

Visual Studio Code

Integration for the

Dafny Language and Program

Verifier

Bachelor Thesis

Department of Computer Science

University of Applied Science Rapperswil

Spring Term 2017

Author(s): Rafael Krucker, Markus Schaden

Advisor: Prof. Dr. Farhad Mehta

Project Partner: Microsoft Research, Redmond, WA, USA

External Co-Examiner: Dr. Valentin Wüstholz

Internal Co-Examiner: Prof. Dr. Markus Stolze

Prof. Dr. Farhad Mehta  farhad.mehta@hsr.ch

HSR Hochschule für Technik Rapperswil  Oberseestrasse 10  CH-8640 Rapperswil Seite 1 von 4

Task Description – Bachelor Thesis

Visual Studio Code Integration for the

Dafny Language and Program Verifier

FS 2017

1. Client & Supervisor

 Dr. K. Rustan M. Leino, Microsoft Research, Redmond, WA, USA

 Client Contact: leino@microsoft.com

 Supervisor: Prof. Dr. Farhad Mehta, HSR Rapperswil

2. Students

 Mr. Markus Schaden

 Mr. Rafael Krucker

3. Setting

Dafny is a language developed by Microsoft which offers built-in specification constructs. These

include pre- and postconditions, frame specifications as well as termination metrics. Further support

such as ghost variables and recursive functions are also implemented. Through such specification

primitives, the Danfy verifier, invoked during compilation, can be used to verify the specified aspects

of the functional correctness of a program.

Dafny is typically used via its Visual Studio [1] IDE integration under the Windows operating system.

This integration allows for an efficient workflow of editing a program while constantly being given

feedback about its the functional correctness. The Dafny compiler and verifier can additionally be

invoked from the command line.

Microsoft would like to integrate of Dafny into the cross-platform Visual Studio Code [2] IDE. Work on

this has already been started through a plugin by Jonathan Rionatan [3]. It currently works within the

mono-environment [4] and provides feedback from the verifier.

4. Goals

The main goal of this thesis project is to improve the existing integration of Dafny within Visual Studio

Code and thereby allow Dafny to be effectively used in a cross-platform setting. In particular, the

following improvements and additions to the existing Visual Studio Code plugin are proposed:

1. Stable Working Release of the Plugin on the following Platforms

o Windows 10 (.net-environment)

o Linux (mono-environment)

Prof. Dr. Farhad Mehta  farhad.mehta@hsr.ch

HSR Hochschule für Technik Rapperswil  Oberseestrasse 10  CH-8640 Rapperswil Seite 2 von 4

o MacOS (mono-environment)

2. Easy installation of the plugin, with an automated download of Dafny and the automatic

setting of all system variables

3. Syntax-Highlighting

4. Compilation of Dafny Best Practices and reporting of their violations within the plugin

5. Automatic generation of contract/specification/manual proof suggestions for common and

simple cases

6. Autocompletion for identifiers

Goals 1, 2, 3 and 4 have the highest priority since they provide the beginner with the greatest help.

Goal 5 is probably the most interesting feature, because it could bring much of the power of Dafny to

the programmer with relatively little effort on his side. Since this feature does not have strong parallels

to standard IDEs for programming, it will require thought and research to execute. Due to this, the

focus of the project is currently planned here, after having learnt enough of the setting from the

preceding goals.

Goal 6 currently has the lowest priority. It is unclear if autocompletion in the setting of Dafny is

conceptually significantly different to IDEs for programming. The execution of this task is heavily

dependent on the existing support from Visual Studio Code and the Dafny compiler, whereas its

novelty and effectivity for the user is debatable to be currently placed higher in the list of priorities.

In addition to the goals stated above, the following points will be considered during the course of the

project:

1. The use of Dafny in order to implement the features discussed.

2. Other currently unknown improvements to the workflow and IDE tooling.

5. Guidelines

The students and the supervisor will plan weekly meetings to check and discuss progress. The student

will schedule meetings with the client as and when required (recommendation: 1 meeting per week of

1 hour duration).

All meetings are to be prepared by the students with an agenda. The agenda will be sent at least 24h

prior to the meeting. The results will be documented in meeting minutes that will be sent to the

supervisor.

A project plan must be developed at the beginning of the thesis to promote continuous and visible

work progress. For every milestone defined in the project plan, the temporary versions of all artefacts

need to be submitted. The students will receive a provisional feedback for the submitted milestone

results. The definitive grading is however only based on the final results of the formally submitted

report.

Prof. Dr. Farhad Mehta  farhad.mehta@hsr.ch

HSR Hochschule für Technik Rapperswil  Oberseestrasse 10  CH-8640 Rapperswil Seite 3 von 4

6. Documentation

The project must be documented according to the regulations of the Computer Science Department at

HSR (see https://www.hsr.ch/Allgemeine-Infos-Bachelor-und.4418.0.html). All required documents are

to be listed in the project plan. All documents must be continuously updated, and should document

the project results in a consistent form upon final submission. All documentation and work artefacts

have to be completely submitted in three copies on CD/DVD (one copy each for the client, university,

and supervisor). Three printed copies of the report need to be submitted (one copy each for the client,

external examiner, and supervisor).

7. Important Dates

Please refer to https://www.hsr.ch/Semesterdaten-2016-2017.13924.0.html.

8. Workload

A successful bachelor thesis project results in 12 ECTS credit points per student. One ECTS points

corresponds to a work effort of 30 hours.

All time spent on the project must be recorded and documented.

9. Grading

The HSR supervisor is responsible for grading the bachelor thesis. The following table gives an

overview of the weights used for grading.

Facet Weight

1. Organisation, Execution 1/6

2. Report 1/6

3. Content 3/6

4. Final Presentation & Examination 1/6

The effective regulations of the HSR and Department of Computer Science apply (see

https://www.hsr.ch/Ablaeufe-und-Regelungen-Studie.7479.0.html).

Rapperswil, 25.11.2016

Prof. Dr. Farhad Mehta

Prof. Dr. Farhad Mehta  farhad.mehta@hsr.ch

HSR Hochschule für Technik Rapperswil  Oberseestrasse 10  CH-8640 Rapperswil Seite 4 von 4

References:

[1] https://github.com/Microsoft/dafny/wiki/INSTALL

[2] https://code.visualstudio.com

[3] https://github.com/ferry-/dafny-vscode

[4] https://github.com/mono/mono

BA Dafny CONTENTS

Contents

1 Abstract 1

2 Management Summary 2

3 Outline 3
3.1 The problem and its setting . 3

3.1.1 Introduction . 3
3.1.2 Statement of the problem . 3
3.1.3 Significance of study . 3
3.1.4 Scope and delimitation . 3

4 Motivation 4
4.1 Main Goal . 4
4.2 Current Solutions . 4

4.2.1 Platform Independence . 4
4.2.2 Setup . 5
4.2.3 Usability . 5
4.2.4 IDE Independence . 5
4.2.5 Feature Richness . 6

5 Preliminary Studies 7
5.1 Common problems when programming . 7

5.1.1 Example 1: Array access . 7
5.1.2 Example 2: Simple domain specific constraints 7
5.1.3 Example 3: More complex Domain specific constraints 8

5.2 Concepts in proof theory . 9
5.2.1 Application of partial functions . 9
5.2.2 Invariants . 9
5.2.3 Non provable Goals . 9

5.3 Concrete Application . 10
5.3.1 Resolving Bound checks . 10
5.3.2 Enforcing Invariants . 10
5.3.3 Enforcing Complex Invariants . 11

5.4 Conclusion . 11

6 Results 12
6.1 Setup . 12

6.1.1 Language Server . 12
6.1.2 Automatic Installation . 13
6.1.3 Automatic Upgrade . 13

6.2 Language Agnostic Features . 14
6.2.1 CodeLenses . 14
6.2.2 Code Completion . 16
6.2.3 Go to Definition . 18

VI

BA Dafny CONTENTS

6.2.4 Rename Element . 19
6.2.5 Syntax Highlighting . 21

6.3 Dafny Specific Features . 22
6.3.1 Counter Examples . 22
6.3.2 Null Checks . 24
6.3.3 Bound Checks . 26
6.3.4 Increase / Decrease / Invariant Guards 27
6.3.5 Flow Graphs . 29

7 Possible points for Extension 31
7.1 Support for other IDEs . 31

7.1.1 Eclipse integration . 31
7.1.2 Emacs integration . 31
7.1.3 Monaco integration . 32

7.2 New Features . 32
7.2.1 Debugger . 33
7.2.2 Widening Scope . 33
7.2.3 Contract Generation . 33

8 Conclusion 35
8.1 Goals Reached . 35

8.1.1 Platform Independence . 35
8.1.2 Setup . 35
8.1.3 Usability . 35
8.1.4 IDE Independence . 36
8.1.5 Feature Richness . 36

8.2 Evaluation . 36

A Project management I
A.1 Project Plan . I
A.2 Milestones . III
A.3 Risk management . III

A.3.1 The Risks . III
A.3.2 Risk Matrix . VIII

A.4 Deviations from the project plan . VIII
A.4.1 UC3: Reporting of Dafny best practices violations VIII
A.4.2 UC4: Automatic generation of contracts IX
A.4.3 Code Actions . X
A.4.4 Counter Examples . XI
A.4.5 Displaying Flow Graph . XII

A.5 Project Homepage . XII
A.6 Time report . XVI

A.6.1 Time per category . XVI
A.6.2 Rafael Krucker . XVII
A.6.3 Markus Schaden . XVII

VII

BA Dafny CONTENTS

A.7 Code Metrics . XVIII

B Use Cases XXI
B.1 Use Case Diagram . XXI
B.2 Actors and Stakeholder . XXI
B.3 Descriptions (brief) . XXII

B.3.1 UC1: Easy installation of Dafny plugin XXII
B.3.2 UC2: Syntax Highlighting . XXII
B.3.3 UC3: Reporting of Dafny best practices violations XXII
B.3.4 UC4: Automatic generation of contracts XXII
B.3.5 UC5: Auto completion for identifiers XXII

B.4 Descriptions (fully dressed) . XXII
B.4.1 UC1: Easy installation of Dafny plugin XXII
B.4.2 UC2: Syntax Highlighting . XXIII
B.4.3 UC3: Reporting of Dafny best practices violations XXIV
B.4.4 UC4: Automatic generation of contracts XXV
B.4.5 UC5: Auto completion for identifiers XXVI

List of Figures XXVIII

List of Tables XXIX

References XXX

VIII

BA Dafny 1 ABSTRACT

1 Abstract

The goal of this project is to integrate the Dafny programming language into Visual Studio
Code. Emphasis is put into researching how Dafny programmers can be best supported
during their work and how writing code can be made more productive.
Since Dafny offers built-in specification constructs, novel work is to provide tooling that
makes using them easier. The most beneficial feature would be to implement a generic, con-
text aware proof obligation generator that continuously suggests specification constructs to
the programmer. This approach was eventually discarded because it was deemed unfeasible
to implement after some research had been done. Instead, situations were identified that
arise often during programming and specific aid with specification constructs was imple-
mented for them. Another helpful feature is the displaying of counter examples where code
written does not satisfy the corresponding specification constructs, allowing quick discovery
of edge cases and refinement of specification constructs.
Next to language specific features, standard IDE mechanisms allow for great improvement
regarding productivity. It was deemed paramount that the project implements the most
common features such as go to definition and auto completion. This was achieved using the
standard interfaces that Visual Studio Code provides, allowing programmers accessing these
features in a well-established way.
It is of concern that new users can get started quickly, so that the user base continuous to
grow. To support this, automatic installation on all major platforms was implemented. The
installation resolves all dependencies such as the Dafny pipeline itself. To further maximize
portability, the plugin implements the language server protocol. This allows for writing IDE
agnostic language analysis platforms, making the plugin not only usable in Visual Studio
Code, but integrable into some other IDEs with only minor adjustments.
This project concluded with the implementation of a production ready integration of Dafny
into Visual Studio Code. The application of continuous integration allowed for a user base
of about 300 people at the end of the project, proofing that the plugin is robust and works
across multiple environments. Dafny programmers are supported in their coding not only
with standard IDE mechanisms, but also Dafny specific features. Next to making the expe-
rience of programming more productive, this lays the foundation of a contentiously growing
Dafny community.

1

BA Dafny 2 MANAGEMENT SUMMARY

2 Management Summary

Following the quickly growing digitalization of businesses and the therefore more complex
applications being developed, two key points are gaining focus in today’s IT landscape. The
first one is the proven functional correctness of programs and the second one is the uprising
of multi threaded applications. Writing multi threaded applications becomes much simpler
once the functional correctness is proven, thus it can be stated that proven functional cor-
rectness is a stepping stone towards the easier implementation of parallelism. Dafny is a
programming language which tries to move the focus of writing correct code towards writing
correct specification constructs, which is often easier. Applying this concept consistently
should result in being able to turn business requirements into correct working implemen-
tations quicker as with traditional languages. The proven correlation between the time of
discovering an error and the cost of fixing it also strongly advises writing software which
is proven correctly as early in the life cycle of the product as possible. Even though using
Dafny in business is compelling for these reasons, its usage is still not widespread, something
which this project tries to change.
The wide spread usage of a tool for programmers is mainly dictated by two factors, namely
the burden of getting it to run and the support that it is able to offer the programmer.
To address the first point, the plugin was developed for Visual Studio Code, an IDE running
on all major platforms. It was also given an installation routine which resolves all dependen-
cies on all platforms automatically after pressing one button. This also allows programmers
that are not that familiar with the console to rapidly develop Dafny programs, something
that was not possible given the tooling existing up until now.
Regarding the second point, it was always paramount to offer as much help as possible to the
programmer. This was done in two steps, the first one being implementing standard features
that a programmer is used to when working with an IDE, which could be achieved within
this project. The second step are language specific features. To offer these, some research
was done in what situations often arise when programming Dafny in order to reveal which
features a programmer could most benefit from without solving all specification construct
suggestions in a generic way. This pragmatic approach helped the project stay in scope while
still offering rich help in many common programming contexts.
While at first not a key concern, it was decided to implement the plugin according to an
emerging standard in semantic language analysis platforms. This means that the plugin does
not only work well with Visual Studio Code, but can be integrated into many other IDEs
such as Emacs with very little adjustments, further broadening the possible Dafny user base.
During the project, production quality was always striven for, so that the end product was
not a prototype which no one uses. Due to the application of continuous integration the
user base of the plugin has already reached 300 people at the time of this writing, proving
the usability and robustness of the product developed by this project. The project remains
open source, inviting other to continue the work and share the benefits of Dafny with even
more people.

