

I. ABSTRACT CCGLadiator

I Abstract

Within C++, there is a much smaller and cleaner language struggling to get out.
Bjarne Stroustrup, The Design and Evolution of C++

To extract this smaller and cleaner language, Bjarne Stroustrup and Herb Sutter
released the C++ Core Guidelines [SS15] in 2015 which describe a multitude of
rules. These enforce the use of modern C++ which is a resource-leak free, stati-
cally type-safe and overall simpler and safer language.

In this project an already existing plug-in for the Eclipse CDT environment is
extended which checks written source code for violations of the rules provided in
the Core Guidelines, highlights them and offers Quick Fix options to repair the
faulty code in an instant.

In the scope of this project several new rules from the sections ”C: Classes and Class
Hierarchies” and ”ES: Expressions and Statements” are added with the according
Checker and Quick Fixes.

December 22, 2016 i Term Project

II. MANAGEMENT SUMMARY CCGLadiator

II Management summary

II.1 Introduction

Within C++, there is a much smaller and cleaner language struggling to get out.
Bjarne Stroustrup, The Design and Evolution of C++

To extract this smaller and cleaner language, Bjarne Stroustrup and Herb Sutter
released the C++ Core Guidelines [SS15] in 2015 which describe a multitude of
rules. These enforce the use of modern C++ which is a resource-leak free, statically
type-safe and overall simpler and safer language. To support these Guidelines a
support library called GSL [Mic16] was released by Microsoft. It offers a variety
of functions and types proposed in the Core Guidelines to better support a wide
set of rules.

II.2 Approach

In this project the bachelor thesis from Kaya and Schmidiger CCGLator [zKS16]
is extended. It is a plug-in for the Eclipse CDT environment which checks written
source code for violations of Core Guideline Rules, highlights it and offers Quick
Fix options to fix the faulty code in an instant.

As a first step the plug-in structure was analysed and the functionality of such a
Checker and Quick Fix had to be understood. Shortly after, the first set of rules
had to be analysed which involved a lot of research into C++ itself to understand
exactly why such a rule was necessary and how a fix can be offered. Additionally
the means by which an AST can be traversed and edited had to be understood.
Afterwards in a steady rotation new rules were analysed and implemented. In the
last few weeks a large emphasis was set on fixing false positives and other bugs
inside the code.

II.3 Results

In the scope of this term project 8 rules originating from the section ”C: Classes
and Class Hierarchies” and ”ES: Expressions and Statements” were added to the
plug-in with according Checker and Quick Fixes. The plug-in now advises the user
for a safe style to cast, enforces a proper usage of swap functions and checks for

December 22, 2016 ii Term Project

II. MANAGEMENT SUMMARY CCGLadiator

an improper use of variables. Any one of them represent a meaningful addition to
write code in a modern and safe way.

Besides the rules a lot of helper methods were implemented simplifying future
contributions to the plug-in.

Figure 1: Execution of two Quick Fixes

II.4 Forecast

A lot of the rules defined in the Core Guidelines still remain unimplemented. For
future work the addition of new rules is quite easily possible because the plug-in
allows for an easy extension. Additionally in the already implemented rules some
false positives are highlighted which is another option for future work.

December 22, 2016 iii Term Project

III. DECLARATION OF AUTHORSHIP CCGLadiator

III Declaration of Authorship

We hereby declare,

• that this project was done without external assistance except the ones de-
clared in the documentation or discussed with the advisor.

• that all the used sources are cited according to the usual scientific citation
rules.

• that no resources protected under copyright law (e.g. images) are illegiti-
mately used in this project.

Place and date Rolf Bislin

Place and date Kilian Diener

December 22, 2016 iv Term Project

CONTENTS CCGLadiator

Contents

I Abstract i

II Management summary ii
II.1 Introduction . ii
II.2 Approach . ii
II.3 Results . ii
II.4 Forecast . iii

IIIDeclaration of Authorship iv

1 Introduction 5
1.1 Previous Work . 5
1.2 Scope Definition . 5

1.2.1 Minimal Scope . 5
1.2.2 Optimal Scope . 6
1.2.3 Maximum Scope . 6

1.3 Eclipse CDT . 6
1.3.1 Cevelop . 6

2 Analysis 7
2.1 C++ Core Guidelines . 7

2.1.1 GSL: Guideline Support Library 8
2.2 How do we recognize a swap function in the AST 9
2.3 Rule C.83: For value-like types, consider providing a noexcept swap

function . 10
2.3.1 Enforcement . 10
2.3.2 Pre-Fix Code . 11
2.3.3 Post-Fix Code . 11

2.4 Rule C.84: A swap function may not fail /
Rule C.85: Make swap noexcept . 12
2.4.1 Enforcement . 12
2.4.2 Pre-Fix Code . 12
2.4.3 Post-Fix Code . 12

2.5 New Rule C.85: If a user defined swap member function is used,
namespace-level swap(a, b) should be overwritten 13
2.5.1 Enforcement . 14
2.5.2 Pre-Fix Code . 14
2.5.3 Post-Fix Code . 14

December 22, 2016 1 Term Project

CONTENTS CCGLadiator

2.6 Rule C.164: Avoid conversion operators 15
2.6.1 Enforcement . 16
2.6.2 Pre-Fix Code . 16
2.6.3 Post-Fix Code . 16

2.7 ES.26: Don’t use a variable for two unrelated purposes 17
2.7.1 Enforcement . 17

2.8 Rule ES.46: Avoid lossy (narrowing, truncating) arithmetic conver-
sions . 19
2.8.1 Enforcement . 20
2.8.2 Pre-Fix Code . 20
2.8.3 Post-Fix Code . 20

2.9 Rule ES.49: If you must use a cast, use a named cast 22
2.9.1 Enforcement . 22
2.9.2 Pre-Fix Code . 24
2.9.3 Post-Fix Code . 24

2.10 ES.74: Prefer to declare a loop variable in the initializer part of a
for-statement . 25
2.10.1 Enforcement . 25
2.10.2 Pre-Fix Code . 26
2.10.3 Post-Fix Code . 26

2.11 Review . 26

3 Implementation 27
3.1 ASTHelper . 28

3.1.1 analyseSwapFunction . 28
3.1.2 isReturnType . 28
3.1.3 hasConstParameter . 29
3.1.4 getTypeFromExpressionElement 29
3.1.5 getTypeFromBinding . 29
3.1.6 getNamespace . 29

3.2 ASTFactory . 30
3.2.1 newSwapFunction and newNamespaceSwapFunction 30
3.2.2 newDeclarationStatement 30

3.3 ASTComment . 30
3.4 SetAttributeQuickFix . 30

3.4.1 Limitation on Rule Names 31
3.4.2 Set an attribute on a IASTForStatement 31
3.4.3 Other changes . 31

3.5 Rule C.83: For value-like types, consider providing a noexcept swap
function . 32
3.5.1 Checker . 32

December 22, 2016 2 Term Project

CONTENTS CCGLadiator

To Do’s . 32
3.5.2 Quick Fix . 32

Add Swap Member Function 33
Change Parameter of swap function to a reference 33

3.6 Rule C.84/85: Make swap noexcept 34
3.6.1 Checker . 34
3.6.2 Quick Fix . 34

3.7 New Rule C.85: If a user defined swap member function is used,
namespace-level swap(a, b) should be overwritten 35
3.7.1 Checker . 35
3.7.2 Quick Fix . 35

3.8 Rule C.164: Avoid conversion operators 36
3.8.1 Checker . 36
3.8.2 Quick Fix . 36

3.9 ES.26: Don’t use a variable for two unrelated purposes 37
3.9.1 Checker . 37
3.9.2 Quick Fix . 37

3.10 Rule ES.46: Avoid lossy (narrowing, truncating) arithmetic conver-
sions . 38
3.10.1 Checker . 38
3.10.2 Quick Fix . 39
3.10.3 ProjectIncluder and ASTModifier 40
3.10.4 To Do’s . 40

3.11 Rule ES.49: If you must use a cast, use a named cast 41
3.11.1 Checker . 41
3.11.2 Quick Fix . 41
3.11.3 To Do’s . 41

3.12 ES.74: Prefer to declare a loop variable in the initializer part of a
for-statement . 42
3.12.1 Checker . 42
3.12.2 Quick Fix . 42

3.13 Testing . 43
3.13.1 Checker . 43
3.13.2 Quick Fix . 44
3.13.3 To Do’s . 44

During JUnit tests the Formatter recognises template pointy
brackets with typedefs as binary expression 44

GSL Project Includer . 45
Strange space character . 45

4 Conclusion 46

December 22, 2016 3 Term Project

CONTENTS CCGLadiator

4.1 Result . 46
4.1.1 Pull Request for C.84/C.85 46

4.2 Future Work . 46

A Project organisation I
A.1 Approach . I
A.2 Project Plan . I

B User Manual II
B.1 Installation . II
B.2 Configuration . II
B.3 Usage . III

C Developer Manual IV
C.1 Local Development Environment IV

C.1.1 Prerequisite . IV
C.1.2 Eclipse SDK . V
C.1.3 CCGLator Workfolder . V
C.1.4 Coding . VI

plugin.xml . VI
Checkers, Visitors and Quick Fixes VI
ASTHelper, ASTFactory . VI
Testing . VI

C.2 Continuous Integration Server . VII
C.3 Project Management Environment VIII
C.4 This Document . VIII

D C++ Codes used for the AST Images IX

Bibliography X

December 22, 2016 4 Term Project

1. INTRODUCTION CCGLadiator

1 Introduction

Bjarne Stroustrup and Herb Sutter released the “C++ Core Guidelines” document
[SS15] at cppcon 2015. In it they describe several sets of rules which enforce the
use of Modern C++ , improve the quality of code and avoid resource leaks.

