
Malware Hunting

Bachelor Thesis

Departement of Computer Science
University of Applied Science Rapperswil

Spring Term 2017

Authors: Nietlispach Oliver & Ehrbar Roman
Advisor: Brunschwiler Cyrill
Project Partner: -
Internal Co-Examiner: Thomas Corbat
External Co-Examiner: Benjamin Fehrensen

Abstract

Introduction

The analysis of potentially compromised workstations and servers has become daily routine for a se-
curity analyst. To help during the detection and analysis process, a triage toolkit is used which uses
various methods to categorize data of a potentially comprised system. A good triage toolkit removes
as much known data from the list, which leaves less work for the analyst. An approach to reduce the
data set is using white- and blacklists of known software components. In a previous term project, a
prototype called Maloney has been developed which sought to improve on existing solutions in matters
of automation and recoverability. In this bachelor thesis the aim is to further analyze requirements and
to extend Maloney.

Approach / Technologies

The bachelor thesis was separated into multiple week-long iterations for which the goals and results
were individually defined. During these iterations analyses, approaches and solutions for individual
requirements were formulated and implemented. Maloney is built on Java, Elasticsearch and The Sleuth
Kit (TSK) and is an event-driven framework. An examination is broken down into smaller processes,
called Jobs. These are run in sequence and generate events which then get passed on to further
subscribed Jobs. The application uses Elasticsearch to speed up lookups of aggregated meta data.
TSK extracts files and meta data from disk images. Additional features and technologies were added,
such as MapDB for resilience and Jsign for the verification of signed software.

Results

Many new features have been added to Maloney during the bachelor thesis. Currently, the examination
process itself supports hash and signature comparisons only. But further examination methods can be
seamlessly added through the plug-in mechanism. These Jobs are now run in multiple threads. Toler-
ance to faults has been added through the inclusion of a recoverable, persistent storage for events. Even
after an unexpected crash, the application can proceed with the examination. After all data has been
extracted and examined, a report can be generated with categorization based on customizable rules.
Alternatively, the data can be viewed in Elasticsearch or queried through a Command Line Interface
(CLI).

II

Contents

Abstract II
Introduction . II
Approach / TechnologiesSummary . II
Results . II

1. Management Summary 1

2. Introduction 3
2.1. Purpose and Scope . 3
2.2. Audience . 3
2.3. Document Structure . 3

3. Analysis 4
3.1. Digital Forensics . 4

3.1.1. NIST Incident Response Lifecycle . 4
3.1.2. Forensic Process . 5
3.1.3. Conclusion . 6

3.2. Forensic Toolkit . 6
3.2.1. Types of Data . 6
3.2.2. Examination and Analyzing Methods and Tools . 6
3.2.3. Conclusion . 7

3.3. Requirement Analysis . 7
3.3.1. User . 7
3.3.2. Functional Requirements . 7
3.3.3. Non-Functional Requirements . 10
3.3.4. Conclusion . 12

3.4. Maloney . 12
3.4.1. Architecture . 12
3.4.2. Fulfilled Requirements . 13
3.4.3. Conclusion . 13

4. Plug-in Architecture 14
4.1. Plug-in Frameworks . 14

4.1.1. Java Class Loader . 14
4.1.2. Java Service Provider Interfaces . 14
4.1.3. OSGi . 15
4.1.4. Java Plugin Framework . 15

4.2. Solution Approach . 15
4.3. Reference Implementation . 18
4.4. Conclusion . 18

5. Parallelism 20
5.1. Approaches for Parallelism . 20

5.1.1. Thread per Task . 20
5.1.2. Thread Pool . 21
5.1.3. Distributed Computing . 21

5.2. Decision . 21

III

5.3. Implementation . 22
5.4. Conclusion . 24

6. Identify Known Files 25
6.1. Approach . 25
6.2. Already Implemented Parts . 25
6.3. Implementation . 26

6.3.1. Querying Hash Sets . 26
6.3.2. Potential Near Real-Time Issues . 26
6.3.3. Storing Results and Data De-Normalization . 27
6.3.4. Plug-in . 27

6.4. Conclusion . 27

7. Progress Tracker 29
7.1. Analysis . 29
7.2. Approaches . 29

7.2.1. Metrics . 29
7.2.2. Location for Tracking . 29
7.2.3. Output . 30

7.3. Implementation . 30
7.4. Conclusion . 31

8. Fault Tolerance 32
8.1. Analysis . 32
8.2. Approach . 32
8.3. Implementation . 33
8.4. Conclusion . 34

9. Reporting 36
9.1. Analysis . 36
9.2. Approaches . 36

9.2.1. Phases . 36
9.2.2. Export format . 37

9.3. Implementation . 37
9.4. Conclusion . 38

10.Case Management 39
10.1.Analysis . 39
10.2.Approach . 40
10.3.Implementation . 40
10.4.Conclusion . 41

11.Software Signature Comparison 42
11.1.Analysis . 42
11.2.Approach . 42
11.3.Implementation . 43
11.4.Conclusion . 44

12.Categorization 45
12.1.Analysis . 45
12.2.Approach . 45

12.2.1. Qualifiers . 45
12.2.2. Custom Categories . 45
12.2.3. Reproducibility . 46

IV

12.3.Implementation . 46
12.3.1. Categories and Qualifiers . 46
12.3.2. Adding Qualifiers to Categories . 47

12.4.Conclusion . 47

13.File Exclusion 48
13.1.Analysis . 48
13.2.Approach . 48

13.2.1. Position of Filtering . 48
13.2.2. Criteria . 48

13.3.Implementation . 49
13.4.Conclusion . 49

14.Simple Queries 50
14.1.Analysis . 50
14.2.Approach . 50
14.3.Implementation . 51
14.4.Conclusion . 52

15.Summary 53
15.1.Requirements . 53

15.1.1. Fulfilled Requirements . 53
15.1.2. Unfulfilled Requirements . 53

15.2.Open Issues . 54
15.2.1. Invalid FS_Info Object . 54
15.2.2. Memory Access Violation . 54
15.2.3. Out Of Memory Error . 54
15.2.4. Extracted Elements Count in Working Directory . 55

15.3.Outlook . 55

16.Attachments 56

A. User Documentation 57
A.1. Setting up the development environment . 57

A.1.1. Requirements . 57
A.1.2. Install Prerequisites . 57
A.1.3. Build Maloney . 58
A.1.4. Run Unit Tests . 59
A.1.5. Integrated Development Environment . 60

A.2. Creating a distribution package . 60
A.2.1. Requirements . 60
A.2.2. Building a Distribution Package . 60
A.2.3. Add Additional Content to the Distribution . 61

A.3. Installing Maloney . 61
A.3.1. Requirements . 61
A.3.2. Installation . 62

A.4. Using Maloney . 65
A.4.1. Examine Disk Image . 65
A.4.2. Access Extracted Files . 68
A.4.3. Clear Case Results . 69
A.4.4. Import RDS Hash Set . 69
A.4.5. Clear Stored Hashes . 71
A.4.6. Generate a Report . 72
A.4.7. Query Indexed Data . 72

V

A.4.8. Create Disk Image . 72
A.5. Security Aspects . 73

B. Configuration Handbook 74
B.1. AuthenticodeCatalogJob . 74
B.2. AuthenticodePEJob . 75
B.3. AuthenticodeSignatureLookupJob . 75
B.4. CalculateHashesJob . 75
B.5. DiskImageJob . 75
B.6. ExclusionJob . 76
B.7. IdentifyKnownFilesJob . 76
B.8. ImportRdsHashSetJob . 77
B.9. ReportJob . 77
B.10.TSKReadImageJob . 77

C. Developer Handbook 78
C.1. Creating a Job . 78

C.1.1. Job Logic . 78
C.1.2. Position in Event Chain . 78
C.1.3. Job Configuration . 79
C.1.4. Limitations . 79

C.2. Create a Category . 79
C.2.1. Category Rules . 79

C.3. Further Reading . 79

List of Figures 79

List of Tables 80

Glossary 82

Bibliography 84

VI

1. Management Summary

Recently with public cases like WannaCry - a malicious software which demanded ransom to de-crypt
users’ data - computer security is coming more and more into focus of the public. To learn about these
incidents and prevent any further intrusions, analyses are necessary. These analyses are conducted
with forensic tool kits by specially trained forensic analysts.

A forensic tool kit is a software which helps security analysts determine whether or not a computer
has malicious content on it. It was determined during a previous project that current forensic tool kits are
lacking in terms of automation and reliability. For example Autopsy, a widespread open-source forensic
tool kit, cannot in any way be automated, nor can the order of executed tasks be chosen. On the other
hand Encase, a proprietary software, crashes frequently. And when it does, the whole process needs
to be started anew. This is a huge problem when dealing with large amounts of data. With this gained
insight, a new application prototype called Maloney was created which sought to improve on the faults
of those other applications.

In this bachelor thesis, the prototype was further extended with functionality so it can support forensic
analysts while working as autonomously possible. The application currently only has a small set of
integrated examination methods. But new functionality can be added using plug-ins.

The stability of the application is paramount: On an crash, it can be restarted and will resume its work
with only minimal loss of progress. With the addition of a filter to the application, uninteresting files - for
example, any files which were created after an incident - can be left out of the examination. It is also
possible to exclude potentially dangerous data, which could hinder the examination. Altogether, this
enables better performance and resilience.

After all tasks have finished and the examination comes to an end, a report can be generated. The
results in the report are categorized into known good, known bad and unknown files. The analyst is
therefore able to gain a better insight into the data. If needed, new custom categories can be added to
the report so that relevant data can be found even faster. For example, all files which were created after
a date of an incident.

To conclude, Maloney enables an analyst to optimize his schedule and minimize the time effort needed
for examining the data. Analysts need only to check the application periodically for the estimated time
of arrival. After that, they can analyze, correlate and formulate their own conclusive report.

1

Date Version Change Author
20.02.2017 0.0.1 Initial Nietlispach Oliver
13.03.2017 0.0.2 Chapter Analysis added Ehrbar Roman, Nietlispach Oliver
21.03.2017 0.1.0 Chapter Plug-in Architecture and early

draft of Parallelism added
Ehrbar Roman, Nietlispach Oliver

03.04.2017 0.1.1 Chapter Parallelism finished Nietlispach Oliver
24.04.2017 0.1.2 Chapter Identify Known Files finished Ehrbar Roman
25.04.2017 0.1.3 Chapter Progress Tracker finished Nietlispach Oliver
25.04.2017 0.2.0 Review II preparation Ehrbar Roman, Nietlispach Oliver
02.05.2017 0.2.1 Chapter Fault Tolerance finished Ehrbar Roman
09.05.2017 0.2.2 Chapter Case Management finished Ehrbar Roman
08.06.2017 0.2.3 Chapter Reporting finished Nietlispach Oliver
09.06.2017 0.2.4 Chapter File Exclusion finished Nietlispach Oliver
09.06.2017 0.2.5 Chapter Software Signature Compari-

son finished
Ehrbar Roman

09.06.2017 0.2.6 Chapter Categorization finished Nietlispach Oliver
09.06.2017 0.2.7 Chapter Simple Queries finished Ehrbar Roman
15.06.2017 0.2.8 Chapter Summary finished Nietlispach Oliver
16.06.2017 1.0.0 Revision and Publication Ehrbar Roman, Nietlispach Oliver

Table 1.1.: Document change history

2

2. Introduction

2.1. Purpose and Scope

Maloney was created in a term project during the fall semester of 2016/2017 at the University of Applied
Science Rapperswil (HSR) by Ehrbar Roman and Nietlispach Oliver. The tool was intended to be used
for the process of detection & analysis of malware, as described in the NIST Guide to Malware Incident
Prevention and Handling for Desktops and Laptops [SS13]. As stated in the term projects conclusion,
there are missing functionalities before the software can be used in a production environment[EN16].
This document intends to explain the reasoning and mechanics behind the extensions to Maloney.

2.2. Audience

This document has been created for software developers and engineers who want to gain insight into
the application called Maloney and the extensions done during the bachelor thesis project.

2.3. Document Structure

This document is separated into multiple sections. In the first section 3 the issues surrounding digital
forensics and the process of Detection & Analysis is explained and requirements for a tool in that prob-
lem space are formulated. In the sections thereafter, issues are tackled one by one. Each section will
contain the following:

• Description of the problem

• Possible solutions

• Decisions made

• Implementation details

• Discussion with advantages, disadvantages, and other noteworthy findings

3

3. Analysis

This section of the technical report concerns itself with the analysis of the problem space and current
methods and tools to solve them. In the first part the field of digital forensics with a focus on the NIST
Incident Response Life Cycle and its process of Detection & Analysis is outlined (section 3.1.1). In
the second part of this chapter is a description of the capabilities needed for a forensic toolkit, such as
extracting and viewing data from a media for further examination and analysis (section 3.2). These sec-
tions form the basis for the third section: Requirements for Maloney (3.3). Furthermore it is necessary
to analyze whether or not the existing architecture of Maloney fulfills the requirements. The existing
capabilities are therefore outlined (section 3.4).

3.1. Digital Forensics

Although the field of forensics has been going strong for a long time, digital forensics is a comparatively
young field. There is no definitive framework for handling this kind of work yet, though many papers
already have been created and published on this matter. Luckily they are all similar in their approach
of the process itself. Because National Institute of Standards and Technology (NIST) is an established
source for all matters computer security, its process model was chosen as a reference.

3.1.1. NIST Incident Response Lifecycle

There are different models for the processing of analyzing a system in order to identify intrusive software,
or malware. Many of these models were created with a specific use case in mind, such as forensic
police work or company internal workstation audits. Hence the slight differences of focus or content in
the descriptions of the process. Though one often used guide for incident handling is NIST Guide to
Malware Incident Prevention and Handling for Desktops and Laptops[SS13].

Figure 3.1.: NIST Incident Response Life Cycle[SS13]

The NIST Incident Response Life Cycle, as seen in figure 3.1, describes different phases in which
malware incidents are handled. These can be divided into four general groups, which are paraphrased
below[SS13]:

Preparation This phase is concerned with organization and infrastructure, including building know-how,
coordination plans and tools to detect and handle incidents.

4

Detection & Analysis At this time, the prepared tools and organizations come into action. The intrusion
has to be detected by either antivirus software, intrusion prevention systems or other means.
The potentially infected systems are analyzed either actively, by executing it, or forensically. This
forensic process is described in section 3.1.2. Oftentimes it is necessary to correlate different
datasets (e.g. logs from 3rd parties such as networking with local system meta data) to get a
definitive answer whether or not a certain component is a threat.

Containment, Eradication & Recovery During this phase, the infected systems are handled to hinder
the spread and damage to the current and other hosts. Additionally, the aim is to completely
remove any remaining infections. Additionally the systems and data get restored to a functional
state.

Post-Incident Activity The lessons learned need to be documented for future incidents and revisions
to structures, where needed, are made.

Although the NIST Guide to Malware Incident Prevention and Handling for Desktops and Laptops
primarily lists networking tools to detect malware, the general structure of the process is still relevant
in the case of this project. Especially the forensic process, which takes place inside the Detection &
Analysis phase.

3.1.2. Forensic Process

The forensic process is part of the Detection & Analysis phase which is described in section 3.1.1. The
special publication NIST Guide to Integrating Forensic Techniques into Incident Response states that
"[. . .] forensics should be performed using the four-phase process [. . .]"[Ken+06]. These four phases
are shown in figure 3.2.

Figure 3.2.: Four phases of the forensic process according to NIST[Ken+06]

During the whole process it is important the integrity of the data is not harmed[Ken+06]. The whole
process commences as follows:

Collection During this phase all related data is identified, collected, labeled and recorded[Ken+06].
This corresponds to the cloning of an image of a potentially infected system in a post mortem
examination.

Examination This is the phase where forensic toolkits and techniques come into play. This phase can
be automated. The collected data gets executed and extracted to get relevant information[Ken+06].
This is the place where Maloney and other tools will be used.

Analysis This phase is executed by an analyst, who tries to answer the question which started the
process[Ken+06]. In case of this project, the question usually is whether or not a system has been
infected with malware and what kind of malware it is.

Reporting In the final phase a report is generated with descriptions regarding the performed actions,
the pending actions or recommendations to improvements to the organization or infrastructure to
hinder incidents like this one in the future[Ken+06]. A forensic toolkit can assist in remembering
the performed actions and in displaying the collected evidence in a useful manner.

5

3.1.3. Conclusion

For a toolkit to be useful in digital forensics it needs to be able to examine, execute and extract infor-
mation from different data-sets and put them in a presentable format. During the analysis results from
previous analyses should be available for comparison. The analyst then decides which information is
relevant, and creates a report according to these findings. This results in various requirements which
will be aggregated in section 3.3. Before that the various methods to examine and aggregate data needs
to be analyzed. This will be the subject of the section 3.2.

3.2. Forensic Toolkit

As described in the forensic process in section 3.1.2, only raw data is collected during the collection
phase. It is oftentimes necessary to further decompress or process those files before they can properly
be analyzed. This can be automated or eased with forensic tools, which is the topic of section 3.2.2. But
before these methods and tools can be described, the types of data which need to be examined and
later analyzed are to be determined. This can be found in subsection 3.2.1.

3.2.1. Types of Data

In NIST Guide to Integrating Forensic Techniques into Incident Response is a set of various data which
can be interesting to examine for an analyst who is looking for a malware infection on a system. To get
a more complete picture of a system, it should not be gracefully shutdown. During a graceful shutdown
swap-, hibernation- and other temporary files could be deleted [Ken+06].

• Configuration files (xml or plain files, Windows registry entries)

• Logs (OS- and application logs)

• Applications files (libraries, scripts, executables etc.)

• Application data files (documents, databases, binary encoded data etc.)

• Swap-, hibernation- and memory dump files

• Temporary files

3.2.2. Examination and Analyzing Methods and Tools

Depending on the type of data, various operations can help an analyst to perform faster. These oper-
ations should be included into a toolkit and are paraphrased from NIST Guide to Integrating Forensic
Techniques into Incident Response[Ken+06].

Displaying Directory Structure The directory structure is a good place to get an overview of all the
collected data and allows insight into the system, such as installed software or presence of certain
kind of data.

Decompression Oftentimes data is saved in a compressed state or inside an archive. This kinds of
data first need to be decompressed before they can be analyzed.

File Comparison The aim during this operation is to slim down the dataset, so that the analyst can
already exclude well known data. One way to do this is hash comparison, in which the hash
of any file found is calculated and compared with previously known good or known bad hashes.
An example of such a set is the Reference Data Set (RDS) based on NIST National Software
Reference Library (NSRL). It contains a list of known good software components.

String Searching or Pattern Matching Sometimes the analyst already has a suspicion of what the
issue could be. A powerful search function or the ability to match certain patterns is useful in this
case. As an example for a tool which performs pattern matching is YARA.

6

Accessing File Metadata Metadata contains useful information including creator, responsible organi-
zation, dates for the creation, changes and last access. Depending on the file, it contains other
information which can be extracted and used to get a better picture of data in question.

File Viewer It might be necessary for an analyst to take a direct look into the file to correctly asses its
content. When examining data it is important to keep in mind that the file ending of a file might
not match with the contents of a file. File headers may provide a more exact description [Ken+06].
Manual examination is a very time consuming process and should be automated or supplemented
with context for faster analysis whenever possible.

Included into the category of application data files in section 3.2.1 is data which sometimes is difficult
to examine as they are in a special, perhaps proprietary, file format. Other tools are needed to analyze
those files and to perform the above operations as stated in NIST Guide to Integrating Forensic Tech-
niques into Incident Response. Additionally in case of an executable, it is oftentimes not viable to simply
look at the binary code with a File Viewer. Examination of executables can be achieved with a sandbox
tool like Cuckoo Sandbox in combination with YARA, to analyze the resulting patterns from execution in
the sandbox environment.

With various tools in use, it is recommended to keep a log of the performed operations so that it can
be reproduced[Ken+06].

3.2.3. Conclusion

There are various file formats, such as event logs, configuration files, or encoded application data to
consider during examination and analysis. Additionally, the methods used to be able to closely examine
the data can vary. Therefore a flexible, expandable toolkit is necessary. A list of requirements for such a
toolkit can be found in the section 3.3.

3.3. Requirement Analysis

The forensic process, as described in 3.1.2, requires the integration of a vast variety of different ap-
proaches. The requirements can be divided into two groups, functional and non-functional. Whereas
the functional requirements describe what the software should do, the non-functional requirements de-
scribe how it should behave. The latter have a big influence in the architecture of the software.

