
Liquid Type Inference Under the Hood

Micha Reiser

University of Applied Sciences Rapperswil
Supervised by Prof. Dr. Farhad D. Mehta

Seminar AT 2016

Dependent types can be used to prove more fine-granular in-
variants of programs. However, dependent types come at the
cost of requiring to be manually annotated. Since dependent
types are awkward to write, it is desired to have automatically
inferred dependent types. The liquid type inference algorithm
explained in this paper is capable of inferring dependent types
that only use conjunctions over a given set of qualifiers. The
constraint-based inference algorithm uses Hindley-Milner to
infer the ML-types and check if the program is well-typed
in the sense of the underlying type system. This guarantee
reduces dependent types inference to inferring the unknown
refinement predicates. The algorithm consists of three steps:
Firstly, create templates for the unknown refinement predi-
cates. Secondly, generate constraints over these templates
setting them into a relation. Finally, find the least fixpoint so-
lution for the unknown refinement predicates that satisfies all
the constraints. The program is well-typed if the least fixpoint
solution can be found. This paper further shows why path
sensitivity is an important property of liquid type inference
and how it is realized.

1 Introduction
Static type checking is a program verification technique

used in many programming languages to identify “erroneous
terms” at compile time. However, the kind of errors identi-
fiable by a type checker depends on the granularity of the
type system. Most of the classical type systems are coarse-
grained, in a way that, a variable x = 0 can be defined to
be an instance of the type int but not that its value is in a
certain range or, more precisely, is equal to zero. This loss of
information requires the compiler to add additional runtime
checks to guarantee the safety of programs at runtime — e.g.
by checking that a divisor is not equal to zero.

Classical type systems are also too coarse-grained to
detect if an index based list or array access potentially is
out of range and therefore, results in an “index out of range
error” at runtime. For example, the head function of Haskell
returns the first element of a non-empty list but fails at runtime
if the list is empty. Therefore, a type system is desired capable
of expressing that the argument of the head function has to

be a non-empty list.
Dependent types, denoted as T , address this lack of ex-

pressibility by adding invariants to types describing the values
a type may hold [1]. They allow refining the set of valid values
for a structural type (e.g. int).

Definition 1 (Dependent Type T). A dependent type is a
type with an invariant that restricts the set of valid values.
The invariant may refer to values of other types.

A dependent type in its general form is defined in (1) in
which B defines the base type, the structure of the values.

{ν : B | p} (1)

Definition 2 (Base Type B). The base type defines the
structure of the values of an expression. Examples of base
types are int, char, and bool.

The refinement predicate p is a logical expression that
must hold for all valid values of the dependent type. The base
type of the variable x can be refined using the refinement
predicate ν = 0 stating that the only valid value is the value
zero.

Definition 3 (Refinement Predicate p). The refinement
predicate p is a logical predicate refining (restricting) the set
of valid values of a base type for the dependent type.

The refinement predicate references the special value
variable ν. The value variable acts as a placeholder for a
value tested if it is part of the dependent type or not. The
refinement predicate must evaluate to true if ν is replaced with
a valid value of the dependent type and otherwise to false.
The refinement predicate for the variable x from the example
x = 0 evaluates to true if ν is replaced with zero (0 = 0)
and to false for all values unequal to zero (1 = 0). The most
precise dependent type for the variable x is {ν : int | ν = 0}.

Definition 4 (Value Variable ν). The value variable ν is
a placeholder in the refinement predicate that — if replaced

1

with a value of the base type — states if the value is part of
this dependent type.

The special refinement predicate true is valid for all val-
ues and is, therefore, no real refinement over the base type.
On the other hand, the refinement predicate false excludes all
values from the base type, leaving the empty set for the valid
values of the dependent type.

The expressibility of dependent types allows the com-
piler to prove further invariants and omitting no longer needed
runtime checks. However, dependent types have the disadvan-
tage that type inference — inferring the dependent type for
every expression in a program without the need for explicit
type annotations — is undecidable. This limitation adds the
burden of manually annotating the dependent types to the pro-
grammer [2]. The manual annotating is undesired, because as
Pierce stated:

The more interesting your types get, the less fun it
is to write them down [3].

Liquid types (an abbreviation for Logical Qualified Data
Types) addresses this issue by providing a system capable of
inferring a subset of dependent types. Liquid types have the
same structure as dependent types but differ in the allowed
refinement predicates. The refinement predicate has to be a
logical conjunction (e.g. p1 ∧ p2) over the set of qualifiers
Q?.

Definition 5 (Liquid Type T̂). A liquid type T̂ is a depen-
dent type where the refinement predicate is a conjunction over
the qualifiers from Q?.

The notation for liquid types is T̂Q in which Q defines
the usable qualifiers. The definition of the qualifiers Q in this
paper is:

Q = {0 ≤ ν, ν , 0,? ≤ ν, ν < ?} (2)

A valid refinement predicate for a liquid type with the
runtime value two over Q is 0 ≤ ν ∧ ν , 0. The liquid type
can be abbreviated as T̂ if Q is evident from the context.

Definition 6 (Qualifiers Q). The set of qualifiers Q de-
fines the usable qualifiers for refinement predicates p of liquid
types.

The qualifiers in Q may use the value variable ν as well
as the special ?-variable. The ?-variable is a placeholder for
any program variable. The qualifiers containing ?-variables
can be instantiated by replacing the ?-variable with an actual
variable from the program context. The qualifiers Q? for a
program with the variables x and y are the ones defined in
(3). The difference to Q is that the qualifiers containing the
?-variable are instantiated with the program variables x and
y.

Q? = {0 ≤ ν, ν , 0, x ≤ ν, y ≤ ν, ν < x, ν < y} (3)

Definition 7 (Q?). The set of qualifiers Q? matches the
qualifiers of Q where all ?-variables are instantiated with
variables from the program context.

