
Big Spatial Data Analysis and Processing
Master Thesis, August 2018
Department of Computer Science
University of Applied Science Rapperswil

Author: Philipp Koster
Advisor: Stefan Keller



Zusammenfassung

Big Data steht für solch grosse Datensätze, bei welchen traditionelle Ansätze und Technologien an
ihre Grenzen kommen und Abfragen nicht mehr in zumutbarer Zeit ausgeführt werden können. Da
allerdings heutzutage immer mehr Daten gesammelt und verarbeitet werden, haben sich verschiedene
Technologien etabliert die das Speichern, Prozessieren, Analysieren und auch Visualisieren von Big
Data effizienter machen.

Geospatial Big Data kann als Subset von Big Data verstanden werden, bei welchem die Daten ge-
ographische Attribute wie Punkte, Linien und Flächen beinhalten. Da der Anteil der geographischen
Daten immer weiter wächst, wird das performante Prozessieren dieser immer wichtiger. Dafür ex-
istieren bereits Erweiterungen für verbreitete Big Data Technologien, dessen Funktionsumfang allerd-
ings noch sehr klein ist.

Das Ziel dieser Thesis ist es, den Einsatz von Geospatial Big Data Technologien anhand zweier Anwen-
dungsfälle zu evaluieren. Beim ersten Anwendungsfall werden aus OpenstreetMap Daten sogenannte
Areas-of-Interest (AOIs) extrahiert, welche dem Leser einer Karte einen Eindruck über hochfrequen-
tierte und sehenswerte Bereiche einer Stadt geben. Beim zweiten Anwendungsfall, der in Zusamme-
narbeit mit einem Industriepartner entwickelt wird, werden Berechnungen und Auswertungen auf einer
grossen Anzahl GPS-Punkte ausgeführt. Beide Anwendungsfälle stossen an das Limit eines klassischen
DBMS, welches im ersten Teil dieser Thesis anhand einer Implementierung mit PostgreSQL aufgezeigt
wird. Im zweiten Teil wird ein geeigneter Big Data Technologie Stack eingeführt und dessen Potential
und Limitierungen aufgezeigt.
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Abstract

Big Data defines such large datasets, where traditional approaches and technologies reach their limits
and analytical queries can no longer be executed in a reasonable time. However, as more and more data
is collected and processed, different technologies have been established to make storing, processing,
analyzing and visualizing Big Data more efficient.

Geospatial Big Data can be understood as a subset of Big Data containing geographic attributes
such as points, lines and areas. As the amount of geographic data continues to grow everyday, high-
performance processing is becoming increasingly relevant and necessary. There are different extensions
for popular Big Data technologies, but their functional scope is still very limited.

The aim of this thesis is to evaluate the use of Geospatial Big Data technologies in two use cases. In
the first use case, Areas-of-Interest (AOIs) are created from OpenstreetMap data. AOIs give the map
reader an impression of certain areas in a city that are highly frequented and worth visiting. In the
second use case, developed in cooperation with an industrial partner, analytical queries are executed
on a large number of GPS points. Both applications reach the limit of a classic DBMS, which is
demonstrated in the first part of this thesis by an implementation with PostgreSQL. The second
part introduces a suitable Big Data technology stack and shows its potential strengths as well as
limitations.
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Management Summary

Nowadays, more and more data is being collected in various domains. To process such large amounts
of data, new Big Data technologies like Hadoop or Apache Spark have evolved. These technologies
split and distribute the calculations to the worker nodes of a cluster. The present thesis deals with the
evaluation of Apache Spark in the processing of huge amount of data from the geospatial domain.

Goals

For the evaluation, two use cases are implemented. The evaluation of both the use cases is first done
with the traditional PostgreSQL in combination with PostGIS, and later with Apache Spark along with
a suitable geospatial extension. Both implementations are benchmarked and compared. The efficacy
of the Big Data technology is finally evaluated.

Results

The first use case involves generation of Areas-of-Interest (AOIs) using PostgreSQL along with Post-
GIS. For this, Points-of-Interests (POIs) taken from the OpenStreetMap data are clustered. The
hulls of the clusters are then extended using a network centrality algorithm. Finally, the extended hulls
are sanitized by removing irrelevant areas and merging overlapping regions. The generated AOIs are
either accessible as GeoJSON file or can be generated with a web application.

For the second use case, a problem encountered by an industrial partner was solved. They reported to
have faced performance issues while using PostgreSQL and PostGIS. In a first step, their implemen-
tation was optimized and the performance could be improved to their satisfaction, simply by applying
diligently sequenced PostgreSQL and PostGIS queries.