The requirements are designed to fit the scope of this project as defined in the initial assignment and
the results of discussions between the project team and the supervisor.

3.3.1. User

The user of this software is an experienced computer user who is skilled in scripting, programming and
forensics. He has a deep understanding in the different types of malware and how they can be identified
on a computer system.

3.3.2. Functional Requirements

These requirements are prioritized into MUST and CAN, whereas MUST is the highest priority and has
to be fulfilled by the end of this project. Some requirements were already fulfilled at the start of the
project. These will be listed in subsection 3.4.2 Fulfilled Requirements.

7

Title FR-1 Examine Disk Images
Priority MUST
Description The application accepts non-encrypted disk images (non-volatile data) of a computer

as input and can perform the examination on this. It makes the containing files of the
image available for further examination. All by Windows commonly used file systems
need to be supported (NTFS, FAT, exFAT).

Table 3.1.: Definition of FR-1 Examine Disk Images

Title FR-2 Examine Directory Structures
Priority CAN
Description The application accepts a root directory of a mounted file system as input and can

perform the examination on this. It makes the containing files of the image available for
further analysis.

Table 3.2.: Definition of FR-2 Examine Directory Structures

Title FR-3 Collect Metadata
Priority MUST
Description The application collects metadata of every examined file for further analysis. The meta-

data should include, but not conclusive, following attributes: file modification, creation
and access time, file path and name.

Table 3.3.: Definition of FR-3 Collect Metadata

Title FR-4 Automate Process
Priority MUST
Description The application is able to perform a set list of tasks (gathering information, examining,

generating a report) without the need of action from the user except an initial starting
command. An analyst needs to specify the minimum required tasks to achieve his goal.

Table 3.4.: Definition of FR-4 Automate Process

Title FR-5 View Metadata
Priority MUST
Description An analyst can access all collected data which was gathered during the examination

in a human readable format. Using this data, he should be able to make conclusions
about the incident.

Table 3.5.: Definition of FR-5 View Metadata

Title FR-6 Calculate File Hash
Priority MUST
Description For every examined file, the hash (also known as message digest) should be calculated

by the application. At least, the algorithms MD5 and SHA-1 should be supported.

Table 3.6.: Definition of FR-6 Calculate File Hash

8

Title FR-7 Identify Known Files
Priority MUST
Description An analyst can provide a set of known files (Known Good, Known Bad or Custom) and

the system tags every matching file with the name of the set and the matching category.
Files are compared with the set based on their hashes, as described in FR-6 .

Table 3.7.: Definition of FR-7 Identify Known Files

Title FR-8 Manage Cases
Priority CAN
Description An analyst may work on different cases on the same workstation. The examined data

should not be mixed between different cases. The analyst needs the ability to specify
an identifier for a case and can use this later to perform actions on the selected case.

Table 3.8.: Definition of FR-8 Manage Cases

Title FR-9 Compare to Golden Image
Priority CAN
Description The software needs to compare two images and detect differences in added or removed

directories and files, changed files and metadata. Therefore, the analyst provides a disk
image (aka. golden image), which represents the baseline.

Table 3.9.: Definition of FR-9 Compare to Golden Image

Title FR-10 Examinate Windows Meta Data
Priority CAN
Description When examining a disk image with a Windows installation, additional meta data should

be extracted. Following data can be extracted: Windows version, patch-level, installed
software, Windows Registry Files, Windows event logs, user accounts and groups, com-
mand history, recently accessed files and autostart applications.

Table 3.10.: Definition of FR-10 Examinate Windows Meta Data

Title FR-11 Configure Working Directory
Priority CAN
Description An analyst can provide a path at the start of the application, which will be used as work-

ing directory. This directory contains the examined files and working copies generated
during the examination and analysis phase.

Table 3.11.: Definition of FR-11 Configure Working Directory

Title FR-12 Exclude Files
Priority CAN
Description There are multiple ways to hinder the analysis of a malware infection. Such malware,

which exploits the toolkit and aims to harm the workstation (e.g. compression bombs),
may be included in the disk image. Therefore, such potential dangerous files need to be
recognized and further analysis prevented. Such files need to be marked as dangerous.
An analyst can provide a list with names of files to exclude these from the examination.

Table 3.12.: Definition of FR-12 Exclude Files

9

Title FR-13 View Directory Structure
Priority CAN
Description The analyst can view the directory structure of the examined file. This helps for example

to identify the applications or how data was stored. The structure is enriched with file
names, identifiers and modification, access and change times of the files.

Table 3.13.: Definition of FR-13 View Directory Structure

Title FR-14 Search for Strings in File Content
Priority CAN
Description An analyst is able to search for strings based on the readable content of files. This

search has to be independent of the file type, as long as it contains human readable
text.

Table 3.14.: Definition of FR-14 Search for Strings in File Content

Title FR-15 Identify File Types
Priority CAN
Description While examining files, the file type is determined based on their content. The type is

stored as MIME media type as described in [RFC2046].

Table 3.15.: Definition of FR-15 Identify File Types

Title FR-16 Export Metadata
Priority CAN
Description An analyst can export all metadata in a flat file format (e.g. CSV, hash sets) to include

them in reports or for further analysis in a different application.

Table 3.16.: Definition of FR-16 Export Metadata

Title FR-17 Simple Queries
Priority CAN
Description An analyst can provide a query to the application and recieves an output of all matching

files. The query has to be a simple string. An analyst can also decide if the output
should be displayed in the user interface or stored in a file.

Table 3.17.: Definition of FR-17 Simple Queries

Title FR-18 Validate Software Signature
Priority CAN
Description An analyst wants to reduce the amount of unknown executables by using software sig-

natures. Such signatures are provided by the manufacturer and are shipped with the
software for validation.

Table 3.18.: Definition of FR-18 Validate Software Signature

3.3.3. Non-Functional Requirements

Following are the criteria specified which describes the operation of the system and not the specific
behavior. These criteria are used to determine the basic architecture of the software.

10

Title NFR-1 Maintainability
Sysnopsis It is not possible to implement support for every file type, examination method and

report type, because they may change over time. The application can be seamlessly
extended to keep up with these changes and development is not dependent on a
specific IDE.

Description Changeability
Measureability The software supports some kind of interface or extensible part where additional

functionality can be added.

Table 3.19.: Definition of NFR-1 Maintainability

Title NFR-2 Efficiency
Sysnopsis During an incident, time is a critical resource. The application performs as fast as

possible, and examines data only as far as specified by the user or needed to identify
the threat.

Description Time behavior
Measureability Examination and analysis of data gets performed with all available system

ressources and stops as soon as definitive answer to the threat of the data can
be given (Known Good, Known Bad or Unknown).

Table 3.20.: Definition of NFR-2 Efficiency

Title NFR-3 Portability
Sysnopsis The application can be easily installed without the need for an IDE.
Description Installability
Measureability The installation is corresponds to the standards of the targeted platform on how to

install software. The process is covered within a guide and can be performed without
development tools.

Table 3.21.: Definition of NFR-3 Portability

Title NFR-4 Reliability
Sysnopsis The forensic process needs to deliver reliable results. Every execution with the

same configuration needs to produce the same result. Even if the examination is
interrupted.

Description Recoverability
Measureability The results of the analysis are persistent even after a crash of the application.

Table 3.22.: Definition of NFR-4 Reliability

Title NFR-5 Usability
Sysnopsis The user interface shows information about the progress and where the generated

report and examined data is located.
Description Understandability
Measureability Progress, target locations of data and reports are shown in intervals of 3 seconds.

Table 3.23.: Definition of NFR-5 Usability

11

3.3.4. Conclusion

Some requirements were already defined in the term project “Malware Hunting” [EN16]. Back then,
the focus was not on the process itself, but rather on the improvement of the basic framework and the
integration of The Sleuth Kit (TSK). Due to a better understanding of the forensic process itself, more
detailed requirements could be determined. They are suited for a basic framework or application which
suits the needs of an analyst during the forensic process. Further decisions and development are based
on the requirements noted above.

3.4. Maloney

Maloney is a new tool, and has not had a lot of development time. Still, it already fulfills some of the
functional as well as non-functional requirements. But before those are discussed, the structure as of
the beginning of this project is outlined.

3.4.1. Architecture

The architecture of Maloney is based heavily on the two ideas of extensibility and automation. The
exact structure and designs of the application can be looked up in the technical report of “Malware
Hunting”[EN16].

Figure 3.3.: Events get passed through the application

The whole application logic is structured into multiple encapsulated tasks, which are called Jobs. This
can be seen in figure 3.3. These should be as small as possible and run once for each individual task.
After completion, they create an Event which describes the result. These Jobs are executed by the
JobProcessor. The JobProcessor forwards the generated events to the Framework. The Framework in
turn decides what to do with these events[EN16]. This cycle and commences as follows:

1. An implementation of Job generates an event after completion

2. The instantiated implementation of JobProcessor notifies the Framework about those completions

3. The Framework decides which Event needs to be processed further by another Job

4. The instantiated implementation of JobProcessor starts new Jobs with the new Event

Events contains the name of the Event, information about the Job that created it and the unique
identifier of the file concerned. ReadImageJob for example creates an Event for each file it extracted
from a disk image. The instantiated implementation of JobProcessor then serves as a scheduler and
(de-)multiplexer. Although at the end of the term project no multi-threading capabilities had been imple-
mented. When the Framework receives the Event, it finds all interested Jobs for the new Event. These
Jobs usually further examine these extracted result. An example would be queuing a CalculateHashJob

into the JobProcessor after a new file has been extracted through the ReadImageJob.

12

3.4.2. Fulfilled Requirements

Some functionality has already been implemented into Maloney during the term project in the fall
semester of 2016. The following requirements have already been fulfilled according to “Malware Hunt-
ing” in December 2016:

FR-1 Examine Disk Images TSK can extract files from an image to a desired location, which gets
managed by Maloney’s DataSource

FR-3 Collect Metadata TSK reads meta data, which is then published into Maloney’s MetaDataStore

FR-4 Automate Process By building on an event based architecture, Maloney is able to follow prede-
fined procedures which get passed to it by the Command Line Interface (CLI)

FR-5 View Metadata The meta data can be viewed with the help of Kibana on top of Elasticsearch

FR-6 Calculate File Hash MD5 and SHA1 hashes can be calculated with the CalculateHashesJob

NFR-3 Portability So far the application can be built and run without any IDE, only with the use of
Gradle as the build tool

3.4.3. Conclusion

The existing components of Maloney were analyzed and described as an event-driven architecture which
can be extended by creating new Jobs. The application thereby already fulfills some requirements as
seen in subsection 3.4.2. With the problem space explored and the requirements defined and prioritized,
the chapters 4 through 14 concern themselves with the solutions and implementations of the remaining
requirements.

13

4. Plug-in Architecture

To achieve the goal of NFR-1 it is required to integrate some sort of interface to the framework. Through
this interface new extraction methods should be added and made available for the forensic process. A
common approach is to split the application in smaller chunks, which can be compiled independently
and loaded as required at runtime. These small chunks, which extend the functionality, are often called
plug-ins. This chapter describes existing approaches for plug-inss in Java and how the chosen approach
is integrated into the architecture of Maloney.

4.1. Plug-in Frameworks

There are many existing frameworks which add support for plug-ins to an application. A brief research
provided a list of different plug-in solutions for Java. Following are four well known frameworks outlined.

4.1.1. Java Class Loader

Due to the architecture of Java itself and the integrated reflection capabilities, a class to load other
classes during runtime is already integrated and known as class loader. "Given the binary name of a
class, a class loader should attempt to locate or generate data that constitutes a definition for the class.
[. . .] Normally, the Java virtual machine loads classes from the local file system in a platform-dependent
manner. For example, on UNIX systems, the virtual machine loads classes from the directory defined
by the classpath environment variable." [17c] But to be exact, the class loader is not really a framework.

The foundation is laid by the class loader and could be used in the scenario to implement a plug-in
architecture. The major drawback is that the application, which should be extended, needs to know the
binary name of the class to load. It also has to know about the available methods and properties of the
class. The latter can be addressed by using interfaces, which are implemented by the plug-ins. To use
the class names, they have to be configured manually beforehand. New plug-ins are not automatically
detected and can only be used after configuration through the user.

The ability to load classes at runtime and how the Java Virtual Machine (JVM) handles these in-
troduces new problems. Using just the binary name, no version or location information are provided.
Therefore, a different version as expected could be loaded, which may result in crashes or undefined
behavior. A blog entry of Parlog describes this problem in detail, whereas he uses the term "JAR Hell"
[Par15]. But as he concludes, this problem is not that common, especially when using a build tool like
Gradle.

4.1.2. Java Service Provider Interfaces

This feature was made public with Java Version 1.6, but was used before that by the Java runtime. The
following excerpt describes the goals of Service Provider Interface (SPI), which matches the require-
ment NFR-1 : "Developers, software vendors, and customers can add new functionality or application
programming interfaces (APIs) by adding a new Java Archive (JAR) file onto the application class path
or into an application-specific extension directory." [17e] This is achieved by using the SPI. "The set of
public interfaces and abstract classes that a service defines" [17e] is added to the meta information of
the Java Archive (JAR), which acts as the service provider.

14

Using this meta information, all implementations of a service by a service provider can be identi-
fied. Now, these implementations can be loaded, only with the knowledge of the interface. Behind the
scenes, the class loader is used to load the concrete implementations. To make this work, the service
provider needs to be located in the classpath, and the implementations require to have a public default
constructor.

There are also some relevant limitations to the SPI: "You can use custom ClassLoader subclasses
to change how classes are found, but ServiceLoader itself cannot be extended. Also, the current Ser-
viceLoader class cannot tell your application when new providers are available at runtime. Additionally,
you cannot add change-listeners to the loader to find out whether a new provider was placed into an
application-specific extension directory." [17e]

4.1.3. OSGi

OSGi is the name of a corporation, the OSGi Alliance, and also a specification which "[. . .] facilitates
the componentization of software modules and applications [. . .]" [17a].

The goal is to mitigate the problems initially introduced by the class loader and to improve the interop-
erability between components. OSGi brings many benefits by implementing the specification. According
to OSGI one example of this is the solving of JAR hell: "OSGi technology solves JAR hell. JAR hell is
the problem that library A works with library B;version=2, but library C can only work with B;version=3.
In standard Java, you are out of luck. In the OSGi environment, all bundles are carefully versioned and
only bundles that can collaborate are wired together in the same class space."[17b] There is also stated
a support of dynamic detection of plug-ins: "Bundles can be installed, started, stopped, updated, and
uninstalled without bringing down the whole system."[17b]

There are different implementations of the specifications. For example Apache Felix1 or Eclipse
Equinox2, which is also the foundation of the Eclipse framework. Mainly, OSGi relies on meta informa-
tion and an Application Programming Interface (API) provided by the frameworks. Many big applications
rely on OSGi, as it is a de facto industry standard.

Both frameworks are quite complex and require a broad knowledge about OSGi. There are some
examples specific to both frameworks. Even to understand the examples, which are more than a "Hello
World", requires some time. No practical examples for a launcher, which starts all plug-ins from the
command line, could be found. It was expected to pass some parameters or configuration from the CLI
to the framework. This should not be mistaken with the shell of OSGi, which is used to control bundles.

4.1.4. Java Plugin Framework

This is another project based on Java with the goal to "[. . .] improve the modularity and extensibility
of your Java systems and minimize support and maintenance costs." [JPF17] Based on the information
provided by the project page [JPF17], the Java Plugin Framework (JPF) is inspired by Eclipse 2.0 and
tries to mimic its plug-in framework. Therefore, it uses manifests to discover plug-ins at runtime.

JPF project seems to be discontinued. Based on the fact its current version was released for Java
1.5 in 2007, it is not guaranteed to be future proof. Even Eclipse has adapted its plug-in framework to
support OSGi.

4.2. Solution Approach

Considering the plug-in frameworks and their approaches, as described in 4.1, their aptitude for this
project has to be determined. All frameworks share the common goal of modularity and extensibility.
They even behave similarly, by using embedded information from JARs.

1http://felix.apache.org/
2http://www.eclipse.org/equinox/

15

http://felix.apache.org/
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/
http://felix.apache.org/
http://www.eclipse.org/equinox/

Regarding JPF, it is safe to say that OSGi is a better accepted solution by the industry. Implementing
OSGi would exceed the project scope. This leaves SPI as the better choice as it is light-weight and
all the requirements can be fulfilled. Also, it is possible to implement OSGi in the future without severe
changes in the source code. With control over the source, runtime issues as described in 4.1.1, can
be mitigated. The impact of such runtime issues are minimal in this project’s scope. Also, by using
classpath, it can be mitigated further.

Facing the decision for a plug-in architecture, it was decided to implement the approach as de-
scribed by SPI, and neglected using OSGi or JPF, to achieve improved modularity and extensibility,
accepting the downside of possible runtime issues and the lack of support to manage plug-ins at
runtime.

Gradle generates startup scripts for the installation packages, which defines the classpath environ-
ment variable for added dependencies. Therefore, as long as all plug-ins are built with the same depen-
dency configuration like same packages and version as Maloney, version conflicts should not occur.

SPI introduce some terminology, which is used later again. For clarification of the terminology the
following terms are as follows:

Service It is a well-known set of interfaces and (usually abstract) classes, mainly represented by a
single type[17d]. The interface Job can be used as a service.

Service Provider The classes in a provider typically implement the interfaces and subclass the classes
defined in the service itself. It provides additional functionality[17d]. An example of a service
provider is the class CalculateHashesJob.

Service Provider Interface This is the API represented by the class ServiceLoader of the Java Run-
time Environment (JRE). It is implemented in the application, which needs to be extensible through
service providers implementing a specific service.[17d] The class FrameworkController would be
an example of this.

The documentation Class ServiceLoader [17d] already contains a great example and some extensive
information about specific implementation details.

To make it easier and deploy plug-inss with the installation package, a directory is required from which
they are loaded. This cannot be done by just extending the classpath to this directory. A path to every
JAR needs to be provided to work properly. This must be done before requesting all implementations of
an interface or abstract class. Therefore the default class loader used by SPI needs to be extended. The
class URLClassLoader already has a method to add new files at runtime, but this method is protected
and cannot be accessed. With an extension, the visibility can be overridden, as shown in listing 4.1.

Listing 4.1: Custom class loader with public addUrl
public class CustomClassLoader extends URLClassLoader {

public CustomClassLoader(URLClassLoader classLoader) {

super(classLoader.getURLs ());

}

// Make method public

@Override

public void addURL(URL url) {

super.addURL(url);

}

}

The directory for plug-ins is usually located beneath the bin-directory. Now, all JARs need to be added
with addURL of CustomClassLoader. After enumerating and adding the files to CustomClassLoader, as
shown in listing 4.2, this instance can be used with the SPI.

16

Listing 4.2: Resolving and adding plug-ins
URLClassLoader urlClassLoader = (URLClassLoader) ClassLoader.

getSystemClassLoader ();

CustomClassLoader myClassLoader = new CustomClassLoader(urlClassLoader);

try {

// Extracts the plugins folder which is a sibling of the application

folder (like libs)

String path = FrameworkController.class.getProtectionDomain ().

getCodeSource ().getLocation ().getPath ();

File pluginFolder = new File(path).getParentFile ().toPath ().

resolveSibling (" plugins ").toFile ();

File[] jars = pluginFolder.listFiles ((dir , filename) -> filename.

endsWith (".jar"));

if(jars != null){

for (File jar : jars) {

myClassLoader.addURL(jar.toURI().toURL());

}

}

} catch (MalformedURLException e) {

e.printStackTrace ();

}

As mentioned in NFR-1 , the examination methods and reporting should be extensible. The exami-
nation methods are represented through Jobs. However there are no implementations for the creation
of reports as of now. Therefore, this section focuses on the extension through concrete implementations
of Job.

The SPI requires a class definition which describes the requested service. Additionally, a custom
class loader can be provided to the load method, which is used to instantiate found classes[17d]. If
myClassLoader is provided as second parameter, the service providers will be searched in classpath and
in all JARss from the plug-in directory. The found classes will be instantiated and are available through
an iterator. Listing 4.3 shows an example of how it can be used to load all defined implementations of
the Job interface.

Listing 4.3: Loading of all available implementations of Job
Iterator <Job > iter = ServiceLoader.load(Job.class , myClassLoader).

iterator ();

while (iter.hasNext ()) {

Job job = iter.next();

// do something with the job

}

However it is necessary for SPI to mark classes so that they can be detected. They need a special
entry in the JARs meta information. This is usually done with a file named as the implemented interface
or class. The file should contain a list of all classes to be published.[17d] In Maloney this file is located
in "META-INF/services/ch.hsr.maloney.processing.Job" and contains a list of concrete implementations,
as shown in listing 4.4.