1.1 Previous Work

In the last term Kaya Özhan and Kevin Schmidiger developed as their bachelor
thesis [zKS16] a plug-in for the Integrated Development Environment Cevelop
named CCGLator, which enforces some of these rules and offers Quick Fixes to
abide to these rules.

1.2 Scope Definition

In this term project the aim is to improve the already existing plug-in by imple-
menting the later mentioned rules defined in the Core Guidelines.

1.2.1 Minimal Scope

For the Minimal scope requirements the following rules should be implemented:

• C: Classes and Class Hierarchies

– C.83: For value-like types, consider providing a noexcept swap function

– C.84/85: A swap function may not fail/Make swap noexcept

– new C.85: If a user defined swap member function is used, namespace-
level swap(a, b) should be overwritten.

– C.164: Avoid conversion operators

• ES: Expressions and Statements

– ES.26: Don’t use a variable for two unrelated purposes

December 22, 2016 5 Term Project

1. INTRODUCTION CCGLadiator

1.2.2 Optimal Scope

In the optimal scope the aim is to implement the following rules in addition to the
minimal scope.

• ES: Expressions and Statements

– ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions

– ES.49: If you must use a cast, use a named cast

– ES.74: Prefer to declare a loop variable in the initializer part of a for-
statement

1.2.3 Maximum Scope

If the project goes better than expected rules such as the following will be added
to the scope.

• ES: Expressions and Statements

– ES.22: Don’t declare a variable until you have a value to initialize it
with

– ES.56: Write std::move() only when you need to explicitly move an
object to another scope

1.3 Eclipse CDT

Eclipse CDT is a fully functional IDE for C/C++ based on the Eclipse framework.
As is usual with the Eclipse environment, plug-ins can be easily programmed to
extend the functionality and support new features.

1.3.1 Cevelop

Cevelop [fSR16b] is an enhanced version of the Eclipse CDT released by the Insti-
tute for Software [fSR16c]. It implements a variety of new plug-ins supplementing
the IDE.

December 22, 2016 6 Term Project

2. ANALYSIS CCGLadiator

2 Analysis

In this chapter an overview of the C++ Core Guideline Rules [SS15] is given, we
analyse what a swap function is and do a detailed analysis of the implemented
rules in the scope of this project. The analysis consists of an explanation of the
rule, a way to enforce the rule and a part where an example code is shown before
and after the Quick Fix is applied.

2.1 C++ Core Guidelines

The core Guidelines are split into several sections each covering different parts of
C++. The following sections are available:

• P: Philosophy

• I: Interfaces

• F: Functions

• C: Classes and class hierarchies

• Enum: Enumerations

• R: Resource management

• ES: Expressions and statements

• E: Error handling

• Con: Constants and immutability

• T: Templates and generic programming

• CP: Concurrency

• SL: The Standard library

• SF: Source files

• CPL: C-style programming

All the rules in this project are either part of ’C: Classes and class hierarchies’
or ’ES: Expressions and statements’. Each rule in the Guidelines then is divided
into several sub chapters detailing the reason behind the rule, examples of code
which violate the rule and an enforcement discussing the approach for a static

December 22, 2016 7 Term Project

2. ANALYSIS CCGLadiator

analysis tool. Furthermore if the rule is still the object of discussions a chapter for
discussion is present.

For this project the enforcement part was especially helpful because it gives an
introduction on how to implement the rule.

2.1.1 GSL: Guideline Support Library

GSL (Guideline Support Library) is a C++ library which is needed to properly
comply to some of the Guidelines.

The Guideline Support Library (GSL) contains functions and types that are
suggested for use by the C++ Core Guidelines maintained by the Standard C++
Foundation. [...]
The library includes types like span<T>, string span, owner<> and others.

Microsoft, GSL: Guideline Support Library [Mic16]

December 22, 2016 8 Term Project

2. ANALYSIS CCGLadiator

2.2 How do we recognize a swap function in the AST

The following chapters all cover some rules which have to do with swap func-
tions. Rule C.83 (chapter 2.3) is about when to provide a member swap func-
tion, Rule C.84/85 says that such swap functions are not allowed to fail and
should be declared noexcept (chapter 2.4) and the new Rule C.85 suggests to pro-
vide a namespace-level swap function if there is a member-swap function (chap-
ter 2.5).

Therefore, we need to recognize a swap function for multiple rules which is de-
scribed in this chapter.

Figure 2: AST Nodes used to recognise swap functions

A swap member function is a non-const function in a class with the name ”swap” [1]
(see Figure 2) with the return type ”void” [2] and takes exactly one non-const
parameter [3] of the same class [4] as a reference [5].

Figure 3: AST Nodes used to recognise swap functions

To a namespace level swap function nearly the same rules apply [1] (see Figure 3)
but it is not in a class (or it alternatively is a friend function) and takes exactly
two parameters [2] of the same class [3] as non-const reference [4].

December 22, 2016 9 Term Project

2. ANALYSIS CCGLadiator

2.3 Rule C.83: For value-like types, consider providing a
noexcept swap function

To comfortably swap out two variables of value-like types a swap function can be
useful. If the custom value-like type needs some special handling a noexcept swap
function should be provided. The Checker of this rule should help the programmer
to recognise such situations.

2.3.1 Enforcement

As stated by the C++ Core Guidelines Rule [SS15, C.83: Enforcement] a class
with member variables and without virtual functions is most likely a value-like
type and should provide a swap function. In the Guidelines there is a second
enforcement point but that corresponds to the Rule C.84.

If we find a swap member function (as described in chapter 2.2) then the rule is
respected for that class.
If the only reason that we don’t find a swap function is that the function parameter
is not by reference, the programmer most likely just made a mistake. Then we
can, in addition to the Quick Fix below, provide a small Quick Fix to change that
parameter to a reference as an alternative to a completely new swap function.

The rule does not apply to classes where there are one or more virtual functions
present (see Figure 4).

Figure 4: AST Nodes used to enforce C.83

December 22, 2016 10 Term Project

2. ANALYSIS CCGLadiator

These are the checks we used to implement this rule (see chapter 3.5) but currently
there are too many false positives. That means there are a lot of classes which get
marked but where the std::swap() is optimal. A possible way to improve the rule
might be to only mark classes where the types of the member variables provide a
swap function.

2.3.2 Pre-Fix Code

1 struct A {
2 void swap(A& a);
3 };
4 struct Subject {
5 A a;
6
7
8 /* no swap and
9 *

10 * no virtual function */
11 };

Listing 1: C.83 Pre-Fix

2.3.3 Post-Fix Code

1 struct A {
2 void swap(A& a);
3 };
4 struct Subject {
5 A a;
6 void swap(Subject & other) noexcept {
7 using std :: swap;
8 // TODO Auto - generated method stub
9 }

10 /* no virtual function */
11 };

Listing 2: C.83 Post-Fix

December 22, 2016 11 Term Project

2. ANALYSIS CCGLadiator

2.4 Rule C.84: A swap function may not fail /
Rule C.85: Make swap noexcept

Because these two rules are so similar we treat them as one rule. For the Rule
C.85 we defined a new one which can be found under (2.5) and a pull request was
provided to the Core Guidelines (see chapter 4.1.1).

These two rules can be summarised into one because they treat the same problem.
In addition they’re pretty straightforward to understand and enforce. If there is
a swap function present, it should always be declared noexcept so it’s guaranteed
to succeed or the program terminates. If this isn’t enforced, other functions which
use the swap function may operate on a broken state.

2.4.1 Enforcement

As explained in chapter 2.2 it is needed to check for three different kinds of swap
function. If one is found, the Quick Fix allows to automatically add the ”noexcept”
specification to the function. This can be set in the ”CPPASTFunctionDeclarator”
node.
2.4.2 Pre-Fix Code

1 struct swappableMember {
2 int i;
3 };
4
5 void swap(swappableMember & a,

swappableMember & b)
6 {
7 auto tmp = a;
8 a = b;
9 b = tmp;

10 }

Listing 3: C.84/85 Pre-Fix

2.4.3 Post-Fix Code

1 struct swappableMember {
2 int i;
3 };
4
5 void swap(swappableMember & a,

swappableMember & b) noexcept
6 {
7 auto tmp = a;
8 a = b;
9 b = tmp;

10 }

Listing 4: C.84/85 Post-Fix

December 22, 2016 12 Term Project

2. ANALYSIS CCGLadiator

2.5 New Rule C.85: If a user defined swap member func-
tion is used, namespace-level swap(a, b) should be
overwritten

This rule is defined by us because C.84/85 can be merged into one rule and it
represents an useful addition to the swap rules.

If a swap() member function exists there should also be a swap(a, b) implemen-
tation for the same member type in the namespace. This enables the Argument
Dependent Lookup (ADL) to choose the best fitting function for the call. This
makes it possible to implement a specialised swap function which can improve the
swap process based on the non-static data members of the respective class.

For example, it may be enough to only swap a member field and not the whole
class or the cache of the class can be disregarded for the swap process, resulting
in a slimmer swap function.

Additionally a lot of algorithm functions use the swap(a, b) syntax which would
as well use the namespace-level one.