2

BA Dafny 3 OUTLINE

3 Outline

3.1 The problem and its setting

This chapter presents the background of the project, the problem and its significance.

3.1.1 Introduction

Dafny is a language designed and implemented by Microsoft Research. It offers built-in
specification constructs. These include pre- and postconditions, frame specifications as well
as termination metrics. Further support such as ghost variables and recursive functions are
also implemented. Through such specification primitives, the Dafny verifier, invoked during
compilation, can be used to verify the specified aspects of the functional correctness of the
program.
Dafny is typically used via its Visual Studio IDE integration under the Windows operating
system. This allows for an efficient work flow of editing a program while constantly being
given feedback about its functional correctness. The Dafny compiler and verifier can addi-
tionally be invoked from the command line.
Microsoft would like to integrate Dafny into the cross-platform Visual Studio Code IDE.
Work on this has already been started through a plugin by Jonathan Rionatan. It currently
works within the mono-environment and provides feedback from the verifier.

3.1.2 Statement of the problem

This thesis aims to research on how Dafny programmers can be best supported during their
work and incorporate these findings in a production quality plugin for Visual Studio Code.

3.1.3 Significance of study

Standard programming techniques are beginning to show their limitations as multi-core and
multi-threaded applications are becoming more and more popular, which are difficult and
error prone. Proving functional correctness has the potential of helping the programmer con-
struct reliable programs. Sadly, the use of this technology is not widespread yet. Providing
better tool support has the potential of improving this situation. Here lies the significance
of this project.

3.1.4 Scope and delimitation

The plugin is limited to be used in three defined environments, although they compromise
a huge percentage of environments used in programming. The plugin offers a fixed set of
features which are detailed in this thesis, but remains open for adaption and extension.

3

BA Dafny 4 MOTIVATION

4 Motivation

This section first explains the main goal of this project and follows up with a section about
current solutions for this problem setting and their shortcomings.

4.1 Main Goal

The main goal of this project is to make Dafny accessible for a wider user base. In order to
this, the focus was laid on two main objectives.
The first one is to provide a simple setup for all the tooling that is necessary to program
with Dafny. This includes, next to the IDE itself, also the compiler and the proof engine
pipeline which Dafny uses, among other things. The central point of handling the setup does
not only make the life of the programmer easier, but also allows for the control of upgrades
and dependencies in an uniform manner.
The second objective is to support the programmer when actually writing code. Program-
mers are used to get rich support from modern IDEs and the question of choosing of a
programming language for a project is often interwoven with the quality of tooling behind
that language. To make Dafny attractive for a broader range of users, the IDE should offer
Dafny specific features such as help with writing specification constructs. Through this, pro-
grammers are best able to learn quickly which features Dafny offers and how to use them.
Next to the language specific features, standard IDE features which programmers have grown
accustomed to must not be forgotten. If a new IDE does not offer support for features such
as go to definition, find references, and a minimal set of refactorings, many programmers
may stop using it after a short amount of time because the IDE does not support the work
flow they have gotten used to.
The main goal of this project therefore lies in providing robust, well working solutions re-
garding these two objectives.

4.2 Current Solutions

This chapter details what shortcomings current solutions in this area have and where there
is room for improvement. Rather than offering a checklist of each solution in regard to its
features, another approach is chosen in this chapter. Important concepts of an ideal solution
that satisfies the main objectives detailed in 4.1 are listed, combined with how most current
solutions perform regarding the concept. When an existing solution stands out in some way,
it may be named specifically.

4.2.1 Platform Independence

With three well established operating systems being used by different programmers, it is not
feasible to have a solution that only works on one platform. There is often a trade off in this
area regarding using powerful platform specific APIs and having a portable solution. While
many other languages are supported by rich platform independent IDEs such as Eclipse
[Ecl17] or those provided by JetBrains [Jet17], the current solutions for Dafny still lack in

4

BA Dafny 4 MOTIVATION

this area.
Most IDEs that support Dafny only work correctly on Windows, Emacs [GNU17] with it’s
Dafny plugin is the only solution that works across all platforms. Emacs, while being a heav-
ily used IDE, is an IDE with a very special methodology that does not suit all programmers,
narrowing the range of people that can be reached by a Dafny integration. Further there are
some cross platform IDEs that offer support for Dafny, for instance the old Dafny plugin for
Visual Studio Code, but with those the integration itself does not work across all platforms.
This evaluation shows that there is need for a truly platform independent Dafny integration
in a well established IDE that has a wide user base.

4.2.2 Setup

This is an area where all current solutions lack comfort. Next to the plugin for the specific
IDE, the user must also make sure to install the whole Dafny platform and configure the
plugin correctly to make use of it. This is usually done either by editing a configuration file
or by using a dialog in the IDE. Next to this being error prone and cumbersome for the user,
this process is also dangerous when the IDE and the Dafny platform are further developed.
Version updates may introduce breaking changes which will make it unable to work with a
plugin if it is not well maintained.
Next to an automatic installation of all components that are necessary, it is important to
have some integration tests in place that notify in case of breaking changes, something that
is very difficult if the gathering of all dependencies is not done in a single place.

4.2.3 Usability

When designing a plugin, one usually does not have many options regarding usability, since
the user interacts with the IDE rather than with the plugin. It is therefore important to
make usage of the correct mechanisms that an IDE offers, for instance displaying compiler
errors in the appropriate window or underlining warnings with the color the IDE uses for
warnings also in other languages. When further user interaction is needed, for instance for
the application of a refactoring or displaying configuration possibilities of a plugin, IDEs
usually offer an idiomatic way to do this.
The existing solutions do a nice job in this area, if information of the plugins is displayed,
it usually is done so using the correct mechanism that the IDE offers for that type of infor-
mation. Almost all existing solutions sadly only display a subset of the information that the
Dafny platform could provide, here new solutions could offer improvements. The exception
is the existing Visual Studio integration of Dafny [Mic17e], which offers almost a complete
interaction with the Dafny platform.

4.2.4 IDE Independence

All existing solutions are hardwired to an existing IDE. This means that when a plugin is
written for Visual Studio and one for Emacs, all features have to be copied and implemented
anew. This makes it cumbersome to widen the user range of Dafny users. It also makes the
process of updating plugins error prone and asymmetric, since changes have to be done in
two places.

5

BA Dafny 4 MOTIVATION

When looking at the process of programming a plugin in an abstract way, it comes down to
integrating a semantic language analysis framework with an existing IDE. There have been
several attempts to unify the way this integration is done, with Microsoft weighing in with
a solution for this they call the language server protocol [Mic17c], which is quickly gaining
traction. When this protocol matures and a solution is written in terms of such the protocol,
one can offer plugins for many different IDEs while writing the core logic only once. There
exists great potential in following this strategy.

4.2.5 Feature Richness

Once solutions are installed and running, the most important thing is feature richness. Next
to standard IDE features, which are a must and expected by programmers, language specific
features are what really make a solution stand out. This especially is true for Dafny, since it
offers an almost unique and very valuable approach to specification constructs. In this area,
most existing solutions perform poorly. Of the very rich information about a program that
Dafny provides, only a fractions is presented to the user.
A notable exception to this is the existing Visual Studio integration. It offers virtually all
possibilities that Dafny provides in its GUI. It even integrates counter examples for failed
proofs and a debugger. While most existing solutions do not provide many features, the
Visual Studio integration is the example that new solutions should try to match regarding
feature richness.

6

BA Dafny 5 PRELIMINARY STUDIES

5 Preliminary Studies

This chapter documents some background towards specification construct generation and
the proof theory behind it. The work done in this chapter was done towards the goal of
generic specification construct generation as detailed in B.4.4. For reasons detailed in A.4
and insights won during the investigations listed in this chapter the implementation of that
feature was deemed unfeasible. Nevertheless, the research lead to a deeper understanding
of what is possible regarding specification construct generation and laid the basis for many
other implemented features. Because the items researched in this chapter were not later
implemented as is, the reading of it is not mandatory in order to understand the work
ultimately done, but delivers some background on why the project took the final form it has.

5.1 Common problems when programming

Since Dafny offers built-in specification constructs, a programmer would greatly benefit from
generation of contracts for common situations. This chapter first introduces three examples
in programming, that could be made safer through the use of contracts. The solution is then
generalized in order to be more widely applicable.

5.1.1 Example 1: Array access

Problem: A method accesses an array with an index, which is given as a parameter. The
array may be a field or also be a parameter. The array may be null or the index may be out
of bound.

Solution: Generate a precondition which checks if the array is not null and the index is
in bound of the array.

1 method FindUsafe(a : array <int >, key : int) return (element : int)

2 {

3 return a[key];

4 }

5

6 method FindSafe(a : array <int >, key : int) return (element : int)

7 requires a 6= null ∧ 0 ≤ key < a.Length

8 {

9 return a[key];

10 }

5.1.2 Example 2: Simple domain specific constraints

Problem: A method that processes withdrawals from a bank account must not make a
bank balance negative.

Solution: Generate pre- and postconditions on methods which modify relevant fields, ac-
cording to domain specific constraints.

7

BA Dafny 5 PRELIMINARY STUDIES

1 class BankAccountUnsafe {

2 var balance : int;

3

4 method withdraw(amount : int) modifies this {

5 balance := balance - amount;

6 }

7 }

8

9 class BankAccountSafe {

10 var balance : int;

11

12 method withdraw(amount : int)

13 requires balance ≥ amount

14 ensures balance ≥ 0

15 modifies this {

16 balance := balance - amount;

17 }

18 }

5.1.3 Example 3: More complex Domain specific constraints

Problem: A factory wants to model its processes. Their services consist of refining certain
raw materials, which can interact aggressively with their machines. They have two types of
machines, some which are subject to abreason over time, but also others which are very ex-
pensive and should not come into contact with aggressive materials. They want to make sure
no aggressive materials come in contact with expensive machines under any circumstances.

Solution: Generate pre- and postconditions on methods which modify relevant fields, ac-
cording to domain specific constraints.

1 class RawMaterial {

2 var abreasesMachines : bool;

3 }

4

5 class NormalMachine {

6 var prestine : bool;

7 constructor () modifies this {

8 this.prestine := true;

9 }

10 method refineMatieral(material : RawMaterial) {

11 . . .
12 }

13 method processMaterial(material : RawMaterial)

14 requires material 6= null

15 modifies this {

16 this.refineMatieral(material);

17 this.prestine := ¬material.abreasesMachines;
18 }

19 }

20

21 class ExpensiveMachine {

22 var prestine : bool;

23 constructor () modifies this {

24 this.prestine := true;

25 }

26

27 method refineMatieral(material : RawMaterial) {

28

29 }

8

BA Dafny 5 PRELIMINARY STUDIES

30

31 method processMaterial(material : RawMaterial)

32 requires material 6= null

33 requires ¬material.abreasesMachines
34 ensures prestine

35 modifies this {

36 this.refineMatieral(material);

37 this.prestine := ¬material.abreasesMachines;
38 }

39 }

5.2 Concepts in proof theory

All three examples have in common, that without the correct preconditions, they should
result in proof obligations which cannot be proven. This subsection first details three common
concepts that occur when reasoning about proof obligations. The next subsection sets them
into connections with the problems mentioned in 5.1.

5.2.1 Application of partial functions

One of the three problems can be expressed as the application of partial functions, which
are defined by the following three objects:

• A set A called the input set of the function
• A set B called the output set of the function.
• A rule f that transforms some elements of A to some elements of B such that no element

a from A is transformed to more than one element of B.[KK12, p. 197]
The definition states that not all input values may be mapped by the function. The problem
here therefore is to ensure that the function is applied on only a valid subset of A.

5.2.2 Invariants

An Invariant can be defined as follows: A quantity which remains unchanged under certain
classes of transformations. Invariants are extremely useful for classifying mathematical ob-
jects because they usually reflect intrinsic properties of the object of study.[Hun99, 282ff]
An Invariant is therefore extremely useful when one wants to ensure certain conditions of
an object, which must hold at all times. If an invariant is to be applied to an object with
multiple attributes, it is usually defined as a postcondition on all attributes.

5.2.3 Non provable Goals

These are situations that are impossible to prove, because some postconditions do not hold or
not sufficient information is available. They are very hard to detect and isolate from provable
goals, although some work has found solutions under certain restrictions, for instance [Brü05].
When an unprovable goal is encountered in a context, it is much easier to simply state it as
a precondition for the context to be valid, thus burdening the calling context with ensuring
that the goal holds.

9

BA Dafny 5 PRELIMINARY STUDIES

5.3 Concrete Application

This subsection finally shows how the patterns detailed above can be used to solve the
programming examples, thus allowing generic solutions for many similar problems.

5.3.1 Resolving Bound checks

The situation shown in 5.1.1 is a very common situation while programming, basically one
wants to prove that the index is always in the bounds of the array. Accessing an element
in an array is an example of the Application of partial functions, where the set A only goes
from zero to the length of the array minus one. Therefore one would have to prove that
the application of the partial function does not result in an invalid element being given as
an argument. The expression, which is used to get access, can be arbitrarily complex. The
computation to ensure the in-boundness can be very expensive.
Also the second pattern discussed in Invariants could be applied, always ensuring that a
given parameter is in bound of an array of an object, although this would not work with
how invariants are normally applied, namely as postconditions. Since the expression that
generates the index has nothing to do with the object itself, it is questionable if this is the
right pattern to apply to this situation.
The third pattern, discussed in Non provable Goals, works very well if one assumes that
it cannot be proven that the expression will always lead to a successful application of the
partial function (although it could be proven in many cases). This allows to define this
property as a precondition of the method, thus shifting the burden to the caller to always
check his arguments. This is an easy and feasible solution to the first problem.

