
If Functional Programming Is So
Great, Why Isn’t Everyone Using It?

Project Thesis 2

University of Applied Sciences Rapperswil

Spring Semester 2017

Author: Mario Meili
Advisor: Prof. Dr. Farhad D. Mehta
Industry Partner: Institute for Software (IFS) HSR

Abstract

Functional programming has been considered to be an answer to many of the problems
faced by software engineering today, especially in academic circles. Nevertheless,
the large-scale adoption of functional programming in the mainstream of industry
has been sluggish. Although there are a lot of different opinions about the underlying
problem to this issue, it is hard to find literature that elaborates on the topic.

This report presents the results of a meta-study conducted on multiple aspects
of the functional programming paradigm and its representing languages. It does so
by identifying key issues responsible for the weak adoption of functional program-
ming, and, more importantly, by proposing and evaluating measures that should
positively influence the usage of functional programming languages in industrial,
commercial and practical settings.

Acknowledgements

I would like to thank my thesis advisor Prof. Dr. Farhad D. Mehta, who was
always willing to lend a helping hand when I ran into problems. Whenever I felt
lost, he pushed me in the right direction.

Also, I would like to express my gratitude to my girlfriend for providing me
with unfailing support and continuous encouragement.

Finally, I would like to thank my colleague and friend Felix Morgner, who provided
me with a GitHub API script for gathering repository data.

Declaration of Authorship

I hereby certify that this thesis has been composed by me and is based on my own
work, unless stated otherwise. No other person’s work has been used without due
acknowledgement in this thesis. All consulted sources are clearly mentioned and
cited correctly. No copyright-protected materials are unauthorisedly used in this
thesis.

Mario Meili

Signature

27th of July, 2017

Date

Contents

1. Introduction 1
1.1. Problem . 1
1.2. Goals . 1
1.3. Document Structure . 2

2. Background & Related Work 3
2.1. Related Work . 3
2.2. The Functional Programming Paradigm 4

2.2.1. Functions as First-Class Citizens 5
2.2.2. Higher-Order Functions . 5
2.2.3. Referential Transparency . 6
2.2.4. Evaluation Stratgies . 6
2.2.5. Recursion . 7
2.2.6. Pattern Matching . 7

3. Programming Language Adoption 9
3.1. Distribution of Language Popularity 9
3.2. Choosing a Language . 9
3.3. Language Statistics . 10

4. Aspects Considered 13
4.1. Performance . 13

4.1.1. Operations on Persistent Data Structures 14
4.1.2. Memory Consumption . 15
4.1.3. Sidenote on Lazy Evaluation 16

4.2. Concurrency & Parallelism . 17
4.3. Community Support . 19
4.4. Library & IDE Support . 21

4.4.1. Libraries . 21
4.4.2. IDE Support . 22

5. Application Areas 23
5.1. Dividing the Area of Applications 23
5.2. Defining Non-Functional Requirements 24

i

5.3. Search for Existing Applications . 25
5.4. Identify Promising Areas . 27

5.4.1. Web Applications . 27
5.4.2. Hardware Programming & Design 28
5.4.3. Enterprise Resource Planning Systems 29
5.4.4. Mission Critical Systems . 29
5.4.5. Interesting Research Areas 29

6. Results 31

7. Conclusion & Future Work 33
7.1. Future Work . 33

A. GitHub Repository Data 41

B. Survey Data 42

C. Interview with Cyrill Schenkel 58

D. Agreement for Project Thesis 60

ii

List of Figures

3.1. Active GitHub repositories per quarter 11

5.1. Application areas matrix skeleton 23
5.2. Application areas matrix requirements 24
5.3. Application types . 25

iii

List of Tables

3.1. TIOBE index ranking 2017 . 11

4.1. Language benchmarks comparison 19

A.1. GitHub repository data . 41

B.1. Career & education part 1 . 42
B.2. Career & education part 2 . 43
B.3. Career & education part 3 . 44
B.4. Performance part 1 . 45
B.5. Performance part 2 . 46
B.6. Performance part 3 . 47
B.7. Parallelism part 1 . 47
B.8. Parallelism part 2 . 48
B.9. Tooling & community part 1 . 49
B.10.Tooling & community part 2 . 50
B.11.Tooling & community part 3 . 51
B.12.General remarks part 1 . 51
B.13.General remarks part 2 . 52
B.14.General remarks part 3 . 53
B.15.General remarks part 4 . 54
B.16.General remarks part 5 . 55
B.17.General remarks part 6 . 56
B.18.General remarks part 7 . 57

iv

List of Abbreviations

SCADA Supervisory Control And Data Acquisition

APIs Application Programming Interfaces

IDE Integrated Development Environment

IRC Internet Relay Chat

UI User Interface

NFRs Non-Functional Requirements

HTTP Hypertext Transfer Protocol

PLCs Programmable Logic Controllers

ERP Enterprise Resource Planning

v

vi

1. Introduction

Alonzo Church laid the groundwork for functional programming by introducing
the lambda calculus in the 1930s [31]. Because of its Turing completeness, the
lambda calculus can be thought of as a programming language itself, using function
abstraction and application for computation [29]. Programming languages adopting
the functional paradigm were first introduced in the late 1950s, when LISP was
first described by John McCarthy [40]. Thereafter followed well known languages
such as Algol 60 (1963), ISWIM (1966), Miranda (1986) and Haskell (1992) [51].

1.1. Problem

This means that functional programming languages have been around for over
50 years. But still, after all this time, the adoption of functional programming
languages, especially in industrial projects, seems to be rather weak. But why
was functional programming not adopted as widely as expected by the functional
programming community? There are a lot of different opinions about regarding
question, but no broad study looking at different aspects of the problem.

1.2. Goals

The aim of this thesis is to get rid of speculations and ill-founded opinions by

• systematically evaluating the extent to which functional programming is
being used in various industrial, commercial and practical settings as well as
the advantages and disadvantages of using functional programming in these
settings,

• proposing and investigating reasons why the use of functional programming
has been limited, especially in areas where its advantages are found to be
clear

• and proposing, discussing and prioritising measures that could be taken to
increase the benefit gained using functional programming in various industrial,
commercial and practical settings.

1

1.3. Document Structure

The rest of the report is organised as follows. Chapter 2 introduces essential
background concepts, as well as giving a brief overview of related work. Language
adoption in general is discussed in Chapter 3. In Chapter 4, advantages and
disadvantages of the functional programming paradigm are discussed based on
theoretical and practical observations. Chapter 5 shows, how the universe of
application areas can be divided into categories and their requirements. This allows
to pinpoint possible application areas in a guided manner. The results are gathered
and discussed in Chapter 6 and finally, Chapter 7 provides a conclusion on possible
measures to take to increase the adoption of functional programming languages.

2

2. Background & Related Work

As already mentioned in Chapter 1, there are a lot of opinions about the advan-
tages and disadvantages of the functional programming paradigm and functional
programming languages. However, it is often the case that these opinions lack
explanation and well founded justification. Section 2.1 lists exceptions to this
circumstance. In Section 2.2, the core concepts of the functional programming
paradigm are briefly discussed. This section may be skipped by programmers who
are already experience in one or more functional programming languages.

2.1. Related Work

Backus wrote a paper for his Turing award lecture in 1978, in which he answers
the question whether programming can be liberated from the von Neumann style
[28]. In it, he describes all programming languages, which are not functional,
as useless. Although amusing to read, the opinion of Backus is very biased and
therefore unnecessarily harsh. Unfortunately, Backus argues solely on a technical
level, completely ignoring social aspects of language adoption.
Later, in 1989, Hudak published a paper on the conception, evolution, and appli-
cation of functional programming languages [36]. It is interesting to see, that 28
years ago, the myths around functional programming closely resemble the opinions
of people today. In the introduction to the paper, Hudak writes:

Are functional languages toys? Or are they tools? Are they artifacts
of theoretical fantasy or of visionary pragmatism? Will they ameliorate
software woes or merely compound them?

Some of these questions will be looked at closer in the following chapters of this
thesis. But again, the content of the paper concentrates mainly on the features of
the functional programming paradigm. Social aspects of language adoption are not
covered. Also, the question of applicability for the industry is not answered.
In 1989, Hughes wrote one of the most famous papers about the importance of
functional programming [37]. He argues that modularity is the key to successful
programming and in order to be able to decompose problems into parts requires the
ability to glue these parts together. In his opinion, higher-order functions and lazy

3

evaluation represent this perfect glue. Although the examples given in the paper
seem reasonable, they are not very large in size and mostly of a mathematical nature.
Therefore, the paper does not give an answer to the applicability of functional
programming in industrial projects.
The book Real World Haskell [46] by O’Sullivan, Stewart and Goerzen presents
applications solving real world problems written in the functional programming
language Haskell. It is one of the few examples where an introduction to the language
itself is left out and the application is put into the foreground. Unfortunately, the
examples shown in the book do not make use of the newest version of the language
and were never updated since 2008, when the book was released.
Meyerovich and Rabkin published a paper on principles for programming language
adoption in 2012 [41]. They claim, that social sciences have studied adoption
in many contexts and show how their findings are applicable to programming
language design. They do not only state 15 hypotheses, but also raise 21 open-
ended questions to be investigated in further research. Because the paper’s main
focus lies on the design of languages, it does not answer the stated problems of
this thesis, but tries to provide the tools for designers of new languages, making
these languages more likely for successful adoption.
Only one year later, in 2013, an empirical analysis of programming language
adoption was also given by Meyerovich and Rabkin [42]. This paper summarises
the results of a large study conducted using multiple large scale surveys and source
repository meta data. It covers all aspects of adoption, including tooling, language
features and even social aspects. It would be interesting to see how the statistics
presented have changed in the last four years and also, an additional study with
emphasis on functional programming languages might be rewarding. The results of
this paper are discussed in more detail in Chapter 3.
At last, the papers [33] and [34] by Henderson, and the paper [50] by Treleaven
discuss theoretical approaches to functional computer architectures and functional
operating systems.

2.2. The Functional Programming Paradigm

In the following, the most important aspects of the functional programming
paradigm are explained. Firstly, it is shown what it means for functions to be
first class citizens of their corresponding language. Then, a definition for the term
higher-order functions is given. After that, the concept of referential transparency is
introduced, followed by the most important evaluation strategies. Finally, recursion
and pattern matching are discussed. Since this section is intended for readers with
little experience in functional programming, small example are provided, if suitable.

4

2.2.1. Functions as First-Class Citizens

Functional programming languages treat their functions as first class citizens.
Functions treated this way are also called first-class functions. A function is said
to be first-class, if it can be

• passed as an argument to other functions,

• returned from other functions,

• assigned to variables

• and, therefore, be stored in data structures.

Listing 2.1 shows an example in the programming language Haskell. The function
twice is defined to take a function f and a value a as its arguments. It then applies
the function f twice to the argument x, as can be seen on line 2.

1 twice :: (a -> a) -> a -> a

2 twice f x = f (f x)

3
4 fourTimes :: (a -> a) -> a -> a

5 fourTimes f x = twice (twice f) x

Listing 2.1: First-class functions in Haskell

On line 5, something interesting can be observed. The value of the subexpression
(twice f) is actually just another function, that takes a value x. twice was partially
applied in this scenario and this new function can be again passed as an argument
for twice. The result is a new function fourTimes, which applies a function f four
times to a value x. Note that this also means that anonymous functions can be
defined and then stored in variables.

2.2.2. Higher-Order Functions

Higher-order functions are an essential part of functional programming languages.
Actually, both functions defined in Listing 2.1 are higher-order functions, because
they take a function as their argument. In fact, a function is called higher-order if
one of the following holds:

• The function takes one or more functions as arguments.

• The function returns a function as its result.

5

In Listing 2.2, the definition of the function flip from the Haskell standard prelude
is given. This function not only takes a function with two arguments as its argument,
but also returns a new function, which in this case just flip the two arguments of
the function argument.

1 flip :: (a -> b -> c) -> b -> a -> c

2 flip f y x = f x y

Listing 2.2: Higher-order function in Haskell

It is important to note that not all functions defined in a functional language are
higher-order, but are always first-class citizens of the language.

2.2.3. Referential Transparency

When talking about the functional programming paradigm, it is usually assumed
that there is no shared state in a program. This means that functions can never
have side effects. If a functional programming language satisfies this criterion, it is
called a pure functional programming language and referential transparency holds.
It is defined as follows: Expressions are referentially transparent if they can be
replaced with their corresponding values without changing the behaviour of the
program they are part of. From that follows, that evaluating referential transparent
functions always results in the same values for the same function arguments.

2.2.4. Evaluation Stratgies

Because of referential transparency, one has to consider the order in which ex-
pressions are evaluated. In fact, different functional programming languages come
with different evaluation strategies. Thereby, the most important difference lies
in evaluating in a strict order and evaluating in a lazy manner. Strict functional
programming languages evaluate expressions as they occur, even if the result of
the expression would only be needed to a later point in time, or, not at all. One
such language is Standard ML.

1 fun f x = 17;

2 fun inf x = inf x;

Listing 2.3: Strict evaluation in SML

6

Listing 2.3 shows two function definitions in Standard ML. When trying to evaluate
the expression f (inf 0); strictly, the result will be an endless recursion, because
the function inf calls itself recursively, although function f does not care about its
argument and could return 17.

1 f :: a -> Int

2 f x = 17

3
4 inf :: a -> a -> a

5 inf x = inf x

Listing 2.4: Lazy evaluation in Haskell

In contrast to Standard ML, Haskell is a language that evaluates expressions lazily.
Again, this means that expressions are only evaluated when and if their resulting
value is needed. Listing 2.4 shows the same definitions of functions f and inf,
but in the Haskell programming language. Now, when evaluating the expression
f (inf 0), the result is simply 17. Haskell recognized, that an evaluation of the
argument for function f is not necessary, therefore inf was never evaluated.