1 int main () {
2 using std :: swap;
3 ownSwap :: swappableMember a {1};
4 ownSwap :: swappableMember b {2};
5 swap(a, b); // ownSwap :: swap(a,b) is used because of ADL.
6 return 0;
7 }

Listing 5: C.85 ADL lookup example

This rule will be deprecated if the Unified Call Syntax is standardised [Sut16].

December 22, 2016 13 Term Project

2. ANALYSIS CCGLadiator

2.5.1 Enforcement

As the first step, classes are searched for a member swap function. If there is one
present, a friend function is searched in the same class. If this doesn’t succeed
the namespace of this function is searched for a swap(a, b) function. Because a
namespace can be defined over multiple files, it is necessary to search the index
for a matching swap function. If there is no swap function found, the Quick Fix
adds a swap function with the matching parameters.

2.5.2 Pre-Fix Code

1 namespace ownSwap {
2 struct swappableMember {
3 auto a;
4 void swap(swappableMember & other)

noexcept {
5 auto temp = a;
6 a = other .a;
7 other .a = temp;
8 }
9 };

10
11 /* no namespace - level swap function for

swappableMember */
12
13
14 }

Listing 6: C.85 Pre-Fix

2.5.3 Post-Fix Code

1 namespace ownSwap {
2 struct swappableMember {
3 int a = 0;
4 void swap(swappableMember & other)

noexcept {
5 int temp = a;
6 a = other .a;
7 other .a = temp;
8 }
9 };

10
11 void swap(swappableMember & a,

swappableMember & b) noexcept {
12 a.swap(b);
13 }
14 }

Listing 7: C.85 Post-Fix

December 22, 2016 14 Term Project

2. ANALYSIS CCGLadiator

2.6 Rule C.164: Avoid conversion operators

Implicit conversions can be surprising which this simple example demonstrates:
1 struct A;
2 struct B {
3 B()= default ;
4 B (const A& x) {}
5 };
6 struct A {
7 operator B() { return B() ;}
8 };
9 int main () {

10 A foo;
11 B bar = foo; // conversion operator
12 B baz {foo }; // conversion constructor
13 bar = foo; // conversion operator
14 }

Listing 8: C.164 Example

In line 13 as well as line 15 the conversion operator, in line 14 however the con-
version constructor gets called. If there was more code between line 13 and 15
the programmer might even have overlooked that foo and bar are of two different
classes and might not realize that a conversion takes place. (Additionally usage
of conversion operators and conversion constructors may lead to inconsistent be-
haviour.)

If however the conversion operator as well as the conversion constructor (by Rule
C.46) get declared explicit, the programmer has to convert the object consciously
and will notice if something is amiss.

December 22, 2016 15 Term Project

2. ANALYSIS CCGLadiator

2.6.1 Enforcement

If a non-explicit conversion operator is found (See CPPASTConversionName in
Figure 5) the function should be flagged with a Tooltip wich encourages the removal
of the function.

Figure 5: CPPASTConversionName in the AST

As an alternative it might be viable for the programmer to apply a provided Quick
Fix to make the function explicit.

2.6.2 Pre-Fix Code

1 struct To {};
2
3 struct From {
4 operator To *() {
5 return new To ();
6 }
7 };

Listing 9: C.164 Pre-Fix

2.6.3 Post-Fix Code

1 struct To {};
2
3 struct From {
4 explicit operator To *() {
5 return new To ();
6 }
7 };

Listing 10: C.164 Post-Fix

<discussion topic="false positives"><!-- Discussion on false positives
opened -->

December 22, 2016 16 Term Project

2. ANALYSIS CCGLadiator

2.7 ES.26: Don’t use a variable for two unrelated pur-
poses

To improve the readability of written code, variables should not be recycled. This
behaviour only leads to confusion if somebody tries to understand the code.

1 void function () {
2 int i;
3 i = 3;
4 i = 5; // bad: i recycled
5 }

Listing 11: ES.74 Example

2.7.1 Enforcement

To enforce this rule, all usages of a variable can be received from the translation
unit [1]. Afterwards each usage must be checked if it is a assignment to the variable
or if it is incremented or decremented. As soon as two usages are found [2], the
variable is highlighted.

Figure 6: AST Nodes used to check for a recycled variable

December 22, 2016 17 Term Project

2. ANALYSIS CCGLadiator

But if the first reference [1] is inside an if-statement [2] and the second reference [3]
inside the else-statement of the same if-statement [4] it’s not a recycled variable
and won’t be highlighted.

Figure 7: AST Nodes used to check for a recycled variable inside an if-statement

This rule is prone to find a lot of false positives. For this purpose the rule should
be implemented cautiously and only report the clear cut cases.

December 22, 2016 18 Term Project

2. ANALYSIS CCGLadiator

2.8 Rule ES.46: Avoid lossy (narrowing, truncating) arith-
metic conversions

In lossy arithmetic conversions, like assigning 7.9 to an integer, the loss of in-
formation (here ’.9’) is often by accident. Therefore, this rule states that such
(automatic) conversions should be avoided, except by explicitly using narrow() or
narrow_cast(). The difference between the two is that narrow() throws an exception if
you really lose information. (But not for example if you cast 7.0 to int)

Now we need to know what cases there are in which lossy arithmetic conversions
can occur and what kind of lossy conversions there are.

Lossy arithmetic conversions can occur at:

• (Assignment) Declarations

• Assignments

• C-style Casts

• Function Arguments

The corresponding chapters in the C++ Standard [Fou16b, "Integral promotions"
[conv.prom] and "Numeric conversions" [string.conversions]] are tricky
to understand but the cppreference.com page ”Fundamental types” [cpp] is quite
helpful. Lossy conversions on function arguments are most likely unintended. For
all other cases lossy conversions are used quite often in a reasonable way. We
should only flag the less likely reasonable conversion types (by default):

• loss of floating point
All or at least the following:

– float → char

– double → int

• conversion from integer to char

– (unsigned) long → char (or char16 t or char32 t)

– (unsigned) long long → char (or char16 t or char32 t)

All others in this category are too common to flag (by default).

December 22, 2016 19 Term Project

http://en.cppreference.com/w/cpp/language/types

2. ANALYSIS CCGLadiator

The following conversion types are common and therefore we do not flag them (by
default):

• loss of floating point precision

• loss of integer range size

• loss of signed attribute

• narrowing char conversions

2.8.1 Enforcement

Because lossy conversions can occur in multiple different situations we have to
check multiple different node types for it.

(Assignment)
Declarations

To recognise lossy conversions in (assignment) declarations
we need to check the declaration type [1] (See Figure 8) and
the type of the CPPASTEqualsInitializer node [2].

Assignments To recognise assignments we need to check the operand
types of CPPASTBinaryExpression nodes [3] with opera-
tor type ”assignment” (values 17-27) and check the types of
the two expression elements [4].

C-style Casts Casts have the class CPPASTCastExpression [5]. it contains
a TypeId [6] to the target casting type.

Function
Arguments

On a CPPASTFunctionCallExpression [1] (See Figure 9) we
have to check the provided [2] and the requested [3] argu-
ments.

2.8.2 Pre-Fix Code

1 /* no special include */
2 void foo(int i) {}
3 int main (){
4 double d = -7.0;
5 unsigned u = 0;
6 foo(d);
7 u = d;
8 }

Listing 12: ES.46 Pre-Fix

2.8.3 Post-Fix Code

1 # include <gsl >
2 void foo(int i) {}
3 int main (){
4 double d = -7.0;
5 unsigned u = 0;
6 foo(gsl :: narrow <int >(d));
7 u = gsl :: narrow_cast <unsigned >(d);
8 }

Listing 13: ES.46 Post-Fix

December 22, 2016 20 Term Project

2. ANALYSIS CCGLadiator

Figure 8: AST Nodes used for checking for narrow casts

Figure 9: AST Nodes used for checking function arguments for narrow cast

December 22, 2016 21 Term Project

2. ANALYSIS CCGLadiator

2.9 Rule ES.49: If you must use a cast, use a named
cast

Named casts are more specific and allow for better discoverability of some errors.
Therefore, old C-style and function-style casts shouldn’t be used anymore.

Something noteworthy is the following description of how C-style casts and function-
style casts are handled in C++:

C-style cast and function-style cast are casts using (type)object or type(object),
respectively. A C-style cast is defined as the first of the following which succeeds:

• const_cast

• static_cast (though ignoring access restrictions)

• static_cast (see above), then const_cast

• reinterpret_cast

• reinterpret_cast, then const_cast

stackoverflow.com community wiki, When should static cast, dynamic cast,
const cast and reinterpret cast be used? [sta16]

2.9.1 Enforcement

Any IASTCastExpression [1] with the operator-type ”op cast” can be flagged.

Function-style cast of basic types are ICPPASTSimpleTypeConstructorExpression
nodes [2] with an IASTSimpleDeclSpecifier node [3] as IASTDeclSpecifiers.

Figure 10: AST Nodes used to check for casts

December 22, 2016 22 Term Project

2. ANALYSIS CCGLadiator

Below is a list with the named casts mentioned by the C++ Core Guidelines[SS15,
ES.49: Reason]. For the first four of them we provide Quick Fixes the programmer
can choose from.

