, not doing anything. Smaller packages means
a higher frequency of solving issues on Redmine, and thus more to show off during the meetings.

We completed the three Construction milestones with minor delays. This resulted partly from
underestimating effort needed, and partly from simply forgetting to close a left-over parent issue
on Redmine (after solving all sub issues).

Regarding estimated efforts, we definitely could have spent a little more time on planning during
the Elaboration phase. This could have lead to a more accurate estimations of the time needed
to complete the milestones. Since it’s not a usual software implementation project but instead
porting work, which we’re less used to, deciding on effort and time needed turned out hard.

Getting used to tracking time on Redmine took us a while. Initially, we used to postpone logging
the time we spent on the project. But later on, we picked up the habit of doing it on a daily to
weekly basis.

A.1 Thank You

At this point, we’d like to thank Marcel Huber and Prof. Peter Sommerlad. We greatly appreciate
all the support we got regarding technical, as well as administrative issues.

70

Appendix B

Formalities

B.1 Declaration of Originality

We hereby confirm that we are the sole authors of this document and the described changes to
the COAST framework.

71

B.2 Permissions

72

Appendix C

Project Plan

C.1 Organization

This term project is supervised by Marcel Huber of the IFS Institute For Software at HSR.
As the head of the IFS lab and current lead developer of the COAST framework, he’ll be the
go-to person for inquiries regarding the framework throughout the course of this term project.
Naturally, he’ll be taking part at most project meetings.

The assigned expert is Peter Sommerlad, original developer of the COAST framework. As the
director of the IFS, he’ll attend the project meetings less frequently. Known for his immense
experience in software engineering and the C++ language, he’ll be available for especially tricky
problems and important design decisions.

We, Philipp Schönenberg and Patrik Wenger, BSc students and authors of this document, will
be using engineering methods acquired and practiced at HSR to achieve the term project goals,
as well as properly document our decisions and progress. In addition, we’ll also prepare for and
lead all the project meetings.

Most communication between the parties will be verbal or via email. Project management, time
tracking, meeting agendas and minutes, as well as some of the feedback from the supervisor and
the expert will take place on the Redmine platform.

73

Appendix D

Infrastructural Problems

Requiring quite an extensive environment, getting up and running with COAST and Redmine
on a provided VM wasn’t exactly straight-forward. Here we’ll explain some of the obstacles we
deal with prior to the actual porting. These were huge time wasters.

D.1 Redmine: MySQL driver

One would imagine that setting Redmine up using the system’s package manager (apt) would
be easy. But it’s not. We wasted hours trying to find the reason why the Redmine application
was unable to establish a connection to the pre-installed MySQL server instance. It turns out
that one has to specify the driver mysql2 instead of just mysql in the application’s database
configuration file.

D.2 Software Versions on VM: Upgrade

The VM provided by HSR’s IT department initially ran Ubuntu 14.04 LTS, a 2 years old release
of the Long Term Support variant of Ubuntu releases. Due to several issues, including

• a mess resulting from attempting to get the Boost library to cooperate with multilib (sup-
port for 32-bit and 64-bit libraries on a single system),

• outdated root certificates used for SSL, and

• Python’s pip command refusing to ignore invalid SSL certificates to be able to install
COAST’s Python dependency (namely SConsider1)

an upgrade to Ubuntu 15.10 was required, which took us a few hours to plan and perform.

D.3 Redmine Bugs and Another Upgrade

D.3.1 Buggy Pre-Installed Version

Due to several bugs in the pre-installed version of Redmine, including one which made setting a
task’s parent impossible, we had to upgrade Redmine. We installed it manually (without apt-

get) under /usr/local/share/redmine.

1https://coast-project.org/projects/sconsider

74

https://coast-project.org/projects/sconsider

Marcel Huber’s hint about Redmine’s official Docker image2 unfortunately came too late. It
might have eased the installation pain a bit.

D.3.2 Gantt Charts

The situation around Gantt charts on Redmine is catastrophic. First of all, the built-in Gantt
chart functionality of Redmine is useless. Issues that depend on each other (such as precedes,
blocks, ...) are not intelligently drawn that way. Even though the necessary information can be
recorded on the issue tickets — and was in our case — it is not used while the Gantt chart is
generated, and thus even dependent issues are placed at the same point on the timeline as the
issue they depend on.

One would actually have to set each and every issue’s start date manually before the Gantt
chart even starts making sense and possibly become a helpful insight about the project. And all
issues would have to be updated manually, one by one, in case a milestone has to be postponed
for say, a week. Of course this was out of the question.

One might think this could be easily fixed by installing one of the several Gantt chart plugins
available for Redmine. Not the case. One of these plugins3 is ancient, meaning it doesn’t work
on even remotely recent versions of Redmine.

Another one4 felt like spamware (sign up required) and didn’t work at all, so its plugin migration
had to be manually undone. Waste of time.

D.4 SSH Access to VM

Three weeks into the term project, all of a sudden SSH access from outside the HSR network
was blocked. A week later, in an attempt to adopt a suggestion in which we’d just tell sshd to
also listen on a port in the 40000 – 40010 range, sshd refused to start completely and logged the
reason as being:� �
Mar 16 18:05:44 sinv -56044 systemd [1]: ssh.service: Start request repeated too ↩

Ç quickly.� �
Fortunately, the IT department was able to fix the problem on March 17th. On Marcel Hu-
ber’s request, the IT department then sent out an email explaining the recent change in the
firewall, justifying its decision with some recent SSH-based attacks. It would have been nice
(and professional) for them to send that email proactively instead of reactively, though.

D.5 Mails from Redmine

Unfortunately, for quite a while, Redmine was unable to send any emails5. The outgoing ports
587 and 645 are blocked. The PDF describing all details about the VM does not mention any-
thing about this.

2https://hub.docker.com/_/redmine/
3http://www.redmine.org/plugins/redmine_better_gantt_chart
4https://www.easyredmine.com/redmine-gantt-plugin
5http://sinv-56044.edu.hsr.ch/redmine/issues/75

75

https://hub.docker.com/_/redmine/
http://www.redmine.org/plugins/redmine_better_gantt_chart
https://www.easyredmine.com/redmine-gantt-plugin
http://sinv-56044.edu.hsr.ch/redmine/issues/75

Luckily though, Marcel Huber mentioned that HSR has its own SMTP relay which can at least
be used to send email to HSR accounts. With that information, it didn’t take us long to adapt
Redmine’s configuration and fix this issue.

It’s sad that something as important and central as this is not listed in the PDF, especially since
the VM comes with Redmine pre-installed.

D.6 Cevelop

Due to indexing problems in Cevelop, all identifiers in COAST’s source used to be marked red
for weeks. Only with help from Thomas Corbat, we got it to work on April 1st. To do so, we
had to:

• disable mockator plugin

• close all projects

• run find /path/to/coast -name .cproject -delete

• reopen project(s)

• rebuild index

• (readd SCons targets)

D.7 Jenkins

Jenkins was a huge pain to set up. On top of that, it’s pretty foolishly designed, as in: If a build
takes longer than the interval between periodic SCM checks, it just queues another build.