Listing 4.4: Example service provider definition of ch.hsr.maloney.processing.Job
ch.hsr.maloney.processing.DiskImageJob

ch.hsr.maloney.processing.CalculateHashesJob

ch.hsr.maloney.processing.ImportRdsHashSetJob

ch.hsr.maloney.processing.TSKReadImageJob

17

4.3. Reference Implementation

A reference implementation for a plug-in was introduced with the task to identify known files, see 6.3.
Therefore a new Gradle sub project was defined. The entire project structure of Maloney required an
overhaul, because the framework was also the root project. The new structure can be seen in figure
4.1. All source files of the framework were moved into a new sub project and a new root project was
introduced. The root references all sub projects. This brings three major improvements: First, references
to other sub projects only by their name are possible. They have to be defined in the root project and are
available for all other sub projects. Second, common tasks, for example a build, can be executed at once.
Lastly, IDEs can detect dependencies correctly and provide additional features, like code completion.
Before the refactoring, these features did not work all the time or tedious configuration was required to
make it work.

Figure 4.1.: The three sub projects maloney, maloney-cli and maloney-plugin in the root project maloney

4.4. Conclusion

By following the SPI approach, a simple and comprehensive solution can be achieved. It does not
require an extensive knowledge of an API and the configuration to describe plug-ins is straight forward.
Also, it has enough flexibility to be used in different parts of Maloney, such as reporting (see chapter 9).
The same approach could also be used for reports, which can be provided and customized by the user.

Already existing implementations of Job will not be moved into their own sub projects, because this
would just cost time and therefore has no priority. However these implementations can be detected and
used the same way in the sub projects, due to the meta information in the base project. Newly created
examination methods can be defined as sub projects.

The refactoring introduced with the reference implementation has led to a cleaner structure of the
project over all and represents best practices. Further changes may be required, and should be tackled
if there is enough time. For example removing the dependency to TSK from the framework core.

A specification like described by OSGi seems promising and should be considered in the future as
complexity of plug-ins increase. This will be the case, as plug-ins depend on services provided by other
plug-ins. Another reason would be if new functionality needs to be detected and managed at runtime.
In this project, the complexity of a plug-in is expected to be low, as they only implement a few interfaces

18

and have no dependencies on other plug-ins. Therefore, OSGi will not be implemented in the scope of
this project.

19

5. Parallelism

To achieve the non-functional requirement of NFR-2 a mechanic to increase performance is necessary.
This can be achieved through the use of better algorithms and efficient use of the present resources.
An application with a single thread does often times not properly use the available resources and the
time behavior is lacking. The most commonly used option is to introduce parallelism into the application
by splitting up the logic into smaller tasks and execute them on separate processor cores, processors
or even machines. Maloney’s architecture enables the use of parallelism by separating the logic of the
application into multiple smaller tasks, called Jobs. Additionally, the applications communicates through
events. These could even be sent over the network. Three possible ways to achieve this will be outlined
in this chapter. Afterwards, one of the options will be chosen and its implementation laid out. Lastly, the
advantages and flaws are discussed.

5.1. Approaches for Parallelism

There are different approaches to achieve better performance. Generally, there are two options:

Scale-Up This is also known as vertical scaling. When giving a machine more resources, such as
processing power and memory, these resources have to be used properly. As stated in Java
Concurrency In Practice, "Threads are useful [...] for improving resource utilization and through-
put."[Göe+06]. Therefore, splitting the work into multiple threads is one option.

Scale-Out Also known as horizontal scaling, this options spreads out the work over multiple machines
or systems. This can be seen in distributed computing.

These two options are not mutually exclusive, both can be used to further increase the performance
of a system.

5.1.1. Thread per Task

The first option is to create one thread per task as in figure 5.1. This enables running multiple tasks
simultaneously on a system with more than one cores or processors.

Figure 5.1.: Thread per Task

This takes load off of the main thread, but creates new problems, as stated in Java Concurrency In
Practice[Göe+06]:

Thread Life Cycle Overhead The creation and teardown of threads is not free and consumes system
resources. This varies according to the used platform, but nonetheless introduces latency and
uses computation time.

20

Ressource Consumption When there are more threads then available processors or cores, they sit
idle while still using memory.

Stability There is a fixed amount of available threads to every system which varies according to the
platform and JVM parameters. Getting over the limit oftentimes results in an OutOfMemoryError

which is difficult to recover from.

5.1.2. Thread Pool

This is the second option. In Java Concurrency In Practice it is stated that "[. . .] the task execution
framework [. . .] simplifies management of task and thread lifecycles and provides a simple and flexible
means for decoupling task submission from execution policy."[Göe+06] This simplification can be seen
in figure 5.2. New tasks get queued up and as soon as a thread has finished its task, it takes a new one
out of the queue. This way, threads get recycled and the amount of simultaneously running threads get
limited.

Figure 5.2.: Thread Pool

By taking over the management of threads, the thread pool fixes the issues stated in section 5.1.1.
But it poses new issues as mentioned in Java Concurrency In Practice[Göe+06]:

Dependant Tasks When a task is dependent on "[. . .] timing, results or side effects of other tasks
[. . .]"[Göe+06] it can create liveness issues, such as deadlocks.

Response-Time-Sensitive Tasks If a long running task gets submitted to a thread pool with few or
only a single thread, responsiveness can become an issue.

Reused Threads Because thread pools reuse their threads, tasks which rely on thread-local variables
may suddenly find unexpected values.

5.1.3. Distributed Computing

In Distributed Systems: Concepts and Design a distributed system is described as system "[. . .] which
components located at networked computers communicate and coordinate their actions only by passing
messages."[Cou+12] Splitting up the tasks not only into threads but onto different machines increases
the potential performance. But by communicating over the network, latency, bandwidth and overhead to
send messages need to be taken into account. Particularly transferring large amounts of data over the
network is oftentimes not viable.

5.2. Decision

As described in the subsection 5.1.1, the creation of a thread per task has some shortcomings, as each
thread creates overhead. Although it is unlikely in the case of Maloney that the amount of threads will
create an OutOfMemoryError by itself, it surly will strain the system.

21

On the other hand, the issues that come with thread pools seem to be manageable:

• Tasks only get committed when their preconditions are met

• Any important management (i.e. user interface) can be separated from the thread pool

• Tasks can be implemented so that they do not rely on thread local variables

Distributed computing is interesting in concept, but poses more difficulties. The tasks have a chain in
which they get performed: Perfectly modeling this process onto a distributed system gets increasingly
difficult. Especially when new data gets extracted from an image or a file, it needs to be shared with the
other workstations to fully utilize the distributed power. Sending this data over the network, when using
images of around 200GB or bigger, does not seem viable.

The idea of distributed computing and usage of threads (per task and as pool) are not mutually ex-
clusive. They can be implemented in the same system, although with much increased implementation
time, as clients which get deployed on other systems need design and implementation time. The poten-
tial gain might not be worth the cost. Additionally, forensic work is oftentimes performed on a separate
machine, isolated from the network, to minimize the risk of further spreading a malware infection.

Facing the decision for increased performance, it was decided to implement the usage of a thread
pool, and neglect the approaches of thread per task and distributed computing, to achieve improved
efficiency (NFR-2), accepting the downside of the potential problems that come with thread pools.

5.3. Implementation

With Java 1.7 Oracle introduced the ForkJoinPool which is an implementation of the ExecutorService

interface. It executes all submitted tasks. These tasks are implementations of runnables, or for added
syntactic sugar lambda expressions. It is not recommended to use the static commonPool(), because
all new tasks, even ones from other parts of the application, automatically get submitted to it. Doing so
could create unwanted side-effects when shutting said pool down, which is recommended for a graceful
stop of the application. Instead, a custom pool should be used, which gets handled separately.

Inside the pool there is a Last In First Out queue for the submitted tasks. The pool can dynamically
add, suspend and resume worker threads so that there are always some available. Normally the upper
limit of worker threads is the number of processors available[Ora17]. This behavior can be overridden
by creating a custom pool and specifying the level of parallelism in the constructor. Usually this is not
necessary as this is best decided by whichever machine the application is run on.

The problem of deadlocks stated in section 5.1.2 can be avoided by only submitting tasks to the pool
when they are ready to be run. This removes the possibility of idling tasks blocking all available threads
and bringing the application to a grinding halt. It is important to keep the limited amount of threads in
mind for the development of new Jobs.

Using a control thread which manages submissions to the thread pool and polling of results as well
as tracking when the processing was finished turned out to be problematic: It resulted in deadlocks or
unavoidable busy-waits. The usage of Future instances did not solve this problem either, as these still
need to get polled by isDone() and then get() to get the result. The solution was to use a Continuation
Style: To let the threads, in which the tasks were executed, notify the Framework of new events using the
observer pattern. The Framework in turn enqueues the new tasks. This can be seen in the sequence
diagram 5.3.

22

Figure 5.3.: Sequence diagram with pseudo code showing the sequence when queuing tasks (i.e. Job)

An option to implement this could be either to use thenAccept of CompletableFuture or to extend
the anonymous implementations of Runnable in form of a Lambda Expressions. Because of easier
readability the second option was chosen. A simplified extract of the source code of this can be seen in
listing 5.1.

Listing 5.1: Submitting a new task to the pool via a lambda expression and notifying the Framework about
changes through the Observer Pattern

ForkJoinPool pool = new ForkJoinPool ();

runJob(Context context , Job job , Event event){

pool.submit (() ->{

List <Event > result = job.run(context , event);

setChanged ();

notifyObservers(result);

});

}

Attention has to be paid to the type of a thread: When all non-daemon threads die, and the main
thread is usually the only one, all daemon threads will be shut down. Threads inside a ForkJoinPool

are defined as daemon by default. Therefore a mechanism to check whether all tasks have finished
needs to be introduced. This was achieved by acquiring a semaphore at the start of a new task and
releasing it again after it has finished. New tasks get queued up and acquire another semaphore, before
the parent task has released its semaphores. When there are as many semaphores available as there
were at the start, all jobs are confirmed as finished. To wait until all tasks have finished, the same
number of semaphores are awaited as defined at the beginning. Therefore, the main thread uses the
waitForFinish method to prevent exiting early. It replaces primitive counting methods and prevents
busy-waits. To prevent deadlocks if multiple threads are using waitForFinish, all acquired semaphores
are released immediately afterwards.

23

5.4. Conclusion

With the MultithreadedJobProcessor, a JobProcessor implementation which enables Maloney a better
use of the available computational power. This increases the performance of the application and fulfills
the non-functional requirement NFR-2 .

Using a thread pool introduces some restrictions: Job implementations must not wait inside of run
on results produced by others, as it introduces possible deadlocks. To determine whether or not the
Job can run, the corresponding Event should be used in conjecture with the method canRun to check
if all conditions are met. Evaluation inside this method should be kept short. For accessing external
resources or heavy operations, run should be used. Some deadlock scenarios may stay undiscovered
on modern hardware and need to be verified on single core configurations.

For small tasks with low computing requirements or heavy disk requirements, the performance gain is
only minimal. As of now, this is mostly the case. But as soon as there are longer running tasks or ones
which require more computing power, the difference is more noticeable.

24

6. Identify Known Files

To address the requirement FR-7 , already known files should be marked. The simplest way to achieve
this is by looking up the file hash in a set, which gets provided by the analyst. After the lookup of a file
set, the results can be queried to gather a quick overview. This requirement has a precondition on FR-6
. This was implemented into Maloney during the term project and it includes a Job for indexing RDS
archives.

This section focuses on the lookup of calculated hashes inside the indexed hash sets. It also shows
how Elasticsearch is involved and where the limitations are. First, an approach is formulated. Afterwards
already implemented parts will be revisited. Lastly the implementation gets described.

6.1. Approach

The best way to reduce the amount of files which are needed to be reviewed by an analyst is to compare
them with already known files. All selected files get compared against files provided by the analyst and
flagged, if they match. This could be done on bit level, but would require a lot of disk operations and
storage for all known files. Hash algorithms can be applied on files to generate an unique fingerprint,
which is already used for example in file integrity checks. Such checks rely on a set of hashes for each
file to determine changes or defective files. Hash sets are also smaller when compared to the original
files.

Hash sets can also be used to identify files. For every file the hash has to be calculated and compared
against a set provided by the analyst. "Analysts should use validated hash sets, such as those created
by NIST’s National Software Reference Library (NSRL) project or personally created hash sets that have
been validated [. . .]"[Ken+06] It is important to differentiate between hashing algorithms provided by this
sets. Every hash set might provide its own subset of hash algorithms, in most cases only one. A lookup
should be independent of the structure of hash sets and respect the algorithm.

6.2. Already Implemented Parts

Maloney already has some tasks implemented which are convenient when it comes to the task of identi-
fying known files. The following implemented features will be examined: the tasks CalculateHashesJob,
ImportRdsHashSetJob, and ElasticHashStore.

Hashes of examined files are calculated by the task CalculateHashesJob. These hashes are added
as artifacts to an implementation of MetadataStore. In the case of this project, an implementation for
Elasticsearch is provided and used as default. Artifacts get linked to file metadata using nested datatype
[Ela17a]. These are stored and indexed separately and can also be queried independently.

An update script is in place to handle adding artifacts without re-adding already existing artifacts or
loosing any. The said script uses parameters to create a new artifact and adds it to the existing ones.
It is important to notice that script parameters need to be primitive types[EN16, section 2.8.5]. So, a
deeper nesting of objects is not possible if this dynamic addition to the existing list should be kept as it is.
Objects need to be serialized, for example as a string, to be used as a script parameter. This restriction
is relevant at a later point, see 6.3.

The task ImportRdsHashSetJob indexes a provided RDS archive, which contains a set of hashes and
information about operating system and product of origin. The implementation by ElasticHashStore

25

already handles indexing and searches. Using elasticsearch to index and look up hashes later reduces
the time for matching these against a file. And by using a separate Elasticsearch index, they can be
managed and accessed independently from the analysis.

6.3. Implementation

Due to the fact that Elasticsearch handles relations different than other systems, the implementation
needs to be adapted accordingly. This problem was observed and described in [EN16, section 2.8.3].
As a result, it was proposed to implement this using the application-side join approach. A new imple-
mentation of Job is used which is called IdentifyKnownFilesJob.

6.3.1. Querying Hash Sets

The new implementation is registered to receive events for new hashes (e.g. MD5HashCalculated,
SHA1HashCalculated), which are produced by CalculateHashesJob. As soon as a new hash is cal-
culated, it is compared to the set. For the lookup only simple search queries are used which provide all
matches. One query uses a wildcard on the hash types, the other can be used to restrict the search on
a specific type (e.g. MD5 or SHA-1). Although it is not possible to confuse the results of those two hash
algorithms, they possess different levels of security, i.e. hash collisions in MD5 are more likely. The field
declaration was introduced for additional clarity when the results are queried.

A term query is an exact match on a single field as seen in listing 6.1. To perform a search on multiple
fields, a multi-match query is the weapon of choice as seen in listing 6.2. Every available search method
has a corresponding factory provided by QueryBuilders.

Listing 6.1: Search statements for single field
SearchResponse searchResponse = client.prepareSearch(INDEX_NAME)

.setTypes(HASHRECORD_TYPE)

.setQuery(QueryBuilders.termQuery (" hashes ." + algorithm , hashValue)).

get();

Listing 6.2: Search statements for wildcard search
SearchResponse searchResponse = client.prepareSearch(INDEX_NAME)

.setTypes(HASHRECORD_TYPE)

.setQuery(QueryBuilders.multiMatchQuery(hashValue , "hashes .*").type(

MultiMatchQueryBuilder.Type.BEST_FIELDS)).get();

An exact match is forced by the mapping keyword datatype inside Elasticsearch. If no mapping is
provided, Elasticsearch will generate it by itself. Normally text fields are datatype text, which gets ana-
lyzed. Analyzed means that it will be divided into single words: Punctuation and spaces are separators
between words. This would be disadvantageous in the case of hashes, where an exact match matters.
Therefore it is essential to know of what type the data is to write an appropriate query.

6.3.2. Potential Near Real-Time Issues

While elaborating this new feature, potential issues have arisen regarding near real-time feature of
Elasticsearch. It manifests itself in generated artifacts which are not visible to the subsequent tasks.
Elasticsearch’s index is refreshed every second (per default), so only data which was indexed before the
last refresh can be queried. This problem was already discussed in [EN16, section 2.8.6] regarding unit
testing.

This potential near real-time issues mainly applies to queries. Accessing stored data by their ID will
always force a refresh and return the entire document. A query can be configured to wait for a refresh.

26

This may result in a longer query time and is not recommended. For more information and how to
change the behavior, see Elasticsearch Documentation1. Developers need to keep this in mind while
using Elasticsearch as the data store.

It is no problem in the case of hash lookups against a separate index. Indexing of hash sets has to be
done prior to a hash lookup, to guarantee that all entries are used. While examining an image, the hash
index should not be changed. But Maloney will not prohibit it.

6.3.3. Storing Results and Data De-Normalization

Queries deliver multiple hits, or matches. Adding these hits as artifacts to a file is exactly what application-
side join stands for. Adding an entire hit as an artifact is only possible as serialized object in a string.
Searching for a single field inside this object introduces more problems. The field artifacts.value is
interpreted as text, therefore a relation between single fields and values is problematic. For example, if
all files should be found which are identified as Known Good, it would match all fields and not only on the
type field. To solve this, the hit has to be de-normalized further. The types of artifacts were extended by
using a dollar sign as separator between the type and field name (e.g. ch.hsr.maloney.storage.hash.HashRecord$type).
This is done for the fields type and sourceName. If the hit is still saved as whole, it can be later used by
reports or other tasks.

Because such a lookup is executed for every raised hash event, it may lead to duplicate artifacts
while using hash sets which contain multiple algorithms. This is the case in RDS sets, but other sets
often contains a single type. Because Elasticsearch has no way to remove duplicates, they need to be
identified by the job and skipped. Hash sets have to be indexed before a lookup happens, otherwise
there will be no hits nor artifacts.

A new event (KnownFileFound) is produced after a successful match. If there is no match in any of the
supplied hash-sets, the file should be marked anyway. Therefore, another artifact is produced containing
the tested hash algorithm and that the result was negative. This case also produces a different event,
namely KnownFileNotFound.

6.3.4. Plug-in

The task IdentifyKnownFilesJob is the first implementation of Job in a separate JAR. It uses the newly
introduced plug-in architecture as described in chapter 4 Plug-in Architecture, and acts as a reference
implementation.

How to add custom functionality and develop a plug-in is described in chapter C Developer Handbook.

6.4. Conclusion

The task IdentifyKnownFilesJob is able to compare examined files with hash sets, which is part of
requirement FR-7 . Files can be queried for the presence of generated artifacts and the type of the
matching hash set. The other part of the requirement is depending on tasks to import such hash sets.
As of now support for the most common set, RDS, is already implemented. Therefore the requirement
is fulfilled.

To support hash sets in a different format additional tasks can be implemented. They can directly
benefit from this implementation of a generic lookup.

An entry of a hash set can contain additional information about the operating system and product.
This information could be used to identify installed applications or detect software which should not be
present. Because different products sometimes use the same libraries or other files, this might lead to

1https://www.elastic.co/guide/en/elasticsearch/reference/5.0/docs-refresh.html

27

https://www.elastic.co/guide/en/elasticsearch/reference/5.0/docs-refresh.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.0/docs-refresh.html

false positives. Conclusions based on this data must be taken with caution. It may be possible that it
generates false positives by marking files as known, which should not be present on a given system.

A detection of duplicate hash entries is not intended. An analyst should be able to use different hash
sets which may contain duplicates. Therefore, they are not removed in the lookup process.

There was an issue found concerning the extraction with TSK. An exception was thrown which resulted
in extraction of zero-byte files. More information to this sporadic error can be found in subsection 15.2.1
Invalid FS_Info Object. It is important to note that although the extraction is faulty, zero-byte file hashes
are handled the same way as other hashes and do not lead to any further issues.

28

7. Progress Tracker

Currently, the entire log output is displayed by the CLI. This is not really useful for a general overview
of the progress. To achieve non-functional requirement NFR-5 a meaningful way to store and display
progress inside the application is needed.

