

I. ABSTRACT CCGLImperator

I Abstract

C++ Core Guidelines [SS15] are a set of rules to encourage the use of modern
C++, which is a simpler and safer subset of the language.
In this bachelor thesis the already existing Eclipse CDT plug-ins CCGLator and
GslAtorPtr have been improved and extended. CCGLator supports programmers
using C++ Core Guidelines in everyday programming. In the scope of this project
new rules were added, performance enhancements were implemented and the code
quality was improved.
GslAtorPtr focuses solely on the rules concerning the correct use of pointers. It was
improved to handle more dynamic function interfaces and support more specific
types in the quick fixes. Additionally, the support to set attributes or comments to
ignore specific rules was added, resulting in a coherent handling of ignoring rules
in CCGLator and GslAtorPtr.

2017-06-15 i Bachelor Thesis

II. MANAGEMENT SUMMARY CCGLImperator

II Management Summary

II.1 Introduction

C++ Core Guidelines [SS15] are a set of rules to encourage the use of modern
C++, which is a simpler and safer subset of the language.
In this bachelor thesis the already existing Eclipse CDT plug-ins CCGLator and
GslAtorPtr have been improved and extended. CCGLator supports programmers
using C++ Core Guidelines in everyday programming. It was developed in two
previous projects. GslAtorPtr was also created in a previous project and focuses
on the rules concerning the correct use of pointers.

II.2 Approach

First, the plug-in CCGLator has been tested on a real-world project to see how
it performs on a large codebase. Based on this assessment several improvements
have been implemented and errors have been fixed.
Then the work split into two parts. One was the addition of new rules to CCGLator
and the other was the improvement of GslAtorPtr. Because the two plug-ins are
very similar, the architectures of both could be compared during the implementa-
tion, and flaws in either have been eliminated, resulting in a cleaner and more alike
structure. Additionally, new insights were gained which resulted in improvements
to both plug-ins.

II.3 Results

CCGLator now has better performance, reports fewer false positives and supports
five additional rules. GslAtorPtr handles a wider range of function interfaces and
supports more specific types in the quick fixes.
Also, the added possibility to set attributes or comments to ignore specific rules
provides convenient and coherent handling of ignoring rules in both plug-ins. Ad-
ditionally, a lot of work was put into the infrastructure of both plug-ins to clean
up the code and make the plug-ins perform better in general.
Furthermore, a contribution to the Eclipse CDT project was made, which has
already been merged into the project and is bound to be published in the next
release.

2017-06-15 ii Bachelor Thesis

II. MANAGEMENT SUMMARY CCGLImperator

II.4 Outlook

The C++ Core Guidelines still hold a lot of unimplemented rules and new ones
are added frequently allowing for a lot of future work for CCGLator. Besides,
some false positives are possible to still be present which could be detected and
fixed. GslAtorPtr still holds some points in the future work chapter which could
be implemented in the future.
Additionally, a lot of features are now implemented twice in CCGLator as well
as in GslAtorPtr. This code could be extracted into a ”base plug-in” to avoid
duplication.

2017-06-15 iii Bachelor Thesis

III. DECLARATION OF AUTHORSHIP CCGLImperator

III Declaration of Authorship

We hereby declare,

• that this project was done without external assistance except the ones de-
clared in the documentation or discussed with the advisor.

• that all the used sources are cited according to the usual scientific citation
rules.

• that no resources protected under copyright law (e.g. images) are illegiti-
mately used in this project.

Place and date Rolf Bislin

Place and date Kilian Diener

2017-06-15 iv Bachelor Thesis

CONTENTS CCGLImperator

Contents

I Abstract i

II Management Summary ii
II.1 Introduction . ii
II.2 Approach . ii
II.3 Results . ii
II.4 Outlook . iii

IIIDeclaration of Authorship iv

1 Introduction 6
1.1 Previous Work . 6

1.1.1 CCGLator . 6
1.1.2 CharWars and GslAtorPtr 6

1.2 Eclipse CDT . 6
1.2.1 Cevelop . 7
1.2.2 Codan . 7

1.3 Software Stack . 7
1.4 Scope Definition . 8

1.4.1 Minimal Scope . 8
1.4.2 Optimal Scope . 8
1.4.3 Maximum Scope . 9

1.5 Results . 9

2 Analysis CCGLator 10
2.1 C++ Core Guidelines . 10

2.1.1 GSL: Guideline Support Library 11
2.2 Testing on Real World Application 11

2.2.1 C.83: For value-like types, consider providing a noexcept
swap function . 12

2.2.2 C.84: A swap function may not fail 12
2.2.3 C.85: If a user defined swap member function is used, namespace-

level swap(a, b) should be overwritten 13
2.2.4 C.164: Avoid conversion operators 13
2.2.5 ES.26: Don’t use a variable for two unrelated purposes . . . 13
2.2.6 ES.46: Avoid lossy (narrowing, truncating) arithmetic con-

versions . 14
2.2.7 ES.49: If you must use a cast, use a named cast 16

2017-06-15 1 Bachelor Thesis

CONTENTS CCGLImperator

2.2.8 ES.74: Prefer to declare a loop variable in the initializer part
of a for-statement . 16

2.2.9 C.20: If you can avoid defining default operations, do 16
2.2.10 Quick Fixes . 17

2.3 ES.75: Avoid do-statements . 18
2.3.1 Enforcement . 18
2.3.2 Pre fix Code . 18
2.3.3 Post fix Code . 18

2.4 ES.76: Avoid goto . 19
2.4.1 Enforcement . 20

Skipping a Codepart on Some Condition 20
Loop Back to an Earlier Code Part on Some Condition . . . 21
Conclusion . 23

2.4.2 Pre fix Code . 24
2.4.3 Post fix Code . 24

2.5 ES.78: Always end a non-empty case with a break 25
2.5.1 Enforcement . 25
2.5.2 Pre fix Code . 26
2.5.3 Post fix Code . 26

2.6 ES.9: Avoid ALL CAPS names . 27
2.6.1 Enforcement . 27
2.6.2 Problematic Code . 27

2.7 ES.50: Don’t cast away const . 28
2.7.1 Enforcement . 28
2.7.2 Pre fix Code . 29
2.7.3 Post fix Code . 29

3 Analysis GslAtorPtr 30
3.1 string span . 30

3.1.1 Difference Between span and string span 30
3.1.2 String span Types . 31
3.1.3 Trampoline Function for string span 31
3.1.4 String span Rewrite Quick Fix 32
3.1.5 Fixing C Strings with string span 33

3.2 string view . 34
3.2.1 What is a string view? . 34
3.2.2 string view Types . 34
3.2.3 string span or string view 34

3.3 Improvement of the span<T>Refactoring 35
3.3.1 Multiple Pointer and Size Parameter Combinations 35
3.3.2 Multiple Pointer and One Size Parameter 36

2017-06-15 2 Bachelor Thesis

CONTENTS CCGLImperator

3.3.3 Compatibility with string span and string view 36
3.4 Review . 36

4 Implementation CCGLator 37
4.1 ES.75: Avoid do-statements . 38

4.1.1 Checker . 38
4.1.2 Quick Fix . 38

4.2 ES.76: Avoid goto . 40
4.2.1 Checker . 40
4.2.2 Goto Usage Pattern Analyser (ES76GotoUsagePattern) . . . 40

If and Loop Behaviour . 40
Break Behaviour . 42
Multi-Break Behaviour . 43

4.2.3 Quick Fix . 43
Use Normal If-Statement . 44
Use While Loop . 45
Use Simple Break . 47
Use Surrounding Lambda and Return 47

4.3 ES.78: Always end a non-empty case with a break 49
4.3.1 Checker . 49
4.3.2 Quick Fix . 49

Is Applicable? . 49
Modifying the AST . 50

4.3.3 JUnit Tests . 50
4.3.4 CDT Bug 514684 - ASTWriter’s StatementWriter does not

write Attributes for some Nodes like IASTForStatement . . 50
4.3.5 StandardAttributes Class . 51

4.4 ES.9: Avoid ALL CAPS names . 52
4.4.1 Checker . 52
4.4.2 Quick Fix . 52
4.4.3 Ignore Attributes Issue (Matcher & Quick Fix) 52

4.5 ES.50: Don’t cast away const . 54
4.5.1 Checker . 54
4.5.2 Quick Fix . 56

Is Applicable? . 56
Label . 57
Modifying the AST . 57

4.6 ES.49: If must use a cast, use a named cast 60
4.6.1 const cast in Checker & Quick Fix 60
4.6.2 dynamic cast Quick Fix . 60
4.6.3 reinterpret cast Quick Fix 60

2017-06-15 3 Bachelor Thesis

CONTENTS CCGLImperator

4.7 ASTHelper . 61
4.7.1 findNames, getFunctionDeclaratorFromName,

getFunctionDeclaratorFromNameInSameTU and
getFunctionDeclaratorFromNameViaIndex 61

4.7.2 isInMacro . 61
4.7.3 namesEqual . 61
4.7.4 Other Added or Modified Helper Functions 62

4.8 Other Changes . 63
4.8.1 Handling Markers at Nodes in Macros 63
4.8.2 Not Expanding Macros in Reused Nodes 63
4.8.3 Changing the Ignore Attribute 64
4.8.4 Defining a Marker Type . 64
4.8.5 Lock Index . 64
4.8.6 Merging Problem-IDs . 64

Problem Preferences . 65
isApplicable . 65
Future Work . 65

4.8.7 Making the Ignore Attribute Matcher & Quick Fix more
Generic . 65

4.9 Testing . 66
4.9.1 Checker . 66
4.9.2 Quick Fix . 67
4.9.3 To Do’s . 67

Testing with Different Problem Preferences 67
Support for Testing ”IsApplicable” 68
Testing a Quick Fix Where There Are Always Multiple Mark-

ers . 68

5 Implementation GslAtorPtr 69
5.1 Pointer and Size Parameter . 69

5.1.1 Checker . 69
5.1.2 Quick Fix . 69
5.1.3 Checking C++ Version . 71
5.1.4 Testing Framework Compatibility 71

5.2 Suppression of Warnings via Attribute 72
5.2.1 Ignore Attribute . 72
5.2.2 Ignore Comment . 73
5.2.3 The Problem with Static Generators 73

5.3 Improve Span Refactoring . 74
5.3.1 Additions to the Checker . 74
5.3.2 Additions to the Quick Fixes 74

2017-06-15 4 Bachelor Thesis

CONTENTS CCGLImperator

6 Conclusion 76
6.1 CCGLator Results . 76
6.2 GslAtorPtr Results . 76
6.3 Future Work . 76

6.3.1 Merge Problem-ID’s . 76
6.3.2 Cross File Changes . 77
6.3.3 ES.46 Runtime . 77

A Project organisation I
A.1 Approach . I
A.2 Project Plan . I
A.3 Project Management Environment II
A.4 This Document . II

B User Manual III
B.1 Installation . III
B.2 Configuration . IV
B.3 Usage . VI

C Developer Manual VII
C.1 Prerequisite . VII
C.2 Setting up the Eclipse Workspace VIII
C.3 Coding . IX

C.3.1 plugin.xml . IX
C.3.2 Checkers, Visitors and Quick Fixes IX
C.3.3 ASTHelper, ASTFactory . IX
C.3.4 Testing . IX

C.4 Maven . IX
C.5 Continuous Integration Server . X

Glossary XI

Bibliography XIII

2017-06-15 5 Bachelor Thesis

1. INTRODUCTION CCGLImperator

1 Introduction

Bjarne Stroustrup and Herb Sutter released the C++ Core Guidelines document
[SS15] at cppcon 2015. In it they describe several sets of rules which enforce the
use of modern C++, improve the quality of code and avoid resource leaks resulting
in a simpler and safer subset of the language.
In this project plug-ins are extended and improved which check and fix these rules
allowing the developers to integrate these guidelines into their own infrastructure
with minimal effort.

1.1 Previous Work

This bachelor thesis uses two previous projects as a foundation to further extend
the support for the C++ Core Guidelines.

1.1.1 CCGLator

In the spring of 2016 Özhan Kaya and Kevin Schmidiger developed as their bache-
lor thesis [zKS16] a plug-in for the Integrated Development Environment Cevelop
named CCGLator, which enforces some of these rules and offers quick fixes to
adhere to these rules. In the fall of 2016 we enhanced the plug-in [BD16] with new
rules and improvements to the code.

1.1.2 CharWars and GslAtorPtr

CharWars is a plug-in for Cevelop as well, developed as a bachelor thesis in 2014
[SG14] which handles C-Strings and their calls with std::string operations.
In the spring of 2016 the bachelor thesis GslAtorPtr [GM16] from Elias Geisseler
and Philipp Meier added new features to CharWars to handle pointers in code
which are based on the C++ Core Guidelines.

1.2 Eclipse CDT

Eclipse CDT [Fou17c] is a fully functional IDE for C/C++ based on the Eclipse
framework. As is usual with the Eclipse environment, plug-ins can be easily pro-
grammed to extend the functionality and support new features.

2017-06-15 6 Bachelor Thesis

1. INTRODUCTION CCGLImperator

1.2.1 Cevelop

Cevelop [fSR16b] is an enhanced version of the Eclipse CDT, released by the
Institute for Software (IFS) [fSR16c]. It implements a variety of new plug-ins
supplementing the IDE.

1.2.2 Codan

Codan is a part of Eclipse CDT which handles the code analysis part of CDT. It
offers checks for usual C/C++ problems such as: ”no return value” or ”statement
has no effect”. Apart from it’s own checks, it also offers an API to extend the
default problems with new, self defined ones. From this interface the plug-ins
extend and build up their own checkers and quick fixes.

1.3 Software Stack

The software stack in figure 1 displays the dependencies for this bachelor thesis.

Figure 1: Software stack for this project.

2017-06-15 7 Bachelor Thesis

1. INTRODUCTION CCGLImperator

1.4 Scope Definition

For this bachelor thesis we plan to improve the existing plug-ins CCGLator,
which we already worked on for our term project, as well as CharWars and GslA-
torPtr.

1.4.1 Minimal Scope

For the Minimal scope requirements the following should be done:

• CCGLator

– Reduce the amount of false positives by testing the plug-in with real
world projects.

– Implement new rules:

∗ ES.75: Avoid do-statements

∗ ES.76: Avoid goto

∗ ES.78: Always end a non-empty case with a break

• GslAtorPtr

– Checks and refactorings for string_span<>

1.4.2 Optimal Scope

For the optimal scope these additional tasks should be done:

• CCGLator

– Use isApplicable to avoid multiple problems for the same rule

– Improve ES.49:
Try to automatically recognise the appropriate cast function

– Implement new rules:

∗ ES.9: Avoid ALL CAPS names

∗ ES.50: Don’t cast away const

• GslAtorPtr

– Suppression of warnings via attributes

2017-06-15 8 Bachelor Thesis

1. INTRODUCTION CCGLImperator

1.4.3 Maximum Scope

If the project goes better than expected the following additional tasks can be
attempted:

• CCGLator

– Refactor away the big Switch Case of the ES.46 checker

– Implement new rules:

∗ Enum.3: Prefer class enums over ”plain” enums

∗ Enum.5: Don’t use ALL CAPS for enumerators

• GslAtorPtr

– Improvement of the span<T> refactoring so it can handle more diverse
function interfaces.

– Quick assist forspan<T> in addition to the quick fix.

1.5 Results

Following items have to be delivered at the end of this project:

• Documentation of the changes to the two plug-ins.

• Plug-in CCGLator with the newly added features and changes.

• Plug-in CharWars with the newly added features and changes.

• Video which gives an overview of the plug-ins.

• Poster with a visualisation of the project.

2017-06-15 9 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2 Analysis CCGLator

In this chapter the analysis for the CCGLator plug-in is done. For this an overview
of the C++ Core Guideline Rules [SS15] and then a detailed analysis for each
implemented rule in the scope of this project is given. The analysis consists of an
explanation of the rule, a way to enforce the rule and a part where an example
code is shown before and after the quick fix is applied.