Around April 12th, we had a suddenly failing build. It turned out to be Jenkins itself. This
definitely did not help the project progression.

76

Appendix E

perf stat diff

Diffs done with:

find . -name ’Coast*32*.perf’ -execdir bash -c ’git diff --no-index "$1""${1//32/64}
"’ _ {} ;

E.1 CoastEBCDICTest

� �
diff --git a/./ CoastEBCDICTest -32 _optimized.perf b/./ CoastEBCDICTest -64 _optimized.perf
--- a/./ CoastEBCDICTest -32 _optimized.perf
+++ b/./ CoastEBCDICTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 5.280923 task -clock (msec) # 0.865 CPUs utilized
+ 5.729020 task -clock (msec) # 0.698 CPUs utilized
- 26 context -switches # 0.004 M/sec
+ 28 context -switches # 0.004 M/sec
- 3 cpu -migrations # 0.498 K/sec
+ 3 cpu -migrations # 0.421 K/sec
- 232 page -faults # 0.039 M/sec
+ 268 page -faults # 0.038 M/sec
- 8149282 cycles # 1.353 GHz
+ 7898533 cycles # 1.108 GHz
- 17119007 instructions # 2.98 insns per cycle
+ 15239481 instructions # 2.78 insns per cycle
- 3530628 branches # 586.313 M/sec
+ 3133209 branches # 439.478 M/sec
- 77444 branch -misses # 2.20% of all branches
+ 72810 branch -misses # 2.35% of all branches
- <not counted > L1-dcache -loads (0.68%)
+ <not counted > L1-dcache -loads (1.81%)

<not counted > L1-dcache -load -misses (0.00%)
<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.006105133 seconds time elapsed (+- 4.45%)
+ 0.008210330 seconds time elapsed (+- 8.61%)� �

Listing E.1: Diff: perf stat of CoastEBCDICTest

77

� �
diff --git a/./ CoastEBCDICTest -32 _optimized.perf b/./ CoastEBCDICTest -64 _optimized.perf
--- a/./ CoastEBCDICTest -32 _optimized.perf
+++ b/./ CoastEBCDICTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 4.965388 task -clock (msec) # 0.977 CPUs utilized
+ 4.296779 task -clock (msec) # 0.935 CPUs utilized
- 29 context -switches # 0.006 M/sec
+ 25 context -switches # 0.006 M/sec
- 3 cpu -migrations # 0.593 K/sec
+ 3 cpu -migrations # 0.660 K/sec
- 229 page -faults # 0.045 M/sec
+ 271 page -faults # 0.060 M/sec
- 4995603 cycles # 0.987 GHz
+ 11445507 cycles # 2.518 GHz
<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend
- 17123259 instructions # 3.75 insns per cycle
+ 15250695 instructions # 3.17 insns per cycle
- 3531819 branches # 697.613 M/sec
+ 3135411 branches # 689.903 M/sec
- 76899 branch -misses # 2.18% of all branches
+ 67291 branch -misses # 2.15% of all branches
<not counted > L1-dcache -loads (0.00%)
<not counted > L1-dcache -load -misses (0.00%)
<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.005082447 seconds time elapsed (+- 0.69%)
+ 0.004596529 seconds time elapsed (+- 1.34%)� �

Listing E.2: Diff: perf stat of CoastEBCDICTest (#2)

E.2 CoastFoundationAnythingOptionalTest

� �
diff --git a/./ CoastFoundationAnythingOptionalTest -32 _optimized.perf b/./↩

Ç CoastFoundationAnythingOptionalTest -64 _optimized.perf
--- a/./ CoastFoundationAnythingOptionalTest -32 _optimized.perf
+++ b/./ CoastFoundationAnythingOptionalTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 15.067565 task -clock (msec) # 1.018 CPUs utilized
+ 10.794900 task -clock (msec) # 0.983 CPUs utilized
- 3 context -switches # 0.208 K/sec
+ 0 context -switches # 0.000 K/sec

0 cpu -migrations # 0.000 K/sec
- 170 page -faults # 0.012 M/sec
+ 216 page -faults # 0.020 M/sec
- 3389355 cycles # 0.235 GHz
+ 7938349 cycles # 0.742 GHz
- 23386741 instructions # 5.11 insns per cycle
+ 31660150 instructions # 6.00 insns per cycle
- 9667867 branches # 670.483 M/sec
+ 11522220 branches # 1076.740 M/sec
- 148462 branch -misses # 1.54% of all branches
+ 109614 branch -misses # 1.05% of all branches
- 18443109 L1-dcache -loads # 1279.061 M/sec (32.00%)
+ <not counted > L1-dcache -loads (11.05%)
- 164936 L1-dcache -load -misses # 0.75% of all L1 -dcache hits (6.69%)
+ <not counted > L1-dcache -load -misses (0.00%)

<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.014805273 seconds time elapsed (+- 0.94%)
+ 0.010977443 seconds time elapsed (+- 2.06%)� �

Listing E.3: Diff: perf stat of CoastFoundationAnythingOptionalTest

78

E.3 CoastFoundationBaseTest

� �
diff --git a/./ CoastFoundationBaseTest -32 _optimized.perf b/./ CoastFoundationBaseTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationBaseTest -32 _optimized.perf
+++ b/./ CoastFoundationBaseTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 801.351790 task -clock (msec) # 0.563 CPUs utilized
+ 560.921989 task -clock (msec) # 0.465 CPUs utilized
- 503 context -switches # 0.643 K/sec
+ 282 context -switches # 0.485 K/sec
- 74 cpu -migrations # 0.095 K/sec
+ 82 cpu -migrations # 0.141 K/sec
- 10843 page -faults # 0.014 M/sec
+ 13671 page -faults # 0.024 M/sec
- 2137690557 cycles # 2.732 GHz (50.00%)
+ 1517809325 cycles # 2.611 GHz (49.76%)
- 3633629009 instructions # 1.77 insns per cycle (62.45%)
+ 3198772821 instructions # 2.05 insns per cycle (62.20%)
- 770217125 branches # 984.519 M/sec (62.61%)
+ 634127162 branches # 1090.953 M/sec (62.24%)
- 3481615 branch -misses # 0.45% of all branches (62.65%)
+ 2372624 branch -misses # 0.37% of all branches (63.01%)
- 1211055612 L1-dcache -loads # 1548.015 M/sec (61.47%)
+ 733776472 L1 -dcache -loads # 1262.390 M/sec (61.27%)
- 7480169 L1 -dcache -load -misses # 0.62% of all L1-dcache hits (25.05%)
+ 9135454 L1-dcache -load -misses # 1.21% of all L1-dcache hits (25.07%)
- 3270711 LLC -loads # 4.181 M/sec (25.28%)
+ 4055687 LLC -loads # 6.977 M/sec (25.13%)
- 2241473 LLC -load -misses # 83.37% of all LL-cache hits (37.59%)
+ 2450330 LLC -load -misses # 58.10% of all LL -cache hits (37.36%)

