
UNIVERSITY OF APPLIED SCIENCES RAPPERSWIL
DEPARTMENT OF COMPUTER SCIENCE

STUDY PROJECT

Redbackup: A Redundant Distributed
Backup System Prototype

Authors:
Fabian HAUSER and
Raphael ZIMMERMANN

Advisor:
Prof. Dr. Farhad MEHTA

Autumn Term 2017

https://www.hsr.ch

i

c⃝Copyright 2017 by Fabian Hauser and Raphael Zimmermann

This documentation is available under the GNU FDL License.

The Redbackup software is licensed under the AGPL-License. This does not apply
to third-party libraries.

ii

DON‘T PANIC
“It looked insanely complicated, and this was one of the reasons why the snug plastic cover
it fitted into had the words DON‘T PANIC printed on it in large friendly letters.”

The Hitchhiker‘s Guide to the Galaxy

iii

Abstract

Fabian HAUSER and Raphael ZIMMERMANN

Redbackup: A Redundant Distributed Backup System Prototype

Today, most individuals and small enterprises have a limited choice of how and
where they backup their data.

One possibility is via local storage media, for instance using external hard disk
drives. This requires considerable administration and may lead to a single point of
failure, since location redundancy requires extra effort. A second possibility is to use
cloud backup storage. This may lead to issues of privacy and a high dependency on
third-party providers.

There are no easy-to-use distributed backup systems with private data storage
on the market today.

In this study project we propose a redundant distributed backup system to ad-
dress this issue.

The architecture of this system consists of backup nodes which exchange data using
a peer-to-peer protocol, as well as a client application that creates and restores back-
ups. A management system has been introduced to allow users to manage multiple
backup nodes.

As a proof of concept, a prototype of the proposed client and node applications with
a reduced feature set has been implemented in the Rust programming language.

iv

Management Summary

Motivation

Today, most individuals and small to medium enterprises make backups on cloud
backup storage or local storage media as e.g. hard disk drives or network attached
storage systems (NAS).

These solutions require either considerable administrative effort for local storage
maintenance or a high level of trust in a third party storage provider.

Currently, there are no backup systems available on the market which are both
easy-to-use and provide the user with a high level of data security and privacy.

Project Goals, Approach and Technology

A backup system which resolves these issues must not only provide a secure and re-
liable application to create and store backups, but also permit users without further
domain knowledge to install and configure the application.

To meet these requirements we further analysed and created a comprehensive
architectural design.

The subsequent implementation of an architecture prototype took place in the
Rust system programming language1 which we learned during the course of this
project. Rust enabled us to create a very stable yet efficient backup prototype.

Results

The architecture consists of backup nodes which store and distribute data directly
over a network connection and a client application that creates and restores back-
ups to or from nodes. Lastly, a management system is introduced to allow users to
manage multiple backup nodes.

The presented prototype demonstrates the viability of our proposed architecture,
introducing a reduced feature set. The prototype can create, distribute and restore
unencrypted backups.

Prospects

To extend the prototype into a fully functional backup system, there are multiple
functionalities and improvements that may be implemented. The main missing
parts are backup encryption, splitting of backup data, advanced data distribution
strategies and the management application.

With our prototype, we demonstrate the viability of the architecture and pave
the way for further implementations.

1For more information, see https://www.rust-lang.org/

https://www.rust-lang.org/

v

Acknowledgements

We would like to thank our advisor, Prof. Dr. Farhad Mehta, for his continuous sup-
port and helpful comments.

Furthermore, we would like to thank Andrea Jurt Massey for her feedback re-
garding writing and language use.

vi

Contents

Abstract iii

Management Summary iv

Abstract iv

Acknowledgements v

Contents vi

1 Introduction 1
1.1 Motivation . 1

1.1.1 Present situation . 1
1.1.2 Problem . 1
1.1.3 Solution . 2

1.2 Goals and Tasks . 2
1.2.1 Initial Goals . 2
1.2.2 Revised Goals . 2
1.2.3 Deviations from the Original Goals 3

1.3 State of the Art . 3
1.3.1 Backup Applications . 3
1.3.2 Peer-to-Peer Backup Storage . 3
1.3.3 Goals . 4

2 Architecture Concept Paper 5
2.1 System Architecture . 5

2.1.1 Backup creation . 7
2.1.2 Backup restore . 8
2.1.3 Replication . 9
2.1.4 Security and Encryption . 9
2.1.5 Partitioning & Scaling . 10
2.1.6 Failure Detection . 10

2.2 Fundamental Design Decisions . 11
2.2.1 Hash Collisions . 12

2.3 Prototype . 14
2.3.1 Concrete Architecture . 14
2.3.2 Testing . 16

3 Discussion and Conclusion 19
3.1 Achieved Result . 19

3.1.1 Prototype . 19
3.1.2 Prototype Test Results . 19
3.1.3 Architecture . 20
3.1.4 Architecture Test Results . 20

vii

3.1.5 Requirements and Intentions . 21
3.2 Lessons Learned . 22

3.2.1 Project course . 22
3.2.2 Decisions . 23

3.3 Future work . 23
3.3.1 Reduce Memory and CPU consumption 24
3.3.2 Further demonstrate the architecture 24
3.3.3 Client-m-replication . 24
3.3.4 Evolve the Prototype into a Working Product 24

3.4 Conclusion . 24

Bibliography III

List of Figures IV

List of Tables V

Glossary VI

Appendices IX
A.1 Task Description . IX
A.2 Project Plan . XIV
A.3 Requirements . XXX

A.3.1 Intentions of a User . XXX
A.3.2 Intentions of an Administrator XXXI
A.3.3 Requirements . XXXII

A.4 Architectural Concept Paper . XXXV
A.4.1 Overview . XXXV
A.4.2 Actors . XXXV
A.4.3 Components . XXXVI
A.4.4 Scenarios . XL
A.4.5 Messages . XLVII

A.5 Language Evaluation . LVI
A.5.1 Decision . LVI

A.6 Prototype Command Line Interface . LX
A.6.1 Client . LX
A.6.2 Node . LXI

A.7 Personal Reports . LXIII
A.7.1 Raphael Zimmermann . LXIII
A.7.2 Fabian Hauser . LXIII

Declaration of Authorship LXIV

1

Chapter 1

Introduction

1.1 Motivation

In this section, we legitimate this study project and explain the value and applicabil-
ity of our proposed solution.

1.1.1 Present situation

With the ongoing fast digitisation, the demand for reliable and easy-to-use backup
solutions is growing fast. Not only enterprises, but also individuals take a great
interest in securing their digital artefacts.

Today, most individuals and small enterprises have limited choice with regards
to data backup storage.

Cloud backup storage offers many users high quantities of comfortable, easy to
use backup storage. In most cases, these solutions post either encrypted or unen-
crypted copies of the user data into a public cloud environment using specialised
software.

Examples for such cloud backup storage providers are Dropbox1 and Crash-
plan2.

Local backup solutions, for instance external hard disk drives or network attached
storage systems (NAS) offer a high level of data privacy.

Existing software solutions, for instance Borg Backup [22], rdedup [5] or custom
implementations with rsync [10] and ceph [40] allow for safe, deduplicated backups.

An existing solution which is easy to use for the Apple Mac platform, is Apple
Time Machine combined with a Apple Time Capsule3.

1.1.2 Problem

The backup solutions described in the previous section come with several repercus-
sions.

Cloud backup storage requires a high level of trust in a third party provider. It is
not evident, what level of data security and availability a user is provided with.

Furthermore, such solutions may raise privacy concerns or even legal issues, as
data is not kept safely on premises but in a data centre, possibly in another legal
domain.

1https://www.dropbox.com/
2https://www.crashplan.com/
3https://www.apple.com/airport-time-capsule/

https://www.dropbox.com/
https://www.crashplan.com/
https://www.apple.com/airport-time-capsule/

Chapter 1. Introduction 2 /25

Local backup solutions require considerable administrative effort, e.g. by manag-
ing and exchanging hard disk drives.

Another problem that is often encountered is missing backup copies. For in-
stance, backups are only stored on a hard disk drive in one location - which might
lead to data loss, e.g. in case of fire.

Safe and reliable solutions are non-trivial to set up and require a high level of
knowledge to operate.

Secondly, most of these solutions create backups directly to a writeable storage
medium from the client computer and do therefore not prevent data loss in case of
ransomware infections [43].

1.1.3 Solution

The problems listed in the previous sections must be addressed in the form of a
fast, easy to use, and secure backup system. Such a system must combine privacy
benefits of local backups with automated data distribution, to provide high safety
guarantees.

The target users of such a system are individuals (e.g. families) and small enter-
prises.

1.2 Goals and Tasks

This section presents the revised goals and provides a rationale for the deviations
from the original goals.

1.2.1 Initial Goals

The initial goals of this study project where specified by us in cooperation with
Prof. Farhad Mehta in the Task Description.

1.2.2 Revised Goals

This section lists the revised goals that were specified during the beginning of the
project. All deviations from the Task Description are noted in the following section
1.2.3 Deviations from the Original Goals.

1. Elaboration of the following issues in a theoretical concept and architecture:

(a) joining of nodes

(b) planned and unplanned leaving of nodes

(c) distribution of data within the network

(d) uploading data into the distributed system

(e) addressing within the distributed system

(f) retrieving stored data

(g) scalability for up to several 100 nodes where every node can store a data
volume of up to 2 terabytes.

2. Evaluation of an appropriate implementation language for the prototype

3. Implementation of a prototype, demonstrating the core features as specified in
the concept paper.

Chapter 1. Introduction 3 /25

1.2.3 Deviations from the Original Goals

Degree of Redundancy

While researching data redundancy strategies, we realised that the full specification
and implementation of client m-replication is not a feasible goal during the study
project. The reason for this is its complexity and the limited time frame of the study
project, as discussed in section 2.2 Fundamental Design Decisions.

Simplifications for Prototype

Due to time constrains of the study project, it was not possible to implement the
full specified architecture in the prototype. Hence, we decided to implement the
core backup, restore and distribution mechanisms, to demonstrate that the concept
works.

Simplifications for the prototype are discussed in Chapter 2 Architecture Concept
Paper.

1.3 State of the Art

In this section, we describe previous work and existing applications in this area.

1.3.1 Backup Applications

During our research, we primarily focused on software that was either described in
academic papers or available under open source licenses.

Borg Backup [22] is the most promising candidate of a deduplicating, encrypting
backup system, providing most of the described features.

Borg can also create backups to remote locations (e.g. over SSH) where a server-
mode Borg instance is running on the remote location. The downside of this im-
plementation is that the client still needs full write access to the backup server and
hence would permit malware to delete backups possibly.

Rdedup [5] is an implementation of a backup software similar to Borg in Rust. It
is still in an early development stage and is not yet able to create backups to remote
destinations.

Rsync, [10] designed initially for file synchronisation, is also often used to create
backups today. By using filesystem-hardlinks, it has file-deduplicating capabilities
and can also synchronise files to remote locations, so that old backup cannot be mod-
ified.

The two most significant downsides of rsync are that it must be combined with
several other applications (e.g. SSH, bash scripts, ceph) to provide a secure backup
solution and that it is relatively complicated to set up and configure.

1.3.2 Peer-to-Peer Backup Storage

There exist different approaches to create distributed, encrypted peer-to-peer stor-
age systems. Two notable representatives that create such a system decentralised
over the internet are Tahoe-LAFS [21] and IPFS [2].

Chapter 1. Introduction 4 /25

These systems distribute data over multiple (third) parties, consuming and pro-
viding data storage. As such, the data security is based on encryption algorithms
only.

Another well-researched market is that of distributed filesystems, with promi-
nent representatives as the Andrew File System [13] and ceph [40]. These filesystems
are commonly used in low latency, directly connected environments as data centres.

There also exist multiple concept papers on peer-to-peer distributed backup stor-
ages. The reports ”Adaptive Redundancy Management for Durable P2P Backup” [7]
and ”On Scheduling and Redundancy for P2P Backup” [37] examine ways how such
a system might distribute data in an efficient manner.

1.3.3 Goals

In this study project, we focus on the architecture of a backup software to lay the
foundations for a practical solution used by small enterprises and individuals. The
architecture should provide developers with a clear guideline on how to implement
such a system. Additionally, the prototype demonstrates a minimal implementation
of such a system.

5

Chapter 2

Architecture Concept Paper

In the first section of this chapter, we propose and discuss a system architecture for
a backup system. In the second section, we explain the underlying design decisions.
The third section presents the structure and test results of our prototype, which im-
plements a subset of the proposed system.

We illustrate architecture structure using the C4 model for software architecture1.

2.1 System Architecture

Actors There are two kinds of actors interacting with the system. A typical user
wants to store backups in the redbackup system and restore them (partially) when
needed. The other kind of actor is an administrator who configures the system, e.g.
extends storage capacity or replaces corrupted disks.

FIGURE 2.1: C4 System Context diagram showing the big picture.

Distinctive of both actors is that they do not want to interact directly with the
system unless human interaction is inevitable. This takes the burden of manually

1https://c4model.com/

https://c4model.com/

Chapter 2. Architecture Concept Paper 6 /25

creating backups away from the user including the risk of oblivion and minimises
management efforts required by the administrator.

Both actors, as well as their intentions, are described in more detail in Appendix
A.4 Architectural Concept Paper. Figure 2.1 presents a high-level overview that il-
lustrates the interactions of the actors with the redbackup system.

Structure The redbackup system consists of four core components as shown in the
C4 Container diagram in Figure 2.2.

FIGURE 2.2: C4 Container diagram illustrating the high-level shape
of the redbackup software system and how responsibilities are dis-

tributed.

Client A user instructs a client program typically running on the users machine to
perform (unattended) backups and restores. A client persists and loads its data from
one or more interconnected nodes.

Node A node is in charge of data chunks including their replication onto other nodes.
Nodes persist the actual data in a separate component, a storage, to encapsulate per-
sistence from replication and interaction to support different kinds of storage tech-
nologies (e.g. plain file systems or databases). A node and its storage are typically
deployed on the same host.

Management One central management component orchestrates the configuration
of the system by providing metadata to clients and nodes. This metadata includes
user information and a set of all nodes in the system including their addresses and
states. Clients and nodes must cache this metadata which ensures that a temporary

Chapter 2. Architecture Concept Paper 7 /25

unavailability of the management component does not compromise the replication
and backup process.

All components including their responsibilities and interactions are described in
more detail in Appendix A.4 Architectural Concept Paper.

Protocols Redbackup specifies a high-level protocol that is used for internal com-
munication (noted in all C4 diagrams as redbackup protocol). We deliberately spec-
ified the communication on a high level to encapsulate the underlying transport
mechanisms.

2.1.1 Backup creation

FIGURE 2.3: UML sequence diagram illustrating the communication
during the creation of a backup.

To create a backup, a client loads all node-metadata, that includes the addresses,
from the management. The client caches this set and chooses one of them as designated
node. This selection can either be random or based on heuristics, e.g. by analysing
the round trip time to a node.

The client then requests permission to perform a backup on a given designated
node by sending a get designation message that includes an estimated backup size
and the expiration date. If the designated node has the storage capacity as well as other
resources available (i.e. it is not under overload), it confirms the designation request.

By now, the client must start to build up backup metadata - hereafter called chunk
index - by walking recursively through all directories to backup. Each file that is not
explicitly excluded is split up into one or more data chunks using a rolling hash[23].

Chapter 2. Architecture Concept Paper 8 /25

Each of these chunks are then encrypted individually. Afterwards the client derives
the identifier of every chunk based on its contents. This mechanism enables dedu-
plication. Section 2.2 Fundamental Design Decisions discusses chunks and chunk
identifiers in detail.

The client sends the calculated chunk identifiers at regular intervals to the desig-
nated node. The designated node returns a subset of all chunk identifiers of the chunks
that are already present on it.

The client then posts the missing chunks to the designated node which acknowl-
edges successful receipt.

When all chunks are transmitted successfully, the client encrypts the chunk index
as well and sends it to the designated node using the same mechanism as for any other
chunk. The only difference is that an additional flag - hereafter called root handle - is
set so that it can be found again for restore.

The detailed backup scenario can be found in Appendix A.4.4.1 Create Backup.

2.1.2 Backup restore

FIGURE 2.4: UML sequence diagram illustrating the communication
during the restore of a backup.

The restore mechanism works identical to the backup process up to the point
where a designated node is chosen.

Next, the client loads all root handles from the designated node. The client can de-
crypt the chunk tables from the returned chunk contents. Based on this information,
the client can provide multiple restore options to the user, e.g. to restore a particular
version of a given file. With the user input and the previously fetched chunk tables,
the clients can calculate which chunks must be requested from the designated node.
Chunk contents are then downloaded at regular intervals from the designated node,
decrypted and combined.

Chapter 2. Architecture Concept Paper 9 /25

2.1.3 Replication

We deliberately only specified system n-replication, which means the degree of re-
dundancy for the entire system is equal to the amount of nodes in the system (see 2.2
Fundamental Design Decisions).

A node is in charge of all data stored on it. Each node - hereafter called sending
node - randomly picks n of its data chunks. It then picks one other node randomly
- hereafter called designated node - and requests which of the chosen data chunks re-
main persisted on the designated node. The designated node returns a subset of the
requested chunks that consists of all chunks that it owns. Using this response, the
sending node sends all missing chunks to the designated node which acknowledges suc-
cessful receipt.