(This analysis is mostly based on information from stackoverflow [sta16])

static cast This named cast is most often used.
It doesn’t cast through virtual inheritance and it can’t cast
away constness or volatility.
So casting from const int * to int * wouldn’t work and would
require const cast. This Quick Fix will be provided for any
marked cast.

dynamic cast Used for polymorphism. To cast pointers or references where
the target type is a child class of the source type. It would
be possible to recognise when this is the case and only then
show this Quick Fix as an option.

const cast This Quick Fix is useful if either the target or source type
is a const pointer or reference but not both. It wouldn’t be
too difficult to check for this usecase and provide this Quick
Fix dependent on that.

reinterpret cast This is a dangerous cast. As the name suggests it reinter-
prets the binary code stored as if it was of the new type.
Knowing when this could be of use is quite difficult, if not
impossible, therefore this Quick Fix gets provided for any
marked cast.

std::move
std::forward

Gives an rvalue-reference. Useful for only a few usecases like
swapping huge datastructures. (See [ein16] and [Pot13])
We don’t provide a Quick Fix to these two named casts
because it is impossible that a C-style cast converts to an
rvalue-reference.

gsl::narrow
gsl::narrow cast

The Quick Fixes for gsl::narrow and lstlininegsl::narrow cast
are provided by Rule ES.46 in chapter 2.8 for gsl::narrow and
gsl::narrow_cast are provided by Rule ES.46 in chapter 2.8

December 22, 2016 23 Term Project

2. ANALYSIS CCGLadiator

2.9.2 Pre-Fix Code

1 struct parent {
2 virtual int value () { return 4; } };
3 struct child : parent {
4 int value () { return 42; } };
5
6 int main () {
7 int i = 2;
8 child fourtyandtwo = child {};
9 parent *four = & fourtyandtwo ;

10 const int *ci = &i;
11 float f = 4.2;
12
13 /* Casts */
14 long l = (long) i;
15 child * fourtytwo =
16 (child *) four;
17 int *nci = (int *) ci;
18 char *b =
19 (char *) (&f);
20 }

Listing 14: ES.49 Pre-Fix

2.9.3 Post-Fix Code

1 struct parent {
2 virtual int value () { return 4; } };
3 struct child : parent {
4 int value () { return 42; } };
5
6 int main () {
7 int i = 2;
8 child fourtyandtwo = child {};
9 parent *four = & fourtyandtwo ;

10 const int *ci = &i;
11 float f = 4.2;
12
13 /* Casts */
14 long l = static_cast <long >(i);
15 child * fourtytwo =
16 dynamic_cast < child *>(four);
17 int *nci = const_cast <int *>(ci);
18 char *b2 =
19 reinterpret_cast <char * >(&f);
20 }

Listing 15: ES.49 Post-Fix

December 22, 2016 24 Term Project

2. ANALYSIS CCGLadiator

2.10 ES.74: Prefer to declare a loop variable in the initial-
izer part of a for-statement

The variable used to initialise the for loop should be declared at the for statement.
This allows code optimisers to speed up the execution [SS15, ES.74: Discussion]
as well as making the code clearer to read.

1 int i; // BAD: i is visible outside the loop
2 for (i = 0; i < 100; ++i) {
3 // ...
4 }
5 // i is still visible here and isn ’t needed

Listing 16: ES.74 Bad Example

2.10.1 Enforcement

Figure 11: AST Nodes used to check for the initialiser

As a first step the loop variable must be found out. This can be done through the
iteration-statement [1] of the for-statement [2]. With this variable we can search
for all references of it in the whole AST. At this point a decision must be reached.
If the variable is never referenced again in the whole tree, the initialisation [3] can
be done in the for-loop as well, which can be done as a Quick Fix.

On the other hand if the variable is referenced somewhere in the AST, no decision
can be reached if the variable can be declared in the initialiser-statement. At this
point only a warning will be displayed.

December 22, 2016 25 Term Project

2. ANALYSIS CCGLadiator

Furthermore the use of multiple variables in a for loop and the possibility that
the initialiser part is empty has to be considered. The case of an empty initialiser
is easily checkable with minor additions to the check above but when two loop
variables can be deduced the complexity needed to check for all variants is greatly
increased.
2.10.2 Pre-Fix Code

1 void function () {
2 int j;
3 for (j = 0; j < 0; j++) {
4 }
5 }

Listing 17: ES.74 Pre-Fix

2.10.3 Post-Fix Code

1 void function () {
2 for (int j = 0; j < 0; j++) {
3
4 }
5 }

Listing 18: ES.74 Post-Fix

2.11 Review

With the implementation of these rules, the plug-in advises the user for a safe style
to cast, enforces a proper usage of swap functions and checks for an improper use
of variables. Any one of them represents a meaningful addition to get the code
written in a modern and safe way.

December 22, 2016 26 Term Project

3. IMPLEMENTATION CCGLadiator

3 Implementation

As a starting point, the CCGLator Bachelor Thesis [zKS16] plug-in was used. For
an in-depth overview over the plug-in please refer to its documentation.

In this project the following changes and additions to CCGLator were necessary
and are explained in this chapter:

• Additions and refactorings to ASTHelper, ASTFactory
and SetAttributeQuickfix

• Checkers with Visitors for the newly added rules

• Quick Fixes for the newly added rules

• Tests for Checkers and Quick Fixes

In the whole implementation process the go to resource was the Eclipse CDT API
Documentation [Fou16a] providing us with the needed information about the CDT
environment.

December 22, 2016 27 Term Project

3. IMPLEMENTATION CCGLadiator

3.1 ASTHelper

In the ASTHelper methods are exposed which handle problems encountered over
different rules. Extracting them into a new class minimises duplicated code and
cleans-up the rules.

In addition to the methods of CCGLator, several new ones had to be implemented
so that the new rules can be handled comfortably.

3.1.1 analyseSwapFunction

This method can analyse a function and identify if it is a namespace-level, friend
or class swap function. If the function is neither of them, a list of reasons is
returned.

We check a function for the following properties and if they apply we add them to
an Enum-List:

• Does it have the wrong name?

• Is the parameter not a reference?

• Is there a parameter which is const?

• Is the function const?

• Is the return type something else than void?

If the function has the correct name we additionally check if it is a member,
friend or namespace level function and if the parameter types and amounts are
correct.

If the resulting list contains only one entry which is either ”IsNamespaceFunction”,
”IsFriendFunction” or ”IsMemberFunction” then the function is a valid swap func-
tion of said type.

3.1.2 isReturnType

To check the swap function for the void return type this method is used. As a
parameter it takes the function as well as an integer value representing the return
type. For resolution from an int to the actual type, refer to the
IASTSimpleDeclSpecifier [Fou16a] interface. When the type requested equals the
return type from the supplied function, the method returns the value true.

December 22, 2016 28 Term Project

3. IMPLEMENTATION CCGLadiator

3.1.3 hasConstParameter

The analyseSwapFunction has to check if all the parameters fo a function are
const. This method allows us to do that. Based on the IASTFunctionDeclarator all the
parameters are analysed. As soon as one of the function parameters is const, the
value true is returned.

3.1.4 getTypeFromExpressionElement

This method is used by the ES.46 Checker and Quick Fix. It returns the IType of
an IdExpression o4 of the IdExpression inside one or multiple convoluted
IASTCastExpressions. Additionally it can fill a provided list with all TypeIds
of found IASTCastExpressions such that in the end there is a complete list of
intermediate casting steps.

3.1.5 getTypeFromBinding

Every name in the program code (e.g. of variables) has an IBinding object. It
contains where in the code the exact same element appears. Textually equal names
but of different elements have different bindings. This function tries to convert
IBindings to either an ICPPMember or an ICPPVariable in order to be able to
get the IType from the binding. It is used by the ES.46 Checker and Quick Fix as
well as the method getTypeFromExpressionElement.

3.1.6 getNamespace

In the Checker as well as the Quick Fix for C.85 (see chapter 3.7), the namespace
node has to be found from a given declaration. For this a loop analyses the
parent of a node recursively. If a namespace is found before the TranslationUnit
is reached, it is returned. When the declaration is inside the global namespace, no
matching node is found and the value null is returned.

December 22, 2016 29 Term Project

3. IMPLEMENTATION CCGLadiator

3.2 ASTFactory

The ASTFactory allows to create new ASTNodes which can be used in the Quick
Fixes to change the AST to match the rule.

3.2.1 newSwapFunction and newNamespaceSwapFunction

These two methods support the creation of a new swap function either for the use
inside a class or in the namespace scope. Both of them need the type from the
swap-function provided as an argument.

3.2.2 newDeclarationStatement

This function supports the creation of a new declaration Statement as used in the
Quick Fix for ES.74. The assignment of a value can be done with a IASTExpression
containing the wished value or if none is given the value 0.

3.3 ASTComment

Because the CDT CPPNodeFactory is missing a factory function for creating
IASTComment nodes we had to create a custom ASTComment node. This class
extends the CDT ASTNode class and implements the IASTComment interface.

It stores a char array which you can set and read via setComment and getComment.
setComment makes some sanity checks and automatically adds ”//”, ”/*” and ”*/”
where needed, as well as a newline at the end if necessary.

As a workaround for a CDT bug we added the setText function where sanity
checks do not get executed. This allows us to put any text and or code on any
position where a comment can be. For more information about said bug see
chapter 3.4.2

3.4 SetAttributeQuickFix

When a user wishes to ignore a rule in a certain place, the possibility to add a
custom attribute is provided. With it rules can be suppressed. This class handles
the addition of these ignore attributes to AST Nodes. In its original state it had
some limitations which we had to eliminate.