2.2.5. Recursion

Recursion is a technique not exclusive to functional programming. However, for
functional programming languages, the significance of recursion is somewhat higher
than for imperative languages. This is mainly because functional programming
languages do not support constructs such as loops. Recursion can be used to
achieve behaviour similar to loop iteration. In Listing 2.5, a recursive function is
defined in Haskell.

2.2.6. Pattern Matching

Functional programming languages often make use of pattern matching. This
means that a function can be defined multiple times, matching different patterns
in their arguments.

1 sumlist :: Num a => [a] -> a

2 sumlist [] = 0

3 sumlist (x : xs) = x + sumlist xs

Listing 2.5: Pattern matching & recursion in Haskell

7

Listing 2.5 shows how the function sumlist can be defined by matching on the
base case of the recursion, namely if applied to the empty list, and in addition on
the recursive call, if the list is non-empty. As can be seen, pattern matching makes
defining recursive functions straightforward and therefore quite simple.

8

3. Programming Language Adoption

In order to discuss the weak adoption of functional programming languages in
the industry, it is important to first have a look at language adoption in general.
This chapter aims to identify the main reasons of successful language adoption.
The results presented mostly stem from [42], a paper summarising results of a
large scale empirical analysis of programming language adoption conducted by
Meyerovich and Rabkin. For gathering data, they combined survey research and
software repository mining. Further referencing of this paper is omitted in the rest
of this chapter.

3.1. Distribution of Language Popularity

When looking at the distribution of usage across different languages, Meyerovich
and Rabkin found out, that a small number of programming languages account
for the majority of language use. The following results were gathered by mining
SourceForge1 repository metadata between the years 2000 and 2010:

• The top 6 languages (most used in projects) account for 75% of all projects.

• The top 20 languages (most used in projects) account for 95% of all projects.

• General purposes languages compromise most of the top 20 languages (most
used in projects).

These numbers make clear how hard it is for a programming language to become
widely used. Section 3.2 shows that pushing aside an already established language
is a difficult task, which is why this result is even worse for new languages.

3.2. Choosing a Language

One might think that the choice of language for new projects solely depends on the
features provided by said language. Languages offering features suitable for the
problem domain should be preferred to other languages. However, the evaluation of

1https://sourceforge.net

9

https://sourceforge.net

several large surveys revealed that intrinsic language features have only secondary
importance. Instead, the factors influencing a developers choice of language can be
summarized as follows:

• Open source libraries, existing code, and experience strongly influence a
developers choice.

• Developers tend to stick to clusters of languages. And often, they stick to
the same language they used for previous projects.

• Which languages developers learn is influenced by their education.

• Employees at larger companies place significantly more value on existing code
bases and knowledge than do employees at small companies.

All these circumstances lead to widely used programming languages keeping their
influence. Languages with low adoption are not likely to suddenly gain more
interest. When looking at language features, the results look as follows:

• Developers generally value expressiveness and speed of development over
language-enforced correctness.

• Developers see more value in unit tests than strong type systems for debugging.

Concluding this section, it can be said that the best chance to widen the adoption
of a language is to develop high-value open source libraries.

3.3. Language Statistics

The previous sections of this chapter summarized general criteria that influence
language adoption. The intention of this section is to provide a concrete prospect
of how weak functional programming languages are adopted to the reader.
So far, the measure for determining the top languages has been the number of
repositories a language has been used in. The TIOBE index for language popularity
follows another approach. 25 selected search engines count the hits for searches on
a large list of programming languages. The precise index definition can be found
at [17]. Table 3.1 shows an excerpt of TIOBE index ranking for July 2017 [16].
It can be seen that languages only offering the functional paradigm first appear on
rank 32, namely the language Lisp. However, there are a lot of multi-paradigm
languages including functional features on top ranks in the list. It would be
interesting to research the development of the ranking over time, but TIOBE does
not give away their data freely.

10

Rank Programming Language Paradigm
1 Java Object-oriented (OO)
2 C Imperative
3 C++ Multi-paradigm (including functional, OO)
4 Python Multi-paradigm (including functional, OO)
5 C# Multi-paradigm (including functional, OO)
8 JavaScript Multi-paradigm (including functional, OO)
12 Swift Multi-paradigm (including functional, OO)
15 R Multi-paradigm (including functional, OO)
17 MATLAB Multi-paradigm (including functional, OO)
30 Scala Multi-paradigm (including functional, OO)
32 Lisp Functional
40 F# Functional
41 Haskell Functional
43 Erlang Functional
44 Scheme Functional

Table 3.1.: TIOBE index ranking 2017

Figure 3.1.: Active GitHub repositories per quarter

GitHub2 has been chosen as the data source for the statistic provided in Figure 3.1.
The complete data set can be found in appendix A. The graph shows the active
repositories of the above listed programming languages over time. A repository is
regarded as active, if in the given time frame either a push, a pull request or issue
activity took place. The clear leader is JavaScript with almost 2.5 million active
repositories. What follows is a huge gap until, finally, the functional programming
languages form the thick line on the bottom of the graph.

2https://github.com

11

https://github.com

12

4. Aspects Considered

Although it was shown in Chapter 3 that intrinsic language features have only
limited effects on language adoption, the discussion thereof is necessary to narrow
the field of possible application areas. This is, after all, the main aim of this
thesis. In order to identify the most important advantages and disadvantages of
the functional programming paradigm, several blog posts, e.g. [6, 8, 9, 13, 19] and
[22], and forum board discussions, e.g. [14, 18] and [24] have been analyzed for the
most prominent opinions. The results listed below were then taken as hypotheses
for further evaluation:

• Functional programming languages perform poorly in real world (and also
real-time) applications.

• Functional programming languages are predestined for parallelization.

• Functional programming is lacking the critical mass to be relevant.

• The tooling/library/infrastructure support for functional programming is
lacking.

During the period of this thesis, a short survey has been conducted, asking
developers from different backgrounds about their opinions on the statements
given above. In total, 43 responses have been recorded from participants between
the ages of 20 and 62. 62.8% of the participants use functional programming
languages on a daily basis and another 23.3% make use of them weekly. The
raw data of the survey can be found in appendix B. Survey results are presented
in grey boxes.

Each section in this chapter discusses one of the hypotheses by firstly presenting
the corresponding results of the survey and secondly analyzing the responsible
paradigm aspect theoretically and practically.

4.1. Performance

Performance can be measured in two different ways. One is the number of instruc-
tions necessary to perform a task. The other one is memory consumption. Both can

13

be analyzed looking at data structures. Parallelization and concurrency obviously
have a direct impact on performance, but this aspect is discussed separately in
Section 4.2. Also, the order of evaluation plays and important role, as was discussed
in Subsection 2.2.4. Because of that, the functional languages Standard ML and
Haskell have been chosen as representatives. Standard ML is evaluating expressions
in a strict manner, whereas Haskell uses the lazy evaluation strategy.

4.1.1. Operations on Persistent Data Structures

In purely functional programming languages, data structures are called persistent,
which means they are immutable. The consequence is, that every update to a data
structure results in copying the old data structure with the change and assign the
newly created data structure in a variable.

For the survey conducted during this thesis, participants were asked to answer, if
immutable data structure operations tend to run faster, slower or equally as fast
as those of corresponding imperative implementations. The result is somewhat
surprising. 39.5% of the participants thought that operations on immutable data
structures were slower than on mutable ones. 37.2% believe that it makes no
difference and 23.3% think that immutable data structure operations are faster.
This is surprising because there is no leaning towards one answer. Should this
not be clear?

In Theory

There are mutable data structures which allow update operations in constant
time. One such example is dictionaries or, as they are also called, hash tables.
Operations such as lookup, insertion and deletion of an element can be achieved in
O(1) (amortized runtime), because of in-place updates [47].
Obviously, this can not be achieved with immutable data structures. Also, dic-
tionaries and arrays are two of the most widely used data structures there are.
Purely functional data structures perform at most as good as their non-functional
counterpart. As soon as in-place updates and memory references come into play,
functional data structures place second.
Interestingly, quite some attempts were made to implement purely functional data
structures in a way to get near non-functional ones regarding operation costs.
Okasaki published [45], a book containing improved implementations of well-known
data structures in the language Standard ML. Adams wrote [26, 27], where he
shows how sets can be implemented more efficiently in functional languages, using
a binary search tree of bounded balance as the basis [44]. In fact, trees are the
most efficient approach to better operation costs of immutable data structures.

14

This means that the lower bound for operations lies at O(log(n)), where n is the
number of elements in the data structure.

In Practice

Both Standard ML and Haskell would probably not be accepted as usable program-
ming languages, if they did not solve this obvious problem. Haskell makes use of
monads, which allow the definition and use of mutable data structures without
destroying functional properties outside of the monadic construct the data structure
is built in [52]. Monads ensure that certain operations, which can have side effects,
are executed in sequence. Note that this is no longer part of the purely functional
programming paradigm, where side effects are not allowed.
Standard ML uses a construct called reference types, which may be updated and
therefore allow the definition of mutable data structures similar to how monads do
in Haskell [39]. This technique works only in languages following a strict evaluation
strategy. This makes it unusable for the lazy language Haskell. As with mondas,
this is a violation of the pure functional paradigm.
Side effects are necessary to write usable programs. Without them, programs could
not perform input and output operations. Since monads and reference types can
not only be used to define mutable data structures, but also to encapsulate all
program behaviour with side effects, they can be viewed as a necessary evil. And in
practice, they make sure that functional programming languages stay competitive
in terms of performance.

4.1.2. Memory Consumption

Because data structures in functional programming languages are persistent, they
need to be saved from anew, every time an update takes place. The old data
structure stays assigned to its variable.

49.8% of the participants of the survey think, that this is the reason for immutable
data structures consuming more memory than mutable ones. 41.9% voted for
an equal amount of memory use and 9.3% have the opinion that less memory is
used by immutable data structures. Interestingly, when looking at the memory
consumption of functional versus imperative programs in general, the numbers
are 67.4% for more, 27.9% for equally as much and 4.7% for less memory
consumption.

15

In Theory

Memory consumption in purely functional languages is higher than in imperative
ones. Every newly created value has to be assigned, if it should be available in
multiple places. Reassignment of variables is not allowed, so every time a variable
is assigned, more memory has to be allocated. Immutable data structures are
especially bad, because the entire data structure has to be copied for every ever so
small update operation. Theoretically, there is no doubt that functional programs
must allocate more memory than imperative counterparts.

In Practice

As was already explained in Subsection 4.1.1, functional programming languages
use constructs such as monads and reference types to be able to make use of mutable
data structures. But for this to be effective, programmers have to be aware of
what they are doing. Especially beginners will most likely not think about memory
management at first. As for Haskell, monads introduce an entirely different syntax
and are mostly learned in a late stage.
Haskell partially solves this problem using the technique of garbage collection. The
Haskell wiki page on memory management of the Glasgow Haskell compiler [10]
states the following:

Haskell computations produce a lot of memory garbage - much more
than conventional imperative languages. It’s because data are immutable
so the only way to store every next operation’s result is to create new
values. In particular, every iteration of a recursive computation creates
a new value. But GHC is able to efficiently manage garbage collection,
so it’s not uncommon to produce 1gb of data per second (most part of
which will be garbage collected immediately).

Standard ML also uses garbage collection to get rid of no longer used values.
Summarising, it can be stated that the excessive use of memory is being dealt with.
Although the memory is freed up by garbage collection, functional programming
languages experience a setback performance wise.

4.1.3. Sidenote on Lazy Evaluation

So far in this section, a dark secret was kept behind the scenes. Namely, the impact
of lazy evaluation on predicting performance was left out. The reason is simple.
The impact of lazy evaluation on performance, both speed and memory wise, cannot
be predicted. Evaluating expressions lazyily can, for example, lead to an expression
being evaluated many times, if evaluation is deferred to a later point in time. This

16

can be prevented with a technique called sharing. Keeping only a single copy of
an argument expression, and maintaining a pointer to it for each corresponding
formal parameter, allows to evaluate said expression once, and replacing it by its
value. It can then later be accessed through the pointers. It is not hard to see that
this approach has a negative influence on memory consumption.

A question in the survey was for participants to state, if functional programming
languages using lazy over strict evaluation tend to run faster, slower or equally
as fast. 53.5% of the participants thought, that both evaluation strategies would
be equally as fast. Given that lazy evaluation is unpredictable, this might also
be interpreted as a ”do not know”. 34.9% believe, that lazy programs run faster
and 11.6% think that they run slower as strictly evaluated implementations.

4.2. Concurrency & Parallelism

It is a widely spread opinion that functional programming languages are predestined
for programming concurrent or parallel applications. In this section, it will become
clear that this is only partly true.

In Theory

Survey participants were confronted with the following statement: In theory,
purely functional programs can be almost arbitrarily parallelised. In practice,
it is therefore very easy to parallelise your programs written in a functional
language. 69.8% thought this statement to be true. 11.6% felt that this statement
if false. The other 18.6% believed that the statement is only partly true or that
it depends largely on the programs under inspection.

Indeed it is true that at least theoretically, purely functional languages can be
almost arbitrarily parallelized. The reason for this is referential transparency as
was discussed briefly in Subsection 2.2.3. Referential transparency (and even more
so laziness) abstracts over the execution order. This allows pure expressions that
are used to construct pure functions, or in other words, functions that evaluate to
the same result given the same input arguments. This means that each expression
can be evaluated in parallel without influencing the computation result [20].