5.3.2 Enforcing Invariants

The example in 5.1.2 is an example of a domain specific limitation where a bank account’s
balance should never fall below zero. In this specific implementation the usage of Application
of partial functions could be discussed, since it is implemented as a binary minus function
which only allows subtrahends from a certain range, although this approach could not be
used for all possible implementations and is therefore not a feasible solution.
The second pattern discussed in Invariants best describes the semantics of the situation in
a very general way. It could simply be stated as an invariant, that the balance has always
to be positive. This does not suffice though, as it does not isolate the parts yet which could
break the invariant.
The third pattern, discussed in Non provable Goals, works very well in conjunction with
the second one. All sub goals that should hold so that the invariant holds, in this case that
the amount should be smaller than the balance, can be viewed as unprovable goals in this
context. They can therefore be formulated as preconditions such that the caller has the
burden of applying correct arguments to the function. This practice isolates the parts which
could break the invariant, allowing to write the function as safe as possible.

10

BA Dafny 5 PRELIMINARY STUDIES

5.3.3 Enforcing Complex Invariants

The example in 5.1.3 is also an example of a domain specific limitation, although more com-
plex. It combines several classes together, which could also potentially be subtyped. The
goal is to never let an expensive machine be subjected to abreason, therefore only allowing
non-aggressive raw materials as input. In this specific implementation the usage of Applica-
tion of partial functions could work very well, since the input set of the partial function is
very small, namely only the value true on the abreasesMachines property of a raw material.
However, if we extend the hierarchy of materials and implement the calculation of abreases-
Machines differently, it is unclear if all cases could be computed efficiently.
The second pattern discussed in Invariants best describes the semantics of the situation in
a very general way. It could simply be stated as an Invariant, that the pristine property on
the expensive machine is always true. This does not suffice though, as it does not isolate
the parts yet which could break the invariant. This is the same situation as in Enforcing
Invariants
The third pattern could be used much the same way as in Enforcing Invariants. The con-
dition, that the raw material may never abrease machines, can be written as a precondition
and together with the usage of invariants holds the greatest amount of security regarding
the domain constraints.

5.4 Conclusion

As the discussion above shows, all of the three problems can be solved through the application
of Invariants and Non provable Goals. They make it unnecessary to solve the problems
of Application of partial functions, which is often harder to do. All occurrences, where
such a computation would be needed, can be seen as non provable goals and stated as
preconditions for a method. The usage of invariants offers a syntactical transparent way
of describing domain specific rules, and the implementation is a relative simple one, as it
is simply translated into postconditions for all methods of an object. Together these two
techniques offer solutions to many different problems in computer science, since they operate
on a high abstraction, while still being syntactical transparent.
In the first example, the language itself has enough domain knowledge in order to generate
the unprovable proof obligations, since it knows about the array type and its restrictions.
In the two other cases the language needs more domain knowledge in order to generate the
unprovable proof obligations. As was shown above, invariants are a good way of providing
this domain knowledge. Once the unprovable proof obligations can be found, they can be
used as hints for preconditions that can be suggested to the programmer.
The hardest part of the implementation is the identification of non provable subgoals that
are in relation to an invariant. To do this, detailed knowledge has to be available of the
control flow of a program and all possible outcomes of a computation have to be considered,
although the problem can be relaxed if one allows for false positives in the identification of
non provable subgoals. Since the plugin only offers refactorings and does not apply them
automatically, the programmer still can decide if the setting of the non provable goal as
precondition is necessary.

11

BA Dafny 6 RESULTS

6 Results

This section details what steps were taken to reach the goal of this project as defined in 4.1.
The steps are grouped into three parts, according to the objective they satisfy. They are listed
in no particular order. The chapter details the features in a conceptual way, insight into the
implementation can be found in the architecture documentation paper, which accompanies
this paper.

6.1 Setup

This chapter explains features which were not implemented as the project was started. These
features are mainly chosen in order to grow the community, as offering features as making
starting coding with Dafny easier and supporting a wide range of IDEs accomplishes this
goal.

6.1.1 Language Server

What is a Language Server A language server allows to integrate features like auto
completion, go to definition, find all references in an easy way into an IDEs. Such a server
mostly coexists with a client, which is a normally a native IDE plugin, which does the cus-
tomization of the GUI, registers shortcuts or adds menu items. The language server provides
a list of supported actions, which are normally shown in the IDE. This makes it very handy
to extend it as well. The protocol between these two components is standardized by Mi-
crosoft, with the idea behind it to achieve IDE independence.

Figure 6.1: Language Server

12

BA Dafny 6 RESULTS

Why were they chosen to implement Since Dafny is already supported on different
operation systems, it was decided to make the plugin as platform and IDE independent as
possible. Because Visual Studio Code supports the Language Server Protocol and is the
reference implementation, the existing plugin was refactored to work as a language server.
The strict splitting of the plugin into a client and a server had also the benefit, that the
architecture had to be changed, which resulted in a much better and clearer structure.
In the future another IDE could just integrate the existing language server, make smaller
tweaks to the client and it would work. No rewriting of the whole logic is needed, as one
just can use the server, thanks to the standardized protocol.

What benefits do they entail Developing the plugin as a language server has the big
benefit, that it could be easily integrated into existing IDEs, which support the Language
Server Protocol, without reprogramming everything. Supporting auto completion, go to
definition, find all references, would just work, without writing a single line of code. The
only step is to start the Language Server and connect to it. Only the client needs to be
adjusted, depending on the requirements of how the GUI should look like and probably the
programming language to developing the client will change. See 7.1 for a overview of IDEs
which were looked at and tried to be supported.

6.1.2 Automatic Installation

What is Automatic Installation Automatic Installation is the process to setup the
whole Dafny environment in the background. Downloading the latest release from GitHub,
extract it and setting all necessary configuration properties correctly is its main task. This
process is platform dependent, because there is a zip file for each operating system.

Why was this chosen to implement The setup to start coding with Dafny was quite
complicated. The whole installation was not straightforward. First one had to download the
Dafny.zip from GitHub, which is hidden under releases. Second it had to be extracted into
a directory. Afterwards installing the Dafny plugin for Visual Studio Code and setting the
path to the DafnyServer.exe had to be done. Finally after a restart of Visual Studio Code
it maybe worked.
Because this is quite complicated, especially if one wants to grow the community, this process
must be much easier. For this reason it was decided to implement this important feature.
The goal was that a new user can start coding in under 1 minute.

What benefits do this entail More people can start writing Dafny programs, not wor-
rying about having to set up Dafny, struggling with configurations or not finding the release
on GitHub. Also professors can integrate Dafny into their lectures, as long as students can
install Dafny without problems.

6.1.3 Automatic Upgrade

What is Automatic Upgrade Automatic upgrade makes sure that always the latest
version of Dafny is used. If a new release is published on GitHub this feature will check that,

13

BA Dafny 6 RESULTS

and notify the user that there is newer release available. If the user wants to upgrade the
Dafny environment, the feature 6.1.2 will take over.

Why was this chosen to implement Most people will never look at GitHub to check
if there is a newer version of Dafny available. Especially if there is no need to, because
everything can be installed automatically. Out of this reason, there needs to be a version
check, which informs the user if there is a newer version.

What benefits do this entail Newer versions bring important bug fixes and new features,
which would not be used if there is no version check. Users can install newer version the
same easy way, as installing the environment the first time.

6.2 Language Agnostic Features

This chapter details the language agnostic features that were implemented during the project.
The implementation was heavily guided by the language server protocol and state of the art
IDE integrations of well established languages. With these features, the main goal was
determining what programmers have become accustomed to when using an IDE and which
features bring the biggest improvements regarding productivity. To get programmers to look
deeper into the features that Dafny offers, it is important common tasks like navigating in
a code base just work, because otherwise interest to learn new things fades quickly.
This chapter simply aims to explain why certain features were chosen and what improvements
they bring to the daily routine of a programmer.

6.2.1 CodeLenses

What are CodeLenses CodeLenses in Visual Studio Code are a feature which is also
common to many other IDEs. The idea is to display meta information about certain pieces
of codes, for instance classes and methods. In Visual Studio Code this is done by adding an
additional line of text to the editor wherever a codeLense should be placed.

14

BA Dafny 6 RESULTS

Figure 6.2: Code Lenses used with Dafny

When given locations of the references, it is possible to let Visual Studio Code highlight
them in the preview window which opens when a codeLens is expanded. Visual Studio Code
also groups references according to the file path in the location, so the programmer gets to
see a map of all references ordered by containing file to the right of the preview window and
can quickly navigate to them.

Why were they chosen to implement Since codeLenses can be used to quickly gain a
deeper understanding of a code base, it was decided to integrate this feature. Another reason
was that it is widespread in different IDEs, so that programmers have become accosted to
it.
The first decision to be made was for which elements in the code codeLenses should be
displayed. The trade off here is to provide enough information to work comfortably with
the code base and not to clutter the workspace with codeLenses. It was decided to display
codeLenses for classes, methods (including constructors) and fields, since they tend to have
a wide scope in the code bases
A second consideration was which information should be displayed in a codeLens. When
codeLenses are language specific, references and usages of the element are usually displayed.
Since this allows the programmer to gain a deeper understanding of control flow and regions

15

BA Dafny 6 RESULTS

affected by refactoring, it was decided to display this information also for the Dafny plugin.
CodeLenses also allow commands to be executed when clicked upon, a logical conclusion is
to implement go to reference when a reference in a codeLens is clicked.

Figure 6.3: Expanded CodeLens showing the references to the field balance

What benefits do they entail CodeLenses allow to gain understanding of a code base
rapidly. Scoping is visible at a glance, making it excellent to find out which regions of code
are affected by a refactoring or how many classes rely on another class. By clicking on the
references that are listed, one can also navigate the code base with ease, making it easy to
follow program flow.
The existing solutions do not yet implement code lenses at all, a feature which is wide spread
in other established language integrations. Once a programmer is used to working with code
lenses, it usually becomes a feature that is quite heavily used and bring a big improvement
in productivity, since relationships do not have to be recorded in a mental model. It stands
to reason that this feature brings the biggest improvement in understanding control flow and
navigating a code base when compared to other stand alone features, making it an important
part of the plugin.

6.2.2 Code Completion

What is Code Completion Code completion prevents the programmer having to type
out every identifier fully. Microsoft calls this feature IntelliSense in its products. Usually,
when the programmer starts typing, a little popup appears in which the programmer can
choose options that complete the code he is currently writing. The suggestions are usually
context aware, because a popup that is cluttered with every identifier in the file currently
opened does not bring an improvement in productivity.

16

BA Dafny 6 RESULTS

Figure 6.4: Popup with completion options

Why was it chosen to implement Since this is arguably one of the most helpful fea-
tures in IDEs, the implementation thereof was paramount to the completion of this project.
Programming in most environments, after the desired algorithm has been thought of, has
become equal to the task of writing a few letters and then looking at the completion sugges-
tions of the IDE.
Almost all modern IDEs offer a way to trigger code completion and this feature is heavily
used. The main reason it was chosen to implement is that it brings very big improvements in
productivity, freeing the programmer from having to remember all identifiers correctly and
having to type them completely.

What benefits does it entail As already detailed, the improvement in productivity is
huge when using this feature. A programmer that is used to code completion probably never
wants to switch back to not using it. Amongst the existing solutions, only the Visual Studio
integration offer code completion. This project however tried to go a little further and next
to visually distinguishing the types of suggestions (e.g. methods, fields and so on), it also
displays existing preconditions of methods in the suggestion popup.

Figure 6.5: Suggestion displaying precondition

This combines a Dafny specific feature with a language agnostic one and lets the programmer
know as early as possible under what restrictions he is working under. Being able to provide

17

BA Dafny 6 RESULTS

code completion in this plugin provides programmers with the opportunity to translate their
thoughts quickly into code and not having to bother with exact writing.

6.2.3 Go to Definition

What is Go to Definition Another common feature in modern IDEs is go to definition.
It enables the programmer to quickly jump to the definition of a code element he is currently
working with in order to gain further insight about it. This can usually be done either via
a hot key for the current cursor position or an option when opening the context menu via a
right click, Visual Studio Code offers both ways.

Figure 6.6: The Definition Features

Usually this feature offers to either open the code file containing the definition or just to
peek at it in a popup. Visual Studio Code supports both these options. If the definition is
ambiguous, which often happens when working with interfaces, usually a list of all possible
definitions is displayed, because the concrete definition is often impossible to find using static
code analysis.

Why was it chosen to implement As it is similar to codeLenses, this is a feature
which is elemental to all modern IDEs and provides great overview over a project. The
implementation of this feature had a high priority in this project. It is also used to navigate
in a code base and is actually the reverse application of references in a codeLens, because
instead of finding all usages, one jumps from a usage to the definition.
Next to code completion, it is probably the feature most widely implemented in IDEs, so it
is important that a Dafny integration does implement it as well, as it provides programmers
an idiomatic way of working with a code base.

What benefits does it entail Similar to codeLenses, go to definition is a command which
can deepen the understanding of a code base profoundly. It is at all times clear where a
certain symbol comes from, and one can easily check what it does by jumping to the imple-
mentation. It also helps a lot when one has to trace control flow backwards in order to find
out where certain data originates from.

18

BA Dafny 6 RESULTS

The existing solutions do not yet implement go to definition, with the exception of the Vi-
sual Studio integration. Being able to quickly navigate to a symbols definition keeps the
programmer of having to keep track of all implementations and staying in the current scope
of abstraction. If one needs to know more about a symbol, a peek can quickly show the de-
sired information without distracting the train of thought with a new open file in the editor.
This makes programmers that use this command usually more efficient and productive.