The set of qualifiers Q influences the precision of the
inferred dependent types and the provable invariants. With
the current set of qualifiers, the invariant requiring that the
head function from Haskell be never called with an empty
list can not be proven. The additional qualifier len ? , 0 is
needed measuring if the length of a list is unequal to zero. If
Q is extended with this new qualifier, then the invariant can
be proven by using the refinement predicate len list , 0 for
the list argument.

The type inference algorithm infers the base type B as
well as the refinement predicate p for all expressions in the
program if it is well-typed. It fails if the program is ill-typed.
The algorithm supports parametric polymorphism [4] as well
as recursion — constructs that are problematic to cover with
data-flow-analysis. The programmer can manually annotate
the dependent type if the inferred dependent type is not precise
enough.

The goal of the following sections is to explain how liq-
uid types can be used to infer dependent types and verify
if a program is well-typed or not. Section 2 introduces the
language L1 — together with the type inference rules — that
is used to define the φ-function. The φ-function is used in
section 3 to explain the type inference algorithm step by step.
The first step of the algorithm is to create templates for the
unknown refinement predicates as described in section 3.1.
The following section 3.2 shows how the constraints for the
created templates are extracted from the program. These con-
straints are solved in section 3.3. The section 3.4 highlights
why the algorithm needs to be path-sensitive to be useful and
how path sensitivity is accomplished. Section 4 summarizes
the required steps.

2 Language L1
This section introduces the language L1 which is used in

the examples throughout the paper. This section also defines
the type inference rules utilized by the liquid type inference
algorithm. However, the explanation of the rules is deferred
up to the point where the rules are first used.

The figure 1 shows the syntax of the language L1. The
language is a simply typed lambda calculus based language
but differs in the notation for function abstractions. The
chosen notation is inspired by the lambda-notation in c# or
JavaScript with the intent to make it more readable for persons
less familiar with the lambda calculus. The figure 1 also
defines the syntax for the liquid refinement predicates Q that
are either a single qualifier or a conjunction over the qualifiers
from Q?.

Remark 1. Even though liquid type inference supports para-
metric polymorphism the language L1 does not for brevity.
Support for parametric polymorphism can be added by ex-
tending the syntax with the definition for type variables, type
schemas, polytypes, type abstractions and type instantiations.

2

E xpressions

e ::= Expressions:

x variable
| c constant
| x ⇒ e abstraction
| e e application
| let x = e in e let-binding
| if e then e else e if-then-else
| e op e binary-operation

op ::= Operations

| + plus-operator
| / division-operator
| = equality-operator
| < less-than-operator
| > greater-than-operator

Q ::= Liquid Refinements

true true
| false false
| q logical qualifier in Q?

| Q ∧Q conjunction of qualifiers

Fig. 1. Syntax of the Language L1

The complete syntax and the additional required type infer-
ence rules can be taken from the original Liquid Types pa-
per [5].

Besides the language, a clear notion of the different kind
of types is needed. The types are defined in figure 2. The base
types B are the types for the primitive values supported by
the language. The ML-types — denoted as τ — are the not
refined types defining the shape of a value and are either a base
or a function type. A function type is composed out of two
ML-types where the first type is the type of the argument and
the second the type of the returned value. These definitions
are common for classical type systems.

Dependent types — denoted as T — are composed of
a base type and a refinement predicate over the qualifiers E .
The set of qualifiers E is not further specified since liquid type
inference does not depend on its definition. However, E needs
to be a superset of Q? to guarantee that the inferred liquid
types are sound dependent types. Dependent functions are
structured equally as ML-function types with the difference
that the argument and return types are dependent types as well.
Liquid types — denoted using T̂ — are defined similarly as
dependent types with the difference that the qualifiers are over
Q? instead of E .

The type environment is a mapping from program vari-
ables to dependent types and is denoted as Γ.

B ::= Base Types:

int base type of integers
bool base type of booleans

τ ::= ML-Types:

B base type
x : τ → τ function

T ::= Dependent Types

{ν : B | E} dependent base type
x : T → T dependent function

T̂ ::= Liquid Types:
{ν : B | Q} liquid base type

x : T̂ → T̂ liquid function

Fig. 2. Types of the Language L1

true :: {ν : bool | ν}
false :: {ν : bool | ¬ν}

3 :: {ν : int | ν = 3}
= :: x : int→ y : int→ {ν : bool | ν ⇔ (x = y)}
+ :: x : int→ y : int→ {ν : int | ν = x + y}
/ :: x : int→ y : {ν : int | ν , 0} → {ν : int | ν = x/y}

Fig. 3. Example Constants of the Language L1

Definition 8 (Type Environment). The type environment
is a mapping from program variables to their dependent types.

The dependent types for the constants of the language —
including binary operations — are predefined and listed in
figure 3. The infix notation for binary operations is used for
clarity. Some constants are defined regarding itself, e.g. the
division operation is defined as ν = x/y. These definitions
are unproblematic since the refinement predicates are defined
regarding the operational semantics used by the logic solver
— as described in [6] — and not in the language L1.

The figure 4 shows the type inference rules of the lan-
guage. The system has three different kinds of syntax directed
judgments:

Liquid Type Judgment Γ `Q e : T These judgments are
applied to expressions and state that an expression e has the
dependent type T in the type environment Γ when using the
Qualifiers Q.

Well-Formedness Judgment Γ ` T The well-formedness
judgments apply whenever a term of the form Γ ` T is used

3

inside of a liquid type judgment. The well-formedness judg-
ments guarantee that the refinement predicate of the depen-
dent type only refers to program variables in its scope — that
are in the type environment Γ. Well-formedness judgments
are explained in more detail in section 3.2.

Subtype Judgment Γ ` T1 <: T2 The subtyping judgment
is a decidable and conservative subtyping rule stating that
the dependent type T1 is a subtype of T2. The subtyping
judgment rules are used together with the rule [T-SUB] to
prove the subtyping relation between two dependent types.
These rules are explained in more detail in section 3.2.