December 22, 2016 30 Term Project

3. IMPLEMENTATION CCGLadiator

3.4.1 Limitation on Rule Names

Originally the Quick Fix could only handle rule names of the format ”C.##”
(where # is a digit). One of the first rules we tackled was C.164 which already did
not fit in this format. The result was that the Quick Fix added an ignore attribute
for Rule C.16 instead. To fix this issue we switched to a regular expression. Now
we use the regex ”(ES|C)\.\d+”, which will need further modification if a rule from a
new Guideline Section gets implemented. But this regular expression resulted in
another issue.

Previously Sub-Checkers looked like ”C.4601” which was Sub-Checker 01 of Rule
C.46 and the ignore attribute was for ”C.46”. With this regex that would have
resulted in an ignore attribute for ”C.4601”. Therefore, we changed the naming
format of the rule names (including filenames) to have an underline between the
rule and sub-rule numbers (e.g. ”C.46 01”).

3.4.2 Set an attribute on a IASTForStatement

For ES.74 the ignore attribute had to be set on a for-statement which wasn’t
supported by the original. After implementing it, the ignore attribute was still
not set on the node. After a long trial and error phase we concluded that it
wasn’t a problem with the plug-in but instead with CDT not supporting it. As
it turned out the problem was indeed a bug in CDT which doesn’t support at-
tributes on IASTForStatements contrary to what the C++ standard defines. In
the standard an attribute is allowed on all types, variables, names and blocks
[Fou16b, "Attributes" [dcl.attr]] with a for-loop representing a block. So
for a workaround an IASTComment without slashes is added in front of the for-
statement which contains the code for the attribute.

As soon as this bug is fixed, the related codepart can be deleted in the
SetAttributeQuickFix.

3.4.3 Other changes

Other changes for this Quick Fix were removing the limitation to IASTDeclaration
nodes and the proper handling for IASTCompositeTypeSpecifier,
IASTCompositeTypeSpecifier, IASTDeclarator, IASTExpression and
IASTStatement nodes and more minor changes.

December 22, 2016 31 Term Project

3. IMPLEMENTATION CCGLadiator

3.5 Rule C.83: For value-like types, consider providing a
noexcept swap function

As mentioned in the analysis chapter 2.2 about how to recognise swap functions as
well as in chapter 3.1.1 about how that is implemented, this is one of multiple rules
which require the recognition of why or why not a function is a swap function.

3.5.1 Checker

The Checker visits all IASTDeclarations and if the declaration is of a class or struct
(ICPPASTCompositeTypeSpecifier) it applies multiple checks for that type:

• Does it have no member variables?

• Does it have a parent class?

• Does it have a virtual function?

• Does it already have a swap function?

If any of them are true the Checker doesn’t mark anything. During the last two
checks a list of functions gets generated where the only reason that it does not
qualify as a swap member function is that the parameter is not by reference.

If however non of those checks apply the class gets marked as well as any found
”nearly”-swap-functions.

To Do’s

In order to reduce the amount of false positives for a future version of this plug-in
it might make sense to only check for member variables of types which provide a
swap function themselves.

3.5.2 Quick Fix

For this rule two Quick Fixes are provided. The first generates a new swap function
whilst the second one fixes swap functions where the parameter is not by reference.
We provide this Quick Fix because one can quite easily forget to make a parameter
by reference.

December 22, 2016 32 Term Project

3. IMPLEMENTATION CCGLadiator

Add Swap Member Function

We generate a swap member function using the CompoundStatement factory func-
tion from the CDT CPPNodeFactory. We add a ”using std::swap;” statement and
the comment ”// TODO Auto-generated method stub” for which we had to create our own
ASTComment node (see chapter 3.3). This generated swap member function we
insert at the end of the class or struct using ASTRewrite.

Change Parameter of swap function to a reference

In this simple Quick Fix we get the Parameter Declarator and replace it with a
copy with an added reference operator.

December 22, 2016 33 Term Project

3. IMPLEMENTATION CCGLadiator

3.6 Rule C.84/85: Make swap noexcept

In the CCGLator several rules already check if something has to be noexcept
or not. For this purpose they added a BaseNoexceptVisitor. This Checker also
inherits from this class simplifying the check.

3.6.1 Checker

The Checker visits all IASTDeclSpecifier and checks if the parent node is a function
definition or function declaration. Afterwards the function is analysed with the
analyseSwapFunction (see chapter 3.1.1) method in the ASTHelper. If this returns
that it actually is a swap function, it is additionally checked for an already existing
noexcept tag. If none is found the function is highlighted.

3.6.2 Quick Fix

The Quick Fix is already implemented from the CCGLator rules. Rule C.84 is
simply added into the ShouldBeNoExceptQuickFix.

December 22, 2016 34 Term Project

3. IMPLEMENTATION CCGLadiator

3.7 New Rule C.85: If a user defined swap member func-
tion is used, namespace-level swap(a, b) should be
overwritten

This rule meant a lot of work because a namespace can be defined over multiple
files. So the whole index has to be searched to get all the swap functions. The
downside to this index search is, that swap functions inside another file can only
be seen when the index is rebuilt. So the highlighting can sometimes not occur
instantly, confusing the user. Sadly nothing can be done about index rebuilding
because this is handled by the Eclipse framework.

3.7.1 Checker

The Checker starts off with checking if there is a user defined swap member function
or a friend function present. If none is found, the Checker is finished. Otherwise it
starts to search the AST and the Index for a namespace level swap function.

In the AST-check the namespace is fetched. Afterwards all the functions in this
namespace are analysed (see chapter 3.1.1) and if no namespace level swap function
is found, the check continues with the index search.

The index-check starts off by getting all the names which contain ”swap” from the
index. Every single occurrence of this name then is checked if it is a valid swap
function, and if the enclosing namespace is the same as the one from the user
defined swap function. If there still isn’t a matching namespace swap function,
the member swap function is highlighted.

3.7.2 Quick Fix

The Quick Fix creates a new swap function and adds it at the end of the AST.
This function has the matching parameters inferred from the marked node and a
function call to the member swap function.

December 22, 2016 35 Term Project

3. IMPLEMENTATION CCGLadiator

3.8 Rule C.164: Avoid conversion operators

Note that this rule was the first implemented rule which needed modification to the
SetAttributeQuickFix because the rule number was higher than 99. See chapter
3.4.1 ”Limitation on Rule Names” for more information about that.

3.8.1 Checker

For each IASTDeclarator we check if it is not already explicit and if it has an
ICPPASTConversionName node as a name.

3.8.2 Quick Fix

The Quick Fix is already implemented from the CCGLator rules. Rule C.164 is
simply added into the DeclareFunctionExplicitQuickFix.

December 22, 2016 36 Term Project

3. IMPLEMENTATION CCGLadiator

3.9 ES.26: Don’t use a variable for two unrelated pur-
poses

As apparent from the analysis, this rule is hard to implement without getting false
positives. To counter this problem the rule only highlights the clear cut cases.

3.9.1 Checker

This Checker is executed for every declaration found in the AST. First up two
counters are initialised handling the allowed and used assignments of a variable.
If the declaration already assigns a value, the counter is increased.

Afterwards all declarations and references of this variable are searched. For each
of these occurrences it is checked if it assigns a new value to the variable. Only in
this case the counter is increased.

As soon as the counter for the used initialisations exceeds the allowed one, the
usage is highlighted.

For the case that an initialisation is inside the if and one inside the else statement
from the same conditional statement, the counter is decremented allowing to assign
a value twice without the rule applying.

Figure 12: ES.26 Checker for different scenarios

3.9.2 Quick Fix

For this rule only the ”set ignore attribute” Quick Fix is applicable because the
decision what to do with a recycled variable can’t be done by the plug-in. This is
a task for the developer.

December 22, 2016 37 Term Project

3. IMPLEMENTATION CCGLadiator

3.10 Rule ES.46: Avoid lossy (narrowing, truncating) arith-
metic conversions

This rule ended up being one of the most complex rules to implement and needed
multiple refactorings in order to correct some issues.

The problem-ids are divided up in 12 categories some of them disabled by default.
If all of them were enabled by default there would be too many flags. Not in the
sense of ”false positive” but some of the lossy conversions are quite often used in
a reasonable way.

Each of the 6 main categories has one variant for conversions of function arguments
and one variant for all other cases. This is because according to the Guidelines,
conversion of function arguments are more likely to be bad.

Normal Function Argument
Floating Point → Integer 7 7

Integer (short, int) → Char 7 7

Integer (long, long long) → Char 7

Narrowing Integer Conversions 7

Lossy Floating Point Conversions 7

Signed → Unsigned 7

3.10.1 Checker

As mentioned in the analysis chapter about this rule there are multiple cases where
a lossy conversion can occur.

The IASTExpression visit function is used for detecting conversions on func-
tion arguments as well as assignment expressions (with and without casts). An
IASTExpression can be a simple ”op assign”. But also ”op plusAssign” and similar
count as an assignment expression.

The IASTDeclarator visit function is used to detect conversions on (assignment)
declarations.

Figure 13: AST Nodes used for Checking for narrow casts

December 22, 2016 38 Term Project

3. IMPLEMENTATION CCGLadiator

In each case the goal is to get the type name of the source [1] and target types [2]
(see Figure 13) as well as selecting the node which will be marked [3] if the cast is
lossy. If there are cast expressions we also fetch the intermediate types [4] of the
whole casting procedure.