7.1. Analysis

It is difficult to determine how long the application will take to fully analyze the selected image or files.
But some data can be helpful to figure out just how much of the image already has been analyzed, and
to which degree.

The overall processing speed should also be tracked so that an estimated time of arrival (ETA) can be
calculated.

As stated in NFR-5 Usability, this information has to be updated steadily and displayed to keep the
user up to date on the current progress of the application.

7.2. Approaches

To get meaningful answers to the question of how far the processing is, various approaches can be
taken. It has to be decided which metrics are relevant, the most sensible point to gather this information
and how to convey this to the user.

7.2.1. Metrics

Maloney handles all the internal communication through instances of Event. These are sent on com-
pletion of a single task and contain information on the result. When tracking these, an insight into the
current progress can be gained when put into relation with previous analyses. In addition, if the number
of found files on an image and registered Jobs in the application are put into context with the number
of observed events, tracking of the progress becomes viable. However, predictions are still problematic,
because it cannot be foreseen how often a Job will be executed and how long it will take.

7.2.2. Location for Tracking

There are multiple locations where tracking of progress with the afore-mentioned metrics can happen:

Task-based Tracking of progress on the lowest level and smallest steps inside the application. On this
level it is possible to deliver exact time behavior statistics of a task. Tracking on this level alone
is disadvantageous, because it is impossible to know how many tasks are left. In addition each
implementation of Job (i.e. each task) would have to introduce redundant code for operations
which every task does. For example every task has a start and an end event which needs to get
tracked.

Scheduler-based When using the scheduler for reporting of progress, some redundancy for reporting
can be taken out from tasks. But because the scheduler only executes tasks and does not know
all registered tasks, it cannot predict which task is the last one. In addition, the exact behavior of
tasks is not known either.

29

Task-chain-based On the highest level, predictions can be made concerning the time-behavior and
probability of execution of registered tasks (i.e. Job). This way the overall time can be estimated,
but the effective result can vary greatly from the first estimation because the chain is not always
executed to the last task, as a definitive answer to the character of th data may be given earlier.

These options are not mutually exclusive, they even complement each other in some aspects. For
example task-specific events (e.g. new file found) may be tracked on a task basis, but overall task
progress can be tracked on data acquired by the scheduler, thereby creating less redundant code in
implementations of tasks.

7.2.3. Output

It is not enough to simply store the progress inside the application. It has to be displayed to the user
somehow too. This can be achieved through different representations:

Graphical When the application is started a window is opened where the progress can be seen. The
Graphical User Interface (GUI) displays the collected metrics and can use progress bars or cake
diagrams to convey the information to the user.

Textual The collected metrics are printed on the CLI in a simple textual representation. This might
happen in real-time or periodically to reduce required updates.

Designing and implementing a GUI consumes a lot of time, whereas simply printing out the numbers
into the console is a more simple matter. Additionally a user interface consumes more system resources.

The collection of only the most basic metrics suffices, as a rough estimate should be enough to create
an average processing speed of tasks.

Facing the decision for a progress tracker, it was decided to collect basic metrics and print them
with an estimated time of arrival in the console, and neglected using a GUI, to achieve non-functional
requirement NFR-5 usability, accepting the downside of less appealing visuals.

7.3. Implementation

The interface as planned during the previous project was redone with a more simplistic but extensible
design. An enum was created for standardized counters, which can be extended with custom counter
names. This information can be passed to and processed by the implementation of ProgressTracker
through the method processInfo.

The implementation created is called SimpleProgressTracker and it stores the information in a Map.
The keys are either the custom name or the predefined enum values. The values of the map are counters,
that get increased on every call. It was decided to refrain from using sophisticated estimations for the
remaining time with regard to the task-chain. Instead the average processing speed of tasks over the
last 30 seconds and a estimation of how long it will take to finish the remaining unfinished tasks gets
calculated.

The Framework handles creation of progress information for new and processed tasks, to save re-
dundancy in Job implementations. On the other hand any task-specific event, such as unpacking or
identifying of known good or bad files gets handled by the respective Job.

For future extensions - and a possible GUI - the ProgressTracker gets injected through the FrameworkController.
The FrameworkController in turn creates an instance of ScheduledExecutorService with a single
thread to schedule the periodic output of the progress (see listing 7.1). This executor service is more
reliable than Timer, because it will not stop executing the Runnable if the thread has crashed.

Listing 7.1: Thread which periodically prints the stored information in ProgressTracker

private ScheduledExecutorService scheduledThreadPoolExecutor =

Executors.newSingleThreadScheduledExecutor ();

30

// ...

scheduledThreadPoolExecutor.scheduleAtFixedRate (() -> {

// ... Fill message ...

System.out.println(message);

}, START_TIME , CONSOLE_UPDATE_FREQUENCY_IN_SECONDS , TimeUnit.SECONDS)

;

For the calculation of the average speed the class ETACalculator in the util package has been
introduced. It calculates the average processing speed over a specified amount of nodes, which is
specified in the RELEVANT_CYCLES field. Currently the last ten measurements are used for the average
(see listing 7.2). A LinkedList is used for the storage of these measurements, because it has the fastest
insertion and deletion methods with O(1).

Listing 7.2: Calculating the average task-processing speed
public double getAverageSpeed (){

if(measurementList.size() < 2){

return 0.0;

}

double speedSum = 0;

int lastFinished = 0;

long lastTime = 0;

int avgElements = 0;

for (Measurement c : measurementList) {

if(lastFinished != 0 || lastTime != 0){

speedSum += ((c.getFinished () - lastFinished) /

(c.getTime () - lastTime * 1.0));

avgElements ++;

}

lastFinished = c.getFinished ();

lastTime = c.getTime ();

}

return speedSum / avgElements;

}

After the average processing speed is calculated in getAverageSpeed(), an ETA can be calculated
with the help of the remaining unprocessed tasks.

This measurement is very naive, because it assumes that every task has the same complexity and
uses the same time to process. Additionally one of the first Job implementations which gets executed is
the TSKReadImageJob, which takes a long time. But after it has finished and other Job implementations
get executed, this method provides a better estimation.

7.4. Conclusion

The implementation of ProgressTracker called SimpleProgressTracker holds different counters and
fulfills the need as stated in NFR-5 . This way the analyst gets a feedback on the current progress and
can compare this value with others gained through experience. The ETACalculator then provides an
estimate of how much longer it will take by dividing the remaining tasks through the average speed over
the last 10 measurements.

Because TSKReadImageJob is currently one of the first and longest running Job implementations which
gets executed, the first estimations are inaccurate. After that Job has finished, and more measurements
have been taken it gets more accurate.

31

8. Fault Tolerance

An analyst must be able to rely on his tools and their results. These tools must produce the same results
if the same configuration applies, and they must behave predictable. This is also the main concern of
non-functional requirement NFR-4 : The application has to be fault tolerant. Because the analysis in
chapter 3 does not state requirements concerning availability and performance, the main focus lies on
the results produced while used in the forensic process described in section 3.1.2.

This chapter starts with the analysis of things that can go wrong and which parts of Maloney are
affected. Then a strategy has to be developed how the risks can be mitigated, followed with concrete
implementation details. Lastly, the result is discussed.

Even tough the exclusion of files could be part of this chapter, it is separately discussed in chapter 13
File Exclusion.

8.1. Analysis

First it must be known how faults manifest themselves. Improving fault tolerance is a continuous process
over the lifetime of an application, because not all causes might be detected at the beginning. Now, only
faults concerning the defined requirements of section 3.3 can be addressed.

Mainly, there are four different aspects, which need to be addressed in this project:
Cancellation During Examination An analyst might want to cancel an examination, due to various

reasons. It may also be possible that the examination is interrupted unintentionally, for example
by a shutdown of the workstation. No progress should be lost, which was generated up until this
moment.

Crash of a Job A Job can also crash during the examination. There are countless sources of faults,
which might result in unexpected behavior. Therefore a single Job should not be able to influence
the execution of others. It should also not be able to prevent other planned tasks to be executed.

Framework Issues The framework Maloney relies on different systems and resources, for example on
a database or disk space. It should detect problems, which might prevent it from working properly.

Attacks There might be attacks against a forensic analysis tool, as implied by [Ken+06]. These aim to
prevent the analysis or to make it more difficult. For example, there are compression bombs or
malicious content, which reveals itself while examinating an infected system.

In contrast to the first three aspects, the last one concerning attacks is difficult to mitigate. There are
countless forms or manifestations, and they can influence the analysis over side channels. It requires
monitoring over the entire workstation only to detect manipulations at all. A way to mitigate effects
introduced by attacks seem hard, if not impossible.

Facing the detection and mitigation of attacks, it was decided not to implement a detection mech-
anism for attacks, to keep the focus on the examination of files, accepting the downside of possible
malware infections or canceled examinations.

8.2. Approach

Because Maloney does not require further user intervention after it is started, the pattern Minimize
Human Intervention [Han07, p. 57] is already in place. Therefore, this behavior should not change in
case of failures. For example, there are no user requests asking for "are you sure?".

32

The overall approach is to Maximize Human Participation [Han07, p. 60]: The user has the overview
and total control. Because the application can be configured in different ways and use additional parts,
which may be developed by third parties, the faults have to be handled different in each case. To allow
the user to make the right decisions, he requires information. This can be provided as a log file or an
output in the user interface. log4j was already selected to handle the logging[EN16]. It can be extended
with additional appenders, for example to notify errors in the user interface. By using the log levels
(i.e. trace, debug, info, warn, error, fatal) and clearly formulated messages, the user should
be able to detect problems quickly. The verbosity of the log can be selected either through a different
configuration for log4j or the command line parameter -v.

Following with the ability to cancel and restart an examination, planned Job execution need to be
tracked and stored permanently. This is required in combination with the configuration to recreate the
application state. In addition the state of a planned tasks has to be tracked, either if it is running or if
it has finished. A Job should not be executed twice, if it is not required. It still might produce duplicate
results, for example if the execution has been canceled before the state transition was recorded. In the
case of an intended cancellation, all running tasks should be completed before the application exits. If a
set of unfinished tasks were found, the user can decide if he wants to process these tasks again or start
anew. The framework also requires a new event, which is generated as the processing of a stored set
begins, to replace the default start event. Otherwise, everything would be started anew. This approach
correlates to the Restart [Han07, p. 151] pattern, with the tasks and states as Checkpoints [Han07, p.
166].

All data is persisted to the working directory or the databases. Therefore, these systems also need
to be able to handle spontaneous operating system restarts. Both Elasticsearch and the local system
drive are suited for this cases.

The propagation of errors because of crashes from a Job needs to be prevented. Therefore each Job

represents a single Unit of Mitigation [Han07, p. 37]. The framework needs to detect an unexpected
error (mainly unchecked exceptions) and handle them. If this happens, generated events need to be
considered as faulty and therefore discarded. Accordingly, the file has to be marked that it could not be
examined correctly. The analyst can detect invalid results based on that marking. Crashed Jobs should
also be tracked and made available for a later restart, in case the fault was of transient nature. Because
the results may still be important, it can be compared with the Rollback [Han07, p. 154] pattern.

A Job also needs the ability to tell the framework that it wants to cancel and be executed at a different
time. This might be the case if not enough disk space is available. In this case the examination will not
yield the correct results and needs to be prevented.

8.3. Implementation

The entire application state can be recreated with the configuration and the stored events. The con-
figuration can be provided in a configuration file, which Maloney already supports. The events are
produced during runtime and need to be stored persistently. The library MapDB provides collections as
a lightweight solution to store all events. Every produced event is stored in the list, and removed after
all jobs have finished related to this event. MapDB also features transaction support. This is required to
keep the store fault tolerant [Kot17, Chapter Performance and Durability]. For the same task, a database
or a message queue could also be used.

Facing the decision for the persistent storage, it was decided to use MapDB and neglected to
use a database or message queue, to keep the application simple, reduce latency and minimize
dependencies to external systems, accepting the downside to manage more low level functions.

The class EventStore was introduced to keep track of job executions and corresponding events. This
way, only a minimal interference of the framework was achieved and the usage of MapDB is transparent.
During an examination thousands of events are produced, MapDB needs to be configured accordingly.

33

As shown in listing 8.1, transactions are enabled as well as memory mapping. All lists are configured
to use the same database file of MapDB. Further mentions of a database file are related to this file. To
reduce maintenance operations, for example introduced if the database file needs to be expanded, the
increment size of new allocations was increased. This is also the size of a write ahead log used for
transactions, which is not mentioned in the documentation.

Listing 8.1: Configuration of MapDB
db = DBMaker.fileDB(file)

.fileChannelEnable ()

.transactionEnable ()

.allocateStartSize (128 * 1024 * 1024) // 128MB

.allocateIncrement (64 * 1024 * 1024) // 64MB

.closeOnJvmShutdown ()

.make();

Every transaction needs to be committed, which merges the write ahead log into the database file.
This process blocks the execution for some time. A commit after every operation results in many disk
operations and slows down the entire process. Therefore, multiple additions and removals of events are
combined into a single commit, which is executed in an interval. As an improvement the commit is only
planned if changes are pending. MapDB also requires transactions in order to provide fault tolerance.
Because events are only removed after all corresponding jobs have finished their execution and added
new events, it is impossible that the entire chain of events gets lost. It may be possible that some new
events are lost, but they can be reproduced by starting with the previous one. Committing multiple
changes at once improves the performance while maintaining just a little gap of work which has to be
redone.

The FrameworkController checks for existing events at startup and enqueues them automatically for
execution. Only a message indicates that it is processing stored events instead of a complete run. In this
case, the default startup event is replaced by a new one with the name "restart". Tasks could use this
event as an indicator that they have to perform additional checks and cleanups. To prevent a restart and
dismiss all stored events, the FrameworkController provides the method clearEvents. This can also
be achieved with the command line switch �clear-events. No events will be discarded automatically, if
the user does not explicitly say so.

Every Job is a separate Unit of Mitigation. The framework has no clue how to handle a fault introduced
by a Job, but it has to prevent spreading of a fault. Therefore, every job is executed in its own try-catch
block, which even handles unchecked exceptions like division by zero. If it still happens, the job execution
will not be removed like other successfully finished ones. Also, the event remains stored on the disk for
later processing. A Job has now also the ability to throw a JobCancelledException, which will behave
like an unchecked exception. It can be used if the execution should be canceled prematurely. This option
should be used rarely, because after a restart, the event will be executed again for every interested job.

Finally, a shutdown hook is added to the Java runtime by the FrameworkController.It provides a
cleanup procedure to close open files, flush changes to disk and close other handles. Such a hook will
either be executed if the JVM is interrupted, for example through a Ctrl-C, or if System.exit is called.
The procedure also stops gracefully the processing of events and waits for a short amount of time.
Already running tasks should have enough time to finish before the application exits.

8.4. Conclusion

With the aforementioned implementation, the fault tolerance could be improved drastically. Faults intro-
duced through programming failures in an implementation of Job will not lead to a crash of the entire
framework.

All generated events are recorded and can be executed at a later time, for example as soon as more
storage is available. The user still has the ability to decide whether he wants to restart the process or to

34

start anew. But there is also a downside to this permanent storage: speed. Every produced event has
to be stored and retrieved from disk. This is an expensive operation. It slows down the entire processing
of events. Still, the time all these storage operations take is a fraction of the entire examination. The
possible time saving in case of faults is worth this investment, assuming an examination takes an entire
day.

The persisted database file also needs to be handled by the framework and is not entirely human
readable. It contains lots of information used by MapDB and can be viewed with a hex editor. This
is a result of serializing the events as Javascript Object Notation (JSON). This file can not be edited
manually, because it uses checksums to verify its integrity. Thus, it can be deleted and a new one will
be created, if the database is not readable anymore. There are still some options to recover such a file,
but the current configuration should be enough.

This implementation has a big impact on the framework and required many little changes, for example
in the JobProcessor described in chapter 5. It is still possible to improve fault tolerance further, but the
biggest issues are now mitigated. The current implementation is a trade-off between speed, complexity
and time expense for development.

The ability to restart an examination is dependent on the case management features implemented in
chapter 10. While testing an issue with MapDB was discovered related to memory mapping. Chapter
10 also contains the description and the solution of the issue.

35

9. Reporting

After the examination has been completed through the execution of various tasks, the found information
needs to be presented in a readable format to the analyst. This step is described as the report in chapter
3.1.2 Forensic Process.

Located in this chapter are the analysis of the issue and motivation, the approach, and finally specifics
on the implementation of the reporting mechanism in Maloney.

9.1. Analysis

After the examination and analysis is complete a report has to be generated as stated in functional
requirement FR-16 Export Metadata.

When generating a report the focus should be directed to the data, that was identified as malicious
or was not identified at all. Special attention should be paid to scripts, macros, libraries and anything
executable. The reason for this is that those categories pose an increased security risk through a higher
chance of containing malicious code.

The report can have various formats, such as a PDF-, HTML- or a CSV-File. The priority is on
extracting the data from the application into a portable, independent, human readable format.

9.2. Approaches

9.2.1. Phases

A report needs to be generated at the very end of the whole process to encompass all gained informa-
tion. Determining when the application is finished is complicated though. The order of tasks, which get
executed, can vary every time and the end of a chain of tasks is difficult to determine when there are
various conditions inside tasks. Therefore a mechanism has to be introduced, which ensures that all
tasks have finished, before the report gets generated. The most reliable way to achieve this is by intro-
ducing phases to the application, which get executed sequentially. There are two different approaches
for this:

Phases Inside the Application One option would be to introduce phases into the application and let
the tasks decide in which phase they want to be executed. The report generating task can then
specify that it should be executed in the last phase. This will ensure that it is executed after all
examination tasks.

Phases Through Multiple Executions Another way would be to execute the tool multiple times but
with different parameters. By choosing which tasks get executed, phases are introduced. This
requires that the application does not randomly choose a temp folder where to extract and analyze
the data. A proper case management is required.

The former introducing phases as a state inside the application, and lays the decision to the developer
when a task should be executed. In the latter approach phases are represented through the various
executions of the tool and the decision when to generate a report is put into the hands of the analyst.

Because Maloney is designed for power users, who most certainly desire to tweak an application to
suit their specific needs, the decision when to generate a report should be put into the hands of the user:

36

Facing the decision for generating a report, it was decided to create phases through multiple exe-
cutions of the application, and neglected using phases inside the application, to achieve guaranteed
execution of the report at the end of all examination tasks, accepting the downside of user responsi-
bility in starting the process.

9.2.2. Export format

There is also the issue of the format of the exported data, and how to the results are visualized. There is
no requirement for the visualization and format of the collected data. However the purpose of visualizing
data into bar or pie charts is to gain some information out of them. For this to work properly it is neces-
sary that the result from the examination get categorized. This is handled in chapter 12 Categorization.

At the start of the report, an overview should be created. The overview should show all categories
and many results lay within these categories. Additionally the overview should display meta information
about the process itself. Meta information include the starting parameters, the time and date of the
examination, the executed tasks, and the used datasets for comparison.

9.3. Implementation

There was no mechanism to retrieve all stored information in the MetadataStore. The first step was to
implement an iterator to enable traversing over all stored data. To enable iterating, the data has to be
retrieved first. It is common to work with disk images with size of 250 GB or more. To retrieve large
amounts of data in Elasticsearch the scroll search is recommended [Ela17b].

The scroll search creates a snapshot of the current index and returns 100 data-sets. These consist of
file meta data and their associated artifacts. They will get cached by the client together with a scroll-id.
When sending another request with the received scroll-id, the next set of data gets sent in response.
When reaching the end of the cached results, new results will be retrieved as seen in listing 9.1.

The only disadvantage is that a scroll uses more memory than other searches, and is thus required
by Elasticsearch to have a timeout. After this timeout runs out, the results of the scroll will be lost. To
accommodate even slower report jobs, the timeout has been set to 60 seconds.

Listing 9.1: Method to recieve next set of hits from Elasticsearch
private boolean continueScrolling () {

this.scrollResp = client

.prepareSearchScroll(this.scrollResp.getScrollId ())

.setScroll(new TimeValue(EXPIRY_TIME_IN_MS))

.execute ()

.actionGet ();

if(this.scrollResp.getHits ().getHits ().length == 0){

// Zero hits mark the end of the scroll

return false;

} else {

extractResults ();

return true;

}

}

The report itself gets generated through an implementation of the Job. This enables usage of the
plug-in architecture for reports.

With all requirements fulfilled on the side of the framework, a simple Job called ReportJob was imple-
mented which extracts all stored information in the MetadataStore and prints it into a CSV-file.