In Practice

Fortunately, referential transparency also holds for functional programs in practice,
meaning that programs can be parallelized without having to fear changes in the

17

programs behaviour. This is great. In imperative languages, one must always be
aware of shared memory locations and prevent unintended behaviour by locking
and releasing resources. Functional programming languages do not need such
constructs. But, as usual, there is a catch. Hinsen wrote [35], an article in the
promises on functional programming. In it, he states:

Although it’s true that compilers for functional languages could in
principle transform a serial into an equivalent parallel program automat-
ically, there remains the problem of finding such a transformation that
actually yields an efficient program for a given parallel computer and
given input data. Compiler technology isn’t yet up to this task, although
this could well change in the future.

Simply put, it is a non-solvable problem to automatically find a parallelized
program transformation that actually runs faster than its serial counterpart. What
sounded perfect in theory is put in question by thread creation overhead. An
early experimental version of the Haskell Glasgow Compiler tried to make use of
automatic program transformation. This resulted in programs spawning thread
numbers in the hundreds, thousands and sometimes even millions of threads.
Thread creation and context switching then completely dominated computation
time [20].
There is some interesting research trying to solve the above problem. Sisal is an
attempt on creating a parallel language, that supports implicit parallelization [15].
Unfortunately, the last version of SISAL was released in 2015. Runciman and
Naylor published a paper about the Reduceron, a processor design for the only
purpose of performing graph reduction [43]. They developed an own language called
F-Lite, which is a subset of Haskell and Clean. The interesting part of their work
is that the reduction is performed on self-reconfiguring FPGAs. Another approach
to improve parallel behaviour of functional programs is the use of runtime profiling
tools. In [38], the tool ThreadScope is discussed which is a browser on a graphical
timeline enabling the developer to analyze his programs runtime behaviour. It will
be interesting to see what the future brings regarding this topic.
Finally, it has to be discussed how the speedup of parallelized functional programs
compares to imperative ones.

58.1% of survey participants think that the speedup is about the same. 34.9%
estimate the gain to be bigger and 7% guess it to be smaller than for imperative
programs.

For that purpose, Haskell has been chosen to represent the functional programming
languages. The results shown in Table 4.1 stem from [5], a website whose purpose is
the comparison of programming languages omptimized to the maximum. Note that

18

usually, such drastic optimizations are only needed in real-time critical applications
which only represent a small fraction of actual applications in the real world.

Languages Best Result Worst Result
Haskell vs. C++ 1.61 x slower (fannkuch-redux) 11.14 x slower (fasta)
Haskell vs. C 1.86 x slower (fannkuch-redux) 11.04 x slower (binary-trees)
Haskell vs. Java 1.06 x faster (spectral-norm) 6.89 x slower (fasta)

Table 4.1.: Language benchmarks comparison

In addition to the bad results in time comparison, the highly optimized Haskell
code does lack the usual conciseness functional programming languages are famous
for.
The results described in this section can be summarised as follows:

• Functional programs can be parallelized without fear of destroying the pro-
grams correctness.

• An increase in performance is as hard to achieve using functional languages
than it is using imperative ones.

• When looking at high performance computing, imperative programming
languages dominate functional languages in almost every case.

These results directly compete the common opinion on functional programming
and parallelism.

4.3. Community Support

Functional programming is often said to be lacking the critical mass to be seen as
relevant. Section 3.3 of this thesis showed, that statistically speaking, functional
programming languages are not widely spread, which supports the statement.
The results presented in this subsection stem from an interview conducted with
Cyrill Schenkel, a fellow student of the author. Schenkel wrote a thesis on modern
Integrated Development Environment (IDE) support for functional programming
[48]. He developed an IDE for the language Haskell based on Visual Studio Code1

and to gather the necessary requirements for his IDE, he did research using help of
the Haskell community. By doing this, he got a good insight of how the Haskell
community is organized. The interview transcript can be found in appendix C. The
results are therefore only verified for the Haskell developer community. However,
it is the authors opinion that for other functional programming languages, the
community looks somewhat similar.

1https://code.visualstudio.com

19

https://code.visualstudio.com

The survey revealed that 48.8% of participants do not believe that functional
programming is lacking the critical mass. 39.5% think the opposite. 11.6%
elaborated further with interesting comments. One participant stated that it
varies from industry to industry, but that it’s seeing growth all over. React
and similar projects are even bringing it to web development. In data pipeline
engineering, it seems to be more the rule than the exception. Another one wrote:
”What we lack is back education in fundamentals. As hand-wavy example: The
courses that touch Turing machines are too few and the ones that dare talking
lambda calculus even less.”

The most important contact points of the Haskell community are the following:

• An Internet Relay Chat (IRC) channel that is very active2. Over 10’000
people are ready to answer questions. Usually, one can expect an answer to
their question within five minutes.

• For simpler questions, there is an IRC beginners channel.

• There is a Reddit3 Haskell group that is very active.

• In the region, there is the Zürich user group called HaskellerZ4 .

• The Commercial Haskell group, which is a group composed of companies
opened a GitHub organization5, where modified preludes and other useful
contributions can be found.

With 10’000 active users on the main resource for answering questions the com-
munity seems rather small. However, the rapid response time seems quite unique,
even when compared to a lot of popular languages. The community is therefore not
seen as problematic regarding the adoption of functional programming languages
by the author.

Survey participants see a larger problem in the education provided in functional
programming. 69.8% think that there is not enough done. 20.9% do think the
opposite. 9.3% elaborated that there needs to be a much greater focus on what
makes functional programming a style rather than a language characteristic. The
quality needs to go up, not the quantity and that there is a lot of good material
out there, but perhaps not enough work done at teaching FP at universities.

2https://www.haskell.org/irc
3https://www.reddit.com
4https://www.meetup.com/HaskellerZ
5https://github.com/commercialhaskell/commercialhaskell

20

https://www.haskell.org/irc
https://www.reddit.com
https://www.meetup.com/HaskellerZ
https://github.com/commercialhaskell/commercialhaskell

4.4. Library & IDE Support

One conclusion drawn from Section 3.2 was the importance of tooling and library
support to increase language adoption probability. This section discusses the library
and IDE support for functional programming languages, once again using Haskell
as the representative. As in Section 4.3, the results were gathered through the
interview with Schenkel, who got great insight in what is missing regarding tooling
in Haskell.

Participants of the survey were asked to categorize the tooling support for
functional programming languages. The results are as follows: 11.6% voted for
excellent tooling support, 25.6% thought it to be good, 25.6% ok, 23.3% not so
good and 14% even thought it was very bad.

4.4.1. Libraries

Haskell comes with the so called standard prelude, a collection of standard pack-
ages. The prelude includes the most common libraries like Data.List.Utils,
Data.String.Utils, Data.Dates, System.IO, Network.Socket and many more.
Third party libraries like Crypto-API, Crypto-Cipher, RSA-Haskell, HDBC and
HSQL provide the missing pieces to make Haskell ready for practice. A list of
recommended Haskell libraries can be found at [3]. This does sound promising.
But how is the quality of the provided prelude and third party libraries? Schenkel
came to the following conclusions:

• There is no platform independent User Interface (UI) library that is usable.

• Standard strings are not to be used (no good logging libraries do).

• The prelude has historically grown and was never broken to maintain backward
compatibility.

• Naming conventions for libraries were introduced in a later point in time, so
there are old libraries that do not conform the conventions.

• Almost all companies define their own Prelude, because the standard prelude
is not good enough.

• A lot of third party libraries are useless, because everyone can upload their
package to Hackage6. Sometimes this is even used for personal backups.

• As a result, there are a lot of unmaintained libraries.

6https://hackage.haskell.org

21

https://hackage.haskell.org

The conclusion after summarising all these critical issues is that library support
definitely is a problem. A quick check revealed that for Standard ML, the situation
looks quite similar [25]. So far, this is the biggest issue regarding functional
programming adoption.

4.4.2. IDE Support

There are a lot of attempts to develop IDEs for Haskell. Interestingly, the definition
if IDE seems to drift apart from what developers of imperative languages understand
under the term. Cabal, Stack, Intero, EclipseFP, Leksah, Haskell for Mac, GHCMod,
GHCIDE, Hare and HIE are the most known such development environments.
However, most of them are just dependency managers and build tools. Some of
them offer, autocompletion and show type errors in addition to provide syntax
highlighting. What is missing in almost all of the above mentioned tools is the
ability to do automatic refactoring. One might argue that for functional languages,
refactorings are not necessary. And it is true, that a lot of refactorings do not make
sense on functional programming languages. But there are some that would be
useful, such as formatting, function extraction and renaming [49].
In the author’s opinion, a well equipped IDE can be of great help when learning a
new programming language. Using glorified text editor plugins and a command
line tool running the compiler seems to be an approach better suited for advanced
programmers. IDE support can therefore be seen as an additional issue regarding
language adoption.

22

5. Application Areas

Finding undiscovered application areas for functional programming languages is
not an easy task. Especially since experts in any kind of programming style are well
aware of the advantages and disadvantages of said style. This, of course, results in
early birds exploring the so far undiscovered terrain. To be able to identify such
an application area, a tactic had to be developed during the course of this thesis.
The following sections describe the steps taken in chronological order.

5.1. Dividing the Area of Applications

For identifying areas where functional programming is not used, a coarse division
of the area of applications has been undertaken. The resulting application area
matrix can be seen in Figure 5.1.

DistributedCentralized

Hardware &
Microcode

Operating System

Applications

Batch BatchInteractive Interactive

Figure 5.1.: Application areas matrix skeleton

Horizontally, the domain of application areas has been divided into centralized and

23

distributed applications. Each of these parts has been further divided into batch
and interactive applications. Vertically, three categories were introduced, namely
hardware & microcode, operating system and applications. What stands out is
the grey areas in the hardware & microcode category on the distributed side of
the matrix. After careful consideration, the author decided that these areas can
never be inhabited, because distribution is handled earliest on the operating system
level. Of course there might be hardware specialized in distributed computing, but,
because the interest lies on functional programming languages, such applications
cannot occur. Note that not all kinds of applications can be sorted into this matrix.
For example, there exist lots and lots of interactive applications that have some
sort of batch computation logic in them.

5.2. Defining Non-Functional Requirements

After defining application categories, the next step was to assign Non-Functional
Requirements (NFRs) to each cell in the application area matrix. Figure 5.2 shows
the result.

DistributedCentralized

Hardware &
Microcode

Operating System

Applications

Batch BatchInteractive Interactive

• Fault Tolerance
• High-Volume Processing
• High-Speed Processing
• Strong Input/Output

Performance
• Vertical Scalability

• Extensibility
• Maintainability
• Modifiability
• Responsiveness
• Testability
• Usability

• Fault Tolerance
• Performance
• Portability
• Security
• Verifiability

• Verifiability

• Availability
• Fault Tolerance
• Interoperability
• Maintainability
• Recoverability
• Security
• Usability

• Fault Tolerance
• High-Volume Processing
• High-Speed Processing
• Horizontal Scalability
• Strong Input/Output

Performance
• Vertical Scalability

• Availability
• Fault Tolerance
• Interoperability
• Reliability

• Extensibility
• Horizontal Scalability
• Maintainability
• Modifiability
• Responsiveness
• Testability
• Usability

• Availability
• Fault Tolerance
• Horizontal Scalability
• Interoperability
• Reliability

• Availability
• Fault Tolerance
• Horizontal Scalability
• Interoperability
• Maintainability
• Recoverability
• Security
• Usability

Figure 5.2.: Application areas matrix requirements

The NFRs well suiting for the functional programming paradigm are highlighted
in grey boxes. NFRs that do not match well with functional programming are
highlighted in italic font. What sticks out is that every cell has requirements that

24

suit functional programming. The only cells with requirements against functional
programming are batch applications, centralized as well as distributed. Batch
applications often require high-speed processing and strong input/output perfor-
mance (but not always). As was established in Sections 4.1 and 4.2, there are
better language options for high-performance applications. Besides that, functional
programming languages can be used in every other application area. However,
it will be shown in Section 5.3, that one of the most wide spread use cases for
functional programming languages falls in said category.

5.3. Search for Existing Applications

The next step taken was to search for application areas where functional program-
ming was already used. This included not only current and active applications,
but also no longer existing or discontinued ones. This makes sense because it
tells something about the usability of the paradigm for the given application area
whether it was used often or only once and whether it is still used today.