The next section uses the type inference rules to infer the
dependent type for the average throughput function φ = s/t
if applied with s = 100 and t = 2. The implementation of the
φ-function is defined in (4).

let φ = (s⇒ (t ⇒ s / t))︸ ︷︷ ︸
int→int→int

in φ 100 2︸ ︷︷ ︸
int

(4)

3 Liquid Type Inference
The inference algorithm works similar to how mathemat-

ics exercises from preliminary school are solved. The steps
needed to solve these exercises — and inferring the dependent
types — are explained using the following example.

If Alice doubles her age, she would still be ten
years younger than Bob, who was born in 1952. How
old are Alice and Bob? [7]

The first step is to create the templates a and b for the
unknown age of Alice and Bob:

Alice’s age = a

Bob’s age = b
(5)

The second step is to generate constraints capturing the
relationship between the templates. For the given exercise,
the relevant constraints for the templates a and b are:

2a = b − 10
b = 2016 − 1952

(6)

The last step is to find a solution for a and b that satis-
fies all the above constraints. One such solution is a = 27
and b = 64. Like the given exercise, liquid type inference
is a constraint-based approach in which the constraints are
implied by the program, e.g. what kind of values a variable
might hold. The first step of the inference algorithm is to cre-
ate the templates for all the unknown refinement predicates
and is described in section 3.1. The second step — explained
in section 3.2 — generates the constraints by inspecting the
program. These constraints are solved in the final step de-
scribed in section 3.3.

3.1 Template Generation
The first step in the preliminary mathematics exercise is

to generate templates — variables — for the unknowns. A
mapping for the unknown is needed to apply this analogy to
liquid type inference. A dependent type is either a base type
refined with a refinement predicate p or a refined function
type as defined in figure 2. To be able to know if it is the
former or the latter, an algorithm is needed that can infer the
ML-type τ of an expression. This algorithm is further denoted
as hm.

Remark 2. One such algorithm that infers the ML-type for
a given expression and type checks the program according
to the ML-typing rules — guaranteeing that the program is
well-typed concerning the underlying type system — is the
Hindley-Milner type inference algorithm. The algorithm is
capable to automatically infer the ML-types without the need
for any additional type annotations if the program is correctly
typed but fails otherwise [8].

A dependent type has the form {ν : B | p} if hm infers a
base type B for the expression and otherwise is a dependent
function type. For both cases, the structure of the dependent
type can immediately be determined. What is missing — the
unknown — is the refinement predicate p for dependent base
types. According to the analogy, the first step of the inference
algorithm is to generate templates — denoted as F — for the
unknowns. A template has the same form as a dependent type
but uses a liquid type variable for the unknown refinement
predicate.

Definition 9 (Liquid Type Variable κ). A Liquid type
variable κ acts as a placeholder for the unknown refinement
predicate of a dependent type.

Liquid type variables are denoted as κ. Indexes are used
to distinguish different liquid type variables. For example,
κx is the liquid type variable for the program variable x and
differs from κ2 that is another liquid type variable — e.g. for
the return type of a function.

There is only need to create a liquid type variable if a liq-
uid type T̂ is used in the inference rule, e.g. the rule [T-FUN]
defines that a liquid type is needed for the argument x and
the return value. If not, then the dependent type can imme-
diately be constructed from the types of the subexpressions.
For example, the type of an application e1 e2 can be com-
posed by using the template for the called function e1, taking
the dependent type of the return value and substituting all
occurrences of the parameter x with the passed in argument
e2. This substitution is denoted as [e2/x].

A template for the φ-function needs to be created when-
ever a liquid type T̂ is used in an inference rule. The outermost
expression is the let-expression for which the rule [T-LET]
matches. The very first step is to infer the ML-type of the
let-expression by calling hm which returns the type int. There-
fore, the resulting template has to be a dependent base type
with the structure {ν : int|?}. A liquid type variable is cre-
ated for the refinement predicate of the body since it is still

4

Liquid Type Judgment Γ `Q e : T

true
Γ `Q c : ty(c) T-CONST

Γ(x) = {ν : B | p}
Γ `Q x : {ν : B | ν = x} T-VAR-BASE

Γ(x) not a base type
Γ `Q x : Γ(x) T-VAR-FUN

Γ; x : T̂x `Q e : T̂ Γ ` x : T̂x → T̂

Γ `Q x ⇒ e : (x : T̂x → T̂)
T-FUN

Γ `Q e1 : (x : Tx → T) Γ `Q e2 : Tx

Γ `Q e1 e2 : [e2/x]T
T-APP

Γ `Q e1 : bool Γ; e1 `Q e2 : T̂ Γ;¬e1 `Q e3 : T̂ Γ ` T̂

Γ `Q if e1 then e2 else e3 : T̂
T-IF

Γ `Q e1 : T1 Γ; x : T1 `Q e2 : T̂ Γ ` T̂

Γ `Q let x = e1 in e2 : T̂
T-LET

Γ `Q e : T1 Γ ` T1 <: T2 Γ ` T2

Γ `Q e : T2
T-SUB

Well-Formedness Judgment Γ ` T

Γ; ν : B ` p : bool
Γ ` {ν : B | p} WT-BASE

Γ ` Tx Γ; x : Tx ` T
Γ ` x : tx → T

WT-FUN

Subtyping Judgment Γ ` T1 <: T2

Valid(nΓo ∧ np1o =⇒ np2o)
Γ ` {ν : B | p1} <: {ν : B | p2}

DEC-<:BASE

Γ ` T
′
x <: Tx Γ; x : T

′
x ` T <: T

′

Γ ` x : Tx → T <: x : T ′x → T ′
DEC-<:FUN

Fig. 4. Type Inference Rules for L1

unknown. This results in the template {ν : int | κlet } for the
let-expression body.