FIGURE 2.5: UML sequence diagram illustrating the communication
during replication.

This scenario is described in more detail in the Appendix A.4.4.6 Data Replication.

2.1.4 Security and Encryption

Data Integrity One of our primary design goals is to ensure that once data is in
the redbackup system, it cannot be altered or deleted from a client to prevent ran-
somware attacks [43]. To achieve this, each backup is provided with an expiration
date on which nodes are allowed to remove the associated data.

Reasoning and potential risks of physical time are discussed in section 2.2 Re-
moval of Old Backups.

Data Integrity on Nodes Because nodes can also be the target of randsomware at-
tacks, each node, or more precisely its associated storage component, must verify that
given chunk contents are not corrupted. To be able to do so, it must be possible to
calculate the identifier of such a data chunk from its contents, using cryptographic
hash functions.

A discussion on the role of hash functions including the chosen algorithms for
the study project is carried out in section 2.2.1 Hash Collisions.

Data Integrity on the Management The management component has no knowledge
of the persisted data in the system. It only manages configuration and must not have
detailed knowledge of chunks (need-to-know principle [20]).

Chapter 2. Architecture Concept Paper 10 /25

Data Encryption A client encrypts chunks when creating a new backup. This en-
sures that no other participant in the redbackup system can inspect file contents
(need-to-know principle [20]). The encryption and decryption keys are only stored
on the client and must be backed up separately.

Transport Security All sent messages should be signed by the sender. If so, trans-
port layer encryption is not strictly necessary because all user data is already en-
crypted on the client with the only exception of the expiration date.

A detailed description of these security mechanisms would be out of scope for this
study project and will have to be carried out in a next step.

2.1.5 Partitioning & Scaling

Availability & Overload To scale the redbackup system regarding availability, more
nodes can be added to the redbackup system. If a given node is overloaded, a client
can use another node for backup creation or restore.

Because the backup and restore processes require approval of a designated node
(see scenarios A.4.4.1 Create Backup and A.4.4.2 Backup Restore), an overloaded
node can finish work in progress backups/restores and reject new requests (following
the patterns Finish Work In Progress and Shed Load [11]). The data is replicated to
overloaded nodes eventually.

We ensured that nodes are (mostly) stateless which simplifies scaling as well.

Storage Scalability Because the proposed system currently only supports system
n-replication (see section 2.2 Fundamental Design Decisions), the maximum storage
capacity is equal to that of the node with the smallest storage. Therefore, to in-
crease storage capacity, the capacity of all nodes must be extended to meet the desired
amount.

To minimise network usage deduplication of data is used on the client. Dedu-
plication is discussed in the paragraph Storage Unit in 2.2 Fundamental Design
Decisions.

2.1.6 Failure Detection

Additionally to the above-discussed mechanisms for fault tolerance regarding secu-
rity and scaling, the following failure detection mechanisms are in place.

Reporting Most issues that occur on a node are reported to the management com-
ponent (following the pattern Someone in Charge [11]). The management can then
decide to notify the system administrator or execute error mitigation processes, e.g.
suspend a given node temporarily.

If a node tries to connect to another node that is not available, it notifies the man-
agement component (following the pattern System Monitor[11]).

Each node periodically checks the persisted contents for possible corruption using
the checksum mechanisms discussed in 2.1.4 Security and Encryption (following the
Pattern Routine Audits [11]). If a corruption is detected, the storage notifies the node
which notifies the management.

Chapter 2. Architecture Concept Paper 11 /25

Single Point of Failure For the case that the management component is temporarily
unavailable, nodes and clients cache metadata, e.g. information about other nodes.
Using these caches, nodes can perform replication and clients manage their backups
without interruption. Any notifications that were not successfully transmitted to the
management must be buffered on the nodes in order to ensure their delivery.

2.2 Fundamental Design Decisions

We used the morphological box technique to explore different possible implementa-
tion options (see Table 2.1). The chosen option should be as simple as possible for
the prototype developed in the study project but extensible for further adaption.

The following paragraphs reason the selected entry in each dimension.

Redundancy We originally planned to support client m-replication, which means
that the client defines a custom degree of redundancy from 1 to the number of nodes
in the system. However, this is a complex mechanism that requires sophisticated
algorithms to work correctly and efficiently. For the prototype, we chose the more
straightforward implementation option system system n-replication, where the degree
of redundancy for the entire system is equal to the number of nodes in it. Changing
this option in the future will not be trivial because it requires additional changes in
the replication process and the communication protocols.

Storage Unit The idea of chunks come from Borg Backup. Files are partitioned into
chunks using a rolling hash which enables deduplication and space efficient backups
for large files [23]. These are desired properties in a backup system to minimise
network and disk usage.

Encrypting chunks means that deduplication of the same file coming from dif-
ferent users is not possible anymore but is a necessity for privacy. Encryption is not
trivial and requires a user concept that is out of scope of the prototype developed in
the study project. We chose the plain files option for the study project to simplify the
client implementation. In the future, supporting encrypted chunks will be possible
by just modifying the client.

Role of the Management The one in charge option is the most straightforward op-
tion to implement, but conflicts with many intentions of the administrator (see A.3.2
Intentions of an Administrator). We also intended to avoid a single point of failure.
We chose the option autonomous replication because it guarantees that replication
is always ensured and keeps communication relatively simple.

Storage Backend Using the file system is the simplest possible solution for the
study project and therefore the selected option. Adding support for other backends
in the future is still possible because the storage component is an isolated part in the
architecture (see A.4.3.3 Storage).

The number of files in a folder is limited depending on the used file system,
length of a filename and other factors. Some file systems (e.g. ext4) have a global
limit for the maximal number of files. This limit is 4 billion files for ext4. [42]. There-
fore we use the ext4 file system to persist data in the study project.

Chapter 2. Architecture Concept Paper 12 /25

Removal of Old Backups We decided to use physical timestamps that must be
specified on backup creation. After expiration, the backup data may be removed by
a garbage collector running on a node. This may be extended to allow only mutual
garbage removal in the future.

A significant problem that physical time addresses is the safety of backup data in
case a user computer is infected with malware [43]. An illicit application might com-
mand the removal of backups or create new backups to initiate a garbage collection
process to free storage capacity.

Nevertheless, the use of physical time has the downside of possible data loss in
case of wrong system times. To mitigate this risk, the system should use multiple
distinct upstream time-servers. Multiple distinct upstream time-servers are used
with a high probability as the proposed redundancy model motivates users to ex-
pand the system across multiple physical locations. Furthermore, the client, nodes
and management should verify a reasonable accurate time when communicating mu-
tually.

Programming Language & Ecosystem We chose Rust over Erlang and Go because
it offers great performance and minimal overhead supported by a powerful type
system. A complete language evaluation can be found in A.5 Language Evaluation.

2.2.1 Hash Collisions

To achieve deduplication and space-efficient backups for large files, as discussed
above, a chunk identifier must be derived from the actual chunk contents. A com-
mon mechanism used to derive identifiers from binary data is the use of crypto-
graphic hash functions. Most cryptographic hash functions produce a message di-
gest that has a fixed length (e.g. SHA-256[9] produces a 256-bit digest) for a given
message with an arbitrary length. The restricted length can theoretically lead to col-
lisions. Perfect hash functions do not have this property because their input message
length is equal to the length of the resulting message digest. A perfect hash function
is not practical in our case due to the large message digests. With cryptographic hash
functions, collisions are possible but unlikely. Assuming that the applied function
does produce equally distributed results, the probability can be calculated based on
the birthday problem[41] as follows, where p is the number of chunks in the system
and n the length of the message digests:

P(p, n) =
p2

2n+1

Assuming we have p = 3021 chunks the system (which is equivalent to two
billion years of music assuming each chunk has a size of one byte[19]) and using
the SHA-256 algorithm, the probability of a collision is about 4.72 · 10−16, which is
highly improbable and may therefore be neglected.

However, did a collision occur after all, for example, if the used cryptographic
hash function were flawed or the unlikely event occurred, it would result in data
loss.

In theory, we could detect collisions on the client. To do so, every time an iden-
tifier is calculated, the client must verify that if a chunk with the same identifier
already exists in the system, it has the exact same contents. If the contents differ, it
is a collision. This approach requires a lot of network traffic and can slow down the
backup process significantly.

Chapter 2. Architecture Concept Paper 13 /25

TA
B

L
E

2.
1:

M
or

ph
ol

og
ic

al
Bo

x

R
ed

un
da

nc
y

N
o

re
du

nd
an

cy
C

lie
nt

m
-r

ep
lic

at
io

n:
Th

e
cl

ie
nt

de
fin

es
a

cu
st

om
de

-
gr

ee
of

re
du

nd
an

cy
(f

ro
m

1
to

th
e

nu
m

be
r

of
no

de
s)

.

Sy
st

em
m

-r
ep

lic
at

io
n:

Th
e

ad
m

in
is

tr
at

or
de

fin
es

th
e

de
gr

ee
of

re
du

nd
an

cy
fo

r
th

e
en

ti
re

sy
st

em
(f

ro
m

1
to

th
e

nu
m

be
r

of
no

de
s)

.

Sy
st

em
n-

re
pl

ic
at

io
n:

Th
e

de
gr

ee
of

re
du

nd
an

cy
fo

r
th

e
en

ti
re

sy
st

em
is

eq
ua

l
to

th
e

am
ou

nt
of

no
de

s
in

th
e

sy
st

em
.

St
or

ag
e

un
it

Pl
ai

n
fil

es
En

cr
yp

te
d

fil
es

C
hu

nk
s:

C
ut

fil
es

in
to

m
ul

ti
pl

e
pa

rt
s

an
d

st
or

e
th

es
e

in
di

vi
du

al
ly

.

En
cr

yp
te

d
ch

un
ks

:
Sa

m
e

as
ch

un
ks

,
bu

t
ev

er
y

ch
un

k
is

in
di

vi
du

al
ly

en
cr

yp
te

d.

R
ol

e
of

th
e

m
an

ag
em

en
t

O
ne

in
ch

ar
ge

:
Th

e
m

an
-

ag
em

en
t

kn
ow

s
an

d
co

nt
ro

ls
ev

er
yt

hi
ng

(e
.g

.
th

e
lo

ca
ti

on
of

ev
er

y
fil

e/
ch

un
k)

.

C
on

fig
ur

at
io

n
on

ly
:

Th
e

m
an

ag
em

en
t

m
us

t
be

av
ai

la
bl

e
fo

r
ad

m
in

is
tr

a-
ti

ve
ta

sk
s

on
ly

.
Th

e
no

de
s

ar
e

m
os

tl
y

au
to

no
m

ou
s.

A
ut

on
om

ou
s

re
pl

ic
at

io
n:

Th
e

m
an

ag
em

en
tm

us
tb

e
av

ai
la

bl
e

fo
r

m
os

t
of

th
e

ta
sk

s
bu

t
re

pl
ic

at
io

n
al

so
w

or
ks

if
th

e
m

an
ag

em
en

t
is

do
w

n.

N
o

m
an

ag
em

en
t:

Ev
er

y
no

de
is

co
m

pl
et

el
y

au
-

to
no

m
ou

s.

St
or

ag
e

ba
ck

en
d

Pl
ai

n
fil

es
ys

te
m

:
St

or
e

al
l

fil
es

/c
hu

nk
s

as
fil

es
in

on
e

di
re

ct
or

y
w

it
h

a
un

iq
ue

id
en

ti
fie

r.

D
at

ab
as

e:
U

se
an

ex
is

t-
in

g
da

ta
ba

se
so

lu
ti

on
(e

.g
.

G
it

,R
ed

is
,R

oc
ks

D
B)

.

C
lo

ud
St

or
ag

e:
A

pr
ox

y
to

a
cl

ou
d

st
or

ag
e

pr
ov

id
er

(e
.g

.A
m

az
on

S3
).

C
us

to
m

:
A

n
op

ti
m

iz
ed

ve
rs

io
n

of
th

e
pl

ai
n

fil
e

sy
st

em
op

ti
on

w
it

h
op

ti
-

m
is

ed
in

de
xi

ng
an

d
co

m
-

pr
es

si
on

.

R
em

ov
al

of
ol

d
ba

ck
up

s
Ph

ys
ic

al
ti

m
e:

D
at

a
is

re
m

ov
ed

on
a

sp
ec

ifi
ed

ph
ys

ic
al

ti
m

e.

U
se

r
co

m
m

an
d:

Th
e

us
er

co
m

m
an

ds
re

m
ov

al
of

da
ta

.

Fr
ee

st
or

ag
e:

D
at

a
is

re
-

m
ov

ed
,

as
so

on
as

ca
pa

c-
it

y
is

su
es

oc
cu

r.

Ph
ys

ic
al

ti
m

e
w

it
h

m
ut

ua
l

ag
re

em
en

t:
A

ll
no

de
s

m
us

t
ag

re
e

be
fo

re
da

ta
is

re
-

m
ov

ed
.

Pr
og

ra
m

m
in

g
la

ng
ua

ge
/

ec
os

ys
te

m
R

us
t

G
o

Er
la

ng

Chapter 2. Architecture Concept Paper 14 /25

Another place to detect collisions is on the node component. A node can verify if
the contents of a given chunk are equal to the contents already present in the system.
The downside of this approach is that it requires the client always to send the full
contents of every chunk, which leads to a lot of additional network traffic.

Both of the described approaches for collision detection have significant costs
that are not practical.

As for the study project, we use the SHA-256 algorithm[9] and neglect the risk of
hash collisions due to its low probability. Nonetheless, we prepare all protocols and
components to use an interchangeable mechanism for the calculation and transmis-
sion of file/chunk identifiers.

2.3 Prototype

Because the entire system, as described in the previous sections, is too large and
complex to implement in the form of a study project prototype, we reduced the
functionality to its core.

Our prototype focuses on the backup, restore and replication scenarios as de-
scribed in Appendix A.4.4 Scenarios leaving out encryption.

We also limited the supported platforms to 64-Linux only as this is the operating
system we use for development and continuous integration.

The implemented prototype is organised in 46 modules, defines 188 functions
and has 4’240 lines of code, including unit test code and whitespace. All compo-
nents are implemented using the Rust programming language [34]. Installation in-
structions are documented in the project’s repository.

2.3.1 Concrete Architecture

Figure 2.6 illustrates the system as implemented in our prototype.
The client and node are delivered as executables that are configured and launched

using the command line.
The node component binds itself to a configured network interface and port on

which it provides the services for backup creation, backup restore and replication.
The client executable is started individually for every operation that is the cre-

ation of a backup, listing all backups persisted on a given node and data restore.

Client

The client executable bundles three components as shown in Figure 2.7.
Client-cli contains the command line specific logic that provides an uncluttered

interface for advanced users and serves as an entry point in the client’s core logic.
We used the clap2 library to implement this component. The command line interface
is described in Appendix A.6.

The client component contains the actual logic for creating and restoring back-
ups. It is organised as a library so that it can be used from other projects as well, e.g.
if we provide a graphical user interface in the future. The client component creates
the chunk index for every backup in a separate SQlite-database. For database access,
we used the Diesel3 ORM-library.

2https://clap.rs/
3https://diesel.rs/

https://clap.rs/
https://diesel.rs/

Chapter 2. Architecture Concept Paper 15 /25

FIGURE 2.6: C4 Container diagram illustrating the high-level shape
of the prototype and how responsibilities are distributed as imple-

mented in the study project.

The client component makes heavy use of a networking library called tokio[38]
that provides an efficient event loop similar to the Reactor pattern [4]. Although
tokio supports highly parallel networking code, we decided to implement all inter-
actions on the client serial to maintain readability.

The (de-) serialisation mechanisms for messages sent to and received from nodes
are encapsulated in the protocol component, following the Forwarder Receiver Pat-
tern [4].

We opted for Diesel and tokio because there are currently no comparable alter-
natives on the marked in both application areas.

In the prototype, the client interacts with one node at a time to maintain simplic-
ity. The node to interact with is passed to the client executable via command line
arguments.

Node

The node executable bundles four components as shown in Figure 2.8.
Just like the client implementation, the command line logic is encapsulated in a

separate component called node-cli.
The core logic is implemented in the node library. Like the client, the node com-

ponent makes heavy use of the tokio and Diesel libraries. In contrast to the client,

Chapter 2. Architecture Concept Paper 16 /25

FIGURE 2.7: C4 Container diagram illustrating the shape of the client
and how responsibilities are distributed as implemented in the study

project.

we used the parallel features of tokio. To keep the chosen technology close to the
client, we decided to use SQLite for the chunk table. This must be changed in the fu-
ture because SQLite locks the entire database when writing, which makes concurrent
updates impossible [36].

We use the same protocol component for (de-) serialisation of messages on the
node and the client.

The storage component is also bundled directly in the node executable. It persists
data in one single directory as described in 2.2 Fundamental Design Decisions.

Other known nodes are passed to the node executable via command line argu-
ments.

Because user authentication requires additional cryptographic efforts, the proto-
type accepts backups and replications from everyone.

2.3.2 Testing

In the following subsections, we describe how the prototype and architecture can be
tested.

Unit Tests

Test Driven Development (TDD) [1] should be used as much as possible. Our Defini-
tion of Done (Appendix A.2) states that reasonable unit and integration tests [must]
exist and pass.

Chapter 2. Architecture Concept Paper 17 /25

FIGURE 2.8: C4 Container diagram illustrating the shape of the node
and how responsibilities are distributed as implemented in the study

project.