DistributedCentralized

Hardware &
Microcode

Operating System

Applications

Batch BatchInteractive Interactive

• Compilers
• Parsers
• Domain Specific Languages
• Digital Image Processing
• File Format Conversion
• File Renaming

• Scientific Programs
• Word Processors
• Spreadsheet Apps
• Mail Clients
• Web Browsers
• Games
• Music Composition

Software
• Banking Systems

• Web Crawlers
• Text-Search
• Data Processing on

Clusters

• Scientific Programs
• Web Services
• Banking Systems
• Distributed Revision

Control
• Web Middleware

• Hardware Verification
Systems

• Device Drivers

• Hardware Design Software
• FPGA Programming

• Centralized Operating
Systems

• Security
• User Interface
• Networking
• Kernel

• Hardware Detection
• Hardware Configuration
• Internal CGI
• Internal Web Applications

• Network Security

Figure 5.3.: Application types

Figure 5.3 lists application areas where functional programming has been used.
Note, that the author does not claim completeness. Each of these application types
has at least one implementation using the functional programming paradigm. The
most known and established use cases can be found in two areas. The first use

25

case is the definition of domain specific languages and corresponding parsers or
compilers. This is the one use case functional programming is predestined for,
because of its pattern matching ability. Note that despite Section 5.2 marked
this category as ill suited, high-speed processing and and strong input and output
performance are not strong requirements for this use case. The second use case
concerns scientific programs. It does not come as a surprise that programs relying
on mathematics can be implemented well in functional programming languages.
Mathematica and R are good examples for functional programming languages used
for scientific applications.
Listings of applications in Haskell can be found at [2, 11, 12] and [46]. An
enumeration of success stories of companies using the OCaml programming language
can be found at [4].
One application area shall be pointed out. There are a few projects where functional
programming is used to design and verify hardware. For example, Lava is a tool to
assist circuit designers in specifying, designing, verifying and implementing hardware
[30]. Lava was a subset of Haskell and is called the Bluespec1 programming language
today. Another example is the language reFLect, a functional programming
language close to ML with reflection features intended for applications in hardware
design and verification [32]. Functional programming is a good fit for this kind
of applications because it abstracts away the actual hardware design. Instead,
the developer can define only the hardware’s intended functionality and leave the
synthesis of the hardware to a compiler.
Overall it can be stated that a lot of application areas have been tackled using
functional programming. Some more and some less successful. Huge success stories
are definitely missing, not only for Haskell, but for all functional programming
languages. A closer look on success story wishes and promising application areas is
provided in Section 5.4. Closing this section, a statement from [21] is given below,
summarising the findings so far:

Practically everything you can do in procedural programming can be
done in functional programming, and the same thing in reverse. It’s just
another way to code something – another perspective on the problem
and a different way to solve it. However, because not many people use
functional programming, the problem is more about the lack of good
libraries, portability/maintainability (since the maintainer has a better
chance to understand something written in C++ than Scheme), and the
lack of documentation and community.

1http://bluespec.com

26

http://bluespec.com

5.4. Identify Promising Areas

The final question of the survey conducted during this thesis was not only
answered by all participants, but revealed a very clear result. 95.3% of survey
participants think that functional programming languages could be more often
used in practice (industry/enterprise projects). Only 4.7% beg to differ.

The previous sections of this chapter provided background information on the
current state of functional programming regarding application areas. It was shown
how the realm of applications can be divided into categories and what the non-
functional requirements for these categories are. Then, a quick overview of already
covered application ares was given. The aim of this section is to take this information
and identify promising application areas for the functional programming paradigm.
But first, the main advantages of functional programming are listed below, because
this was somewhat neglected so far.

• Conciseness: Code written in functional languages is often very concise due
to the high abstraction level.

• Abstraction: The powerful abstraction mechanisms of functional program-
ming help to deal with complexity.

• Modularity: Functional code bases provide a high level of modularity,
because every function defined can be reused (if exported).

• Reusability: A direct consequence of the modularity of functional code is
reusability.

• Correctness: The strong type systems of a lot of functional programming
languages ensure correctness of the written code, based on mathematical
properties.

• Domain Specific Languages: Although more of a use case, the ability
of functional programming languages to specify and parse domain specific
languages using pattern matching can be listed as a definitive advantage.

The following subsections each discuss an application area that seems promising to
the author in terms of functional programming adaptation.

5.4.1. Web Applications

Web applications have grown in importance in the past few years. A lot of devices
are capable of connecting to the internet and communicate to web Application

27

Programming Interfaces (APIs). Although functional programming is sometimes
used to write web applications, the occurrences are few. But why should one
use functional programming for web applications? Firstly, the Hypertext Transfer
Protocol (HTTP) is stateless. If some form of context shall be preserved, it has to be
encoded somehow in the requests and responses. This suits functional programming
well, because no state has to be observed, and there are no side effects. Secondly,
pattern matching can be used to differentiate incoming requests and then call
the corresponding function. Thirdly, incoming requests can easily be processed
concurrently. Note that this does not necessarily denote an advantage to other
programming paradigms. Lastly, most functional programming languages allow
to recompile only partial programs in a running environment, which simplifies
software maintenance [8].
What is missing for most functional programming languages is a solid and easy to
use web framework, on top of which the web applications can be programmed. Of
course, the number and quality of web frameworks has increased in the last few
years. But that these frameworks have not reached the state of the art yet can be
seen at [1], where Haskell users state their wishes for success stories of Haskell in
the industry. Successful web applications are a recurring subject in this wish list.
Therefore, success stories of functional web applications could be a huge boost in
functional programming adoption.

5.4.2. Hardware Programming & Design

In Section 5.3, some applications of functional programming for hardware program-
ming and design have been quickly discussed. One of which was the Bluespec
programming language, a subset of Haskell which is used as a high-level hardware
description language. Once the design is complete, the Bluespec compiler generates
synthesizable Verilog. This apporach has three impactful advantages. Firstly, using
a functional language allows to design the hardware on a high abstraction level. It
is defined what the hardware is supposed to do instead of defining every circuit.
This also enables programmers with only little knowledge about hardware to design
their own circuits. Secondly, hardware designs generated from functional code
turn out to be performing better than corresponding ones design using Verilog or
VHDL [7]. Lastly, the mathematical properties of programs written in functional
languages allow different kinds of verification. In addition, the strong type systems
ensure program correctness.
The reason why this seems to be a promising application area is the growing
use of embedded hardware on more and more devices. Also, a lot of systems
like Supervisory Control And Data Acquisition (SCADA) systems make use of
Programmable Logic Controllers (PLCs). Today, there is a wide variety of ways such
a controller can be programmed. Usually, this is depending on the manufacturer

28

of the device. An additional abstraction layer on top of these approaches using
functional programming (like Bluespec on Verilog) would make the programming
easier, uniform and more accessible to non-professional hardware designers.

5.4.3. Enterprise Resource Planning Systems

Enterprise Resource Planning (ERP) systems are a part of every major company.
These systems usually combine three layers. Interface services form the presentation
layer and database access services form the data access layer. The third layer
called business layer comprises all the business logic services. These business logic
services could be programmed using a functional approach. The business logic
usually involves the processing of large data sets, for which functional programming
is well-suited, again because of its vertical scalability characteristic.
A successful use of functional programming in an ERP system could have a large
impact on functional programming adoption. At [1], the wish for success stories in
this area was also widely spread.

5.4.4. Mission Critical Systems

There are some application areas where the correctness of applications is mission
critical, in the sense that a failure has a large impact on security or financial loss.
Examples of such systems are air traffic control systems, aerospace systems, pace
makers and many more. Most of such systems are written in languages that have
verification included in the language itself. Ada is such a language and Spark is its
most common dialect.
It would be interesting to see if functional programming languages could be used
in the place of Ada to implement mission critical systems. A static type system
ensures program correctness and a separate verification using the mathematical
properties of functional programs could be used to implement a semantic verification.
However, if hard real-time responses are a requirement, functional programming
languages are considered to be a bad choice in the opinion of the author. For this
case, languages that allow manual memory management should be preferred [23].

5.4.5. Interesting Research Areas

A lot of research papers referenced in this thesis determine that the currently used
computer architecture based on the von Neumann architecture are not particularly
well-suited for running functional programs, the most prominent being [28]. During
the period this thesis was conducted, two older publications came to the authors
attention, which might be the basis for interesting research projects. In [50], Trelean
evaluates systematically, what it would take to design a computer architecture

29

fitting the functional programming paradigm. Building such a system would be
both challenging interesting. In [33], Henderson describes a purely functional
operating system. Having both a computer architecture suited especially for
functional programming and an operating system on top of it, would reveal if
the von Neumann architecture really is a problem regarding functional program
performance.

30

6. Results

In this chapter, the results of the thesis are summarized and evaluated according
to the goals stated in Section 1.2.
First of all, the survey conducted during the period of the thesis has shown, that
there are a lot of different opinions regarding functional programming. The often
very even distribution of contradicting answers on almost every survey question
leads to the conclusion, that a lot of these opinions are in fact speculations and
ill-founded. The problem described in Section 1.1 can therefore be considered to
be valid.
In Section 5.3, application areas where functional programming is or was used were
identified and categorized and sources for more detailed information were listed.
Because investigating every application area separately would have taken a lot longer
than the period of this thesis, the adoption of functional programming languages
in numbers was analyzed in general in Section 3.3. This approach made sense
because it turned out that language adoption mostly depends on the availability
of open source projects, libraries and frameworks. Language features have only
limited influence on adoption. Chapter 4 discussed general opinions of functional
programming and verified their validity. It was shown that functional programs do
not perform as bad as is the most widely spread opinion, but also, that writing
parallel applications is not as much of an advantage as promised. Furthermore, it
was shown that the community support for functional programming languages is
quite healthy, but that the tooling for development is not state of the art compared
to other programming languages. Advantages of the functional programming
paradigm were quickly discussed in Section 5.4.
Although not linked directly to specific applications areas, Chapter 4 proposed and
investigated the reasons why the wide use of functional programming has been
limited.
Section 5.4 finally proposed promising application areas for which functional
programming seems a great fit. These are web applications, hardware programming
and design, enterprise resource planning systems and mission critical systems. Not
only would functional programming fit these application areas, but according to
community surveys, success stories in these areas would be very welcome. In
Chapter 7, measures that have to be taken to take functional programming further
are described.

31

32

7. Conclusion & Future Work

The research conducted for this thesis revealed several problems that need to
be solved in order to increase the chances of bettering the functional language
adoption in the industry. The results were gathered by first looking at language
adoption in general and then analyzing functional programming according to the
findings. In doing that, some of the myths and ill-founded opinions about the
functional programming paradigm were dissolved. Finally, the realm of application
areas was categorized, existing functional applications were analyzed and promising
application areas were identified. What is left to be done is to list the specific
problems to be solved for bettering the adoption of functional programming. This
is done in the following:

• Missing Success Stories: A key factor of successful language adoption are
open source projects and well programmed libraries and frameworks. In other
words, publicly available success stories lead to better language adoption. In
order to increase the adoption of functional programming, successful projects
should be open sourced.

• Tooling Support: The existing tooling for functional programming lan-
guages is not state of the art. An IDE with syntax highlighting, dependency
management and some form of refactorings should not be too much to ask
for. Improved tooling would definitely have an impact on adoption.

• Education: The education in functional programming often comprises of
one single course that can be optionally visited at universities. Functional
programming should be presented as an equivalent alternative to object
oriented programming in the syllabus of every computer science student.

7.1. Future Work

The time period of this thesis was very limited regarding the size of the task. In
the following, possible future work to improve the results of this thesis are listed:

• The empirical analysis on language adoption was conducted independent
of the programming paradigm. A closer study only including functional

33

programming languages might reveal adoption criteria especially important
for functional programming languages.

• The historical data for the TIOBE index is not openly accessible. One has to
buy the complete data sets. A different popularity index with an open history
could reveal the development of the popularity of functional programming
languages.

• Language specific features were often only researched for Haskell and in some
cases Standard ML because of the limited time frame of the thesis. The same
research could be extended for other functional programming languages.

• Specific application areas could be looked at in more detail. Such a study
would probably require a lot of effort and ideally a team of researchers.

34

Bibliography

[1] 72 would-be commercial haskell users: what haskell success stories we need to
see. https://www.reddit.com/r/haskell/comments/377zyc/72_wouldbe_
commercial_haskell_users_what_haskell. Accessed: 2017-07-26.

[2] Applications and libraries. https://wiki.haskell.org/Applications_and_
libraries. Accessed: 2017-07-24.

[3] Awesome haskell. https://github.com/krispo/awesome-haskell. Ac-
cessed: 2017-07-18.

[4] Companies using ocaml. https://ocaml.org/learn/companies.html. Ac-
cessed: 2017-07-24.

[5] The computer language benchmarks game. http://benchmarksgame.alioth.
debian.org. Accessed: 2017-07-15.

[6] Disadvantages of purely functional programming. http://flyingfrogblog.
blogspot.ch/2016/05/disadvantages-of-purely-functional.html. Ac-
cessed: 2017-07-13.

[7] Erlang factory sf 2016 - keynote - john hughes - why functional programming
matters. https://www.youtube.com/watch?v=Z35Tt87pIpg. Accessed: 2017-
07-26.

[8] Functional programming for the rest of us. http://www.defmacro.org/

ramblings/fp.html. Accessed: 2017-07-13.

[9] Functional programming in industry. http://flyingfrogblog.blogspot.ch/
2007/09/functional-programming-in-industry.html. Accessed: 2017-07-
13.

[10] Ghc/memory management. https://wiki.haskell.org/GHC/Memory_

Management. Accessed: 2017-07-14.

[11] Haskell in industry. https://wiki.haskell.org/Haskell_in_industry. Ac-
cessed: 2017-07-24.

35

https://www.reddit.com/r/haskell/comments/377zyc/72_wouldbe_commercial_haskell_users_what_haskell
https://www.reddit.com/r/haskell/comments/377zyc/72_wouldbe_commercial_haskell_users_what_haskell
https://wiki.haskell.org/Applications_and_libraries
https://wiki.haskell.org/Applications_and_libraries
https://github.com/krispo/awesome-haskell
https://ocaml.org/learn/companies.html
http://benchmarksgame.alioth.debian.org
http://benchmarksgame.alioth.debian.org
http://flyingfrogblog.blogspot.ch/2016/05/disadvantages-of-purely-functional.html
http://flyingfrogblog.blogspot.ch/2016/05/disadvantages-of-purely-functional.html
https://www.youtube.com/watch?v=Z35Tt87pIpg
http://www.defmacro.org/ramblings/fp.html
http://www.defmacro.org/ramblings/fp.html
http://flyingfrogblog.blogspot.ch/2007/09/functional-programming-in-industry.html
http://flyingfrogblog.blogspot.ch/2007/09/functional-programming-in-industry.html
https://wiki.haskell.org/GHC/Memory_Management
https://wiki.haskell.org/GHC/Memory_Management
https://wiki.haskell.org/Haskell_in_industry

[12] Hssuccess.md. https://gist.github.com/ekalinin/

04a538f2918b4685fcfd65982e471ee9. Accessed: 2017-07-24.