Furthermore, the templates for the function abstraction
of φ have to be created by applying the rule [T-FUN]. The
rule is repeatedly applied for all arguments if the function
is curried to reduce the number of steps. Invoking hm for
the function abstraction returns the type int → int → int.
Therefore, the template for the φ-function has to be a function
template since the inferred ML-type is a function type:

s : {ν : int | κs} → (t : {ν : int | κt } → {ν : int | κφret }) (7)

The Template uses liquid type variables for the unknown
refinement predicates of the function parameters and body.
This function template can be split into the three base type
templates Fs, Ft , and Fφret . The inference algorithm con-
tinues with the body of the throughput function. However,
the body only contains expressions for which the resulting
dependent type can immediately be constructed from the
subexpressions. Therefore, no further templates are created.
The created templates are summarized in figure 5.

let φ = (

Fφ︷ ︸︸ ︷
Fs︷︸︸︷
s ⇒

Ft︷︸︸︷
t ⇒

Fφret︷︸︸︷
s / t) in φ 100 2︸ ︷︷ ︸

Flet

(8)

Fs = {ν : int | κs}
Ft = {ν : int | κt }

Fφ ret = {ν : int | κφ ret }
Flet = {ν : int | κlet }
Fφ = s : Fs → t : Ft → Fφret

(9)

Fig. 5. Generated Templates for the Throughput-Function

3.2 Constraint Generation
The constraint generation step extracts constraints over

the liquid type variables from the program. The extracted
constraints create a relation between the liquid type variables.
The idea is similar to the one of the preliminary mathematics
exercise: Creating enough constraints so that the refinement

5

predicates of the liquid type variables can be identified.
The algorithm distinguishes between well-formedness

and subtyping constraints. The well-formedness constraint
Γ ` T — also named scope constraint — guarantees that a
refinement predicate only refers to variables that are defined
in the context it is used. The well-formedness constraint is
semantically equal to the scoping rules of programming lan-
guages. An expression can only refer to variables in its scope.
The scope of a dependent type T is defined by the type envi-
ronment Γ. The judgments for well-formedness constraints
are specified in figure 4. A well-formedness judgment applies
whenever a term of the form Γ ` T is used inside of a liquid
type judgment.

Definition 10 (Well-Formedness Constraint Γ ` T).
A well-formedness constraint requires that the refinement
predicate of a dependent type be only over the program
variables from the type environment and thus, is well-formed.

The subtyping constraints describe the information flow
in a program. The information flow for the if-expression of
the max function from (10) is that the result may either hold
the value of x or y dependent on whether the condition x > y

is true or not.

let max = if x > y then x else y in max 10 20 (10)

In other words, the set of values of the then and else
branches are a subset of the values of the entire if-expression —
the values returned by the if-expression are the values of both
branches. Therefore, the set of values for the if-expression
is a superset of the values from the then and else branches
(Vals(Tthen) ⊆ Vals(Ti f),Vals(Telse) ⊆ Vals(Ti f)). This is
precisely a subtyping relation requiring that the types of the
then and else branches be subtypes of the if-expressions type.
The subtyping relation is denoted as Tsub <: Tsup. Liquid
type inference creates a subtyping constraint to proof if a
subtyping relation between two types holds. Therefore, a
subtyping constraint is created whenever the rule [T-SUB] is
used. The judgments for the subtyping constraints are shown
in figure 4.

Definition 11 (Subtyping Constraint Γ ` T1 <: T2).
The subtyping constraint Γ ` T1 <: T2 states that the values
of T1 flow into T2.

Remark 3. Inferring a precise type for the max function
that considers the condition of the if-statement when inferring
the refinement predicates for the then and else branches re-
quires a path-sensitive algorithm as described in section 3.4.

All needed well-formedness and subtyping constraints
for the φ-function application are summarized in figure 6.
The rest of this section describes how these constraints are
generated.

The rule [T-LET] requires that the type of the body T
be well-formed (Γ ` T) over the current type environment Γ.
The body may refer to variables defined in the outer scope.

Well-Formedness Constraints:
∅ ` Flet (11)
∅ ` Fs (12)

s : Fs ` Ft (13)
s : Fs; t : Ft ` Fφret (14)

Subtyping Constraints:
s : Fs; t : Ft ` Fs <: {ν : int | true} (15)
s : Fs; t : Ft ` Ft <: {ν : int | ν , 0} (16)
s : Fs; t : Ft ` {ν : int | ν = s/t} <: Fφret (17)

φ : Fφ ` {ν : int | v = 100} <: Fs (18)
φ : Fφ ` {ν : int | v = 2} <: Ft (19)
φ : Fφ ` Fφret [100/s][2/t] <: Flet (20)

Fig. 6. Generated Well-Formedness and Subtyping Constraints

However, the variable defined by the let-expression itself is
not part of the current type environment and can, therefore,
not be referenced from the let body. This rule applied to the
example results in one well-formedness constraint for Flet .
The constraint requires that the refinement predicate only
reference the special variable ν since the type environment is
empty. The well-formedness constraint for the let expression
is:

∅ ` Flet (11)

The rule [T-FUN] requires that a well-formedness con-
straint be created for function abstractions. However, the well-
formedness constraint for a function abstraction can be split
into two well-formedness constraints — one for the parame-
ter x and another for the function body — as defined by the
rule [DEC-<:FUN] shown in figure 4. The well-formedness
constraint Γ ` Tx requires the refinement predicate of the
parameter x only to refer to program variables from the outer
scope. On the contrary, the well-formedness constraint for
the function body x : Tx ` T allows the refinement predicate
to refer to the parameter x and to the variables from the outer
scope. The rule [T-FUN] applied to the φ-function results in
one well-formedness constraint for s, another for t and a third
for the function body. The constraint (12) for the argument
s requires that the refinement predicate for Fs only contain
constants or the special variable ν — as no other variables
are in scope. The constraint (13) for t allows the refinement
predicate to refer to the variable s. The constraint (14) for the
return type of the φ-function restricts the referable variables
by the refinement predicate to the variables ν, s, and t.