- 1.423357572 seconds time elapsed (+- 1.86%)
+ 1.207541715 seconds time elapsed (+- 1.53%)� �

Listing E.4: Diff: perf stat of CoastFoundationBaseTest

E.4 CoastFoundationIOTest

� �
diff --git a/./ CoastFoundationIOTest -32 _optimized.perf b/./ CoastFoundationIOTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationIOTest -32 _optimized.perf
+++ b/./ CoastFoundationIOTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 51.715175 task -clock (msec) # 0.069 CPUs utilized
+ 39.390288 task -clock (msec) # 0.053 CPUs utilized
- 123 context -switches # 0.003 M/sec
+ 78 context -switches # 0.002 M/sec
- 30 cpu -migrations # 0.634 K/sec
+ 25 cpu -migrations # 0.619 K/sec
- 1177 page -faults # 0.025 M/sec
+ 1265 page -faults # 0.031 M/sec
- 82184677 cycles # 1.735 GHz (48.43%)
+ 54540763 cycles # 1.351 GHz (50.57%)
- 127110291 instructions # 1.53 insns per cycle (65.38%)
+ 95220942 instructions # 1.44 insns per cycle (68.84%)
- 26192250 branches # 553.098 M/sec (68.33%)
+ 20165281 branches # 499.594 M/sec (70.94%)
- 505625 branch -misses # 2.05% of all branches (72.37%)
+ 406588 branch -misses # 2.16% of all branches (71.68%)
- 40203645 L1-dcache -loads # 848.975 M/sec (38.60%)
+ 32746371 L1-dcache -loads # 811.290 M/sec (34.49%)
- 508840 L1-dcache -load -misses # 1.18% of all L1 -dcache hits (27.54%)
+ 499924 L1 -dcache -load -misses # 1.59% of all L1-dcache hits (23.83%)
- 93253 LLC -loads # 1.969 M/sec (27.24%)
+ 97086 LLC -loads # 2.405 M/sec (29.57%)
- 22438 LLC -load -misses # 16.53% of all LL -cache hits (37.35%)
+ 15978 LLC -load -misses # 8.65% of all LL -cache hits (0.00%)

- 0.747026867 seconds time elapsed (+- 0.48%)
+ 0.736938180 seconds time elapsed (+- 0.36%)� �

Listing E.5: Diff: perf stat of CoastFoundationIOTest

79

E.5 CoastFoundationMiscellaneousTest

� �
diff --git a/./ CoastFoundationMiscellaneousTest -32 _optimized.perf b/./↩

Ç CoastFoundationMiscellaneousTest -64 _optimized.perf
--- a/./ CoastFoundationMiscellaneousTest -32 _optimized.perf
+++ b/./ CoastFoundationMiscellaneousTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 1.486727 task -clock (msec) # 0.795 CPUs utilized
+ 1.421020 task -clock (msec) # 0.756 CPUs utilized

0 context -switches # 0.000 K/sec
0 cpu -migrations # 0.000 K/sec

- 120 page -faults # 0.073 M/sec
+ 143 page -faults # 0.086 M/sec
- 2415664 cycles # 1.472 GHz
+ 3676541 cycles # 2.202 GHz
- 5849795 instructions # 1.82 insns per cycle
+ 5493075 instructions # 1.74 insns per cycle
- 1100742 branches # 670.891 M/sec
+ 1039058 branches # 622.400 M/sec
- 28799 branch -misses # 2.62% of all branches
+ 26595 branch -misses # 2.55% of all branches

<not counted > L1-dcache -loads (0.00%)
<not counted > L1-dcache -load -misses (0.00%)
<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.001870784 seconds time elapsed (+- 4.76%)
+ 0.001879033 seconds time elapsed (+- 5.15%)� �

Listing E.6: Diff: perf stat of CoastFoundationMiscellaneousTest

� �
--- a/./ CoastFoundationMiscellaneousTest -32 _optimized.perf
+++ b/./ CoastFoundationMiscellaneousTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 1.473729 task -clock (msec) # 0.826 CPUs utilized
+ 1.365291 task -clock (msec) # 0.817 CPUs utilized

0 context -switches # 0.000 K/sec
0 cpu -migrations # 0.000 K/sec

- 118 page -faults # 0.073 M/sec
+ 141 page -faults # 0.095 M/sec
- 3612495 cycles # 2.250 GHz
+ 2244385 cycles # 1.505 GHz
<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend
- 5845165 instructions # 1.81 insns per cycle
+ 5494081 instructions # 1.69 insns per cycle
- 1099772 branches # 684.863 M/sec
+ 1039934 branches # 697.166 M/sec
- 29382 branch -misses # 2.67% of all branches
+ 26869 branch -misses # 2.59% of all branches

<not counted > L1-dcache -loads (0.00%)
<not counted > L1-dcache -load -misses (0.00%)
<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.001783771 seconds time elapsed (+- 3.27%)
+ 0.001671264 seconds time elapsed (+- 3.15%)� �

Listing E.7: Diff: perf stat of CoastFoundationMiscellaneousTest (#2)

80

E.6 CoastFoundationPerfTest

� �
diff --git a/./ CoastFoundationPerfTest -32 _optimized.perf b/./ CoastFoundationPerfTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationPerfTest -32 _optimized.perf
+++ b/./ CoastFoundationPerfTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 4376.864150 task -clock (msec) # 0.997 CPUs utilized
+ 2353.611768 task -clock (msec) # 1.018 CPUs utilized
- 157 context -switches # 0.037 K/sec
+ 268 context -switches # 0.120 K/sec
- 3 cpu -migrations # 0.001 K/sec
+ 8 cpu -migrations # 0.004 K/sec
- 572064 page -faults # 0.134 M/sec
+ 128991 page -faults # 0.058 M/sec
- 10338462403 cycles # 2.420 GHz (49.97%)
+ 6096891093 cycles # 2.739 GHz (49.99%)
- 15056696125 instructions # 1.47 insns per cycle (62.50%)
+ 10764417330 instructions # 1.79 insns per cycle (62.51%)
- 3303084188 branches # 773.045 M/sec (62.53%)
+ 2511942286 branches # 1128.511 M/sec (62.52%)
- 10241137 branch -misses # 0.31% of all branches (62.57%)
+ 6941908 branch -misses # 0.28% of all branches (62.63%)
- 5505914644 L1-dcache -loads # 1288.589 M/sec (62.36%)
+ 3265283310 L1-dcache -loads # 1466.955 M/sec (62.23%)
- 100663906 L1-dcache -load -misses # 1.83% of all L1-dcache hits (25.00%)
+ 153880607 L1 -dcache -load -misses # 4.66% of all L1 -dcache hits (24.97%)
- 33676739 LLC -loads # 7.882 M/sec (24.99%)
+ 33468200 LLC -loads # 15.036 M/sec (24.98%)
- 9048701 LLC -load -misses # 26.55% of all LL-cache hits (37.50%)
+ 5063149 LLC -load -misses # 16.92% of all LL -cache hits (37.46%)