Figure 6.7: Overlay of peeked definition

6.2.4 Rename Element

What is Rename Element Rename element is a feature essential to refactoring. It is
very widespread in IDEs. Visual Studio Code offers built in support for renaming either via
a hot key or the context menu. Renaming an element switches all occurrences of an identifier
to a new one. This can be a methods, an alias of an object or any other element in a code base.

19

BA Dafny 6 RESULTS

Figure 6.8: Renaming an element in Visual Studio Code

With this feature, one has to be careful when implementing it, since it actually changes
the code base and it has to be sure which elements have to be renamed and which do
not. There can be several identifiers that are exactly the same but reside in different scopes.
When applying the refactoring, only the correct occurrences, which are determined by scope,
should be changed while the others must stay untouched. Doing otherwise can change the
expressed intent of a program or, if done poorly, can break code.

Why was it chosen to implement Because of its importance in refactoring, which is one
of the most important tasks when programming, implementing this feature belongs to the
core scope of this project. Renaming element allows to quickly make code better readable.
Keeping a code base readable and clean should be one of the biggest concerns when develop-
ing a product, a feat which is only accomplished through constant refactoring, a task which
is almost impossible to do when renaming of elements is not supported automatically should
the code base grow sufficient big enough.

What benefits does it entail Renaming of elements allows the programmer to keep the
expressed intent of a program in sync with the actual intent when implementations change as
they tend to do over time. Normally more time in programming is spent editing or deleting
old lines of code than writing new ones. Having automated support in this area does not
only make work quicker, but also guarantees for non breaking changes when implemented

20

BA Dafny 6 RESULTS

correctly. When one has to adapt many pieces of code manually, it is almost guaranteed to
make a mistake somewhere.
None of the existing solutions support context aware renaming, which is very important
if the refactoring should be applied correctly. When writing production quality software,
renaming of elements helps to keep the intent clear and make the code base more readable,
which is especially important if it has to be maintained for a long lifespan. For these reasons,
a programmers that uses this feature often and correctly tends to write more expressive code.

6.2.5 Syntax Highlighting

What is Syntax Highlighting Syntax highlighting is the feature of displaying differ-
ent elements in the editor with different colors. Usually there is an IDE idiomatic coloring
scheme, so that for instance all language keywords or types are colored the same across
different languages, if the IDE supports multiple.

Figure 6.9: Syntax Highlighting of Dafny

Syntax highlighting is usually applied constantly and updates instantly when the programmer
types new code. The mechanisms to display the coloring are also very deeply ingrained into
the IDE, relaying on a declarative language grammar definition file to do all the coloring.

Why was it chosen to implement Syntax highlighting is definitely the first feature
to get working in an IDE, maybe next to run program. Even simple text editors such as
Notepad support syntax highlighting for multiple languages, so it is expected of a language
integration to come with working highlighting.

What benefits does it entail This feature makes code a lot more readable, and a lot
more time is spent reading code than writing. It makes the purpose of a symbol clear at first
glance thanks to idiomatic coloring. Understanding code becomes much easier when one is
guided by colors. Syntax highlighting can also help tracing bugs were the programmer and
the compiler do not have the same opinion of a certain syntax, since syntax highlighting
reflects the way a compiler interprets a piece of code.

21

BA Dafny 6 RESULTS

Since this is such a basic feature, all existing solution support this feature, usually relying
on the same grammar definition file written for the sublime integration of Dafny [tvi17].
This project expanded the implementation a little, also providing syntax highlighting for
parameters and generic arguments, something that existing solutions neglect.

Figure 6.10: Syntax Highlighting of parameters

6.3 Dafny Specific Features

This chapter details the language specific features that were implemented during the project.
Since Dafny focuses on an elegant way of writing specification constructs, the goal of these
features is to aid the programmer writing them. While such constructs have great potential
helping to write correct code, most programmers are not yet used to thinking in terms of this
methodology. In addition, there are situations which appear often that warrant the writing
of similar specification constructs. While important, this work can become tedious. The
features detailed in this chapter try to mitigate both these points.

6.3.1 Counter Examples

What are Counter Examples Dafny’s proof pipeline works by trying to find a proof by
contradiction. This means, that when a programmer writes a specification construct such as
a postcondition, Dafny and its pipeline try to find a situation where the postcondition does
not hold. If no violation is found, the proof obligation is satisfied.
If however, a violation is found, that means that the pipeline has found a set of assignments
to the variables involved in the context of the postcondition that led to the postcondition
being violated. The set of such assignments that lead to a violation is called a counter ex-
ample.
Counter examples are split up into different states. This means, Dafny includes all assign-
ments to each variable in each state of control flow in a context. This may seem very abstract,
but it becomes clear when shown in a simple example.

22

BA Dafny 6 RESULTS

Figure 6.11: Counter Example is shown in Visual Studio Code

When a counter example is generated for a postcondition of a method as seen in 6.11, Dafny
determines the value of each variable at each point of execution. In the example, there is
only one line of code in the method body. This means that the method has two states. The
first one is before the line is executed, in this case, only the parameter x is set to a value
which will lead the postcondition to be violated. The return value y has not been set yet,
so the counter model at this state does not yet hold a value for y.
At the next state of computation, the line in the method body has been evaluated. Dafny’s
counter model no not only shows the value of x, but also the value of y which can be
determined after that line of code has been evaluated.
In summation, a counter model shows the values of all variables involved at all stages of
computation that lead to a specification construct being violated.

Why where they chosen to implement To widen the circle of Dafny programmers, it
is important to support Dafny specific features in a language integration. Displaying counter
example was chosen mainly because of two reasons. The first one is that many programmers
are not used to writing specification constructs, so displaying counter examples is a good way
to clarify what a specification constructs actually expresses, deepening the understanding of
the programmer.
The second consideration is that edge cases are a continuous source of errors. While they
may often be forgotten when writing specification constructs, they are most likely the values
that Dafny finds to build a counter model with. This quickly leads to the inclusion of edge
cases when thinking of error free code, something which is difficult to achieve for IDEs.
A more internal notion on why they were integrated is that, as detailed in 8.2, the project
failed to deliver a generic approach towards contract generation. Displaying counter examples
is a way to partly make up for this missing feature, as it supports the programmer finding
correct constructs.

What benefits do they entail Counter examples greatly deepen the understanding of
code, as they bring to attention possible situations that the programmer did not think of.
When writing complex code, it is nearly impossible to have all possible contexts in mind that
it can run and possibly fail in. The displacement of counter examples helps the programmer
reasoning on when implementations satisfy specification constructs, which is ultimately the
main goal behind the design of Dafny.
They also help writing correct specification constructs, which is not always easy. When

23

BA Dafny 6 RESULTS

constantly being shown counter examples on when a contract is violated, the programmer
can refine a contract iteratively until it is no longer violated. This is also the approach that
most modern proofing frameworks follow.

Figure 6.12: Complex Counter Example with multiple specifications

As already detailed in the paragraph above, counter examples also often show edge cases that
lead to a condition not being satisfied, a very important consideration when programming.
These can then easily be taken care of appropriately by the programmer, either by changing
the specification construct or the implementation. Without displaying this information, it
is very difficult for the programmer to exactly find out how a condition is violated.
This project is the only solution that displays counter examples except for the Visual Studio
integration, a feature which is probably the most important Dafny specific aid an IDE can
provide.

6.3.2 Null Checks

What are Null Checks Null checks are specification constructs that take the form of a
precondition that requires an object to be not null. They can be written whenever a new
context is opened. Examples are when an object is given as an argument to a method,
then the specification is a precondition to the whole method. Another one is when a object
is declared, potentially not initialized and used in a later following while block. Then the
precondition is written for the while block.

24

BA Dafny 6 RESULTS

Figure 6.13: A situation that profits from a Null Check

When a null check is written in form of such a precondition, the following context can safely
interact with the object, since it is sure that the object is initialized.

Why were they chosen to implement Programmers very often access members of
elements, especially in the methodology of object oriented programming. While it offers a
great way to structure a program and to represent reality in a program, it comes with some
danger. The most common pitfall usually is the null reference. To help avoid this, Dafny
reports potential null references. Since almost any piece of complex code deals with objects,
this is a very common occurrence, since for instance every object given as an argument must
be checked for null first.
It was therefore decided to offer a mitigation of this important, but tedious work. The
insertion of such a precondition shifts the burden of providing valid arguments to the caller of
a context, so the implementation can concentrate on providing functionality. While working
with Dafny, it was noticed that such a precondition was needed for about every third method,
and every other while block, meaning that a lot of work is done for the programmer by
supplying this precondition generation.
Providing this Dafny specific feature was implemented as the first code fix, since a null
reference arguably is the most common trivial error when programming in the object oriented
methodology. Offering an automated solution to this in an IDE makes Dafny’s strengths
shine and working with it more enjoyable.

What benefits do they entail Current solution do not support the automatic genera-
tion of null checks, something which occurs very often when programming. Avoiding null
references is important, but tedious work. Providing an automated fix for this enables the
programmer to work in a safe context and to concentrate on providing functionality without
having to think about checking the context first.

25

BA Dafny 6 RESULTS

Figure 6.14: An example of a Null Check

This improves productivity, since it narrows the problems that the programmer has to deal
with himself. Providing null checking therefore helps the programmer writing code more
quickly and profit from Dafny in an automated way.

6.3.3 Bound Checks

What are Bound Checks When accessing an array, this is done by providing an ex-
pression that is used as an index into that array. Since an array has a fixed length, it is
important that the expression resolves to a value inside the array’s range.

Figure 6.15: Accessing an array without making sure the index is in bound

Since the definition of an array’s range is always the set of integers between zero and the
array’s length minus one, bound checks can be implemented as two specification constructs
that take the form of preconditions belonging to the context in which the array is accessed
in.
The first precondition states that the expression used as an index must resolve to a value
bigger or equal to zero, the second one that the expression must resolve to a value smaller
than the array’s length. When these two preconditions hold, it is sure that the array access
will succeed and not result into a memory violation.

26

BA Dafny 6 RESULTS

Why where they chosen to implement Since Dafny has enough knowledge about the
array data structure, it issues compilation errors every time an array is accessed without
checking for its bounds first. While programming with Dafny, it was observed that this is
the case in almost every non trivial example using arrays. Since the array data structure is
used quite often in Dafny, it was decided to also help the programmer with this construct,
since bound checking is important, but tedious.

What benefits do they entail Current solution do not support the automatic genera-
tion of bound checking. This task has to be performed very often and is tedious. Relieving
the programmer of this repetitive work frees his mind for working on core functionality of a
product.

Figure 6.16: Bound checks were generated

Automatically resolving these checks therefore makes working with Dafny more efficient and
is part of making the plugin more usable and supportive.

6.3.4 Increase / Decrease / Invariant Guards

What are they These constructs that are called guards in this paper help ensuring that
an expression complies with certain conditions. This is done by writing specification con-
structs that ensure this.
In case of increase or decrease guards, this is done by either writing an increase or a decrease
specification construct, demanding that an expression either increases or decreases. This is
often needed to meet loop termination or when using recursion, in both cases Dafny recog-
nizes that an expression should change over time in a certain way and requires constructs
detailing this. This makes sure that for instance recursion reaches a termination clause or a
loop terminates.

27

BA Dafny 6 RESULTS

Figure 6.17: Recursion should always decrease an expression

In case of invariants, it is done by writing a specification construct called an invariant. When
an expression used in an invariant can be dynamic, it specifies to which range of values it
can resolve. This is for instance needed when an expression used as an index to an array
is dynamic inside of a loop. The invariant then makes sure that the expression is always in
bound of the array.

Why were they chosen to implement The first two guards are needed to make sure
an expression converges to a certain range of values over time. This is the case when making
use of recursion to ensure that the base case is eventually met, or when writing loops that
depend on a certain value of an expression for termination. Both examples are very impor-
tant, because not handling them correctly can result in endless loops or overflow. Dafny
already does a good job in generating warnings that tell the programmer that constraints
should be enforced for a certain expression. These situations also occur very often, since
both recursion and loops are fundamental elements of programming.
Often, an expression must always evaluate into a certain range, this is for instance the case
when an expression that is used as an index to an array is not constant within the context
of a loop.
Since the above detailed constructs are used often, and the appropriate specification con-
straints help using them correctly, it was decided to implement an automatic way of gener-
ating them.

What benefits do they entail No existing solution offers an automatic way of generating
these guards, a tasks which soon was discovered was tedious and time consuming, because
it is not always clear at first glance which expressions are subject to constraints. Providing
an automatic way of generating them does ensure that the specification constructs are de-
clared correctly, manually inserting them is error prone and demands some reasoning by the
programmer.

Figure 6.18: Recursion guided by a decrease guard

28

BA Dafny 6 RESULTS

This feature therefore allows the programmer to be more productive and concentrate on key
areas of concern.

6.3.5 Flow Graphs

What are they A existing feature in Boogie is to translate boogie programs into a flow
graph. It does not only show the flow of the program itself but also includes all pre- and
postconditions. Below is an example of a flowgraph, taken from the partition method of a
quicksort algorithm.

Figure 6.19: Flow Graph of the partition method

29

BA Dafny 6 RESULTS

Why were they chosen to implement Because this feature existed already in Boogie,
and the goal was to support as many features from the Dafny pipeline as possible, it was
decided that this feature could be easily and nicely implemented.

What benefits do they entail Developers can directly see the flow of the program they
are working on in Visual Studio Code. Otherwise, they would need to manually save the
graph to a file, upload or convert the file to finally view it. This all is done in the background
to provide a nice user experience.

30

BA Dafny 7 POSSIBLE POINTS FOR EXTENSION

7 Possible points for Extension

This chapter details what further work could be done on the plugin by subsequent projects.

7.1 Support for other IDEs

Since the plugin is structured as a language server, it should theoretically be possible to
integrate it into any IDE which implements the language server protocol without any prob-
lems. In reality, some customization is often needed and some popular IDEs also do not
fully implement the protocol yet. This chapter details which IDEs were looked at as possible
hosts for the plugin and what would have to be done for a complete integration.