All unit tests are executed on every build run on our continuous integration
server. That is on every repository push and pull request.

Integration Tests

We defined two primary environments for the integration tests: A minimal network
as defined in Figure 2.9 and a medium one, as defined in Figure 2.10.

These two rather small network styles will most commonly be deployed, yet they
can expose most of the possible problems.

The integration tests are run automatically at least on every tagged release (i.e.
at least once every sprint). Because of the (yet) well manageable set of integration
tests for the prototype, these tests can run on every build as well.

FIGURE 2.9: Minimal integration test with one client and two nodes.

Chapter 2. Architecture Concept Paper 18 /25

FIGURE 2.10: Medium integration test with three clients and three
nodes.

Tests for fault tolerance, e.g. what happens if a node goes down while receiving
data, can be implemented as integration tests as well.

Architecture tests

Architectural tests are special and manually run tests to verify the scalability of our
software architecture.

19

Chapter 3

Discussion and Conclusion

This chapter contains our achieved results and lessons learned, discusses future
work and closes with a conclusion.

3.1 Achieved Result

3.1.1 Prototype

In our prototype, we implemented the basic concepts of our architecture in a limited
form. Rust was undoubtedly an excellent choice as a programming language for
the prototype regarding robustness and performance but turned out to have a very
steep learning curve. The same applies to the used frameworks tokio and Diesel.
For this reason, we had to compromise to demonstrate as much of the architecture
as possible without spending too much time on learning Rust.

Nevertheless, our implementation is solid and proves that the proposed archi-
tecture is robust and can be pursued further.

3.1.2 Prototype Test Results

Unit Tests We used test driven development (TDD) to develop the prototype as
much as possible, which turned out to work great in the Rust ecosystem.

Some unit tests written for the prototype are not pure unit tests but minimal
integration tests. Because Rust is not a traditional object-oriented language, it is not
possible to introduce and use interfaces (Traits) in the same way as we were used to
from other languages such as Java or C#. Due to the steep learning curve of Rust,
we were not able to fully utilise the corresponding mechanisms.

Integration Tests To write comprehensive black box integration tests, we imple-
mented a testing library written in Python1. In this framework, the internals on how
to launch and configure clients and nodes is encapsulated in classes. Using this ab-
straction, we were able to launch clients and nodes in separate Docker2 containers, so
that they are as isolated as possible. All containers used in a test case are connected
to a dedicated Docker network, which eliminates possible interferences with other
network services.

We wrote integration tests that verify that backups are flawlessly created, re-
stored and replicated onto other nodes.

1https://www.python.org/
2https://www.docker.com/

https://www.python.org/
https://www.docker.com/

Chapter 3. Discussion and Conclusion 20 /25

Test coverage Because Rust is still a young language with a relatively small ecosys-
tem, tools for measuring code quality are still rare and immature. For our unit tests,
we used Tarpaulin3 to generate code coverage. Tarpaulin does not yet cover all lan-
guage features and therefore returns an incomplete coverage number. We achieved
53.5% line coverage. This number would be significantly higher if all executed lines
were counted correctly (e.g. generated code using macros as well as compiler opti-
misations are not counted).

Code coverage achieved using the integration tests is not yet supported by any
tool known to us and therefore undocumented. The integration tests do however
cover all positive scenarios that were implemented.

Our integration testing framework allowed us to write such tests in a simple
fashion.

3.1.3 Architecture

The architecture we elaborated in Chapter 2 and Appendix A.4 turned out to to be
stable. It has proven advantageous that we did not specify too many details at the
beginning (for example, the protocol) but focused on the high-level view.

3.1.4 Architecture Test Results

To ensure the validity of the proposed architecture, we manually ran architecture
tests. We focused on scalability, data capacity and concurrent backups. We used our
integration test framework for these tests as well.

Overall Performance

The conducted architecture tests on the prototype have shown a solid overall per-
formance. Unfortunately, we observed significant memory consumption and CPU
utilisation during most test scenarios.

CPU Utilisation Replication and the creation of a backup require a lot of CPU time
on the node and client components. The client component must execute many hash
functions during the creation of chunks. A node must verify that the provided chunk
identifiers can be derived from the sent chunk contents during backup creation and
replication.

Intensive CPU utilisation can be problematic, especially on a node. This is some-
what an inherit problem of the proposed architecture because these calculation are
required to ensure the integrity of the data stored in the system.

To mitigate this issue, a queuing mechanism could be implemented on the node
component that temporarily accepts chunks without performing integrity checks.
These integrity checks could then be performed in the near future and the sent chunks
would afterwards be added definitely to the chunk table. The backup and replica-
tion protocol needs to be adapted to signal such a temporary queuing on a node to
clients or other nodes. A new state (e.g. queuing) could be sent instead of an ac-
knowledgement that instructs clients and nodes to ask again for acknowledgement
later.

It has to be investigated whether specific CPU acceleration for hash calculation
could mitigate this problem as well.

3https://github.com/xd009642/tarpaulin

https://github.com/xd009642/tarpaulin

Chapter 3. Discussion and Conclusion 21 /25

Memory Consumption To prevent premature optimisation, which Donald Knuth
famously pointed out is the root of all evil [15], we implemented messages without
streaming support. We implemented the high-level redbackup protocol as framed
Message Pack4 encoded messages based directly on TCP. Such a Message Pack mes-
sage is (de-)serialised in a single piece. In other words, whenever a message is created
or received, all its contents including the payload is loaded into memory. This deci-
sion, in combination with the design decision to not split up large files into multiple
chunks, has led to significant memory consumption.

The protocol details must be clarified in the future to allow message streaming.
Refactoring the protocol component to use streaming mechanisms is feasible since
tokio provides these mechanisms[39].

Size Scalability Test Results

As per our requirements in Appendix A.3, the architecture should scale up to 100 nodes.
To test this scenario, we used the same underlying techniques as in our integra-

tion tests, but scaled the infrastructure up to 100 nodes.
Due to the high memory consumption, we were not able to conduct this test with

a significant amount of data. A test run during which a 5MB file was replicated to
99 nodes did not indicate a degraded performance.

Data Capacity Test Results

Our requirements (Appendix A.3) also state, that a node must be able to handle up to
2TB of data. To test this requirement, we planned to create large amounts of random
data that has to be stored. This is a realistic requirement, as e.g. images, audio files
and film collections might reach such sizes in practice.

It was not possible yet to create one single backup of 2TB at once due to the high
memory consumption. Performing multiple backups in a row of a smaller dataset
(i.e. 5 files with a size of 500MB) has not shown a decrease in performance.

Concurrent Test Results

We ran a test in which 5 clients backup randomly generated data onto three randomly
chosen nodes. On average, the entire backup process of a 1MB chunk took 90-130ms
from one docker container into another. These results clearly support our proposed
architecture.

In reality, where clients and nodes are on separate physical machines, this time will
be significantly higher due to network latency. Also, because the creation of back-
ups require a lot of CPU time, running all clients on one machine is somewhat prob-
lematic. It is likely, that running all clients and nodes on separate machines would
improve the performance slightly.

3.1.5 Requirements and Intentions

Because we aim for fully automated backups with ideally no user interaction at all,
we specified the intentions of actors instead of their interactions with the system.
Many of these intentions only describe the actors expectations of the system and are

4https://msgpack.org/

https://msgpack.org/

Chapter 3. Discussion and Conclusion 22 /25

therefore not precisely measurable. We therefore only derived a limited set of mea-
surable requirements from the intentions. Both, the requirements and the intentions,
were instrumental during the design phase to make several architecture decisions.

The intentions and requirements are listed in Appendix A.3 Requirements.
We were able to address all specified intentions and requirements in our archi-

tecture and prototype.

3.2 Lessons Learned

In this section, we describe unexpected project events and the lessons we learned
from them.

3.2.1 Project course

Documentation

While discussing the documentation efforts in mini-retrospective two, we noted that
some terms like metadata or chunks were not defined unambiguously and therefore
used for different concepts in varying contexts. To standardise these, we decided to
introduce a glossary that uniquely and precisely defines each of these terms.

While elaborating the architecture, we started researching advanced data dis-
tribution mechanisms and consensus algorithms. We were both very interested in
these topics, but after a discussion with Prof. Mehta and retrospective one, we re-
alised that the time frame of the study project would not suffice to implement such
advanced algorithms.

We frequently underestimated the documentation efforts, particularly the time
required for reviewing. We responded by estimating more time and increase the
risk reserve time for documentation issues. Besides, we also agreed we would stop
and reassess earlier on issues that took longer than expected.

Rust Formatting and Documentation

During retrospective two, we noted that the source code was not fully formatted
according to the Rust Style Guide5 and that the source code documentation was
not complete. To ensure consistent code formatting, we added the RustFmt6 tool as
acceptance criterion to our Definition of Done (Appendix A.2) and created a task to
complete the documentation.

Project management

During mini-retrospective one and the first full retrospective, we discussed several
small improvements regarding the task management and how, respectively, where
we would work together. During the second sprint, we also neglected to plan time
for the supervision meeting and infrastructure updates, which we met by creating a
checklist for sprint planning.

A month into the project during the second mini-retrospective, we agreed that we
should create more issues with shorter running times and make sure that we review
issues as soon as possible. Also, the reported working hours were incomplete and

5https://github.com/rust-lang-nursery/fmt-rfcs/blob/master/guide/guide.md
6https://github.com/rust-lang-nursery/rustfmt#rustfmt—

Chapter 3. Discussion and Conclusion 23 /25

only narrowly fulfilled the planned sprint goals. Therefore, we decided to log the
working hours more precisely and intensify the work efforts.

3.2.2 Decisions

Redundancy: system n-replication

For the prototype, we decided to implement system n-replication. This decision worked
out as we expected and allowed us to create a straightforward yet efficient way to
replicate chunks.

Programming Language and Ecosystem

During the language evaluation, we decided for using Rust to implement the proto-
type (See A.5 Language Evaluation for details on this decision).

While we still think that Rust is the right choice for the implementation of a
backup application as presented in this report, we would have been more productive
with a language we already had experience in, like Python or Java. For a prototype,
these languages would also have sufficed, despite possibly not being as stable and
fast as a Rust implementation.

Frameworks: Tokio and Diesel

As discussed in Chapter 2 Architecture Concept Paper, we utilised the tokio and
Diesel frameworks. While offering an advanced feature set considered the relative
young Rust ecosystem, we found that the documentation for both frameworks were
not sufficiently comprehensible.

Also, the Diesel framework offers an insufficient set of type implementations for
SQLite and lacks extensibility e.g. adding support for timezone timestamps.

Storage: Database with SQLite

As we started implementing the prototype, using SQLite seemed an obvious choice,
as it is both easy to use and lightweight.

This decision turned out to be suboptimal, as SQLite is not very well suited for
concurrent write access [36] and offers an insufficient set of data types [35]. For
example, SQLite only allows signed 32-bit integers to be used as record identifiers,
which effectively limits the number of files, folders or chunks to 231 − 1 each in the
prototype.

As a result of the combined difficulties with Diesel and SQLite, we spent consid-
erably more time implementing the database access than initially planned.

In hindsight, we should have further evaluated other database systems including
an in-memory database for the client.

3.3 Future work

In this study project, we laid out the fundamental architecture and created a minimal
prototype to demonstrate the viability of the main parts of our architecture. On this
basis, various aspects can be evolved and improved.

Chapter 3. Discussion and Conclusion 24 /25

3.3.1 Reduce Memory and CPU consumption

As already stated in section 3.1.4 Overall Performance, the memory consumption
and CPU usage can be improved.

3.3.2 Further demonstrate the architecture

As discussed in section 2.3 Prototype, we did not yet implement all functionality as
described in the architecture concept paper. Some crucial aspects that we left out still
have to be demonstrated, especially joining and leaving of nodes as well as chunk
encryption and splitting.

3.3.3 Client-m-replication

As carried out in chapter 2, the details of client m-replication are unresolved and have
to be carried out.

3.3.4 Evolve the Prototype into a Working Product

If all remaining aspects of the architecture have been demonstrated, an actual work-
ing product shall be implemented that is not only a proof of concept but enables
users to create backups in a simple, sustainable way.

3.4 Conclusion

In comparison to existing backup solutions presented in section 1.3 State of the
Art, we designed a system that is both scalable yet easy to use. Our backup client
is designed similar to Borg [22] but is solely aimed at backups with the redbackup
system, whereas Borg is usually used to create local backups.

We decided against specifying and implementing client m-replication in detail, as
there is existing research in this area [7] [37] and the time frame of the Study Project
would not have sufficed to go into further detail.

Our proposed Architecture has turned out to be accurate as demonstrated with
the prototype, in which we implemented the main parts required to perform, restore
and replicate backups. We are confident that our design also works on a large scale
and can be used to implemented an enhanced backup system for production usage.

Rust turned out to be an excellent choice for implementing a backup software due
to its stability, speed and modern language features. Nevertheless, the very steep
learning curve resulted in more learning efforts than anticipated.

The Study Project went well from our point of view. Not only were we able to
reach most of our ambitious goals, but we also had the opportunity to learn a lot
during the project. Our initial planning and the Project Plan turned out to be mostly
accurate.

In the Future, we intend to implement a full backup system based on the architec-
ture and prototype elaborated in this study project. The initial vision of an easy to
use distributed backup system with private data storage has not only turned out to
be realistic but has also been positively received and led to stimulating discussions.

Chapter 3. Discussion and Conclusion 25 /25

I

Bibliography

[1] K. Beck. Test Driven Development: By Example. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

[2] J. Benet. IPFS - content addressed, versioned, P2P file system. CoRR,
abs/1407.3561, 2014.

[3] Bundesamt für Sicherheit in der Informationstechnik. Kryptographis-
che Verfahren: Empfehlungen und Schlüssellängen - version: 2017-
01. https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/

Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__

blob=publicationFile&v=4, 2017.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
Oriented Software Architecture - Volume 1: A System of Patterns. Wiley Publishing,
1996.

[5] Dawid Ciarkiewicz et al. Data deduplication engine, supporting optional com-
pression and public key encryption. https://github.com/dpc/rdedup, 2017.

[6] B. Degenhardt. What libraries can I use to build a GUI
with Erlang? https://stackoverflow.com/questions/97508/

what-libraries-can-i-use-to-build-a-gui-with-erlang/, 2008.

[7] M. Dell’Amico, P. Michiardi, L. Toka, and P. Cataldi. Adaptive redundancy
management for durable P2P backup. Computer Networks, 83(Supplement
C):136 – 148, 2015.

[8] C. Doxsey. An introduction to programming in Go, chapter Concurrency. CreateS-
pace Independent Publishing Platform, 2012.

[9] Eastlake, Hansen, et al. RFC 6234 - shas, hmac-shas, and hkdf. https://tools.
ietf.org/html/rfc6234, 2011.

[10] W. et al. rsync - an open source utility that provides fast incremental file transfer.
https://rsync.samba.org/, 2017.

[11] R. Hanmer. Patterns for Fault Tolerant Software. Wiley Publishing, 2007.

[12] F. Hebert. Learn You Some Erlang for Great Good!: A Beginner’s Guide, chapter
Introduction. No Starch Press, San Francisco, CA, USA, 2013.

[13] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satyanarayanan,
R. N. Sidebotham, and M. J. West. Scale and performance in a distributed file
system. ACM Trans. Comput. Syst., 6(1):51–81, Feb. 1988.

[14] Software engineering – Product quality – Part 1: Quality model. Standard,
International Organization for Standardization, June 2001.

https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/TechnischeRichtlinien/TR02102/BSI-TR-02102.pdf?__blob=publicationFile&v=4
https://github.com/dpc/rdedup
https://stackoverflow.com/questions/97508/what-libraries-can-i-use-to-build-a-gui-with-erlang/
https://stackoverflow.com/questions/97508/what-libraries-can-i-use-to-build-a-gui-with-erlang/
https://tools.ietf.org/html/rfc6234
https://tools.ietf.org/html/rfc6234
https://rsync.samba.org/

BIBLIOGRAPHY II

[15] D. E. Knuth. Structured programming with go to statements. ACM Comput.
Surv., 6(4):261–301, Dec. 1974.

[16] N. Matsakis. Introducing MIR - the rust programming language blog. https:

//blog.rust-lang.org/2016/04/19/MIR.html, 2016.

[17] N. Matsakis and A. Turon. Stability as a Deliverable - the rust programming
language blog. https://blog.rust-lang.org/2014/10/30/Stability.html,
2014.

[18] J. Morrow. Packaging Erlang Applications. https://speakerdeck.com/

jaredmorrow/packaging-erlang-applications, 2013.

[19] Peter Frisch. 2016: The Year of the Zettabyte - seagate smart business. https:

//web.archive.org/web/20141208222542/http://storageeffect.media.

seagate.com/2014/07/storage-effect/2016-the-year-of-the-zettabyte/,
2014.

[20] M. Schumacher, E. Fernandez, D. Hybertson, and F. Buschmann. Security Pat-
terns: Integrating Security and Systems Engineering. John Wiley & Sons, 2005.

[21] M. Selimi and F. Freitag. Tahoe-lafs distributed storage service in community
network clouds. In 2014 IEEE Fourth International Conference on Big Data and
Cloud Computing, pages 17–24, Dec 2014.

[22] The Borg Backup Authors. Borg Backup - a deduplicating backup program.
http://borgbackup.readthedocs.io/, 2017.