To get the type name we try to find an IASTName node [1 & 2] from which we can
get the IType of it via the binding (see chapter 3.1.5). The advantage of IType
is that using the CDT SemanticUtil we can resolve typedefs and recognise more
lossy casts. To our knowledge IASTTypeId nodes [4] of cast expressions can not
easily be converted or resolved to IType objects therefore we have to use the raw
signature of those nodes.

Figure 14: Big switch
cases of ES.46

Unfortunately we have not found an easy and reliable way
to compare these types because IType and IASTTypeId do
not provide any methods like ”isSigned” or ”isLong” and
those methods on IASTSimpleDeclSpecifier (which would
not have worked with typedefs) seemed a bit unreliable.
For example ”isSigned” of int is false because it is not
signed int even though it is equivalent.

Therefore, the found IType objects get converted to strings,
normalised via a switch case and then get analysed with a
big switch case. There the correct problem id gets returned
or null if everything is well. (See Figure 14 to get a feeling
for the size of the code block.) If no problem is found with
the casting from the source to the target type and if we
have intermediate casts because of cast expressions we also
test each intermediate casting step.

3.10.2 Quick Fix

Depending on the type of the node that got marked in the
Checker there are different ways on how the needed data
is collected. But for every case we need the old node, the
subject that gets casted (most often an IASTIdExpression)
as well as the target casting type (either as string or as
IType).

We created the ES46QuickFixData class to hold this infor-
mation for an easy way to have this collection of objects as
a return value. (In an early draft of the Quick Fix we used
an ugly object array.) Though the main difference on how

December 22, 2016 39 Term Project

3. IMPLEMENTATION CCGLadiator

to collect said information is how to traverse the AST Nodes. One thing to note
is the following.

If we have one IASTCastExpression in an IASTBinaryExpression we use its
IASTTypeId as the type for the narrow cast, because that is the behaviour one
would expect and equal to the behaviour of the ES.49 Quick Fixes (see chapter
3.11.2). However if there are multiple convoluted IASTCastExpressions we use the
target type for the narrow cast. (One could try to find the narrowest type from
the type list but we already spent a lot of time on this rule.)

Finally once the data in ES46QuickFixData is complete, we generate the cast
function call with the found type and subject and then replace the old node with
it. Depending on which Quick Fix got called a narrow or narrow_cast function call gets
generated. As a last step the GSL (see chapter 2.1.1) header needs to be included
and linked for which we use the ProjectIncluder.

3.10.3 ProjectIncluder and ASTModifier

Because gsl::narrow and gsl::narrow_cast are from the GSL library (see chaper 2.1.1) we
need to make sure it is accessible when using this Quick Fix. Lukily there is already
a solution for this by the CharWars Plugin from the GslAtorPtr project [GM16,
Chapter 3.1.4] which we could reuse. The ProjectIncluder and ASTModifier

To avoid plug-in dependencies we copied the few needed classes to our project
source, changed their package name and created some adapter classes. Apart
from an additional file header, which states exactly this, and the changed package
name, only a few lines got uncommented.

The ProjectIncluder checks if there is already a GSL project linked and if not
creates it from plug-in resource files and links it. The ASTModifier helps with
adding the include header to cpp files.

3.10.4 To Do’s

It might make sense to search for a better solution than the big switch case men-
tioned above.

And as mentioned above one could try to find the most narrow type in the list of
multiple convoluted cast expressions.

December 22, 2016 40 Term Project

3. IMPLEMENTATION CCGLadiator

3.11 Rule ES.49: If you must use a cast, use a named
cast

Implementing this rule based on the information collected in the analysis chapter
2.9 was quite easy.

3.11.1 Checker

In the IASTExpression visitor we just have to check if it is an IASTCastExpression
with the operator type ”op cast” or if it’s an ICPPASTSimpleTypeConstructor-
Expression with an IASTSimpleDeclSpecifier node as DeclSpecifier to find all
C-style casts and function-style casts of basic types to mark them.

3.11.2 Quick Fix

The Quick Fix is quite straightforward. Get the type from the first child of the
IASTCastExpression or the ICPPASTSimpleTypeConstructorExpression and the
cast subject from the second child (or its child). Based on this the new cast
expression can be created which then replaces the marked expression. The cast
expression is either static_cast, dynamic_cast, const_cast or reinterpret_cast, based on which
Quick Fix got called.

Figure 15: The order in which ES.46 and ES.49 Quick Fixes get listed

3.11.3 To Do’s

In future it might be worth to try to make an algorithm which regonises the appro-
priate cast function and puts that at the top of the list of the Quick Fixes.

December 22, 2016 41 Term Project

3. IMPLEMENTATION CCGLadiator

3.12 ES.74: Prefer to declare a loop variable in the initial-
izer part of a for-statement

In this rule it was necessary to differentiate between two scenarios. In the first one
the variable is assigned in the for statement but not declared, in the second one
the initialiser part of the for statement is empty.

3.12.1 Checker

As a first step the loop variable has to be defined. It can be found in the iteration-
expression of the loop. Once the variable is found, references of it are analysed. If
all uses are assigning a new value to itself, a Quick Fix can be offered but as soon
as the variable is used differently, the plug-in can’t fix the problem and only the
variable is highlighted.

As discussed in the analysis chapter 2.10, when two loop variables are present a lot
of additional cases are created. In this project only the base case is implemented,
stopping whenever more than one loop variable is found.

3.12.2 Quick Fix

The Quick Fix deletes all occurrences of the loop-variable outside the for-loop and
declares the variable in the initialiser. Because a value is needed for the declaration,
the last assigned value is used. If none is found the value 0 is assigned.

Figure 16: Quick Fix for ES.74 applicable

Figure 17: Quick Fix for ES.74 not applicable

December 22, 2016 42 Term Project

3. IMPLEMENTATION CCGLadiator

3.13 Testing

In this project all the rules implemented are tested using the IFS CDT Testing
Tools [fSR16a]. These tools allow an easy testing of Checkers and Quick Fixes.
The test cases, consisting of a code-block and a configuration, have to be written
into a .rts-File. For every rule and Quick Fix a separate file has to be created.

CCGLator already defined 372 tests for their own rules. In the scope of this project
an additional 415 tests were implemented to fully test our own rules.

3.13.1 Checker

To test a Checker, the configuration supports a ”MarkerPosition” attribute. With
it we can define on which line in the test code the marker should appear. If none
is provided no marker should appear.

1 //! SwappableClassInNamespace
2 //@. config
3 markerPositions =2
4 // @main .h
5 1 namespace swap {
6 2 struct SwappableMember {
7 3 void swap(SwappableMember & other) { }
8 4 };
9 5 }

10 //! NamespaceLevelSwapInOtherFile
11 // @swap .cpp
12 1 namespace swap {
13 2 struct SwappableMember {
14 3 void swap(SwappableMember & other) { }
15 4 };
16 5 }
17 // @swap2 .cpp
18 1 namespace swap {
19 2 void swap(SwappableMember &a, SwappableMember &b) {}
20 3 }

Listing 19: Two tests for the C.85 Checker

December 22, 2016 43 Term Project

3. IMPLEMENTATION CCGLadiator

3.13.2 Quick Fix

A similar approach is possible for the testing of a Quick Fix. First off the code
before the Quick Fix is written. Separated with the ”//=” string, the code after
the execution of the Quick Fix can be defined.

1 //! ClassInNamespaceWithoutSwapFunction
2 // @main .h
3 1 namespace swap {
4 2 struct SwappableMember {
5 3 void swap(SwappableMember & other) {}
6 4 };
7 5 }
8 //=
9 1 namespace swap {

10 2 struct SwappableMember {
11 3 void swap(SwappableMember & other) {}
12 4 };
13 5
14 6 void swap(SwappableMember & a, SwappableMember & b) noexcept
15 7 {
16 8 a.swap(b);
17 9 }
18 10 }

Listing 20: Test for the C.85 Quick Fix

3.13.3 To Do’s

There are some workarounds for some strange behaviours during JUnit tests which
might get fixed in the future.

During JUnit tests the Formatter recognises template pointy brackets
with typedefs as binary expression

The Quick Fix automatically issues the Code Formatter which shows some strange
behaviour. For some reason in code such as gsl::narrow_cast<myint>(f); where ”myint”
is a typedef the pointy brackets (< and >) get recognised as binary expressions.
The formatter then adds spaces in front and behind each of those symbols and the
Quick Fix test would normally fail.

Our current solution is to just change the formatter option for such JUnit tests
with typedefs.

December 22, 2016 44 Term Project

3. IMPLEMENTATION CCGLadiator

GSL Project Includer

If using Maven the first Quick Fix where the GSL Project gets included always fails
during JUnit tests. It is independent on which code gets used. When changing
the order of the JUnit tests it still is the first such Quick Fix which fails. Locally
in Eclipse everything works correct.

Therefore, we created an ES46 00AvoidMavenBug JUnit Test class where the as-
sertions don’t get executed. Independently if it would succeed or fail, it reports
success. After that the JUnit Tests can execute normally.

Strange space character

In two Quick Fix tests a space character gets added where it is unexpected. We
haven’t found a reason for this. The two suspects are:

• ES46 01 08AvoidLossySignedToUnsignedFunctionArgumentConversionsQuickFixTest
FunctionQuickFixWithExistingGSL

• ES46 02 08AvoidLossySignedToUnsignedFunctionArgumentConversionsQuickFixTest
FunctionQuickFixWithExistingGSL

December 22, 2016 45 Term Project

4. CONCLUSION CCGLadiator

4 Conclusion

This section gives an overview of the results achieved in this project as well as
pending work possible to be done in another term project or bachelor thesis.