- 4.390040827 seconds time elapsed (+- 2.37%)
+ 2.311206670 seconds time elapsed (+- 2.31%)� �

Listing E.8: Diff: perf stat of CoastFoundationPerfTest

� �
diff --git a/./ CoastFoundationPerfTest -32 _optimized.perf b/./ CoastFoundationPerfTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationPerfTest -32 _optimized.perf
+++ b/./ CoastFoundationPerfTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 2844.325392 task -clock (msec) # 0.949 CPUs utilized
+ 1824.969129 task -clock (msec) # 0.968 CPUs utilized
- 43 context -switches # 0.015 K/sec
+ 36 context -switches # 0.020 K/sec
- 16 cpu -migrations # 0.005 K/sec
+ 10 cpu -migrations # 0.006 K/sec
- 569743 page -faults # 0.195 M/sec
+ 124109 page -faults # 0.069 M/sec
- 8469778140 cycles # 2.900 GHz (49.93%)
+ 5307459072 cycles # 2.930 GHz (49.96%)
<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend
- 14088820832 instructions # 1.68 insns per cycle (62.49%)
+ 10082927402 instructions # 1.94 insns per cycle (62.54%)
- 3085224807 branches # 1056.234 M/sec (62.52%)
+ 2390206280 branches # 1319.516 M/sec (62.56%)
- 8932930 branch -misses # 0.29% of all branches (62.62%)
+ 6682683 branch -misses # 0.28% of all branches (62.59%)
- 5141274856 L1-dcache -loads # 1760.128 M/sec (62.34%)
+ 3150127669 L1-dcache -loads # 1739.031 M/sec (62.14%)
- 102120684 L1 -dcache -load -misses # 1.99% of all L1-dcache hits (24.98%)
+ 128111859 L1-dcache -load -misses # 4.11% of all L1-dcache hits (25.00%)
- 33566283 LLC -loads # 11.491 M/sec (24.98%)
+ 31034498 LLC -loads # 17.133 M/sec (25.01%)
- 6478049 LLC -load -misses # 20.18% of all LL-cache hits (37.43%)
+ 3762116 LLC -load -misses # 13.73% of all LL -cache hits (37.50%)

- 2.996582628 seconds time elapsed (+- 0.37%)
+ 1.884923152 seconds time elapsed (+- 0.32%)� �

Listing E.9: Diff: perf stat of CoastFoundationPerfTest (#2)

81

E.7 CoastFoundationTest

� �
diff --git a/./ CoastFoundationTest -32 _optimized.perf b/./ CoastFoundationTest -64 _optimized.↩

Ç perf
--- a/./ CoastFoundationTest -32 _optimized.perf
+++ b/./ CoastFoundationTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 19.735887 task -clock (msec) # 0.010 CPUs utilized
+ 15.951401 task -clock (msec) # 0.008 CPUs utilized
- 3 context -switches # 0.140 K/sec
+ 4 context -switches # 0.258 K/sec
- 1 cpu -migrations # 0.047 K/sec
+ 0 cpu -migrations # 0.000 K/sec
- 193 page -faults # 0.009 M/sec
+ 229 page -faults # 0.015 M/sec
- 12943445 cycles # 0.604 GHz (36.61%)
+ 10931446 cycles # 0.706 GHz (49.28%)
- 36316915 instructions # 0.75 insns per cycle (51.39%)
+ 40788557 instructions # 2.33 insns per cycle (69.50%)
- 12580222 branches # 586.884 M/sec (56.79%)
+ 13596250 branches # 877.649 M/sec (84.04%)
- 154013 branch -misses # 1.04% of all branches (74.19%)
+ 159681 branch -misses # 1.39% of all branches
- 37529611 L1-dcache -loads # 1750.806 M/sec (40.46%)
+ 16531229 L1-dcache -loads # 1067.105 M/sec (31.15%)
- 325050 L1-dcache -load -misses # 1.02% of all L1 -dcache hits (30.94%)
+ <not counted > L1-dcache -load -misses (12.94%)
- <not counted > LLC -loads (17.41%)
+ <not counted > LLC -loads (0.00%)

<not counted > LLC -load -misses (0.00%)

- 1.924435833 seconds time elapsed (+- 0.07%)
+ 1.917767435 seconds time elapsed (+- 0.02%)� �

Listing E.10: Diff: perf stat of CoastFoundationTest

E.8 CoastFoundationTimeTest

� �
diff --git a/./ CoastFoundationTimeTest -32 _optimized.perf b/./ CoastFoundationTimeTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationTimeTest -32 _optimized.perf
+++ b/./ CoastFoundationTimeTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 21.379210 task -clock (msec) # 0.011 CPUs utilized
+ 15.673228 task -clock (msec) # 0.008 CPUs utilized
- 15 context -switches # 0.697 K/sec
+ 3 context -switches # 0.173 K/sec

0 cpu -migrations # 0.000 K/sec
- 192 page -faults # 0.009 M/sec
+ 229 page -faults # 0.013 M/sec
- 15493827 cycles # 0.720 GHz (37.17%)
+ 44781696 cycles # 2.581 GHz (43.20%)
- 43867467 instructions # 0.99 insns per cycle (53.42%)
+ 49214838 instructions # 2.16 insns per cycle (62.33%)
- 14607041 branches # 678.525 M/sec (62.25%)
+ 8720687 branches # 502.651 M/sec (75.53%)
- 152180 branch -misses # 0.96% of all branches (83.93%)
+ 99710 branch -misses # 0.84% of all branches (92.28%)
- 23269053 L1-dcache -loads # 1080.892 M/sec (42.31%)
+ 24884427 L1-dcache -loads # 1434.312 M/sec (33.66%)
- 288248 L1-dcache -load -misses # 0.94% of all L1 -dcache hits (27.93%)
+ 305900 L1 -dcache -load -misses # 1.39% of all L1-dcache hits (18.09%)
- <not counted > LLC -loads (14.56%)
+ 150152 LLC -loads # 8.655 M/sec (0.00%)
- <not counted > LLC -load -misses (0.00%)
+ 48619 LLC -load -misses # 102.21% of all LL-cache hits (0.00%)

- 1.925149354 seconds time elapsed (+- 0.05%)
+ 1.919801165 seconds time elapsed (+- 0.07%)� �

Listing E.11: Diff: perf stat of CoastFoundationTimeTest

82

� �
diff --git a/./ CoastFoundationTimeTest -32 _optimized.perf b/./ CoastFoundationTimeTest -64↩

Ç _optimized.perf
--- a/./ CoastFoundationTimeTest -32 _optimized.perf
+++ b/./ CoastFoundationTimeTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 42.248368 task -clock (msec) # 0.022 CPUs utilized
+ 40.950845 task -clock (msec) # 0.021 CPUs utilized
- 4 context -switches # 0.085 K/sec
+ 3 context -switches # 0.085 K/sec