[23] The Borg Backup Authors. Borg Backup - data structures and file
formats. http://borgbackup.readthedocs.io/en/stable/internals/

data-structures.html, 2017.

[24] The Erlang Authors. Erlang Programming Language. http://www.erlang.

org/, 2017.

[25] The Erlang Authors. Implementation and Ports of Erlang - frequently
asked questions about erlang. http://erlang.org/faq/implementations.

html, 2017.

[26] The Erlang Authors. Native Implemented Functions - erlang user’s guide.
http://erlang.org/doc/tutorial/nif.html, 2017.

[27] The Go Authors. Command cgo. https://golang.org/cmd/cgo/, 2017.

[28] The Go Authors. Go Release Cycle for the go programming language. https:
//github.com/golang/go/wiki/Go-Release-Cycle, 2017.

[29] The Go Authors. Minimum Requirements for the go programming language.
https://github.com/golang/go/wiki/MinimumRequirements, 2017.

[30] The Go Authors. The Go Programming Language. https://golang.org/, 2017.

[31] The Go Authors. Why is my trivial program such a large binary? - frequently
asked questions. https://golang.org/doc/faq, 2017.

[32] The Rust Authors. Fearless Concurrency - the rust programming language,
second edition (draft). https://doc.rust-lang.org/book/second-edition/

ch16-00-concurrency.html, 2017.

https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2016/04/19/MIR.html
https://blog.rust-lang.org/2014/10/30/Stability.html
https://speakerdeck.com/jaredmorrow/packaging-erlang-applications
https://speakerdeck.com/jaredmorrow/packaging-erlang-applications
https://web.archive.org/web/20141208222542/http://storageeffect.media.seagate.com/2014/07/storage-effect/2016-the-year-of-the-zettabyte/
https://web.archive.org/web/20141208222542/http://storageeffect.media.seagate.com/2014/07/storage-effect/2016-the-year-of-the-zettabyte/
https://web.archive.org/web/20141208222542/http://storageeffect.media.seagate.com/2014/07/storage-effect/2016-the-year-of-the-zettabyte/
http://borgbackup.readthedocs.io/
http://borgbackup.readthedocs.io/en/stable/internals/data-structures.html
http://borgbackup.readthedocs.io/en/stable/internals/data-structures.html
http://www.erlang.org/
http://www.erlang.org/
http://erlang.org/faq/implementations.html
http://erlang.org/faq/implementations.html
http://erlang.org/doc/tutorial/nif.html
https://golang.org/cmd/cgo/
https://github.com/golang/go/wiki/Go-Release-Cycle
https://github.com/golang/go/wiki/Go-Release-Cycle
https://github.com/golang/go/wiki/MinimumRequirements
https://golang.org/
https://golang.org/doc/faq
https://doc.rust-lang.org/book/second-edition/ch16-00-concurrency.html
https://doc.rust-lang.org/book/second-edition/ch16-00-concurrency.html

BIBLIOGRAPHY III

[33] The Rust Authors. Foreign Function Interface - the rust programming language,
second edition (draft). https://doc.rust-lang.org/book/first-edition/

ffi.html, 2017.

[34] The Rust Authors. The Rust Programming Language. https://www.

rust-lang.org/en-US/, 2017.

[35] The SQLite Authors. Datatypes In SQLite Version 3. https://www.sqlite.org/
datatype3.html, 2017.

[36] The SQLite Authors. File Locking And Concurrency In SQLite Version 3.
https://www.sqlite.org/lockingv3.html, 2017.

[37] L. Toka, M. Dell’Amico, and P. Michiardi. On scheduling and redundancy for
P2P backup. CoRR, abs/1009.1344, 2010.

[38] Tokio Project. Tokio - a platform for writing fast networking code with rust.
https://tokio.rs/, 2017.

[39] Tokio Project. Tokio - streaming protocols. https://tokio.rs/docs/

going-deeper-tokio/streaming/, 2017.

[40] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A
scalable, high-performance distributed file system. In Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation, OSDI ’06, pages 307–320,
Berkeley, CA, USA, 2006. USENIX Association.

[41] Wikipedia. Birthday attack - Wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=Birthday_attack&oldid=797537980,
2017.

[42] Wikipedia. ext4 - Wikipedia, the free encyclopedia. https://en.wikipedia.

org/w/index.php?title=Ext4&oldid=809382067, 2017.

[43] A. Young and M. Yung. Cryptovirology: extortion-based security threats and
countermeasures. In Proceedings 1996 IEEE Symposium on Security and Privacy,
pages 129–140, May 1996.

https://doc.rust-lang.org/book/first-edition/ffi.html
https://doc.rust-lang.org/book/first-edition/ffi.html
https://www.rust-lang.org/en-US/
https://www.rust-lang.org/en-US/
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/datatype3.html
https://www.sqlite.org/lockingv3.html
https://tokio.rs/
https://tokio.rs/docs/going-deeper-tokio/streaming/
https://tokio.rs/docs/going-deeper-tokio/streaming/
https://en.wikipedia.org/w/index.php?title=Birthday_attack&oldid=797537980
https://en.wikipedia.org/w/index.php?title=Birthday_attack&oldid=797537980
https://en.wikipedia.org/w/index.php?title=Ext4&oldid=809382067
https://en.wikipedia.org/w/index.php?title=Ext4&oldid=809382067

IV

List of Figures

2.1 C4 System Context Diagram . 5
2.2 C4 Container Diagram . 6
2.3 Create Backup UML Sequence Diagram 7
2.4 Backup Restore UML Sequence Diagram 8
2.5 Data Replication UML Sequence Diagram 9
2.6 Study Project specific C4 Container Diagram 15
2.7 Client specific C4 Container Diagram 16
2.8 Node specific C4 Container Diagram . 17
2.9 Minimal integration test . 17
2.10 Medium integration test . 18

1 A simplified system overview . XXXV
2 Client Subdomain . XXXVI
3 Node Subdomain . XXXVII
4 Node States . XXXVIII
5 Storage Subdomain . XXXIX
6 Management Subdomain . XL
7 Create Backup UML Sequence Diagram XLI
8 Backup Restore UML Sequence Diagram XLIII
9 Node Joining UML Sequence Diagram XLIV
10 Node Leaving Planned UML Sequence Diagram XLV
11 Node Leaving Unplanned UML Sequence Diagram XLV
12 Data Replication UML Sequence Diagram XLVI
13 Message Schematic . XLVIII

V

List of Tables

2.1 Morphological Box . 13

1 Message Structure . XLVIII
2 Structure of a header field Element . XLVIII
3 Core set of header fields sent with every Request XLVIII
4 get target nodes Message Specification XLIX
5 return target nodes message specification XLIX
6 Structure of the return target nodes message payload XLIX
7 Structure of the target node element XLIX
8 get designation message specification L
9 Structure of the get designation message payload. L
10 return designation message specification L
11 Structure of the return designation message payload. L
12 get chunk states message specification L
13 Structure of the get chunk states message payload LI
14 Structure of the chunk element . LI
15 return chunk states message specification LI
16 Structure of the return chunk states message payload LI
17 post chunks message specification . LI
18 Structure of the post chunks message payload LI
19 Structure of the chunk content element LII
20 acknowledge chunks message specification LII
21 Structure of the acknowledge chunks message payload LII
22 get chunks message specification . LII
23 Structure of the get chunks message payload LII
24 return chunks message specification LIII
25 Structure of the return chunks message payload LIII
26 get root handles message specification LIII
27 return root handles message specification LIII
28 Structure of the return root handles message payload LIII
29 get nodes metadata message specification LIV
30 post nodes metadata message specification LIV
31 Structure of the post nodes metadata message payload LIV
32 Structure of the internal node metadata element LIV
33 Structure of the node state metadata element LV
34 return nodes metadata message specification LV
35 Structure of the return nodes metadata message payload LV
36 Structure of the node contact metadata element LV
37 Language and Ecosystem Comparison for the Client LVII
38 Language and Ecosystem Comparison for the Distributed System . . . LVIII
39 Ecosystem Comparison . LIX

VI

Glossary

administrator

A person that is in charge of managing the system (e.g. add / remove nodes).

chunk

A piece of data in the system consisting of binary data (chunk content), a unique
identifier (chunk identifier) and an expiration date.

chunk content

The binary data a chunk represents.

chunk identifier

A unique identifier of a chunk that is derived from the corresponding chunk
content, e.g. using hash functions.

chunk index

A client-side data structure that stores file attributes, folders and file to chunks
mappings.

chunk table

A data structure on a node containing all chunk identifier and expiration dates of
all chunks managed by this node.

client

A piece of software that runs on a users computer, in charge of creating and
restoring backups (see A.4.3.1 Client).

client m-replication

The client defines a custom degree of redundancy from 1 to the number of nodes
in the system. See 2.2 Fundamental Design Decisions.

designated node

A node that is selected by a client to send backup data to or restore data from.

expiration date

Date, until which a given chunk must be kept in the system.

file

A document on a client system that shall be backed up. A file is represented in
the redbackup system by one or more chunks.

Glossary VII

header field

One piece of meta information that is part of a message header, consisting of a
key and value.

leaving node

A node that is scheduled to leave the system permanently.

location

Nodes can be associated with a (physical) location to ensure redundancy is met
over multiple physical locations.

management

A component that orchestrates the configuration of the system (see A.4.3.4
Management).

medium

Particular form of storage for files, e.g. hard disks or magnetic tape.

message

A unit of communication between two parties (see A.4.5 Messages).

message header

Meta information of a message that define operating parameters, consisting of
multiple header fields.

message payload

Actual data of a message (see A.4.5 Messages).

new node

A node scheduled to be integrated into the system, that was not part of that or
any other system before.

node

A core participant in the system that manages chunks (See A.4.3.2 Node).

node identifier

A unique identifier assigned to any node to distinguish it from other nodes.

node metadata

A set of data that describes a node (e.g. its state, storage capacity). The set of
data differs depending on the context.

node state

The intrinsic or extrinsic state of any node (see A.4.3.2 Node).

node-cache

A list of contact information of nodes in the system that each client buffers in
case the management is unavailable.

Glossary VIII

root handle

A flag to mark (the first part of) a serialised chunk index to find all chunks asso-
ciated with a backup for a restore.

sending node

A node that is sending data to a client or another node.

serialised chunk index

A serialised version of the chunk index, that might be split into multiple chunks,
created on backup and used for restore.

storage

Component in charge of persisting data (see A.4.3.3 Storage).

system

The whole redbackup system as described in A.4 Architectural Concept Paper.

system m-replication

Nodes replicate chunks to m other nodes. The degree of redundancy is defined
globally by the administrator. See 2.2 Fundamental Design Decisions.

system n-replication

Nodes replicate chunks to all other nodes. As a result, the degree of redundancy
is equal to the number of nodes in the system. See 2.2 Fundamental Design
Decisions.

user

A registered user with valid credentials who wants to backup and restore its
data. Has a client installed on his local computer.

IX

Appendices

A.1 Task Description

Appendices XIV

A.2 Project Plan

Redbackup: Project Plan

Authors:
Fabian HAUSER and
Raphael ZIMMERMANN

Advisor:
Prof. Dr. Farhad MEHTA

Autumn Term 2017

i

Contents

Contents i

1 Project Overview 1

2 Project Organization 2
2.1 Roles . 2

3 Project Management 3
3.1 Components . 3
3.2 Time Budget . 3
3.3 Schedule . 3

3.3.1 Iterations & Milestones . 3
3.3.2 Deviations from Original Schedule 3
3.3.3 Meetings . 4

4 Risk Management 6

5 Infrastructure 8
5.1 Project Management and Development 8

5.1.1 Development Tools . 8
5.2 Backup and Data Safety . 8

6 Quality Measures 9
6.1 Documentation . 9
6.2 Project Management . 9

6.2.1 Sprint Planning . 9
6.2.2 Definition of Done / Review of Pull Requests 9

6.3 Development . 10
6.4 Testing . 10

Bibliography I

List of Figures II

List of Tables III

1

Chapter 1

Project Overview

The goal of the study project is to provide a theoretical description of an append-
only, distributed peer-to-peer data storage as well as a working prototype as de-
scribed in the problem statement [3].

2

Chapter 2

Project Organization

All team members have the same strategic rights and duties. Prof. Dr. Farhad Mehta
is our project advisor as visible in Figure 6.1.

FIGURE 2.1: Project organization chart

2.1 Roles

Due to the small team size, most roles are performed by both team members.

Raphael Zimmermann project management, software engineering, quality assur-
ance.

Fabian Hauser infrastructure management, software engineering, quality assurance.

3

Chapter 3

Project Management

3.1 Components

For a better overview and to allow us a sophisticated time assessment, we decided to
group tasks into categories, i.e. JIRA components. Components represent processes,
documents and products which are to be released.

Currently, tasks are separated into following components:

• Final Submission Document

• Concept Paper

• Management

• Poster

• Presentation

• Project Plan

• Prototype

3.2 Time Budget

The project started with the Kickoff Meeting on 18.09.2017 and will be completed
after 14 weeks by 22.12.2017. The two team members are available for 240 hours
each during this period which corresponds to a weekly time budget of 17.15 hour
per person.

Apart from the statutory holidays, there are no further absences planned. Statu-
tory holidays do not affect the weekly time budget.

3.3 Schedule

The project schedule is an iterative process based on elements of SCRUM.
Due to the explorative nature of the project, we decided on a sprint duration of

one week.

3.3.1 Iterations & Milestones

The goals and milestones resulting from each sprint are shown in Figure 3.2.

3.3.2 Deviations from Original Schedule

The tasks and milestones were continuously updated during the project course, as
is evident from Figure 3.2. The most notable additions and exclusions are noted
hereafter.

Chapter 3. Project Management 4 /10

Kickof Retrospective 1 Retrospective 2 Retrospective 3

Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint 10 Sprint 11 Sprint 12 Sprint 13 Sprint 14
W38 W39 W40 W41 W42 W43 W44 W45 W46 W47 W48 W49 W50 W51

documentation completed

basic functionality implemented
testing concept fixed

project plan
completed

basic architecture
fixed

core functionality
Implemented

final release
/ submission

research completed
provisional technology fixed

architecture fixed
final technology fixed

FIGURE 3.1: Overview of the 14 iterations

Research Report After the underlying research at the project start, we decided to
not further research and summarise possible data distribution mechanisms, as
it would not have been possible to finish the report and project in time other-
wise.

Rust Programming Language As we settled for the Rust programming language in
the language evaluation, we introduced the additional task to get familiar with
rust an its network stack.

Retrospective 2 During the last standup meeting in sprint 6, we decided to not hold
the retrospective meeting 2, as we both had no open topics to discuss.

Presentation We decided to not create a presentation during the project course as
this is no mandatory part of the study project.

3.3.3 Meetings

The team works every Tuesday (10:00 - 17:00) together in the study project room
and every Monday (08:00 - 17:00) remotely. Both days begin with a daily stand-up
meeting taking no longer than 15 minutes. Sprint planning meetings are carried out
on Tuesday at 10:00. Table 3.1 shows an overview of the total meeting time budget.

TABLE 3.1: Meeting Time Budget

Meeting Type Total Duration per Person Total Duration for the Team
Supervision Meetings 10 hours 20 hours
Standup Meetings 7 hours 14 hours
Sprint Planning Meetings 16 hours 32 hours
Retrospective 3 hours 6 hours
Total 36 hours 72 hours

Regular meetings with the project advisor take usually place on Friday in Prof.
Dr. Mehta’s office. The agenda must be sent via email to all participants at least 24
hours prior the meeting.

Raphael Zimmermann will take meeting notes for every meeting. Meeting min-
utes are published on the project website afterwards.