2.1 C++ Core Guidelines

The C++ Core Guidelines are split into several sections, each covering different
parts of C++. The following sections are available:

• P: Philosophy

• I: Interfaces

• F: Functions

• C: Classes and class hierarchies

• Enum: Enumerations

• R: Resource management

• ES: Expressions and statements

• E: Error handling

• Con: Constants and immutability

• T: Templates and generic pro-
gramming

• CP: Concurrency

• SL: The Standard library

• SF: Source files

• CPL: C-style programming

All the rules in this project are either part of ”C: Classes and class hierarchies” or
”ES: Expressions and statements”. Each rule in the guidelines document then is
divided into several sub chapters detailing the reason behind the rule, examples of
code which violate the rule, and an enforcement discussing the approach for a static
analysis tool. Furthermore, if the rule is still the object of discussions a chapter for
discussion is present. For this project the enforcement part was especially helpful
because it gives an introduction on how to implement the rule.

2017-06-15 10 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.1.1 GSL: Guideline Support Library

The Guideline Support Library (GSL) is a C++ library which is needed to properly
comply to some of the Guidelines.

The Guideline Support Library (GSL) contains functions and types that are
suggested for use by the C++ Core Guidelines maintained by the Standard C++
Foundation. [...]
The library includes types like span<T>, string_span<>, owner<> and others.

Microsoft, GSL: Guideline Support Library [Mic16]

2.2 Testing on Real World Application

During our work on the term project, we planned to test the plug-in on a open
source software to see how it reacts with bigger codebases. However, not enough
time was left to complete this task in a sensible manner. So we decided to do it
in our bachelor thesis. For testing purposes the Fish-Shell project was used. The
github project [FS17] contains around 40’000 lines of code in C++, in which our
plug-in found 1311 violations.

Rule Found Issues
C.83: For value-like types, consider providing a noexcept
swap function

93

C.84: A swap function may not fail 0
C.85: If a user defined swap member function is used,
namespace-level swap(a, b) should be overwritten

0

C.164: Avoid conversion operators 0
ES.26: Don’t use a variable for two unrelated purposes 180
ES.46: Avoid integer to Char conversions 1
ES.46: Avoid narrowing integer/char conversions 17
ES.46: Avoid narrowing integer/char Function argument con-
versions

17

ES.46: Avoid singed to unsigned conversions 6
ES.46: Avoid signed to unsigned Function Argument conver-
sion

19

ES.49: If you must use a cast, use a named cast 887
ES.74: Prefer to declare a loop variable in the initializer part
of a for-statement

91

Total 1311

2017-06-15 11 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

During the execution of the code analysis it became apparent that some perfor-
mance issues were present in the plug-in. We analysed the time consumed per
checker and came to the conclusion that C.20 and ES.46 are taking the major
parts of the runtime. A detailed overview of the runtimes before and after the
improvements to the checker, which are mentioned in the following chapters, can
be seen in figure 2.

Figure 2: Runtime before and after the performance improvements

2.2.1 C.83: For value-like types, consider providing a noexcept swap
function

A lot of value-like classes got marked without swap functions. No false positives
were found.

2.2.2 C.84: A swap function may not fail

No violations found in the project because no swap functions are defined.

2017-06-15 12 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.2.3 C.85: If a user defined swap member function is used, namespace-
level swap(a, b) should be overwritten

No violations found in the project because no swap functions are defined.

2.2.4 C.164: Avoid conversion operators

No violations found in the project because no conversion operators are defined.

2.2.5 ES.26: Don’t use a variable for two unrelated purposes

During testing an apparent problem of ES.26 came to light. A code snippet like
the one in listing 1 was marked with a warning:

1 void function () {
2 bool inserted = true;
3 if (! inserted) { // ES .26 Error showed up
4 }
5 }

Listing 1: ES.26: Not-operator problem

The problem was that !inserted is represented as an IASTUnaryExpression in
the AST. However, increment and decrement operations are represented by the
same node and the check only looked if an IASTUnaryExpression is present and
increased the usage counter of the variable. For a fix the operator type from these
nodes are checked and only if they are either ++ or -- the usage is highlighted.

Another issue was the handling of variables inside a switch statement. It was not
possible to assign a new value to a variable in multiple switch-cases as in listing 2.

1 void function () {
2 int i;
3 switch (1) {
4 case 1 : i = 1; // ES .26 marked variable i;
5 break ;
6 case 2 : i = 2; // ES .26 marked variable i;
7 break ;
8 }
9 }

Listing 2: ES.26: Switch problem

Luckily the check if the variable is reassigned inside an if-statement is based on
the same logic and could be reused for the switch.

Another issue encountered during testing were loops implemented like in the ex-
ample in listing 3.

2017-06-15 13 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

1 void function () {
2 int i = 0;
3 while (i < 10) {
4 i++; // ES .26 Error showed up
5 }
6 int a = i;
7 }

Listing 3: ES.26: While-loop problem

The marker on line 4 should not be present as this is a valid form of a loop. To
counteract this behaviour the counter for allowed usages, in this case the initial-
ization and incrementation of the variable, had to be increased to 2.

Additionally, the performance of the checker was improved because as a first state-
ment it checks if the node is from the type IASTSimpleDeclaration. If not the
program continues.

2.2.6 ES.46: Avoid lossy (narrowing, truncating) arithmetic conver-
sions

The checks for this rule took about twenty times longer to finish than most other
checks. When analysing which code part takes how long, two code parts were
using most of the time.

The problematic code was finding the function declarator based on a name. This
has two parts which both could be improved.

One part was finding the declarator if it is inside the same translation unit (the
same file). This was done via a recursive search through the whole AST to get all
function declarators, which were then each checked if it has the name of the one we
search. This process was responsible for two thirds of the checker’s runtime.

The translation unit (the root of the AST) however already provides a way to get
a list of names in declarations based on a binding which is way faster. Compare
listings 4 and 5.

2017-06-15 14 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

1 public <T extends IASTNode > List <T> findNodeTypes (IASTNode node , Class <T> type) {
2 List <T> list = new ArrayList <T >(); // simplified : created only if needed
3 for (IASTNode child : node. getChildren ()) // simplified : additional checks
4 list. addAll (findNodeTypes (child , type));
5 if(type. isInstance (node))
6 list.add(type.cast(node));
7 return list;
8 }
9 // ...

10 private IASTFunctionDeclarator getFunctionDeclaratorFromNameInSameTU (IASTName name
) {

11 List < IASTFunctionDeclarator > funcdecllist =
12 findNodeTypes (name. getTranslationUnit () , IASTFunctionDeclarator . class);
13 for(IASTFunctionDeclarator fdcel : funcdecllist) {
14 if(fdecl . getName (). equals (name))
15 return fdecl
16 }
17 }

Listing 4: Old slow way of getting the Function Declarator (simplified code)

1 private IASTFunctionDeclarator getFunctionDeclaratorFromNameInSameTU (IASTName name
) {

2 IName [] declarations = name. getTranslationUnit ()
3 . getDeclarations (name. resolveBinding ()); // method provided by CDT
4 if(declarations . length ==1) // simplified : additional checks
5 return (IASTFunctionDeclarator)((IASTName) declarations [0]). getParent ();
6 }

Listing 5: Optimized way of getting the Function Declarator (simplified code)

The other part was finding the declarator if it is in another file. This used the
index to find the names in other files and parsed found files.

This checker has often to check function declarations to get the parameter types
which are often in other files. But for every lookup the file was parsed anew which
is a slow process. Figure 3 visualises this process.

Therefore, we introduced the option of a cache, which this checker now uses. The
cache is stored in the checker’s visitor object which gets re-instantiated for each
run and file, so there should not be any issues with outdated caches.

Figure 3: Using the Index and reparsing repeatedly is slow without the cache

2017-06-15 15 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.2.7 ES.49: If you must use a cast, use a named cast

At first, we thought there were lots of unexpected false positives, because there
were lots of code parts highlighted where there were seemingly no casts used.

When looking at the AST of the highlighted code there were way more nodes
including the found casts. The reason for this was the following. Macros get
expanded before parsing and the code parts and nodes they stand for get inserted
in their place. Because of this, used casts inside macros were not marked at the
define statement but everywhere where the macro was used.

This is a general issue that affects all checkers and through this rule it got apparent
that it can be confusing. Therefore we modified our code to not mark such nodes
inside macro expansions. (See also chapters 4.7.2 isInMacro and 4.8.1 Handling
Markers at Nodes in Macros)

2.2.8 ES.74: Prefer to declare a loop variable in the initializer part of
a for-statement

In the test project the rule was highlighted several times which was either because
the initializer part was empty or the loop variable was initialised outside of the
loop. No false positives were found.

2.2.9 C.20: If you can avoid defining default operations, do

During testing our checkers we noticed that the checker for the rule C.20, imple-
mented by a previous group, took more than 13 minutes to finish, which is way
too long. We quickly found out that the code to get the definition from a declared
function takes most of the time.

Said code part uses the index to find other occurrences of the name and parses files
where it is found for further checking. This is an expensive process but should not
result in such an extreme long runtime. What was confusing was that they used
the findNames-flag FIND_ALL_OCCURRENCES instead of the FIND_DEFINITIONS flag
and that it stopped working when changed.
That is until we realized that they searched for the class name and not for the
function name. Removing the detour over the class-name reduced the completion
time to less than a minute.

In addition, while analysing the checker’s source code, we found a slight oversight
which resulted in some false positives. The function ”isFunctionDefinitionNecessary”

2017-06-15 16 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

ignored any member initializer lists which resulted in some constructors being
flagged as not necessary (for example the one in listing 6).

1 struct options {
2 bool a, b, c;
3 options (): a(true), b(true), c(true) {}
4 };

Listing 6: C.20: False Positive with initializer list

2.2.10 Quick Fixes

Whilst the checkers are easily automated to execute for the whole project, all the
found markers and their corresponding quick fixes can only be executed by hand.
For every rule several occurrences were manually fixed and the resulting code was
analysed for breaking changes. The code was still runnable and the test, if present,
were successful.

2017-06-15 17 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.3 ES.75: Avoid do-statements

For better readability, and to avoid overlooking the while-statement, do-statements
should be avoided. For while-statements which should always run at least once,
make this explicit with accordingly modified while-statements.

2.3.1 Enforcement

The checker for this rule is straight forward. Any IASTDoStatement node can be
flagged.

The quick fix can not just change it to a normal while because it would not make
a default first run anymore. But a quick fix should behave like a refactoring and
not change behaviour. Therefore, we need to retain that behaviour. To achieve
that we create a new boolean variable set to true, add that to the beginning of the
while condition joined to the original condition with a logical or, and directly set
it to false once inside the while body.

The order of the conditions and the statement inside the while-body is important.
If the condition has a side effect we should not start executing that before the first
run, to preserve the behaviour of the do-while loop. Additionally, the value has to
be set to false as early as possible. The following example (listings 7 & 8) shows
that things break if the ordering is wrong:

1 int condition = 10;
2
3 do {
4 if (! enableDebugOutput) continue ;
5 std :: cout << condition << std :: endl;
6
7 } while (condition -- > 0);

Listing 7: ES.75 pre wrong quick fix

1 int condition = 10;
2 bool firstRun = true;
3 while ((condition -- > 0) || firstRun) {
4 if (! enableDebugOutput) continue ;
5 std :: cout << condition << std :: endl;
6 firstRun = false ;
7 }

Listing 8: ES.75 post wrong quick fix

This ”fixed” code decrements the condition value too early compared to the
original code and if enableDebugOutput is false it results in an endless loop,
because firstRun is never set to false.
2.3.2 Pre fix Code

1
2 do {
3
4 doSomething ();
5 } while (someCheck ());

Listing 9: ES.75 pre fix

2.3.3 Post fix Code

1 bool firstRun = true;
2 while (firstRun || (someCheck ())) {
3 firstRun = false ;
4 doSomething ();
5 }

Listing 10: ES.75 post fix

2017-06-15 18 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.4 ES.76: Avoid goto

[...] our intellectual powers are rather geared to master static relations and [...] our
powers to visiulize[sic] processes evolving in time are relatively poorly developed.
For that reason we should do [...] our utmost best to shorten the conceptual gap
between the static program and the dynamic process, to make the correspondence
[...] as trivial as possible.

Edsger W. Dijkstra, Go-to statement considered harmful [Dij68]

Jumping around the code with goto-statements makes the code hard to understand
and might result in errors. Especially if used as a substitute for while loops and
if-then-else conditionals as stated by Ken Bloom [Blo10]

Breaking out of multiple convoluted loops is often referenced as one ”still valid”
use case for goto as seen in bta’s [bta10] or shsteimer’s [s+09] comments to questions
on this topic. See listing 11 for an example.

1 while (someCondition) {
2 while (someOtherCondition) {
3 // some code
4 if(exitCondition) goto exit;
5 }
6 }
7 exit:
8 // more code

Listing 11: Valid usage of goto

But even this should be avoided if possible. For example with a lambda expression
and a return statement. If used, the goto label should be directly after an outer
loop.

Another potentially valid use of goto might be using it ”as an alternative to ex-
ception handling” as stated by Rob Walker [Wal08] (see listing 12).

1 if(condition1) goto error_cleanup ;
2 if(condition2) goto error_cleanup ;
3 return ;
4 error_cleanup :
5 // more code

Listing 12: Using Goto as an alternative to exception handling

But this is not really a special pattern of using goto, and if a developer really
wants to use such code he can just use ignore attributes to ignore the checker in
such code.

2017-06-15 19 Bachelor Thesis

The word sic (which is from Latin) means "as such", that is, the apparent problem occurred in the original text. – mgkrebbs on https://english.stackexchange.com/a/16623 [mgk11]

http://stackoverflow.com/a/3517763
http://stackoverflow.com/a/3517765
http://stackoverflow.com/a/46638
http://stackoverflow.com/a/46638

2. ANALYSIS CCGLATOR CCGLImperator

2.4.1 Enforcement

Finding goto-statements (IASTGotoStatement) is easy. But if we want to provide
quick fixes we have to analyse the surrounding code a bit more.

There are 4 simple usage patterns of goto which we can recognise.

• Skipping a code part on some condition
→ use normal if.

• Loop back to an earlier code part on some condition
→ refactor like do-while in ES.75 (see chapter 2.3.1)

• Breaking out of one level of a loop
→ use break instead.

• Breaking out of multiple levels of loops
→ use a surrounding lambda and a return statement.

But in any of these cases we can only remove the label if it is not used by another
goto.

In the first two cases we do not only replace the goto-statement, we also modify
the surrounding if-statement and move the statements between the if-statement
and the label around. Therefore, we have to look at this in a bit more detail.

Skipping a Codepart on Some Condition

In the simplest case the goto-statement is directly inside an if-statement, is the only
statement executed, and there is no ”else”-clause: if(condition) goto label;

In such cases the quick fix should look like this: (Listings 13 & 14)

1 if(condition) goto end;
2 // optional code
3 end:
4 // ...

Listing 13: ES.76 ”goto if” (pre fix)

1 if (! condition) {
2 // optional code
3 }
4 // ...

Listing 14: ES.76 ”goto if” (post fix)

But we should know how to handle other forms of if-statement and goto combina-
tions. If we look at the following code samples (listings 15 & 16) we notice that
any statement after the goto would be unreachable. (Except if there was another
label but in such cases we do not provide a quick fix.) Statement C(); can just be
moved inside the clause in which the goto is not located, and the goto-statement
can be dropped.

2017-06-15 20 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

1 if(condition) {
2 A();
3 goto label ;
4 // code here would be unreachable
5 } else {
6 B();
7 // move C(); here
8 }
9 C();

10 label :
11 D();

Listing 15: ES.76 if then goto analysis

1 if(condition) {
2 B();
3 // move C(); here
4 } else {
5 A();
6 goto label ;
7 // code here would be unreachable
8 }
9 C();

10 label :
11 D();

Listing 16: ES.76 else goto analysis

Of course, A();, B(); and C(); could be more than one statement or no statement
at all. In case the ”then”-clause would get empty we can negate the condition and
use the ”else”-clause as a replacement for the ”then”-clause to simplify the resulting
code. To negate the condition we have to put it in an IASTUnaryExpression of type
op_bracketedPrimary and that in an IASTUnaryExpression of type op_not. The
bracketed expression is not necessary if it is only a single IASTIdExpression.