[13] Is functional programming overtaking the it industry? https:

//hackernoon.com/is-functional-programming-overtaking-the-it-

industry-c0c5a535818a. Accessed: 2017-07-13.

[14] Pitfalls/disadvantages of functional programming. https://stackoverflow.
com/questions/1786969/pitfalls-disadvantages-of-functional-

programming. Accessed: 2017-07-13.

[15] Sisal parallel programming. https://sourceforge.net/projects/sisal.
Accessed: 2017-07-15.

[16] Tiobe index for july 2017. https://www.tiobe.com/tiobe-index. Accessed:
2017-07-12.

[17] Tiobe programming community index definition. https://www.tiobe.com/
tiobe-index/programming-languages-definition. Accessed: 2017-07-12.

[18] What are some limitations/disadvantages of functional programming?
https://www.quora.com/What-are-some-limitations-disadvantages-

of-functional-programming. Accessed: 2017-07-13.

[19] What do haskellers want? over a thousand tell us. https://www.fpcomplete.
com/blog/2015/05/thousand-user-haskell-survey. Accessed: 2017-07-
13.

[20] What is it about functional programming that makes it inherently adapted to
parallel execution? https://softwareengineering.stackexchange.com/

questions/293851/what-is-it-about-functional-programming-that-

makes-it-inherently-adapted-to-para. Accessed: 2017-07-15.

[21] When to use a functional programming language? https:

//stackoverflow.com/questions/397425/when-to-use-a-functional-

programming-language. Accessed: 2017-07-24.

[22] When to use functional programming languages and techniques.
http://www.techrepublic.com/blog/software-engineer/when-to-

use-functional-programming-languages-and-techniques. Accessed:
2017-07-13.

[23] Which languages are used for safety-critical software? https:

//stackoverflow.com/questions/243387/which-languages-are-used-

for-safety-critical-software. Accessed: 2017-07-26.

36

https://gist.github.com/ekalinin/04a538f2918b4685fcfd65982e471ee9
https://gist.github.com/ekalinin/04a538f2918b4685fcfd65982e471ee9
https://hackernoon.com/is-functional-programming-overtaking-the-it-industry-c0c5a535818a
https://hackernoon.com/is-functional-programming-overtaking-the-it-industry-c0c5a535818a
https://hackernoon.com/is-functional-programming-overtaking-the-it-industry-c0c5a535818a
https://stackoverflow.com/questions/1786969/pitfalls-disadvantages-of-functional-programming
https://stackoverflow.com/questions/1786969/pitfalls-disadvantages-of-functional-programming
https://stackoverflow.com/questions/1786969/pitfalls-disadvantages-of-functional-programming
https://sourceforge.net/projects/sisal
https://www.tiobe.com/tiobe-index
https://www.tiobe.com/tiobe-index/programming-languages-definition
https://www.tiobe.com/tiobe-index/programming-languages-definition
https://www.quora.com/What-are-some-limitations-disadvantages-of-functional-programming
https://www.quora.com/What-are-some-limitations-disadvantages-of-functional-programming
https://www.fpcomplete.com/blog/2015/05/thousand-user-haskell-survey
https://www.fpcomplete.com/blog/2015/05/thousand-user-haskell-survey
https://softwareengineering.stackexchange.com/questions/293851/what-is-it-about-functional-programming-that-makes-it-inherently-adapted-to-para
https://softwareengineering.stackexchange.com/questions/293851/what-is-it-about-functional-programming-that-makes-it-inherently-adapted-to-para
https://softwareengineering.stackexchange.com/questions/293851/what-is-it-about-functional-programming-that-makes-it-inherently-adapted-to-para
https://stackoverflow.com/questions/397425/when-to-use-a-functional-programming-language
https://stackoverflow.com/questions/397425/when-to-use-a-functional-programming-language
https://stackoverflow.com/questions/397425/when-to-use-a-functional-programming-language
http://www.techrepublic.com/blog/software-engineer/when-to-use-functional-programming-languages-and-techniques
http://www.techrepublic.com/blog/software-engineer/when-to-use-functional-programming-languages-and-techniques
https://stackoverflow.com/questions/243387/which-languages-are-used-for-safety-critical-software
https://stackoverflow.com/questions/243387/which-languages-are-used-for-safety-critical-software
https://stackoverflow.com/questions/243387/which-languages-are-used-for-safety-critical-software

[24] Why hasn’t functional programming taken over yet? https:

//stackoverflow.com/questions/2835801/why-hasnt-functional-

programming-taken-over-yet. Accessed: 2017-07-13.

[25] Wish list for sml. https://github.com/standardml/hackday/wiki/Wish-

list-for-SML. Accessed: 2017-07-18.

[26] S. Adams. Implementing sets efficiently in a functional language. 1992.

[27] S. Adams. Functional pearls efficient sets—a balancing act. Journal of
functional programming, 3(4):553–561, 1993.

[28] J. Backus. Can programming be liberated from the von neumann style?: a
functional style and its algebra of programs. Communications of the ACM,
21(8):613–641, 1978.

[29] H. Barendregt. Functional programming and lambda calculus. In Handbook
of theoretical computer science (vol. B), pages 321–363. MIT Press, 1991.

[30] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: hardware design in
haskell. In ACM SIGPLAN Notices, volume 34, pages 174–184. ACM, 1998.

[31] A. Church. A set of postulates for the foundation of logic. Annals of mathe-
matics, pages 346–366, 1932.

[32] J. Grundy, T. Melham, and J. O’leary. A reflective functional language for
hardware design and theorem proving. Journal of Functional Programming,
16(2):157–196, 2006.

[33] P. Henderson. Purely functional operating systems. Functional programming
and its applications, Cambridge University Press, 1982.

[34] P. Henderson. Functional programming, formal specification, and rapid proto-
typing. IEEE Transactions on Software Engineering, (2):241–250, 1986.

[35] K. Hinsen. The promises of functional programming. Computing in Science &
Engineering, 11(4), 2009.

[36] P. Hudak. Conception, evolution, and application of functional programming
languages. ACM Computing Surveys (CSUR), 21(3):359–411, 1989.

[37] J. Hughes. Why functional programming matters. The computer journal,
32(2):98–107, 1989.

37

https://stackoverflow.com/questions/2835801/why-hasnt-functional-programming-taken-over-yet
https://stackoverflow.com/questions/2835801/why-hasnt-functional-programming-taken-over-yet
https://stackoverflow.com/questions/2835801/why-hasnt-functional-programming-taken-over-yet
https://github.com/standardml/hackday/wiki/Wish-list-for-SML
https://github.com/standardml/hackday/wiki/Wish-list-for-SML

[38] D. Jones Jr, S. Marlow, and S. Singh. Parallel performance tuning for haskell.
In Proceedings of the 2nd ACM SIGPLAN symposium on Haskell, pages 81–92.
ACM, 2009.

[39] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads. In ACM
SIGPLAN Notices, volume 29, pages 24–35. ACM, 1994.

[40] J. McCarthy. Recursive functions of symbolic expressions and their com-
putation by machine, part i. Communications of the ACM, 3(4):184–195,
1960.

[41] L. A. Meyerovich and A. S. Rabkin. Socio-plt: Principles for programming
language adoption. In Proceedings of the ACM international symposium on
New ideas, new paradigms, and reflections on programming and software, pages
39–54. ACM, 2012.

[42] L. A. Meyerovich and A. S. Rabkin. Empirical analysis of programming
language adoption. ACM SIGPLAN Notices, 48(10):1–18, 2013.

[43] M. Naylor and C. Runciman. The reduceron reconfigured. In ACM Sigplan
Notices, volume 45, pages 75–86. ACM, 2010.

[44] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance.
SIAM journal on Computing, 2(1):33–43, 1973.

[45] C. Okasaki. Purely functional data structures. Cambridge University Press,
1999.

[46] B. O’Sullivan, J. Goerzen, and D. B. Stewart. Real world haskell: Code you
can believe in. ” O’Reilly Media, Inc.”, 2008.

[47] C. G. Ponder, P. McGeer, and A. P. Ng. Are applicative languages inefficient?
ACM SIGPLAN Notices, 23(6):135–139, 1988.

[48] C. Schenkel and F. Bitterlin. Modern ide support for functional programming.
2017.

[49] S. Thompson, C. Reinke, et al. Refactoring functional programs. Advanced
Functional Programming, 3622:331–357, 2004.

[50] P. C. Treleaven. Computer architecture for functional programming. Cambridge
Univ. Press, 1982.

[51] D. Turner. Some history of functional programming languages. In International
Symposium on Trends in Functional Programming, pages 1–20. Springer, 2012.

38

[52] P. Wadler. Monads for functional programming. In International School on
Advanced Functional Programming, pages 24–52. Springer, 1995.

39

Appendix

A. GitHub Repository Data

Table A.1 shows the data gathered using the GitHub API! (API!).

C Scheme Java Scala Python JavaScript C++ C#
13Q1 118312 796 197745 17794 246654 295702 113914 36286
13Q2 129389 928 207578 18193 284710 335580 123877 42984
13Q3 146011 1655 264444 23081 355137 453975 153883 59691
13Q4 174106 1540 347554 27393 422065 574970 209157 78711
14Q1 217608 2111 442589 36583 535857 769264 262408 94680
14Q2 229411 1501 504917 40503 595429 905960 291712 116265
14Q3 246508 2317 534936 49419 655246 973300 319109 134294
14Q4 288655 2144 602979 54763 714492 1106165 402005 155859
15Q1 335870 2519 773337 66602 912399 1398294 437501 231320
15Q2 380079 3725 890923 77851 1036089 1594011 485118 270716
15Q3 400426 2771 934734 85424 1156497 1855388 540097 297000
15Q4 428380 2623 1030562 84626 1232022 2034584 588587 352323
16Q1 487917 4252 1130939 106247 1340496 2327114 652851 411419
16Q2 468270 4696 1140974 99358 1362310 2356473 647318 390957
16Q3 412837 4827 1095251 95731 1279652 2128212 719004 367238
16Q4 441545 4256 1125449 102009 1305253 2237569 873094 382828
17Q1 389108 4087 1021431 99783 1285800 2009678 639028 412335
17Q2 406380 5254 1257408 121259 1530641 2405032 717768 625156

F# Haskell Lisp R Erlang Swift Matlab
13Q1 1045 19424 2410 1739 6350 231 2457
13Q2 1433 18242 2917 1617 6994 729 3374
13Q3 1880 23234 2680 4112 7593 450 3655
13Q4 3580 24439 3223 6460 9858 1421 5099
14Q1 4531 31970 3764 9129 10882 1732 6680
14Q2 5932 47230 3937 13889 12203 6662 7753
14Q3 7422 42279 4000 14630 11212 16600 8334
14Q4 8919 45246 5425 15996 13552 23338 10505
15Q1 11228 56442 6119 23235 14995 37184 14614
15Q2 10127 59889 6098 29983 18423 53491 17222
15Q3 11928 65627 5949 34711 22169 75132 17241
15Q4 14196 65633 5551 33678 21296 94430 17367
16Q1 13671 64400 5800 38204 20755 120949 20388
16Q2 13234 65029 5532 39146 19992 123782 22667
16Q3 9711 54824 5275 37164 22359 127694 18696
16Q4 9800 52652 5514 36596 17675 133515 20012
17Q1 9027 52104 5168 35556 17575 105842 17967
17Q2 9487 55327 5835 48257 15749 125148 24936

Table A.1.: GitHub repository data

41

B. Survey Data

This chapter lists the raw data gathered from a survey conducted by the author
during the time period of this thesis. The data had to be separated into different
tables because of the limited space of the document.

Id Age Profession How did you learn about the existence of the functional program-
ming paradigm? (multiple answers allowed)

1 37 Lecturer / Engineer Lecture at university (or course of some sort at a school);Self-taught (online
courses or friends);Industry (as part of your job)

2 30 Student Lecture at university (or course of some sort at a school);Industry (as part
of your job);Other...

3 25 Software Engineer Lecture at university (or course of some sort at a school)
4 28 Project Staff at IFS Other...
5 59 Lecturer Self-taught (online courses or friends)
6 22 CS Student @ HSR Self-taught (online courses or friends)
7 Prof Other...
8 Software Engineer Self-taught (online courses or friends)
9 34 Software Engineer Lecture at university (or course of some sort at a school)
10 29 Software Developer Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
11 Software Developer Other...
12 Software Developer Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
13 Student Lecture at university (or course of some sort at a school)
14 27 Software Developer Self-taught (online courses or friends)
15 34 Software Engineer Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends);Industry (as part of your job);Other...
16 28 Computer Scientist Lecture at university (or course of some sort at a school)
17 24 Game Programmer Self-taught (online courses or friends)
18 Software Engineer Self-taught (online courses or friends)
19 32 Data Engineer Other...
20 Software Engineer Self-taught (online courses or friends)
21 25 Software Engineer Self-taught (online courses or friends)
22 Software engineer Lecture at university (or course of some sort at a school)
23 26 EE Lecture at university (or course of some sort at a school)
24 31 Senior Software Developer Self-taught (online courses or friends)
25 39 Computer Programmer Other...
26 24 Software Engineer Self-taught (online courses or friends);Other...
27 27 Software Engineer Self-taught (online courses or friends)
28 33 Computer scientist Self-taught (online courses or friends);Other...
29 Software Engineer Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
30 Student Self-taught (online courses or friends)
31 Intern Electronic Engineer Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
32 23 Functional data scientist Self-taught (online courses or friends)
33 31 Developer Self-taught (online courses or friends)
34 28 Programmer Self-taught (online courses or friends)
35 Student Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
36 62 Programmer Self-taught (online courses or friends)
37 25 Software Engineer Lecture at university (or course of some sort at a school)
38 32 Senior Software Engineer Lecture at university (or course of some sort at a school)
39 20 Student Computer Science Lecture at university (or course of some sort at a school)
40 36 Haskell Programmer Lecture at university (or course of some sort at a school)
41 Professor Lecture at university (or course of some sort at a school);Self-taught (online

courses or friends)
42 47 Physicist and other things Self-taught (online courses or friends)
43 60 Quantitative Analyst / Developer Self-taught (online courses or friends)

Table B.1.: Career & education part 1

42

Id If you selected other, please state your custom an-
swer.