Chapter 3. Project Management 5 /10

S
p
ri

n
t

S
p
ri

n
t

1
S
p
ri

n
t

2
S
p
ri

n
t

3
S
p
ri

n
t

4
Ta

g
0
.1

.0
0
.2

.0
0
.3

.0
0
.4

.0
D

a
te

1
9
.0

9
.2

0
1
7
-2

5
.0

9
.2

0
1
7

2
6
.0

9
.2

0
1
7
-0

2
.1

0
.2

0
1
7

0
3
.1

0
.2

0
1
7
-0

9
.1

0
.2

0
1
7

1
0
.1

0
.2

0
1
7
-1

6
.1

0
.2

0
1
7

M
ile

st
o
n
e
s

-
p
ro

je
ct

 p
la

n
 c

o
m

p
le

te
d

-
p
ro

je
ct

 p
la

n
 c

o
m

p
le

te
d

T
im

e
 B

u
d
g
e
t

3
4

3
4

3
4

3
4

Ta
sk

s

S
p
ri

n
t

S
p
ri

n
t

5
S
p
ri

n
t

6
S
p
ri

n
t

7
S
p
ri

n
t

8
Ta

g
0
.5

.0
0
.6

.0
0
.7

.0
0
.8

.0
D

a
te

1
7
.1

0
.2

0
1
7
-2

3
.1

0
.2

0
1
7

2
4
.1

0
.2

0
1
7
-3

0
.1

0
.2

0
1
7

3
1
.1

0
.2

0
1
7
-0

6
.1

1
.2

0
1
7

0
7
.1

1
.2

0
1
7
-1

3
.1

1
.2

0
1
7

M
ile

st
o
n
e
s

-
b
a
si

c
a
rc

h
it

e
ct

u
re

 fi
xe

d

-
te

st
in

g
 c

o
n
ce

p
t

fi
xe

d

T
im

e
 B

u
d
g
e
t

3
4

3
4

3
4

3
4

Ta
sk

s

-
co

n
ce

p
t

p
a
p
e
r

-
co

n
ce

p
t

p
a
p
e
r

S
p
ri

n
t

S
p
ri

n
t

9
S
p
ri

n
t

1
0

S
p
ri

n
t

1
1

S
p
ri

n
t

1
2

Ta
g

0
.9

.0
0
.1

0
.0

0
.1

1
.0

0
.1

2
.0

D
a
te

1
4
.1

1
.2

0
1
7
-2

0
.1

1
.2

0
1
7

2
1
.1

1
.2

0
1
7
-2

7
.1

1
.2

0
1
7

2
8
.1

1
.2

0
1
7
-0

4
.1

2
.2

0
1
7

0
5
.1

2
.2

0
1
7
-1

1
.1

2
.2

0
1
7

M
ile

st
o
n
e
s

-
co

re
 f

u
n
ct

io
n
a
lit

y
 i
m

p
le

m
e
n
te

d
-

b
a
si

c
fu

n
ct

io
n
a
lit

y
 i
m

p
le

m
e
n
te

d
T
im

e
 B

u
d
g
e
t

3
4

3
4

3
4

3
4

T
im

e
 S

p
e
n
t

3
3
.2

5
2
9
.2

5
2
8

Ta
sk

s
-

im
p
le

m
e
n
t

co
re

 f
u
n
ct

io
n
a
lit

y

S
p
ri

n
t

S
p
ri

n
t

1
3

S
p
ri

n
t

1
4

Ta
g

0
.1

3
.0

0
.1

4
.0

D
a
te

1
2
.1

2
.2

0
1
7
-1

8
.1

2
.2

0
1
7

1
9
.1

2
.2

0
1
7
-2

2
.1

2
.2

0
1
7

M
ile

st
o
n
e
s

-
d
o
cu

m
e
n
ta

ti
o
n
 c

o
m

p
le

te
d

-
fi
n
a
l
re

le
a
se

/

su
b
m

is
si

o
n

T
im

e
 B

u
d
g
e
t

3
4

3
4

Ta
sk

s

-
p

ro
v
is

io
n
a
l
te

ch
n
o
lo

g
y
 fi

xe
d

-
re

se
a
rc

h
 c

o
m

p
le

te
d

-
w

ri
te

 p
ro

je
ct

 p
la

n

-
a
d
a
p

t
In

fr
a
st

ru
ct

u
re

-
a
ca

d
e
m

ic
 r

e
se

a
rc

h
-

b
ra

in
st

o
rm

 b
a
si

c
co

n
ce

p
t

-
d
e
fi

n
e
 q

u
a
lit

y
 o

f
se

rv
ic

e
 a

tt
ri

b
u
te

s
-

re
tr

o
sp

e
ct

iv
e
 1

 (
a
t

th
e
 e

n
d
 o

f
th

e
 s

p
ri

n
t)

-
w

ri
te

 b
a
si

c
co

n
ce

p
t

(i
n

cl
u
d
in

g
 t

e
st

in
g
 c

o
n

ce
p
t)

-
ca

rr
y
 o

u
t

la
n
g
u
a
g
e
 e

v
a
lu

a
ti

o
n

-
a
ca

d
e
m

ic
 r

e
se

a
rc

h

-
d
ra

ft
 b

a
si

c
a
rc

h
it

e
ct

u
re

 &
 d

o
m

a
in

 m
o
d
e
l

-
b
o
o
ts

tr
a
p
 p

ro
je

ct
-

p
ro

to
ty

p
e
 a

rc
h
it

e
ct

u
ra

l c
ri

ti
ca

l
co

m
p
o
n

e
n
ts

-
g
e
t

fa
m

ili
a
r

w
it

h
 R

u
st

 a
n
d
 it

s
N

e
tw

o
rk

 S
ta

ck

D
o
cu

m
e
n
ts

 /
A

rt
e
fa

ct
s

-
p

ro
b
le

m
 s

ta
te

m
e
n
t

-
p

ro
je

ct
 p

la
n
 d

ra
ft

-
fi
rs

t
d
ra

ft
 o

f
co

n
ce

p
t

p
a
p
e
r

-
p
ro

je
ct

 p
la

n
 fi

n
a
liz

e
d

-
re

se
a
rc

h
 r

e
p
o
rt

-
la

n
g
u
a
g
e
 e

v
a
lu

a
ti

o
n

-
se

co
n
d

 d
ra

ft
 o

f
co

n
ce

p
t

p
a
p
e
r

-
th

ir
d
 d

ra
ft

 o
f

co
n
ce

p
t

p
a
p
e
r

w
it

h
 d

ra
ft

e
d

a
rc

h
it

e
ct

u
re

-
a
rc

h
it

e
ct

u
re

 fi
xe

d
-

fi
n
a
l
te

ch
n
o
lo

g
y
 fi

xe
d

-
p

ro
to

ty
p
e
 a

rc
h
it

e
ct

u
ra

l
cr

it
ic

a
l c

o
m

p
o
n
e
n

ts
-

g
e
t

fa
m

ili
a
r

w
it

h
 R

u
st

 a
n
d
 i
ts

 N
e
tw

o
rk

 S
ta

ck
-

p
ro

to
ty

p
e
 a

rc
h

it
e
ct

u
ra

l c
ri

ti
ca

l
co

m
p
o
n
e
n
ts

-
p
ro

to
ty

p
e
 t

e
st

in
g
 a

rc
h
it

e
ct

u
re

-
fi
n
a
liz

e
 t

e
st

in
g
 c

o
n
ce

p
t

-
re

tr
o
sp

e
ct

iv
e
 2

 (
S
ki

p
p
e
d
)

-
fi
n
a
liz

e
 a

rc
h
it

e
ct

u
re

-
fi
n
a
liz

e
 t

e
st

in
g
 c

o
n
ce

p
t

-
im

p
le

m
e
n
t

co
re

 f
u
n
ct

io
n

a
lit

y

-
im

p
le

m
e
n
t

co
re

 f
u
n
ct

io
n

a
lit

y
-

se
t

u
p
 t

e
st

in
g
 i
n

fr
a
st

ru
ct

u
re

D
o
cu

m
e
n
ts

 /
A

rt
e
fa

ct
s

-
fo

u
rt

h
 d

ra
ft

 o
f

co
n
ce

p
t

p
a
p

e
r

w
it

h

p
ro

v
is

io
n
a
l
a
rc

h
it

e
ct

u
re

-
fi
ft

h
 d

ra
ft

 o
f

co
n
ce

p
t

p
a
p
e
r

w
it

h
 fi

n
a
l

te

st
in

g
 c

o
n
ce

p
t

-
im

p
le

m
e
n
t

b
a
si

c
fu

n
ct

io
n
a
lit

y
-

re
tr

o
sp

e
ct

iv
e
 3

(a

t
th

e
 e

n
d
 o

f
th

e
 s

p
ri

n
t)

-
im

p
le

m
e
n
t

b
a
si

c
fu

n
ct

io
n
a
lit

y
-

e
x
h
a
u
st

iv
e
 t

e
st

in
g

-
im

p
ro

v
e
 c

o
d
e
 q

u
a
lit

y
 &

 d
o
cu

m
e
n
ta

ti
o
n

-
e
x
h
a
u
st

iv
e
 t

e
st

in
g

-
p
e
rf

o
rm

a
n
ce

 t
e
st

in
g

-
b
e
gi

n
 w

it
h
 fi

n
a
l
su

b
m

is
si

o
n
 d

o
cu

m
e
n
t

D
o
cu

m
e
n
ts

 /
A

rt
e
fa

ct
s

-
fi

n
a
liz

e
 r

e
le

a
se

 d
o
cu

m
e
n

ts
-

p
re

p
a
re

 p
re

se
n
ta

ti
o
n

-
p

re
p
a
re

 s
u
b
m

is
si

o
n
 a

rc
h
iv

e
 (

e
.g

.
JI
R

A
 e

x
p
o
rt

)
-

p
ri

n
t

d
o
cu

m
e
n
ts

D
o
cu

m
e
n
ts

 /
A

rt
e
fa

ct
s

-
m

a
n

a
g
e
m

e
n
t

su
m

m
a
ry

-
a
b
st

ra
ct

-
fi

n
a
l
su

b
m

is
si

o
n
 d

o
cu

m
e
n
t

-
p

o
st

e
r

-
p

re
se

n
ta

ti
o
n

-
fi
n
a
l
su

b
m

is
si

o
n
 a

rc
h

iv
e
 (

C
D

)
-

p
o
st

e
r

FIGURE 3.2: Detailed overview with tasks and milestones of all 14
sprints. Italic and struck out text mark deviations from the original

project plan that occurred during the projects course.

6

Chapter 4

Risk Management

An assessment of the project-specific risks is carried out in Table 4.2 as time loss
during the whole project. The risk matrix in Table 4.1 provides an overview of the
risk weighting.

To account for these risks, we reduce our weekly sprint time by the total weighted
risk applicable to the planned task topics (on average approximately 20%). We also
review the risk assessment after every sprint, adapt it and take measures if necessary.

Probability
Severity

High (≥ 5d) Medium (2-5d) Low (≤ 2d)

High (≥ 60%) 1 2

Medium (30-60%) 8 3, 4

Low (≤ 30%) 5, 6, 7

TABLE 4.1: The risk matrix. Numbers reference to the risk assessment
Table 4.2

Chapter 4. Risk Management 7 /10
TA

B
L

E
4.

2:
R

is
k

as
se

ss
m

en
tt

ab
le

.T
im

e
in

ho
ur

s
ov

er
th

e
to

ta
lp

ro
je

ct
du

ra
ti

on
.

#
Ti

tl
e

D
es

cr
ip

ti
on

Pr
ev

en
ti

on
/

R
ea

ct
io

n
R

is
k

[h
]

Pr
ob

ab
ili

ty
=

[h
]

1
Pr

ob
le

m
s

w
it

h
te

ch
no

lo
gy

st
ac

k
Pa

rt
s

of
th

e
se

le
ct

ed
te

ch
no

l-
og

y
st

ac
k

ar
e

no
t

w
el

l
su

it
ed

,
in

co
m

pl
et

e
or

im
m

at
ur

e.

R
efl

ec
t

th
e

su
it

ab
ili

ty
of

th
e

ch
os

en
te

ch
no

lo
gy

du
ri

ng
th

e
ar

ch
it

ec
tu

re
dr

af
t.

60
60

%
36

2
M

is
si

ng
as

pe
ct

s
in

co
nc

ep
tp

ap
er

Th
e

co
nc

ep
t

pa
pe

r
do

es
no

t
fu

lly
co

ve
r

al
l

ne
ce

ss
ar

y
as

-
pe

ct
s

of
th

e
pr

ot
ot

yp
e.

In
ve

st
an

ad
eq

ua
te

am
ou

nt
of

ti
m

e
in

ar
ch

it
ec

tu
re

de
si

gn
.

30
60

%
18

3
Th

e
ar

ch
it

ec
tu

re
/c

on
ce

pt
do

es
no

ts
ca

le
.

Th
e

ch
os

en
ar

ch
it

ec
tu

re
/c

on
-

ce
pt

do
es

no
t

sc
al

e
to

th
e

ex
-

pe
ct

ed
da

ta
vo

lu
m

e
or

no
de

si
ze

In
ve

st
an

ad
eq

ua
te

am
ou

nt
of

ti
m

e
in

ar
ch

it
ec

tu
re

de
si

gn
.

30
40

%
12

4
C

om
m

un
ic

at
io

n
er

ro
rs

Er
ro

rs
du

e
to

m
is

co
m

m
un

ic
a-

ti
on

or
m

is
ap

pr
eh

en
si

on
.

M
ai

nt
ai

n
a

hi
gh

le
ve

lo
f

in
te

r-
ac

ti
on

,p
re

ci
se

sp
ec

ifi
ca

ti
on

of
ta

sk
s

re
sp

on
si

bi
lit

ie
s,

co
nd

uc
t

m
ee

ti
ng

s
if

am
bi

gu
it

ie
s

ex
is

t.

20
50

%
10

5
Pr

ob
le

m
s

w
it

h
pr

oj
ec

ti
nf

ra
st

ru
ct

ur
e

Th
e

us
ed

pr
oj

ec
ti

nf
ra

st
ru

ct
ur

e
is

no
t

or
on

ly
pa

rt
ia

lly
av

ai
l-

ab
le

,o
rd

at
a

lo
ss

oc
cu

rs
w

it
hi

n
m

an
ag

em
en

ts
of

tw
ar

e.

C
le

an
se

tu
p

an
d

se
lf

-h
os

ti
ng

of
th

e
to

ol
s

to
pr

ev
en

t
th

ir
d-

pa
rt

y
de

pe
nd

en
ci

es
.

30
30

%
9

6
Sc

op
e

cr
ee

p
Th

e
pr

oj
ec

t’s
sc

op
e

is
ex

te
nd

ed
ov

er
th

e
pr

oj
ec

tc
ou

rs
e.

D
efi

ne
th

e
pr

oj
ec

t
sc

op
e

an
d

lim
it

at
io

ns
pr

ec
is

el
y.

D
is

cu
ss

ch
an

ge
s

w
it

h
th

e
pr

oj
ec

t
ad

vi
-

so
r.

30
30

%
9

7
D

ep
en

de
nc

y
er

ro
rs

Th
er

e
ar

e
er

ro
rs

/b
ug

s
in

th
ir

d-
pa

rt
y

de
pe

nd
en

ci
es

,
i.e

.
li-

br
ar

ie
s.

C
ar

ef
ul

ly
se

le
ct

lib
ra

ri
es

an
d

lim
it

th
id

-p
ar

ty
de

pe
nd

en
cy

to
a

m
in

im
um

.

20
30

%
6

8
M

is
si

ng
de

pe
nd

en
cy

do
cu

m
en

ta
ti

on
Se

le
ct

ed
lib

ra
ri

es
ar

e
la

ck
in

g
pr

op
er

do
cu

m
en

ta
ti

on
Th

e
do

cu
m

en
ta

ti
on

qu
al

it
y

of
a

lib
ra

ry
sh

ou
ld

be
a

se
le

ct
io

n
cr

it
er

io
n.

15
40

%
6

To
ta

lw
ei

gh
te

d
ri

sk
10

6

8

Chapter 5

Infrastructure

5.1 Project Management and Development

For project management, document/code storage and continuous integration/de-
ployment we utilise the corresponding products by Atlassian (JIRA, BitBucket, Bam-
boo, Crowd)[1].

These applications are hosted on our HSR project server (sinv-56017.edu.hsr.ch),
which runs a standard Ubuntu Linux 17.04.

5.1.1 Development Tools

Since most development tools depend on the chosen technology and might change
in the future, they are maintained separately on the project website 1.

5.2 Backup and Data Safety

An incremental backup of the project server including the source code and docu-
mentation is created on an independent system (pin1262031.hsr.ch) every night.

As our documents and code is stored in a git repository, they are also distributed
on all development systems.

1https://www.redbackup.org/development/

9

Chapter 6

Quality Measures

To maintain a high standard of quality, we take the following measures:

• short sprint reviews

• three extended retrospectives

• code reviews

• automated unit and integration
testing

• publish all documentation on the
project website using continuous
integration/delivery.

• using continuous integration for
source code

6.1 Documentation

The official documents such as the final submission document, the theoretical con-
cept as well as this project plan are written in LATEXand published on the project
website 1 as PDF documents. All other documents such as meeting minutes are
written in Markdown and made available in HTML on the website as well.

The sources are in both cases kept under version control in the same repository,
which allows us to use the same tools and processes for documentation and code.
The continuous integration server builds and publishes the website whenever new
changes are pushed to the repository.

6.2 Project Management

Because the project plan allows for an iterative process, we use JIRA with its SCRUM-
Features (such as sprint creation or boards) for project management.

6.2.1 Sprint Planning

Each sprint is mapped to JIRA, which allows the project advisor to trace the project
progress. Sprints are represented as boards on which the current state and assignee
of any issue is easily visible ("To Do", "In Progress", "Review", "Done").

6.2.2 Definition of Done / Review of Pull Requests

An issue may be closed if all of the following conditions are met:

• All functionality conforms to the specification. Any deviations must be dis-
cussed and decided by the team.

1https://www.redbackup.org

Chapter 6. Quality Measures 10 /10

• A review is performed and accepted in a pull request.

– The source code is reasonably documented.

– No code is commented out.

– No warnings and errors by the compiler or any other quality tool.

– Reasonable unit and integration tests exist and pass.

– All documentations are up to date including the project website.

– The complete continuous integration pipeline works.

– The code is formatted according to the guidlines (i.e. according to RustFmt)

• The corresponding branch is merged into the stable branch (e.g. master).

• All time is logged.

6.3 Development

Since we are in a very early and agile stage we decided to use GitHub Flow[2], a
straightforward development workflow.

FIGURE 6.1: GitHub Flow illustrated (Source [2])

Since the effective technology will be fixed later in the project, concrete coding
guidelines, tools, metrics and an error policy will be defined when appropriate.

6.4 Testing

All functionality must be automatically testable using continuous integration. Any
non-trivial function/method must be verified with unit tests.

Integration tests verify extended test scenarios.
A minimal performance analysis will be carried out at the end of the project.

I

Bibliography

[1] Atlassian Inc. Open Source Services by Atlassian Inc. https://developer.

atlassian.com/opensource/, 2017.