What about else if? If we look at the code from listing 15, the code in the
”else”-clause (B();) does not have to be inside a compound-statement (curly brack-
ets) but could come directly after the else. That is exactly how the if part of an
else if is located in the AST. Therefore we can handle it like any other state-
ment. However, if we would try providing a quick fix for goto-statements inside
an else if, it would get complicated really quickly. Such gotos we just mark but
we do not provide a quick fix for them.

Loop Back to an Earlier Code Part on Some Condition

Here, the simplest cases are again if-statements that only have a goto-statement
in the ”then”-clause like this: if(condition) goto label;

So if we look at some simple example code we could provide a quick fix like in
listings 17, 18 & 19:

1
2 loop:

3
4 // repeating code
5 if(condition) goto loop;

Listing 17: ES.76 ”goto
loop” (pre fix)

1
2 do {

3
4 // repeating code
5 } while (condition);

Listing 18: ES.76 ”goto
loop” (intermediate step)

1 bool firstRun = true;
2 while (firstRun ||

condition){
3 firstRun = false ;
4 // repeating code
5 }

Listing 19: ES.76 ”goto
loop” (post fix)

2017-06-15 21 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

As mentioned above, the code from the first step of refactoring (see listing 18)
conflicts with rule ES.75 (see chapter 2.3) which is why we end up with the code
from listing 19.

Now, what if we have more complicated if-statements? If we have an additional
”else”-clause (see C(); in listing 20), that is simply executed once we stop looping,
and can be put after the loop in refactored code.

But additional code in the ”then”-clause quickly gets complicated. Like before, we
consider code in the ”then”-clause after the goto unreachable and do not provide
a quick fix. But lets look at B(); in listing 20. That code gets executed after
checking the condition but before looping. Or alternatively it gets executed before
A(); but not the first time.

This results in code like in listings 21 & 22. The code in listing 21, if even possible,
is ugly and gets unreadable really quickly. (Consider more than one statement
instead of B();.) Likewise, the code from listing 22 would complicate the quick
fix quite a bit and would require more analysis. An open question is for example:
”Would the code still do the same in combination with side effects?”

1 loop:
2 A();
3 if(condition) {
4 B();
5 goto loop;
6 // code here would be unreachable
7 } else {
8 C();
9 }

Listing 20: ES.76 if goto loop analysis (pre fix)

1
2 do {
3
4
5 A();
6 } while (condition && B());
7 C();

Listing 21: ES.76 if goto loop analysis
(post fix candidate 1)

1 firstRun = true;
2 while (firstRun || condition) {
3 if (! firstRun) B();
4 firstRun = false ;
5 A();
6 }
7 C();

Listing 22: ES.76 if goto loop analysis
(post fix candidate 2)

A quick look at goto loops where the goto is in the else statement, results in the
following potential quick fix (see listings 23 & 24).

2017-06-15 22 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

1 loop:
2 A();
3 if(condition) {
4 B();
5 } else {
6 C();
7 goto loop;
8 // code here would be unreachable
9 }

Listing 23: ES.76 else goto loop analysis
(pre fix)

1 do {
2 A();
3 if(condition) {
4 B();
5 } else {
6 C();
7
8 }
9 } while (! condition);

Listing 24: ES.76 else goto loop analysis
(post fix candidate)

This quick fix candidate is more likely to be added in the future than the previous,
but for now we do not think it is worth the time to support this quick fix.

Conclusion

In conclusion, we have the following additional constraints for supporting a quick
fix, for the following usage patterns from the beginning of this chapter:

• Skipping a codepart on some condition
→ Support quick fix only if goto is the last statement in the ”then”- or
”else”-clause

• Loop back to an earlier code part on some condition
→ Support quick fix only if goto is the only statement in the ”then”-clause

2017-06-15 23 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.4.2 Pre fix Code

1 // " Skiping code on some condition "
2 if(someCondition) goto end;
3 // optional code
4 end:
5 // ...
6 // Additionally , see listings 15 & 16
7
8
9 // "Loop back ... on some condition "

10
11 loop:
12
13 // repeating code
14 if(someCondition) goto loop;
15
16
17 // " Breaking out of one level of a loop"
18 while (someCondition) {
19 // ...
20 if(someOtherCondition) goto exit;
21 // ...
22 }
23 exit:
24 // ...
25
26 // " Breaking out of multiple levels of

loops "
27
28 while (condition1) {
29 while (condition2) {
30 // ...
31 if(condition3) goto exit2 ;
32 // ...
33 }
34 }
35 exit2 :
36 // ...

Listing 25: ES.76 pre fix

2.4.3 Post fix Code

1 // " Skiping code on some condition "
2 if (!(someCondition)) {
3 // optional code
4 }
5 // ...
6 // Additionally , see listings 15 & 16
7
8
9 // "Loop back ... on some condition "

10 bool firstRun = true;
11 while (firstRun || (someCondition)) {
12 firstRun = false ;
13 // repeating code
14 }
15
16
17 // " Breaking out of one level of a loop"
18 while (someCondition) {
19 // ...
20 if(someOtherCondition) break ;
21 // ...
22 }
23
24 // ...
25
26 // " Breaking out of multiple levels of

loops "
27 [&] {
28 while (condition1) {
29 while (condition2) {
30 // ...
31 if(condition3) return ;
32 // ...
33 }
34 }
35 }();
36 // ...

Listing 26: ES.76 post fix

2017-06-15 24 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.5 ES.78: Always end a non-empty case with a break

During the analysis of this rule we quickly noticed that such a checker is already
implemented in CDT’s [Fou17c] static analysis tool ”codan” [Fou17b]. Codan
provides quick fixes to add a break-statement or to add a suppressing comment to
ignore an occurrence.
But we wanted support for explicit ”[[fallthrough]];” statements introduced
in C++17 [Fou17a, ”Fallthrough attribute” [dcl.attr.fallthrough]].

We considered implementing the rule completely new and disabling the corre-
sponding codan rule with our plug-in. But we decided to go for the much cleaner
option of changing codan’s checker directly as well as adding a quick fix for
”[[fallthrough]];” statements to codan.

2.5.1 Enforcement

To recognise explicit ”[[fallthrough]];” statements, we have to check if the
last statement before another ”case”- or ”default”-label is an IASTNullStatement,
and if that ”null”-statement has the attribute ”fallthrough”. See figure 4 for an
example AST and the corresponding code in listing 27.

Figure 4: AST Nodes used to recognise [[fallthrough]] in ES.78

1 switch (i) {
2 case 1:
3 doSomething ();
4 [[fallthrough]]; // ←
5 case 1: // OR default :
6 doSomething ();
7 break ;
8 }

Listing 27: Code for AST in figure 4

2017-06-15 25 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

It may be the last statement inside a compound-statement (which itself is the last
statement before another ”case”- or ”default”-label), because then the following
requirement by the standard is still true:

The next statement that would be executed after a fallthrough statement shall be
a labeled statement whose label is a case label or default label for the same switch
statement.

Working Draft, Standard for Programming Language C++ [Fou17a, ”Fallthrough
attribute” [dcl.attr.fallthrough]]

2.5.2 Pre fix Code

1 void doSomething () {}
2 void foo(int i) {
3 switch (i) {
4 case 1:
5 doSomething ();
6
7 case 2:
8 doSomething ();
9 break ;

10 default :
11 doSomething ();
12 }
13 }

Listing 28: ES.78 pre fix

2.5.3 Post fix Code

1 void doSomething () {}
2 void foo(int i) {
3 switch (i) {
4 case 1:
5 doSomething ();
6 [[fallthrough]];
7 case 2:
8 doSomething ();
9 break ;

10 default :
11 doSomething ();
12 }
13 }

Listing 29: ES.78 post fix

2017-06-15 26 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.6 ES.9: Avoid ALL CAPS names

As the title of the rule says, one should not use any names without lower-case
letters.

Reason Such names are commonly used for macros. Thus, ALL CAPS name[s]
are vulnerable to unintended macro substitution.

C++ Core Guidelines [SS15, ES.9]

Optionally, for code still using macros, we could mark non-ALL-CAPS macro
names.

2.6.1 Enforcement

We can mark every IASTName, if it is a Declaration, all in CAPS, and not a single
letter template parameter.

If enabled in the preferences we can loop through the macros of every
IASTTranslationUnit, and mark any macros which have a name not in all CAPS.

A special quick fix is not needed. The option to rename is already provided on
any name by default.

2.6.2 Problematic Code

1 # define NE !=
2 // ...
3 enum Direction { N, NE , NW , S, SE , SW , E, W }; // Syntax ERROR
4 void foo(Direction dir) {}
5 void bar () {
6 foo(Direction :: NE);
7 }

Listing 30: ES.9 Example Code

2017-06-15 27 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.7 ES.50: Don’t cast away const

The reason mentioned by the guideline puts it quite simple:

Reason It makes a lie out of const. If the variable is actually declared const, the
result of “casting away const” is undefined behavior.

C++ Core Guidelines [SS15, ES.50]

When using const cast we either have a variable declared as const which is used
in a non-const way and the const is a lie. Or else we use const cast where it is not
needed and the cast is a lie.

2.7.1 Enforcement

We can just mark any IASTCastExpression with the operator type op_const_cast.

But if we stop here we overlook quite a lot of const casts. Additionally, we have
to mark IASTCastExpressions if it is a C-style cast (op_cast) and if it casts away
const. And finally we have to mark C-style casts if the surrounding function is
const and the operand is a member variable of the functions class.

As quick fixes we can suggest removing the cast and the const property from the
variable. Or if the cast is in a const function we can provide a quick fix to either
remove const from the function or set the (member-)variable to mutable and, in
both cases, remove the const cast.

2017-06-15 28 Bachelor Thesis

2. ANALYSIS CCGLATOR CCGLImperator

2.7.2 Pre fix Code

1 void foo () {
2 int i = 20;
3 int const * ic = &i;
4 int * inew = const_cast <int *>(ic);
5 *inew = 10;
6 }
7
8 class ValWithCache {
9 public :

10 int getVal () const {
11 const_cast < ValWithCache &>(cache)
12 .set(val);
13 return val;
14 }
15 void set(int x) {
16 val = x;
17 }
18 private :
19 int val = 0;
20 ValWithCache cache ;
21 };

Listing 31: ES.50 pre fix

2.7.3 Post fix Code

1 void foo () {
2 int i = 20;
3 int * ic = &i;
4 int * inew = ic;
5 *inew = 10;
6 }
7
8 class ValWithCache {
9 public :

10 int getVal () const {
11 cache
12 .set(val);
13 return val;
14 }
15 void set(int x) {
16 val = x;
17 }
18 private :
19 int val = 0;
20 mutable ValWithCache cache ;
21 };

Listing 32: ES.50 post fix

2017-06-15 29 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

3 Analysis GslAtorPtr

In this section the analysis for the GslAtorPtr plug-in is done. A lot of understand-
ing was gained by reading the documentation for CharWars [SG14] and GslAtorPtr
[GM16]. The plug-in’s architecture is very similar to CCGLator helping a lot to
understand it.

3.1 string span

In the future work chapter of GslAtorPtr [GM16] they discuss the implementation
of the string_span<> type from the Guideline Support Library [Mic16]. In this
project we decided to add this into GslAtorPtr. A string_span<> can be used as
seen in listing 33 which is a simple hello world application.

1 # include <iostream >
2 # include "gsl.h"
3
4 void printout (gsl :: cstring_span <> string) {
5 std :: cout << gsl :: to_string (string) << std :: endl;
6 }
7
8 int main () {
9 gsl :: cstring_span <> string = gsl :: ensure_z (" Hello world ");

10 printout (string);
11 }

Listing 33: Example of a string span

This example shows one of the main benefits of a string_span<>. The function
only takes one argument and does not need to receive an additional parameter for
the size of the string. Information like this is wrapped inside the string_span<>
type.

3.1.1 Difference Between span and string span

The GSL provides a type span<T> which should be used instead of a pointer and a
size counter. It represents a contiguous range of memory which already implements
bound safety. Whilst this type is also applicable for strings, the GSL additionally
provides the string_span type. This type is based on a one dimensional span<T>
with added templates and functions helping to handle strings, like the to string()
function.

2017-06-15 30 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

3.1.2 String span Types

Following types are provided by the GSL:

string span type null terminated string span type string type
string span zstring span char*
cstring span czstring span const char*
wstring span wzstring span wchar t*
cwstring span cwzstring span const wchar t*

As can be seen in the paper from Neil MacIntosh regarding string_span<> [Mac16],
a string_span<> can represent both a normal string and a null-terminated one
whilst the type zstring_span<> always ensures that a null-terminated is stored.
Normally the standard span<T> types are sufficient enough for the usual use cases.
Null terminated ones should only be used in the context of converting a null ter-
minated span<T> into a legacy string.

3.1.3 Trampoline Function for string span

As already documented in the GslAtorPtr documentation [GM16] in chapter 2.1.3,
a trampoline function can be used to refactor a function with parameter combi-
nation of pointer and size. In the current state, this always results in a span type
(listing 34) even if a string span as in listing 35 would be applicable. For this, the
plug-in has to be extended to check for the type of the pointer.

1 void printNumbers (int* numbers , int length) {
2 std :: cout << numbers << std :: endl;
3 }

Listing 34: span should be used

1 void printNames (char* string , int length) {
2 std :: cout << string << std :: endl;
3 }

Listing 35: string span should be used

2017-06-15 31 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

After the type of the pointer is evaluated, an according string span (listing 36) or
span (listing 37) trampoline function should be implemented.

1 void printNames (char* string , int length) {
2 std :: cout << string << std :: endl;
3 }
4
5 // added trampoline function
6 void printNames (gsl :: string_span <> string) {
7 return printNames (string .data () , string .size ());
8 }

Listing 36: string span trampoline function

1 void printNumbers (int* numbers , int length) {
2 std :: cout << numbers << std :: endl;
3 }
4
5 // added trampoline function
6 void printNumbers (gsl :: span <> numbers) {
7 return printNumbers (numbers .data () , numbers .size ());
8 }

Listing 37: span trampoline function

Additionally, the before mentioned string span types have to be considered in the
fix for a trampoline function. For example for a const wchar_t pointer, the type
cwstring_span needs to be applied.

3.1.4 String span Rewrite Quick Fix

GslAtorPtr offers an additional quick fix called a rewrite. This fix changes the
found function directly to support a string span as well as all the found call sites,
as can be seen in listings 38 and 39.

1 void printOut (char* string , int size) {
2 for(int i = 0; i < size; i++) {
3 std :: cout << string [i];
4 }
5 std :: cout << std :: endl;
6 }
7
8 int main (){
9 int len { 4 };

10 char string [len] {"test"};
11 printOut (string , len);
12 }

Listing 38: Pre rewrite quick fix

2017-06-15 32 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

1 #include "gslrefactor.h"
2 void printOut (gsl::string span<> string) {
3 for (int i = 0; i < string.size() ; i++) {
4 std :: cout << string[i] ;
5 }
6 std :: cout << std :: endl;
7 }
8
9 int main (){

10 int len { 4 };
11 char string [len] {"test"};
12 printOut (gsl::string span<> { string, len });
13 }

Listing 39: Post rewrite quick fix

The problem with this quick fix however is that the remaining function body still
uses the features of a legacy string such as an index based for-loop in this exam-
ple. With the new string span type this could be refactored to a for-each loop
as in listing 40. This would increase the code quality significantly but has to be
implemented by the programmer himself because the plug-in can not handle all
the possible cases.