0 cpu -migrations # 0.000 K/sec
- 189 page -faults # 0.004 M/sec
+ 227 page -faults # 0.006 M/sec
- 41320172 cycles # 0.883 GHz (48.38%)
+ 29347377 cycles # 0.830 GHz (53.25%)
<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend
- 80491813 instructions # 1.91 insns per cycle (62.86%)
+ 61214071 instructions # 1.84 insns per cycle (66.15%)
- 19732038 branches # 421.548 M/sec (66.97%)
+ 15659184 branches # 442.684 M/sec (68.09%)
- 178664 branch -misses # 0.98% of all branches (72.83%)
+ 170270 branch -misses # 1.10% of all branches (69.25%)
- 34766381 L1-dcache -loads # 742.736 M/sec (51.92%)
+ 21751073 L1 -dcache -loads # 614.901 M/sec (42.11%)
- 152028 L1 -dcache -load -misses # 0.46% of all L1 -dcache hits (23.11%)
+ 214481 L1-dcache -load -misses # 0.99% of all L1-dcache hits (22.62%)
- 24189 LLC -loads # 0.517 M/sec (20.59%)
+ 25666 LLC -loads # 0.726 M/sec (0.00%)
- 128 LLC -load -misses # 0.31% of all LL-cache hits (34.14%)
+ 191 LLC -load -misses # 0.58% of all LL-cache hits (0.00%)

- 1.949338859 seconds time elapsed (+- 0.07%)
+ 1.937886946 seconds time elapsed (+- 0.09%)� �

Listing E.12: Diff: perf stat of CoastFoundationTimeTest (#2)

E.9 CoastMTFoundationTest

� �
diff --git a/./ CoastMTFoundationTest -32 _optimized.perf b/./ CoastMTFoundationTest -64↩

Ç _optimized.perf
--- a/./ CoastMTFoundationTest -32 _optimized.perf
+++ b/./ CoastMTFoundationTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 166.080839 task -clock (msec) # 0.025 CPUs utilized
+ 144.504034 task -clock (msec) # 0.022 CPUs utilized
- 8063 context -switches # 0.050 M/sec
+ 8272 context -switches # 0.055 M/sec
- 919 cpu -migrations # 0.006 M/sec
+ 638 cpu -migrations # 0.004 M/sec
- 376 page -faults # 0.002 M/sec
+ 1160 page -faults # 0.008 M/sec
- 291993399 cycles # 1.812 GHz (61.53%)
+ 217651172 cycles # 1.447 GHz (58.62%)
- 205407448 instructions # 0.95 insns per cycle (73.81%)
+ 243197511 instructions # 1.26 insns per cycle (69.51%)
- 50440560 branches # 313.065 M/sec (70.22%)
+ 50570070 branches # 336.240 M/sec (68.73%)
- 680013 branch -misses # 1.34% of all branches (72.97%)
+ 579754 branch -misses # 1.26% of all branches (69.13%)
- 59692822 L1-dcache -loads # 370.491 M/sec (44.82%)
+ 57216269 L1-dcache -loads # 380.430 M/sec (46.25%)
- 2845482 L1 -dcache -load -misses # 3.84% of all L1-dcache hits (33.72%)
+ 3461980 L1-dcache -load -misses # 6.15% of all L1-dcache hits (34.87%)
- 1166465 LLC -loads # 7.240 M/sec (34.70%)
+ 902299 LLC -loads # 5.999 M/sec (33.65%)
- 141050 LLC -load -misses # 13.76% of all LL-cache hits (49.01%)
+ 70657 LLC -load -misses # 7.22% of all LL -cache hits (47.89%)

- 6.602245364 seconds time elapsed (+- 0.29%)
+ 6.618256784 seconds time elapsed (+- 0.20%)� �

Listing E.13: Diff: perf stat of CoastMTFoundationTest

83

E.10 CoastRegexTest

� �
diff --git a/./ CoastRegexTest -32 _optimized.perf b/./ CoastRegexTest -64 _optimized.perf
--- a/./ CoastRegexTest -32 _optimized.perf
+++ b/./ CoastRegexTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 118.817049 task -clock (msec) # 0.431 CPUs utilized
+ 87.468881 task -clock (msec) # 0.362 CPUs utilized
- 169 context -switches # 0.001 M/sec
+ 159 context -switches # 0.002 M/sec
- 12 cpu -migrations # 0.096 K/sec
+ 5 cpu -migrations # 0.057 K/sec
- 1482 page -faults # 0.012 M/sec
+ 1301 page -faults # 0.015 M/sec
- 321647088 cycles # 2.564 GHz (49.94%)
+ 250847241 cycles # 2.869 GHz (49.45%)
- 630683480 instructions # 1.86 insns per cycle (62.58%)
+ 549978529 instructions # 2.35 insns per cycle (62.03%)
- 155815519 branches # 1242.132 M/sec (62.93%)
+ 131763501 branches # 1507.113 M/sec (62.80%)
- 491549 branch -misses # 0.32% of all branches (64.90%)
+ 315208 branch -misses # 0.25% of all branches (64.99%)
- 251352167 L1-dcache -loads # 2003.732 M/sec (57.17%)
+ 171284821 L1 -dcache -loads # 1959.158 M/sec (55.15%)
- 747126 L1-dcache -load -misses # 0.30% of all L1 -dcache hits (24.77%)
+ 1357131 L1-dcache -load -misses # 0.83% of all L1-dcache hits (25.14%)
- 169554 LLC -loads # 1.352 M/sec (24.66%)
+ 509399 LLC -loads # 5.827 M/sec (24.44%)
- 51608 LLC -load -misses # 32.63% of all LL -cache hits (36.16%)
+ 52964 LLC -load -misses # 21.48% of all LL-cache hits (35.67%)

- 0.275821866 seconds time elapsed (+- 1.49%)
+ 0.241413638 seconds time elapsed (+- 3.25%)� �

Listing E.14: Diff: perf stat of CoastRegexTest

� �
diff --git a/./ CoastRegexTest -32 _optimized.perf b/./ CoastRegexTest -64 _optimized.perf
--- a/./ CoastRegexTest -32 _optimized.perf
+++ b/./ CoastRegexTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 120.045145 task -clock (msec) # 0.459 CPUs utilized
+ 81.437651 task -clock (msec) # 0.350 CPUs utilized
- 135 context -switches # 0.001 M/sec
+ 135 context -switches # 0.002 M/sec
- 1 cpu -migrations # 0.009 K/sec
+ 1 cpu -migrations # 0.012 K/sec
- 1486 page -faults # 0.013 M/sec
+ 1303 page -faults # 0.015 M/sec
- 311287132 cycles # 2.754 GHz (51.00%)
+ 191305663 cycles # 2.258 GHz (50.01%)
<not supported > stalled -cycles -frontend
<not supported > stalled -cycles -backend
- 654903046 instructions # 2.21 insns per cycle (63.79%)
+ 457793461 instructions # 2.07 insns per cycle (62.97%)
- 157405445 branches # 1392.456 M/sec (63.62%)
+ 123582091 branches # 1458.496 M/sec (62.91%)
- 494398 branch -misses # 0.32% of all branches (64.62%)
+ 344673 branch -misses # 0.28% of all branches (65.30%)
- 252720030 L1 -dcache -loads # 2235.638 M/sec (57.83%)
+ 177554196 L1-dcache -loads # 2095.465 M/sec (56.92%)
- 1752659 L1-dcache -load -misses # 0.70% of all L1-dcache hits (24.99%)
+ 1444585 L1-dcache -load -misses # 0.90% of all L1-dcache hits (25.88%)
- 79855 LLC -loads # 0.706 M/sec (25.29%)
+ 286722 LLC -loads # 3.384 M/sec (24.72%)
- 7242 LLC -load -misses # 7.10% of all LL-cache hits (37.23%)
+ 5160 LLC -load -misses # 3.36% of all LL -cache hits (36.07%)