[2] Github Inc. Github Flow. https://guides.github.com/introduction/flow/,
2013.

[3] F. Hauser and R. Zimmermann. Task Description ”redbackup: a redun-
dant distributed backup system prototype”. https://www.redbackup.org/

problem-statement.pdf, 2017.

II

List of Figures

2.1 Organigram . 2

3.1 Overview of the 14 iterations . 4
3.2 Detailed overview with tasks and milestones of all 14 sprints. Italic

and struck out text mark deviations from the original project plan that
occurred during the projects course. 5

6.1 Organigram . 10

III

List of Tables

3.1 Meeting Time Budget . 4

4.1 Risk matrix . 6
4.2 Risk assessment . 7

Appendices XXX

A.3 Requirements

The System knows two roles: Users and Administrators.
A typical User does not want to interact with the system at any time. All he/she

wants is to be sure that all his/her data is safely backed up.
An Administrator wants to interact with the system as seldom as possible. He/She

wants to be sure that the system runs smoothly. If something goes wrong, he/she
wants to be able to fix it within a few minutes.

Because the actors can have very different levels that they tolerate it is hard to de-
termine measurable requirements. We, therefore, started to highlight the intentions
and general attitude of the actors towards the system. Afterwards, we extrapolated
the most important requirements.

Not all intentions must be met within the study project but the might impact
architectural decisions. All intentions relevant for the study project are therefore
listed here emphasised.

A.3.1 Intentions of a User

As a user, . . .

on the topic of backup creation, . . .

1. I want my backups to take place automatically in the background so I do not
forget.

2. I want to get notified if the creation of a backup fails, but not for every little
trivia. For example, if the network connection breaks down temporary, the
process should be retried several times before showing a notification.

3. I want to get notified if I have not created a new backup for a suspicious
amount of time (e.g. usually daily but suddenly no backups for a week).

4. I want that the creation of a backup does not impact the performance of my
device noticeably (CPU, RAM, network etc).

5. I want to be able to stop/restart/suspend my device at any time even if a new
backup is in the process of being created.

6. I want to exclude certain files from being backed up, for example, downloads.

on the topic of backup storage, . . .

7. I want my backup data to be encrypted so that only I can restore it.

8. I want to create backups any place with a working internet connection (espe-
cially not just from home).

9. I want my backup data to be stored only on physical sites that I trust.

10. I want my backups to be space efficient to save cost.

11. I want my data to be stored with a defined degree of redundancy so that it
does not get lost.

12. I want my data to be replicated to different places (e.g. buildings) in case one
of them is subject to a catastrophic event (e.g. an earthquake, fire).

Appendices XXXI

13. I want that my data is protected from unauthorised access at any time

14. I want that my data is not lost if a storage medium is corrupted or breaks
down.

15. I does not matter, where my data is replicated to within my trusted network.

16. I don’t care where within the trusted network my data is backed up to as long
as the creation and restore of backups does not take 30% longer as if it were
stored within the local network.

17. I want that the duration of a backup is linearly dependent of the size of the
data that has changed.

18. I want to define how long backups are stored or use a reasonable default.

on the topic of backup restore, . . .

19. I want to be able to restore my data as easily as possible in case of a catas-
trophic event.

20. I want to be able to restore a previous version of a (possibly deleted) file
within less than five minutes.

21. I want to see the progress when I restore data so that I can estimate when it is
done.

on the topic of the backup software, . . .

22. I want be able to install and have the software up and running within five
minutes.

23. I don’t want to perform updates manually.

A.3.2 Intentions of an Administrator

As an administrator, . . .

on the topic of backup system management, . . .

1. I want to grant new users access to the backup system.

2. I want be able to see how much capacity a user is using.

3. I want to limit the capacity per user.

4. I want to define default profiles on how long to keep backups for new users.

5. I want to extend the storage capacity by plugging in a new disk and starting/-
connecting a new node.

6. I want to add new backup sites (and therefore nodes) to the system.

7. I want to scale the system up to 100 Nodes and down to 2.

8. I want to put multiple large disks (e.g. 2TB) into a node so that I do not have
to maintain an unjustifiably high number of nodes.

Appendices XXXII

9. I want the system to operate properly if the management node is down (no
single point of failure). The addition of new nodes may not be possible without
management.

10. I want to perform updates including reboots without impacting the perfor-
mance of the network.

11. I want to update the management server (including restart) without impacting
the system (except for the configuration/monitoring part).

on the topic of backup monitoring, . . .

12. I want to receive notifications quickly (i.e. within an hour) when a disk or
node in the System fails.

13. I want to receive notifications within an hour if a disk or node might fail soon
(e.g. SMART-results indicate that a disk will fail).

14. I want to be informed if a certain replication-degree cannot be met.

A.3.3 Requirements

The following requirements are grouped according to ISO 9126 [14].

A.3.3.1 Functionality

1. A node must guarantee when asked about files stored on it that all concerned
files exist on it and are not corrupted (accuracy)

2. A given node must only know the minimal amount of data required to detect
corrupted data and garbage collection, i.e. the (encrypted) binary data, an
identifier that can be derived from the encrypted binary data as well as the
expiration date. (security)

3. An administrator must be able to grant new users access to the backup system
within less than 10 minutes. (suitability)

4. An administrator must be able to see how much capacity in GB a given user is
using within less than 1 minute. (suitability)

5. All data sent from a user must be encrypted according to BSI TR-02102-1 [3]
(security)

6. Nodes and users that are not explicitly listed by an administrator are not al-
lowed to participate in a given system and can therefore under no circum-
stances read or write data from or in the system. (security)

A.3.3.2 Reliability

7. Data must be replicated on at least two nodes in the system 1 hour after its
arrival in the system. (fault tolerance)

8. A storage must periodically verify the integrity of the data stored in it so that
corruptions are detected after max. 24 hours. (fault tolerance)

Appendices XXXIII

9. The replication process is not affected if the management cannot be reached.
The only allowed exceptions are the addition of new nodes and planned leav-
ing. (recoverability)

10. If a user/administrator updates and reboots a client/node/management so that
it is not down for more than 10 minutes, no notifications/warnings are sent nor
must it trigger any recovery routines.(recoverability)

11. An administrator must receive a notification via email within 10 minutes in
case a disk, node or management fails. (maturity, fault tolerance)

12. An administrator must receive a notification via email within 10 minutes if a
potential disk failure (using SMART results) is detected. (maturity, fault toler-
ance)

13. An administrator must receive a notification via email within 10 minutes if the
replication-degree for a file/chunk cannot be met. (maturity, fault tolerance)

A.3.3.3 Usability

14. A user must be able to inspect the current progress of a backup/restore process
in percent, time spent as well as an estimate for the remaining time (under-
standability).

15. A user or administrator must be able to install the client/node/management
software including all its dependencies within less than 5 minutes (excluding
the time spent for downloads). (operability, attractiveness)

16. A user must be able to define ignored files within less than 3 minutes. (oper-
ability, attractiveness)

17. A user must be able to restore a previous version of a (possibly deleted) file
within less than five minutes if it is file size is less than 100MB. (operability,
attractiveness)

18. If a user pauses (e.g. system restart, suspension) his/her device during backup
and restore, the client software must continue its work where it stopped. (op-
erability, attractiveness)

A.3.3.4 Efficiency

19. The time for the creation of a backup must be O(n) where n is the amount of
changed data bytes. (time behaviour)

20. The creation of a backup on the client should use more than 10% of the systems
resources (i.e. CPU and RAM). (resource utilization)

21. A node must be able to persist data on more than two 2TB disks. (Resource
utilization)

A.3.3.5 Maintainability

22. Every interaction of a client/node/management including all their side effects
(e.g. the persistence of data, sending data over the network) must be logged so
that it in case of a failure every step can be reproduced. (analysability)

Appendices XXXIV

23. The hash-Algorithm used for the calculation of identifiers must be replaceable
in the code within one working day. (changeability)

24. A user/administrator must be able to change the configuration on a client/n-
ode/management using a configuration file. (changeability)

25. All components must be testable with unit tests as well as integration tests to
cover at least 80% of all lines. (testability)

26. Any component (i.e. client, node, management) must not depend on any other
component except sending messages so that it is possible to replace it with a
version written in another technology. (changeability)

27. Nodes/Clients must be able to upgrade chunk-Identifiers to a new hash-Algorithm
in O(n) where n is the amount of chunks. (changeability)

A.3.3.6 Portability

28. All components must be published as docker images to simplify the deploy-
ment in docker environments. (installability)

29. A user must be able to export and decrypt all his/hers data in O(n) where
n is the size of all his/hers binary data in order to switch to another backup
solution (replaceability)

Appendices XXXV

A.4 Architectural Concept Paper

A.4.1 Overview

Figure 1 presents an overview over the Redbackup system. All actors, components
and interactions are described in detail in the following sections.

instructs

User

instructs

Administrator

Management

get target nodes from
sends Chunks

to

Client

stores Chunks
in

sends metadataNode

notifies

Storage

replicate to

Node

Storage

FIGURE 1: A simplified system overview

A.4.2 Actors

A.4.2.1 User

A typical user does not want to interact with the system at any time. All he/she wants
is to be sure that all his/her data is backed up.

To simplify the implementation for the study project, the user must instruct the
client manually (create and restore backup).

Responsibilities

• Instruct the client to create a Backup

• Instruct the client to restore a Backup

A.4.2.2 Administrator

An administrator wants to interact with the system as seldom as possible. He/She
wants to be sure that the system runs smoothly. If something goes wrong, he/she
wants to be able to fix it within a few minutes.

Appendices XXXVI

Responsibilities

• Instruct the management to add/remove nodes from the system

• Ensure that the management runs properly (e.g. monitor it)

• Act if the management notifies him/her about any anomalies

A.4.3 Components

A.4.3.1 Client

0..n

creates and
caches

caches a
list of

0..n

Client

N o d e

address

por t

consists
o f

0..n

Chunk Index

creation date

contains

0..n

Folder

name
contains

0..n

consist of

0..n

File

name

last changed date

Chunk

chunk identifier

chunk contents

M a na g ement

address

por t

knows

1

{ { s o r t e d } }
Node Cache

{ { s o r t e d } }

FIGURE 2: Subdomain illustrating the clients perspective

• The client knows the management by configuration.

• The client queries the management for a list of nodes, to which he can send back-
ups or restore previous backups. He caches the results in its node-cache.

• The chunk index hierarchically models the file system. This structure might
change in the future when supporting symlinks and permissions [23].

• The relationship between a given file and its chunks is essential. The client splits
a file into multiple chunks to speed up the backup of large data. During the
study project, a file consists of exactly one chunk.

• A chunk is identified by its chunk identifier, which can be calculated using a hash
function which takes the chunk contents as input.

• The chunk contents do not have be present on the client. During backup, the
client can calculate the chunk contents and the corresponding chunk identifier
from the files on the disk. On restore, the client fetches the chunk contents from
a node and reassembles the file based on the chunk index.

Responsibilities

• Keeping the node-cache up to date

• Create Backups (See Scenario A.4.4.1: Create Backup)

Appendices XXXVII

– Building/Calculating the chunk index

– Serialize the chunk index into chunks including a root handle

– Send chunks to nodes

– Mark chunks as root handles

• Restore Backups (See Scenario A.4.4.2: Backup Restore)

– Fetch root handles from nodes

– Fetch chunks from nodes

– Deserialise chunk indexs

– Reassemble chunks into files (not required for the study project)

– Let the user choose which files from which chunk index shall be restored.

A.4.3.2 Node

stores chunk
contents in

N o d e

Node Identifier

State

knows other

0...n

Address

Port

Location

Location Identifier

M an a ge me nt

Address

Port

knows

1

Chunk Table Chunk

Chunk Identifier

Expiration Date

consists
o f 0..n

marks Chunks as
root handles 0..n

 maintains

is associated
wi th

0..1

Storage

FIGURE 3: Subdomain illustrating the nodes perspective

• A node is identified by its unique node identifier. It can be addressed using a
certain Address and Port.

• A node is also associated with a location which will be a replication criteria in
the future.

• A node knows the management by configuration and exchanges data with it on
a regular basis (Messages get nodes metadata and post nodes metadata)

• A node is in a given node state and acts differently depending on it (See Figure
4).

– uninitialized: The node queries the management for initialization and does
nothing else.

– participating: This is the "normal" node state in which a node accepts back-
ups, performs replication and sends requested data.

– unreachable: A node is marked as unreachable if any other node or the
management can not reach it. A node never sees itself in this node state.

Appendices XXXVIII

– leaving soon: The node does not answer any requests and ensures that all
its data is replicated. When it is done, it automatically switches into the
left node state.

– left: The node has nothing to do in this node state and can shut down.

• A node knows all other nodes in the system and maintains a node state (see Fig-
ure 4) for them as well.

• The chunk contents are stored in a storage. See A.4.3.3 Storage for further details.

• Which chunks are stored on the node, their expiration date and the information
whether a chunk is a root handle is stored in the chunk table.

startup
metadata
received

uninitialized

removed
via Management

forcefully removed by administrator

not reachable

participating
all data

replicated
leaving soon lef t

reachable

unreachable

FIGURE 4: A UML State Diagram describing the node states

Responsibilities

• Send node metadata periodically (Messages get nodes metadata and post nodes
metadata) in order to ...

– Perform initialization

– Learn about other nodes

– Start the leaving process and notify the management when it is completed

– Send node metadata to the management so that it can perform health-checks
(e.g. verify the timestamp)

• Maintain the chunk table

– Update expiration dates

– Add new chunks

– Remove expired chunks

• Handle possible storage issues (see Scenario A.4.4.8 Data Storage has Errors)

• Reply to get designation (Scenario A.4.4.1 Create Backup) , get root handles
(Scenario A.4.4.2 Backup Restore) and get chunks requests

• Replicate chunks (See Scenario A.4.4.6 Data Replication)

• Handle leaving process (see Scenario A.4.4.4 Node Leaving Planned)

A.4.3.3 Storage

• The main purpose of the storage component is to persist chunk contents. A stor-
age is associated with one node which stores, loads and deletes chunk contents
by its chunk identifier on the storage. The same node is notified by the storage e.g.
when corrupted data is detected.

Appendices XXXIX

 notifies
1

manages

0..n

monitors

0..n

Storage

stores, loads
and deletes

chunks
1

Node

Chunk

Chunk Identifier

Chunk Contents

Medium

stores contents
onto

FIGURE 5: Subdomain illustrating the storages perspective

• A chunk should also monitor the mediums, on which the chunk contents are
stored, for possible issues and report them to the node. This feature, however,
is not implemented in the study project.

• The storage component is deployed on the same host as the node that is using
it.

Responsibilities

• Store chunk contents

• Load and return the chunk contents for a given chunk identifier

• Delete the chunk contents for a given chunk identifier

• Detect possible corruption of chunk contents

• Perform service checks on the mediums (e.g. S.M.A.R.T tests)

• Notify the node when a corruption / integrity problem occurs

A.4.3.4 Management

• The administrator is the only Actor interacting with the management. He/She
sends instructions (e.g. add new node) and is notified by the management about
any anomalies.

• clients fetch a list of all nodes from the management (See Component A.4.3.1
Client for further details). As for the study project, the management does not
have any information about clients, but this might change when authentication
is implemented in the future.

• The management maintains node metadata for each node in the system and sends
that information every node when they post their node metadata.

Appendices XL

 notifies

1..n

Management
sends metadata to

1
Node

Node Identifier

Address

Port

State

Physical Time

Last interaction timestamp

fetches Nodes
from

1

0..n Client

0..nmaintains
metadata about

sends
instructions

to

Administrator

FIGURE 6: Subdomain illustrating the management’s perspective

Responsibilities

• Add and remove nodes

• Notify the administrator e.g. if a node leaves unexpectedly.

• Receive node metadata from the nodes and reply with node metadata

• Send list of nodes to the clients

A.4.4 Scenarios

This section describes various scenarios of system usage and possible failures.
In the sequence diagrams, we use the composition of the minimal integration

test, detailed in Figure 2.9 (Chapter 2.3.2). The client sends its data to Node A only.

A.4.4.1 Create Backup

The client wants to create a backup.

1. The client asks the management for a list of nodes. The management returns a
sorted list of all nodes (message: get target nodes) (sorting might be based on
specific configuration).

• If the management is down and this is a first time backup, the client records
a message and aborts.

• If the management is down, client tries the same nodes as last time.

2. The client tries to contact nodes in the presorted order.

(a) The client sends a backup request (message: get designation).

(b) The node acknowledges or denies the backup request (message: return
designation).

(c) If the node acknowledges, it is declared as designated node.

Appendices XLI

:Client :Management:Node A

get target nodes

return target nodes

get designation

return designation

get chunk state

return chunk state

post chunks

acknowledge chunks

FIGURE 7: Create Backup UML Sequence Diagram

(d) If the node denies the backup request, the client tries the next node.

(e) If no node answers the request, the client records an error message and
aborts.

3. If the backup request was successful, the client starts creating a backup.

(a) The client splits all files that changed since the last backup into chunk con-
tents and calculate a corresponding hash, the chunk identifier and add it to
the local chunk index.

(b) Files that have not changed since the last backup, are already be present
in the chunk index.

(c) The client send all chunk identifiers present in the chunk index combined
with an expiration date to the designated node. (message: get chunk states)

(d) The designated node checks, if all chunk identifiers received from the client
are present in its chunk table.