37

9.4. Conclusion

To accomplish functional requirement FR-16 Export Metadata, the necessary functionality framework-
wise was implemented to enable generating of reports. A Job implementation to print all gathered data
in form of meta data and artifacts into a CSV-file was added.

Because the data does not have meaningful categorization, no further implementations were added
until such a thing exists in the application. When this is in place, HTML or PDF reports encompassing a
more visual reporting.

38

10. Case Management

It cannot be expected that only one examination is executed, which then can be closed and all results
become obsolete. In practice an analyst switches from one incident to another. Either the priority of an
incident changes, newly gained insights require a revision or incidents need to be compared.

This chapter addresses the two requirements FR-8 and FR-11 . They are closely related because
one comprises of managing cases and the other of handling working directories.

The analysis will state what belongs to a case and how it is related to an incident. Based on this
information the approach describes how the requirements can be achieved. Thereafter follow some
details about the implementation. Finally a conclusion is outlined.

10.1. Analysis

An incident can contain just one or multiple cases. A case therefore contains everything required for
the examination by Maloney. The forensic process as described in section 3.1.2 can be applied multiple
times to a single case. As a consequence Maloney should be applied multiple times to the same case.
Results of different cases can then be used to form an overall conclusion of the incident.

A case consists of the following parts:

• Temporary files produced by a Job

• Examined or extracted files, for example of a disk image

• Generated reports

• Log files

• Last applied configuration

• Produced, but not processed events

• Examined metadata

The hash sets are not part of a single case. They are used globally over all cases, so that they can
be managed in a single location. A hash identifies files exactly, therefore it carries a meaning which
transcends over all or multiple cases. For example, if a file has malicious content, it should always be
identified as such regardless of the originating disk image or system.

If a specific case needs to be selected, there has to be an identifier. Most of the time identifiers consist
of alpha-numeric characters with some punctuation. CVE-2014-0160 is an example used to identify the
vulnerability also known as the Heartbleed Bug1 or JENKINS-43495 references an issue of installation
dependencies of Jenkins2. A user will provide such an identifier as described by the FR-8 . Whenever
the same identifier is provided, the operations are executed on the same case. An analyst will also have
to find all files and metadata related to one case. Therefore, the identifier should be used to group the
data for a single case, which also prevents mixing data with other cases.

In addition to specifying an identifier, users may want to specify where all data is stored on the disk.
This enables selecting of a portable hard drive or a RAM drive as the storage medium for the case.

1http://heartbleed.com/
2https://issues.jenkins-ci.org/browse/JENKINS-43495

39

http://heartbleed.com/
https://issues.jenkins-ci.org/browse/JENKINS-43495
https://issues.jenkins-ci.org/browse/JENKINS-43495
http://heartbleed.com/
https://issues.jenkins-ci.org/browse/JENKINS-43495

10.2. Approach

To group all data for a case, the identifier needs to be used both on the file system as well as for the
metadata storage. This introduces some restrictions for such an identifier, because not all characters
are valid or reserved for internal use. For example, asterisks or slashes have a special meaning on file
systems, dots or underscores are on the other hand reserved by Elasticsearch, which is used to store
metadata. Usable without issues are alpha-numberic characters and dashes. For easier handling a new
identifier should be generated, if none is provided. The generated identifier must not exist on the system
and must be unique.

A directory should be provided, which points to the location where all cases will be stored on disk.
This directory will be further referenced as working directory. If none is provided, the temporary folder
provided by the operating system is used. Every case is a subdirectory of this working directory.

10.3. Implementation

The implementation is straight forward. Every class with case related files requires to know where
to store them. Therefore the FrameworkController provides the path and the case identifier to every
interested class. These classes are:

• EventStore

• LocalDataSource

• MetadataStore

Additionally log4j is also reconfigured to output a file in the working directory of the current case. The
configuration during runtime requires lots of factories. There is a manual on how to extend Log4j 2
configuration3, but it is not up to date with the used version in this project. Because the configuration
is done in the constructor of FrameworkController, it might be lost if the configuration is reloaded.
This happens for example, if a configuration file was provided and changed after the programmatic
configuration.

Further restrictions are introduced through Elasticsearch. While no documentation about naming of
could be found, Elasticsearch will not accept every name as an index. It was determined by trial and error
that lowercase characters as well as numbers and dashes are supported. In addition an index name
cannot start with a dash, underscore or plus sign. The index names used by Maloney consist of the
lowercase case identifier and a prefix "maloney-". This prefix also minimizes the risk of hitting a keyword
of Elasticsearch, for example _search. Collisions are still possible, if multiple working directories are
used with the same case identifier.

Depending on the file system other issues may arise: An example is NTFS which ignores the casing
of characters. This may result in unexpected behavior.

Facing the decision of a case identifier, it was decided to only use lowercase characters a-z, num-
bers and dashes, to support different file systems and Elasticsearch, accepting the downside of fewer
possible combinations and additional validation.

The case identifier is validated using a simple regular expression. If the identifier is determined invalid,
a new one will be automatically generated. A counter is used prefixed with the current date. This counter
is incremented if the generated id already exists in the working directory. For example, "20170503-2" or
"20170508-1" could be possible generated case identifiers.

After initializing the working directories and case names, the configuration is backed up in the case
directory. This enables analysts to retrace their steps. Applying these configuration files in chronological
order will recreate the current state of the examination.

3https://logging.apache.org/log4j/2.x/manual/customconfig.html

40

https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html

While testing the new implemented features, a problem of MapDB arose. The database file could not
be opened with enabled memory mapping while using a working directory on a non-system drive. In this
case, it was a shared folder of the virtual machine. Listing 10.1 shows a part of the corresponding stack
trace. As it seems Java sometimes has issues of memory mapping files using RandomAccessFile. Luck-
ily MapDB already has an alternate solution using FileChannel. By replacing the call to fileMmapEnableIfSupported

through fileChannelEnable in the MapDB configuration (listing 8.1), the issue could be mitigated.

Listing 10.1: Stack trace of MapDB with memory mapped files
Caused by: java.io.IOException: Invalid argument

at sun.nio.ch.FileChannelImpl.map0(Native Method)

at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java :926)

at org.mapdb.volume.MappedFileVol.<init >(MappedFileVol.java :104)

10.4. Conclusion

By introducing the case management as described in this chapter, a key feature of the framework was
done. It not only allows to restart a previous failed examination, but also enables the further examination
on top of an existing one. Also, the analyst is able to choose a different working directory. The examina-
tion could be performed on a faster disk for example. Hereby, the requirements FR-8 and FR-11 are
met.

The libraries log4j and MapDB could be customized quite well, but required a lot of time to do so.
The issue with MapDB could have been prevented by using FileChannel from the beginning. Because
fileMmapEnableIfSupported was mentioned in the example configuration for high performance, no
further research was done on memory mapping to save time.

41

11. Software Signature Comparison

Code signing is the process of digitally signing executables and scripts, to ensure their integrity and
provide information about the author. It verifies that the software was not altered or corrupted since
it was signed. As described by the requirement FR-18 , this information can be used to reduce the
amount of files, which need to be reviewed by analysts.

This chapter will provide information about the motivation for such a feature and Authenticode as the
implementation by Microsoft. It relies heavily on the solution implemented in “Forensik Triage Kit” [TV16],
which was developed for Autopsy.

11.1. Analysis

The beginning of Authenticode dates back to mid 1996, when it was introduced to improve the security
of Internet Explorer 3.0. Since then, it was improved over the time and broadly used by Microsoft
itself, e.g. to sign drivers, and other software developers. The trust is built on root certificates, which
are distributed with the operating system, similar to other digital signature processes using the X.509
standard. For more information, see Authenticode [Mic] and Windows Authenticode Portable Executable
Signature Format [Mic08].

Authenticode is intended to work with Portable Executables (PEs), which include .exe, .dll, and .sys
files. The signature may be embedded into the signed file or as a stand alone signature catalog (.cat
files). Such a catalog contains signatures for multiple files, which accounts for the biggest share on
Windows systems. Just a few PEs are signed directly. Only the parts of an PE containing code is
signed: Some header fields are excluded from the hash algorithm used. [Mic08]

There are different tools for code signing for Microsoft Windows which are part of the Windows SDK
(e.g. signtool or chktrust). There are open source alternatives such as osslsigncode or Jsign. Although
most of these tools concentrate on the code signing process, but not the verification. The verification
is part of Windows and can be accessed through its API. The Authenticode plugin for Autopsy uses a
modified version of Jsign, which is also able to extract certificates or verify the signature. While it can
handle code signing, it is not able to verify the chain of trust.

One major restriction exists: "The signature itself does not convey any information about the intent or
quality of the software." [Mic08]

11.2. Approach

The two variants, embedded or stand alone, need to be handled differently. First of all, the signatures
need to be extracted from those files. After that the hash of every PE needs to be calculated and
compared against these extracted signatures. Signatures are tied to a specific case and should not be
shared with other cases. Earlier calculated hashes from requirement FR-6 can not be used, because
they also hash the signature information, which is excluded by the Authenticode algorithm.

The proposed default hashing algorithm for hashing is SHA-1. MD5 is only used for legacy implemen-
tations and should not be used to sign new content. [Mic08] A peek into different signature catalogs of
driver packages revealed that other algorithms are used, for example SHA-256.

Attached to a PE is a certificate. To validate the signature of the PE with the certifacte the following
steps need to be performed:

42

Validate Signatures Signed with a code signing certificate and co-signed by a Time Stamp Authority
(TSA).

Ensure Certificate Usage The certificate used must allow the usage for code signing.

Validate Chain of Trust All certificates in the chain of trust for the signature are valid.

To validate the certificate chain, it should be possible to verify it without the root certificates provided
by the examined system. Some certificates may have been replaced or added to cover up modifications.

Because the solution should be platform neutral, the Windows API can not be used. Therefore, the
modified Jsign will be the replacement.

The results from these examinations will also be added as artifacts, so they can be analyzed later.
The priority is to link files with their signature.

11.3. Implementation

The implementation consists of multiple tasks. These tasks are represented as implementations of Job.
Following is a brief overview over their responsibilities:

• AuthenticodePEJob

– Detect PEs

– Calculate hash of relevant content

– Extract certificates of PEs

– Verify embedded certificates

• AuthenticodeCatalogJob

– Detect signature catalogs

– Extract signatures of signature catalogs

– Extract certificates of signature catalogs

– Verify embedded certificates

• AuthenticodeSignatureLookupJob

– Match signatures with PEs

In AuthenticodePEJob the magic value (first four bytes) is used to determine if it is a PE or not. If the
content is 0x4D5A (ASCII MZ), it should be processed further. To calculate the hashes with SHA-1 and
SHA-256, the class net.jsign.PEFile provides the algorithms required to only hash the parts of the
file relevant to Authenticode. net.jsign.PEVerifier is used to verify the signature and to extract the
certificates.

AuthenticodeCatalogJob uses an optimistic approach: The file extension is used to determine if it
is a signature catalog. The class net.jsign.CatalogFile is used to extract the signatures and cer-
tificates. All signatures are stored for a later lookup, because it is possible that not all hashes of the
PEs are calculated. The current implementation also uses Elasticsearch for this purpose, similar to the
implementation in chapter 6 Identify Known Files. Signatures can be stored in the same index as the
meta data by using a different type identifier. In this case "code-signature" is used.

By using Elasticsearch, the signatures can be persisted and compared in a separate execution
using AuthenticodeSignatureLookupJob. This Job uses all files in the meta data store and com-
pares their hashes with the extracted signatures of signature catalogs. Therefore this job has to be
executed after a full run of both previously described Job implementations, AuthenticodePEJob and
AuthenticodeCatalogJob.

43

A proper verification of the certificates is not implemented due to the complexity of this topic and
the available time. A placeholder is available and a TODO placed where the verification needs to be
implemented. Until this feature is fully implemented, every certificate obtains the state UNKNOWN. There
are two variants which were discussed for this purpose: The Bouncy Castle library or the OpenSSL
toolkit. Other libraries which verify the certificate chain could not be found.

Before validation of the extracted certificates with OpenSSL can take place, they need to be organized.
First, all intermediate certificates have to be extracted in a separate file, beginning with the one closest
to the root certificate. Then, the certificate used for the signatures can be validated using this separate
file, as shown in listing 11.1.

Listing 11.1: Example of certificate validation using OpenSSL in the command line
openssl verify -CAfile intermediate.pem signerCert.pem

A validation using Bouncy Castle was attempted, but was discarded after difficulties with the identi-
fication of root certificates. The approach which relies on the detection of self signed certificates was
not working as expected. The method used is shown in the listing 11.2, which always failed with a
SignatureException. It may be possible that the root certificates were not included in the test files. Due
to the milestone Code Freeze, no further time was invested.

Listing 11.2: Method to detect self signed certificates
public static boolean isSelfSigned(X509Certificate cert) throws

CertificateException , NoSuchAlgorithmException ,

NoSuchProviderException {

try {

// Try to verify certificate signature with its own public key

PublicKey key = cert.getPublicKey ();

cert.verify(key);

return true;

} catch (SignatureException sigEx) {

// Invalid signature --> not self -signed

return false;

} catch (InvalidKeyException keyEx) {

// Invalid key --> not self -signed

return false;

}

}

The used Jsign version is integrated as git submodule and referenced as local Maven dependency. It
can be built and installed in the repository using the Gradle task installJsign.

11.4. Conclusion

The implementation introduced in this chapter fulfills the requirement FR-18 only partially. Comments
in the source code will assist on implementing the missing validation of the certificates used for the
signature.

The topic of software signature verification in its entirety is quite complex. The found documentation
is not up to date and covers only a fraction of the entire scope of Authenticode. Therefore, more time
and research is required to implement this feature correctly.

To allow the results already to be categorized, as explained in chapter 12 Categorization, two imple-
mentations of Category exist: AuthenticodeCategoryKnownBad and AuthenticodeCategoryKnownGood.
These extend the default categories and therefore help with the identification of interesting files.

44

12. Categorization

When creating a report, as seen in chapter 9, simply printing out all found data is usually not helpful,
because there is immense amounts of data. Structured results are needed for the analyst to gain insight
into it.

This chapter describes why categorization is necessary, how it should be approached, and the way it
is implemented in Maloney.

12.1. Analysis

When printing out the results of the examination, there is just plain data. To create a useful report
as specified by functional requirement FR-16 Export Metadata, the analyst has to perform queries,
correlate the data and categorize the results.

Doing this manually when the resulting dataset can be large as a quarter million entries, the analysis
becomes very cumbersome. As described in functional requirement FR-4 Automation, it should be
driven forward as much as possible.

Therefore, a forensic toolkit should be able to perform some basic categorization on its own, so that
the work of the analyst gets easier.

12.2. Approach

12.2.1. Qualifiers

By default there are three different categories which can be applied to every examination: Known Good,
Known Bad, and Unknown.

Known Good This data has been identified as non-harmful and can be safely ignored

Known Bad Data tagged with this category is harmful and has to be reported to the client

Unknown The examination could not determine the character of the data directly, the analyst needs to
take a further look

Files can belong to a category by matching with its qualifiers. Because possible tasks and their
results are extensible, so should the qualifiers which determine when a category applies. Therefore, it
should be possible to enrich existing default categories with additional qualifiers so that they match the
created examination results. These qualifiers should be definable for developers of plug-ins, because
the knowledge of how to interpret examination results lies with them. A task which compares hashes
with a database of well known files for example adds the result KNOWN GOOD to the data-set. It then adds
this information as qualifier for the categorization so it can be identified by the framework, and later by
the analyst, too.

12.2.2. Custom Categories

When the analyst can create custom categories, he can further reduce the amount of time he needs to
determine the character of a file. So not only should it be possible to enrich the pre-existing categories
with new qualifiers, but also to create custom categories which can then be used for easier identification.

45

With the addition of custom categories it should become possible for a file to have multiple matching
categories as opposed to only one. For example an analyst can create a category for all files which
were created before a specific date, but never accessed or changed again. Those files can then be
identified faster with this category.

12.2.3. Reproducibility

When working with multiple categories, it is important to know which qualifiers were used for them. They
need to be visible for the analyst, just like any other configuration. This is needed because the steps
taken during the analysis are important for reproducibility.

12.3. Implementation

12.3.1. Categories and Qualifiers

To model categories and their qualifiers, categories have been separated into the Category inter-
face as the root element and RuleComponent as the qualifiers (see figure 12.1). This way qualifiers,
i.e. RuleComponent, can be added seamlessly to the Category. With the two different composites
AndRuleComposite and OrRuleComposite the relation of qualifiers can be selected:

AndRuleComposite Every rule of the composite has to be true for a match

OrRuleComposite Any rule of the composite has to be true for a match

It is important to note that an RuleComposite or any of its inheritors with no added RuleComponents

will always be a negative match. This is because there are no RuleComponent which were successfully
matched, and therefore the qualifier is not fulfilled.

Figure 12.1.: Simplified UML-Diagram for the composite structure of RuleComponent and inheritors in
context of Category

The CategoryService has been added to the Context class. This way it can be accessed by any Job

which requires it, especially all Job implementations which create some form of output such as reports.
The existing ReportJob has been modified to add the found categories to its output.

46

12.3.2. Adding Qualifiers to Categories

The qualifiers for categories can be added to the service by calling addOrUpdateCategory. If the name
of supplied category matches any of the existing categories, its qualifiers will be added to the existing
one.

Furthermore, extension of qualifiers and categories has been implemented by loading them via the
CustomClassLoader. All implementations of Category in the plug-in folder get loaded and added to the
service. This works the same way as described in chapter 4 Plug-in Architecture. This also enables the
reproducibility and insight for the analyst, as all qualifiers of a category can be seen in these separate
classes.

12.4. Conclusion

With the addition of categorization, the analyst can determine which data may need further analysis or
give a thorough report of the state of the analyzed system. With the CategoryService, all examination
tasks can add their definition of categories such as Known Good, Known Bad or customized categories
to the framework. Those definitions get loaded like Job implementations by the CustomClassLoader as
described in chapter 4 Plug-in Architecture.

47

13. File Exclusion

According to functional requirement FR-12 Exclude Filess this feature is necessary. Not only because
of the possibilities of attacks on the analysts workstation, but because not all files are necessarily inter-
esting. If the analyst decides that for example a certain file ending or files created before a specific date
need not be investigated, he should be able to do so.

In this chapter a analysis for file exclusion, as well as the possible approaches and its implementation
in Maloney are described.

13.1. Analysis

When it comes to analyzing potentially infected systems, there is a small chance that the system in
question is containing malicious code that can spread to the analyzing workstation. Other potential
threats such as compression bombs exists too.

Beside the threat of an attack there also might be files which are of no concern for the analyst and
therefore can be safely ignored. For example it might be helpful to ignore .txt files, or files which were
created before the date of an incident. Reducing the amount of files which need to be analyzed by the
analyst also reduces the total time required for the whole process.

13.2. Approach

13.2.1. Position of Filtering

There are multiple options as to when the filtering out unwanted files should happen: Either all the time
on any event, or only when a new file is added.

On Any event Anytime a new event is created, check for the criteria. If any of them match, discard the
event. This uses the most processing time but can intercept events independently of their source.

On File Add When a new file is added for examination, check for the criteria. If any of them match, do
not create a new event and thereby stop the events propagation. The issue with this method is that
when a file gets added to the system trough a different event than specified in this filter, it cannot
be intercepted.

Facing the decision for the position of the criteria check, it was decided to check on file add, and
neglected checking on any event, to achieve better time-behavior, accepting the downside of missing
events or files with a different sources then those specified.

13.2.2. Criteria

The criteria for filtering out files can be broken down into rules for every description or previous exami-
nation result. Because of this criteria the design described in chapter 12 Categorization can be applied
to this problem too.

These criterias should be available for usage on a single case or over multiple cases. They should
get loaded dynamically on every execution of the application until it is specified otherwise.

48

13.3. Implementation

With the decision to filter events on file add a new Job implementation has been added. It is called
ExclusionJob. It uses the categorization feature described in 12 Categorization.

A new instance of Category is created through the factory in chapter 14 Simple Queries. By using
this factory regular expressions can be passed to the new Job as job configuration. The job then checks
those criteria on every newFile event. If it does not match, it creates an addedFile event.

A refactoring to SimpleQuery was necessary to accommodate OrRuleComposites, so that multiple
rules can be added.

In addition, all examination jobs now listen to the event addedFile instead of newFile. In other words
it intercepts events for new files and maps them to addedFile event as long as the criteria for exclusion
are not a match.