1 # include " gslrefactor .h"
2 void printOut (gsl :: string_span <> string) {
3 for (auto const & element : string) {
4 std :: cout << element ;
5 }
6 std :: cout << std :: endl;
7 }
8
9 int main (){

10 int len { 4 };
11 char string [len] {"test"};
12 printOut (gsl :: string_span <> { string , len });
13 }

Listing 40: Manual improvement to for-each

3.1.5 Fixing C Strings with string span

CharWars already implements the substitution of C-strings with the string class
from the C++ standard library. Another possible substitution would be the use
of a string span. However, a lot of use cases from the CharWars plug-in rely on
functions applicable on std::string which are either not available, or have a different
syntax, for string span. This would result in a substantial change of the already
working CharWars plug-in. So we decided against this change.

2017-06-15 33 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

3.2 string view

During the research for string_span<> the type string_view appeared multiple
times promising similar benefits as a string_span<>. This type already exists for
some time in the boost library [Lib17] and is, as of C++17 [Fou17a, string.view] ,
added to the standard library as the type std::string_view. Because this plug-
in already provides span<T> and string_span<> checkers and fixes it would be
beneficial if it also supported the string view type.

3.2.1 What is a string view?

A string view is comparable to the already analysed string_span<> type (see
chapter 3.1). Similarly, it holds a pointer and size parameter. However, the biggest
difference is that the pointee is constant making string view a read-only access to
a string. Additionally, a lot of member functions are provided to use this type
efficiently. Amongst them are, iterators, a swap function, capacity functions and
a substring function.

3.2.2 string view Types

Based on the provided string type, different string view types have to be used.
Which ones exist can be read out of the table below:

string view type string type
string view char*
wstring view wchar t*
u16string view char16 t*
u32string view char32 t*

3.2.3 string span or string view

To safely decide if a string view can be used when a pointer and size parameter are
found, two requirements have to be met. First the C++ version has to be C++17
or higher. Second the found pointer has to be used in a read-only manner within
the function. This can be checked with whether the pointee is constant or not. If
it is, it’s safe to assume so.
If both of these conditions are met, the same quick fixes as a string_span<> can
be offered with the minor difference of the used parameter type. For code examples
of these fixes look into chapter 3.1.3 and 3.1.4.

2017-06-15 34 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

3.3 Improvement of the span<T>Refactoring

Another point in the further work chapter of GslAtorPtr [GM16] is the improve-
ment of the span<T> refactorings to handle more diverse function interfaces. In
its current state it highlights a function interface as soon as a pointer + size
parameter combination is found. Following improvements can be made to the
refactoring.

3.3.1 Multiple Pointer and Size Parameter Combinations

One improvement is the handling of multiple occurrences of pointer + size pa-
rameters to be refactored in one step. Currently following code (see listing 41) is
generated by the plug-in.

1 # include " gslrefactor .h"
2 void function (int* a, int size1 , int* b, int size2) { // original function
3 }
4
5 void function (gsl :: span <int > a, int* b, int size2) { // first quick fix
6 return bimbambozle (a.data () , a.size () , b, size2);
7 }
8
9 void function (gsl :: span <int > a, gsl :: span <int > b) { // second quick fix

10 return bimbambozle (a, b.data () , b.size ());
11 }

Listing 41: span refactoring with multiple executions

While the quick fix does not break the code, it would be better if only one func-
tion was added which takes two span<T> and has the according call to the original
function (see listing 42).

1 # include " gslrefactor .h"
2 void function (int* a, int size1 , int* b, int size2) {
3 }
4
5 void function (gsl :: span <int > a, gsl :: span <int > b) { // quick fix
6 return function (a.data () , a.size () , b.data () , b.size ());
7 }

Listing 42: Desired refactoring for multiple pointer + size combinations

Another way to order the parameters would be, several pointers followed up by an
equal amount of size parameters, resulting in a interface like this: (Listing 43)

1 void function (int* a, int* b, int size1 , int size2) {
2 }

Listing 43: Possible ordering of multiple pointer + size combinations

2017-06-15 35 Bachelor Thesis

3. ANALYSIS GSLATORPTR CCGLImperator

However, no such variant was found in multiple C libraries and code snippets
displaying the usage of pointer + size parameters. Because of this, the implemen-
tation will not support such an interface, however the marker will still appear for
the innermost combination.

3.3.2 Multiple Pointer and One Size Parameter

Another possible improvement is a interface where multiple pointers are followed
up by one size parameter representing the size of all the preceding pointers. In
the current state only the last pointer would be refactored and all the other ones
would be ignored. The following improvement could be added to the quick fix (see
listing 44).

1 # include " gslrefactor .h"
2 void function (int* a, int* b, int size2) {
3 }
4
5 void function (gsl :: span <int > a, gsl :: span <int > b) { // quick fix
6 return function (a.data () , b.data () , b.size ());
7 }

Listing 44: Desired refactoring for multiple pointer + one size combinations

3.3.3 Compatibility with string span and string view

These improvements are compatible with the already mentioned addition of
string_span<> and string_view. The quick fix is independent of the used type.
However the checker has to report the correct problem when for example a char
and an int pointer are used, a span<T> quick fix problem should be reported.

3.4 Review

Both plug-ins are improved with new features or better architecture which results
in a better user experience and better base for future additions to them. The new
features round out the plug-ins but are in no way final. There is still a lot of work
to do to support more rules.

2017-06-15 36 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4 Implementation CCGLator

As a starting point, the CCGLator plug-in from the CCGLadiator term project
[BD16] was used. For an in-depth overview over the plug-in, please refer to its
documentation. In this project the following changes and additions to CCGLator
were necessary and are explained in this chapter:

• Additions and refactorings to ASTHelper, ASTFactory and more changes

• Checkers with visitors for the newly added rules

• Quick fixes for the newly added rules

• Tests for checkers and quick fixes

In the whole implementation process the go-to resource was the Eclipse CDT API
Documentation [Fou11] providing us with the needed information about the CDT
environment.

For an overview of the most important classes and files, refer to the developer
manual (appendix C).

2017-06-15 37 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.1 ES.75: Avoid do-statements

Implementing this rule was quite straight forward. However, after the first imple-
mentation we noticed some minor issues which required us to reevaluate our anal-
ysis and make some minor adjustments to end up with the current version.

4.1.1 Checker

The checker visits the IASTStatements and flags them if they are of type
IASTDoStatement.

4.1.2 Quick Fix

Providing a quick fix is not too difficult either. We just have to generate a new
IASTWhileStatement with slightly modified while-statement and body. To ensure
a guaranteed first run of the loop, we make a boolean variable ”firstRun”, with
an appended number if needed. Its declaration gets put in front of the new while-
statement [1] (see figure 5 and listing 45), gets added to the beginning of the while-
statement condition [2] (using a conditional or [3]) and it needs to get changed in
the while body[4].

Figure 5: AST nodes used to enforce ES.75

2017-06-15 38 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 do {
2 doSomething ();
3 } while (someCheck ());
4
5 bool firstRun = true; // [1] Generated
6 while (firstRun || (someCheck ())) { // [2] Additional Condition (" firstRun ") ,

// [3] logical or ("||")
7 firstRun = false ; // [4] Additional Body Element
8 doSomething ();
9 }

Listing 45: Code for AST in figure 5

2017-06-15 39 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.2 ES.76: Avoid goto

This rule needed the most iterations until we were happy with the way it works.
Partly this was because code with gotos can quickly get complicated and we over-
looked some special cases. Another reason was that while fixing some stuff we
decided that it would be easy to provide some additional quick fixes.

4.2.1 Checker

The checker checks each IASTStatement if it is a goto-statement and marks them.
By fetching the referenced label (IASTLabelStatement) it already tries to detect
normal ”if behaviour”, ”loop behaviour” or ”break behaviour” and provides more
detailed description to the marker accordingly.

Reporting ”multi-break behaviour” can be disabled in the preferences, because this
could count as the only valid use case of goto. (See chapter 2.4)

4.2.2 Goto Usage Pattern Analyser (ES76GotoUsagePattern)

Because we need to find out which usage pattern fits the goto-statement in the
checker as well as the quick fix, we put this in a separate class, which returns
an enum.

If and Loop Behaviour

To recognise ”if or loop behaviour” the goto-statement has to be in an if-statement.
Said if-statement has to have the same parent node as the label [1] (see figures 6 & 7
and listings 46 & 47). Depending on the order of appearance of these two either an
”if behaviour” or ”loop behaviour” could be detected. Both cases have additional
constraints. For the ”if behaviour”, the goto-statement has to be the last statement
[2] in one of the clauses [3]. For the ”loop behaviour”, it has to be the only
statement in the ”then”-clause [4].

2017-06-15 40 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Figure 6: AST nodes used to recognise if behaviour

1 {
2 if (someCondition) { // [1] (" if ") , [3]
3 doSomething ();
4 goto end; // [2]
5 } else { // ([3])
6 doSomething ();
7 }
8 doSomething ();
9 end: // [1]

10 doSomething ();
11 }

Listing 46: Code for AST in figure 6

Figure 7: AST nodes used to recognise loop behaviour

1 {
2 loop: // [1]
3 doSomething ();
4 if (someCondition) { // [1]
5 goto loop; // [4]
6 } else {
7 doSomething ();
8 }
9 }

Listing 47: Code for AST in figure 7

2017-06-15 41 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Break Behaviour

To recognise ”break behaviour” the goto-statement [1] (see figure 8 and listing 48)
has to be inside a loop [2]. If the label is directly after the innermost loop [3]
in which the goto-statement is, a break-statement could be used instead of the
goto.

Figure 8: AST nodes used to recognise break behaviour

1 {
2 while (someCondition) { // [2]
3 doSomething ();
4 if(someCondition)
5 goto exit; // [1]
6 doSomething ();
7 }
8 exit: // [3]
9 doSomething ();

10 }

Listing 48: Code for AST in figure 8

2017-06-15 42 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Multi-Break Behaviour

If the label is directly after [4] any other loop [3] further out [2] than directly above
the goto-statement [1] (see listing 9 and listing 49), a break-statement would not
work, but a surrounding lambda and a return statement might.

Figure 9: AST nodes used to recognise valid goto usage

1 {
2 while (someCondition) {
3 while (someOtherCondition) {
4 if(someCondition) goto exit;
5 doSomething ();
6 }
7 }
8 exit:
9 doSomething ();

10 }

Listing 49: Code for AST in figure 9

If none of the above behaviours are recognised we return a usage pattern of type
Unknown which results in a default marker message (if called by the checker) and
makes any of the quick fixes (apart from the ”set ignore attribute” quick fix) report
as non applicable.

4.2.3 Quick Fix

We provide 4 different quick fixes.

Every quick fix checks in the overridden ”isApplicable” method if the marker is for
the goto usage pattern it was made for using the methods mentioned above. In
every quick fix we can remove the label only if it is not used anywhere else. This
can be done by replacing it with its contained statement.

2017-06-15 43 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Use Normal If-Statement

This quick fix collects all nodes between [1] the if-statement [2] which contains the
goto [3] and the label [4] (see figure 10 and listing 50).

Then the ”then”-clause and the ”else”-clause for the new if-statement need to be
prepared. For both we copy the previous clause and in one we remove the marked
goto [5] statement and in the other we add the previously collected nodes [6].

If the resulting ”else”-clause is empty we delete it [7]. If the resulting ”then”-clause
is empty we negate the condition [8] and make the ”else”-clause our ”then”-clause
[9]. To negate the condition we have to put it in an IASTUnaryExpression of type
op_bracketedPrimary and that in an IASTUnaryExpression of type op_not. The
bracketed expression is not necessary if it is only a single IASTIdExpression.

The old if-statement gets replaced with the new one [10] and the old nodes which
are now in the if can be removed. If the label is not used anywhere else it can be
removed as well [11].

Figure 10: AST nodes used to change a goto to an if-statement

2017-06-15 44 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 /* ... */ {
2 if (someCondition) { // [2]
3 doSomething ();
4 goto end2; // [3]
5 } else {
6 doSomething ();
7 }
8 doSomething (); // [1]
9 end2: // [4]

10 doSomething ();
11 }
12
13 // ...
14
15 /* ... */ {
16 if (!(someCondition)) { // [8] "!(...) "
17 doSomething (); // [5]
18 } else {
19 doSomething ();
20 doSomething (); // [6]
21 }
22 end2: // may get replaced with [11] below
23 doSomething (); // [11]
24 }

Listing 50: Code for AST in figure 10

Use While Loop

Like the previous quick fix this one collects all nodes between the if-statement
which contains the goto and the label [1] (see figure 11 and listing 51). The node
contained in the label-statement does also count to this list [2]. But at first it
does not generate a normal while loop but instead a more similar do-while loop [3]
using these nodes. Because of this the condition from the if can be reused as
is [4].

The created do-while statement gets put through the ES.75 logic (see chapter 4.1.2)
which returns the firstRun declaration statement and the while-statement [5].
The declaration statement can either be replaced or put after the label [6] (depend-
ing on, if the label is still used by another goto-statement) and the while-statement
replaces the if-statement [7]. Any nodes in the ”else”-clause of the if-statement
can be put after the while-statement [8]. The old nodes between the label and the
if-statement get removed.

2017-06-15 45 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Figure 11: AST nodes used to change a goto to a while-statement

1 /* ... */ {
2 loop1 :
3 doSomething (); // [2]
4 doSomething (); // [1]
5 if(someCondition) { // [4]
6 goto loop1 ;
7 } else {
8 doSomething ();
9 }

10 }
11
12 /* ... */ {
13 do { // [3]
14 doSomething ();
15 doSomething ();
16 } while (someCondition); // [4]
17 }
18
19 /* ... */ {
20 loop1 : // [6]
21 bool firstRun = true; // [5] inside label - statement
22 bool firstRun = true; // or outside label - statement
23 while (firstRun || (someCondition)) { // [7]
24 firstRun = false ;
25 doSomething ();
26 doSomething ();
27 }
28 doSomething (); // [8]
29 }

Listing 51: Code for AST in figure 11

2017-06-15 46 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Use Simple Break

This quick fix is as simple as creating a new break-statement [1] (see figure 12 and
listing 52) and replacing the goto-statement with it [2] and removing the label if
it is not used anymore [3].

Figure 12: AST nodes used to change a goto to a break-statement

1 /* ... */ {
2 while (someCondition) {
3 doSomething ();
4 if(someCondition)
5 goto exit; // [2] gets replaced by [1]
6 break ; // [1]
7 doSomething ();
8 }
9 exit: // [3] removed if possible

10 doSomething ();
11 }

Listing 52: Code for AST in figure 12

Use Surrounding Lambda and Return

This quick fix has additional checks in the isApplicable function. It is only
applicable if the only gotos which go outside the while loops are the ones which
lead to the lambda directly after the while loops.

In the quick fix we first search which loop is the one directly in front of the label [1]
(see figure 13 and listing 53). Once we have determined that, we copy the loop [2].
Then we have to find goto nodes which correspond to the label of the marked goto
node [3]. We replace them with a new return statement [4]. This modified loop we
can put inside a new compound-statement [5] which we put inside a new lambda
expression [6] in a new function call expression [7] in a new expression statement
[8]. Now we can replace the old loop with the new lambda expression statement
and finally remove the label if possible [9].

2017-06-15 47 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Figure 13: AST nodes used to surround loops with lambda and use return

1 /* ... */ {
2 while (someCondition) { // [2]
3 while (someCondition) {
4 doSomething ();
5 if (someCondition) goto exit; // [3]
6 doSomething ();
7 }
8 } // [1]
9 exit: // [3]

10 doSomething ();
11 }
12
13 // ...
14
15 /* ... */ {
16 [&] { // [6] "[&]" , [5] "{...}"
17 while (someCondition) {
18 while (someCondition) {
19 doSomething ();
20 if (someCondition)
21 // goto exit; // [3] replaced by [4]
22 return ; // [4]
23 doSomething ();
24 }
25 }
26 }(); // [7] "()", [8] ";"
27 exit: // [9] removed if possible
28 doSomething ();
29 }

Listing 53: Code for AST in figure 13

2017-06-15 48 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.3 ES.78: Always end a non-empty case with a break

For this rule we modified and improved the existing checker in codan in CDT’s
codebase. The issue number in the eclipse bugtracker is #514685 [Bis17e] and the
gerrit change id is 94361 [Bis17c].