4.1 Result

This project extended the existing plug-in with 8 new rules enforcing the correct
use of swap functions, C-style casts, variable declarations and narrowing casts.
For each rule, tests were written resulting in roughly 400 test cases simplifying
future work. The majority of the work went into making the Checkers and Quick
Fixes react correctly to all the possible, although sometimes not sensible, code
variations.

Additionally the base project CCGLator [zKS16] was modified and generalised to
better support the addition of new rules.

4.1.1 Pull Request for C.84/C.85

As written in the analysis for C.84 and C.85 (see chapters 2.4 and 2.5) the rule is
a useful addition into the C++ Core Guidelines [SS15]. For this purpose a pull re-
quest was created [DB16], detailing the merge of C.84/C.85 and the addition of the
new Rule C.85. Sadly no feedback was received until the end of this project.

4.2 Future Work

As stated in the introduction, the C++ Core Guidelines [SS15] are an extensive
set of rules and only a small part of them are already implemented in this project.
For future work additional rules can be implemented. Especially the chapters
”Interfaces” and ”Functions” from the Core Guidelines define a lot of rules which
could use an implementation. For this the plug-in allows an easy extension of the
already available rules to support new ones.

Additionally take a note of the chapters named ”To Do’s” in the implementation
chapters of Rules C.83 (chapter 3.5.1), ES.46 (3.10.4), ES.49 (3.11.3) and Testing
(3.13.3).

December 22, 2016 46 Term Project

A. PROJECT ORGANISATION CCGLadiator

A Project organisation

In this chapter the organisation of the project is outlined. This contains a time
report, used tools and a overview of our approach.

A.1 Approach

Usually we divided the rules. Each one uf us dealt with a rule at a time and wrote
tests, analysis, Checkers and Quick Fixes for this rule. After the rule was done
the next one was tackled. In case of design or comprehension questions, we asked
each other for a second opinion.
With this approach we were mostly independent from each other allowing us to
work on the project according to our own schedule.

A.2 Project Plan

This project had a time budget of 240 hours per student. This results in 17 hours
and 15 minutes per student per week over the timespan of 14 weeks. The actual
achieved time per student is:

• Rolf Bislin: 253 hours

• Kilian Diener: 220 hours

A report based on worked hours per week is found in the next diagram.

Figure 18: Planned vs. actual hours worked per week

December 22, 2016 I Term Project

B. USER MANUAL CCGLadiator

B User Manual

Here is a quick overview on how to install, configure and use the CCGLator Plugin
for Eclipse.

B.1 Installation

To use the CCGLator Plugin install it via ”Help → Install New Software...” and
use the Update-Site ”http://sinv-56012.edu.hsr.ch/updatesite” or the path to the
”updatesite” folder on the CD.

Figure 19: Installing the CCGLator Plugin via the update site

B.2 Configuration

To select which rules should be active, open
”Window → Preferences → C/C++ → Code Analysis” or
”Project → Properties → C/C++ General → Code Analysis” and select the rules
from the list:

December 22, 2016 II Term Project

B. USER MANUAL CCGLadiator

Figure 20: The Code Analysis Selection Screen

B.3 Usage

Any found issue of the enabled rules will get marked with a yellow squiggly un-
derline in the code [1] (see Figure 21). Using the icons on the left [2] the Quick
Fix list is opened [3]. From that list a Quick Fix can be chosen to apply to the
code.

Figure 21: The Code Analysis Selection Screen

December 22, 2016 III Term Project

C. DEVELOPER MANUAL CCGLadiator

C Developer Manual

This developer manual covers how to set up and use the development environment
for the code base of the CCGLator Plugin locally as well as on an continuous
integration server. Additionally it mentions the project management tools used
for this term project and lists the software used to create this document.

C.1 Local Development Environment

This chapter is to ease the participation in the development of this plug-in.

C.1.1 Prerequisite

The following requirements have to be met:

• Git [gs] has to be installed and known

• Java Development Kit (JDK) 8 [Ora] needs to be installed

• A working C++ compiler must be installed and working in a normal Eclipse
C++ environment.

On Windows we recommend using the MingW package from Nuwen.

Use these instructions by the IFS C++ Wiki [SCH+16]:

1. download MingW from Nuwen [Lav]

2. install MingW Nuwen

3. add the MingW bin directory to the system PATH

4. in the bin directory copy ”cpp.exe” and name it ”x86 64-w64-mingw32-
gcc.exe” to help Eclipse find it.

December 22, 2016 IV Term Project

https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6
https://nuwen.net/mingw.html

C. DEVELOPER MANUAL CCGLadiator

C.1.2 Eclipse SDK

To develop a Eclipse Plugin the Eclipse SDK is used. It can be found on the
Eclipse Download Page [Foua]. After downloading, unpacking and running it,
some additional Eclipse Plugins are needed. Below is a list of them with the
respective update-sites:

C/C++ Development Tools
C/C++ Development Tools SDK

Default Eclipse Update-Site

IFS CDT-Testing Feature
IFS CDT-Testing Tools Feature
pASTa Feature

https://www.cevelop.com/cdt-
testing/development/

(We do not recommended to install the Example-Code package.)

C.1.3 CCGLator Workfolder

To set up the Eclipse workfolder for the CCGLator Plugin follow these steps:

1. Clone the git project
(C:\CCGLadiator>git clone https://hmuster@git.hsr.ch/git/CCGLadiator workspace)

2. Open Eclipse with the previously created Workspace
(e.g. ”C:\CCGLadiator\workspace”)

3. Open File → Import → General → Existing Project into Workspace

4. Select the Workspace as Root Directory
(e.g. ”C:\CCGLadiator\workspace”)

5. Click Finish

December 22, 2016 V Term Project

http://download.eclipse.org/eclipse/downloads/

C. DEVELOPER MANUAL CCGLadiator

C.1.4 Coding

To run or debug the an Eclipse instance with the plug-in right click on the
CCGLator project and choose ”Run As → Eclipse Application” or ”Debug As
→ Eclipse Application”.

Below is a quick overview of the important parts of the project.

plugin.xml

In this file the newly added Checkers and Quick Fixes have to be activated so that
Eclipse can find these rules and enable them.

Checkers, Visitors and Quick Fixes

For every rule these three kinds of classes are needed. These have to be imple-
mented and are the core work of an extension.

ASTHelper, ASTFactory

Functions which are used over different rules have to be extracted into these classes
to avoid code duplication.

Testing

Every rule has a set of tests to verify the plug-in. If a new rule is added, tests for
the Checker and Quick Fix have to be implemented accordingly.

To execute the JUnit tests run or debug one of the test suites (or a single test
class) as a ”JUnit Plug-in Test”

December 22, 2016 VI Term Project

C. DEVELOPER MANUAL CCGLadiator

C.2 Continuous Integration Server

The Continuous Integration Server is using a Jenkins docker container. This was
preinstalled in the virtual server which was provided by the HSR.

Additionally we installed the following packages using the ”pacman -S” command:

• libxtst [Fouc]
Missing package needed by the Eclipse environment

• xorg-server-xvfb [Foud]
A dummy X-Server which enables the server to run the JUnit tests without
a real desktop environment.

In Jenkins we had to install the xvfb Jenkins Plugin, add the git project, select the
(updated) Maven [Foub] pom.xml (in the ch.hsr.ifs.cute.ccglator.parent package),
enable the xvfb plug-in in the project and schedule an automatic build.

Correctly configured the current plugin version can be installed by using the gen-
erated update-site package:

Figure 22: Installing the CCGLator Plugin via the update site generated by jenkins

December 22, 2016 VII Term Project

C. DEVELOPER MANUAL CCGLadiator

C.3 Project Management Environment

The virtual server provided by the HSR also contained a Redmine installation
which we used as a project planning and time management tool as well as to
store our agenda item lists for our weekly meetings. For the Redmine database we
created a daily cronjob to make a backup onto an external online storage.

We also used an additional Apache docker container to provide a shorter link to
the plug-in update site.

C.4 This Document

To generate this Document we used LATEXwhich we installed using the MiKTeX
Installer [Sch] and as an editor we used TeXstudio [vdZ+]. To edit the images in
this document we used Gimp. [Tea]

December 22, 2016 VIII Term Project

https://miktex.org/download
https://miktex.org/download
http://www.texstudio.org/
https://www.gimp.org/

D. C++ CODES USED FOR THE AST IMAGES CCGLadiator

D C++ Codes used for the AST Images

Figure 2
Figure 3

1 struct Subject {
2 void swap(Subject &a);
3 };
4 void swap(Subject &l, Subject &r) {}

Figure 4 1 struct Subject {
2 virtual void foo(int i) {}
3 };

Figure 5 1 struct To {};
2 struct From {
3 operator To *() {
4 return new To ();
5 }
6 };

Figure 6 1 int main () {
2 int i = 2;
3 i = 2;
4 }

Figure 7 1 int main () {
2 int i;
3 if(true) {
4 i = 1;
5 }
6 else {
7 i = 2;
8 }
9 }

Figure 8 1 int main (){
2 double d = -7.0;
3 unsigned u = 0;
4 short s = d;
5 u = d;
6 u = (int) d;
7 }

Figure 9 1 void foo(int i) {}
2 int main (){
3 double d = -7.0;
4 foo(d);
5 }

Figure 10 1 int main () {
2 double d = 5;
3 unsigned u = 0;
4 u = (int) d;
5 u = int(d);
6 }

Figure 11 1 void function () {
2 int j;
3 for (j = 0; j < 0; j++) {
4 }
5 }

Figure 13 See Figures 8 and 9

December 22, 2016 IX Term Project

REFERENCES CCGLadiator

References

[cpp] cppreference. Online reference for C and C++. http://cppreference.
com. [Online; accessed 15-December-2016].