A geospatial extension of Apache Spark, namely GeoSpark, has also been evaluated in the thesis.
While implementing the use cases, various pitfalls and bugs were encountered. Additionally, GeoSpark
does not yet contain the necessary scope of functionality to implement a complex use case like the
generation of AOIs. Therefore, only a relatively small subset of the PostGIS implementation could be
re-implemented with GeoSpark.

For the second use case, the GeoSpark implementation outperformed the PostGIS implementation,
primarily due to its capability to parallelize the execution. However, it must be mentioned here,
that the GeoSpark implementation was run with much stronger hardware. Moreover, Apache Spark
intrinsically has a better memory utilization. Therefore, the comparison is not fair in all aspects.
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Select POIs by relevant tags. Cluster POIs and draw hulls.

Extend hulls with network centrality. Sanitize and export AOIs.

Illustration of Areas-of-Interest creation for Rapperswil.

Future Outlook

The use of GeoSpark is not yet production-ready for complex applications. However, it is under
active development and the quality and scope of functionality is increasing continuously. Whether
with GeoSpark or with some other similar solution, the ability to process geospatial data on a cluster
will certainly gain importance in the near future.

The generated AOIs can be improved in many ways. The applied clustering algorithm can be refined
and new data sources can be added. To improve the performance and provide faster queries, the
extension through the network centrality needs to be enhanced, so that no external API needs to be
called.
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1. Overview

Nowadays more and more data is collected. To process this huge amount of data, for example to
perform analytical tasks, new technology stacks have evolved. This is necessary, since traditional
technologies like PostgreSQL are not capable of performing queries on large datasets in reasonable
time. These new technology stacks are generically known as BigData frameworks. The key concept
is to perform a query not on one machine, but on a cluster of machines in parallel. Frameworks
like MapReduce from Google, Apache Hadoop and Apache Spark are widely used and proven to be
effective in practice.

Geospatial data refers to spatial datasets. Examples of spatial data are locations, streets or city
boundaries, which could be represented as points, lines or polygons. Especially in the era of smart-
phones and navigation devices, a lot of GPS information is collected and need to be processed and
analysed.

The present thesis evaluates the use of a BigData framework, namely Apache Spark, for the particular
case of geospatial data. Different extensions for Apache Spark exist, which can be used to process
geodata. However, none of them have yet gained much popularity. Furthermore, there are hardly any
benchmarks. With this in view, two use cases are implemented in the thesis.

In the first use case, Areas-of-Interest (AOIs) are generated from the data of OpenStreetMap. Open-
StreetMap is a map of the world based on a collaborative, volunteered effort. AOIs are urban areas
around a city or its neighbourhood with a high concentration of Points-of-Interest (POIs) typically
located along a street of high spatial importance [15]. The calculation of AOI includes expensive
spatial queries, for example the application of clustering algorithms.

The second use cases is implemented for an industrial partner. They capture a large amount of events
which contain, besides other attributes, a timestamp and a GPS location. For analytical purpose they
need to count the events that occurred inside certain areas. There can be hundreds of areas for one
query. Since these analytical queries contains expensive spatial conditions, the runtime of the queries
become unacceptable.

In the first part of this thesis, both use cases are described in more detail in Sections 2 and 3. Further,
the Big Data Framework Apache Spark is introduced in Section 4.

In the second part of this thesis, the use cases are implemented with a traditional relational database,
namely PostgreSQL and PostGIS. With these implementations, benchmarks are performed and doc-
umented. The benchmark results show the limitations and the bottlenecks of the implemented use
cases.

In part three the same use cases are implemented with Apache Spark. Therefore, a suitable extension
for Apache Spark which can handle geospatial queries is evaluated and used. The implementation is
described in detail and the same benchmarks as with the PostgreSQL implementation are performed
and compared.

The fourth part summarizes the results of the thesis and draws appropriate conclusions.
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2. Use Case AOI

The objective of Areas-of-Interest (AOIs) is to give the viewers of a map an impression that there is
a lot of activity in that area. For example, restaurants, bars, shops, museums are places of interest
for tourists. Therefore, the AOIs on a map show tourists where it is worth going, for example, the
old town, a street with a lot of restaurants or a shopping promenade.

Definition of AOI
“Urban area at city or neighbourhood level with a high concentration of POI, and typically
located along a street of high spatial importance” [15]

This Section first describes the state-of-the-art of AOIs. Next, an approach to generate AOIs based
on the data of OpenStreetMap is described.