- 0.261589596 seconds time elapsed (+- 1.48%)
+ 0.232891130 seconds time elapsed (+- 1.87%)� �

Listing E.15: Diff: perf stat of CoastRegexTest (#2)

84

E.11 CoastStorageTest

� �
diff --git a/./ CoastStorageTest -32 _optimized.perf b/./ CoastStorageTest -64 _optimized.perf
--- a/./ CoastStorageTest -32 _optimized.perf
+++ b/./ CoastStorageTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 935.406719 task -clock (msec) # 0.988 CPUs utilized
+ 664.506267 task -clock (msec) # 1.012 CPUs utilized
- 14 context -switches # 0.015 K/sec
+ 9 context -switches # 0.014 K/sec
- 3 cpu -migrations # 0.003 K/sec
+ 3 cpu -migrations # 0.005 K/sec
- 10646 page -faults # 0.011 M/sec
+ 17454 page -faults # 0.027 M/sec
- 2346787694 cycles # 2.511 GHz (49.97%)
+ 1714948299 cycles # 2.659 GHz (49.65%)
- 4417236736 instructions # 1.84 insns per cycle (62.56%)
+ 3333571997 instructions # 1.94 insns per cycle (62.28%)
- 1037345630 branches # 1109.851 M/sec (62.64%)
+ 795558932 branches # 1233.665 M/sec (62.41%)
- 5263167 branch -misses # 0.51% of all branches (62.79%)
+ 3227658 branch -misses # 0.41% of all branches (62.73%)
- 1685309524 L1-dcache -loads # 1803.104 M/sec (61.87%)
+ 1003506186 L1-dcache -loads # 1556.126 M/sec (61.54%)
- 5212057 L1 -dcache -load -misses # 0.31% of all L1-dcache hits (24.99%)
+ 7883968 L1-dcache -load -misses # 0.77% of all L1-dcache hits (25.19%)
- 895701 LLC -loads # 0.958 M/sec (24.96%)
+ 1303771 LLC -loads # 2.022 M/sec (25.01%)
- 571941 LLC -load -misses # 55.26% of all LL-cache hits (37.45%)
+ 728242 LLC -load -misses # 55.65% of all LL-cache hits (37.29%)

- 0.946956762 seconds time elapsed (+- 0.98%)
+ 0.656905051 seconds time elapsed (+- 1.05%)� �

Listing E.16: Diff: perf stat of CoastStorageTest

E.12 CoastSystemFunctionsTest

� �
diff --git a/./ CoastSystemFunctionsTest -32 _optimized.perf b/./ CoastSystemFunctionsTest -64↩

Ç _optimized.perf
--- a/./ CoastSystemFunctionsTest -32 _optimized.perf
+++ b/./ CoastSystemFunctionsTest -64 _optimized.perf
@@ -1,22 +1,22 @@
- 1.217745 task -clock (msec) # 0.686 CPUs utilized
+ 1.159816 task -clock (msec) # 0.677 CPUs utilized

0 context -switches # 0.000 K/sec
0 cpu -migrations # 0.000 K/sec

- 115 page -faults # 0.078 M/sec
+ 137 page -faults # 0.094 M/sec
- 3271492 cycles # 2.222 GHz
+ 3113712 cycles # 2.128 GHz
- 4739259 instructions # 1.38 insns per cycle
+ 4542215 instructions # 1.47 insns per cycle
- 867446 branches # 589.233 M/sec
+ 841703 branches # 575.239 M/sec
- 23911 branch -misses # 2.76% of all branches
+ 22439 branch -misses # 2.67% of all branches

<not counted > L1-dcache -loads (0.00%)
<not counted > L1-dcache -load -misses (0.00%)
<not counted > LLC -loads (0.00%)
<not counted > LLC -load -misses (0.00%)

- 0.001776178 seconds time elapsed (+- 7.40%)
+ 0.001711945 seconds time elapsed (+- 8.54%)� �

Listing E.17: Diff: perf stat of CoastSystemFunctionsTest

85

Appendix F

COAST Setup Cookbook

Applicability: This howto has been tested on a headless Ubuntu Server 15.4.

F.1 Getting Started

This part of the howto explains how to get COAST up and running. You’ll need to be in your
home directory, so make sure of that, e.g. by running cd in your shell.

F.1.1 About Boost

We’ll be using a system-wide installed distribution of Boost in this howto as opposed to one from
the 3rdparty directory. This should work fine in most common Linux distributions. The only
exception is Ubuntu where if and only if you want to be able to compile COAST for both 32
AND 64-bit, the multilib architecture results in a disaster. For that case, the solution is to use
Boost from the 3rdparty directory.

F.1.2 Installing Dependencies

F.1.2.1 Ubuntu Packages� �
apt -get --no-install -recommends install g++-multilib libboost -dev:i386 \

libssl -dev:i386 libboost -regex -dev:i386 \

libboost -system -dev:i386 doxygen graphviz python -pip� �
PIP Packages

Get the appropriate PIP config like this:� �
mkdir -p ~/.pip && wget -O ~/.pip/pip.conf https ://raw.githubusercontent.com/\

marcelhuberfoo/docker -coast -recipes/master/pip.conf� �

86

F.1.2.2 Python’s virtualenv

This is how virtualenv is cloned and installed:� �
git clone --single -branch --branch master --depth 1 \

https :// github.com/pypa/virtualenv.git

python2 $HOME/virtualenv/virtualenv.py $VENVDIR� �
F.1.2.3 Shell Startup (optional)

Add this to your ∼/.bashrc or ∼/.zshrc or similar to load the virtual environment automatically
on shell startup, only if you want it to be available all the time. We’ll provide a simple startup
script to start Cevelop which does this already. See below.� �
export VENVDIR=$HOME/. venv27scons
[-d "$VENVDIR"] && . $VENVDIR/bin/activate� �
If you prefer to do it manually, just add the following line to the respective startup file:� �
export VENVDIR=$HOME/. venv27scons� �
And then, if needed, run the following command:� �
. $VENVDIR/bin/activate@.� �
F.1.3 Cloning COAST