13.4. Conclusion

With the new ExclusionJob any unwanted file can be excluded from further examination. It is possible to
apply any filter through passing regular expressions as the job configuration. The job uses functionality
from 12 Categorization and 14 Simple Queries. This fulfills functional requirement FR-12 Exclude
Files.

49

14. Simple Queries

The user experience of Maloney should be as independent as possible of the used technologies. There-
fore the CLI should offer a way to query all stored meta data. The requirement FR-17 Simple Queries
requests the ability to use a simple string, which then can be interpreted and translated for the specific
technology.

This chapter outlines the need for this feature and analyze the scope. Following is the approach on
how to achieve the goal and details about the implementation. The implementation uses functionality
introduced in chapter 12 Categorization and 9 Reporting. Finally, the result is discussed.

14.1. Analysis

The goal of an analyst is to dig into the data and find the interesting parts. There is data generated
for every examined object, including file meta data, artifacts and other reports. This leads to a massive
overflow of information for the analyst. A method to search in this data is necessary to increase the
efficiency for the user.

Maloney supports different technologies to store the meta data and artifacts. Each technology has
their limits and special requirements. For example, Elasticsearch uses its own domain specific language,
which requires a deep understanding of how the data is stored. Therefore the query used by the search
should be independent of the technology and offer a format known to an analyst. It should also remove
the need to know, how the data is stored and the special treatment which is required to handle the data.
Maloney should act as an intermediate layer and abstract the access for this different technologies.
Consequently is a query tool required which handles the conversion.

A query should also be customizable and easily editable by an analyst. Predefined queries will not
provide the same amount of flexibility. Changing the query needs to be quick, so that the resulting data
set can be reduced further. An analyst does not want to spend time with a complicated interface. The
queries should also be changeable and reusable.

An output is expected either on the user interface itself or in a file. The latter is required to use
different tools, editors or search functions to get a quick overview over the data. It is similar to the
feature discussed in chapter 9 Reporting.

To improve the overview it would help if the displayed properties can be selected.

14.2. Approach

For simplicity the query is built up on simple key-value pairs. This format is simple to write and does not
require a deep understanding of the physical storage structure. There are multiple approaches how the
query can be parsed into a format, that can be interpreted efficiently. The research revealed that either
regular expressions or Antlr would be well suited:

Regular Expression They can be used to detect simple patterns of a search query and divide the
identifier from the actual value to search.

Antlr Antlr is a tool to generate powerful parsers for many different tasks. For example, it can also be
used to define domain specific languages, compilers or to improve the usability of search engines.
Antlr uses regular expressions to define a grammar, which then can be used to generate parsers,
visitors, and so on. [ANTLR] A generated parser could be extended to write a category or even to
translate the query directly for the different back ends.

50

An example for the power of Antlr is it allows to build a compiler for Java, using an entire book as the
input. With this extensibility, the learning curve is steep and requires a deep understanding of the tool
itself. An experiment revealed, that it could be integrated into the build process using plug-ins for Gradle.
The classes in the source code generated by Antlr can be extended to suit the current task. Extending
the grammar allows to extend the abilities of queries. For example, natural language processing would
be possible instead of a strict format.

Facing the decision of the method to parse the query, it was decided to use regular expressions and
neglected to use Antlr, to keep the parsing simple and the build process slim, accepting the limited
depth of the queries and increasing complexity with later extension.

Only the data provided by MetadataStore will be available for queries. The DataSource can be pro-
cessed with different file system tools. It reduces the complexity of the query mechanism and also allows
an analyst to use other tools, like grep, tr or awk.

The CLI provides different streams for in- and outputs. These streams can be redirected into a file
or other tools using pipes (depending on the operating system or shell). Therefore, the standard output
stream should be used to display the data to the user. If the query is a string, everything can be executed
inside the CLI or from a script.

Implementing the search inside Maloney instead of the implementation of the MetadataStore reduces
the need to re-implement the feature for every new technology. It allows the reuse of existing compo-
nents and therefore reduces the complexity.

14.3. Implementation

The feature is implemented in the class SimpleQuery, which is directly invoked by the FrameworkController,
if required. Therefore, additional command line switches were introduced: -q or �query to supply a query
and �filter to supply an additional filter. It is neither implemented nor acts like a Job. It does not re-
quire events or generate artifacts. When executing a query, it should not execute any other tasks. This
includes scheduling unfinished events or running any other Job implementations.

A regular expression is used to parse the query. The pattern is shown in listing 14.1. Both groups can
be referenced by their names property and expression. It is a simple list of key-value pairs, where the
expression is enclosed by double quotes. No specific separator is defined for the separation of pairs.
These pairs are then used to dynamically generate a Category. Category is further described in chapter
12 Categorization. Also the filter uses a similar pattern, but just for the property.

Listing 14.1: Used regular expression pattern to split the query into relevant parts
((?<property >[a-zA-Z]+)="(?< expression >[^"]+) ")+

A new RuleComponent is added fto the custom Category or every property. The RuleComponent

matches against the string of the selected property using the expression from the pair. Therefore,
it also supports regular expressions in expression. Attention has to be paid that no double quotes are
used in expression, otherwise it will be misinterpreted. Examples for valid queries are shown in listings
14.2 and 14.3. Every RuleComponent is aggregated using an AndRuleComposite, so every one must
match.

When the query cannot be interpreted with the pattern, the search uses the query string and checks
if it is contained in the properties "fileId" or "fileName" as a fall back.

Listing 14.2: Example query string matching all files in a directory called "windows" with the file name
beginning with "reg"

fileName ="reg.?" filePath ="(?i).* windows .*"

51

Listing 14.3: Example query string files with a given hash
artifactType ="(?i)MD5" artifactValue ="86 fb269d190d2c85f6e0468ceca42a20"

There are multiple values supported as properties, which map to the logical format of FileAttribute.
In table 14.1 are the possible values. These are case insensitive. The filter can be controlled by providing
a list of these values. Their order will also be used to format the output. If none is provided, every
property is printed. The property artifacts contains also artifactType, artifactOriginator and
artifactValue. They cannot be selected independently in a filter.

Property Query Filter
fileId X X
fileName X X
filePath X X
dateAccessed X X
dateChanged X X
dateCreated X X
artifacts X
artifactType X
artifactOriginator X
artifactValue X

Table 14.1.: Recognized values for property in a query or filter

The value part of the pair can use any regular expression pattern. The online documentation of
Java about Patterns1 is a useful resource when writing one. If a date should be queried, it will be
formatted using DateTimeFormatter.ISO_DATE_TIME as default. An example of a date would be "2011-
12-03T10:15:30+01:00[Europe/Paris]".

The implementation shares some similarities with the ReportJob introduced in chapter 9 Reporting. It
gets every FileAttribute stored in the MetadataStore. Using a custom implementation of Category,
every FileAttribute is matched before it will be printed to the standard output.

A tabulator is used as default delimiter of the values. This is relevant if the output should be processed
in a different application. The order of the properties in the filter also determines the order of the output.

14.4. Conclusion

The functionality provided by the class SimpleQuery fulfills the requirement FR-17 Simple Queries. It
facilitates to query all the stored information to find the desired information.

With the implementation of Category in chapter 12, some code could be reused and no new matching
algorithm had to be developed. This reduced the time required for the implementation. Some technolo-
gies usable as MetadataStore already provides querying capabilities, which are yet unused. Translating
the queries for each implemented MetadataStore could increase the processing speed and reduce the
amount of transferred data. During the development and testing phase no performance issue were
observed.

Dates and times are another difficulty to handle. It was not examined which timezone offset they
include or if they are always extracted in the Coordinated Universal Time (UCT). Therefore, it could be
difficult to pinpoint an issue to the correct hour they occurred. It requires further time to streamline the
timezone compensation over the whole application.

The parser is also used by the feature implemented in 13 File Exclusion and therefore supports the
same query syntax.

1https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

52

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html
https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

15. Summary

In this chapter, the achieved work is examined again: The requirements are reviewed, still open and
unhandled issues explained and possible future developments formulated in an outlook.

15.1. Requirements

In chapter 3 Analysis the requirements for the project were formulated. After the project is finished,
these requirements need to be revisited. It needs to be evaluated which ones were fulfilled, and which
ones were not so that future developers have a reference where to start.

15.1.1. Fulfilled Requirements

At the start of the project some requirements were already fulfilled. But many new features were added
which extended the capability of Maloney. The following requirements are considered fulfilled:

FR-1 Examine Disk Images This requirement was already fulfilled at the start of this project.

FR-3 Collect Metadata This requirement was already fulfilled at the start of this project.

FR-4 Automate Process This requirement was already fulfilled at the start of this project.

FR-5 View Metadata This requirement was already fulfilled at the start of this project. An additional
technologically agnostic version was added through 14 Simple Queries.

FR-6 Calculate File Hash This requirement was already fulfilled at the start of this project.

FR-7 Identify Known Files Comparison mechanisms have been implemented as in chapter 6 Identify
Known Files and chapter 11 Software Signature Comparison.

FR-8 Manage Cases A case management with case identifier, working directories and separation of
global and case-based data has been introduced in chapter 10 Case Management.

FR-11 Configure Working Directory This requirement was fulfilled and described in chapter 10 Case
Management.

FR-12 Exclude Files The functionality to exclude dangerous or uninteresting files has been added and
described in chapter 13 File Exclusion.

FR-16 Export Metadata The functionality to generate a report has been added and described in chap-
ter 9 Reporting.

FR-17 Simple Queries In addition to the ability to querry data over Kibana, a technology agnostic
querrying functionality has been added and described in chapter 14 Simple Queries.

The non-functional requirements are an invariant to the whole application and were regarded as this
during the whole development.

15.1.2. Unfulfilled Requirements

It was clear from the start that not all formulated requirements could be fulfilled by the end of the
project. The following requirements were not implemented due to time constraints and the subsequent
re-prioritization of requirements.

53

FR-9 Compare to Golden Image Golden Image comparisons are not as common as hash or signa-
ture comparisons.

FR-10 Examinate Windows Metadata

FR-13 View Directory Structure The file structure can also be seen directly on the image and is not
necessarily needed in Maloney.

FR-14 Search for Strings in File Content

FR-15 Identify File Types

15.2. Open Issues

Although most problems could be solved, there were some sporadically appearing errors or errors with
no traceable source. These have to be kept in mind for future development, as they are key in making
the application even more stable.

15.2.1. Invalid FS_Info Object

During development, some sporadic exceptions with the message "Invalid FS_INFO object" have been
observed, which resulted in empty files and therefore zero-byte file hashes. This behavior was misin-
terpreted as problems concerning near real-time as described in chapter 6 Identify Known Files. This
misinterpretation was mostly because the exceptions were only thrown when no debugger was attached.
When a debugger was attached, a match was found. The root cause is not originating in this implemen-
tation, but has to be resolved in the future.

This error originates in TSK and could not be successfully reproduced, but appeared sporadically.
Usually a complete reboot of testing machine fixed the issue.

15.2.2. Memory Access Violation

Occasionally during an examination the JVM crashed with a memory access violation. This only spo-
radically appeared and is linked to TSK and its required libraries.

Again, a restart of the application and subsequently the machine itself solves the issue.

15.2.3. Out Of Memory Error

During the analysis of a large image, it is possible that Elasticsearch in conjunction with Maloney pro-
vokes an out of memory error. After the JVM is terminated, the application can be restarted and the
examination continued.

It is possible to prevent this error entirely by assigning more memory to the JVM. An experimental run
with the JVM parameters -Xms 12g -Xmx 12g, which assign 12 GB of memory to the application, lead
to a successful execution.

The memory footprint of the application may be reduced by refactoring. The following issues have
been identified:

Double Curly Brace Initialization It is possible to create memory leaks when using double curly brace
initialization in conjecture with the CustomClassLoader. "They contain a reference to their en-
closing instance, and that is really a killer." [Ede14] By eliminating them, this possibility can be
removed.

event Pull Instead of Push The MultiThreadedJobProcessor could be refactored so that it pulls events
from the framework. Queued events could then be offloaded from the memory onto the disk. The
mechanism to do so was already implemented in chapter 8 Fault Tolerance with MapDB.

54

15.2.4. Extracted Elements Count in Working Directory

During the examination all found files on the image get extracted to the specified working directory. A
discrepancy can be found when checking the amount of files in the meta data store, i.e. Elasticsearch:
There is one more file then there is on the file system.

This is due to the registering of the image file itself in the application, but it not being copied to the
working directory.

15.3. Outlook

Although the project is finished, there are still multiple possibilities how Maloney can be extended. For
starters, there is the list of unfulfilled requirements in subsection 15.1.2 Unfulfilled Requirements. Apart
from these, there are many other possible extensions the application could profit from. This includes the
addition of more examination methods or the extension of existing ones. Some possible improvements
can be found in the conclusions of their respective chapters.

Extension of Signature Comparison Add functionality to validate the full certificate chain (see chapter
11 Software Signature Comparison).

Configuratble Framework Components Some framework components are not dynamically config-
urable; E.g. the name of the Elasticsearch instance is statically defined in the implementation
of MetadataStore and cannot be changed dynamically.

Post Case Clean Up When a case is finished, the data needs to be deleted on both the local storage
and the meta data storage; This could be automated.

Command Line Tool Execution Template An option to drastically increase the possibilities for exam-
ination would be to include some form of generic command line examination tool template. E.g.
YARA can detect patterns in generated log files after an execution inside Cuckoo Sandbox sand-
box. It could also detect patterns in log files from the execution of other commands.

Index Plain Text Content All plain text content could be made searchable, so that all log files or other
documents can be searched on the image. This gives the analyst the ability to correlate data
better.

Distributed Computing The possibility to share the computational effort between multiple machines.
This is discussed in chapter 5 Parallelism as well.

Remote Analysis The analysis of a live system could be integrated. The required extraction mecha-
nism for remote files could be a Job implementation.

Windows OS Support Currently the only operating system Maloney can be run on is Linux. The reason
is that the used TSK version cannot be built on Windows. A future version of TSK may fix this and
Windows support can be re-added.

55

16. Attachments

56

A. User Documentation

This chapter contains all the necessary steps to create, install and examine a disk image with Maloney.
Currently, only Linux is supported as the operating system to develop and to perform an examination.
For information about the windows support, see “Malware Hunting” [EN16].

A.1. Setting up the development environment

The setup includes all steps required to prepare the development environment for Maloney. After exe-
cuting all steps, Maloney with all dependencies can be built.

Gradle is used as the build tool, which provides a lot of functionality. This guide only covers the most
important use cases and therefore not all possible ways on how to use Gradle are described. For more
information and some advanced details see Gradle User Guide [DM15].

This guide is tested with Kali Linux 2017.1 Light 64 bit, but other distributions may also work. The
commands need to be changed accordingly to the used distribution.

A.1.1. Requirements

• Installed Linux operating system

• Internet access

• Optional: IDE for Java, for example IntelliJ IDEA Community or eclipse

A.1.2. Install Prerequisites

All commands are entered into a terminal with normal user privileges. The command sudo is used to
elevate the permissions, where required.

1. Make sure the machine is up to date. Enter the following commands:

$ sudo apt update && sudo apt upgrade

2. There are some dependencies to external software packages and libraries: automake, autoconf,
libtool, gcc, Java Development Kit (JDK), git, ant, maven, libewf, afflib and zlib. This dependencies
can be installed through the package management of the distribution1. Execute the following
commands to install them:

$ sudo apt install automake autoconf libtool build -essential openjdk

-8-jdk git ant maven libewf -dev libafflib -dev zlib1g -dev

3. Optional: Some Unit Tests will require an Elasticsearch instance. This integration tests are ex-
cluded from the gradle test task, but sometimes useful while debugging. Install Elasticsearch and
Kibana as described in A.3. Alternatively, both can be executed directly from the command line
without installing. For more information, see section "Installation Steps" on Download Elastic-
search2.

1On some distributions, alternative package-source universe needs to be activated
2https://www.elastic.co/downloads/elasticsearch

57

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

4. Clone into the git repository, currently hosted on Github3

$ mkdir ~/ projects && cd ~/ projects

$ git clone https :// github.com/rehrbar/maloney

5. Init TSK submodule and build it. This step needs to be repeated, if a hard reset of the working
directory is performed or the reference was updated. More information about building is described
in ~/projects/maloney/sleuthkit/INSTALL.txt Enter the following commands:

$ cd ~/ projects/maloney/

$ git submodule init sleuthkit

$ git submodule update sleuthkit

$ cd sleuthkit

$./ bootstrap

$./ configure

$ make

6. Init the Jsign submodule and install it into the local Maven repository. This step needs to be
repeated, if a hard reset of the working directory is performed or the reference was updated. Enter
the following commands:

$ cd ~/ projects/maloney/

$ git submodule init jsign

$ git submodule update jsign

$./ gradlew installJsign

If the build of TSK and Jsign succeed, everything is configured correctly and all dependencies are
available.

The unit tests of Jsign require a broadband Internet connection to work properly. Using the cellular
network might result in failing tests.

A.1.3. Build Maloney

The project itself is structured with three Gradle sub-projects: maloney, maloney-plugins and maloney-
cli. The latter is the command line interface, which can be distributed as an application. The projects
maloney-cli and maloney-plugins are referencing to maloney, which will automatically be built if required.
Similarly, maloney has a reference to TSK bindings. Additionally, maloney-cli refrences maloney-plugins
as runtime dependency, which allows debugging of the plug-ins. As a side effect, the library of maloney-
plugins is included automatically in the libraries directory of the distribution package.

The root project contains the Gradle wrapper, which will download the required gradle version auto-
matically. It also includes some shared configuration for all sub-projects.

To perform a build of maloney-cli and its dependencies, run the following commands:

$ cd ~/ projects/maloney/maloney -cli

$./ gradlew build

3https://github.com/rehrbar/maloney

58

https://github.com/rehrbar/maloney
https://github.com/rehrbar/maloney

Figure A.1.: Output of a successful build

The output is located in the folder build/libs, which contains mainly the Java archives. This files cannot
be executed without the dependencies in the Java classpath. The task installDist will create the required
directory structure and startup scripts, including all dependencies. The output of installDist is located in
build/install.

A.1.4. Run Unit Tests

Some integration tests are excluded to run in the default configuration. Mainly tests which have external
dependencies, such as disk images or to Elasticsearch.

To run all configured tests, enter the following commands:

$ cd ~/ projects/maloney

$./ gradlew test

If not all tests are required, a single test class can be executed. Only test classes which are not
excluded in build.gradle are available. See the following command as an example:

$./ gradlew test -Dtest.single=ch/hsr/maloney/storage/LocalDataSourceTest

*

An IDE can also run single tests. In this case, the integrated test runner is used. Sometimes it is
necessary to configure JVM-Options and environment variables before running a test. This is dependent
on the used IDE and will not be covered in this documentation.

All detailed test results are located in build/reports/tests of every sub-project containing tests. The
test results can be viewed in the browser by opening the index.html file, shown in figure A.2. This report
allows to drill down into every executed test.

59

Figure A.2.: Generated test summary in firefox

A.1.5. Integrated Development Environment

A modern Java IDE can import the Gradle projects. In some cases, Gradle can be used to generate
the necessary project files itself. How to use and import the project files into an IDE are not part of this
guide.

By using Gradle, any text editor could be used. There is no need to use a specific IDE.

A.2. Creating a distribution package

This guide describes the necessary steps to create a distribution package, which can be installed on
other machines.

A.2.1. Requirements

• Already set up development environment as described in section A.1 Setting up the development
environment

• Internet access

• Gradle needs to build the project successfully

A.2.2. Building a Distribution Package

The project maloney-cli is configured with the distribution plug-in of Gradle. It provides some useful
tasks to create a single archive, which contains all dependencies and start scripts.

Executing the build task will also build the distribution package. To build the distribution package
manually, enter the following commands:

60

$ cd ~/ projects/maloney/maloney -cli

$./ gradlew assembleDist

All generated archives (distribution packages) are located in build/distributions. Both archives, Zip
and Tar, contain the same files. The only difference is that the Tar archive can contain file permissions,
e.g. the run permission, and is therefore suited for Linux. The startup scripts can be run on Linux and
Windows (bat file extension). For additional information about the distribution plugin, see chapter 35.
The Distribution Plugin in Gradle User Guide [DM15].

A.2.3. Add Additional Content to the Distribution

The distribution plugin also has the ability to inlcude additional content: "Static files to be added to the
distribution can be simply added to src/dist. More advanced customization can be done by configuring
the CopySpec exposed by the main distribution." [DM15, chapter 50. The Application Plugin] Files in
maloney-cli/src/dist will be placed in the root of the distribution package. Folder structures are also
supported.