6

∅ ` Fs (12)
s : Fs ` Ft (13)

s : Fs; t : Ft ` Fφret (14)

The data flow of the φ-function is captured by subtyping
constraints over the created templates. Let’s start with the
constraints for the division of s by t. The arguments passed
to the division function flow into its parameters requiring that
the arguments be subtypes of the corresponding parameters.
The type of the division operator is defined as a constant (see
figure 3) and requires that the divisor not be equal to zero.

s : Fs; t : Ft ` Fs <: {ν : int | true} (15)
s : Fs; t : Ft ` Ft <: {ν : int | ν , 0} (16)

The constraint (15) captures the fact that s flows into the
parameter x of the division operation (figure 3) by requiring
Fs to be a subset of {ν : int | true}— an arbitrary int value.

The constraint (16) captures the flow of t into y. The
resulting type of the division s/t is equal to the return type
of the division operator. However, all occurrences of x and
y need to be replaced — substituted — with the actual ar-
guments s and t. The refinement predicate would otherwise
refer to variables that are not in scope. The resulting type
of the division operation is {ν : int | v = s/t} in which all
occurrences of x are substituted with s and the occurrences
of y with t.

Furthermore, the flow of the value returned by the divi-
sion operation into the φ-function’s return value needs to be
captured. Therefore, the type of the division operation needs
to be a subtype of the function’s return type Tdiv <: Fφret .
This data flow is captured by the subtyping constraint (17).

s : Fs; t : Ft ` {ν : int | v = s/t}︸ ︷︷ ︸
Tdiv

<: Fφret (17)

Two subtyping constraints are created for the function
application φ 100 2: constraint (18) captures the fact that 100
flows into s and the constraint (19) the flow of 2 into t.

φ : Fφ ` {ν : int | v = 100} <: Fs (18)
φ : Fφ ` {ν : int | v = 2} <: Ft (19)

The type of the φ-function application is equal to the
return type of the φ-function in which the parameters s and t
are substituted with the actual arguments 100 and 2. The result
of the application flows into the result of the let-expression.
This flow is captured by the subtyping constraint (20) where

[100/s] denotes the substitution of the variable s with the
value 100.

φ : Fφ ` Fφret [100/s][2/t] <: Flet (20)

A summary of all generated well-formedness and subtyp-
ing constraints is given in figure 6. The next step is to find
a solution for the liquid type variables κs, κt , κφret , and κlet
that satisfies all the constraints. This last step is explained in
the next section.

3.3 Constraint Solving
The last step is to find a solution for κs, κt , κφret , and κlet

that satisfies all the generated constraints of figure 6. This step
can also be explained by the analogy with the mathematics
exercise. However, a new, more trivial example is used:

Q = {2, 3, 4, 5}
3 ≤ x ≤ 4

(21)

This exercise has only a single variable x, a single con-
straint, and the solution space is Q. The solution of x has to
be a subset of Q and needs to fulfill the given constraint. A
way to find the valid values for x is to initialize the solution
for x with Q— all the possible values x may hold. The next
step is to verify if any constraint is not satisfied given the
current solution by iterating over the constraints and testing if
each constraint is satisfied. A value from the current solution
of x is removed if it does not satisfy the current constraint. In
the given example, the values 2 and 5 are withdrawn from the
solution set as they impede the constraint from being satisfied.
The remaining values form the solution since all constraints
are satisfied. The final solution for x is {3, 4}.

The same approach is applied to liquid type inference
where variables map to liquid type variables, Q is the set of all
possible qualifiers, and the constraints are the generated well-
formedness and subtyping constraints. The current solution
of each liquid type variable is stored in the liquid assignments
map A. A is a map from the liquid type variables to the set of
qualifiers from Q?.

Definition 12 (Assignment Map A(κ)). The Assignment
Map A(κ) maps the liquid type variables to qualifiers fromQ?.
It stores the current solution for each liquid type variable.

The first step is to initialize the liquid assignment map
using the set Q as the initial value for the liquid type variables.
The set Q is used as the initial value because the solution of
a liquid type variable has to be a subset thereof. The default
initialized assignment map for the φ-function application is
shown in (22).

7

κs 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}
κt 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}

κφret 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}
κlet 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}

(22)

The next step is to iterate over all constraints and to
remove the qualifiers from the liquid assignment map that pre-
vent a constraint from being satisfied. The iteration order is
irrelevant, however, in this example, the well-formedness con-
straints are applied first to remove as many qualifiers as soon
as possible. The Constraint (11) ensures that the refinement
predicate of κlet only refers to ν but not to any other variable.
The qualifiers q from the current solution A(κlet) are tested
one by one if the constraint (11) is satisfied when κlet = q.
The constraint (11) is satisfied for the first qualifier 0 ≤ ν as
it only refers to the special variable ν. The same holds for the
second qualifier ν , 0. The third qualifier contains the special
?-variable that can be instantiated with a program variable.
However, the current constraint (11) prohibits the use of any
program variable — the type environment is empty. There-
fore, the qualifier prevents the constraint (11) from being
satisfied and is thus removed. The same applies for the last
qualifier also containing the ?-variable. The set of qualifiers
for the second well-formedness constraint (12) over κs are
reduced equally. The resulting assignment map after testing
the constraints (11) and (12) is:

κs 7→{0 ≤ ν, ν , 0}
κt 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}

κφret 7→{0 ≤ ν, ν , 0,? ≤ ν, ν < ?}
κlet 7→{0 ≤ ν, ν , 0}

(23)

The constraint (13) requires that t only reference s or the
special variable ν. The embeddings of the first two qualifiers
0 ≤ ν, ν , 0 hold. Not as before, the constraint (13) allows
referencing the variable s. Therefore, the qualifier ? ≤ ν can
be instantiated with s resulting in the qualifier s ≤ ν for which
the constraint holds. The same is true for the last qualifier.

The last well-formedness constraint (14) allows the qual-
ifiers of κφret to refer to s and t as well. Therefore, the first
two qualifiers, as well as the last two using the ?-variable,
satisfy the constraint. The state of the assignment map after
solving for all well-formedness constraints is shown in (24).