Here we’ll have to disable SSL verification (encryption only) to work around missing signature
of Let’s Encrypt certificate.� �
GIT_SSL_NO_VERIFY=true git clone \

https :// gerrit.coast -project.org/p/coast

cd coast� �
F.1.3.1 Sub Repositories

Here’s how to clone the required sub repositories:� �
git clone --single -branch --branch master --depth 1 \

https :// gerrit.coast -project.org/p/wdscripts.git

git clone --single -branch --branch master --depth 1 \

https :// gerrit.coast -project.org/p/recipes.git

git clone --single -branch --branch master --depth 1 \

https :// gerrit.coast -project.org/p/zlib.git 3rdparty/zlib� �
For 3rd party Boost and OpenSSL, execute these commands as well:� �
git clone --single -branch --branch master --depth 1 \

https :// gerrit.coast -project.org/p/boost.git 3rdparty/boost

git clone --single -branch --branch master --depth 1 \

87

https :// gerrit.coast -project.org/p/openssl.git 3rdparty/openssl� �
F.1.4 Further Dependencies

The dependencies include:

• sconsider

• python-ldap

• pyopenssl

These dependencies are listed in a file within the COAST repository. That’s the reason why we
had to check out COAST first. Install them like this:� �
pip install -U -r ~/coast/requires.txt� �
F.1.5 Example Webapp: CoastRecipes

F.1.5.1 Generating the API Documentation

For 3rd party boost, add --with-src-boost=3rdparty/boost:� �
scons -u --jobs=2 --ignore -missing --doxygen -only� �
For 3rd party boost, add --with-src-boost=3rdparty/boost:� �
scons -u --jobs=2 CoastRecipes && \

cd apps/CoastRecipes && ln -s ../../ doc/Coast/html COASTDoc� �
F.1.5.2 Starting It

For 3rd party boost, add --with-src-boost=3rdparty/boost.� �
scons -u --jobs=2 CoastRecipes --run� �
F.1.6 Trouble Shooting

F.1.6.1 Class Index is Empty

When starting the example app and you see an empty class index, you might need to get rid of
untracked files:� �
git clean -xf --dry -run # (1)

git clean -xf # (2)� �
It’s most likely the Doxyfile that has to be deleted.

88

Important: To avoid deleting non-recoverable files, check the output of command (1) first.
Then proceed with command (2).

F.2 Development

This part of the howto is about making changes to COAST.

F.2.1 Headless

If you’re running a headless Ubuntu server installation and would like to make changes to COAST
using Cevelop, but don’t plan to run X on your server, you can display Cevelop on a remote X
server. Assuming you have your X server running on your local machine (like XQuartz on OS
X), just access the Ubuntu server like this:� �
ssh -X IPADDR� �
Replace IPADDR with the correct IP address. The option -X tells SSH to perform the required
measures (forwarding the X traffic and announcing the display through the DISPLAY environment
variable).

F.2.2 Getting and Running Cevelop

Get and unpack Cevelop using the following command:� �
wget https :// www.cevelop.com/cevelop/downloads /\

cevelop -1.4.0 -201512021228 - linux.gtk.x86_64.tar.gz

tar xf cevelop� �
Make sure you get the latest version. They tend to run better.

As a convenience, you might want to use the following start script.� �
#!/ bin/sh

COAST

export VENVDIR=$HOME/. venv27scons
[-d "$VENVDIR"] && . $VENVDIR/bin/activate

export SCONSFLAGS="--ignore -missing --with -src -zlib=3 rdparty/zlib \

--with -bin -openssl =3 rdparty/openssl --build -cfg=debug \

--warnlevel=medium --enable -Trace --config=force \

--archbits =64"

for 3rdparty boost , add --with -src -boost =3 rdparty/boost

~/cevelop -*/ cevelop.sh &� �
Listing F.1: Convenience script to start Cevelop for COAST development

Save it under ∼/start cevelop.sh and make it executable. It’ll activate the virtual environment,
set options appropriate for development on 64-bit COAST, and finally start Cevelop.

If needed, adapt the options to your needs.

Start the script like this:

89

� �
~/ start_cevelop.sh� �
When run the first time, you’ll have to import COAST as a C++ application.

F.2.3 Running Test Suites

To run a test suite, e.g. CoastFoundationBaseTest, inside a running shell, make sure you’ve
activated the virtual environment (see above), and then run the following command:� �
scons --ignore -missing --with -src -boost=3 rdparty/boost \

--with -src -zlib=3 rdparty/zlib \

--with -bin -openssl =3 rdparty/openssl \

--build -cfg=debug --use -lang -features=c++03 \

--archbits =32 --run -force CoastFoundationBaseTest� �
Adapt the command to your needs. For example, change/add the following options to produce
an optimized 64-bit executable using C++14:� �
--build -cfg=optimized --use -lang -features=c++14 --archbits =64� �
F.2.4 Trouble Shooting

F.2.4.1 Cevelop index wrong

In this case Cevelop’s index isn’t built properly and all class names are shown with a red squiggly
line. Procedure to fix it:

1. close projects

2. run find /path/to/coast/workspace -name .cproject -delete

3. open projects

4. click on SCons button

90

Appendix G

Usage of perf/perf-history

The following usage can be shown by running ./perf-history --help:� �
SYNOPSIS

(1) ./perf -history [--method=METHOD] [--max -count=N] <commit >...

(2) ./perf -history [--method=METHOD] --stdin

The purpose of this script is to generate a history of performance measurement

results across a given commit range.

BUILD TIME

By default , this utility works in bisect fashion and limits the number of

commits to be built to save build time.

As an example , instead of building (*) all commits of a given range ,

**

some are skipped (.) as shown here:

..............*........*........*.........*........*.........*.......*

The others are skipped with the idea that the results can be interpolated.

USAGE

(1) The <commit > argument as it is understood by git -rev -list.

Useful for commit ranges.

(2) Useful when a specific list of commits (not a range) should be measured or

other functionality of git -rev -list is needed.

Example:

git -rev -list --reverse master ... feature1 -- only/here/ | ./perf -history --↩

Ç stdin

This would otherwise be impossible without emulating more of git -rev -list ’s

functionality.

ALGORITHM

1) Parse options and determine set of commits of interest.

2) Print summary of what it ’s about to do.

3) Get confirmation from the user.

4) Create a new directory "./history -YYYYMMDD -XXXXXX"

4) For each commit:

91

a) Create result directory ("./history -YYYYMMDD -XXXXXX/<commit >/")

b) Checkout commit

a) Run the selected METHOD tool

This builds , runs , measures , and saves results.

b) Run it again with --export

This extracts interesting values.

5) Accumulate the result to a CSV file

YYYYMMDD is the current date. The X’s in "XXXXX" are randomly chosen once per

run.