How often do you use functional programming lan-
guages or mixed paradigm languages with func-
tional features?

1 Weekly
2 As part of multiple thesis conducted for the master studies. Daily
3 Daily
4 Talk at the Cosin 2014 Daily
5 Daily
6 Daily
7 Acquired it over the years Weekly
8 Daily
9 Daily
10 Daily
11 Workplace back in 2010 (before it was cool) Weekly
12 Daily
13 Weekly
14 Daily
15 Many conferences (C++Now, MeetingC++), talking to

Phil Nash
Daily

16 Daily
17 Daily
18 Weekly
19 High school computer science class Daily
20 Monthly
21 Monthly
22 Weekly
23 A few times a year
24 Weekly
25 I was searching for a way to make Java’s reflection more

convenient, stumbled upon Scala’s structural typing.
Daily

26 #scalaz on freenode Daily
27 Daily
28 Open source projects, IRC Daily
29 A few times a year
30 Daily
31 Daily
32 Daily
33 Daily
34 Weekly
35 Monthly
36 Daily
37 Weekly
38 Daily
39 A few times a year
40 Daily
41 Daily
42 Weekly
43 Daily

Table B.2.: Career & education part 2

43

Id In what context do you
use functional program-
ming? (multiple an-
swers allowed)

If you selected other,
please state your cus-
tom answer.

How long have you
been using functional
programming for?

What is the functional
programming language
of your choice?

1 Work;School;Personal
projects

>10 years ML, OCaml, Haskell

2 Work;School 1 - 3 years Haskell
3 Work;School;Personal

projects
1 - 3 years Python

4 School;Personal projects 3 - 5 years Hakell
5 School;Personal projects >10 years SML, Haskell
6 School;Personal projects 3 - 5 years Haskell
7 Work;School;Personal

projects
>10 years C++

8 Work;Personal projects 5 - 10 years Scala
9 Work;Personal projects 3 - 5 years Java
10 Work;Personal projects 3 - 5 years Scala
11 Work;Personal projects <1 year Swift
12 Work 3 - 5 years Scala
13 Work;School <1 year Haskell
14 Work;School 1 - 3 years JavaScript (mixed func-

tional Programming)
15 Work;Personal projects 5 - 10 years Pure functional is Haskell,

mixed is C++
16 Work;School;Personal

projects
3 - 5 years C# (i.a. LINQ)

17 Work;Personal projects 1 - 3 years C++
18 Work;Personal projects 3 - 5 years scala
19 Work;Personal projects >10 years Scala, but I use functional

design in Python, C, Rust,
etc also

20 Other... C++ template metapro-
gramming

<1 year Haskell

21 School 3 - 5 years Scheme
22 School;Personal projects 1 - 3 years Scala
23 School <1 year Haskell
24 Personal projects 1 - 3 years Haskell
25 Work;School;Personal

projects;Other...
I would consider lambda
calculus to teach logic,
programming and possibly
other subjects.

5 - 10 years Scala

26 Work;School;Personal
projects

5 - 10 years Haskell, Coq

27 Work;Personal projects 5 - 10 years Haskell
28 Work;School;Personal

projects
3 - 5 years Scala, Idris, Haskell

29 Work;School 3 - 5 years Scala
30 Work;School;Personal

projects
1 - 3 years Haskell

31 School;Personal projects 1 - 3 years Idris
32 Work;School;Personal

projects
3 - 5 years Haskell

33 Work;Personal projects 3 - 5 years Haskell
34 Work;Personal projects >10 years Haskell
35 School;Personal projects 5 - 10 years Haskell
36 Work;Personal projects 3 - 5 years Haskell
37 Work;Personal projects 3 - 5 years Haskell
38 Work;Personal projects 5 - 10 years Haskell
39 School <1 year Haskell
40 Work;Personal projects >10 years Haskell
41 Work >10 years Haskell
42 Work;Personal projects 1 - 3 years Haskell
43 Work;Personal projects >10 years Haskell

Table B.3.: Career & education part 3

44

Id Programs
written
in func-
tional
program-
ming
languages
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Functional
program-
ming
languages
using
lazy over
strict
evalua-
tion tend
to run

.

Immutable
data
structure
oper-
ations
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Programs
written
in func-
tional
program-
ming
languages
tend to
allocate

memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Immutable
data
struc-
tures use
up
memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Do you have comments on the topic per-
formance that have not been covered in
this section?

1 ...slower
than ...

...faster... ...equally
as fast as...

...more... ...less...

2 ...slower
than ...

...faster... ...slower
than...

...more... ...more...

3 ...slower
than ...

...faster... ...faster
than...

...more... ...more...

4 ...equally
as fast as...

...faster... ...slower
than...

...more... ...less...

5 ...slower
than ...

...slower... ...slower
than...

...more... ...more...

6 ...equally
as fast as...

...equally
as fast...

...slower
than...

...more... ...more... Lazy evaluation leads to unpredictable mem-
ory consumption and performance.

7 ...faster
than ...

...equally
as fast...

...faster
than...

...more... ...less... Hard to answer in the context of my experi-
ence where no immutable data structures are
directly available

8 ...equally
as fast as...

...equally
as fast...

...slower
than...

...less... ...more... Generally hard to compare, persistent data
structures have different benefits than muta-
ble ones. Runtime performance IMO less im-
portant than programmer productivity and
program correctness.

9 ...slower
than ...

...faster... ...equally
as fast as...

...more... ...an equal
amount
of...

10 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

11 ...equally
as fast as...

...equally
as fast...

...faster
than...

...an equal
amount
of...

...an equal
amount
of...

These questions are stupid to answer without
context or more infos

12 ...equally
as fast as...

...equally
as fast...

...slower
than...

...more... ...more... My code is mostly io bound so data struc-
tures are usually not critical

13 ...faster
than ...

...faster... ...faster
than...

...less... ...less...

14 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

The correct answer to all this questions is: It
depends.

15 ...equally
as fast as...

...faster... ...equally
as fast as...

...more... ...more... Seem very generalizing; the questions all fit
nearly all answers depending on context.

16 ...equally
as fast as...

...equally
as fast...

...slower
than...

...more... ...more... it depends

17 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...more... ...more... It highly depends on the context, in reality

18 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...more... ...an equal
amount
of...

19 ...slower
than ...

...faster... ...slower
than...

...an equal
amount
of...

...an equal
amount
of...

Memory allocation depends on garbage
collection–good GC will keep memory usage
roughly equal, with the exception of during
some recursive methods. The question is
somewhat too broad though, and depends a
lot on whether or not the programmer knows
how to or wishes to optimize for these param-
eters.

20 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

Yes: garbage collection versus accurate mem-
ory management. For system programming,
I still want C++. I don’t want a garbage col-
lector whenever energy consumption matters.
Functional language must rely on garbage
collection, which is a no-go in these kinds
of situations (e.g. embedded).

Table B.4.: Performance part 1

45

Id Programs
written
in func-
tional
program-
ming
languages
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Functional
program-
ming
languages
using
lazy over
strict
evalua-
tion tend
to run

.

Immutable
data
structure
oper-
ations
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Programs
written
in func-
tional
program-
ming
languages
tend to
allocate

memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Immutable
data
struc-
tures use
up
memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Do you have comments on the topic per-
formance that have not been covered in
this section?

21 ...slower
than ...

...equally
as fast...

...faster
than...

...more... ...an equal
amount
of...

22 ...equally
as fast as...

...equally
as fast...

...slower
than...

...an equal
amount
of...

...more...

23 ...equally
as fast as...

...faster... ...slower
than...

...more... ...more...

24 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

The performance is influenced by many other
factors. The most important factor is the de-
veloper’s tendency to avoid thinking. There-
fore, as far as it concerns me, the program-
ming paradigms and the mutability of data
structures do not influence the performance.
(Humorous anecdote: Just compare typical
C++ and Java applications when it comes
to memory usage. When the kernel’s OOM
killer acts due to a lack of memory on a
server of the company I work at, it is always
a java process that dies.)

25 ...equally
as fast as...

...equally
as fast...

...slower
than...

...more... ...more... So far I haven’t had to concern myself with
a deeper understanding of differences in per-
formance between imperative and functional
paradigms, at least nothing more from what
can be ”fixed” by using lazy linked lists.

26 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...more... ...more...

27 ...equally
as fast as...

...faster... ...faster
than...

...more... ...an equal
amount
of...

28 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

I did not do any micro-benchmarks. Fun-
damentally changing the data structure also
helps.

29 ...slower
than ...

...faster... ...slower
than...

...more... ...an equal
amount
of...

30 ...equally
as fast as...

...slower... ...equally
as fast as...

...more... ...more...

31 ...equally
as fast as...

...slower... ...slower
than...

...more... ...more...

32 ...equally
as fast as...

...faster... ...faster
than...

...more... ...an equal
amount
of...

33 ...slower
than ...

...faster... ...faster
than...

...more... ...more...

34 ...equally
as fast as...

...faster... ...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

Python, Java and javascript are all inefficient
in their own way, so haskell compares against
them pretty well. How much time is spent on
optimizing is more important than the lan-
guage in my experience.

35 ...equally
as fast as...

...equally
as fast...

...slower
than...

...more... ...more...

36 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

answer ”equal” really means ”don’t know,
don’t care”

37 ...slower
than ...

...equally
as fast...

...faster
than...

...more... ...more...

38 ...slower
than ...

...equally
as fast...

...slower
than...

...more... ...more...

39 ...slower
than ...

...equally
as fast...

...slower
than...

...more... ...more...

40 ...equally
as fast as...

...slower... ...slower
than...

...more... ...more...

Table B.5.: Performance part 2

46

Id Programs
written
in func-
tional
program-
ming
languages
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Functional
program-
ming
languages
using
lazy over
strict
evalua-
tion tend
to run

.

Immutable
data
structure
oper-
ations
tend to
run
corre-
sponding
imper-
ative
imple-
menta-
tions.

Programs
written
in func-
tional
program-
ming
languages
tend to
allocate

memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Immutable
data
struc-
tures use
up
memory
than/as
corre-
sponding
imper-
ative
imple-
menta-
tions.

Do you have comments on the topic per-
formance that have not been covered in
this section?

41 ...equally
as fast as...

...slower... ...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

Harder to predict space behaviour for lazy
languages than for strict ones. Still not
solved.

42 ...equally
as fast as...

...faster... ...faster
than...

...more... ...an equal
amount
of...

43 ...equally
as fast as...

...equally
as fast...

...equally
as fast as...

...an equal
amount
of...

...an equal
amount
of...

Table B.6.: Performance part 3

Id In theory, purely func-
tional programs can be
almost arbitrarily paral-
lelised. In practice, it
is therefore very easy
to parallelise your pro-
grams written in a func-
tional language.

If you selected other,
please state your cus-
tom answer.

The speedup gained
from parallelising func-
tional programs is

compared to the
speedup of parallelising
imperative ones.

Do you have comments
on the topic perfor-
mance that have not
been covered in this sec-
tion?

1 TRUE ...bigger...
2 FALSE ...smaller...
3 Other... theoretically ...about the same...
4 Other... first part true, second part

false
...smaller...

5 FALSE ...about the same...
6 TRUE ...about the same...
7 TRUE ...about the same... Hard to answer, should pro-

vide a don’t know
8 TRUE ...bigger...
9 TRUE ...about the same...
10 TRUE ...bigger...
11 TRUE ...bigger...
12 FALSE ...smaller... Parallel speed up comes

from data parallelism not
from programming lang

13 TRUE ...about the same...
14 TRUE ...about the same...
15 Other... Depends greatly on the pro-

gram in question. Calculat-
ing fibonacci does not par-
allelize at all, doing a sort
will parallelize very well.

...bigger...

16 TRUE ...about the same... it depends
17 TRUE ...bigger...
18 TRUE ...bigger...
19 TRUE ...bigger...
20 TRUE ...about the same... Yes: big win for FP in

this area IMHO. Extremely
important for the future
due to the multiplication of
cores. The very reason why
I study category theory!

21 TRUE ...about the same...

Table B.7.: Parallelism part 1

47

Id In theory, purely func-
tional programs can be
almost arbitrarily paral-
lelised. In practice, it
is therefore very easy
to parallelise your pro-
grams written in a func-
tional language.

If you selected other,
please state your cus-
tom answer.

The speedup gained
from parallelising func-
tional programs is

compared to the
speedup of parallelising
imperative ones.

Do you have comments
on the topic perfor-
mance that have not
been covered in this sec-
tion?

22 TRUE ...about the same...
23 TRUE ...about the same...
24 FALSE ...about the same... The difference here is most

definitely not in running
time, but in development
time.