[DB16] Kilian Diener and Rolf Bislin. Pull Request for the new rule
C.85. https://github.com/isocpp/CppCoreGuidelines/pull/815,
2016. [Online; accessed 15-December-2016].

[ein16] einpoklum. What is std::move(), and when should it be used?
http://stackoverflow.com/a/27026280, 2016. [Online; accessed 01-
December-2016].

[Foua] Eclipse Foundation. The Eclipse Project Downloads. http://
download.eclipse.org/eclipse/downloads/. [Online; accessed 15-
December-2016].

[Foub] The Apache Software Foundation. Apache maven project. https://
maven.apache.org/. [Online; accessed 16-December-2016].

[Fouc] X.Org Foundation. libxtst 1.2.3-1. https://www.archlinux.org/
packages/extra/x86_64/libxtst/. [Online; accessed 16-December-
2016].

[Foud] X.Org Foundation. xorg-server-xvfb 1.18.4-1. https://www.
archlinux.org/packages/extra/x86_64/xorg-server-xvfb/. [On-
line; accessed 16-December-2016].

[Fou16a] Eclipse Foundation. Eclipse CDT API Documentation.
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.
eclipse.cdt.doc.isv%2Freference%2Fapi%2Fhelp-doc.html,
2016. [Online; accessed 16-December-2016].

[Fou16b] Standard C++ Foundation. Standard for Programming Language
C++. http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/
n4618.pdf, 2016. [Online; accessed 16-December-2016].

[fSR16a] Institue for Software Rapperswil. Updatesite for CDT-Testing tools re-
leased by IFS. https://www.cevelop.com/cdt-testing/neon/, 2016.
[Online; accessed 01-December-2016].

[fSR16b] Institute for Software Rapperswil. Homepage of the Cevelop IDE.
https://cevelop.com, 2016. [Online; accessed 15-December-2016].

December 22, 2016 X Term Project

http://cppreference.com
http://cppreference.com
https://github.com/isocpp/CppCoreGuidelines/pull/815
http://stackoverflow.com/a/27026280
http://download.eclipse.org/eclipse/downloads/
http://download.eclipse.org/eclipse/downloads/
https://maven.apache.org/
https://maven.apache.org/
https://www.archlinux.org/packages/extra/x86_64/libxtst/
https://www.archlinux.org/packages/extra/x86_64/libxtst/
https://www.archlinux.org/packages/extra/x86_64/xorg-server-xvfb/
https://www.archlinux.org/packages/extra/x86_64/xorg-server-xvfb/
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Fhelp-doc.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Fhelp-doc.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4618.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4618.pdf
https://www.cevelop.com/cdt-testing/neon/
https://cevelop.com

REFERENCES CCGLadiator

[fSR16c] Institute for Software Rapperswil. Homepage of the Institute for Soft-
ware Rapperswil. https://ifs.hsr.ch, 2016. [Online; accessed 15-
December-2016].

[GM16] Elias Geisseler and Philipp Meier. GslAtorPtr - C++ Core Guidelines
Pointer Checker and Support Library Refactorings. https://eprints.
hsr.ch/528/, 2016. [Online: accessed 16-December-2016].

[gs] git scm.com. Homepage of Git. https://git-scm.com/. [Online; ac-
cessed 15-December-2016].

[Lav] Stephan T. Lavavej. MinGW Distro - nuwen.net. https://nuwen.net/
mingw.html. [Online; accessed 15-December-2016].

[Mic16] Microsoft. Github repository for the Guideline Support Library. https:
//github.com/Microsoft/GSL, 2016. [Online; accessed 15-December-
2016].

[Ora] Oracle. Java SE Downloads. http://www.oracle.com/technetwork/
java/javase/downloads/index.html. [Online; accessed 15-December-
2016].

[Pot13] Potatoswatter. Whats the difference between std::move and
std::forward. http://stackoverflow.com/a/9716708, 2013. [Online;
accessed 01-December-2016].

[Sch] Christian Schenk. Download MiKTeX. https://miktex.org/
download. [Online; accessed 15-December-2016].

[SCH+16] Peter Sommerlad, Thomas Corbat, Marcel Huber, et al. Cevelop on
Windows. https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6, 2016. [On-
line; accessed 15-December-2016].

[SS15] Bjarne Stroustrup and Herb Sutter. C++ Core Guidelines.
https://github.com/isocpp/CppCoreGuidelines/blob/master/
CppCoreGuidelines.md, 2015. [Online; accessed 21-September-2016].

[sta16] stackoverflow. When should static cast, dynamic cast, const cast and
reinterpret cast be used? http://stackoverflow.com/a/332086,
2016. [Online; accessed 01-December-2016].

[Sut16] Herb Sutter. Unified Call Syntax. http://www.open-std.org/jtc1/
sc22/wg21/docs/papers/2014/n4165.pdf, 2016. [Online; accessed 06-
October-2016].

December 22, 2016 XI Term Project

https://ifs.hsr.ch
https://eprints.hsr.ch/528/
https://eprints.hsr.ch/528/
https://git-scm.com/
https://nuwen.net/mingw.html
https://nuwen.net/mingw.html
https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://stackoverflow.com/a/9716708
https://miktex.org/download
https://miktex.org/download
https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://stackoverflow.com/a/332086
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4165.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4165.pdf

REFERENCES CCGLadiator

[Tea] The GIMP Team. GIMP - GNU Image Manipulation Program. https:
//www.gimp.org/. [Online; accessed 15-December-2016].

[vdZ+] Benito van der Zander et al. TeXstudio. https://miktex.org/
download. [Online; accessed 15-December-2016].

[zKS16] Özhan Kaya and Kevin Schmidiger. CCGLator - C++ Core Guidelines
Constructor Rules Checker and Quick-fixes. https://eprints.hsr.
ch/522/, 2016. [Online; accessed 06-October-2016].

December 22, 2016 XII Term Project

https://www.gimp.org/
https://www.gimp.org/
https://miktex.org/download
https://miktex.org/download
https://eprints.hsr.ch/522/
https://eprints.hsr.ch/522/

	Abstract
	Management summary
	Introduction
	Approach
	Results
	Forecast

	Declaration of Authorship
	Introduction
	Previous Work
	Scope Definition
	Minimal Scope
	Optimal Scope
	Maximum Scope

	Eclipse CDT
	Cevelop

	Analysis
	C++ Core Guidelines
	GSL: Guideline Support Library

	How do we recognize a swap function in the AST
	Rule C.83: For value-like types, consider providing a noexcept swap function
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	Rule C.84: A swap function may not fail / Rule C.85: Make swap noexcept
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	New Rule C.85: If a user defined swap member function is used, namespace-level swap(a, b) should be overwritten
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	Rule C.164: Avoid conversion operators
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	ES.26: Don't use a variable for two unrelated purposes
	Enforcement

	Rule ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	Rule ES.49: If you must use a cast, use a named cast
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	ES.74: Prefer to declare a loop variable in the initializer part of a for-statement
	Enforcement
	Pre-Fix Code
	Post-Fix Code

	Review

	Implementation
	ASTHelper
	analyseSwapFunction
	isReturnType
	hasConstParameter
	getTypeFromExpressionElement
	getTypeFromBinding
	getNamespace

	ASTFactory
	newSwapFunction and newNamespaceSwapFunction
	newDeclarationStatement

	ASTComment
	SetAttributeQuickFix
	Limitation on Rule Names
	Set an attribute on a IASTForStatement
	Other changes

	Rule C.83: For value-like types, consider providing a noexcept swap function
	Checker
	To Do's

	Quick Fix
	Add Swap Member Function
	Change Parameter of swap function to a reference

	Rule C.84/85: Make swap noexcept
	Checker
	Quick Fix

	New Rule C.85: If a user defined swap member function is used, namespace-level swap(a, b) should be overwritten
	Checker
	Quick Fix

	Rule C.164: Avoid conversion operators
	Checker
	Quick Fix

	ES.26: Don't use a variable for two unrelated purposes
	Checker
	Quick Fix

	Rule ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions
	Checker
	Quick Fix
	ProjectIncluder and ASTModifier
	To Do's

	Rule ES.49: If you must use a cast, use a named cast
	Checker
	Quick Fix
	To Do's

	ES.74: Prefer to declare a loop variable in the initializer part of a for-statement
	Checker
	Quick Fix

	Testing
	Checker
	Quick Fix
	To Do's
	During JUnit tests the Formatter recognises template pointy brackets with typedefs as binary expression
	GSL Project Includer
	Strange space character

	Conclusion
	Result
	Pull Request for C.84/C.85

	Future Work

	Project organisation
	Approach
	Project Plan

	User Manual
	Installation
	Configuration
	Usage

	Developer Manual
	Local Development Environment
	Prerequisite
	Eclipse SDK
	CCGLator Workfolder
	Coding
	plugin.xml
	Checkers, Visitors and Quick Fixes
	ASTHelper, ASTFactory
	Testing

	Continuous Integration Server
	Project Management Environment
	This Document

	C++ Codes used for the AST Images
	Bibliography