4.3.1 Checker

Codan’s case break checker already searches the last statement of each case where
we can just issue a continue; if it is a valid fallthrough statement.

For this statement to count as a valid fallthrough it is not allowed to be the last
statement of the whole switch. If this statement is a non-empty
IASTCompoundStatement, further checks get executed on its last statement. The
statement has to be an IASTNullStatement and have an attribute named
”fallthrough”. (Note the chapter ”StandardAttributes Class” below.)

If the statement gets recognised as a valid fallthrough we do not flag the case.

4.3.2 Quick Fix

Now we can not provide the quick fix for all markers of the checker. There-
fore, we did not remove the ignore comment quick fix and we had to override the
isApplicable function.

Is Applicable?

Because codan is for C as well as C++ we have to check if the marker is for C++
code. Additionally, the fallthrough attribute is only valid for C++17 and above.
The C++ version used is not easily checkable from the quick fix code, which is why
we added an option to enable this quick fix in the settings and have it disabled by
default. And finally, if the setting for checking the last cases is enabled, we have
to check if a [[fallthrough]]; would be valid at the marker’s position.

If the quick fix is enabled, the code is C++ code and the marker’s position is a
valid position for fallthrough then the quick fix is applicable.

2017-06-15 49 Bachelor Thesis

https://bugs.eclipse.org/bugs/show_bug.cgi?id=514685
https://git.eclipse.org/r/94361

4. IMPLEMENTATION CCGLATOR CCGLImperator

Modifying the AST

The code for modifying the AST is similar to the existing quick fix for adding a
break-statement. Which is why we added a new abstract parent class and pulled
up nearly all functionality from that quick fix and just made the node to place
definable by a parameter.

We generate the new IASTNullStatement with the fallthrough attribute and just
insert it at the correct place using the previous code from the existing
quick fix.

4.3.3 JUnit Tests

Of course, we updated and added some JUnit tests based on our changes. Addi-
tionally, we noticed that there were no JUnit tests for the ignore comment quick
fix. For this we opened a separate bug in the bugtracker (#515814 [Bis17f]) and
created a change for it (95765 [Bis17d]).

Note the related subsequent change 96102 [Cor17a] by Thomas Corbat.

4.3.4 CDT Bug 514684 - ASTWriter’s StatementWriter does not write
Attributes for some Nodes like IASTForStatement

Sadly we ran into the bug of vanishing attributes on rewrite again, which we already
had in our term project [BD16, 3.4.2 Set an attribute on a IASTForStatement].
Writing nodes of type IASTForStatement, IASTDoStatement, IASTNullStatement
and some more do not persist attributes. Using the same workaround again in
codan did not make much sense because we are already making changes in the
CDT codebase. Why not fix the issue directly?

We only needed to add some calls to writeAttributes in the appropriate functions
of ASTWriter’s StatementWriter.

This we did. The issue number in the Eclipse bugtracker is #514684 [Bis17a] and
the gerrit change id is 94351 [Bis17b]. Note the related subsequent change 96567
[Cor17b] in which Thomas Corbat simplified StatementWriters logic a bit.

2017-06-15 50 Bachelor Thesis

https://bugs.eclipse.org/bugs/show_bug.cgi?id=515814
https://git.eclipse.org/r/95765
https://git.eclipse.org/r/96102
https://bugs.eclipse.org/bugs/show_bug.cgi?id=514684
https://git.eclipse.org/r/94351
https://git.eclipse.org/r/96567

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.3.5 StandardAttributes Class

As requested by Peter Sommerlad we created a class named StandardAttributes
where we put all standard attribute class names and have them in a central place.
This helps with not having strings and char arrays scattered around in code mul-
tiple times. The only place in the CDT codebase where an attribute name was
already used we updated accordingly.

2017-06-15 51 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.4 ES.9: Avoid ALL CAPS names

4.4.1 Checker

The checker was nearly as easy as it sounds in the analysis chapter. There were
some minor issues. One issue was that the ignore attributes had to be more flexible.
More about this can be found below.

Another issue was how to find and mark or ignore macro definitions. For find-
ing and marking non-ALL-CAPS macro definitions solutions were quickly found.
Ignoring such macros however is trickier. But considering that these are optional
markers, disabled by default, we just won’t support ignoring them.

4.4.2 Quick Fix

This rule does not need an extra quick fix because markers on IASTNames provide
already a ”Rename”-quick fix.

However, the ”set ignore attribute” quick fix did not always put the ignore attribute
at the wanted position.

4.4.3 Ignore Attributes Issue (Matcher & Quick Fix)

The main issue with ignore attributes was that names can appear at a lot of
different locations in code. Previously we defined the position of such ignore
attributes relatively statically based on the type of the marked (or to be marked)
node.

However, to support this rule we had to change this to a more general approach.
Instead of checking if we know where the ignore attribute has to be based on the
marked node type, we go up the AST and search the first node which is one of the
wanted IASTAttributeOwner.

But there are some node types which are of type IASTAttributeOwner but should
not be. One such example is ICPPASTCatchHandler as mentioned in the com-
ments to our gerrit change 94351 [Bis17b] (see also chapter 4.3.4). And there are
some node types which are valid attribute owners but if used result in difficult to
read code.
E.g. ICPPASTDeclarator:
void [[gsl::suppress("Rc-swap-fail")]] swap(foo& other) { /* ... */ }

2017-06-15 52 Bachelor Thesis

https://git.eclipse.org/r/94351

4. IMPLEMENTATION CCGLATOR CCGLImperator

To centralise the logic which attribute owners we want and which not, we created an
AttributeOwnerHelper class, which now contains the list of invalid and unwanted classes
and the logic to get the next parent which is a wanted (for the quick fix) or valid (for
the matcher) attribute owner.

Another issue was in the attribute matcher, where we previously just used the first
attribute owner we found (with attributes or not). However, here in rule ES.9, it is quite
likely that we want to ignore for example all occurrences in one class, or similar.

Therefore, we had to change it to aggregate all attributes found between the marked
node and the IASTTranslationUnit (the root of the AST). This is now the general
behaviour.

The third issue was that if we mark macros which do not support attributes at all,
we want to not show the ”set ignore attribute” quick fix. To do this, we added an
isIgnoreApplicable function to the BaseChecker which gets called on the marker’s
checker which now can override it.

2017-06-15 53 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.5 ES.50: Don’t cast away const

While implementing this rule we noticed that some changes to ”ES.49: If must use a
cast, use a named cast” were needed. See chapter 4.6 for more information.

4.5.1 Checker

As mentioned in the analysis chapter any CastExpression with type op_const_cast can
be marked. For C-style casts we have to check some more things. To find out if it
removes a const, we could just reuse slightly modified functions used by ES.46 ”Avoid
lossy Arithmetic Conversions” [BD16, chapter 3.10]. If the function [2] containing the
cast [1] (see figures 14 & 15 and listings 54 & 55) is const, we have to check if the operand
is a member of the functions class.

This last part was the trickiest bit. From the functions [2] class [3] we get a list of
declarations [4] for which we check if its name [5] matches the name [6] of the operand
[7] of the cast. If the function is not defined directly in the class declaration we need to
search the class declaration via the name in the CPPASTQualifiedName [8] (see figure
15) via the class name declaration from the index [9].
But we cannot just compare the strings of the bindings because that would sometimes
give wrong results. For more details see chapter 4.7.3.

Figure 14: Is the cast operand in the same class as the function using the cast?
(Single AST)

2017-06-15 54 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 class constFuncExample { // [3]
2 public :
3 int getVal () const { // [2]
4 ((CacheClass &) cache).set(val);
5 const_cast < CacheClass &>(cache).set(val); // [1] " const_cast ", [6/7] " cache "
6 return val;
7 }
8 private :
9 int val = 0;

10 CacheClass cache ; // [5]
11 };

Listing 54: Code for AST in figure 14

Figure 15: Is the cast operand in the same class as the function using the cast?
(Multiple ASTs)

2017-06-15 55 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 // main.cpp
2 # include "main.h"
3 int constFuncExample :: getVal () const { // [2] , [8] " constFuncExample :: getVal "
4 ((CacheClass &) cache).set(val);
5 const_cast < CacheClass &>(cache).set(val); // [1] " const_cast ", [6/7] " cache "
6 return val;
7 }
8 // main.h
9 // ...

10 class constFuncExample { // [3] , [9] " constFuncExample "
11 public :
12 int getVal () const ;
13 private :
14 int val = 0;
15 CacheClass cache ; // [5]
16 };

Listing 55: Code for AST in figure 15

4.5.2 Quick Fix

Here we have multiple different quick fixes. Therefore, we have to check which quick
fix is applicable. Additionally, the main quick fix has a different Label based on the
AST.

Is Applicable?

We check if the type of the operand is const, the function is const and if the operand is
a member of the containing class.

• If the type of the operand is const we can provide the quick fix to remove const
from the variable.

• Else, if either the function is not const or the operand is not a member of the class
(or both), then we have an unneeded cast and can provide the quick fix to remove
it.

• Finally if the function is const and the operand is a a member of the class, then
we can provide

– one quick fix to remove const from the function and
– one quick fix to set the member variable mutable.

2017-06-15 56 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Label

If the function is const and the operand a member of the class the label is
”ES.50: make function non-const and remove const cast”.

If the type of the operand is const the label is
”ES.50: make variable non-const and remove const cast”.

Else the label is
”ES.50: remove const cast”.

The label of the second quick fix class is always
”ES50: make member variable mutable and remove const cast”.

Modifying the AST

The quick fixes consist of two parts. One part where we make sure we have a non-const
access to the variable and one part where we remove the const cast.

The first part can be one of three methods. Remove const from the variable declaration,
remove const from the function or make the member variable mutable.

Remove Const from the Variable Declaration

With the variable name we search, first in the same AST then via the index, [1]
(see figure 16 and listing 56) for the declarator [2] of that name. Now using the
IASTDeclarator we get the IASTDeclSpecifier [4] via the IASTDeclaration [3]. We copy
the IASTDeclSpecifier, set it to non-const and replace the old one with the non-const
one [5]. We might need to get a new ASTRewrite on which to call the replace method
if we are in a different AST than the marked node.

Figure 16: How to find the IASTDeclSpecifier in the AST based on its name.

2017-06-15 57 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 int i = 20;
2 int const * ic = &i; // [2 -5]
3 int * inew = const_cast <int *>(ic); // [1]

Listing 56: Code for AST in figure 16

Remove Const from the Function

To remove const from the function we have to remove it from the declarations as well
as from the definition.

Removing it from the definition is easy because that is easily accessible via parent
nodes [2] of the cast [1] (see figure 17 and listing 57). We just need to find the
IASTFunctionDeclarator [3], copy it and set the copy to non-const and replace the
old node with the new one.

Figure 17: How to find the IASTFunctionDeclarators in the AST based on its
name.

2017-06-15 58 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

1 // main.cpp
2 # include "main.h"
3 int constFuncExample :: getVal () const { // [2] , [3] ,

[4] " constFuncExample :: getVal ", [8] " getVal "
4 const_cast < CacheClass &>(cache).set(val); // [1]
5 return val;
6 }
7 // main.h
8 // ...
9 class constFuncExample { // [5]

10 public :
11 int getVal () const ; // [7] , [8] " getVal "
12 private :
13 int val = 0;
14 CacheClass cache ;
15 };

Listing 57: Code for AST in figure 17

To find the declaration (if it is separate) we need to find the class [5] via the qualified
name [4]. Once we have the class we can search through the declarations [6] and its
declarators [7] for one with the same name as the function [8].
With that declarator we can do the same as with the IASTFunctionDeclarator from the
definition. For that we most likely need to get a new ASTRewrite for the new AST to
call the replace method.

Make the Member Variable Mutable

Using the same method like in chapter ”Remove Const from the Variable Declaration”
we get the IASTDeclSpecifier.

On a copy of the IASTDeclSpecifier we can set the ”Storage Class” to sc_mutable and
replace the old node with the new one.

Remove the Const Cast

For all quick fix variations we can replace the const cast with its operand as the last
step.

2017-06-15 59 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.6 ES.49: If must use a cast, use a named cast

While implementing ”ES.50: Don’t cast away const” (chapter 4.5) we noticed that ES.49
needed some modifications.

4.6.1 const cast in Checker & Quick Fix

We now have ES.50 which says to not cast away const. The ES.50 checker marks
const_cast as well as C-style casts which cast away const.

Therefore, we can now ignore any cast which cast away const and remove the const cast
quick fix.

4.6.2 dynamic cast Quick Fix

The following description of C-style casts shows that a C-style cast can not be a dynamic
cast.

C-style cast and function-style cast are casts using (type)object or
type(object), respectively. A C-style cast is defined as the first of the following
which succeeds:

• const_cast

• static_cast (though ignoring access restrictions)

• static_cast (see above), then const_cast

• reinterpret_cast

• reinterpret_cast, then const_cast

stackoverflow.com community wiki, When should static cast, dynamic cast,
const cast and reinterpret cast be used? [sta16]

Therefore, this quick fix can be removed.

4.6.3 reinterpret cast Quick Fix

The reinterpret_cast is quite a dangerous cast and one should avoid using it. Because
we now are using preferences for quick fixes we now also hide this quick fix behind a
check box in the preferences, and is disabled by default.

2017-06-15 60 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.7 ASTHelper

The ASTHelper class contains helpful functions to find nodes in the AST based on other
nodes or information. As soon as some code needs to be used in multiple rules, we
extract that into this class to reduce duplicated code.

This chapter shows changes and additions made to this class.

4.7.1 findNames, getFunctionDeclaratorFromName,
getFunctionDeclaratorFromNameInSameTU and
getFunctionDeclaratorFromNameViaIndex

These functions were modified, renamed and split while optimising the runtime of the
ES.46 checker.

getFunctionDeclaratorFromName tries to find the declarator in the same translation
unit via getFunctionDeclaratorFromNameInSameTU. If nothing is found it tries to find
it via getFunctionDeclaratorFromNameViaIndex which in turn uses findNames using
the provided astCache. Previously findNames did not support an astCache.

For more detailed information see chapter 2.2.6.

4.7.2 isInMacro

Nodes generated by C++ macros appear like normal nodes in the AST. But because a
quick fix fails if it tries to modify nodes generated by macros, we have to be able to tell
if a node is in a macro.

Finding out if a node is generated by a macro is not that difficult. We can loop through
the node locations and if any of them is of type IASTMacroExpansionLocation the node
is generated by a macro.

4.7.3 namesEqual

It seems to be quite difficult to reliably check if two IASTName objects name the same
thing. (For the following code samples a and b are IASTName nodes.)
Quite quickly we noticed that just using a.equals(b) is not enough. But using the
bindings does not always work either. a.resolveBinding().equals(b.resolveBinding())
often returns false even though both name the same thing. Mainly when the two IASTNames
are from two different files and AST.

After some testing we thought that a.resolveBinding().getScope().getBinding(b, true)
.equals(a.resolveBinding()) did the trick. But after adding some additional JUnit tests to

2017-06-15 61 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

our project we noticed some cases where this returned true when it should not. This happened
with two equally named member variables in two different classes in the same file.

In our current solution we now get for each name a list of all occurrences via the index. Then we
compare those two lists using the file name, offset and node length stored in the IASTFilelocations
of the IIndexNames. If the two lists are equal, the two names are equal. This can be done without
parsing the AST for the IIndexName. Therefore, runtime should not be a big issue.
If we get empty lists, which seems to happen sometimes, we fall back to our first version of
a.resolveBinding().equals(b.resolveBinding()).

4.7.4 Other Added or Modified Helper Functions

Some other functions were created or needed small modifications to ease the traversal of the
AST.

Name What changed used by
getASTTranslationUnit Added index read-lock.

(See chapter 4.8.5.)
multiple

collectMemberFunctions Fixed cast exception. C.83,
C.85

getDeclSpecifierFromDeclaration Added support for more declaration nodes. Using
Reflection to check if the declaration node has a
getDeclSpecifier method.