κs 7→{0 ≤ ν, ν , 0}
κt 7→{0 ≤ ν, ν , 0, s ≤ ν, ν ≤ s}

κφret 7→{0 ≤ ν, ν , 0, s ≤ ν, t ≤ ν, ν < s, ν < t}
κlet 7→{0 ≤ ν, ν , 0}

(24)

The last step is to remove the qualifiers preventing the
subtyping constraints from being satisfied. Here the question

arises, how the subtyping constraint can be embedded into
predicate logic — when does a subtyping constraint with a
specific qualifier hold. Because the program is well-typed
concerning the underlying type system, it can be assumed that
the ML-type of the left- and right-hand side of a subtyping
constraint are equal. Therefore, the subtyping constraint is re-
duced to test if the refinement predicates psub <: psup satisfy
the subtyping relation. This relation can be tested using the
implication psub =⇒ psup . An implication holds if the first
predicate is only true for values where the second predicate
is too — the first predicate is never true for a value where
the second is not. That exactly reflects the requirement of
the subtyping constraint/relation; the subtype contains fewer
values than the super-type.

However, the subtyping constraint also needs to consider
the environment. Therefore, all variables of the current envi-
ronment bound to base type templates (not function templates)
are embedded into the logical expression. The subtyping con-
straint x : κx ` κy <: ν = 0 is embedded as a conjunction of
the current solution A(κx) for κx — and replacing all occur-
rences of ν with x — and the tested qualifier. If the current
solution set for κx is {0 ≤ ν, ν , 0} then the embedding for
the subtyping constraint is the one shown in (25) in which
q is the qualifier to test if the current constraint is satisfied.
Only qualifiers of the current solution A(κy) are tested.

0 ≤ x ∧ x , 0︸ ︷︷ ︸
Γ`x:κx [x/ν]

∧ q︸︷︷︸
q∈A(κy)

=⇒ ν = 0 (25)

Remark 4. The rule [DEC-<:BASE] states that an implica-
tion is used to verify the subtyping relation of two refinement
predicates. The notation n and o in its premise express the em-
bedding of the type environment and the refinement predicate
into EUFA. EUFA stands for the decidable logic of equality,
uninterpreted functions, and linear arithmetic [9].

The subtyping constraints for the φ-function application,
their embedding into predicate logic and the result of testing
the implication for every qualifier q are summarized in table 1.
Starting with the constraint (18) stating that the value 100
flows into κs. The embedding is v = 100 =⇒ q since the
value 100 flows into the value of κs. There is no embedding
of the type environment as the type environment does not
contain base type template mappings. The next step is to
verify if the implication holds for every qualifier q ∈ A(κs).
The implication holds for both qualifiers since 0 ≤ 100 and
100 , 0.

The constraint (19) captures the flow of the value 2 into
the parameter t. The first two implications hold. However, the
implications for the qualifiers 0 ≤ s and s ≤ v are not satisfied
since the variable s is undefined in the given environment.

The constraint (15) is the first with a non-empty type
environment that needs to be embedded. The current solutions
for A(κt) and A(κs) are embedded by replacing ν with t or s.
This constraint is trivially solved for every qualifier since the
right-hand side is simply true.

8

κ Subtyping-Constraint Embedding q ∈ A(κ) SAT

κs φ : Fφ ` {ν : int | v = 100} <: Fs (18) v = 100 =⇒ q
0 ≤ ν X

ν , 0 X

κt φ : Fφ ` {ν : int | v = 2} <: Ft (19) v = 2 =⇒ q

0 ≤ ν X

ν , 0 X

ν ≤ s 7

s < ν 7

κs s : Fs; t : Ft ` Fs <: {ν : int | true} (15)
0 ≤ s ∧ s , 0︸ ︷︷ ︸

s

∧ 0 ≤ t ∧ t , 0︸ ︷︷ ︸
t

∧q =⇒ true 0 ≤ ν X

ν , 0 X

κt s : Fs; t : Ft ` Ft <: {ν : int | ν , 0} (16)
0 ≤ s ∧ s , 0︸ ︷︷ ︸

s

∧ 0 ≤ t ∧ t , 0︸ ︷︷ ︸
t

∧q =⇒ ν , 0 0 ≤ ν X

0 , 0 X

κφret s : Fs; t : Ft ` {ν : int | ν = s/t} <: Fφret (17)
0 ≤ s ∧ s , 0︸ ︷︷ ︸

s

∧ 0 ≤ t ∧ t , 0︸ ︷︷ ︸
t

∧ν = s/t =⇒ q

0 ≤ ν X

ν , 0 7

ν ≤ s X

ν ≤ t 7

s < ν 7

t < ν 7

κlet φ : Fφ ` Fφret [100/s][2/t] <: Flet (20)
0 ≤ ν ∧ ν ≤ 100︸ ︷︷ ︸
Fφret [100/s][2/t]

=⇒ q 0 ≤ ν X

ν , 0 7

Table 1. Results of Testing the Qualifiers against the Subtyping Constraints

The constraint (16) requires that the value ν be not equal
to zero. The variables s and t are in scope, therefore are em-
bedded into the implication. The implication is only tested for
the qualifiers in the current solution of A(κt). The implication
for the qualifier 0 ≤ v on its own does not hold. However,
the qualifier combined with ν , 0 satisfies the constraint (16).
Since the implication holds for both qualifiers together — the
current solution — no qualifier needs to be removed.

Remark 5. The qualifier 0 ≤ ν would be eliminated accord-
ing to the described algorithm that tests the qualifiers one by
one and removes qualifiers preventing a constraint from being
satisfied. However, the implementations of liquid types first
test if the current solution satisfies the constraint and only
remove qualifiers thereof if this is not the case. First testing
the current solution results in preciser refinement predicates
for the inferred liquid types.