25 Other... Haskell has very elegant
constructs for these, the
same are not entirely true
for Scala, but so far it
showed itself to be easier in
general than it was in Java.

...about the same... I don’t know the correct an-
swer for the last question.
My honest answer would
be too long and too hand-
wavy.

26 TRUE ...bigger...
27 TRUE ...bigger...
28 TRUE ...about the same...
29 TRUE ...about the same...
30 Other... pure/impure ...about the same...
31 Other... No experience ...about the same...
32 Other... Not always, depends on the

problem
...about the same...

33 TRUE ...about the same...
34 TRUE ...about the same...
35 TRUE ...about the same...
36 TRUE ...bigger...
37 TRUE ...bigger...
38 Other... Certainly some programs

can be easily parallisable,
but in the general case
it is very hard to find
an optimal split for the
work. Haskell does pro-
vide good libraries for par-
allising pure computations
and playing with alterna-
tive strategies or even run-
ning the same code on
GPUs. This is something
that would be very difficult
to pull of with imperative
languages

...about the same... the last one depends a lot
on what one means with
imperative programs: func-
tional code will often com-
pile to the same code if it
is simple enough. Impera-
tive code can be slower if
there is shared memory us-
age requiring memory bar-
riers etc. It can go either
way depending heavily on
cache usage.

39 TRUE ...bigger...
40 TRUE ...bigger...
41 FALSE ...about the same... It’s very application depen-

dent
42 TRUE ...bigger...
43 TRUE ...about the same...

Table B.8.: Parallelism part 2

48

Id Functional
program-
ming is
lacking
the critical
mass to
be seen as
relevant.

If you se-
lected other,
please state
your custom
answer.

The tools/li-
brary/in-
frastruc-
ture/IDE
support for
functional
program-
ming lan-
guages is

.

There is
enough
education
provided in
functional
program-
ming.

If you se-
lected other,
please state
your custom
answer.

The com-
munity
support for
functional
program-
ming lan-
guages is

.

Do you have
comments
on the topic
tooling that
have not
been cov-
ered in this
section?

1 TRUE ...very bad... FALSE ...ok...
2 TRUE ...ok... FALSE ...ok...
3 FALSE ...not so

good...
TRUE ...ok...

4 TRUE ...very bad... FALSE ...ok...
5 TRUE ...ok... TRUE ...excellent...
6 TRUE ...not so

good...
FALSE ...excellent...

7 TRUE ...very bad... FALSE ...not so
good...

8 FALSE ...good... FALSE I guess this
depends,
there is a lot
of material
available,
but is it also
used?

...excellent...

9 FALSE ...good... TRUE ...good...
10 FALSE ...excellent... TRUE ...excellent...
11 FALSE ...not so

good...
FALSE ...good...

12 FALSE ...ok... TRUE ...not so
good...

13 TRUE ...not so
good...

FALSE ...good...

14 Other... mass of what?
I believe it
simply lacks
the people
that have
enough skill
and expe-
rience in
programming
and designing
functional
applications.

...good... FALSE ...good... An option, I
don’t know
would be
nice. I
never worked
with a pure
functional
programming
language out-
side of class.
So, I just
don’t know.

15 FALSE ...good... Other... There needs
to be a
much greater
focus on
what makes
functional
programming
a *style*
rather than
a language
characteristic.
The quality
needs to go
up, not the
quantity.

...good...

16 TRUE ...ok... FALSE ...ok...
17 FALSE ...ok... FALSE ...good...
18 TRUE ...very bad... FALSE ...not so

good...
19 Other... Varies from

industry to
industry, but
it’s seeing
growth all
over. React
and similar
projects are
even bring-
ing it to
web devel-
opment. In
data pipeline
engineering,
it seems to
be more the
rule than the
exception.

...good... FALSE ...good...

Table B.9.: Tooling & community part 1

49

Id Functional
program-
ming is
lacking
the critical
mass to
be seen as
relevant.

If you se-
lected other,
please state
your custom
answer.

The tools/li-
brary/in-
frastruc-
ture/IDE
support for
functional
program-
ming lan-
guages is

.

There is
enough
education
provided in
functional
program-
ming.

If you se-
lected other,
please state
your custom
answer.

The com-
munity
support for
functional
program-
ming lan-
guages is

.

Do you have
comments
on the topic
tooling that
have not
been cov-
ered in this
section?

20 TRUE ...not so
good...

FALSE ...ok... FP should
crush OOP
in the com-
ing decades.
Exactly like
when OOP
took over im-
perative.One
day soon,
IMHO, FP
will become
trendy. And
then, OOP
will be old-
fashioned.It
will come
from teachers
in college
(new gen
of devs un-
derstanding
FP) and cur-
rent/future
startups.It
took 20 years
for Design
Patterns to
be broadly
known and
applied.
Some time
is needed
to master
categories...
my 2 cents!

21 TRUE ...ok... TRUE ...ok...
22 FALSE ...good... FALSE ...good...
23 FALSE ...good... TRUE ...good...
24 FALSE ...excellent... FALSE ...good...
25 Other... Nah, what we

lack is back
education in
fundamentals.
As hand-wavy
example: The
courses that
touch turing
machines are
too few and
the ones that
dare talking
lambda cal-
culus even
less.

...good... FALSE ...ok...

26 FALSE ...excellent... FALSE ...excellent...
27 FALSE ...excellent... FALSE ...excellent...
28 FALSE ...good... TRUE ...good...
29 FALSE ...good... FALSE ...good...
30 FALSE ...ok... FALSE ...excellent...
31 TRUE ...good... FALSE ...good...
32 FALSE ...not so

good...
FALSE ...excellent...

33 TRUE ...very bad... FALSE ...excellent...
34 Other... It’s start-

ing to get
there with
functional
feature creep-
ing into Java
(Streams, Op-
tional) and
Javascript

...ok... FALSE ...good...

Table B.10.: Tooling & community part 2

50

Id Functional
program-
ming is
lacking
the critical
mass to
be seen as
relevant.

If you se-
lected other,
please state
your custom
answer.

The tools/li-
brary/in-
frastruc-
ture/IDE
support for
functional
program-
ming lan-
guages is

.

There is
enough
education
provided in
functional
program-
ming.

If you se-
lected other,
please state
your custom
answer.

The com-
munity
support for
functional
program-
ming lan-
guages is

.

Do you have
comments
on the topic
tooling that
have not
been cov-
ered in this
section?

35 TRUE ...not so
good...

FALSE ...good...

36 TRUE ...excellent... Other... No idea ...ok... Can’t evalu-
ate commu-
nity support
without rigor-
ous study.

37 FALSE ...ok... FALSE ...excellent...
38 Other... I think FP

has gained
the critical
mass, but
necessarily
manifested
via functional
programming
languages.
The adoption
of functional
techniques
and im-
mutable data
structures is
definitely on
the rise (react
etc)

...not so
good...

Other... There’s a
lot of good
material out
there, but
perhaps not
enough work
done at teach-
ing FP at
universities

...excellent...

39 FALSE ...not so
good...

FALSE ...good...

40 TRUE ...very bad... FALSE ...good...
41 FALSE ...ok... Other... It’s compli-

cated: the
difficult point
is going from
the principles
to medium
sized projects

...good...

42 TRUE ...not so
good...

FALSE ...excellent...

43 FALSE ...ok... TRUE ...excellent...

Table B.11.: Tooling & community part 3

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

1 Yes I feel that if the re-
quired knowledge of
functional program-
ming was present,
many problems in
industry could be
solve more elegantly
and reliably (bet-
ter correctness &
maintainability)

Better training. Bet-
ter tools.

Functional program-
ming is often seen as
something esoteric,
and the user groups
do not make this
better. I feel that
this can be made
more accessible.

2 Yes
3 No It’s not the way we

think
use multi paradigm
languages

Table B.12.: General remarks part 1

51

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

4 Yes I have seen quite
a lot of code writ-
ten in imperative
languages, that
was almost purely
functional. All of
it could have been
implemented in a
functional language,
reducing a lot of
syntax overhead,
making the intend
of the code much
clearer.

I feel that one of
the most important
parts is higher educa-
tion. Only recently
have I seen func-
tional programming
gaining traction
outside of ”purely
academic” institu-
tions like ETH. I
strongly believe that
students should be
taught on functional
programming, as a
paradigm, even at
the same time as
they are learning
OOP or at most
one semester later. I
think that this would
help them getting
a firm grasp on the
concepts of FP, thus
motivating them to
use/try it during
their school projects,
thus familiarizing
them even more with
FP.

Just remember, a
monad is just a
monoid in the cate-
gory of endofunctors.

5 Yes A little bit more
courage to do so ...

More success stories. No, I simply like it. I think that func-
tional programming
is on a good track.
But these things
tend to need really
a long long time.
Im am enthusiastic
about functional
programming since
about 25 years,
and I always won-
dered why people
voluntarily used
object-oriented
languages ...

6 Yes Functional languages
allow for more pow-
erful abstractions
and are therefore
very suitable for
high-level code. Es-
pecially languages
which have a strict
type system, like
Haskell and Idris,
make it easier to
write correct code.

Teach the fundamen-
tal concepts of FP
in schools, but don’t
stop there. Show
how FP can be used
to solve real world
problems.

What’s the best
way of approaching
software architecture
and design, when
working with FP?
How does it differ
from established
approaches?

7 Yes Monads to the
masses

Are monads the only
reasonable way to
model necessary side
effects?

8 Yes It’s a very good fit
for modern stateless
request-processing
type of work.

Teach it, I wouldn’t
be surprised if func-
tional programming
is much easier to
grasp for a math-
ematically adept
pupil than impera-
tive programming.

Is a monad just like
a burrito?

9 Yes
10 Yes

Table B.13.: General remarks part 2

52

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

11 Yes More training, time
to evaluate, to much
oop evangelists

trainings WTF IS A MONAD,
LENS, BANANA
OR A FUNCTOR?

12 Yes Easier io is key. Approachable so-
lutions to day to
day problems, that
money can almost
copy past from
slashdot.

13 Yes especially in combi-
nation with big data

teaching functional
programming from
begin. not teaching
OO as the ’standard’

are there any soft-
ware patterns in FP?

14 Yes It’s just never con-
sidered as option.
Mostly because com-
panies tend to use
the same language
for all projects. But
there is no language
that is the best tool
for all projects. In
the end, you end
using a good tool
for most projects in-
stead of the best for
every project. I be-
lieve this is strictly
coupled with the
lack of experienced
developers or the
fact, that it is hard
to find skilled people
that have experience
in more than 2 pro-
gramming languages

— not to men-
tion programming
paradigmas! and
make it a mandatory
subject in computer
science studies. But
please, don’t use
an exotic language
that never has a
chance in practice.
Use something with
a good community,
broad availability of
documentation, e.g.
Haskell (uh.. thats
controversial!)

What the heck are
monads ;)

15 No Functional pro-
gramming as a
paradigm needs
more widespread
knowledge and use.
Functional languages
will follow as an eas-
ier way to write
the same software
afterwards.

This is the wrong
question to ask. You
want to spread the
paradigm of func-
tional programming,
not the language(s)
themselves.

Did you look at
people using func-
tional programming
outside of the closed-
space of functional-
only programming
languages?

16 Yes Companies should
not restrict them-
selfs to one single
language. Instead,
always evaluate for
the one that fits
most.

In my experience,
the tools/languages
used by the engi-
neers in a company
are selected by peo-
ple which haven’t
developed a single
software in the last
years (10+). Thus,
they have no idea
about current trends
and aren’t open for
new things (like:
do not change a
running system).
These people have to
be targetted as the
actual developers
have probably not
much of a choice.

Table B.14.: General remarks part 3
53

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

17 Yes Any code can benefit
from having a declar-
ative paradigm,
given that code
always has to be
maintained

Be taught in school
before imperative
paradigms and mu-
tability. Functional
programming is
closer to math and
closer to how hu-
mans think, which
should be more
familiar as one’s
first programming
language.

18 Yes
19 Yes This is purely a mat-

ter of preference. I
like to work in FP
style, so I hope it
becomes more perva-
sive.

The whole FP com-
munity could be
less distant and
condescending to
OOP developers
and newbies. The
dogmatic way of
discussing design
style is extremely
off-putting, even to
someone like me who
has been doing this
for a long time.

20 Yes Most people I know
have never heard
about FP. Or for
them, it is just a
buzz word.Some
people even believe
that JS is a FP lan-
guage!Many of my
current coworkers
are interested in F#,
because they are MS
fanboys. But none
of them understand
categories or are
willing to learn it...

Teach students.
Make sure students
understand the value
of FP.Some of them
will create startups.
Some of these star-
tups will be the
new GAFAs. And
that will start the
trend.New tech does
not come from estab-
lished companies (I
learnt that the hard
way). Let them die!

Nope. I struggle
with category theory
and with Haskell
syntax. The learning
curve is steep. And
this is the reason
why students are
a better target.
Because seasoned
programmers like me
have forgotten about
mathematics!

FP will even-
tually rule in
most situations
(but those where
C/C++/OpenCL
will still rule).OOP
was a way to create
business abstrac-
tions that simplify
reasoning about a
large code base. FP
gives the ability
to write correct
programs thanks
to the power of
mathematics, and to
parallelize programs
thanks to purity.
This is the way I see
it today...

21 Yes
22 Yes
23 Yes

Table B.15.: General remarks part 4

54

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

24 Yes I am heavily pushing
code in functional
style at work. As far
as this is possible in
javascript, anyway.
The resulting code
is always smaller,
better abstracted,
better reusable,
easier to under-
stand, and easier
to test. Mostly, the
functional code is
the result of un-
tangling a stateful,
imperative mess.