ES.50,
C.83, ...

getTypeFromExpressionElement Modified to be able to get the List of IASTTypeId
not converted to strings.

ES.46,
ES.50

getNameOfFunctionFromDeclaration New – Gets the Name of a Function Declaration. C.20
getLoopVariable
getChildExpression

New – Finds the first id expression in the iteration
expression of a for-loop

ES.74

isForLoopStatement Modified to fix a bug. ES.74
getNextParentScope New – Searches the next parent node which has a

Scope.
ES.75

getNextOupterLoop New – Searches the next parent node which is a
Loop.

ES.76

isDirectlyAfterwards New – Checks if one node is directly afther the
other.

ES.76

getNextNode New – Gets the children of the parent node and
finds the node after the current one.

ES.76

isNameMemberofClass New – Checks if a given Name is a member of a
given Class.

ES.50

getDeclarators Gets the list of IASTDeclarators from a
IASTDeclaration.

ES.50

findDeclaratorToName New – searches first the translation unit then the
index for the declarator of a given name.

ES.50

getDeclaration New – searches the AST for the next outer
IASTDeclaration.

ES.50

isTypeConst New – checks if the type is const for different in-
stances of IType.

ES.50

2017-06-15 62 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.8 Other Changes

All changes to CCGLator not specific to a rule we describe in this chapter.

4.8.1 Handling Markers at Nodes in Macros

During testing the plug-in on a Real World Application (see chapter 2.2) as well as when
implementing rule ES.75 (see chapter 4.1) we noticed issues with marked nodes generated by
macros.

When analysing an AST, nodes in macros get expanded where macros get used and appear
as normal nodes in the AST. Therefore in a project which uses macros, lots of markers were
generated where the issue was not directly visible but inside a used macro. Additionally, for one
issue in a macro you would have gotten a marker for every macro usage.

To prevent this we decided to not mark any node inside a macro. To do this we modi-
fied our BaseChecker and added a check for isInMacro (see chapter 4.7.2) in the overridden
reportProblem functions.

4.8.2 Not Expanding Macros in Reused Nodes

Every call like node.copy(); expanded used macros. This modified the source more than nec-
essary.

ASTRewrite already supports generating code based on nodes from macros, but needs the macro
location saved on them.

To not loose this information when copying a node, we just had to call copy with the appropriate
CopyStyle like this: node.copy(CopyStyle.withLocations);

We searched our existing codebase for every call to INode.copy() and made sure to change this
if needed.

2017-06-15 63 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.8.3 Changing the Ignore Attribute

Figure 18: How to find the
anchor name of a rule

The C++ Core Guidelines now define the format of the
ignore attribute. [SS15, In.force]

To comply with the guidelines we now use gsl::suppress
instead of ccglator::ignore. Likewise, instead of using
the rule numbers (like ”C.83”) which are subject to change,
we use now the anchor names of the rules as defined by the
guidelines. (See figure 18, hint: do not use the link at the
rule title.)

Because we needed to add the anchor names to all the check-
ers, we used this to clean up the code a bit and move the
ignoreStrings to the same place as the problem-IDs.

Additionally, every JUnit test had to be updated.

4.8.4 Defining a Marker Type

As per Peter Sommerlad’s request we defined the markerType of our markers such that they
have their own group and do not get mixed with other general markers anymore.

This was just a small adjustment to the plugin.xml. To suppress a warning we added a stub
class extending the CodanProblemMarkerResolutionGenerator.

4.8.5 Lock Index

In the findNames and the getASTTranslationUnit methods of the ASTHelper class and in the
getASTTranslationUnit method of the ASTRewriteStore class we forgot to lock the index upon
usage. To prevent issues we fixed this.

Without this correction we got assertion errors during JUnit tests. This happened on checks to
the locked status in the index database.

4.8.6 Merging Problem-IDs

For some rules we had multiple problem-IDs. For example for rule ES.46 we had 12 problem-IDs
to be able to disable different types of lossy casts independently. Or rule ES.74 had one problem-
ID for markers which support a quick fix and one without. To tidy up this mess we started using
problem preferences as well as the ”isApplicable”-check in quick fixes.

2017-06-15 64 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

Problem Preferences

In order to switch to using preferences, we had to report the same problem-ID everywhere in the
checker but before reporting check the preferences if it is enabled for the current case.

The rules now having preferences are:

• ES.46: Avoid narrowing conversions
• ES.49: If you must use a cast, use a named cast
• ES.9: Avoid ALL CAPS names (new rule)
• ES.76: Avoid goto (new rule)

isApplicable

In order to use isApplicable instead of multiple problem-IDs, any special-casing in the checker
can be removed and we can always report the same problem-ID. Optionally, different problem
arguments can be reported to still have different problem descriptions. The checks which de-
cided which problem-ID to use need to be changed to report a boolean value in the overridable
isApplicable method in the quick fixes.

The rules we updated to use this function are:

• C.45: Don’t define a default constructor that only initializes data members; use in-class
member initializers instead

• C.83: For value-like types, consider providing a noexcept swap function
• ES.74: Prefer to declare a loop variable in the initializer part of a for-statement

For new rules we used isApplicable too.

Future Work

Rules still having multiple problem-IDs are:

• C.31: All resources acquired by a class must be released by the class’s destructor
• C.60: Make copy assignment non-virtual, take the parameter by const&, and return by

non-const&
• C.63: Make move assignment non-virtual, take the parameter by &&, and return by

non-const&

4.8.7 Making the Ignore Attribute Matcher & Quick Fix more Generic

Our changes to the ignore attributes matcher and quick fix are explained in detail in
chapter 4.4.3.

2017-06-15 65 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.9 Testing

Major parts of this chapter have been copied from our term project [BD16].
In this project all the rules implemented are tested using the IFS CDT Testing Tools [fSR16a].
These tools allow easy testing of checkers and quick fixes. The test cases, consisting of a code-
block and a configuration, have to be written into a .rts-File. For every rule and quick fix a
separate file has to be created.

4.9.1 Checker

To test a checker, the configuration supports a ”markerPositions” attribute. With it, we can
define on which line in the test code the marker should appear. If none is provided no marker
should appear. See listing 58 for an example.

1 //! SwappableClassInNamespace
2 //@. config
3 markerPositions =2
4 // @main .h
5 1 namespace swap {
6 2 struct SwappableMember {
7 3 void swap(SwappableMember & other) { }
8 4 };
9 5 }

10 //! NamespaceLevelSwapInOtherFile
11 // @swap .cpp
12 1 namespace swap {
13 2 struct SwappableMember {
14 3 void swap(SwappableMember & other) { }
15 4 };
16 5 }
17 // @swap2 .cpp
18 1 namespace swap {
19 2 void swap(SwappableMember &a, SwappableMember &b) {}
20 3 }

Listing 58: Two tests for the C.85 Checker

2017-06-15 66 Bachelor Thesis

4. IMPLEMENTATION CCGLATOR CCGLImperator

4.9.2 Quick Fix

A similar approach is possible for testing a quick fix. First off the code before the quick fix is
written. Separated with the ”//=” string, the code after the execution of the quick fix can be
defined. See listing 59 for an example.

1 //! ClassInNamespaceWithoutSwapFunction
2 // @main .h
3 1 namespace swap {
4 2 struct SwappableMember {
5 3 void swap(SwappableMember & other) {}
6 4 };
7 5 }
8 //=
9 1 namespace swap {

10 2 struct SwappableMember {
11 3 void swap(SwappableMember & other) {}
12 4 };
13 5
14 6 void swap(SwappableMember & a, SwappableMember & b) noexcept
15 7 {
16 8 a.swap(b);
17 9 }
18 10 }

Listing 59: Test for the C.85 quick fix

4.9.3 To Do’s

Some of the previously mentioned changes needed updates in the JUnit tests.

Testing with Different Problem Preferences

Because we merged problem-IDs some of the JUnit tests where we expected only one marker
now had those of the other types too.

To be able to test them independently we needed to add a way to change the preferences of a
problem before a test.

Without modifying the CDT Testing Tools the only way we found was to have an ”override
preference” map in the BaseChecker. This is because CDT-Testing calls runCodan() directly
after modifying the preferences which overrides any previously modified preferences.

But the modification needed in the CDT Testing Tools was quite simple. A simple overridable
problemPreferenceSetup(RootProblemPreference preference) which gets called before call-
ing runCodan() solves this issue. For this we made a small Pull request for the IFS CDT Testing
Tools repository on GitHub [Bis17g].

By overriding this new function in the test classes we now can modify the preferences of the
tested problem.

2017-06-15 67 Bachelor Thesis

https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting/pull/10

4. IMPLEMENTATION CCGLATOR CCGLImperator

Support for Testing ”IsApplicable”

To be able to test the functionality of isApplicable we added a new test-property of the same
name. If set, it will be tested if the quick fix is applicable and if that is expected before running
the quick fix.

Testing a Quick Fix Where There Are Always Multiple Markers

The checker of rule C.83 had a problem-ID which was always only marked additionally to the
main problem-ID. By merging the problem-IDs we now had the issue that when trying to test
that quick fix the JUnit tests could not know which of the two markers should be used.

To fix this we defined a new test-property ”markerNr” which tells the JUnit test which of the
markers should be used. If not supplied, the old behaviour to expect exactly one marker is
preserved.

To support this we needed to sort the marker list ourselves. This sorting function is now in a
MarkerHelper class.

2017-06-15 68 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

5 Implementation GslAtorPtr

For GslAtorPtr the most recent commit for CharWars was used and a new branch was created
containing all the code of GslAtorPtr. On this branch all of the following work was done.

5.1 Pointer and Size Parameter

Whilst the GSL span<T> type was already implemented in the GslAtorPtr [GM16], the simi-
larities between span<T>, string_span<> and string_view came to light in the analysis of the
types. This resulted in the possibility of reusing a large portion of the codebase of span<T> for
the other two types.

5.1.1 Checker

The checker for a span<T> already implemented a lot of the logic needed to handle string_span
<> as well as string_view. Because of this, it was renamed to PointerSizeParameterProblem-
Generator and customised to also handle string_span<> and string_view. For this the check
which type of pointer it is, has to be added. When the pointer is neither an unsigned or signed
char like type, either a string_span<> or string_view can be applied. To decide which one
of these two is the right one, the pointer checks if it is constant and if the chosen C++ version
is C++17 or higher (see 5.1.3 for more information). If both of these conditions are met, a
string view can be used.

5.1.2 Quick Fix

The first implementation of the quick fixes showed that with the current state of the code, a lot
of duplication had to be generated to handle the three different types.

Figure 19: First implementation of string span and string view

2017-06-15 69 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

As can be seen in the diagram above(figure 19), the only real difference for span<T>,
string_span<> and string_view is the method createDeclSpecifier in the BaseBuickFix classes.
This method handles the generation of the used type in the quick fix. All the other methods in
the classes RewriteQuickFix and TrampolineQuickFix are the same. While the fixes worked as
intended, the design was not satisfactory. The new design for all three quick fixes avoided a lot
of code duplication (see figure 20).

Figure 20: New design for pointer and size parameter

To achieve this, a new abstract class named PointerSizeParameterQuickFix was introduced. In
this class the method createDeclSpecifier is implemented which calls the method getTemplate-
NameList. This method handles the creation of the appropriate type depending on the reported
error.
The quick fix specific methods like handleDefinition and handleDeclaration are now in their own
baseclasses instead of in every quick fix, resulting in less duplicated code. A downside to this
design is the similarity between a RewriteQuickFix and a TrampolineQuickFix. The method
getTemplateNameList is defined in both of them and results in the same behaviour. Because of
this, the trampoline classes call the method from their respective rewrite class. Because the plug-
in requires a class which can be called if a quick fix is executed, this can not be avoided.

2017-06-15 70 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

5.1.3 Checking C++ Version

For the check which C++ version is used, the plug-in Elevenator [fSR17] can be used. This
plug-in allows to generalise the used C++ version for all newly created projects in a workspace,
reducing the configuration overhead needed when creating a new one. Additionally, it allows to
query the used C++ version from a project. This feature is used in the checker to decide if a
string_view can be used or if the C++ version is lower than C++17.

5.1.4 Testing Framework Compatibility

Because the checker uses the Elevenator plug-in, the tests for a string_view failed automatically,
because the found C++ version was always set to C++11 in the testing framework. So to fix
this problem, it has to be possible to set a CPPVersion in the checker which is used instead of
the found version from Elevenator. After adding this field it has to be set to C++17 in the setUp
method from the string_view tests. With this change the testing worked as intended.

2017-06-15 71 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

5.2 Suppression of Warnings via Attribute

As described in the future work chapter of GslAtorPtr [GM16] the suppression of warnings via
attributes was a feature they wished to implement but did not have enough time for. This feature
is now added to the plug-in but was further divided into two problems. For the GslAtorPtr
problems, the ignore attribute functionality was implemented whilst for the CharWars problems,
the suppression is achieved by ignore comments.

5.2.1 Ignore Attribute

For the problems of GslAtorPtr an ignore attribute can be defined in a very similar fashion to
what CCGLator already provides. Because all the features of GslAtorPtr are based on the C++
Core Guidelines, the argument of the attribute can be set to the anchor of the corresponding
rule like in figure 21.

Figure 21: Ignore Attribute used in CharWars

To implement this several classes were copied from the CCGLator plug-in. The ”set ignore
attribute” quick fix handles the generation and placement of the attribute when run as a quick
fix and the AttributeMatcher class supports the checkers in finding an already present attribute
on the respective node.

2017-06-15 72 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

5.2.2 Ignore Comment

Codan provides per default a suppress comment per problem. So for CharWars problems, these
values are extracted from the settings page of a problem and then used to either check or generate
the ignore comment (see figure 22). Luckily codan provides a CommentMap which allows the
lookup of comments for a specific node.

Figure 22: Ignore Comment used in CharWars

To decide on which node a comment has to be added, the same method as for ignore attributes
can be used.

5.2.3 The Problem with Static Generators

During the implementation a problem came to light with the generator classes which handle the
generation of problems. In the old state, they were implemented statically, however the method
used to check for an ignore attribute or comment would be best implemented in a shared base
class. For this a new class BaseGenerator was added from which all the other generators extend
and all generators had to be changed to non static methods. With this change the two methods
used for checking can be implemented in the base class, avoiding duplicated code.

2017-06-15 73 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

5.3 Improve Span Refactoring

As discussed in the analysis chapter 3.3, the span refactoring can be improved with two additional
forms of function interfaces. To support these changes the checker as well as the quick fix has to
be improved.

5.3.1 Additions to the Checker

The original version reported the found pointer parameter position as an argument to the quick
fix. However, if multiple pointers should be found, it has to report multiple positions. So the
improved checker reports one list with all the found pointer parameter positions and one list
with the according size parameter positions. So the whole analysis which pointer needs which
size parameter is done in the checker.

5.3.2 Additions to the Quick Fixes

The quick fix calls three different methods. One handles the update of the callsite, one the
declaration and one the definition of the function. All three methods now also receive the list
with pointer and size parameter positions instead of only the single pointer parameter position.
This allows to fix all the found problems in one run. For this several loops had to be added to
execute the refactoring statements on multiple pointer parameters. The quick fix can now handle
code like in figures 23 and 24.

Figure 23: Before execution of span refactoring

2017-06-15 74 Bachelor Thesis

5. IMPLEMENTATION GSLATORPTR CCGLImperator

Figure 24: After execution of span refactoring

2017-06-15 75 Bachelor Thesis

6. CONCLUSION CCGLImperator

6 Conclusion

This section gives an overview of the results achieved in this project as well as pending work
possible to be done in other projects.

6.1 CCGLator Results

This project extended the existing plug-in with five new rules enforcing the correct use of switch-
statements, avoiding do-statements and highlighting of all uppercase names. For each rule,
tests were written to ensure the correct behaviour of the plug-in. Additionally, a lot of work was
invested into improving the code and making the plug-in more user-friendly and more expandable.
For the rule ”ES.78: Always end a non-empty case with a break” two changes to Eclipse CDT
were proposed and are already merged into the CDT codebase. The changes are to be released
with the next CDT version.