7.1.1 Eclipse integration

The eclipse project LSP4E aims to integrate existing language servers into the Eclipse IDE
in an easy way.
”It includes some APIs to turn language server protocol elements into Eclipse IDE concepts
and a generic integration allowing to easily plug any language server to an Eclipse IDE
instance without need to write Java code, either via a plugin associating a new language
server, or by letting users manually bind language servers to their IDE.” [Fou17] It is built
on top of LSP4J, a Java implementation of the language server protocol.
Integrating the Visual Studio Code Dafny language server into Eclipse could become possible
in the future. Right know there is no way to interact on the client side. One only can
specify a language server based on a program (NodeJS) and arguments (extension.js) which
is executed and used for querying information. One cannot add any behavior to Eclipse itself,
which would be necessary for certain features. Also, the sendRequest protocol specification
is not implemented yet (Commit: 1615e07), which is important for starting the DafnyServer
correctly. The better way would be to program a new Eclipse plugin, based on LSP4J, which
then would also allow to customize the status bar, run scripts and show progress information.

7.1.2 Emacs integration

Emacs [GNU17] is a versatile IDE which enjoys great popularity especially in the open
source community. Written in LISP, Emacs traditionally supported language integration via
so called modes, which are demons that run in the background. This is already a similar
architecture as used in a language server integration.
Work on integrating language servers into Emacs has already be done. The project emacs-lsp
[ema17] aims to provide the connection between Emacs and language server. The project
itself is structured as a classical Emacs demon and allows interactions with a language server.
There already exist some integrable language servers in languages such as Java or Haskell.
The integration of emacs-lsp and existing language servers seems to be pretty trivial, an
example can be seen in [Ema17] using Java.
Since the language server allows custom messages to be defined as detailed in the implemen-
tation documentation, the Dafny plugin defines some of them. One set of custom messages
is necessary, since the plugin allows for downloading the Dafny compiler automatically. The

31

https://projects.eclipse.org/projects/technology.lsp4e
https://github.com/eclipse/lsp4j

BA Dafny 7 POSSIBLE POINTS FOR EXTENSION

communication in regard to this feature must be extended to the IDE, so that the user is
aware of this feature. Additional custom components are the state of the file so that the
programmer sees if it is verified or not, or the displacement of counter examples for proofs.
These features were deemed very useful in this project, such that they should be a part of
every IDE integration. This means that a little wrapper would have to be written on the
client side of the language server, which understands the custom messages and can relay this
information to the IDE itself. The work that has to be done is trivial, since it simply means
to pass information on and display them accordingly.
It was decided that gaining a working knowledge of LISP and Emacs in order to write such
a wrapper was not in the scope of this project. For a programmer familiar with Emacs and
LISP this task should take no more than a week. The custom messages that need to be
implemented can be found in the implementation documentation. It can be argued that
this extension should be one of the first ones to be tackled by later work, as one can gain a
considerably larger user base without having to invest too much work.

7.1.3 Monaco integration

Monaco[Mic17b] is the code editor that powers Visual Studio Code. It is also possible to
use Monaco as a standalone editor in the browser. It would be intriguing to integrate Dafny
directly into Monaco, since there are not many simpler setups imaginable as opening a
browser window. It was therefore decided to look into a possible integration of the plugin
during the course of this project.
It soon became apparent that the project does not seem very active, as the latest commit was
two months old at the time of this writing. The documentation for developers is also very
sparse. There was hope that an integration would be trivial, since the plugin is structured
as a language server. However, Monaco does not implement the language server protocol.
In the documentation, it can even be read that ”Extensions written for Visual Studio Code
will not run in Monaco”[Mic17b], without any further explanation given.
However, integrating a new language into Monaco is possible, as can be seen in an example
for Typescript in [Mic17d]. However, the setup is different than a language server integration
or a Visual Studio Code plugin. It is questionable how much code could be shared. While
the idea of running Dafny in an editor in the browser is interesting, the work that would have
to be done in order to achieve this was deemed to be outside of the scope of this project.
In addition, if further work aims to implement this integration, an evaluation on how active
the work on Monaco is should be done first, given the apparent standstill in the project at
the time of this writing.

7.2 New Features

This section details some interesting ideas that were gathered during development of the
plugin, but were sadly out of scope of this project. It is thought as a starting point for
developers that want to extend this plugin.

32

BA Dafny 7 POSSIBLE POINTS FOR EXTENSION

7.2.1 Debugger

Integrating a debugger into the plugin would be great, since this is a feature that is very
often used and very helpful when searching for bugs. An existing solution already supports
this feature, namely the Visual Studio integration [Mic17e] of Dafny. This already works
very well and can be used as a guideline when developing an own integration. It is also a
feature that programmers have become used to in all modern IDEs, so it should be part of
any language integration.
Sadly it is also quite a difficult task since the interaction between an IDE, an executable
and a debugger is complex. While the Visual Studio integration is open source, it is written
in C# and can therefore interface directly with the Dafny pipeline, which is heavily done
in that integration. It would take quite some work to abstract this direct interaction into a
clean API that extends the existing API of the Dafny pipeline. Using this API, a language
server could provide an own implementation of a debugger.
Designing this complex component was well out of scope for this project. It is estimated that,
depending on the preexisting knowledge, this would be an endeavor of about two to four
weeks time and probably would have to rely on at least some help by the Dafny development
team. While this task is difficult, the result would be having an important feature that all
users of modern IDEs anticipate in a language integration. It therefore should be a primary
consideration when deciding on how to extend this project.

7.2.2 Widening Scope

While many features have been implemented during the course of this project, the scope of
their application was often narrowed as to provide a pragmatic approach to the problems
regarding the scope of the project. For example, the rename element refactoring only works
on members of classes, but not on parameters of methods.
The exact scope of all features can be found in the implementation documentation of this
project. While the extension of scope of existing features might seem tedious and not very
interesting, it can introduce subtle problems that have to be dealt with with great care. It
also is beneficial to the users, as they can apply features in much wider contexts.

7.2.3 Contract Generation

While contract generation has been implemented for some often occurring situations as de-
tailed in 6.3, there is still a big potential for improvement in this area. Since a generic
approach to contract generation has been deemed to be unfeasible, the next best way is to
offer help in writing specification constructs in specific situations.
When deciding to do work in this area, it is important to first analyze which situations ap-
pear often in a typical Dafny program. While this task it is difficult in itself, since it requires
some expertise in Dafny, it is important because otherwise features may be implemented
that do not get used in every day scenarios.
When such situations have been identified, the specification construct generation must ab-
solutely be correct. Since this is a feature that changes existing code, it is better to not
provide any help when there is ambiguity regarding the correct solution. However, when

33

BA Dafny 7 POSSIBLE POINTS FOR EXTENSION

done correctly, this is a feature from which programmers can greatly benefit, since it en-
hances productivity by eliminating the need to do complicated reasoning. It also introduces
capabilities of Dafny to programmers that are not yet proficient in their usage of the lan-
guage.

34

BA Dafny 8 CONCLUSION

8 Conclusion

The section concludes this paper by first comparing the reached goals with the stand of
the existing solutions. In the end, an evaluation of the project is detailed. Further insight
regarding the implementation details of the project can be found in the implementation
documentation, which accompanies this paper.

8.1 Goals Reached

This chapter details the goals that were reached in this project and puts them into contrast
with the current solutions that were introduced in 4.2.

8.1.1 Platform Independence

The chapter 6.1 details how the plugin runs on all major platforms. While only one existing
solution, namely the one offered for Emacs, runs on all platforms, the user still has to make
sure to have the Dafny pipeline configured correctly for his environment.
This project has developed the only solution which is able to run the whole pipeline on all
operating systems and does so automatically. This contributes in reaching the biggest user
base possible and invites all programmers to try out Dafny without having to switch the
environment that they have become accosted to.

8.1.2 Setup

In this area, the product developed during the course of this project surpasses all existing
solutions. While those all require the user to install and configure the Dafny platform,
this plugin handles the whole setup automatically. The way this is done is detailed in 6.1.
The Visual Studio Code plugin can be installed by one click within the marketplace that
Microsoft offers, while the whole dependency resolution resides in the language server part of
the plugin, meaning this automatic installation is also possible when integrating with other
IDEs.
Having unit tests in place which hinder breaking changes and doing all the resolution in
a central place lays the foundation of a setup that is as simple as can be. This invites
programmers to try out Dafny without having to invest any energy and is an important part
in widening the user base.

8.1.3 Usability

The language server protocol details both standard and custom messages than can be emitted
by the server. This was used during the work on this project to relay almost all information
emitted from Dafny to the programmer. The plugin also translated this messages in idiomatic
Visual Studio Code notifications, giving them the appropriate form or displaying them in
the correct GUI element. It can therefore be said that this project leverages all elements
that Visual Studio Code offers and programmers familiar with the most common GUI driven
IDEs should have no problem working all the features that were implemented.
While already all existing solutions integrate nicely into their respective IDEs, only the

35

BA Dafny 8 CONCLUSION

Visual Studio integration details the same amount of information as the plugin developed
in this project. This makes it attractive for a wide range of programmers that are used to
working with different IDEs.

8.1.4 IDE Independence

While developing this plugin, it was decided to implement it as a language server. This
has the potential to decouple the plugin from a concrete IDE and make it reusable, as was
detailed in 6.1. Making such an integration to an IDE other than Visual Studio Code work
was outside of the scope of this project, but a proof of concept was done for Emacs.
The proof of concept and the fact that the protocol is gaining traction fast make it safe to
say that this project hat laid the foundation for many potential IDE integrations to come.
7.1 gives some ideas which integrations would be feasible in the near future.
The approach chosen when designing this plugin as a language server is unique among the
existing solutions, making it the only one that is not hardwired to a specific IDE. This has
great potential of widening the Dafny audience, but also of inviting other programmer to
contribute to the plugin.

8.1.5 Feature Richness

During this project, many different feature were implemented. This includes language ag-
nostic features detailed in 6.2 as well as features that lend Dafny specific support to the
programmer detailed in 6.3. While it was an important concern that programmers can use
most features that they are used to from working with other languages, much thought was
spent on how programmers can be supported writing Dafny specific code. This resulted in
a collection of some solutions that are unique to this project.
Comparing the stand of the project with existing solutions, it surpasses most vastly regard-
ing feature richness in both areas. The only platform to offer features that this project does
not do, is the Visual Studio integration. These features include a Dafny debugger, which is
very helpful but sadly was outside of the scope of this project. However, this project inte-
grates some features that have not been implemented yet in any IDE, especially automatic
specification construct generation for some situations.
Since most solutions are open source, it stands to hope that they continuously offer more
features by getting inspiration from other solutions. At the current time, programmers that
make use of the solution developed in this project benefit from one of the two most feature
rich Dafny programming experiences.

8.2 Evaluation

Following the comparison made in 8.1, it can safely be said that product developed during
this project is at least en pair with most existing solutions. An automated setup of the entire
environment which resolves dependencies on all major platforms guarantees that new users
can make their first steps with Dafny without having to spend time to get things running.
This is an important first stepping stone in making Dafny accessible for a wide user base.

36

BA Dafny 8 CONCLUSION

After having gotten Dafny to run on an environment, the next concern is to offer a produc-
tive, efficient and enjoyable programming experience. This keeps programmers using Dafny
interested and keen on further using it. Having implemented many common IDE features
as well as some Dafny specific functionality lets programmers apply work flows they have
established with other languages as well as discovering the big benefits regarding functional
correctness Dafny can offer.
Structuring the plugin as a language server decouples it from any particular IDE, although
this project relied on Visual Studio Code as a reference IDE. This decoupling leads to the
possibility to integrate Dafny into many other IDEs without having to duplicate any logic.
This further lays the groundwork to support a wide user base as a programmer would not
have to switch the IDE he has come used to for another one.
Offering generic contract generation sadly was established to be not feasible to implement in
the scope of this project. During this research it was found that this problem probably also is
unsolvable due to the proof pipeline that Dafny uses. Instead of offering generic generation,
often arising situations were identified and aids provided for them.
It was a major concern for this project to not just develop a proof of concept, but a produc-
tion ready release of the plugin. Through the application of continuous integration feedback
from users could be integrated early on. The plugin has been already downloaded over 300
times from all over the world at the time of this writing. It was also used in a course concen-
trating on software engineering at a school for higher education to get students familiar with
contract based reasoning. During this, the plugin was used by about 60 students, underlining
the robustness and platform independence of the solution. The minor changes that had to
be made to the Dafny pipeline itself during this project have been accepted by Microsoft
and are integrated into the official version of the pipeline.
The open source nature of this project encourages people to participate in enriching the
plugin, as well as integrating it in additional IDEs. Close detail has been paid on keeping
the documentation as well as the code quality at a high standard, so contributing should
be possible without having to invest too much time to get started. It stands to hope that
providing the plugin in the state it is at the end of this project is a big stepping stone in
widening the user base that can profit from using Dafny.

37

BA Dafny A PROJECT MANAGEMENT

A Project management

This section details how the work was organized. This entails the planning of the work as
well as at how the workload was split up. In addition, the measures taken to ensure the
quality and progress of the project are also listed.

A.1 Project Plan

This project plan was the result of the original planning of the project. It put milestones,
features and artifacts into a desired chronological order. Some deviations of this plan had to
be done during the project because of new insight was gained while working on implementing
the plugin. These deviations are detailed in A.4.

I

BA Dafny A PROJECT MANAGEMENT

Figure A.1: Project Plan

II

BA Dafny A PROJECT MANAGEMENT

A.2 Milestones

This chapter defines the milestones that are referenced in A.1. As with the project plan
itself, some milestones could not be reached as they were defined, because insight was gained
while working on the project that made implementing these requirements unfeasible without
adjusting them. These deviations are detailed in A.4.