The constraint (17) captures the flow of the value returned
by the φ-function body into the return value of the φ-function.
The embedding of s and t guarantees that their values are
larger than zero. Under this circumstances, the implication
only holds for the qualifiers {0 ≤ ν, ν ≤ s} as explained next:
Dividing a positive number by another positive number results

in a positive result that is less or equal to the quotient s (0 ≤
ν, ν ≤ s). The result is equal to zero if the divisor t is larger
than the quotient s since integer division is used (ν , 0). The
last three qualifiers make the implication unsatisfiable since
the result might be larger than the divisor t (100/1 = 100),
the quotient s can be equal to the result (100/1 = 100), and
the divisor t can be greater than the result (1/100 = 0).

The last constraint (20) captures the flow of the let body
into the result of the entire let-expression. The difference
to the constraint (17) is that the program variables s and t
cannot be referenced. Fφret [100/s][2/t] denotes a substitu-
tion requiring that all occurrences of s and t in the current
solution for Fφret be replaced with 100 and 2. The resulting
implication only holds for 0 ≤ ν since the left-hand side can
be equal to zero.

The final state of the assignment map A is:

κs 7→{0 ≤ ν, ν , 0} (26)
κt 7→{ν , 0, ν ≤ s} (27)

κφret 7→{0 ≤ ν, ν ≤ s} (28)
κlet 7→{0 ≤ ν} (29)

9

The dependent types can be derived from the assignment
map by connecting the qualifiers with a conjunction. For ex-
ample, the dependent type for Fs can be created by replacing
κs in the template by a conjunction of the current result in
the assignment map A(κs) resulting in the dependent type
{ν : int | 0 ≤ ν ∧ ν , 0}. The inferred dependent types for
the application of the φ-throughput function with the values
100 and 2 are:

Fs = {ν : int | 0 ≤ ν ∧ ν , 0} (30)
Ft = {ν : int | ν , 0 ∧ ν ≤ s} (31)

Fφ ret = {ν : int | 0 ≤ ν ∧ ν ≤ s} (32)
Flet = {ν : int | 0 ≤ ν} (33)

Remark 6. Some of the inferred dependent types are more
restrictive than they have to be that the program is considered
safe. For example, the program is safe even when the refine-
ment predicate for s is removed, allowing arbitrary int values.
The refinement predicate of s — and all other liquid types —
can be sliced away if it never occurs on the left-hand side of
a subtyping constraint or if the right-hand side is simply true.
It does not have to fulfill a specific subtyping constraint.

If the φ-function is instead applied with φ 100 0 then
the verification fails. The subtyping constraint (19) capturing
the data flow of the second argument into t changes to the
constraint (34) reflecting that 0 is passed instead of 2. The
embedding of the changed constraint is shown in (35).

φ : Fφ ` {ν : int | v = 0} <: Ft (34)
ν = 0 =⇒ q (35)

This subtyping constraint is no longer satisfied by the
qualifier ν , 0 since ν = 0 and is thus removed from A(κt).
Without this qualifier, the subtyping constraint (16) — re-
quiring that ν , 0 — does not hold for any qualifier that
therefore, are all removed. At the end, the implication for the
constraint (16) is reduced to the embedding (36). However,
this implication is still not valid as the left-hand side gives no
guarantees about ν. Therefore, the program is ill-typed since
no more qualifiers can be removed to make the implication to
hold.

0 ≤ s ∧ s , 0︸ ︷︷ ︸
s

∧ 0 ≤ t︸︷︷︸
t

=⇒ ν , 0 (36)

3.4 Path Sensitivity
If the throughput function is extended to support time

values equal to zero — in which case∞ is returned — a guard
is needed only to perform the division if t , 0 as shown in
the following program:

let φ = s⇒ t ⇒ if t = 0
then∞
else s / t

in φ 100 0

This program is still rejected by a non-path-sensitive type
checker since the fact that t is not equal to zero is not consid-
ered in the else branch. Therefore, path sensitivity is needed
to capture the data flows precisely. Path sensitivity is added
by extending the type environment to store the conditions
encountered up to a particular point in the program as well.
The then branch in this example can only be reached if the
condition t = 0 is true.

The types of the then and else branches have to be sub-
types of the type of the entire if-expression. Either the value
of the then or else branches flows into the result of the if-
expression. This flow is captured by the subtyping con-
straints (37) and (38).

s : Fs; t : Ft ;

guard︷ ︸︸ ︷
(t = 0) ` Fthen <: Fi f (37)

s : Fs; t : Ft ;¬(t = 0)︸ ︷︷ ︸
guard

` Felse <: Fi f (38)

It is important to note that the subtyping constraints pre-
cisely captures when a branch/path is reached. The then
branch is reached when the condition t = 0 is true. Therefore,
the condition predicate is added as a guard to the type envi-
ronment. The opposite applies to the else branch. For any
predicate generated in the then or else branches, the guard
predicate is added to the embedding of the constraint. For
example, if the φ-function is only applied with t = 0, then the
guard ¬(t = 0) added to the embedding (39) of the subtyping
constraint (38) guarantees that the divisor is not equal to zero
in this branch.

0 ≤ s ∧ s , 0︸ ︷︷ ︸
s

∧ t ≤ 0 ∧ t = 0︸ ︷︷ ︸
t

∧¬(t = 0)︸ ︷︷ ︸
guard

∧q⇒ v , 0 (39)

Remark 7. It is assumed that Q is extended by the qualifier
ν = 0.

The added qualifier guarantees that the left-hand side
ends in a contradiction (t = 0 ∧ ¬(t = 0)), indicating that this
is dead code and can safely be eliminated. The program is
well-typed since the implication always holds.