• If a chunk identifier is already present on the designated node, update its
expiration date if it is further in the future.

• If a chunk identifier is not present on the designated node, request it
from the client (see message response return chunk states for further
details)

(e) The client sends the requested chunk contents to the designated node with a
post chunks message.

Appendices XLII

i. The designated node verifies and persists the chunk contents into its stor-
age. Afterwards, it acknowledges receipt to the client (see acknowl-
edge chunks response message).

ii. The designated node replicates chunk content and their expiration date in
a continuous replication process. (See scenario A.4.4.6 Data Replication)

(f) The client serializes its chunk index into a serialised chunk index and splits it
into chunks as well.

(g) The client sends the additional chunk contents (as post chunks messages)
to the designated node, in which the root handle is highlighted.

Special cases

• If the client is suspended while running, it continuous with the backup process
on resume.

• If a file is changed during the backup process, and the chunk contents and chunk
identifiers cannot be calculated, the backup process must be restarted.

• If client crashes, the backup is aborted and won’t be continued if the client is
restarted.

• If the designated node goes away (disconnects/crashes/shuts down) during the
backup process, the client tries to resume the process. After a certain time (e.g.
15m), the client gives up and restarts the backup process from the beginning.

• A node must reject (i.e. not acknowledge) chunk contents, if the timestamp of the
sending party (e.g. client) is e.g. an hour in the future or past to prevent data
loss on bad synchronized clocks.

• If the designated node runs out of storage capacity, it does reject further chunk
contents. After a timeout, the client restarts the backup process (with another
designated node).

Possible simplifications in this study project

3a) Do not split files into chunks but send them as is.

A.4.4.2 Backup Restore

The client wants to restore specific files.

1. Same as in scenario A.4.4.1 Create Backup step 1.

2. The client contacts the nodes in the presorted order

(a) The client sends a get root handles requests to a node, the designated node.

(b) The designated node returns all root handles present in the system (see return
root handles message)

(c) If no node answers the request,the client records an error message and
aborts.

3. The client fetches all chunk contents of the serialised chunk indexs from the desig-
nated node (message: get chunks) and reassembles the chunk indexs.

Appendices XLIII

:Client :Management:Node A

get target nodes

return target nodes

get root handles

return root handles

get chunks

return chunks

FIGURE 8: Backup Restore UML Sequence Diagram

4. The user specifies which files from which chunk index shall be restored.

5. The client looks up the chunk identifiers in the corresponding chunk index.

6. The client requests the chunk contents from the designated node. (message: get
chunks)

7. The client reassembles the chunk contents into files.

Special cases

• If the designated node does not have a requested chunk identifier in its chunk table,
it requests the corresponding chunk content recursively.

• If the client crashes, the restore process must be repeated

• If the designated node is unavailable, the client selects a new designated node after
a certain timeout (e.g. 5m)

Possible simplifications in this study project

- The client must request a node that has the data already available (possibly the
designated node, where the backup was created).

A.4.4.3 Node Joining

A new node joins the system.
This scenario is described as it is implemented in the study project. It might be

subject to further evaluation in the future.

Appendices XLIV

:Node B :Management:Node A

get nodes metadata

return nodes metadata

Administrator

UI: register node

get nodes metadata

return nodes metadata

FIGURE 9: Node Joining UML Sequence Diagram

1. The new node is registered by an administrator in the management using its node
identifier. A location must also be assigned to the node.

2. The new node queries node metadata from the management (message: get nodes
metadata) on startup.

3. The new node configures itself based on its node identifier and received node meta-
data from management.

• If the management has no information available (yet) or is unavailable, the
new node retries after a certain timeout (e.g. 5min).

4. Other nodes learn about the new node through periodical node metadata queries
(message: post nodes metadata)

(a) If the new node contacts an existing node, before the existing node updates
its node metadata, the existing node should query the management (message:
get nodes metadata)

(b) If the management is unavailable, the new node ignores all communication
attempts.

A.4.4.4 Node Leaving Planned

A node leaves the system planned (refered as leaving node).
This scenario is described as it is implemented in the study project. It might be

subject to further evaluation in the future.

1. The leaving node is marked as leaving soon by the administrator in the manage-
ment.

2. As soon as the leaving node realises that it is in node state leaving soon (using
post nodes metadata), it ignores messages from other nodes, rejects any new
backups and starts replicating its chunk contents to another node.

3. As soon as all chunk contents are replicated onto other nodes, the leaving node
changes its node state to left and informs the management (message: post nodes
metadata).

Appendices XLV

:Node B :Management

State Node B:
Left

:Node A

post nodes metadata

return nodes metadata

Administrator

UI: node B leaving soon

post nodes metadata

return nodes metadata

FIGURE 10: Node Leaving Planned UML Sequence Diagram

A.4.4.5 Node Leaving Unplanned

A node leaves the system unexpectedly.

:Node B :Management:Node A

Administrator

UI: Inform

get chunk states

post nodes metadata

return nodes metadata
Record:
Node B unavailable

FIGURE 11: Node Leaving Unplanned UML Sequence Diagram

This scenario is described as it is implemented in the study project. It might be
subject to further evaluation in the future.

1. If a node is not responding (which means, no other node nor the management can
reach it), the management records the unavailability and informs the administra-
tor.

• If the node returns, it carries on as if nothing had happened.

• If the node does not return, the administrator marks the node as left, which is
propagated to all nodes via the post nodes metadata message.

– chunk contents, which were not previously replicated from the node are
lost.

Appendices XLVI

A.4.4.6 Data Replication

The network distributes chunks.

:Node B:Node A

get chunk states

return chunk states

post chunks

acknowledge chunks

FIGURE 12: Data Replication UML Sequence Diagram

This scenario is described as it is implemented in the study project. It might be
subject to further evaluation in the future.

1. The sending node picks n random entries from its chunk table. In the future, these
entries might be selected based on heuristics.

2. The sending node picks one random designated node from its node metadata. In
the future, the designated node might be selected based on heuristics.

3. The sending node sends the chunk identifiers of the chosen entries to the desig-
nated node with a get chunk states message.

4. The designated node checks, if all chunk identifiers received from the sending node
are present in its chunk table.

• If a chunk identifier is already present, update its expiration date if it is fur-
ther in the future.

• If a chunk identifier is not present, request the corresponding chunk content
from the sending node (see message return chunk states for further details).

5. The sending node sends the requested chunk contents to the designated node with
a post chunks message.

• The designated node verifies and persists the chunk contents into its storage.
Afterwards, it acknowledges receipt to the sending node (see acknowledge
chunks response message).

A.4.4.7 Data has Expired Lifetime

A node wants to delete chunks with a past expiration date.
This scenario is described as it is implemented in the study project. It might be

subject to further evaluation in the future.

• The management monitors the nodes physical timestamp and records any devi-
ation from the management time larger than 1h.

• Therefore, a first prototype, the node may just delete chunks after the specified
expiration date without further checks.

Appendices XLVII

– We build on the assumption, that the nodes have different upstream time-
servers, so that a general time shift is unlikely.

– In case a single nodes time is in the past, and runs out of storage capacity,
it might lead to a redundancy loss.

– If a single nodes time is in the future, the redundancy is reduced by one.

In the future, it is advisable to implement a consent protocol to reduce the likeli-
hood of data loss.

A.4.4.8 Data Storage has Errors

The storage component notifies its node that a chunk stored in it is corrupt.
This scenario is described as it is implemented in the study project. It might be

subject to further evaluation in the future.

1. The storage informs the node of a corrupt chunk using its chunk identifier

2. The node removes the chunk identifier from the chunk table

• The chunk will be replicated eventually.

3. Inform management when sending the next post nodes metadata message.

A.4.4.9 Management Problems

• The case that the management has outdated node metadata due to data loss will
be ignored during this study project.

A.4.4.10 Network Availability Problems

Behaviour in case a node can reach only some nodes directly The still available
nodes should try to fulfil redundancy needs as good as possible. If a node cannot
reach other nodes, it notifies the management with the next post nodes metadata

Behaviour in case the network gets partitioned (, and the nodes in each partition
can only reach each other and not the other ones.)

See first case in scenario A.4.4.10 Network Availability Problems

Behaviour in case nodes have different states of management information The
redundancy is temporary reduced to the nodes which the group of old nodes know,
but will eventually be resolved as nodes fetch node metadata.

A.4.5 Messages

Messages denote the communication units between application components. The fol-
lowing message specification is not bound to a specific message format (e.g. BSON
or Protobuf) on purpose since it might change in the future to optimise performance.

A message is separated into a message header and message payload section. In the
future, the message header section might get extended by e.g. a message size and
checksums.

Appendices XLVIII

Payload

Header

t imestamp_now 1508504120

type get chunks

FIGURE 13: Schematic of a message

header Set of header fields elements as specified in Table 2.

payload The actual payload of the message depending on the message type de-
fined in the header field type (see Table 3).

TABLE 1: Structure of a message.

field name Unique name of the header field. A core set of header field that must
be sent with every request is defined in Table 3.

field value The value belonging to the field name.

TABLE 2: Structure of a header field Element

timestamp_now The current UTC time of the local clock as a unix timestamp
(64-bit).

type A string representation of the message type, as described in sub-
sections A.4.5 Messages.

TABLE 3: Core set of header fields sent with every Request

Appendices XLIX

A.4.5.1 get target nodes

Context A.4.4.1 Create Backup
A.4.4.2 Backup Restore

Sender A client
Receiver The management

Additional message headers No additional message headers required

Message payload The message payload is empty

Response A.4.5.2 return target nodes (compulsory)

TABLE 4: get target nodes Message Specification

A.4.5.2 return target nodes

Context Response to A.4.5.1 get target nodes

Sender The management

Receiver The client that sent the get target nodes message

Additional message headers No additional message headers required

Message payload See Table 6

Response No response

TABLE 5: return target nodes message specification

target_nodes A list of target node elements as defined in Table 7. The list is
sorted in descending order by preference.

TABLE 6: Structure of the return target nodes message payload

node_identifier Node identifier of the node.

address Address (domain name or IP) of the node.

port Port-Number of the node.

TABLE 7: Structure of the target node element

Appendices L

A.4.5.3 get designation

Context A.4.4.1 Create Backup

Sender A client
Receiver A node
Additional message headers No additional message headers required

Message payload See Table 9

Response A.4.5.4 return designation (compulsory)

TABLE 8: get designation message specification

estimate_size Backup size estimate by the client in bytes.

expiration_date Unix timestamp (64-bit) of UTC timezone, until when the
backup is scheduled to be kept.

TABLE 9: Structure of the get designation message payload.

A.4.5.4 return designation

Context Response to A.4.5.3 get designation

Sender The node that received the get designation mes-
sage

Receiver The client that sent the get designation message

Additional message headers No additional message headers required

Message payload See Table 11

Response No response

TABLE 10: return designation message specification

designation Boolean, whether or not the node is ready to receive the backup.

TABLE 11: Structure of the return designation message payload.

A.4.5.5 get chunk states

Context A.4.4.1 Create Backup
A.4.4.6 Data Replication

Sender A client or a node
Receiver A node
Additional message headers No additional message headers required

Message payload See Table 13

Response A.4.5.6 return chunk states (compulsory)

TABLE 12: get chunk states message specification

Appendices LI

chunks A set of chunk elements as defined in Table 14 for which the state shall
be checked.

TABLE 13: Structure of the get chunk states message payload

chunk_identifier The chunk identifier of this chunk

expiration_date The expiration date of this chunk

root_handle Boolean, whether this chunk is a root handle

TABLE 14: Structure of the chunk element

A.4.5.6 return chunk states

Context Response to A.4.5.5 get chunk states

Sender The node that received the get chunk states mes-
sage

Receiver The client or node that sent the get chunk states

message

Additional message headers No additional message headers required

Message payload See Table 16

Response No response

TABLE 15: return chunk states message specification

chunks A set of chunk elements as defined in Table 14 that are present on this
node with the updated expiration_date

TABLE 16: Structure of the return chunk states message payload

A.4.5.7 post chunks

Context A.4.4.1 Create Backup
A.4.4.6 Data Replication

Sender A client or a node
Receiver A node
Additional message headers No additional message headers required

Message payload See Table 18

Response A.4.5.8 acknowledge chunks (compulsory)

TABLE 17: post chunks message specification

chunks A set of chunk content elements as defined in Table 19.

TABLE 18: Structure of the post chunks message payload

Appendices LII

chunk_identifier The chunk identifier of this chunk

expiration_date The expiration date of this chunk

root_handle Boolean, whether this chunk is a root handle
chunk_content The binary chunk contents of this chunk

TABLE 19: Structure of the chunk content element

A.4.5.8 acknowledge chunks

Context Response to A.4.5.7 post chunks

Sender The node that received the post chunks message

Receiver The client or node that sent the post chunks mes-
sage

Additional message headers No additional message headers required

Message payload See Table 21

Response No response

TABLE 20: acknowledge chunks message specification

chunks A set of chunk elements as defined in Table 14 that were received and
stored.

TABLE 21: Structure of the acknowledge chunks message payload

A.4.5.9 get chunks

Context A.4.4.2 Backup Restore

Sender A client
Receiver A node
Additional message headers No additional message headers required

Message payload See Table 23

Response A.4.5.10 return chunks (compulsory)

TABLE 22: get chunks message specification

chunk_identifiers A set of chunk identifiers for which the chunk contents shall
be returned.

TABLE 23: Structure of the get chunks message payload

Appendices LIII

A.4.5.10 return chunks

Context Response to A.4.5.9 get chunks

Sender The node that received the get chunks message

Receiver The client that sent the get chunks message

Additional message headers No additional message headers required

Message payload See Table 25

Response No response

TABLE 24: return chunks message specification

chunks A set of chunk content elements as defined in Table 19.

TABLE 25: Structure of the return chunks message payload

A.4.5.11 get root handles

Context A.4.4.2 Backup Restore

Sender A client
Receiver A node
Additional message headers No additional message headers required

Message payload The message payload is empty.

Response A.4.5.12 return root handles (compulsory)

TABLE 26: get root handles message specification

A.4.5.12 return root handles

Context Response to A.4.5.11 get root handles

Sender The node that received the get root handles mes-
sage

Receiver The client that sent the get root handles message

Additional message headers No additional message headers required

Message payload See Table 28

Response No response

TABLE 27: return root handles message specification

root_handle_chunks A set of chunk content elements as defined in Table 19,
all of which are root handles

TABLE 28: Structure of the return root handles message payload

Appendices LIV

A.4.5.13 get nodes metadata

Context A.4.4.3 Node Joining
Periodical node updates: node reads data from management only

Sender A node
Receiver The management

Additional message headers No additional message headers required

Message payload The message payload is empty.

Response A.4.5.15 return nodes metadata (compulsory)

TABLE 29: get nodes metadata message specification

A.4.5.14 post nodes metadata

Context A.4.4.3 Node Joining
Periodical node updates: Node sends data

Sender A node
Receiver The management

Additional message headers No additional message headers required

Message payload See Table 31

Response A.4.5.15 return nodes metadata (compulsory)

TABLE 30: post nodes metadata message specification

this_node An internal node metadata element as described in Table 32
describing the sending node.

other_nodes A set of node state metadata elements as described in Table 33.
One element for for every other node in the system about which the
sending node is aware of.

TABLE 31: Structure of the post nodes metadata message payload

node_identifier The node identifier of this node

state The inner node state of this node
storage_used Free storage of this node in bytes .

storage_total Total storage capacity of this node in bytes.

TABLE 32: Structure of the internal node metadata element

Appendices LV

node_identifier The node identifier of this node

state The node state of this node (as seen from the outside)

TABLE 33: Structure of the node state metadata element

A.4.5.15 return nodes metadata

Context Response to A.4.5.14 post nodes metadata
Response to A.4.5.13 get nodes metadata

Sender The management

Receiver The node that sent the post nodes metadata / get

nodes metadata message

Additional message headers No additional message headers required

Message payload See Table 35

Response No response

TABLE 34: return nodes metadata message specification

nodes A set of node contact metadata elements as described in Table 36. One
element for for every node in the system.

TABLE 35: Structure of the return nodes metadata message payload

node_identifier The node identifier of this node.

address The address of this node.
port The nodes port of this node.

state The node state of this node.

TABLE 36: Structure of the node contact metadata element

Appendices LVI

A.5 Language Evaluation

Based on the Requirements described in Appendix A.3, we compared three lan-
guages/technologies.

Rust is a modern language representing an alternative to the traditional ”low-
level” languages C and C++.

Erlang was our second option since it is well suited for distributed, fault-tolerant
systems. It is also a functional programming language, with which we both do not
have much experience but share an interest in.

Go came up when we were researching for distributed systems in Rust. Friends,
as well as various blog posts, suggested that Go is established in the field of dis-
tributed systems, has a diverse eco-system and is therefore well suited for the job.

We grouped the criteria for our comparison into three groups: Client (See Table
37), Distributed System (See Table 38) and Eco System (See Table 39). The assessment
is not entirely objective and based on brief research as well as personal impressions.

A.5.1 Decision

We decided to use Rust. Despite its rather young age, Rust is supported by a very en-
thusiastic and welcoming community and provides stable releases and an excellent
language documentation.

The main reason we settled for Rust was its type system as well as the concept
of Ownership and Borrowing, which enables so many of Rusts features and permits
us to do safe concurrency. Also, Rust has two excellent networking libraries.