Nr Date Title Description

M1 26.03.2017 First prototype Plugin is working on all operation systems, simple ver-
ification is in place and errors are reported, basic syn-
tax highlighting, automatic downloading of dependen-
cies and installation of Dafny and configure of environ-
ment variables

M2 30.04.2017 Contract generation First automatic contract generation, customizable with
DSL

M3 21.05.2017 IDE features Auto completion for identifiers, adding support for com-
mon refactorings like renaming

M4 04.06.2017 Release 1.0 Everything implemented and tested. Ready to be pub-
lished

Table A.1: Milestone

A.3 Risk management

This section details what risks were identified in the beginning of the project and the po-
tential impact they could have on reaching the main goal of this project. Next to the risks,
mitigations are also defined. In the end, the risks are put into relation in a risk matrix. This
helped in deciding which risks can be neglected and which ones must be mitigated at the
very start of the project.

A.3.1 The Risks

III

BA Dafny A PROJECT MANAGEMENT

N
r

T
it

le
D

e
sc

ri
p
ti

o
n

M
a
x

H
a
rm

[h
]

P
ro

b
a
-

b
il

it
y

P
re

v
e
n
ti

o
n

B
e
h

a
v
io

r
a
t

e
n
tr

y

R
1

U
n
d
er

es
ti

m
at

io
n

of
w

or
k
lo

ad
O

n
e

or
m

or
e

te
am

m
em

b
er

ca
n
n
ot

fi
n
-

is
h

a
fe

at
u
re

in
ti

m
e

or
lo

se
s

to
o

m
u
ch

ti
m

e
on

a
m

in
or

fe
a-

tu
re

70
25

%
W

ee
k
ly

sc
ru

m
m

ee
t-

in
gs

w
it

h
fe

ed
b
ac

k
ab

ou
t

th
e

cu
rr

en
t

w
or

k
p
ro

gr
es

s.
E

s-
ti

m
at

e
w

or
k
lo

ad
to

ge
th

er
.

In
cl

u
d
e

ti
m

e
re

se
rv

e

H
el

p
ea

ch
ot

h
er

,
if

on
e

is
st

ru
gg

li
n
g.

F
ea

tu
re

re
d
u
ct

io
n

as
la

st
re

-
so

rt
.

R
2

W
or

k
fl
ow

is
n
ot

w
or

k
in

g
T

o
ol

ch
ai

n
is

n
ot

w
or

k
in

g
as

p
la

n
n
ed

.
T

h
e

u
se

d
co

m
p

o-
n
en

ts
ar

e
n
ot

id
ea

l
fo

r
th

e
p
ro

b
le

m

30
15

%
U

se
ex

p
er

ie
n
ce

to
ge

t
a

go
o
d

se
tu

p
an

d
te

st
it

a
lo

t
in

th
e

b
eg

in
n
in

g

R
ed

efi
n
e

to
ol

ch
ai

n
or

ch
an

ge
si

n
gl

e
to

ol

R
3

C
om

m
u
n
ic

at
io

n
p
ro

b
le

m
s

T
ea

m
is

n
ot

w
or

k
in

g
to

ge
th

er
an

d
ea

ch
m

em
b

er
is

d
ev

el
-

op
in

g
in

d
iv

id
u
al

ly
.

C
re

at
io

n
of

in
co

m
-

p
at

ib
le

in
te

rf
ac

es
.

T
al

k
in

g
w

it
h

th
e

in
d
u
st

ri
al

p
ar

tn
er

is
n
ot

p
os

si
b
le

as
ex

p
ec

te
d
,

d
u
e

to
ti

m
e

d
iff

er
en

ce
or

n
ot

en
ou

gh
ti

m
e

70
20

%
W

ee
k
ly

sc
ru

m
m

ee
t-

in
gs

an
d

ag
re

em
en

ts
.

A
lr

ea
d
y

w
or

ke
d

in
ot

h
er

p
ro

je
ct

s
as

a
te

am
b

ef
or

e

In
cr

ea
se

w
ri

tt
en

d
o
cu

-
m

en
ta

ti
on

an
d

w
or

k
in

g
cl

os
er

to
ge

th
er

.
H

av
-

in
g

a
fi
x
ed

m
ee

ti
n
g

w
it

h
th

e
in

d
u
st

ri
al

p
ar

tn
er

IV

BA Dafny A PROJECT MANAGEMENT

R
4

L
ac

k
of

k
n
ow

le
d
ge

T
ea

m
h
as

to
o

li
t-

tl
e

k
n
ow

le
d
ge

ab
ou

t
D

af
n
y,

V
is

u
al

S
tu

-
d
io

C
o
d
e

an
d

th
e

d
ev

el
op

m
en

t
of

a
V

is
u
al

S
tu

d
io

C
o
d
e

P
lu

gi
n

80
10

%
A

lr
ea

d
y

ga
in

ex
p

er
i-

en
ce

w
it

h
ty

p
es

cr
ip

t
fo

r
p
lu

gi
n

d
ev

el
op

-
m

en
t,

as
p
re

p
ar

at
or

y
w

or
k

in
fo

rm
ed

ab
ou

t
D

af
n
y

F
in

d
n
ec

es
sa

ry
k
n
ow

l-
ed

ge
on

li
n
e,

ge
t

h
el

p
fr

om
M

ic
ro

so
ft

R
e-

se
ar

ch

R
5

D
at

a
lo

ss
or

m
an

ip
-

u
la

ti
on

D
at

a
lo

ss
b

ec
au

se
of

a
se

rv
er

cr
as

h
or

op
en

p
er

m
is

si
on

s
to

ac
ce

ss
an

d
m

o
d
if

y
d
at

a

20
3%

R
eg

u
la

r
b
ac

k
u
p
s

an
d

re
st

ri
ct

iv
e

p
er

m
is

si
on

s
to

ch
an

ge
fi
le

s

U
se

b
ac

k
u
p

to
re

st
or

e
d
at

a.
E

x
te

n
d

sa
fe

ty
m

ea
su

re
s

R
6

F
ai

lu
re

d
ev

el
op

er
m

ac
h
in

e
O

n
e

of
th

e
d
ev

el
-

op
er

m
ac

h
in

es
is

n
ot

w
or

k
in

g
an

y
m

or
e.

10
1%

L
im

it
ed

,
re

gu
la

rl
y

co
m

m
it

s
an

d
b
ac

k
u
p
s.

S
w

it
ch

te
m

p
or

ar
y

to
th

e
sc

h
o
ol

co
m

p
u
te

r
an

d
in

st
al

l
th

e
n
ec

es
-

sa
ry

to
ol

s.

R
7

Im
p
le

m
en

ti
n
g

th
e

D
S
L

is
to

o
co

m
p
li
-

ca
te

d
or

to
o

d
iffi

cu
lt

to
u
se

T
h
e

D
S
L

w
ou

ld
b

e
n
ee

d
ed

to
su

gg
es

t
p

os
si

b
le

co
n
tr

ac
ts

or
to

cu
st

om
iz

e
th

e
b

es
t

p
ra

ct
ic

es
.

10
0

30
%

T
h
is

co
re

fe
at

u
re

h
as

to
b

e
re

se
ar

ch
ed

ca
re

fu
ll
y

so
th

at
it

re
al

ly
fi
ts

.

R
ea

d
in

g
ab

ou
t

D
S
L

,
ta

lk
in

g
to

p
eo

p
le

w
h
ic

h
h
av

e
al

re
ad

y
w

or
ke

d
w

it
h

it
.

V

BA Dafny A PROJECT MANAGEMENT

R
8

S
u
p
p

or
ti

n
g

al
l

fe
a-

tu
re

s
on

th
e

d
iff

er
-

en
t

en
v
ir

on
m

en
ts

is
n
ot

p
os

si
b
le

D
u
e

to
th

at
W

in
-

d
ow

s,
O

S
X

an
d

L
in

u
x

ar
e

q
u
it

e
d
iff

er
en

t,
it

co
u
ld

b
e

th
at

so
m

e
fe

at
u
re

s
ar

e
n
ot

p
os

si
b
le

to
im

p
le

m
en

t
on

a
p
la

tf
or

m
or

ca
u
se

a
b
ig

ov
er

h
ea

d
to

ge
t

it
ru

n
n
in

g

10
25

%
U

si
n
g

as
m

u
ch

of
th

e
st

an
d
ar

d
A

P
I

as
p

os
-

si
b
le

.
Im

p
le

m
en

t
sp

e-
ci

fi
c

fe
at

u
re

s
p
la

tf
or

m
d
ep

en
d
en

t

D
is

ab
le

a
ce

rt
ai

n
fe

a-
tu

re
on

a
p
la

tf
or

m
or

lo
ok

fo
r

a
w

or
ka

ro
u
n
d
.

R
9

A
u
to

m
at

ic
in

st
al

le
r

of
D

af
n
y

is
n
ot

p
os

-
si

b
le

M
ay

b
e

b
ec

au
se

of
se

cu
ri

ty
re

st
ri

ct
io

n
s,

it
co

u
ld

b
e

p
os

si
-

b
le

th
at

yo
u

ca
n
n
ot

d
ow

n
lo

ad
an

d
in

-
st

al
l

ad
d
it

io
n
al

so
ft

-
w

ar
e

an
d

se
t

en
v
i-

ro
n
m

en
t

va
ri

ab
le

s.

35
20

%
T

es
t

if
d
ow

n
lo

ad
in

g
of

so
ft

w
ar

e
ca

n
d
on

e
in

-
si

d
e

V
S

C
o
d
e.

A
u
to

m
at

ic
in

st
al

le
r

ca
n
n
ot

b
e

d
on

e
in

si
d
e

th
e

p
lu

gi
n
.

S
w

it
ch

to
a

d
iff

er
en

t
st

ra
te

gy
an

d
im

p
le

m
en

t
an

au
to

-
m

at
ic

in
st

al
le

r
ov

er
an

ad
d
it

io
n
al

ex
ec

u
ta

b
le

,
w

h
ic

h
co

u
ld

al
so

in
st

al
l

th
e

p
lu

gi
n

in
V

is
u
al

S
tu

d
io

C
o
d
e.

VI

BA Dafny A PROJECT MANAGEMENT

R
10

D
af

n
y

an
d

th
e

w
ay

it
is

u
se

d
is

n
ot

w
el

l
u
n
d
er

st
o
o
d

If
it

is
n
ot

cl
ea

r
h
ow

ex
ac

tl
y

th
e

w
or

k
fl
ow

of
a

D
af

n
y

p
ro

gr
am

m
er

co
u
ld

b
e

en
h
an

ce
d
,

th
er

e
is

th
e

p
os

-
si

b
il
it

y
th

at
a

lo
t

of
fe

at
u
re

s
co

u
ld

b
e

im
p
le

m
en

te
d

th
at

d
o

n
ot

im
p
ro

ve
th

e
p
ro

gr
am

m
in

g
ex

p
er

ie
n
ce

at
al

l.

80
20

%
R

eg
u
la

r
fe

ed
b
ac

k
lo

op
w

it
h

p
eo

p
le

th
at

u
se

D
af

n
y.

L
ea

rn
a

lo
t

ab
ou

t
D

af
n
y

ou
rs

el
ve

s,
ta

lk
to

p
eo

p
le

th
at

u
se

D
af

n
y.

T
ab

le
A

.2
:

R
is

k
m

an
ag

em
en

t

VII

BA Dafny A PROJECT MANAGEMENT

A.3.2 Risk Matrix

Figure A.2: Risk Matrix

A.4 Deviations from the project plan

This chapter details how the project was implemented and in what way it deviated of the
project plan.

A.4.1 UC3: Reporting of Dafny best practices violations

While this idea seemed obvious when planning the project, this feature could sadly not
be implemented. When working with different IDEs and well established programming
languages, a programmer is often used to be supported by tools which can help write cleaner
and more idiomatic code, such as linters. From this viewpoint, the integration of such a tool
into the plugin seemed necessary.
While established languages have a pool of agreed upon best practices, Dafny is still a young
language with not wide spread usage yet. The tooling around Dafny is also still not as
sophisticated yet as for other languages. From this it can be inferred that there is not a big
collection of programs yet to gain experience from, and that the problem of establishing a
clear work flow with Dafny usually still exists, further preventing programmers to concentrate
on idioms.
These facts reflect why there is no collection of best practices for Dafny yet, either in form
of some documentation or as a suggestion from people that are involved with Dafny.
A second point worth noting in regard to this use case is how best practices for Dafny could
look like. Dafny differs to most other languages in that it provides excellent specification

VIII

BA Dafny A PROJECT MANAGEMENT

constructs. A natural area to agree on idioms would therefore be the contracts of a piece
of code. This could also greatly enhance the performance, because if clever usage is made
of techniques such as short circuiting, a proof can be calculated at a much lesser cost than
with a naive implementation.
While providing support for best practices for contracts would therefore be very nice, this
would also be almost unsolvable complex. Even for simple cases a deep understanding of
proof theory would be needed, while for complex conditions it is not determinable if they
can be proven in a better way or if they can be specified and proven at all.
Since the establishment of own best practices for Dafny without being able to include an
existing collection was deemed an unrealistic goal, and the structuring of contracts in the
best way possible an unsolvable task, it was decided to concentrate on other features of the
plugin instead.