Path sensitivity is also needed for the max function (10).
The precision without path sensitivity degrades if the max
function is applied twice, once with 20 and 0 (x > y), and the

10

second time with 0 and 20 (x < y). The relevant, embedded,
not path-sensitive subtyping constraints for the if-expression
are:

0 ≤ x︸︷︷︸
x

∧ 0 ≤ y︸︷︷︸
y

∧ ν = x︸︷︷︸
then

=⇒ q (40)

0 ≤ x︸︷︷︸
x

∧ 0 ≤ y︸︷︷︸
y

∧ ν = y︸︷︷︸
else

=⇒ q (41)

Both constraints do not capture the relation between x
and y resulting that the qualifier y ≤ ν is removed by the
constraint (40) and x ≤ ν by the constraint (41), only leaving
the qualifiers {0 ≤ ν, ν , 0}. Including the condition from the
if-expression as a guard in the embeddings (42) and (43) sets
the variables x and y into a relation making the implication
hold for the qualifiers y ≤ ν and x ≤ ν as well.

0 ≤ x︸︷︷︸
x

∧ 0 ≤ y∧︸ ︷︷ ︸
y

∧ x > y︸︷︷︸
guard

∧ ν = x︸︷︷︸
then

=⇒ q (42)

0 ≤ x︸︷︷︸
x

∧ 0 ≤ y︸︷︷︸
y

∧¬(x > y)︸ ︷︷ ︸
guard

∧ ν = y︸︷︷︸
else

=⇒ q (43)

This results in the preciser inferred dependent type shown
in (44).

{ν : int | 0 ≤ ν ∧ x ≤ ν ∧ y ≤ ν} (44)

4 Conclusion
This paper has shown that dependent types are a valu-

able technique allowing type checkers to prove fine-granular
invariants giving the programmer a better safety net. The
additional precision of dependent types allows omitting many
— no longer needed — runtime checks. However, dependent
types have the displeasing property that type inference is un-
decidable and therefore, have to be manually annotated. This
limitation can be overcome if type inference is reduced only
to infer liquid types instead of dependent types.

This paper has further explained the liquid type inference
algorithm. The algorithm uses Hindley-Milner to infer the
ML-types and check if the program is well-typed in concern
of the underlying type system — reducing dependent type
inference to inferring the unknown refinement predicates. The
algorithm creates templates containing liquid type variables
as a placeholder for the unknown refinement predicates. In
the next step, a system of constraints is extracted from the
program that sets the liquid type variables into a relation. The
final step is to solve the system of constraints. The program
is ill-typed if any constraint is unsatisfiable and is well-typed
otherwise. In the latter case, the qualifiers left in A(κ) can be
linked to a conjunction to create the dependent types.

The precision of the inferred refinement predicates can
either be improved if the algorithm is path-sensitive or by
adding more fine-granular qualifiers to Q. Moreover, the
programmer has always the option to manually annotate the
dependent type if the inferred one is too imprecise.

References
[1] M. Syfrig, “Dependent Types: Level Up Your Types,”

Program Analysis and Transformation, 2016.
[2] G. Dowek, “The undecidability of typability in the

Lambda-Pi-calculus,” in Typed Lambda Calculi and
Applications: International Conference on Typed
Lambda Calculi and Applications TLCA ’93 March,
16–18, 1993, Utrech, The Netherlands Proceedings,
M. Bezem and J. F. Groote, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1993,
pp. 139–145, ISBN: 978-3-540-47586-6.
DOI: 10.1007/BFb0037103. [Online]. Available:
http://dx.doi.org/10.1007/BFb0037103.

[3] B. C. Pierce, Types and programming languages - the
next generation, 2003. [Online]. Available:
http://www.cis.upenn.edu/˜bcpierce/
papers/tng-lics2003-slides.pdf (visited
on 11/30/2016).

[4] C. Amrein, “Simply Typed Lambda Calculus with
Parametric Polymorphism,”
Program Analysis and Transformation, 2016.

[5] P. M. Rondon, M. Kawaguci, and R. Jhala, “Liquid
Types,”
SIGPLAN Not., vol. 43, no. 6, pp. 159–169, Jun. 2008,
ISSN: 0362-1340.
DOI: 10.1145/1379022.1375602. [Online].
Available: http://doi.acm.org/10.1145/
1379022.1375602.

[6] K. Knowles and C. Flanagan, “Hybrid Type Checking,”
ACM Trans. Program. Lang. Syst., vol. 32, no. 2,
6:1–6:34, Feb. 2010, ISSN: 0164-0925.
DOI: 10.1145/1667048.1667051. [Online].
Available: http://doi.acm.org/10.1145/
1667048.1667051.

[7] J. Ranjit. (Jul. 2008). Liquid Types, [Online]. Available:
https://www.microsoft.com/en-
us/research/video/liquid-types/ (visited
on 10/28/2016).

[8] R. Milner, “A theory of type polymorphism in
programming,” Journal of Computer and System
Sciences, vol. 17, pp. 348–375, 1978.

[9] G. Nelson, “Techniques for program verification,”
XEROX, Tech. Rep., 1981. [Online]. Available:
https://people.eecs.berkeley.edu/

˜necula/Papers/nelson-thesis.pdf
(visited on 11/17/2016).

11

http://dx.doi.org/10.1007/BFb0037103
http://dx.doi.org/10.1007/BFb0037103
http://www.cis.upenn.edu/~bcpierce/papers/tng-lics2003-slides.pdf
http://www.cis.upenn.edu/~bcpierce/papers/tng-lics2003-slides.pdf
http://dx.doi.org/10.1145/1379022.1375602
http://doi.acm.org/10.1145/1379022.1375602
http://doi.acm.org/10.1145/1379022.1375602
http://dx.doi.org/10.1145/1667048.1667051
http://doi.acm.org/10.1145/1667048.1667051
http://doi.acm.org/10.1145/1667048.1667051
https://www.microsoft.com/en-us/research/video/liquid-types/
https://www.microsoft.com/en-us/research/video/liquid-types/
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf
https://people.eecs.berkeley.edu/~necula/Papers/nelson-thesis.pdf

	Introduction
	Language L1
	Liquid Type Inference
	Template Generation
	Constraint Generation
	Constraint Solving
	Path Sensitivity

	Conclusion