The most significant downside of Rust for us is the limited amount of high-
quality libraries.

We ruled out Erlang because of three reasons. Firstly, since we do not have
any experience with functional programming languages, we expect a much steeper
learning curve and therefore a slower progress. Secondly, we think that we do not
need most of Erlangs key features such as Hot Swapping and strong process isola-
tion. At last, Erlang requires to be run in the Erlang VM, which makes deployment
more difficult than in Rust or Go.

In comparison to Rust, Go lacks various features. For example, the lack of gener-
ics, a need for garbage collection and pointers lead to more memory consumption
and higher parallelisation risks. An advantage of Go is a slightly more established
ecosystem.

Appendices LVII

TA
B

L
E

37
:L

an
gu

ag
e

an
d

Ec
os

ys
te

m
C

om
pa

ri
so

n
fo

r
th

e
C

lie
nt

C
ri

te
ri

a
La

ng
ua

ge
R

us
t

Er
la

g
G

o

pl
at

fo
rm

in
de

pe
nd

en
t

Ye
s,

LL
V

M
Ba

ck
en

d
[1

6]
Ye

s
[2

5]
Ye

s
[2

9]

al
lo

w
an

ea
sy

in
st

al
la

ti
on

(n
o

ru
nt

im
e

re
qu

ir
ed

or
bu

nd
le

it
)

R
un

ti
m

e
in

cl
ud

ed
,

co
m

pi
le

s
to

m
ac

hi
ne

co
de

vi
a

LL
V

M
[1

6]
N

o
[1

8]
C

re
at

io
n

of
st

at
ic

al
ly

-l
in

ke
d

bi
na

-
ri

es
by

de
fa

ul
t[

31
]

bi
nd

in
gs

to
a

re
as

on
ab

le
(p

la
tf

or
m

in
de

pe
nd

en
t)

U
I-

Fr
am

ew
or

k

N
o,

lo
ts

of
to

ol
s

ar
e

in
in

al
ph

a
st

ag
e.

Se
e

h
t
t
p
s
:
/
/

g
i
t
h
u
b
.
c
o
m
/
r
u
s
t
-
u
n
o
f
f
i
c
i
a
l
/

a
w
e
s
o
m
e
-
r
u
s
t
#
g
u
i

N
o

[6
]

Ye
s,

Se
e

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/

a
v
e
l
i
n
o
/
a
w
e
s
o
m
e
-
g
o
#
g
u
i

https://github.com/rust-unofficial/awesome-rust#gui
https://github.com/rust-unofficial/awesome-rust#gui
https://github.com/rust-unofficial/awesome-rust#gui
https://github.com/avelino/awesome-go#gui
https://github.com/avelino/awesome-go#gui

Appendices LVIII

TA
B

L
E

38
:L

an
gu

ag
e

an
d

Ec
os

ys
te

m
C

om
pa

ri
so

n
fo

r
th

e
D

is
tr

ib
ut

ed
Sy

st
em

C
ri

te
ri

a
La

ng
ua

ge
R

us
t

Er
la

g
G

o

ru
n

on
lig

ht
w

ei
gh

t(
co

st
ef

fe
ct

iv
e)

pl
at

fo
rm

s
su

ch
as

a
ra

sp
be

rr
y

pi
.

Ye
s,

th
ro

ug
h

LL
V

M
[1

6]
Ye

s
[2

5]
.

D
iff

er
en

t
Se

m
an

ti
cs

:
R

un
in

a
cl

us
te

r
Ye

s
[2

9]

fa
st

/
ef

fic
ie

nt
Ye

s,
”z

er
o

co
st

ab
st

ra
ct

io
n”

an
d

”m
in

im
al

ru
nt

im
e”

[3
4]

,
LL

V
M

op
ti

m
iz

er
[1

6]

Ye
s,

us
in

g
th

e
A

ct
or

M
od

el
[1

2]
Ye

s,
us

in
g

th
e

G
or

ou
ti

ne
s

[8
]

sa
fe

co
nc

ur
re

nc
y

fo
r

ne
tw

or
ki

ng
an

d
ca

lc
ul

at
io

n
of

ch
ec

ks
um

s
Ye

s,
us

in
g

bo
rr

ow
an

d
m

ov
e

se
-

m
an

ti
cs

[3
2]

Ye
s,

us
in

g
th

e
A

ct
or

M
od

el
[1

2]
Ye

s,
us

in
g

th
e

G
or

ou
ti

ne
s

[8
]

U
se

ex
is

ti
ng

lib
ra

ri
es

(e
.g

.
fo

r
re

ad
in

g
di

sk
he

al
th

st
at

us
)

Ye
s,

us
in

g
FF

I[
33

]
Ye

s,
us

in
g

N
IF

[2
4]

Ye
s,

us
in

g
cg

o
[2

7]

pr
ov

id
e

a
st

ab
le

an
d

fa
st

ne
tw

or
k

st
ac

k
Ye

s,
in

th
e

st
an

da
rd

lib
ra

ry
as

w
el

la
s

fr
am

ew
or

ks
su

ch
as

to
ki

o
[3

8]

Ye
s,

in
th

e
st

an
da

rd
lib

ra
ry

[2
6]

Ye
s,

in
th

e
st

an
da

rd
lib

ra
ry

[3
0]

Appendices LIX

TA
B

L
E

39
:E

co
sy

st
em

C
om

pa
ri

so
n

C
ri

te
ri

a
La

ng
ua

ge
R

us
t

Er
la

g
G

o

W
eb

fr
am

ew
or

ks
(f

or
th

e
m

an
-

ag
em

en
t)

Ye
s,

e.
g.

h
t
t
p
s
:
/
/
g
o
t
h
a
m
.
r
s
/

Ye
s,

e.
g.

h
t
t
p
:
/
/
c
h
i
c
a
g
o
b
o
s
s
.

o
r
g
/

Ye
s,

e.
g.

h
t
t
p
s
:
/
/
b
e
e
g
o
.
m
e
/

St
ab

ili
ty

”s
ta

bi
lit

y
w

it
ho

ut
st

ag
na

ti
on

”
[1

7]
Ye

s,
fir

st
re

le
as

e
in

19
86

[2
6]

St
ab

ile
,

re
le

as
e

ev
er

y
6

m
on

th
s

[2
8]

st
ab

le
lib

ra
ri

es
fo

r
co

m
m

on
ta

sk
s

M
or

e
th

an
11

’0
00

on
h
t
t
p
s
:
/
/

c
r
a
t
e
s
.
i
o
/

M
or

e
th

an
5’

00
0

Pa
ck

ag
es

av
ai

l-
ab

le
on

h
t
t
p
s
:
/
/
h
e
x
.
p
m
/

M
or

e
th

an
75

6’
00

go
la

ng
R

ep
os

it
or

ie
s

in
de

xe
d

on
h
t
t
p
:
/
/
g
o
-
s
e
a
r
c
h
.
o
r
g
/

(i
n-

cl
ud

es
al

lG
it

H
ub

fo
rk

s
as

w
el

l)

pr
od

uc
ti

ve
to

ol
in

g
C

ar
go

,
ID

E-
Su

pp
or

t
(V

S-
C

od
e,

In
te

lli
JR

us
te

tc
)

re
ba

r3
,

ID
E-

Su
pp

or
t

(e
rl

id
e,

In
-

te
lli

JE
rl

an
g

et
c)

de
p

no
t

ye
t

th
at

es
ta

bl
is

he
d

bu
td

ep
en

de
nc

y
m

an
ag

em
en

tv
ia

‘g
o

ge
t‘

ID
E-

Su
pp

or
t

(V
S-

C
od

e,
G

ol
an

d
et

c)

go
od

te
st

in
g

fr
am

ew
or

ks
(u

ni
t

an
d

in
te

gr
at

io
n

te
st

s)
In

cl
ud

ed
(c

ar
go

te
st

)
as

w
el

l
as

ot
he

r
te

st
in

g
fr

am
ew

or
ks

In
cl

ud
ed

(E
U

ni
t)

In
cl

ud
ed

(t
es

ti
ng

)a
s

w
el

la
s

ot
he

r
te

st
in

g
fr

am
ew

or
ks

go
od

an
d

up
to

da
te

do
cu

m
en

ta
-

ti
on

Ye
s,

R
us

t
Bo

ok
,G

oo
d

D
oc

um
en

-
ta

ti
on

of
th

e
st

an
da

rd
lib

ra
ry

,
ot

he
r

Li
te

ra
tu

re

Ye
s,

U
se

r
G

ui
de

,
G

oo
d

D
oc

u-
m

en
ta

ti
on

of
th

e
st

an
da

rd
lib

ra
ry

,
ot

he
r

Li
te

ra
tu

re

Ye
s,

G
oo

d
D

oc
um

en
ta

ti
on

of
th

e
st

an
da

rd
lib

ra
ry

,o
th

er
Li

te
ra

tu
re

ac
ti

ve
co

m
m

un
it

y
to

ge
ts

up
po

rt
Ye

s,
vi

a
IR

C
,

Fo
ru

m
an

d
m

or
e.

Se
e

h
t
t
p
s
:
/
/
w
w
w
.
r
u
s
t
-
l
a
n
g
.

o
r
g
/
e
n
-
U
S
/
c
o
m
m
u
n
i
t
y
.
h
t
m
l

Ye
s

vi
a

IR
C

/S
la

ck
,

Fo
ru

m
an

d
m

or
e.

Se
e
h
t
t
p
:
/
/
w
w
w
.
e
r
l
a
n
g
.

o
r
g
/
c
o
m
m
u
n
i
t
y

Ye
s

vi
a

IR
C

/S
la

ck
,

Fo
ru

m
an

d
m

or
e.

Se
e
h
t
t
p
:
/
/
w
w
w
.
e
r
l
a
n
g
.

o
r
g
/
c
o
m
m
u
n
i
t
y

Su
pp

or
t

bu
g-

fr
ee

co
di

ng
(e

.g
.

go
od

ty
pe

sy
st

em
,

m
em

or
y

sa
fe

ty
,l

in
ti

ng
or

go
od

co
m

pi
le

r)

Ye
s,

Li
nt

er
,B

or
ro

w
-C

he
ck

er
.

N
o

go
od

m
et

ri
cs

/
co

ve
ra

ge
lib

ra
ri

es
ye

t.

Ye
s,

Li
nt

er
,C

ov
er

ag
e

To
ol

s
et

c.
Ye

s,
Li

nt
er

,C
ov

er
ag

e
To

ol
s

et
c.

https://gotham.rs/
http://chicagoboss.org/
http://chicagoboss.org/
https://beego.me/
https://crates.io/
https://crates.io/
https://hex.pm/
http://go-search.org/
https://www.rust-lang.org/en-US/community.html
https://www.rust-lang.org/en-US/community.html
http://www.erlang.org/community
http://www.erlang.org/community
http://www.erlang.org/community
http://www.erlang.org/community

Appendices LX

A.6 Prototype Command Line Interface

A.6.1 Client

$ redbackup-client-cli --help

redbackup client-cli 0.1.0

Raphael Zimmermann <dev@raphael.li>:Fabian Hauser <fabian@fh2.ch>

redbackup client

USAGE:

redbackup-client-cli [OPTIONS] [SUBCOMMAND]

FLAGS:

--help Prints help information

-V, --version Prints version information

OPTIONS:

--chunk-index-storage <chunk-index-storage> Folder where chunk

↪→ indices are stored. [default: /tmp/]

-h, --node-hostname <node-hostname> hostname of the node

↪→ to contact [default: 0.0.0.0]

-p, --node-port <node-port> port of the node to

↪→ contact [default: 8080]

SUBCOMMANDS:

create Create a new backup

help Prints this message or the help of the given subcommands

list List available backups on the node.

restore List available backups on the node.

A.6.1.1 Create

$ redbackup-client-cli create --help

redbackup-client-cli-create

Create a new backup

USAGE:

redbackup-client-cli create [OPTIONS] <expiration-date> <local-

↪→ backup-dir>

FLAGS:

-h, --help

Prints help information

-V, --version

Prints version information

OPTIONS:

--exclude-from <FILE>

Appendices LXI

Exclude multiple glob patterns from FILE. Define one pattern

↪→ per line. Patterns are relative to the backup

root, e.g. ’pictures/**/*.jpg’. For allowed glob syntax, see

https://docs.rs/glob/0/glob/struct.Pattern.html#main

ARGS:

<expiration-date>

the expiration date of this snapshot(format: %Y-%m-%dT%H:%M)

<local-backup-dir>

Directories, that should be backuped

A.6.1.2 List

$ redbackup-client-cli list --help

redbackup-client-cli-list

List available backups on the node.

USAGE:

redbackup-client-cli list

FLAGS:

-h, --help Prints help information

-V, --version Prints version information

A.6.1.3 Restore

$ redbackup-client-cli restore --help

redbackup-client-cli-restore

List available backups on the node.

USAGE:

redbackup-client-cli restore <backup-id> <local-restore-dir>

FLAGS:

-h, --help Prints help information

-V, --version Prints version information

ARGS:

<backup-id> ID of the backup that should be restored

<local-restore-dir> Destionation, where the files should be

↪→ restored to.

A.6.2 Node

$ redbackup-node-cli --help

redbackup node-cli 0.1.0

Raphael Zimmermann <dev@raphael.li>:Fabian Hauser <fabian@fh2.ch>

Appendices LXII

redbackup node server

USAGE:

redbackup-node-cli [OPTIONS] [--] [ARGS]

FLAGS:

-h, --help Prints help information

-V, --version Prints version information

OPTIONS:

-k, --known-node <known-node>... ip address and port (<ip-address

↪→ >:<port>) of other known nodes in the network

ARGS:

<ip> IP to bind [default: 0.0.0.0]

<port> IP to bind [default: 8080]

<storage-dir> path to the storage directory [default: ./data/]

<db-file> path to the database file [default: db.sqlite3]

Appendices LXIII

A.7 Personal Reports

A.7.1 Raphael Zimmermann

The project was a fascinating intellectual challenge, which allowed me to use lots of
my experience and knowledge acquired while studying.

Finding an appropriate way of documenting a complex software system was one
of the significant challenges for me. It was interesting to attend the lecture "Applica-
tion Architecture" in parallel which focuses on this problem entirely. Unfortunately,
many interesting techniques were discussed relatively late in this course by which
we already finished our specification. Reading about fault tolerance and networking
patterns in the lecture "Advanced Patterns and Frameworks" also strengthened my
confidence in our proposed architecture because we used many of them implicitly.

I played well together with Fabian even though we worked a lot apart. We found
the right balance by discussing relevant tasks in person and doing more routine and
detailed work separate and more focused.

The explorative nature of the project made it hard to come up with reasonable
estimates. It was the right decision to keep sprints very short to stay agile. I also
learned to appreciate the value of checklists, e.g. for sprint planning and completion.

A.7.2 Fabian Hauser

“It doesn’t matter how beautiful your theory is...
If it doesn’t agree with experiment, it’s wrong.” - Richard Feynman

This quote by Richard Feynman summarises pretty well, what made this project
very interesting to me - building both, a high level architecture and a concrete, work-
ing prototype. During our studies, we learned a lot about tools to create and design
systems, but never had the actual chance to build a larger project with them. I am
very delighted for this opportunity.

Something that I particularly enjoyed was working together with Raphael. As
we come from different specialised backgrounds, with Raphael coming from a soft-
ware and myself more from a system engineering side, our discussions regarding
the application architecture were both very valuable and enriching.

Wanting to learn Rust for a while, this project seemed like the ideal opportunity
to do so. For me, this proved to be one of the main challenges during this project
thought, as Rust has a very steep learning curve. This mainly had impact on the
programming productivity, although this probably would have been even worse
with the choice of a functional language. Still, I am glad to have had the opportunity
to learn Rust.

LXIV

Declaration of Authorship

We, Fabian HAUSER and Raphael ZIMMERMANN, declare that this thesis and the
work presented in it are our own, original work. All the sources we consulted and
cited are clearly attributed. We have acknowledged all main sources of help.

Fabian Hauser

Raphael Zimmermann

Rapperswil, December 20, 2017

	Abstract
	Management Summary
	Abstract
	Acknowledgements
	Contents
	Introduction
	Motivation
	Present situation
	Problem
	Solution

	Goals and Tasks
	Initial Goals
	Revised Goals
	Deviations from the Original Goals

	State of the Art
	Backup Applications
	Peer-to-Peer Backup Storage
	Goals

	Architecture Concept Paper
	System Architecture
	Backup creation
	Backup restore
	Replication
	Security and Encryption
	Partitioning & Scaling
	Failure Detection

	Fundamental Design Decisions
	Hash Collisions

	Prototype
	Concrete Architecture
	Testing

	Discussion and Conclusion
	Achieved Result
	Prototype
	Prototype Test Results
	Architecture
	Architecture Test Results
	Requirements and Intentions

	Lessons Learned
	Project course
	Decisions

	Future work
	Reduce Memory and CPU consumption
	Further demonstrate the architecture
	Client-m-replication
	Evolve the Prototype into a Working Product

	Conclusion

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Appendices
	Task Description
	Project Plan
	Requirements
	Intentions of a User
	Intentions of an Administrator
	Requirements

	Architectural Concept Paper
	Overview
	Actors
	Components
	Scenarios
	Messages

	Language Evaluation
	Decision

	Prototype Command Line Interface
	Client
	Node

	Personal Reports
	Raphael Zimmermann
	Fabian Hauser

	Declaration of Authorship