A.4.2 UC4: Automatic generation of contracts

Since the biggest selling point of Dafny is the possibility to write specification constructs.
It therefore was clear to try to provide automatic generation of some of such constructs
in this project. While planning the project, the proof pipeline used by Dafny was not yet
understood fully, the grasp on proof theory was quite small as well. This made it very hard
to estimate if such a feature could be implemented at all and if so, in what time. Nevertheless
the potential benefit of such a feature marked it as a milestone in this project.
While researching the theoretical basis for implementing such a feature as detailed in 5.1
and the chapters following it, it became apparent that the topic was quite complex. A first
stumbling block were invariants. As languages such as Eiffel [Mey17] make it possible to
work with invariants, it was assumed that Dafny offers this possibility as well.
As was learned, there are several different methodologies when it comes to invariants, having
them implemented as a macro which simply inserts them as postconditions to every block is
the easiest approach. A collection of techniques can be found in [Dro+08]. Dafny does not
build in object invariants because it does not commit to a particular methodology. Since
the upholding of certain business rules (which was the aim of this use case) via specification
constrains usually translates into generation of invariants, in addition to generating the
invariants, it would have also been in the scope of this project to define how to deal with
invariants in Dafny in a consistent work. It was also impossible to define and implement a
way in which such business rules could be expressed regarding time and the trade off between
usability and flexibility.
The second idea was to apply the concept of the weakest precondition. This means that if
a proof does not hold given a context, one can find the weakest precondition to make the
proof valid. It would have been great to offer the generation of the weakest precondition as
a refactoring in the plugin. However, since the weakest precondition must be expressed in
Dafny, it would have to be found in almost human readable form. Z3 [Z317], the theorem
prover used by Dafny, tries to prove a theorem via contradiction. It is very hard to gain
information about satisfiability from the prover. In addition, there is the problem that Dafny
code gets translated to the Boogie[Mic17a] meta language, which then gets translated to Z3
syntax. Even if one could gain information from Z3 about satisfiability, it would therefore be
difficult to provide a matching back to the Dafny language and to display this information.

IX

BA Dafny A PROJECT MANAGEMENT

In general, the problem of inferring sufficient conditions for proofs is very hard if they should
be human readable. The few existing solutions work with an iterative approach relying on
stepwise reduction of counter examples, for instance described in [SK13]. This approach is
difficult to implement and lacks the usability that was sought after in this use case.
Lastly, it took a lot of time to gain a working knowledge of the proof pipeline. Since it
consists of three big projects, namely Dafny, Boogie [Mic17a] and Z3 working together, a
deep understanding was not possible without having some existing knowledge in this time.
While trying to understand the pipeline, it also became apparent that the knowledge of the
authors in proof theory was not deep enough to really grasp the problem and work on a
solution in a feasible time.
Because of all these reasons, it was decided to not implement this use case in this project.
While this is regrettable, other ideas were gained during the investigation of the problem.
The feasibility of displaying counter modules was discovered, as well as small refactorings
that provide constraints for a small, but very often needed set of instructions such as array
accesses were thought of. The remaining time of this milestone therefore was directed at
implementing these features instead.

A.4.3 Code Actions

As detailed in A.4.2, while trying to implement a proof of concept for contract generation,
some often used concepts while working with contracts were discovered. This led to the idea
to offer refactorings to generate the correct contracts for these concepts. While this is in no
way a generic approach towards contract generation, it seemed as though these refactorings
could help in many situations, making life considerably easier for the programmer. It was
therefore decided to implement them, partly replacing the goals sought after in A.4.2. A
more complete picture, including an overview of the implementation, can be found in the
implementation documentation. The following list details on why these concepts were chosen.

Null Check Programmers very often access members of elements, especially in the method-
ology of object oriented programming. While it offers a great way to structure a program
and to represent reality in a program, it comes with some danger. The most common pitfall
is what Hoare famously declared his biggest mistake [Hoa09], the null reference. To help
avoid this, Dafny reports potential null references. Since almost any piece of complex code
deals with objects, this is a very common occurrence, since for instance every object given
as an argument must be checked for null first.
It was decided to offer a mitigation of this important, but tedious work. The plugin de-
tects warnings about potential null references, and offers to generate a precondition that
demands that the designator standing for the potential null reference may not be null. If the
programmer accepts the proposal, the precondition is inserted at the correct location. This
shifts the burden of providing a valid context to the caller of the method, so the method can
concentrate on offering a solution to the call. While working with Dafny, it was noticed that
such a precondition was needed for about every third method, meaning that a lot of work is
done for the programmer by supplying this precondition generation.

X

BA Dafny A PROJECT MANAGEMENT

Bound Checking Almost as often as checking for null, it is necessary to check if an
index to an array is in bound. Dafny already has sufficient knowledge about the array data
structure that it issues a warning every time it is not clear if an index that is used to access an
element is in bound of the array. While programming with Dafny, it was observed that this
is the case in almost every non trivial example using arrays. Since the array data structure
is used quite often in Dafny, it was decided to also help the programmer with this construct,
since bound checking is important, but tedious.
Whenever a warning is issued by Dafny that an index may be out of bound, the plugin offers
to generate two preconditions, namely one that states that the expression representing the
index must be bigger than zero, and one that states it must be smaller then the array length
minus one. The placement off course must be so that the preconditions are introduced at a
place in the program, where all variables used in the expression have been declared. When
the programmer decides to use the quick fix, the preconditions are inserted and relieve him
of the hassle of manually checking the bounds of the index.

Increase / Decrease / Invariant Guards Another concept that often arises when using
Dafny is to make sure an expression converges to a certain range of values over time. This
is the case when making use of recursion to ensure that the base case is eventually met, or
when writing loops that depend on a certain value of an expression for termination. Both
examples are very important, because not handling them correctly can result in endless loops
or overflow. Dafny already does a good job in generating warnings that tell the programmer
that constraints should be enforced for a certain expression.
These situations also occur very often, since both recursion and loops are fundamental ele-
ments of programming. It was decided that the generation of these constraints could greatly
benefit the programmer. In order to do this, the plugin offers to add an increase / decrease
clause with the correct expression in place when Dafny detects recursion or a loop. When
the programmer chooses to use the quick fix, the guard statements are inserted at the correct
place. Another important constraint when working with loops goes hand in hand with the
use case described above, namely when an array is accessed within a loop and the expres-
sion used as an index is not constant within the context of the loop. For this, Dafny offers
the construct of invariants, that ensure that an expression is within a certain range during
a given context. The plugin therefore offers to generate invariants, which ensure that an
expression used as an index is always in bound of the array. When the programmer chooses
to use this feature, the invariant is inserted at the correct context.

A.4.4 Counter Examples

A concept which was not known as the project started were counter examples. They provide
a huge benefit as to understand how a program violates its contract. Especially if it is a
more complex software with many methods and many branches, it can be very difficult to
understand why a contract does not hold
For this reason it was decided to implement that feature in addition to CodeActions A.4.3.
Developers can use this practical features directly in Visual Studio Code. It shows on each
line how the variables have to be assigned that the proof fails.
Because the calculation of the model, how it is called in Z3, can take very long, it is not

XI

BA Dafny A PROJECT MANAGEMENT

calculated automatically if a proof fails. Nevertheless this can be overridden in the configu-
ration.

A.4.5 Displaying Flow Graph

Something which is already implemented in Boogie, is the generation of a Flow Graph out
of a boogie program. Because this could be quite useful for developers, it was decided to
implement this feature as well. Mainly because it can be implemented so, that inside the
IDE, the source code is on one side and the flow graph next to it. It displays the program
visually including all pre- and postconditions.

A.5 Project Homepage

In order to always be fully aware about all aspects of the project, it was decided to setup
a small project homepage that gathers all relevant information and displays it at a single
point. This was done to support the authors with their work, but also to provide a real-time
insight to the advisors of this project.
The first abstract of the page collects all links that are relevant to the project. This includes
all code repositories, but also links to all project management tools used as well as to the
documentation of this project.

Figure A.3: All links relevant to the project

Since continuous integration was ingrained into this project from the start, the last stable
version of the plugin was continuously available in the marketplace of Visual Studio Code.
To keep track of how many people are already using the plugin, a counter displaying the
downloads was added to the homepage.

XII

BA Dafny A PROJECT MANAGEMENT

Figure A.4: Downloads of the plugin

As already mentioned, it was paramount to this project to implement continuous integra-
tion, not only with the plugin, but for all other artifacts as well (the homepage itself, or the
documentation). In order to achieve this, various test- and build jobs were defined with Bam-
boo. To quickly see if anything is amiss, the homepage also displays the status of these tasks.

Figure A.5: Status of all automated tasks

To keep code quality at a high level, SonarQube was used to analyze every commit to the
code base of the plugin. The findings of SonarQube were also integrated into the homepage.

XIII

BA Dafny A PROJECT MANAGEMENT

Figure A.6: Metrics analyzed by SonarQube

To support an iterative approach towards implementation, Scrum was chosen with weekly
sprints. Tickets could either be new, worked upon or finished. To quickly grasp the work
currently being done and how much time is planned for them, a dashboard displaying infor-
mation from Jira, the project management tool used by this project, is also integrated into
the homepage.

Figure A.7: Project Dashboard from Jira

Lastly, it was important to stay on track during the project regarding time management. To
have a simple overview on the time invested, an additional import from Jira was done, which
is implemented as graph detailing the cumulative amount of hours worked on the project.

XIV

BA Dafny A PROJECT MANAGEMENT

Figure A.8: Hours worked on the project

Altogether, these abstracts give a detailed overview of the project, allowing for a quick grasp
of the work being done, its quality and how the project is coming along over time. It was
often the first point of action to open the page when working on the project.

XV

BA Dafny A PROJECT MANAGEMENT

A.6 Time report

This chapter gives insight into how the time was invested that was spent while working on
this project. First, an overview is given, which puts the different categories of work into
contrast to each other. The second chart shows the progression of total work done over time.
As can be seen, the total work done is well in the margin of 5% around the desired time of
720 hours which is suggested when writing a bachelor thesis and working in a team of two.

A.6.1 Time per category

Figure A.9: Time per person per category

XVI

BA Dafny A PROJECT MANAGEMENT

A.6.2 Rafael Krucker

Figure A.10: Time report of Rafael Krucker

A.6.3 Markus Schaden

Figure A.11: Time report of Markus Schaden

XVII

BA Dafny A PROJECT MANAGEMENT

A.7 Code Metrics

This project details which measures where put in place in order to ensure that the quality of
the plugin followed a high standard. This was important since the goal was not to develop
a proof of concept, but a production ready solution. For this project it was decided to use
SonarQube, a static code metrics analyzer to gain insight into the quality of the work done.
During the whole development, SonarQube was always part of the continuous integration
process. Due to this, it was clear in which direction code quality developed after every com-
mit. Very serious vulnerabilities also triggered messages being sent, so that a quick reaction
was possible.
All standard configurations of SonarQube for Typescript were let be, because in this con-
figuration SonarQube is the strictest. This meant that the coder base was subject to 117
rules regarding the code quality analysis. The only exception that had to be done was that
a class called Symbol was written during the implementation. SonarQube kept getting this
class confused with the built in class symbol, the usage of which is discouraged. To not be
subject to false positives, it was decided to disable this rule.
Following, some key metrics delivered by SonarQube are given.

Figure A.12: Overview of the analysis

In the complete overview of the project, it can be seen that SonarQube does not detect any
Bugs or Vulnerabilities in the project. Starting from about the middle of the project, all
code smells that SonarQube can detect could be avoided, this due to continuous adaption
of the design and the review processes. During the development a key concern was to avoid
code duplication. This was done through design reviews and IDE-Tools. The analysis shows
that these efforts were fruitful.
The only negative point in the way SonarQube could be integrated is that SonarQube seems

XVIII

BA Dafny A PROJECT MANAGEMENT

not to be able to detect code coverage generated by the application of Visual Studio Code’s
testing framework. After some time spent trying to make this work, it was decided to miti-
gate the missing information about code coverage by writing conservative test specifications
which can be found in the implementation documentation.

Figure A.13: Overview of the code base size

In the overview regarding size it can be seen that the project consists of about 4’000 lines of
code. The major part thereof not surprisingly is situated in the language server part of the
project. The client part consists of about 800 lines of code, but most of this is due to the
tests defined here. The actual logic in the client is only about 100 lines of code, underlining
the portability of this project.

Figure A.14: Overview the amount of code written over time

As can be seen in the overview of code being added over the time, the amount of code written

XIX

BA Dafny A PROJECT MANAGEMENT

steadily progressed. Through refactorings and improvements regarding the design the size
was also reduced again from time to time, but new features were always quickly developed.
Concluding it can be said that the analysis done by SonarQube ascertains that the project is
subject to a high quality standard. The high maintainability rating and the absence of code
duplication is a good indicator that this project can be continue to be developed without
problems. In addition, all bugs, code smells and vulnerabilities that SonarQube can detect
could be strayed away from early on in the project. It has to be said that the analysis of
Typescript code is not quite as sophisticated as the one it provides for Java or C#, as for
instance complexity is not analyzed in detail. However, the analysis provided lays a good
basis for reasoning about the quality of the project.

XX

BA Dafny B USE CASES

B Use Cases

This project details the use cases which were defined at the beginning of this project. Over
the course of this project, insights were won which had the adaption of some of the use cases
as a consequence. These modifications can be read about in A.4.

B.1 Use Case Diagram

Figure B.1: Use Case Diagram

B.2 Actors and Stakeholder

• Programmers
• Microsoft

XXI

BA Dafny B USE CASES

B.3 Descriptions (brief)

B.3.1 UC1: Easy installation of Dafny plugin

A programmer can simply install the Dafny plugin by running an automatic installer which
sets all path variables and makes additional needed environment adjustments. This can
be done on Windows 10 in a .NET environment or either on Linux or OSX in a mono
environment.

B.3.2 UC2: Syntax Highlighting

The system automatically does syntax highlighting while the user writes a Dafny (dfy.) file.

B.3.3 UC3: Reporting of Dafny best practices violations

The plugin can be configured with a simple DSL config file which describes common best
practices for Dafny. The plugin reports violations of these rules via the standard Visual
Studio Code notification mechanisms.

B.3.4 UC4: Automatic generation of contracts

The plugin can be configured with a simple DSL-File to recognize certain situations which
could benefit from the setting of pre- and postconditions. The plugin offers to add these in
form of a refactoring via the common Visual Studio Code mechanisms.

B.3.5 UC5: Auto completion for identifiers

The plugin offers auto completion of Dafny code while the user types via the standard Visual
Studio Code mechanisms.

B.4 Descriptions (fully dressed)

B.4.1 UC1: Easy installation of Dafny plugin

Description A programmer can simply install the Dafny plugin by running
an automatic installer which sets all path variables and makes
additional needed environment adjustments.

Primary Actor Programmer

Trigger Programmer wants to install the Dafny plugin to Visual Studio
Code.