Selective breeding of
developers, I would
say. Effective use
of functional pro-
gramming requires
an excellent ability
to abstract. (Did
someone mention
monads?) It is really
difficult. Otherwise,
please don’t spread
it. As long as idiots
stay away from it
(unlike it happened
to Perl, JavaScript,
and Java), functional
programming will
remain a developer’s
heaven.

I often ask my-
self how far one
can replace test-
ing by proving the
correctness of an ap-
plication. Functional
programming lan-
guages tend to have
excellent type sys-
tems, which already
go a long way. Some
even have built-in
theorem provers
that can verify even
more properties,
sometimes with a
little help of the
developer. I wonder
how effective this
would be on a daily
basis for the average
application and de-
veloper. (It certainly
would be even more
demanding of the
developer than func-
tional programming
itself.)

I am of the opinion
that overall, func-
tional programming
always wins against
imperative or object
oriented program-
ming in terms of
maintainability, code
reuse, and develop-
ment time. I am not
yet quite clear about
this, but I think that
functional languages
support abstraction
(and therefore code
reuse) far better
than, say, OOP.
The reason might
be that each OOP
language has one
fixed set of abstrac-
tions provided by
unhealthy amounts
of syntactical sugar.
Functional program-
ming languages,
however, seem to
allow the developer
to do their own
abstraction, with-
out any syntactical
sugar at all. Likely,
the reason is that
the abstraction
required in soft-
ware development
is of mathematical
nature, and that
functional program-
ming languages are
more mathemati-
cal than any OOP
language you might
find. And, to make
this point clear,
abstraction is at the
heart of software
development. It is
done on all levels
of an applications,
from the topmost
view the user has,
down to the single
data structures and
the operations on
it. This is also the
reason why soft-
ware development
is no engeneering
discipline. If you
encounter someone
calling herself ”soft-
ware engeneer”, run
away as fast as you
can. (Now, this
was a little bit on
the philosophical
side, which is very
important for me
in my daily work.
Coworkers may not
agree, though. And
on a side note: Don’t
forget about other
paradigms like logic
programming. They
are also very im-
portant and deserve
their place.)

Table B.16.: General remarks part 5
55

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

25 Yes In general is a lot
easier built up on
good foundations.
That’s what FP pro-
vides. And I don’t
mean that on any
particular language.
You do FP even in
very verbose Ruby or
JS. If the language
gives some syntax
that helps with that,
great!

Oh yeah, way too
many to ask here,
way too advanced to
ask here :). One that
is not that advanced:
encodings of continu-
ations in lambda cal-
culus and in some ab-
stract machines.

Yeah, ”Do you have
comments on the
topic performance
that have not been
covered in this sec-
tion?” not sure what
”topic performance”
is supposed to mean.
I took it to mean
”this topic”, which
seemed to make
more sense.

26 Yes They should be and
are starting to be.

A complete redo of
the undergraduate
computer science
curriculum in most
universities.

How can we bet-
ter deal with tar-
geting embedded sys-
tems like AVR in
functional program-
ming?

27 Yes
28 Yes FP is still new-ish,

people lack expe-
rience, it is a risk
for new projects.
There needs to be at
least one expert who
helps introducing
and teaching about
the concepts.

scala-exercises and
the Typelevel com-
munity are good
examples, structured
and open commu-
nities with a well
designed community
process.

It still seems quite
new, there are
more than one way
to do something.
Sometimes the
purest way is also
quite unecessarily
complex. Basic
FP paradigms as
map/flatMap/fold,
pattern matching,
types are fundamen-
tal building blocks.
For higher level
architectural things
some people say, use
free monad, others
say use monad trans-
formers/MTL. Then
impure things such
as local mutability
are sometimes useful,
vs purely functional.

Good survey, keep it
up

29 Yes I too few program-
mers know about
functional pro-
gramming or have
experience with it.

Teaching profes-
sional programmers
functional pro-
gramming and the
benefits of a func-
tional approach in
sofware engineering
should help spread
its use.

No

30 Yes
31 Yes Change the Haskell

motto!
32 Yes In my opinion they

allow faster devel-
opment cycles and
more work done per
person

Solving the problems
we have in our areas
and ”evangelizing”
people from those
areas that use other
languages. For ex-
ample, I organized
datahaskell.org and
started spreading
it not in Haskell
meetups, but rather
data science ones.

33 Yes IDE support, more
oibraries, but they
will come, advanced
courses

34 Yes More projects just
need to bite the bul-
let and prove that
programmer produc-
tivity is greater than
with traditional ap-
proaches.

More case studies /
good testimonials.

Table B.17.: General remarks part 6

56

Id Do you think
that functional
programming lan-
guages could be
more often used
in practice (in-
dustry/enterprise
projects)?

Please elaborate
on your previous
answer.

What
could/should be
done to spread the
use of functional
programming
languages?

Is there an aspect
or open question
about functional
programming that
has been bother-
ing you and you
would like to be
answered?

Do you have com-
ments on this sur-
vey that have not
been covered?

35 Yes
36 Yes Yes, sir. Nothing
37 Yes
38 Yes FP programs are

often developed
quicker, have less
bugs and are much
more maintainable.
It definitely makes
sense to see wider
industry adoption

Improve tooling and
documentation

39 Yes It is more maintain-
able

Alter the perception
of its usability: easy
getting started (e. g.
online IDE), teach-
ing it with practi-
cal examples, success
stories like facebooks
haskell group)

40 Yes
41 Yes Why not? Keep going: we’re

getting there!
42 Yes More tools (in par-

ticular better IDEs),
more good/well-
supported libraries,
easier entry for
newcomers

Haskell in particular
is not marketing it-
self well. A top
google hit has the ti-
tle ”Haskell is use-
less”. Useless in-
deed for spreading
the word.

43 Yes I have worked on
3 very successful
Haskell projects in
industry over the
last 15 years. I
doubt they could
have been done in
any other language.

Find sponsors to
fund improving the
infrastructure

Haskell should be a
really good language
for numerical compu-
tation but sadly only
a few people work
on this area. This
bothers me. I’d like
to see more people
contributing to this
area.

Table B.18.: General remarks part 7

57

C. Interview with Cyrill Schenkel

Cyrill Schenkel is a fellow student of the author who, at the same time the thesis took
place, wrote his bachelor thesis on modern IDE support for functional programming
[48]. To identify the requirements for his IDE, he conducted several interviews
and conducted research on library, IDE and community support for the language
Haskell. The author conducted an interview with Cyrill Schenkel in order to share
results. A short transcription of the interview (translated into English) is given in
this chapter:

mario meili: Does Haskell offer the same amount of standard libraries than
for example Java, or is it significantly less?

cyrill schenkel: The amount of libraries is about the same. The problem
lies in the quality of the libraries. For example, there is no platform
independent UI library that is usable. Also, it is not advised to use the
Haskell standard strings. This is well known in the community. One
can find almost no logging library using standard strings. In general, it
can be said that the Haskell standard library has historically grown and
was never broken for to preserve backwards compatibility. Also, naming
conventions for libraries were introduced in a later point in time, so
there are old libraries that do not conform. Because of that, almost
all companies define their own prelude. Libraries that are important
are MTL, containers and STM. Another problem is the unsupervised
library repository. Everyone can upload their packages which results in
a lot of unmaintained libraries. Sometimes people even upload personal
backups. Libraries are therefore definitely a problem. However, there
are attempts of the community to better this situation.

mario meili: How is the Haskell community support to better the issue?
cyrill schenkel: There is an IRC channel that is very active. Over 10’000

people are ready to answer questions. Usually, one can expect an answer
to his question within five minutes. Not every community does as good.
For simpler questions, there is even a beginners channel. In addition,
there is a Reddit Haskell group that is very active. In the region, there
is the Zürich user group. The Commercial Haskell group, which is a
group composed of companies opened a GitHub organization, where
modified preludes and other useful contributions can be found.

58

mario meili: How is the IDE support for Haskell?
cyrill schenkel: First of all there is Cabal, which works good but is a bit

old. It has a good feature set (similar to autotools with dependency
management). But it is actually more of a package manager than an
IDE. As is Stack, a newer tool which makes snapshots for reproducible
builds. Stack is one of the contributions of the Commercial Haskell
group. Intero is an integration for Emacs, Visual Studio Code and
more. It is actually a fork of the Glasgow Haskell compiler interpreter.
It offers autocompletion and shows type errors, which Cabal and Stack
do not. The Emacs environment is very well developed. It also offers
formatting (using hstylish and hindent). The use of hlint even allows
to do some small refactorings. The major disadvantages of Intero are
that it needs Stack (old cabal projects might not work, one needs to
set up a stack project for everything) and it is not good in handling
special language extensions (such as template haskell). Sometimes, some
correct code might throw an error. These were the most used ”IDEs”
for Haskell development. Other products are EclipseFP (discontinued),
Leksah (very strange UI, not stable, written in Haskell), Haskell for
Mac (stable and offers installer), GHCMod (fork of ghci), GHCIDE
(fork of ghci, automatically reload changed modules), Hare (haskell
refactoring tool for haskell 98) and HIE (Haskell IDE Engine). But all
of these have major drawbacks when compared to modern IDEs for
imperative languages.

mario meili: Are there refactoring or optimization tools? If no, are they
needed?

cyrill schenkel: Refactorings are not needed very often. Mostly one
needs simple refactorings like autocompletion, formatting, method
extraction and renaming. There is an interesting paper on the topic
called Refactoring Functional Programs [49].

59

D. Agreement for Project Thesis

Student: Mario Meili
Semester: FS 2017
Advisor: Prof. Dr. Farhad Mehta
Project Partner: Institute for Software (IFS) HSR
Project Start Date: 20.02.2017
Project End Date: 28.07.2017
ECTS-Credits: 12 ECTS Credits

Project Title

If Functional Programming Is So Great, Why Isn’t Everyone Using It?

Goals and Project Description

Functional programming has been claimed to be the answer to many of the prob-
lems faced by software engineering today. Nevertheless, the large-scale adoption of
functional programming in the mainstream of industry has been, to put it mildly,
sluggish.

Aim:
The main aims of this project thesis are:

1. To systematically evaluate the extent to which functional programming is
being used in various industrial, commercial and practical settings as well as
the advantages and disadvantages of using functional programming in these
settings.

2. To propose and investigate reasons why the use of functional programming
has been limited, especially in areas where its advantages are found to be
clear.

3. To propose, discuss and prioritize measures that could be taken to increase the
benefit gained using functional programming in various industrial, commercial
and practical settings.

60

Method:
The following tasks and methods could be used as an initial impulse to work
towards the aims above:

1. Definition of scope: ”functional programming” as a paradigm, programming
style, a set of programming languages, or all these together? Which problem
domains (industrial, commercial and practical settings) are to be considered?
Examples include SCADA systems, accounting, the world-wide web, systems
software, etc. Problem domains with the highest occurrence and potential
for improvement, but the lowest penetration of functional programming, are
to be given precedence.

2. Meta-study over existing publications relevant to the problem statement.
This may include, but is not limited to academic proceedings, company press
releases, internet sites, blog posts, etc.

3. The construction of prototypes to illustrate the advantages of functional
programming in various problem domains. For instance, to illustrate what
functional design pattern could be used in a typical SCADA system and their
advantages over the state of the art.

4. Personal interviews with experts in the field.

Deliverables

• A technical report in English, describing the work done as part of this project.

• A scientific article in English, fit for publication in a conference proceedings,
summarising the results of this project.

• A critical personal reflection on the project and a statement of originality.

• A DVD containing all artefacts produced as part of this project.

• A final oral presentation of results with discussion.

Competencies to Be Gained (Professional, Methodological and
Self-Competence)

• The ability to understand, reflect on, and present scientific results.

• The ability to postulate, develop and evaluate hypotheses systematically,
using the scientific method.

• Contribute to the state of the art in the application of programming language
theory and technology in the industry.

61

Assessment Criteria

Per the module description SWSY PJ:

1. Overall assessment
Criteria: Originality, innovativeness and applicability of the project results.
Achievement of all project goals.

2. Organisation and Execution
Criteria: Formulation of the task description, project planning, planned and
systematic execution of the project, independent thought, dedication and
collaboration skills.

3. Report
Criteria: Content, structure, presentation and language.

4. Presentation
Criteria: Consideration of the target audience, language and content.

5. Content
Criteria: Preliminary study, requirement analysis, design, complexity, and
scope. Quality of the artefacts produced.

62

	Introduction
	Problem
	Goals
	Document Structure

	Background & Related Work
	Related Work
	The Functional Programming Paradigm
	Functions as First-Class Citizens
	Higher-Order Functions
	Referential Transparency
	Evaluation Stratgies
	Recursion
	Pattern Matching

	Programming Language Adoption
	Distribution of Language Popularity
	Choosing a Language
	Language Statistics

	Aspects Considered
	Performance
	Operations on Persistent Data Structures
	Memory Consumption
	Sidenote on Lazy Evaluation

	Concurrency & Parallelism
	Community Support
	Library & IDE Support
	Libraries
	IDE Support

	Application Areas
	Dividing the Area of Applications
	Defining Non-Functional Requirements
	Search for Existing Applications
	Identify Promising Areas
	Web Applications
	Hardware Programming & Design
	Enterprise Resource Planning Systems
	Mission Critical Systems
	Interesting Research Areas

	Results
	Conclusion & Future Work
	Future Work

	GitHub Repository Data
	Survey Data
	Interview with Cyrill Schenkel
	Agreement for Project Thesis