6.2 GslAtorPtr Results

The plug-in was improved to handle more dynamic function interfaces and support more specific
types in the quick fixes. Additionally, the support to set attributes or comments to ignore specific
rules was added, resulting in a coherent handling of ignoring rules in both plug-ins.

6.3 Future Work

As stated in the introduction, the C++ Core Guidelines [SS15] are an extensive set of rules and
only a small part of them are already implemented in this project. For future work additional
rules can be implemented. Especially the chapters ”Interfaces” and ”Functions” from the C++
Core Guidelines define a lot of rules which could use an implementation. For this the plug-in
allows an easy extension of the already available rules to support new ones.
Some future work points in GslAtorPtr and CharWars are still not implemented and could be
tackled in another project.

6.3.1 Merge Problem-ID’s

As already mentioned in chapter 4.8.6 there are still some rules having multiple problem-IDs and
therefore multiple entries in the settings. It might make sense to also merge these and detect
the cases using isApplicable and by using problem preferences. The rules are C.31, C.60 and
C.63.

2017-06-15 76 Bachelor Thesis

6. CONCLUSION CCGLImperator

6.3.2 Cross File Changes

A lot of rules rewrite a function interface but do not handle the same interface in another file.
For example if a function is declared in a header file and the definition is in a cpp file only the
definition is updated. No changes are made to the header file. Such a behaviour can be observed
in multiple rules and would be a point to improve. Some examples are: C.83, C.84, C.164. As a
reference implementation one might have a look at ES.50.

6.3.3 ES.46 Runtime

The runtime of the checker for the rule ES.46 is still higher than all other checkers. We already
improved the runtime a lot as mentioned in chapter 2.2.6. However, it might be possible to
get the needed parameter types directly from the bindings (of type ICPPFunction) in the index
without the need for parsing the AST of other files.

2017-06-15 77 Bachelor Thesis

A. PROJECT ORGANISATION CCGLImperator

A Project organisation

In this chapter the organisation of the project is outlined. This contains a time report, used tools
and a overview of our approach.

A.1 Approach

Because we worked on two different plug-ins we each focused on one of them. But in case of
design or comprehension questions, we asked each other for a second opinion. Rolf Bislin focused
on CCGLator, Kilian Diener focused on CharWars.

For implementing new rules in the CCGLator we dealt with one rule at a time and wrote
tests, analysis, checkers and quick fixes for this rule. After the rule was done the next one was
tackled.

For CharWars the existing infrastructure had to be extended or changed for the new features.
This resulted in a lot of trial and error to get an understanding of the plug-in and find the right
methods to write or extend.

With this approach we were mostly independent from each other allowing us to work on the
project according to our own schedule.

A.2 Project Plan

This project had a time budget of 360 hours per student. This results in 21 hours and 11
minutes per student per week over the timespan of 17 weeks. The actual achieved time per
student is:

• Rolf Bislin: 351 hours

• Kilian Diener: 335 hours

A report based on worked hours per week is found in the figure 25.

2017-06-15 I Bachelor Thesis

A. PROJECT ORGANISATION CCGLImperator

Figure 25: Planned vs. actual hours worked per week

A.3 Project Management Environment

The virtual server provided by the HSR contained a Redmine installation which we used as a
project planning and time management tool as well as to store our agenda item lists for our
weekly meetings. For the Redmine database we created a daily cronjob to make a backup onto
an external online storage.

We also used an additional Apache docker container to provide a stable copy of the CCGLator’s
plug-in update site.

A slight modification to the nginx proxy installation was needed to enable transferring files bigger
than 1 MB.

A.4 This Document

To generate this Document we used LATEXwhich we installed using the MiKTeX Installer [Sch]
and as an editor we used TeXstudio [vdZ+]. To edit the images in this document we used Gimp.
[Tea]

2017-06-15 II Bachelor Thesis

https://miktex.org/download
http://www.texstudio.org/
https://www.gimp.org/

B. USER MANUAL CCGLImperator

B User Manual

This user manual is an updated version of the one written in our term project [BD16].
The manual contains a quick overview on how to install, configure and use the CCGLator or
CharWars plug-in for Eclipse.

B.1 Installation

To use the CCGLator or CharWars plug-in install it via ”Help → Install New Software...” and
use the appropriate update site from below or the path to the correct ”updatesite” folder in
the archive.

CCGLator http://sinv-56012.edu.hsr.ch/updatesite-ccglator/ (figure 26)
CharWars http://sinv-56012.edu.hsr.ch/updatesite-cute/ (figure 27)

Figure 26: Installing the CCGLator plug-in via the update site

Figure 27: Installing the CharWars plug-in via the update site

2017-06-15 III Bachelor Thesis

B. USER MANUAL CCGLImperator

B.2 Configuration

To select which rules should be active, open
”Window → Preferences → C/C++ → Code Analysis” or
”Project → Properties → C/C++ General → Code Analysis” and
select the rules from the list: (figure 28)

Figure 28: The Code Analysis Selection Screen

2017-06-15 IV Bachelor Thesis

B. USER MANUAL CCGLImperator

Some rules have additional configurations under ”Customize Selected...”. One example screen is
seen in figure 29.

Figure 29: Customize Problem Screen

2017-06-15 V Bachelor Thesis

B. USER MANUAL CCGLImperator

One additional configuration screen for GslAtorPtr is found under ”Window → Preferences →
GSLatorPtr” (see figure 30). On this page the include of the GSL headers can be configured and
the name of GSL-types can be changed.

Figure 30: The Code Analysis Selection Screen

B.3 Usage

Any found issue of the enabled rules will get marked with a yellow squiggly underline in the code
[1] (see figure 31). Using the icons on the left [2] the quick fix list is opened [3]. From that list a
quick fix can be chosen to be applied to the code.

Figure 31: Using the plug-in

2017-06-15 VI Bachelor Thesis

C. DEVELOPER MANUAL CCGLImperator

C Developer Manual

This developer manual is an updated version of the one written in our term project [BD16].
The manual covers how to set up and use the development environment for the code base of a
codan plug-in locally as well as on an continuous integration server.

C.1 Prerequisite

The following requirements have to be met:

• Git [gs] has to be installed and known

• Java Development Kit (JDK) 8 [Ora] needs to be installed

• The Eclipse SDK, found on the Eclipse Download Page [Foua], is used as an IDE.

• A working C++ compiler must be installed and working in a normal Eclipse
C++ environment.
On Windows we recommend using the MingW package from Nuwen.
Use these instructions by the IFS C++ Wiki [SCH+16]:

1. download MingW from Nuwen [Lav]
2. install MingW Nuwen
3. add the MingW bin directory to the system PATH
4. in the bin directory copy ”cpp.exe” and name it ”x86 64-w64-mingw32-gcc.exe” to

help Eclipse find it.

2017-06-15 VII Bachelor Thesis

https://git-scm.com/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://download.eclipse.org/eclipse/downloads/
https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6
https://nuwen.net/mingw.html

C. DEVELOPER MANUAL CCGLImperator

C.2 Setting up the Eclipse Workspace

To set up the Eclipse workfolder for the plug-in follow these steps:

1. Clone the git project (or extract it from a zip file)
(git clone https://hmuster@git.hsr.ch/git/CCGLadiator ccglator or
git clone https://hmuster@git.hsr.ch/git/Cute cute)

2. Open Eclipse and choose some workspace folder
(e.g. ”C:\CCGLImperator\workspace”
Depending on the Project this can be the same as the plug-in source folder.)

3. Open File → Import → General → Existing Project into Workspace

4. Select the plug-in source folder as root directory
(e.g. ”C:\CCGLImperator\ccglator”)

5. Optionally deselect unwanted projects from the list

6. Click Finish

7. In the Package Explorer search and open the target definition file.
(e.g. ”ch.hsr.ifs.cute.ccglator.targetdefinition.target”
or ”ch.hsr.ifs.cute.target.cdt921.target”)

8. Click on ”Set as Target Platform” in the upper right corner and wait for it to finish.

9. All errors in CCGLator/CharWars should vanish and building the project should succeed.

Note: Most additional errors in other Cute projects get resolved by setting an API baseline under
Window → Preferences → Plug-in Development → API Baselines. e.g. choose the ”Running
Platform”.
Select ”Close Project” in the right-click menu on projects which still have errors.

2017-06-15 VIII Bachelor Thesis

C. DEVELOPER MANUAL CCGLImperator

C.3 Coding

To run or debug an Eclipse instance with the plug-in, right click on the CCGLator or CharWars
project and choose ”Run As → Eclipse Application” or ”Debug As → Eclipse Application”.

Below is a quick overview of the important parts of the project.

C.3.1 plugin.xml

In this file the newly added checkers and quick fixes have to be defined so that Eclipse can find
these rules and provide them.

C.3.2 Checkers, Visitors and Quick Fixes

For every rule these three kinds of classes are needed. These have to be implemented and are the
core work of an extension. In the checker class we define rule specific information like ”Rule-NR”,
”problem-ID”, ”Ignore-String”, ”Profile-Group” and which visitor to use.

C.3.3 ASTHelper, ASTFactory

Functions which are used over different rules have to be extracted into these classes to avoid
code duplication.

C.3.4 Testing

See chapter 4.9 for an overview of the testing framework used.

C.4 Maven

The plug-in can be built with the Java build management tool Maven [Foub].The command
”mvn install” builds, test and packages the plug-in resulting in a archive file. In it the update
site is found which can be used by any Eclipse installation.

2017-06-15 IX Bachelor Thesis

C. DEVELOPER MANUAL CCGLImperator

C.5 Continuous Integration Server

The Continuous Integration Server is using a Jenkins docker container. This was preinstalled in
the virtual server which was provided by the HSR.

Additionally, we installed the following packages using the ”pacman -S” command:

• libxtst [Fouc]
Missing package needed by the Eclipse environment

• xorg-server-xvfb [Foud]
A dummy X-Server which enables the server to run the JUnit tests without a real desktop
environment.

In Jenkins we had to install the xvfb Jenkins plug-in, add the git project, select the (updated)
Maven [Foub] pom.xml (in the ch.hsr.ifs.cute.ccglator.parent package), enable the xvfb plug-in
in the project.
We defined it to build the project when a webhook containing the branch name ”master” gets
called. In the HSR git SCM Manager we defined the following webhook url pattern:
http://sinv-56012.edu.hsr.ch/jenkins/job/CCGLadiator/build?token=build${first.branches}

Correctly configured the current plug-in version can be installed by using the generated update
site package: (Figure 32)

Figure 32: Using the update site generated by jenkins

2017-06-15 X Bachelor Thesis

Glossary CCGLImperator

Glossary

abstract syntax tree (also AST) The tree structure representing the written code. The con-
tained information is normalised and supplemented by additional information like bind-
ings. XIII, XIV, 13, 14, 16, 21, 25, 50, 52, 53, 56, 57, 59, 61–63, 77

binding A reference from one name to others. XIII, XIV, 14, 54, 61, 77

C++ Core Guidelines A set of rules for better quality of code. See chapter 2.1 and [SS15].
i–iii, XIII, 6, 10, 28, 64, 72, 76

CCGLadiator Our term project. Further development of CCGLator. See [BD16]. 37

CCGLator Eclipse plug-in developed by Kaya and Schmidiger in their bachelor thesis. See
chapter 1.1.1 and [zKS16]. i–iii, I–III, VIII, IX, XIII, 6, 8–10, 30, 37, 63, 72

CCGLImperator This bachelor thesis.

CDT Testing Tools Plug-in by the IFS which provides the JUnit testing infrastructure for
checkers and quick fixes. See chapter 4.9 and [fSR16a]. 66, 67

Cevelop A version of Eclipse CDT by the IFS. See chapter 1.2.1 and [fSR16b]. XIII, 6, 7

CharWars Cevelop plug-in developed by Suter and Gonzalez in their bachelor thesis. See
chapter 1.1.2 and [SG14]. I, III, VIII, IX, XIII, 6, 8, 9, 30, 33, 69, 72, 73, 76

checker Analyses the AST for a specific problem. Implemented using a visitor which gets called
on the necessary node types. I, IX, XIII, XIV, 7–9, 12, 14–19, 25, 34, 36–38, 40, 43, 49,
52, 53, 60, 61, 63–68, 71, 72, 74, 77

codan The part of Eclipse CDT which provides basic infrastructure for checkers and quick fixes.
VII, 25, 49, 50, 67, 73

Cute The plug-in collection containing CharWars/GslAtorPtr managed by the IFS. VIII

Eclipse An IDE. III, VII–X, XIII, 6, 50

Eclipse CDT (also CDT, Eclipse C/C++ Development Tooling) Eclipse package for C++.
See chapter 1.2 and [Foua]. i, ii, XIII, 6, 7, 25, 37, 49–51, 76

Elevenator Cevelop plug-in developed the IFS. See chapter 5.1.3 and [fSR17]. 71

GslAtorPtr Bachelor thesis of Geisseler and Meier. Further development of CharWars. See
chapter 1.1.2 and [GM16]. i–iii, VI, XIII, 6, 8, 9, 30–32, 35, 69, 72, 76

Guideline Support Library (also GSL) A library used for some C++ Core Guideline rules.
See chapter 2.1.1 and [Mic16]. 11, 30, 31, 69

IFS Institute for Software. XIII, 7, 66, 67

2017-06-15 XI Bachelor Thesis

Glossary CCGLImperator

index Contains information about which binding corresponds to which locations in which source
code files. 15, 16, 54, 57, 62, 64, 77

integrated development environment (also IDE) Software package for developing programs.
VII, XIII, 6, 7

JUnit test unit testing suite for Java to test written code. X, 50, 61, 64, 67, 68

macro Some code part which is given a name and gets inserted everywhere where that name
gets used by the preprocessor while compiling. 16, 27, 52, 53, 61, 63

marker A problem reported to a specific node in the AST. The corresponding code gets high-
lighted with squiggly lines and an icon on the left. VI, XIV, 12–14, 16, 17, 36, 40, 43, 44,
47, 49, 52–54, 57, 63, 64, 66–68

plug-in A software package supplementing an existing program. i–iii, I–III, VII–X, XIII, XIV,
6–12, 25, 30, 31, 33–37, 63, 70–72, 76

problem (also codan problem) One specific issue type. Has one ID, a settings entry with
optionally additional preferences, a checker and can have one or more quick fixes. IX,
XIII, XIV, 7, 8, 36, 64, 65, 67, 68, 72–74, 76

quick fix (also known as resolution) A method of automatically fixing a marked issue in source
code. Most often a refactoring. Provided to the programmer by a plug-in. Implemented
by modifying or replacing nodes in the AST. i, ii, I, VI, IX, XIII, XIV, 6, 7, 9, 10, 17, 18,
20–23, 25, 27, 28, 32–38, 40, 43–45, 47, 49, 50, 52, 53, 56, 57, 59–61, 64–70, 72, 74, 76

refactoring Changing the source code of a program without modifying the perceived behaviour
in order to improve the structure of the program. XIV, 8, 9, 18, 20, 22, 31, 33, 35–37, 74

translation unit (also TU) One file in a C++ programm. As a node in the AST it is the root
node of the tree. 14, 27, 53, 61, 62

2017-06-15 XII Bachelor Thesis

REFERENCES CCGLImperator

References

[BD16] Rolf Bislin and Kilian Diener. CCGLadiator - C++ Core Guidelines Rules Checker
and Quick Fixes. https://eprints.hsr.ch/551/, 2016. [Online; accessed 7-April-
2017].

[Bis17a] Rolf Bislin. ASTWriter’s StatementWriter does not write Attributes for some
Nodes like IASTForStatement. https://bugs.eclipse.org/bugs/show_bug.cgi?
id=514684, 2017. [Online; accessed 9-May-2017].

[Bis17b] Rolf Bislin. Change 94351 (for ”ASTWriter’s StatementWriter does not write At-
tributes for some Nodes like IASTForStatement”). https://git.eclipse.org/r/
94351, 2017. [Online; accessed 9-May-2017].