Stakeholder and Interests Programmer: Wants an easy, automated installation of the plu-
gin.
Microsoft: Wants a stable Dafny integration to fulfill the needs
of its clients.

XXII

BA Dafny B USE CASES

Preconditions
• Depending on the environment, either the .NET or the

mono framework are installed.
• Visual Studio Code is installed.
• The programmer has admin privileges in his environment.

Postconditions
• The plugin works without problems, the programmer can

start writing code.

Main Success Scenario 1. Programmer downloads the plugin via the Visual Studio Code
plugin store.
2. The plugin determines which platform it is run on, and sets
either the path to the .Net framework or the mono framework.
3. The plugin downloads Dafny and sets the path to the Dafny-
Server binary.
4. The plugin then installs itself via the standard Visual Studio
Code plugin mechanisms.
5. The plugin prompts a success message and the programmer
is ready to code in Dafny.

Extensions 2a. The installer cannot find, depending on the environment,
either the mono or the .Net framework in the standard locations.
- It prompts the user to enter the location and does so until the
framework is found.

Special Requirements None

Frequency of Occurrence Usually once per working environment

Open Issues None

Table B.1: UC1

B.4.2 UC2: Syntax Highlighting

Description The system automatically does syntax highlighting while the user
writes a Dafny (.dfy) file.

Primary Actor Programmer

Trigger Programmer writes Dafny code in Visual Studio Code.

Stakeholder and Interests Programmer: Wants enhanced readability for the source files he
is working on.
Microsoft: Wants a state of the art IDE integration of Dafny.

XXIII

BA Dafny B USE CASES

Preconditions
• Visual Studio Code with the Dafny plugin installed is run-

ning.
• Dafny code is being written in a .dfy file.

Postconditions
• The source code is highlighted in different colors accord-

ing to common standards in general and the Visual Studio
Code guidelines specifically.

Main Success Scenario 1. Programmer types code into a .dfy file.
2. The plugin detects the changes and applies syntax highlighting
through the standard Visual Studio Code mechanisms.

Extensions 2a. The newly written code causes a compilation error and can-
not be interpreted.
- The previous syntax highlighting stays in place, the errors are
highlighted according to common practices with compilation er-
rors in Visual Studio Code.

Special Requirements None

Frequency of Occurrence Very often, after every key up event.

Open Issues None

Table B.2: UC2

B.4.3 UC3: Reporting of Dafny best practices violations

Description The plugin can be configured with a simple DSL config file which
describes common best practices for Dafny. The Plugin reports
violations of these rules via the standard Visual Studio Code
notification mechanisms.

Primary Actor Programmer

Trigger Programmer writes Dafny code in Visual Studio Code.

Stakeholder and Interests Programmer: Wants to write the cleanest code possible using
common Dafny idioms.
Microsoft: Wants to support programmers getting the most out
of Dafny.

XXIV

BA Dafny B USE CASES

Preconditions
• Visual Studio Code with the Dafny plugin installed is run-

ning.
• Dafny code is being written in a .dfy file.

Postconditions
• Violations of common best practices for Dafny are reported

through the standard Visual Studio Code mechanisms.

Main Success Scenario 1. The plugin is installed preconfigured with a collection of com-
mon best practices for Dafny, which is done through a DSL file.
2. Programmer types code into a .dfy file.
3. The plugin continuously checks for violations of the rules.
4. If a violation is detected, it is reported through the standard
mechanisms of Visual Studio Code.

Extensions 1a. The predefined rules are not sufficient for the programmer.
- The programmer can update the configuration file himself to
include his own or his company’s coding guidelines.

Special Requirements None

Frequency of Occurrence Very often, after new valid syntax was written.

Open Issues None

Table B.3: UC3

B.4.4 UC4: Automatic generation of contracts

Description The plugin can be configured with a simple DSL-File to recognize
certain situations which could benefit from the setting of pre-
and postconditions. The plugin offers to add these in form of a
refactoring via the common Visual Studio Code mechanisms.

Primary Actor Programmer

Trigger Programmer writes Dafny code in Visual Studio Code.

Stakeholder and Interests Programmer: Wants help to find appropriate contracts.
Microsoft: Wants to support programmers getting the most out
of Dafny.

XXV

BA Dafny B USE CASES

Preconditions
• Visual Studio Code with the Dafny plugin installed is run-

ning.
• Dafny code is being written in a .dfy file.

Postconditions
• Specification constructs suitable for the context were added

to the code.

Main Success Scenario 1. The plugin is installed preconfigured with a collection of com-
mon situations for Dafny and their corresponding specification
constraints, which is done through a DSL file.
2. Programmer types code into a .dfy file.
3. The plugin continuously checks for situations that could ben-
efit form the setting of specification constraints.
4. If such a semantic is detected, it is reported through the stan-
dard mechanisms of Visual Studio Code, with a command offered
to add the constraints.
5. The programmer invokes the refactoring and the necessary
code is added.

Extensions 1a. The predefined situations and contract code additions are
not sufficient for the programmer.
- The programmer can update the configuration file himself to
include support for his own or his company’s common code se-
mantics.

Special Requirements None

Frequency of Occurrence Very often upon typing code with no syntax errors.

Open Issues None

Table B.4: UC4

B.4.5 UC5: Auto completion for identifiers

Description The plugin offers auto completion of Dafny code while the user
types via the standard Visual Studio Code mechanisms.

Primary Actor Programmer

Trigger Programmer writes Dafny code in Visual Studio Code.

Stakeholder and Interests Programmer: Wants to be more productive while writing Dafny
code.
Microsoft: Wants a state of the art IDE integration of Dafny.

XXVI

BA Dafny B USE CASES

Preconditions
• Visual Studio Code with the Dafny plugin installed is run-

ning.
• Dafny code is being written in a .dfy file.

Postconditions
• An identifier was auto completed.

Main Success Scenario 1. Programmer types code into a .dfy file.
2. The plugin detects the changes and searches for the beginning
of known identifiers.
3. If such a beginning is found, completion if offered through the
standard mechanisms of Visual Studio Code.

Extensions None.

Special Requirements None

Frequency of Occurrence Very often after every key up event.

Open Issues None

Table B.5: UC5

XXVII

BA Dafny LIST OF FIGURES

List of Figures

6.1 Language Server . 12
6.2 Code Lenses used with Dafny . 15
6.3 Expanded CodeLens showing the references to the field balance 16
6.4 Popup with completion options . 17
6.5 Suggestion displaying precondition . 17
6.6 The Definition Features . 18
6.7 Overlay of peeked definition . 19
6.8 Renaming an element in Visual Studio Code 20
6.9 Syntax Highlighting of Dafny . 21
6.10 Syntax Highlighting of parameters . 22
6.11 Counter Example is shown in Visual Studio Code 23
6.12 Complex Counter Example with multiple specifications 24
6.13 A situation that profits from a Null Check 25
6.14 An example of a Null Check . 26
6.15 Accessing an array without making sure the index is in bound 26
6.16 Bound checks were generated . 27
6.17 Recursion should always decrease an expression 28
6.18 Recursion guided by a decrease guard . 28
6.19 Flow Graph of the partition method . 29
A.1 Project Plan . II
A.2 Risk Matrix . VIII
A.3 All links relevant to the project . XII
A.4 Downloads of the plugin . XIII
A.5 Status of all automated tasks . XIII
A.6 Metrics analyzed by SonarQube . XIV
A.7 Project Dashboard from Jira . XIV
A.8 Hours worked on the project . XV
A.9 Time per person per category . XVI
A.10 Time report of Rafael Krucker . XVII
A.11 Time report of Markus Schaden . XVII
A.12 Overview of the analysis . XVIII
A.13 Overview of the code base size . XIX
A.14 Overview the amount of code written over time XIX
B.1 Use Case Diagram . XXI

XXVIII

BA Dafny LIST OF TABLES

List of Tables

A.1 Milestone . III
A.2 Risk management . VII
B.1 UC1 . XXIII
B.2 UC2 . XXIV
B.3 UC3 . XXV
B.4 UC4 . XXVI
B.5 UC5 . XXVII

XXIX

BA Dafny REFERENCES

References

[Brü05] Stefan Brünig. Detecting non-provable goals. 2005.

[Dro+08] S. Drossopoulou et al. A Unified Framework for Verification Techniques for Object
Invariants. 2008.

[Ecl17] Eclipse. Eclipse Project. May 2017. url: https://eclipse.org/.

[Ema17] EmacsLsp. Java Emacs Integration. May 2017. url: https://github.com/

emacs-lsp/lsp-java.

[ema17] emacs-jsp. LSP-Mode. May 2017. url: https://github.com/emacs-lsp/lsp-
mode/.

[Fou17] Eclipse Foundation. Eclipse LSP4E governance. Apr. 2017. url: https : / /

projects.eclipse.org/projects/technology.lsp4e/governance.

[GNU17] GNU. GNU Emacs. May 2017. url: https://www.gnu.org/software/emacs/
index.html.

[Hoa09] Tony Hoare. “Null References: The Billion Dollar Mistake”. In: infoQ.com (Aug.
2009).

[Hun99] B Hunt. The Geometry of Some Special Arithmetic Quotients. Springer, 1999.

[Jet17] JetBrains. JetBrains. May 2017. url: https://www.jetbrains.com/.

[KK12] Bakhadyr Khoussainov and Nodira Khoussainov. Lectures on Discrete Mathe-
matics for Computer Science. World Scientific Publishing Co Inc, 2012.

[Mey17] Bertrand Meyer. Eiffel. May 2017. url: https://www.eiffel.com/resources/
faqs/eiffel-language/.

[Mic17a] Microsoft. Boogie. May 2017. url: https://www.microsoft.com/en- us/

research/project/boogie-an-intermediate-verification-language/.

[Mic17b] Microsoft. Monaco Editor. May 2017. url: https://github.com/Microsoft/
monaco-editor.

[Mic17c] Microsoft. The Language Server Protocol. May 2017. url: https://github.
com/Microsoft/language-server-protocol.

[Mic17d] Microsoft. Typescript in Monaco. May 2017. url: https://github.com/Microsoft/
monaco-typescript.

[Mic17e] Microsoft. Visual Studio Plugin. May 2017. url: https://github.com/Microsoft/
dafny/wiki/INSTALL.

[SK13] Mohamed Nassim Seghir and Daniel Kroening. Counterexample-guided Precon-
dition Inference. 2013.

[tvi17] tvi. Sublime Integration of Dafny. May 2017. url: https://github.com/tvi/
sublime-dafny.

[Z317] Z3. Z3 Theorem Prover. May 2017. url: https://github.com/Z3Prover.

XXX

https://eclipse.org/
https://github.com/emacs-lsp/lsp-java
https://github.com/emacs-lsp/lsp-java
https://github.com/emacs-lsp/lsp-mode/
https://github.com/emacs-lsp/lsp-mode/
https://projects.eclipse.org/projects/technology.lsp4e/governance
https://projects.eclipse.org/projects/technology.lsp4e/governance
https://www.gnu.org/software/emacs/index.html
https://www.gnu.org/software/emacs/index.html
https://www.jetbrains.com/
https://www.eiffel.com/resources/faqs/eiffel-language/
https://www.eiffel.com/resources/faqs/eiffel-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
https://github.com/Microsoft/monaco-editor
https://github.com/Microsoft/monaco-editor
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/language-server-protocol
https://github.com/Microsoft/monaco-typescript
https://github.com/Microsoft/monaco-typescript
https://github.com/Microsoft/dafny/wiki/INSTALL
https://github.com/Microsoft/dafny/wiki/INSTALL
https://github.com/tvi/sublime-dafny
https://github.com/tvi/sublime-dafny
https://github.com/Z3Prover

	Abstract
	Management Summary
	Outline
	The problem and its setting
	Introduction
	Statement of the problem
	Significance of study
	Scope and delimitation

	Motivation
	Main Goal
	Current Solutions
	Platform Independence
	Setup
	Usability
	IDE Independence
	Feature Richness

	Preliminary Studies
	Common problems when programming
	Example 1: Array access
	Example 2: Simple domain specific constraints
	Example 3: More complex Domain specific constraints

	Concepts in proof theory
	Application of partial functions
	Invariants
	Non provable Goals

	Concrete Application
	Resolving Bound checks
	Enforcing Invariants
	Enforcing Complex Invariants

	Conclusion

	Results
	Setup
	Language Server
	Automatic Installation
	Automatic Upgrade

	Language Agnostic Features
	CodeLenses
	Code Completion
	Go to Definition
	Rename Element
	Syntax Highlighting

	Dafny Specific Features
	Counter Examples
	Null Checks
	Bound Checks
	Increase / Decrease / Invariant Guards
	Flow Graphs

	Possible points for Extension
	Support for other IDEs
	Eclipse integration
	Emacs integration
	Monaco integration

	New Features
	Debugger
	Widening Scope
	Contract Generation

	Conclusion
	Goals Reached
	Platform Independence
	Setup
	Usability
	IDE Independence
	Feature Richness

	Evaluation

	Project management
	Project Plan
	Milestones
	Risk management
	The Risks
	Risk Matrix

	Deviations from the project plan
	UC3: Reporting of Dafny best practices violations
	UC4: Automatic generation of contracts
	Code Actions
	Counter Examples
	Displaying Flow Graph

	Project Homepage
	Time report
	Time per category
	Rafael Krucker
	Markus Schaden

	Code Metrics

	Use Cases
	Use Case Diagram
	Actors and Stakeholder
	Descriptions (brief)
	UC1: Easy installation of Dafny plugin
	UC2: Syntax Highlighting
	UC3: Reporting of Dafny best practices violations
	UC4: Automatic generation of contracts
	UC5: Auto completion for identifiers

	Descriptions (fully dressed)
	UC1: Easy installation of Dafny plugin
	UC2: Syntax Highlighting
	UC3: Reporting of Dafny best practices violations
	UC4: Automatic generation of contracts
	UC5: Auto completion for identifiers

	List of Figures
	List of Tables
	References