FILES AND DIRECTORIES

* history -YYYYMMDD -XXXXXX/commits.txt

a list of commits that were built and measured

* history -YYYYMMDD -XXXXXX/<commit >/

a directory for each commit , containing the results of METHOD

* history -YYYYMMDD -XXXXXX/<commit >/ method.log

the output of the measurement script (for diagnostics)

* history -YYYYMMDD -XXXXXX/<commit >/ result.csv

the performance result of one commit

* history -YYYYMMDD -XXXXXX/result.csv

the accumulated results of all commits as CSV

* history -YYYYMMDD -XXXXXX/test_names.txt

list of tests to be built and measured for each commit

OPTIONS

-h --help show this help and exit

-m --method=METHOD (default: time) time , perf_stat , or valgrind

-n --max -count=N (default: 16) max. # of commits to measure ,

or 0 to build all commits

--stdin take commit list from STDIN , disable max. # commits

If --stdin is not given , it makes sense to pass roughly a power

of two to --max -count if you want the number of skipped , consecutive commits

not to differ too much.

For details about the performance measurement ("method") scripts , read the

usage of the lower -level script(s):

./with_* --help

About <commit >...: Consult the manpage if unsure how to specify commit ranges:

man gitrevisions

PREREQUISITES

* virtual ENV for COAST has to be activated already

ENVIRONMENT VARIABLES

Honored env vars are:

* ALL_ARCHBITS

Defaults to the platform ’s hardware (either "32" or "64").

But could be e.g. "64 32" to compare both 64-bit and 32-bit over time.

* TEST_NAMES

File containing test names to build , run , and measure.

Defaults to a list of predefined core tests.� �
Listing G.1: Usage of perf-history script

92

Appendix H

Usage of perf/with_*

All with_* scripts share the same usage, which can be shown using the --help option:� �
SYNOPSIS

(1) ./ with_perf

(2) ./ with_perf TEST ...

(3) ./ with_perf --all -tests

(4) ./ with_perf --diff=TEST

(5) ./ with_perf --export [--all -tests | TEST ...]

The purpose of this script is to build and run test suites and measure

performance. The results are saved into files in under ./ perf_results

to be able to compare the differences between 32-bit and 64-bit

builds.

USAGE

(1) Measures the predefined set of core tests (SA’s mandatory goal).

(2) Measures the given tests.

(3) Measures all available tests (determined dynamically using scons)

(4) Prints a command which would show the performance

differences of 32/64-bit builds for the given test.

(5) Extracts common values from results and prints them as CSV.

MEASUREMENT METHODS

Depending on which tool you ’re running , the measurement method is:

with_time => time

with_perf => perf (linux -tools)

with_perf_stat => perf stat (linux -tools)

with_valgrind => Valgrind

with_massif => Valgrind massif tool

PREREQUISITES

* virtual ENV for COAST has to be activated already

OPTIONS

-a --all -tests run all tests available (otherwise core only)

-d --diff=TEST show command to get performance difference of TEST

-e --export export common values results as CSV

-h --help show this help and exit

93

ENVIRONMENT VARIABLES

The following env variables are honored (with default value):

* PERF_DIR "./ perf_results"

* ALL_ARCHBITS "64 32"

* TEST_NAMES temp file , content depending on options/args

* TIMES "20"

TIMES is currently only used by with_time. It defines how many times to run a

test to get a more accurate timing measurement.� �
Listing H.1: Usage of with_* performance measurement scripts

94

	Scope
	Goals
	Optional Goals

	I Management Summary
	Initial Situation
	Software Development Process
	Project Phases
	Inception
	Elaboration
	Construction
	Transition

	Results

	II Technical Report
	Context
	Initial Situation
	Software Architecture
	Basic Layer
	System Layer
	Communication Layer
	Multi-Threading Blocks

	Problem Description
	Non-Functional Requirements

	About 32/64-Bit
	History
	Advantages
	Disadvantages
	Motivation: Why 64-bit?
	Data Models

	64-Bit Port
	Concept
	Common Issues
	Disabled Warnings
	Dynamic Size Types for Fixed Size Needs
	Pointer Arithmetic
	Alignment
	Numeric Constants
	Storing Integers in [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]double
	Storing Pointers in [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]int
	Bitwise Shifting
	Timestamps
	Integer Overflow

	Verification of 64-bit runtime
	Simple [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]int Array
	Using [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]Anything

	Implementation
	CoastFoundationBaseTest
	CoastStorageTest
	CoastCompressionTest
	CoastRegexTest

	Performance Measurements
	Legacy
	Concept
	[style=customsh, basicstyle=, prebreak=, postbreak=]time
	gprof
	oprofile
	perf
	Valgrind

	Implementation
	Architecture
	First Script

	Results and Analysis
	Test Environment
	[style=customsh, basicstyle=, prebreak=, postbreak=]time
	perf
	Valgrind

	Conclusion

	Optional Goal: Performance History
	Use Case #1: Analyzing a Range of Revisions
	Specifying Commit Ranges
	Interpolating Results

	Use Case #2: Analyzing a List of Revisions
	Use Case #3: Archiving the Results
	Non-Functional Requirements
	Concept
	File Format
	Applicability

	Implementation
	Using Current Script Revisions for Old Code

	Usage
	Selecting the Measurement Method
	Selecting the Test Suites
	Selecting the Processor Architecture
	Example of Use Case #1
	Example of Use Case #2
	About Use Case #3

	Optional Goal: Migrating Further Tests
	Concept
	Implementation
	CoastSecurityTest
	CoastQueueingTest
	CoastRendererTest

	Optional Goal: C++11/14 Support
	Analysis
	About [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]std::autoptr
	Migrating to [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]std::uniqueptr
	Reducing Verbosity

	A More Transparent Alternative to Preprocessor Switches
	Detailed Solution

	Removing Obsolete Information
	PC-Lint Magic Comments
	The [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]register Keyword

	Optional Goal: Improving [style=custominlinecpp, basicstyle=, prebreak=, postbreak=]Anything Internals
	Conclusion

	III Appendix
	Self Reflection
	Thank You

	Formalities
	Declaration of Originality
	Permissions

	Project Plan
	Organization

	Infrastructural Problems
	Redmine: MySQL driver
	Software Versions on VM: Upgrade
	Redmine Bugs and Another Upgrade
	Buggy Pre-Installed Version
	Gantt Charts

	SSH Access to VM
	Mails from Redmine
	Cevelop
	Jenkins

	[style=customsh, basicstyle=, prebreak=, postbreak=]perf stat diff
	CoastEBCDICTest
	CoastFoundationAnythingOptionalTest
	CoastFoundationBaseTest
	CoastFoundationIOTest
	CoastFoundationMiscellaneousTest
	CoastFoundationPerfTest
	CoastFoundationTest
	CoastFoundationTimeTest
	CoastMTFoundationTest
	CoastRegexTest
	CoastStorageTest
	CoastSystemFunctionsTest

	COAST Setup Cookbook
	Getting Started
	About Boost
	Installing Dependencies
	Cloning COAST
	Further Dependencies
	Example Webapp: CoastRecipes
	Trouble Shooting

	Development
	Headless
	Getting and Running Cevelop
	Running Test Suites
	Trouble Shooting

	Usage of [style=customsh, basicstyle=, prebreak=, postbreak=]perf/perf-history
	Usage of [style=customsh, basicstyle=, prebreak=, postbreak=]perf/with*