[Bis17c] Rolf Bislin. Change 94361 (for ”Codans Case Break Checker ignores the new C++17
fallthrough attribute”. https://git.eclipse.org/r/94361, 2017. [Online; accessed
9-May-2017].

[Bis17d] Rolf Bislin. Change 95765 (for ” Codans Case Break Comment QuickFix does not
have JUnit tests”. https://git.eclipse.org/r/95765, 2017. [Online; accessed 9-
May-2017].

[Bis17e] Rolf Bislin. Codans Case Break Checker ignores the new C++17 fallthrough at-
tribute. https://bugs.eclipse.org/bugs/show_bug.cgi?id=514685, 2017. [On-
line; accessed 9-May-2017].

[Bis17f] Rolf Bislin. Codans Case Break Comment QuickFix does not have JUnit tests. https:
//bugs.eclipse.org/bugs/show_bug.cgi?id=515814, 2017. [Online; accessed 9-
May-2017].

[Bis17g] Rolf Bislin. Pull request ”Support modifying ProblemPreferences” for CDT-Testing.
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting/pull/10, 2017. [Online;
accessed 25-May-2017].

[Blo10] Ken Bloom. Answer to ”What is wrong with using goto?” (1). http://
stackoverflow.com/a/3517763, 2010. [Online; accessed 7-April-2017].

[bta10] bta. Answer to ”What is wrong with using goto?” (2). http://stackoverflow.com/
a/3517765, 2010. [Online; accessed 7-April-2017].

[Cor17a] Thomas Corbat. Change 96102 (for ” Codans Case Break Comment QuickFix does
not have JUnit tests”. https://git.eclipse.org/r/96102, 2017. [Online; accessed
9-May-2017].

[Cor17b] Thomas Corbat. Change 96567 (for ”ASTWriter’s StatementWriter does not write
Attributes for some Nodes like IASTForStatement”). https://git.eclipse.org/r/
96567, 2017. [Online; accessed 9-May-2017].

[Dij68] Edsger W. Dijkstra. Go-to statement considered harmful. http://www.cs.utexas.
edu/users/EWD/ewd02xx/EWD215.PDF, 1968. [Online; accessed 7-April-2017].

[Foua] Eclipse Foundation. The Eclipse Project Downloads. http://download.eclipse.
org/eclipse/downloads/. [Online; accessed 15-June-2017].

[Foub] The Apache Software Foundation. Apache maven project. https://maven.apache.
org/. [Online; accessed 15-June-2017].

2017-06-15 XIII Bachelor Thesis

https://eprints.hsr.ch/551/
https://bugs.eclipse.org/bugs/show_bug.cgi?id=514684
https://bugs.eclipse.org/bugs/show_bug.cgi?id=514684
https://git.eclipse.org/r/94351
https://git.eclipse.org/r/94351
https://git.eclipse.org/r/94361
https://git.eclipse.org/r/95765
https://bugs.eclipse.org/bugs/show_bug.cgi?id=514685
https://bugs.eclipse.org/bugs/show_bug.cgi?id=515814
https://bugs.eclipse.org/bugs/show_bug.cgi?id=515814
https://github.com/IFS-HSR/ch.hsr.ifs.cdttesting/pull/10
http://stackoverflow.com/a/3517763
http://stackoverflow.com/a/3517763
http://stackoverflow.com/a/3517765
http://stackoverflow.com/a/3517765
https://git.eclipse.org/r/96102
https://git.eclipse.org/r/96567
https://git.eclipse.org/r/96567
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://www.cs.utexas.edu/users/EWD/ewd02xx/EWD215.PDF
http://download.eclipse.org/eclipse/downloads/
http://download.eclipse.org/eclipse/downloads/
https://maven.apache.org/
https://maven.apache.org/

REFERENCES CCGLImperator

[Fouc] X.Org Foundation. libxtst 1.2.3-1. https://www.archlinux.org/packages/extra/
x86_64/libxtst/. [Online; accessed 16-June-2017].

[Foud] X.Org Foundation. xorg-server-xvfb 1.18.4-1. https://www.archlinux.org/
packages/extra/x86_64/xorg-server-xvfb/. [Online; accessed 15-June-2017].

[Fou11] Eclipse Foundation. Api Documentation for Eclipse CDT. http://help.eclipse.
org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%
2Foverview-summary.html, 2011. [Online; accessed 07-June-2017].

[Fou17a] Standard C++ Foundation. Standard for Programming Language C++. http:
//www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf, 2017. [On-
line; accessed 12-June-2017].

[Fou17b] The Eclipse Foundation. CDT/designs/StaticAnalysis. https://wiki.eclipse.org/
CDT/designs/StaticAnalysis, 2017. [Online; accessed 7-April-2017].

[Fou17c] The Eclipse Foundation. Eclipse CDT (C/C++ Development Tooling). https://
eclipse.org/cdt/, 2017. [Online; accessed 7-April-2017].

[FS17] Fish-Shell. Fish-Shell Github Project. https://github.com/fish-shell/
fish-shell, 2017. [Online; accessed 02-March-2017].

[fSR16a] Institue for Software Rapperswil. Updatesite for CDT-Testing tools released by IFS.
https://www.cevelop.com/cdt-testing/neon/, 2016. [Online; accessed 15-June-
2017].

[fSR16b] Institute for Software Rapperswil. Homepage of the Cevelop IDE. https://cevelop.
com, 2016. [Online; accessed 15-June-2017].

[fSR16c] Institute for Software Rapperswil. Homepage of the Institute for Software Rapperswil.
https://ifs.hsr.ch, 2016. [Online; accessed 15-June-2017].

[fSR17] Institute for Software Rapperswil. Website of the Elevenator plug-in. http:
//cute-test.com/projects/cute/wiki/Elevenator, 2017. [Online; accessed 13-
April-2017].

[GM16] Elias Geisseler and Philipp Meier. GslAtorPtr - C++ Core Guidelines Pointer Checker
and Support Library Refactorings. https://eprints.hsr.ch/528/, 2016. [Online;
accessed 15-June-2017].

[gs] git scm.com. Homepage of Git. https://git-scm.com/. [Online; accessed 15-June-
2017].

[Lav] Stephan T. Lavavej. MinGW Distro - nuwen.net. https://nuwen.net/mingw.html.
[Online; accessed 15-June-2017].

[Lib17] Boost Library. Implementation of string view in the boost library. http://www.
boost.org/doc/libs/1_63_0/boost/utility/string_view.hpp, 2017. [Online; ac-
cessed 12-April-2017].

[Mac16] Neil MacIntosh. Paper on the design of string span. http://open-std.org/JTC1/
SC22/WG21/docs/papers/2016/p0123r1.pdf, 2016. [Online; accessed 31-March-
2017].

[mgk11] mgkrebbs. Answer to ”Should I fix typos/grammatical errors in quotation?”. https:
//english.stackexchange.com/a/16623, 2011. [Online; accessed 18-May-2017].

2017-06-15 XIV Bachelor Thesis

https://www.archlinux.org/packages/extra/x86_64/libxtst/
https://www.archlinux.org/packages/extra/x86_64/libxtst/
https://www.archlinux.org/packages/extra/x86_64/xorg-server-xvfb/
https://www.archlinux.org/packages/extra/x86_64/xorg-server-xvfb/
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Foverview-summary.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Foverview-summary.html
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.cdt.doc.isv%2Freference%2Fapi%2Foverview-summary.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4659.pdf
https://wiki.eclipse.org/CDT/designs/StaticAnalysis
https://wiki.eclipse.org/CDT/designs/StaticAnalysis
https://eclipse.org/cdt/
https://eclipse.org/cdt/
https://github.com/fish-shell/fish-shell
https://github.com/fish-shell/fish-shell
https://www.cevelop.com/cdt-testing/neon/
https://cevelop.com
https://cevelop.com
https://ifs.hsr.ch
http://cute-test.com/projects/cute/wiki/Elevenator
http://cute-test.com/projects/cute/wiki/Elevenator
https://eprints.hsr.ch/528/
https://git-scm.com/
https://nuwen.net/mingw.html
http://www.boost.org/doc/libs/1_63_0/boost/utility/string_view.hpp
http://www.boost.org/doc/libs/1_63_0/boost/utility/string_view.hpp
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0123r1.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0123r1.pdf
https://english.stackexchange.com/a/16623
https://english.stackexchange.com/a/16623

REFERENCES CCGLImperator

[Mic16] Microsoft. Github repository for the Guideline Support Library. https://github.
com/Microsoft/GSL, 2016. [Online; accessed 15-June-2017].

[Ora] Oracle. Java SE Downloads. http://www.oracle.com/technetwork/java/javase/
downloads/index.html. [Online; accessed 15-June-2017].

[s+09] shsteimer et al. Answer to ”GOTO still considered harmful?” (1). http://
stackoverflow.com/a/47472, 2009. [Online; accessed 7-April-2017].

[Sch] Christian Schenk. Download MiKTeX. https://miktex.org/download. [Online;
accessed 15-June-2017].

[SCH+16] Peter Sommerlad, Thomas Corbat, Marcel Huber, et al. Cevelop on Windows. https:
//wiki.ifs.hsr.ch/CPlusPlus/ExW1#6, 2016. [Online; accessed 15-June-2017].

[SG14] Toni Suter and Fabian Gonzalez. CharWars Rise of the fallen strings: Replace C-
String Library calls with C++ std::string Operations. https://eprints.hsr.ch/
373/, 2014. [Online; accessed 06-June-2017].

[SS15] Bjarne Stroustrup and Herb Sutter. C++ Core Guidelines. https://github.com/
isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md, 2015. [Online;
accessed 15-June-2017].

[sta16] stackoverflow. When should static cast, dynamic cast, const cast and reinterpret cast
be used? http://stackoverflow.com/a/332086, 2016. [Online; accessed 15-June-
2017].

[Tea] The GIMP Team. GIMP - GNU Image Manipulation Program. https://www.gimp.
org/. [Online; accessed 15-June-2017].

[vdZ+] Benito van der Zander et al. TeXstudio. http://www.texstudio.org/. [Online;
accessed 15-June-2017].

[Wal08] Rob Walker. Answer to ”GOTO still considered harmful?” (2). http://
stackoverflow.com/a/46638, 2008. [Online; accessed 7-April-2017].

[zKS16] Özhan Kaya and Kevin Schmidiger. CCGLator - C++ Core Guidelines Construc-
tor Rules Checker and Quick-fixes. https://eprints.hsr.ch/522/, 2016. [Online;
accessed 15-June-2017].

2017-06-15 XV Bachelor Thesis

https://github.com/Microsoft/GSL
https://github.com/Microsoft/GSL
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://stackoverflow.com/a/47472
http://stackoverflow.com/a/47472
https://miktex.org/download
https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6
https://wiki.ifs.hsr.ch/CPlusPlus/ExW1#6
https://eprints.hsr.ch/373/
https://eprints.hsr.ch/373/
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://stackoverflow.com/a/332086
https://www.gimp.org/
https://www.gimp.org/
http://www.texstudio.org/
http://stackoverflow.com/a/46638
http://stackoverflow.com/a/46638
https://eprints.hsr.ch/522/

	Abstract
	Management Summary
	Introduction
	Approach
	Results
	Outlook

	Declaration of Authorship
	Introduction
	Previous Work
	CCGLator
	CharWars and GslAtorPtr

	Eclipse CDT
	Cevelop
	Codan

	Software Stack
	Scope Definition
	Minimal Scope
	Optimal Scope
	Maximum Scope

	Results

	Analysis CCGLator
	C++ Core Guidelines
	GSL: Guideline Support Library

	Testing on Real World Application
	C.83: For value-like types, consider providing a noexcept swap function
	C.84: A swap function may not fail
	C.85: If a user defined swap member function is used, namespace-level swap(a, b) should be overwritten
	C.164: Avoid conversion operators
	ES.26: Don't use a variable for two unrelated purposes
	ES.46: Avoid lossy (narrowing, truncating) arithmetic conversions
	ES.49: If you must use a cast, use a named cast
	ES.74: Prefer to declare a loop variable in the initializer part of a for-statement
	C.20: If you can avoid defining default operations, do
	Quick Fixes

	ES.75: Avoid do-statements
	Enforcement
	Pre fix Code
	Post fix Code

	ES.76: Avoid goto
	Enforcement
	Skipping a Codepart on Some Condition
	Loop Back to an Earlier Code Part on Some Condition
	Conclusion

	Pre fix Code
	Post fix Code

	ES.78: Always end a non-empty case with a break
	Enforcement
	Pre fix Code
	Post fix Code

	ES.9: Avoid ALL_CAPS names
	Enforcement
	Problematic Code

	ES.50: Don't cast away const
	Enforcement
	Pre fix Code
	Post fix Code

	Analysis GslAtorPtr
	string_span
	Difference Between span and string_span
	String_span Types
	Trampoline Function for string_span
	String_span Rewrite Quick Fix
	Fixing C Strings with string_span

	string_view
	What is a string_view?
	string_view Types
	string_span or string_view

	Improvement of the span<T>Refactoring
	Multiple Pointer and Size Parameter Combinations
	Multiple Pointer and One Size Parameter
	Compatibility with string_span and string_view

	Review

	Implementation CCGLator
	ES.75: Avoid do-statements
	Checker
	Quick Fix

	ES.76: Avoid goto
	Checker
	Goto Usage Pattern Analyser (ES76GotoUsagePattern)
	If and Loop Behaviour
	Break Behaviour
	Multi-Break Behaviour

	Quick Fix
	Use Normal If-Statement
	Use While Loop
	Use Simple Break
	Use Surrounding Lambda and Return

	ES.78: Always end a non-empty case with a break
	Checker
	Quick Fix
	Is Applicable?
	Modifying the AST

	JUnit Tests
	CDT Bug 514684 - ASTWriter's StatementWriter does not write Attributes for some Nodes like IASTForStatement
	StandardAttributes Class

	ES.9: Avoid ALL_CAPS names
	Checker
	Quick Fix
	Ignore Attributes Issue (Matcher & Quick Fix)

	ES.50: Don't cast away const
	Checker
	Quick Fix
	Is Applicable?
	Label
	Modifying the AST

	ES.49: If must use a cast, use a named cast
	const_cast in Checker & Quick Fix
	dynamic_cast Quick Fix
	reinterpret_cast Quick Fix

	ASTHelper
	findNames, getFunctionDeclaratorFromName,getFunctionDeclaratorFromNameInSameTU andgetFunctionDeclaratorFromNameViaIndex
	isInMacro
	namesEqual
	Other Added or Modified Helper Functions

	Other Changes
	Handling Markers at Nodes in Macros
	Not Expanding Macros in Reused Nodes
	Changing the Ignore Attribute
	Defining a Marker Type
	Lock Index
	Merging Problem-IDs
	Problem Preferences
	isApplicable
	Future Work

	Making the Ignore Attribute Matcher & Quick Fix more Generic

	Testing
	Checker
	Quick Fix
	To Do's
	Testing with Different Problem Preferences
	Support for Testing "IsApplicable"
	Testing a Quick Fix Where There Are Always Multiple Markers

	Implementation GslAtorPtr
	Pointer and Size Parameter
	Checker
	Quick Fix
	Checking C++ Version
	Testing Framework Compatibility

	Suppression of Warnings via Attribute
	Ignore Attribute
	Ignore Comment
	The Problem with Static Generators

	Improve Span Refactoring
	Additions to the Checker
	Additions to the Quick Fixes

	Conclusion
	CCGLator Results
	GslAtorPtr Results
	Future Work
	Merge Problem-ID's
	Cross File Changes
	ES.46 Runtime

	Project organisation
	Approach
	Project Plan
	Project Management Environment
	This Document

	User Manual
	Installation
	Configuration
	Usage

	Developer Manual
	Prerequisite
	Setting up the Eclipse Workspace
	Coding
	plugin.xml
	Checkers, Visitors and Quick Fixes
	ASTHelper, ASTFactory
	Testing

	Maven
	Continuous Integration Server

	Glossary
	Bibliography