The project maloney-cli is configured to include a specific dependency to a TSK library, which is not
automatically recognized. Therefore, this library is added with the following extension to build.gradle:

distributions {

main {

contents {

// adding missing library which is required by libtsk_jni

from ("../ sleuthkit/tsk/.libs /") {

include "libtsk.so.13"

into "lib"

}

}

}

}

A.3. Installing Maloney

This guide describes how to install the distribution package, as described in section A.2, on a new
machine.

This guide is tested with Kali Linux 2017.1 Light 64 bit, but other distributions may also work. The
commands need to be changed accordingly to the used distribution.

A.3.1. Requirements

• Installed Linux operating system

• Distribution package of Maloney

• Internet access

• Free hard disk storage of approximately 120% of the image to be analyzed

• At least 4 GB of memory

61

A.3.2. Installation

All commands are entered into a terminal with normal user privileges. The command sudo is used to
elevate the permissions, where required.

1. Make sure the machine is up to date. Enter the following commands:

$ sudo apt update && sudo apt upgrade

2. There are some dependencies to external software packages and libraries: JRE, ewf-tools and
afflib-tools. This dependencies can be installed through the package management of the distribu-
tion4. The tool curl is used for testing. Execute the following commands to install them:

$ sudo apt install curl openjdk -8-jre ewf -tools afflib -tools

3. Download and install Elasticsearch by using the Debian installation package. If the used distribu-
tion is not based on Debian, use an alternative package from Elasticsearch Downloasd5. Maloney
is tested with version 5.0.2, newer bugfix-releases might also work.

a) Enter the following commands to download and install Elasticsearch:

$ cd ~/ Downloads/

$ wget https :// artifacts.elastic.co/downloads/elasticsearch/

elasticsearch -5.0.2. deb

$ sudo dpkg -i elasticsearch -5.0.2. deb

b) Change the clustername of Elasticsearch to "maloney", like in figure A.3, so it will not join
a default cluster automatically. Open /etc/elasticsearch/elasticsearch.yml with an editor and
change the property. Save the file afterwards.

Figure A.3.: Changed cluster name in elasticsearch.yml

4On some distributions, alternative package-source universe needs to be activated
5https://www.elastic.co/downloads/elasticsearch

62

https://www.elastic.co/downloads/elasticsearch
https://www.elastic.co/downloads/elasticsearch

c) Optional: Tweak ram usage of elasticsearch, especially if your machine has less than 4 GB.
"The standard recommendation is to give 50% of the available memory to Elasticsearch heap,
while leaving the other 50% free. It won’t go unused; Lucene will happily gobble up whatever
is left over." [Ela16] The default is 2 GB. To change it, open /etc/elasticsearch/jvm.options
with an editor and change both lines starting with "-Xms" and "-Xmx". See figure A.4 as a
reference. Safe the file afterwards.

Figure A.4.: Changed heap settings in jvm.options

d) Make sure Elasticsearch is configured correctly and it will start. The startup may take some
time. Execute the following command:

$ sudo systemctl start elasticsearch

e) When Elasticsearch has started, it can be tested with an easy HTTP-GET-Request. If the
result looks like figure A.5, it should be ok. Use the following command:

$ curl -XGET localhost :9200

63

Figure A.5.: Querying Elasticsearch instance with curl

f) Optional: Enable automatic startup of Elasticsearch service with the following command:

$ sudo systemctl enable elasticsearch

4. Extract the distribution package of Maloney. The location needs to be accessible for the user
who will execute the analysis. For the purpose of this documentation, Maloney will be installed to
/opt/maloney-cli-2.0-SNAPSHOT. This location is further referenced as the installdir. Enter the
following command and replace /path/to/maloney-cli-2.0-SNAPSHOT.tar with the location of the
distribution package:

$ cd /opt/ && sudo tar -xf /path/to/maloney -cli -2.0- SNAPSHOT.tar

5. Optional: Add a link for Maloney to the binaries folder, so it’s available from every location. Enter
the following command and replace installdir :

$ sudo ln -s installdir/bin/maloney -cli /usr/local/bin/maloney -cli

6. Optional: Increase the available memory for Maloney if an image over 100 GB should be analyzed
or if out of memory errors occur. Edit the start script installdir/bin/maloney-cli with an editor and
change -Xmx and -Xms in property DEFAULT_JVM_OPTS. Save the file afterwards. Following is
an example which allows the application to use up to 12 GB:

DEFAULT_JVM_OPTS='"-Xmx12g" "-Xms12g"'

64

Figure A.6.: Increase available memory for Maloney

7. Optional: Install Kibana for further analysis of the gathered data. Kibana should be the same
Version as installed Elasticsearch, in this case 5.0.2. Again, if the distribution is not based on
Debian, use an alternative package from Kibana Downloads6.

a) Enter the following commands to download and install Kibana:

$ cd ~/ Downloads/

$ wget https :// artifacts.elastic.co/downloads/kibana/kibana

-5.0.2 - amd64.deb

$ sudo dpkg -i kibana -5.0.2 - amd64.deb

b) Optional: Enable automatic startup of Kibana service with the following command:

$ sudo systemctl enable kibana

8. Optional: Remove the downloaded files.

A.4. Using Maloney

Currently, Maloney provides a set of functionality, which is shipped with the framework. This guide
should help to provide a quick overview of what can be accomplished with the current version.

This guide is tested with Kali Linux 2017.1 Light 64 bit, but other distributions may also work. The
commands need to be changed accordingly to the used distribution.

A.4.1. Examine Disk Image

This is the main task of Maloney. It will extract all files from the image, generate hashes for every file
and detects PEs.

6https://www.elastic.co/downloads/kibana

65

https://www.elastic.co/downloads/kibana
https://www.elastic.co/downloads/kibana

1. Make sure local Elasticsearch instance is running. For Linux, enter the following command:

$ sudo systemctl start elasticsearch

2. Mount the storage device which contains the disk image to analyze.

3. Create a new configuration file for Maloney, which defines various parameters of the application.
Configurations can be reused for different cases.

a) Use maloney-cli to generate a new configuration template. The name and location is irrele-
vant, but for later reference /path/to/config.json is used. Enter the following command:

$ maloney -cli -sc /path/to/config.json

b) Open /path/to/config.json in a text editor.

c) Add the job configuration for DiskImageJob with the path to the disk image. As example,
/path/to/diskimage.dd is used as image which should be analyzed. The JobConfigurationMap
should look as followed:

"jobConfigurationMap ": {

"DiskImageJob ":"/ media/sf_shared/diskimage.dd"

},

d) Optional: Define the working directory. If nothing is provided, it defaults to a temporary di-
rectory of the operating system. On Linux, it uses /tmp/maloney/. Keep in mind that this
location may be cleaned up after a reboot or automatically if not used. The line should look
as following:

"workingDirectory ": "/some/directory/",

e) Save the modified configuration.

4. Replace /path/to/config.json with the previously created configuration. As case identifier, inci-
dent42 is used. The identifier can be changed, but it can only contain lowercase characters and
numbers7. Enter the following command:

$ maloney -cli -c /path/to/config.json -id incident42

5. Optional: View the results with Kibana.

a) Make sure a local instance of Kibana is running. For Linux, enter the following command:

$ sudo systemctl start kibana

b) Open your web browser and navigate to http://localhost:5601/.

c) Configure the index pattern for Maloney. If no index pattern is available, the form is automat-
ically displayed to create a new one. Otherwise, go to Management >Index Patterns >Add
New. Uncheck all checkboxes and enter "maloney-incident42" into the field Index name or
pattern, so it looks like figure A.7, and click Create. The index name consists of the case
identifier prefixed with "maloney-".

7See chapter 10 Case Management for more information about case identifiers.

66

http://localhost:5601/

Figure A.7.: Configure an index pattern in Kibana

d) View all results inside index maloney-incident42. Go to Discover and make sure the index is
selected. Any query can be executed against the indexed data. The window looks similar to
figure A.8.

67

Figure A.8.: Discover the indexed file attributes and artifacts in Kibana

A.4.2. Access Extracted Files

After the examination of an image, as explained in section A.4.1, the files can be examined manually.
All files of a case are located in a sub folder of the working directory, provided in the configuration. It
defaults to the temporary directory of the operating system. For the name of the sub folder, the case
identifier is used. If no identifier was provided, it defaults to the current date including an incrementing
number. For more details, see chapter 10 Case Management. Using the previous example, the data is
located in /some/directory/incident42.

For every case, a set of different folders and files are created. The table A.1 contains a brief overview.
Even if the configuration does not examine an image, this structure is still generated.

The analyst can apply any desired tool to the examined files. Information provided by Maloney can be
used to identify the most interesting files to begin with.

68

File-/Folder-name Description
files/ Contains all extracted files from the image. Also including additional files, which

were generated during the examination. The filename correlates to the file id in
the MetadataStore.

jobs/ Contains several working directories, which are used by jobs. They always begin
with the job identifier followed by an generated id. Even jobs with the same name
get different folders.

config_* Backup of used configuration. Every execution creates a configuration file in-
cluding all provided parameters.

events.db Persistent storage of the events.
events.db.wal* Write ahead logs for the persistent storage.
maloney.log Log file of Maloney. Search for errors and warnings in this file.

Table A.1.: Recognized values for property in a query or filter

A.4.3. Clear Case Results

An examination takes up a lot of space. Among other things, since all files are extracted. After all
evidence and reports are secured, the case can be removed to free up disk space. The following steps
describe how to accomplish this.

1. Identify the location of your case on the disk. Section A.4.2 describes where to find it. It is
/some/directory/incident42 for this guide, with incident42 as the case identifier.

2. Delete the entire case directory with the following command:

rm -rf /some/directory/incident42

3. Delete the generated elastic search indexes. It can be accomplished using the developer tools in
Kibana or with the command curl. Enter the following command, if curl is available:

curl -XDELETE localhost :9200/ maloney -incident42

If there is an acknowledgement, everything related to the case is gone.

A.4.4. Import RDS Hash Set

Maloney can index the NIST NSRL RDS. Every calculated hash for a file is looked up in this index during
an examination. Following steps describe how to accomplish this.

1. Download the RDS unique set from NSRL Downloads8. This may take some time, because the
file has a size of about 1.7 GB.

2. Make sure the local Elasticsearch instance is running. For Linux, enter the following command:

$ sudo systemctl start elasticsearch

3. Create a new configuration file for Maloney, which defines various parameters of the application.
Configurations can be reused for different cases.

a) Use maloney-cli to generate a new configuration template. The name and location is irrele-
vant, but for later reference /path/to/config.json is used. Enter the following command:

$ maloney -cli -sc /path/to/config.json

b) Open /path/to/config.json in a text editor.

8http://www.nsrl.nist.gov/Downloads.htm

69

http://www.nsrl.nist.gov/Downloads.htm
http://www.nsrl.nist.gov/Downloads.htm

c) Add the job configuration for ImportRdsHashSetJob with the path to the disk image. As
example, /path/to/rds_254_u.zip references to the earlier downloaded file. The jobConfigura-
tionMap should look as followed:

"jobConfigurationMap ": {

"ImportRdsHashSetJob ":"/ path/to/rds_254_u.zip"

},

d) Save the modified configuration.

4. Enter the following command and replace /path/to/config.json to start the analysis with the config-
uration file:

$ maloney -cli -c /path/to/config.json

5. Optional: View the results with Kibana.
a) Make sure a local instance of Kibana is running. For Linux, enter the following command:

$ sudo systemctl start kibana

b) Open your web browser and navigate to http://localhost:5601/.
c) Configure the index pattern for maloney. If no index pattern is available, the form is automat-

ically displayed to create a new one. Otherwise, go to Management >Index Patterns >Add
New. Uncheck all checkboxes and enter "hashes" into the field Index name or pattern, so it
looks like figure A.9, and click Create.

Figure A.9.: Configure an index pattern in Kibana

70

http://localhost:5601/

d) View all results inside index hashes. Go to Discover and make sure the index is selected.
Any query can be executed against the indexed data. The window looks similar to figure A.10.

Figure A.10.: Discover the indexed hashes in Kibana

As shown, the instructions are quite similar to section A.4.1 Examine Disk Image. Importing the
RDS is handled the same way as an examination and therefore a case identifier is required. If none is
provided, it will be generated. The created case can be cleaned up following the instructions provided
in section A.4.3 Clear Case Results.

A.4.5. Clear Stored Hashes

All hashes are stored in one index of Elasticsearch. All examinations use the same hashes for look ups.
If a new one is required due to different reasons, it has to be cleared first. If curl is available, use the
following command:

$ curl -XDELETE localhost :9200/ hashes

If only the Kibana developer tools are available. Enter the following command into the console window
and execute it:

DELETE hashes

71

A.4.6. Generate a Report

Every execution of Maloney generates a new report using all available categories. The report is usually
located in the working directory of ReportJob. It consists of a comma separated list and is named
report.csv. This file will be overwritten after every execution which also includes a startup event.

A.4.7. Query Indexed Data

The examined meta data can be queried using the CLI. To identify the correct case, a configuration file
and the case identifier is required. Following steps will show how to query the data.

1. Optional: Create a new configuration file. A previously used configuration file can be used without
creating a new one too. A query will not execute anything else.

a) Use maloney-cli to generate a new configuration template. The name and location is irrele-
vant, but for later reference /path/to/config.json is used. Enter the following command:

$ maloney -cli -sc /path/to/config.json

b) Open /path/to/config.json in a text editor.

c) Define the working directory. If nothing is provided, it defaults to a temporary directory of the
operating system. On Linux, it uses /tmp/maloney/. Keep in mind that this location may be
cleaned up after a reboot or automatically if not used. The line should look as follows:

"workingDirectory ": "/some/directory/",

d) Save the modified configuration.

2. A query requries a query term, which represents a list of key-value pairs. The filter is optional and
influences the displayed attributes. As configuration file /path/to/config.json is used together with
the case identifier incident42. To perform a query, enter a command similar to the following:

$ maloney -cli -c /path/to/config.json -id incident42 -q 'filename=".*

exe" --filter 'fileid filename '

The output can either be viewed on the CLI or piped into a file. The output is always tab delimited.
Stored files can be analyzed and reviewed with any text editor. For more information see chapter 14
Simple Queries.

A.4.8. Create Disk Image

The easiest way to create a disk image is by using a Linux live CD. Most live CDs include the tool dd,
which can create raw disk images from a hard drive. To get a list of all drives, the following commands
can be used:

$ df -h

$ sudo fdisk -l

Enter the following command to create an image, replace the X with the drive letter identified before
and replace /path/to/image.dd with a location large enough to store the entire image. The resulting
image is uncompressed and uses the same size as the source.

$ sudo dd if=/dev/sdX of=/path/to/image.dd

72

A.5. Security Aspects

Unlike other databases or similar systems, Elasticsearch has no integrated security system. Everyone
which has access to the instance can do absolutely everything: View, change and delete indexes,
reconfigure the instance, and so on. Keep this in mind if a confidential disk image should be analyzed.
Use a firewall to prevent access to Elasticsearch and, if used, Kibana. The configuration allows to bind
both to a specific network interface. This guide will not describe, how to do this, because it is too specific
to the environment.

There is also a commercial plugin for Elasticsearch and Kibana to add authentication and encryption.
For more information, see Elasticsearch Security9.

It is also important to note that all extracted files are unprotected: There are no additional permissions
settings or encryption whatsoever. Any software which runs with the same permissions as the user or
higher can read these files.

9https://www.elastic.co/products/x-pack/security

73

https://www.elastic.co/products/x-pack/security
https://www.elastic.co/products/x-pack/security

B. Configuration Handbook

In this chapter located is a list of all Job implementations provided by the current version of Maloney,
their descriptions and configuration parameters. The list is alphabetically sorted. For a better overview
of the logical order of execution, see figure B.1. The figure contains only the used events. To describe
the implementations, following schema is used:

Name The Name of the Job implementation.

Canonical Name The name which can be used in an import statement.

Description A brief explanation of what it does.

Requires Event Which Event the implementation requires so it can execute.

Produces Event Which Event the implementation will generate on a successful execution, if any.

Job Configuration What information this implementation expects in the job configuration string, if any.

Figure B.1.: Chains of Job implementations and Event in between

B.1. AuthenticodeCatalogJob

Name AuthenticodeCatalogJob
Canonical Name ch.hsr.maloney.maloney_plugins.authenticode.AuthenticodeCatalogJob
Description Extracts Authenticode signature information of catalog files.
Requires Event addedFile

Produces Event -
Job Configuration -

Table B.1.: Description of AuthenticodeCatalogJob

74

B.2. AuthenticodePEJob

Name AuthenticodePEJob
Canonical Name ch.hsr.maloney.maloney_plugins.authenticode.AuthenticodePEJob
Description Extracts and validates Authenticode signature information of a portable exe-

cutable if a signature exists.
Requires Event addedFile

Produces Event -
Job Configuration -

Table B.2.: Description of AuthenticodePEJob

B.3. AuthenticodeSignatureLookupJob

Name AuthenticodeSignatureLookupJob
Canonical Name ch.hsr.maloney.maloney_plugins.authenticode.AuthenticodeSignatureLookupJob
Description Compares signature extracted through AuthenticodeCatalogJob with the ones

from AuthenticodePEJob.
Requires Event addedFile

Produces Event -
Job Configuration anything but null, will not run otherwise.

Table B.3.: Description of AuthenticodeSignatureLookupJob

B.4. CalculateHashesJob

Name CalculateHashesJob
Canonical Name ch.hsr.maloney.processing.CalculateHashesJob
Description Calculates MD5 and SHA1 hash and stores them as Artifact.
Requires Event addedFile

Produces Event MD5HashCalculated and SHA1HashCalculated

Job Configuration -

Table B.4.: Description of CalculateHashesJob

B.5. DiskImageJob

Name DiskImageJob
Canonical Name ch.hsr.maloney.processing.DiskImageJob
Description Adds a new disk image to the application to be examined.
Requires Event startup

Produces Event newDiskImage

Job Configuration Path to image file, will not run otherwise.

Table B.5.: Description of DiskImageJob

75

B.6. ExclusionJob

Name ExclusionJob
Canonical Name ch.hsr.maloney.processing.ExclusionJob
Description Filters out files as defined by the job configuration, only creates addedFile

event if filter does not match.
Requires Event newFile

Produces Event addedFile

Job Configuration Key-value pairs, which use a field name and a regular expression in quotes. A
pair should be structured like the following example: fileName=".*txt". The
case of the field name (i.e. fileName) does not matter.

Table B.6.: Description of ExclusionJob

Possible field names for the filter are as follows:

• FileId

• FileName

• FilePath

• DateAccessed

• DateChanged

• DateCreated

• ArtifactType

• ArtifactOriginator

• ArtifactValue

B.7. IdentifyKnownFilesJob

Name IdentifyKnownFilesJob
Canonical Name ch.hsr.maloney.maloney_plugins.IdentifyKnownFilesJob
Description Compares artifacts from CalculateHashesJob with stored hashes from

ImportRdsHashSetJob and adds artifacts to the file if a match is found.
Requires Event MD5HashCalculated or SHA1HashCalculated
Produces Event -
Job Configuration -

Table B.7.: Description of IdentifyKnownFilesJob

76

B.8. ImportRdsHashSetJob

Name ImportRdsHashSetJob
Canonical Name ch.hsr.maloney.processing.ImportRdsHashSetJob
Description Import a zipped National Institute of Standards and Technology (NIST) Na-

tional Software Reference Library (NSRL) Reference Data Set (RDS) available
at http://www.nsrl.nist.gov/Downloads.htm.

Requires Event startup

Produces Event -
Job Configuration Path to NIST NSRL RDS zip-file, will not run otherwise.

Table B.8.: Description of ImportRdsHashSetJob

B.9. ReportJob

Name ReportJob
Canonical Name ch.hsr.maloney.processing.ReportJob
Description Generates a report based on the stored meta data and artifacts. Extends every

entry with category tags where they match.
Requires Event startup

Produces Event -
Job Configuration -

Table B.9.: Description of ReportJob

B.10. TSKReadImageJob

Name TSKReadImageJob
Canonical Name ch.hsr.maloney.processing.TSKReadImageJob
Description Extracts all files, directories and unallocated spaces including their meta data.

Adds the extracted data to the DataSource.
Requires Event newDiskImage

Produces Event newFile, newDirectory and newUnallocatedSpace

Job Configuration -

Table B.10.: Description of TSKReadImageJob

77

http://www.nsrl.nist.gov/Downloads.htm

C. Developer Handbook

This handbook is concerned with the necessary steps and the limitations of developing new Job for
Maloney. This includes implementations for more examination methods or reporting. In addition, it
explains how to create custom categories.

C.1. Creating a Job

For a Job implementation to be loaded into Maloney, two things are necessary. First is the Job imple-
mentation itself. Secondly the jar needs a service provider definition. This service provider definition
needs to be located at META-INF/services/ch.hsr.maloney.processing.Job. Inside this file the new
Job implementations need to be added with their canonical names. For an example, see listing C.1.

Listing C.1: Service provider definition with new Job implementations
new -project.maloney -plugin.NewExaminationJob

new -project.maloney -plugin.NewReportJob

After the class has been created and the service provider definition added, the implementation can be-
gin. The resulting JAR can be added to the plug-in folder of Maloney and it will be loaded on application
start.

C.1.1. Job Logic

Create a new class which implements the Job interface. Implement the methods as requested by the
interface, which also contains a documentation. Generally, a Job implementation gets executed in the
following order:

1. shouldRun

2. canRun

3. run

Both methods shouldRun and canRun should be short and non-blocking and shall not change any
data. Only the method run should do that.

If anything fails during the run method, a JobCancelledException should be thrown. E.g. when there
is not enough disk space available for the Job to successfully complete.

C.1.2. Position in Event Chain

Before any execution takes place, the Framework checks whether all registered Job implementations
can be run as is. For this, it checks the methods getRequiredEvents and getProducedEvents. The
application only starts when a proper chain with Events can be built. For a list of all standard Events
check chapter B Configuration Handbook. Generally, Event names should be short and human readable.

78

C.1.3. Job Configuration

For the application to start, a configuration file has to be supplied. If there is a configuration inside
the jobConfigurationMap in form of "jobName":"Configuration As String", it gets passed to the Job

implementation after its instantiation with the method setJobConfig. The provided configuration is valid
for the entire lifetime of the instance and will not change.

C.1.4. Limitations

It is important to note that some limits apply when creating new Job implementations.
First off is the need to synchronize the access on local variables. It is possible that multiple threads

run the same method of the same instance. This becomes a problem if local variables or class fields
are used. Therefore it is recommended to get all necessary data through the Context and only use the
scope of the method. If this is not possible, proper synchronization of those variables is necessary.

The framework uses the default constructor to create an instance. Other constructors are ignored. If
a configuration through parameters is required, the method setJobConfig should be used.

C.2. Create a Category

Similar to creating a new Job, creating a custom Category involves the implementation of the Category

interface and adding a service provider definition. This time the definition is located in
META-INF/services/ch.hsr.maloney.util.categorization.Category.

C.2.1. Category Rules

First, it needs to be decided whether all rules need to apply for the rule to match or any of them. An
AndRuleComposite is for the former and OrRuleComposite for the latter (see chapter 12 Categorization).

After that, more composites or rules can be added to the base composite. Rules are single parameter
methods an can be replaced with lambdas. For an example, see listing C.2.

Listing C.2: Example of a Category with one rule
public class EvilExeCategory implements Category {

@Override

public String getName () {

return "EvilExeCategory";

// Alternativley , if the default category should be extended:

// return DefaultCategory.KNOWN_BAD.getName ();

}

@Override

public RuleComposite getRules () {

RuleComposite ruleComposite = new OrRuleComposite ();

ruleComposite.addRule(fileAttributes -> fileAttributes.getName ().

equals("evil.exe"));

return ruleComposite;

}

}

C.3. Further Reading

For more information on how the plug-in mechanism works, check chapter 4 Plug-in Architecture.

79

List of Figures

3.1. NIST Incident Response Life Cycle[SS13] . 4
3.2. Four phases of the forensic process according to NIST[Ken+06] 5
3.3. Events get passed through the application . 12

4.1. The three sub projects maloney, maloney-cli and maloney-plugin in the root project maloney 18

5.1. Thread per Task . 20
5.2. Thread Pool . 21
5.3. Sequence diagram with pseudo code showing the sequence when queuing tasks (i.e. Job) 23

12.1.Simplified UML-Diagram for the composite structure of RuleComponent and inheritors in
context of Category . 46

A.1. Output of a successful build . 59
A.2. Generated test summary in firefox . 60
A.3. Changed cluster name in elasticsearch.yml . 62
A.4. Changed heap settings in jvm.options . 63
A.5. Querying Elasticsearch instance with curl . 64
A.6. Increase available memory for Maloney . 65
A.7. Configure an index pattern in Kibana . 67
A.8. Discover the indexed file attributes and artifacts in Kibana 68
A.9. Configure an index pattern in Kibana . 70
A.10.Discover the indexed hashes in Kibana . 71

B.1. Chains of Job implementations and Event in between . 74

80

List of Tables

1.1. Document change history . 2

3.1. Definition of FR-1 Examine Disk Images . 8
3.2. Definition of FR-2 Examine Directory Structures . 8
3.3. Definition of FR-3 Collect Metadata . 8
3.4. Definition of FR-4 Automate Process . 8
3.5. Definition of FR-5 View Metadata . 8
3.6. Definition of FR-6 Calculate File Hash . 8
3.7. Definition of FR-7 Identify Known Files . 9
3.8. Definition of FR-8 Manage Cases . 9
3.9. Definition of FR-9 Compare to Golden Image . 9
3.10.Definition of FR-10 Examinate Windows Meta Data . 9
3.11.Definition of FR-11 Configure Working Directory . 9
3.12.Definition of FR-12 Exclude Files . 9
3.13.Definition of FR-13 View Directory Structure . 10
3.14.Definition of FR-14 Search for Strings in File Content . 10
3.15.Definition of FR-15 Identify File Types . 10
3.16.Definition of FR-16 Export Metadata . 10
3.17.Definition of FR-17 Simple Queries . 10
3.18.Definition of FR-18 Validate Software Signature . 10
3.19.Definition of NFR-1 Maintainability . 11
3.20.Definition of NFR-2 Efficiency . 11
3.21.Definition of NFR-3 Portability . 11
3.22.Definition of NFR-4 Reliability . 11
3.23.Definition of NFR-5 Usability . 11

14.1.Recognized values for property in a query or filter . 52

A.1. Recognized values for property in a query or filter . 69

B.1. Description of AuthenticodeCatalogJob . 74
B.2. Description of AuthenticodePEJob . 75
B.3. Description of AuthenticodeSignatureLookupJob . 75
B.4. Description of CalculateHashesJob . 75
B.5. Description of DiskImageJob . 75
B.6. Description of ExclusionJob . 76
B.7. Description of IdentifyKnownFilesJob . 76
B.8. Description of ImportRdsHashSetJob . 77
B.9. Description of ReportJob . 77
B.10.Description of TSKReadImageJob . 77

81

Glossary

API Application Programming Interface. 15, 16, 18, 42, 43

Authenticode Code signing implementation by Microsoft. 42–44, 82

Autopsy GUI-based solution to analyze disk images; using TSK; http://www.sleuthkit.org/. 42

Bouncy Castle Cryptographic library for Java and C#. 44

class loader Loads Java classes during runtime. 14–16

classpath Environment variable which is used by Java to look up class files. 14–17

CLI Command Line Interface. 13, 15, 29, 30, 50, 51, 72

CSV Comma-separated values. 10

Cuckoo Sandbox Open-source sandbox tool for examination of malware. 7, 55

Data Transfer Object A data transfer object is an object that carries data between processes. 82

distribution package Software artifact, which can be used to distribute an application on clients. 60

DTO Data Transfer Object. 82, Glossary: Data Transfer Object

Elasticsearch Distributed, RESTful search and analytics engine. 13, 25–27, 33, 37, 40, 43, 50, 54, 55,
57, 59, 62–66, 69, 71, 73, 80

ETA Estimated Time of Arrival. 31

event Signifies a change inside the application, in Maloney used for communication between tasks. 12,
27, 48, 54, 80

git Distributed version control system. 58

Gradle Build management tool for different languages based on Ant and Maven. 13, 14, 16, 18, 44, 51,
57, 58, 60

GUI Graphical User Interface. 30

IDE Integrated Development Environment. 11, 13, 18, 57, 59, 60

JAR Java Archive. 14–17, 27, 78

JDK Java Development Kit. 57

Job Application logic of Maloney separated into multiple encapsulated tasks. These are called Jobs.
12, 16–18, 20, 22, 24–26, 29–34, 37–39, 43, 46, 49, 51, 55, 78

JPF Java Plugin Framework. 15, 16

JRE Java Runtime Environment. 16, 62

Jsign Java implementation of Authenticode. 42–44, 58

JSON Javascript Object Notation. 35

JVM Java Virtual Machine. 14, 21, 34, 54

Kibana Tools to visualize and navigate data stored in Elasticsearch. 13, 53, 57, 65–71, 73, 80

82

http://www.sleuthkit.org/

Last In First Out Description of behavior in a queue: The last queued item is the first to get out of it if
the queue gets polled. 22

log4j Common logging library to extend the capabilities of an application. 33, 40, 41

Maloney Name of the developed application during this term project. 1, 3–5, 12–14, 16–18, 20, 21, 24,
25, 27, 29, 32, 33, 36, 39, 40, 45, 48, 50, 51, 53–55, 57, 61, 62, 64–66, 68, 69, 72, 74, 78, 80, 82

MapDB Java library which provides Collections supporting off-heap or on-disk storage. 33–35, 41, 54

Maven Build management tool primary for Java applications. 44, 58

MD5 Hashing Algorithm. 8, 26, 42

MIME Multipurpose Internet Mail Extensions. 10, 83, Glossary: Multipurpose Internet Mail Extensions

Multipurpose Internet Mail Extensions Internet standard that extends the format of emails to add ex-
tra functionality. 83

NIST National Institute of Standards and Technology. 4–6, 69, 77, 80

NSRL National Software Reference Library. 6, 69, 77

NTFS File system used by Microsoft Windows. 40

OpenSSL Toolkit for TLS and SSL including a general-purpose cryptographic library. 44

OSGi Open Services Gateway initiative. 15, 16, 18, 19

PE Portable Executable. 42, 43, 65, 83, Glossary: Portable Executable

plug-in Software component that adds a specific feature to an existing computer program. 14–19, 27,
37, 58, 78

Portable Executable Executable application in a binary format. 42, 83

RAM drive A block of random access memory which is treated as a disk drive. 39

RDS Reference Data Set. 6, 25, 27, 69, 71, 77, 83, Glossary: Reference Data Set

Reference Data Set A colletion of signatures of software from various sources, which are known and
traceable applications. This software is collected in the National Software Reference Library http:

//www.nsrl.nist.gov/. 6, 77, 83

service provider Implementation which provides a specific service. 14, 15

SHA-1 Hashing Algorithm. 8, 26, 42, 43

SHA-256 Hashing Algorithm. 42, 43

SPI Service Provider Interface. 14–18

The Sleuth Kit Forensic toolkit to recover and analyze files http://www.sleuthkit.org/. 12, 83

Time Stamp Authority Public available authority to provide a validated time stamp. 43, 83

TSA Time Stamp Authority. 43, 83, Glossary: Time Stamp Authority

TSK The Sleuth Kit. 12, 13, 18, 28, 54, 55, 58, 61, 82, 83, Glossary: The Sleuth Kit

UCT Coordinated Universal Time. 52

X.509 Standard which defines the format of public key certificates commonly used in cryptography. 42

YARA Multi-platform tool for pattern matching in context of malware research and detection. 6, 7, 55

83

http://www.nsrl.nist.gov/
http://www.nsrl.nist.gov/
http://www.sleuthkit.org/

Bibliography

[17a] About Us. OSGi Alliance. Mar. 13, 2017. URL: https://www.osgi.org/about-us/.

[17b] Benefits of using OSGi. OSGi Alliance. Mar. 13, 2017. URL: https://www.osgi.org/
developer/benefits-of-using-osgi/.

[17c] Class ClassLoader. Java Platform SE 8. Oracle. Mar. 13, 2017. URL: http://docs.oracle.
com/javase/8/docs/api/java/lang/ClassLoader.html.

[17d] Class ServiceLoader. Java Platform SE 8. Oracle. Mar. 13, 2017. URL: http://docs.
oracle.com/javase/8/docs/api/java/util/ServiceLoader.html.

[17e] Creating Extensible Applications. The JavaTM Tutorials. Oracle. Mar. 13, 2017. URL: https:
//docs.oracle.com/javase/tutorial/ext/basics/spi.html.

[ANTLR] Antlr Github Repository and Documentation. URL: https://github.com/antlr/antlr4
(visited on 06/08/2017).

[Cou+12] George Coulouris et al. Distributed Systems: Concepts and Design. 2012. ISBN: 978-0-13-
214301-1.

[DM15] Hans Dockter and Adam Murdoch. Gradle User Guide. 2015. URL: https://docs.gradle.
org/2.13/userguide/userguide.html (visited on 06/12/2017).

[Ede14] Lukas Eder. Don’t be "Clever": The Double Curly Braces Anti Pattern. Dec. 8, 2014. URL:
https://blog.jooq.org/2014/12/08/dont-be-clever-the-double-curly-braces-

anti-pattern/ (visited on 06/15/2017).

[Ela16] Elasticsearch BV. Elasticsearch: The Definitive Guide. Heap: Sizing and Swapping. Dec. 16,
2016. URL: https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-
sizing.html.

[Ela17a] Elasticsearch BV. Nested datatype. Elasticsearch Reference 5.0. Mar. 28, 2017. URL:
https://www.elastic.co/guide/en/elasticsearch/reference/5.0/nested.html.

[Ela17b] Elasticsearch BV. Scroll. Sept. 5, 2017. URL: https : / / www . elastic . co / guide / en /
elasticsearch/reference/current/search-request-scroll.html.

[EN16] Roman Ehrbar and Oliver Nietlispach. “Malware Hunting”. Term Project. University of Ap-
plied Sciences Rapperswil, 2016.

[Göe+06] Brian Göetz et al. Java Concurrency In Practice. Mar. 1, 2006. ISBN: 978-0-321-34960-6.

[Han07] Robert S. Hanmer. Patterns for Fault Tolerant Software. 2007. ISBN: 978-0-470-31979-6.

[JPF17] JPF Team. Java Plugin Framework. Mar. 14, 2017. URL: http://jpf.sourceforge.net/.

[Ken+06] Karen Kent et al. NIST Guide to Integrating Forensic Techniques into Incident Response.
Aug. 1, 2006. URL: http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-
86.pdf.

[Kot17] Jan Kotek. MapDB Documentation. 2017. URL: https://jankotek.gitbooks.io/mapdb/
content/.

[Mic] Microsoft. Authenticode. URL: https://msdn.microsoft.com/en-us/library/ms537359(v=
vs.85).aspx.

[Mic08] Microsoft Corporation. Windows Authenticode Portable Executable Signature Format. Mar. 21,
2008. URL: http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx.

84

https://www.osgi.org/about-us/
https://www.osgi.org/developer/benefits-of-using-osgi/
https://www.osgi.org/developer/benefits-of-using-osgi/
http://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html
http://docs.oracle.com/javase/8/docs/api/java/lang/ClassLoader.html
http://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
http://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://docs.oracle.com/javase/tutorial/ext/basics/spi.html
https://github.com/antlr/antlr4
https://docs.gradle.org/2.13/userguide/userguide.html
https://docs.gradle.org/2.13/userguide/userguide.html
https://blog.jooq.org/2014/12/08/dont-be-clever-the-double-curly-braces-anti-pattern/
https://blog.jooq.org/2014/12/08/dont-be-clever-the-double-curly-braces-anti-pattern/
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/guide/current/heap-sizing.html
https://www.elastic.co/guide/en/elasticsearch/reference/5.0/nested.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-scroll.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/search-request-scroll.html
http://jpf.sourceforge.net/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-86.pdf
https://jankotek.gitbooks.io/mapdb/content/
https://jankotek.gitbooks.io/mapdb/content/
https://msdn.microsoft.com/en-us/library/ms537359(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms537359(v=vs.85).aspx
http://www.microsoft.com/whdc/winlogo/drvsign/Authenticode_PE.mspx

[Ora17] Oracle. Java API Documentation: ForkJoinPool. Mar. 14, 2017. URL: https : / / docs .

oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html.

[Par15] Nicolai Parlog. JAR Hell. Oct. 19, 2015. URL: http://blog.codefx.org/java/jar-hell/.

[RFC2046] Ned Freed and Nathaniel S. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part Two: Media Types. RFC 2046. RFC Editor, July 1995. URL: https://tools.ietf.
org/html/rfc2046.

[SS13] Murugiah Souppaya and Karen Scarfone. NIST Guide to Malware Incident Prevention and
Handling for Desktops and Laptops. June 1, 2013. URL: http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf.

[TV16] Luca Tännler and Mathias Vetsch. “Forensik Triage Kit”. Bachelor Thesis. University of
Applied Sciences Rapperswil, 2016.

85

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ForkJoinPool.html
http://blog.codefx.org/java/jar-hell/
https://tools.ietf.org/html/rfc2046
https://tools.ietf.org/html/rfc2046
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-83r1.pdf

	Abstract
	Introduction
	Approach / TechnologiesSummary
	Results

	Management Summary
	Introduction
	Purpose and Scope
	Audience
	Document Structure

	Analysis
	Digital Forensics
	NIST Incident Response Lifecycle
	Forensic Process
	Conclusion

	Forensic Toolkit
	Types of Data
	Examination and Analyzing Methods and Tools
	Conclusion

	Requirement Analysis
	User
	Functional Requirements
	Non-Functional Requirements
	Conclusion

	Maloney
	Architecture
	Fulfilled Requirements
	Conclusion

	Plug-in Architecture
	Plug-in Frameworks
	Java Class Loader
	Java Service Provider Interfaces
	OSGi
	Java Plugin Framework

	Solution Approach
	Reference Implementation
	Conclusion

	Parallelism
	Approaches for Parallelism
	Thread per Task
	Thread Pool
	Distributed Computing

	Decision
	Implementation
	Conclusion

	Identify Known Files
	Approach
	Already Implemented Parts
	Implementation
	Querying Hash Sets
	Potential Near Real-Time Issues
	Storing Results and Data De-Normalization
	Plug-in

	Conclusion

	Progress Tracker
	Analysis
	Approaches
	Metrics
	Location for Tracking
	Output

	Implementation
	Conclusion

	Fault Tolerance
	Analysis
	Approach
	Implementation
	Conclusion

	Reporting
	Analysis
	Approaches
	Phases
	Export format

	Implementation
	Conclusion

	Case Management
	Analysis
	Approach
	Implementation
	Conclusion

	Software Signature Comparison
	Analysis
	Approach
	Implementation
	Conclusion

	Categorization
	Analysis
	Approach
	Qualifiers
	Custom Categories
	Reproducibility

	Implementation
	Categories and Qualifiers
	Adding Qualifiers to Categories

	Conclusion

	File Exclusion
	Analysis
	Approach
	Position of Filtering
	Criteria

	Implementation
	Conclusion

	Simple Queries
	Analysis
	Approach
	Implementation
	Conclusion

	Summary
	Requirements
	Fulfilled Requirements
	Unfulfilled Requirements

	Open Issues
	Invalid FS_Info Object
	Memory Access Violation
	Out Of Memory Error
	Extracted Elements Count in Working Directory

	Outlook

	Attachments
	User Documentation
	Setting up the development environment
	Requirements
	Install Prerequisites
	Build Maloney
	Run Unit Tests
	Integrated Development Environment

	Creating a distribution package
	Requirements
	Building a Distribution Package
	Add Additional Content to the Distribution

	Installing Maloney
	Requirements
	Installation

	Using Maloney
	Examine Disk Image
	Access Extracted Files
	Clear Case Results
	Import RDS Hash Set
	Clear Stored Hashes
	Generate a Report
	Query Indexed Data
	Create Disk Image

	Security Aspects

	Configuration Handbook
	AuthenticodeCatalogJob
	AuthenticodePEJob
	AuthenticodeSignatureLookupJob
	CalculateHashesJob
	DiskImageJob
	ExclusionJob
	IdentifyKnownFilesJob
	ImportRdsHashSetJob
	ReportJob
	TSKReadImageJob

	Developer Handbook
	Creating a Job
	Job Logic
	Position in Event Chain
	Job Configuration
	Limitations

	Create a Category
	Category Rules

	Further Reading

	List of Figures
	List of Tables
	Glossary
	Bibliography