2.1. State of the Art

2.1.1. Google Maps

The most popular AOIs are the ones in Google Maps (GMaps)1. They were introduced in mid 2016
and represent “places where there’s a lot of activities and things to do” with an orange shade [12].
Figure 2.1a shows an example of GMaps with AOIs in the town Rapperswil. As one can see, the old
town is for example marked as AOI. Since they can be overlooked very easily, the AOIs are marked in
Figure 2.1b with a red line.

One characteristic of the AOIs in GMaps is that they are different on higher zoom levels. When the
zoom level is greater or equal 17, single buildings are marked with pale orange, instead of whole areas.
This is illustrated in Figure 2.2.

1They are considered the most popular because they probably have the largest audience. Although, most people never
noticed them
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(a) GMaps AOIs of Rapperswil with zoom level 16.

(b) Same AOIs, but marked with a red line, since they can be overlooked very easily.

Figure 2.1.: AOIs in Google Maps (GMaps)
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Figure 2.2.: GMaps POIs of Rapperswil with zoom level 17.

The way in which AOIs are generated on GMaps is unknown, since their algorithm, for good reason,
is not publicly available. Therefore, one can only assume how AOIs in GMaps are constructed. This
has already been evaluated by [15]. Their compilation of observations which could be verified are:

• AOIs are selected based on POI class
• AOIs are spatially clustered from POI points and buildings with some influence of street lines
(AOI buildings are aggregated and sometimes look like they are buffered symmetrically on both
street sides, even when on the other side there are no AOIs)

• AOIs are selected based on density of surrounding POIs (i.e. a certain amount of POIs must
exist within a given radius)

• There is a aggregation or extrapolation of some levels performed on small scaled POIs to make
the entire building that houses them into an AOI.

Other assumptions are more difficult to verify, but quite possible, for example:

• AOIs are selected based on (mostly unconscious) analysed user tracks from mobile app
• AOIs are selected based on user reviews and likes.

2.1.2. TopPlace by AVUXI

TopPlace is a product developed by AVUXI. They call it, “a worldwide location rating system which
ranks the popularity of every place on Earth” [2]. Among others, TopPlace offers worldwide heat
maps. By selecting one category from Sightseeing, Eating, Shopping and Nightlife, a map overlay
shows the concentration of the most relevant areas. Figure 2.3 shows the heat maps of Barcelona for
the different categories.
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(a) Heat map for category Sightseeing (b) Heat map for category Eating

(c) Heat map for category Shopping (d) Heat map for category Nightlife

Figure 2.3.: Heat maps of TopPlace by AVUXI

AVUXI says they are using more then 60 sources to determine AOIs [2]. In one of their blog posts,
they list a few data sources [1]:

• Open Data: Geo–data of each city, in order to have a reference point on which published census
data can be retrieved and used.

• Open Data: Census information on immigration and housing.
• Open Data: Industrial and green areas
• Public Data: Information on housing prices.
• AVUXI Data: Categorized GeoPopularity data grouped by census areas.
• AVUXI Data: Heat maps of areas of interest by basic traveler activities: Eating, Shopping,
Sightseeing and Nightlife

Even though this information about the AOIs of TopPlace exists, it is not clear how TopPlace generates
their AOIs. This lack of clarity is comprehensible since the generated maps are of business value to
AVUXI.

AVUXI market their AOIs as superior to the AOIs of GMaps, because with their categories they are
more tailored to the different needs of map readers.
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It is striking, however, that AOIs exists only in bigger cities and no data is available in small cities or
villages. Another downside of their AVUXI’s TopPlace is, that it is a paid product and costs at least
49 € per month (as on May 2018).

2.2. AOI with OpenStreetMap

Section 2.1 listed already existing and available AOIs. But they have the downsides, that their creation
is not comprehensible or are not free to use. Therefore, the generation of AOIs based on open data,
like OpenStreetMap, is desirable.

2.2.1. Approach

The following approach to generate AOIs with OpenStreetMap (OSM) is strongly based on the
existing whitepaper “Areas-of-Interest for OpenStreetMap (AOI for OSM)” by Stefan Keller and Kang
Zi Jing [15]. Their proposed approach contains the following steps:

• Select relevant POIs
• Cluster selected POIs
• Create areas based on clusters
• Extend areas based on the network centrality
• Sanitize AOIs
• Export AOIs

The individual steps are described in more detail below.

2.2.1.1. Select Relevant POIs

The data of OpenStreetMap contains so-called points of interests (POI). As pointed out in the
OpenStreetMap documentation, a POI is not necessarily interesting, since, for example, post boxes
are relatively interesting/ uninteresting depending on the context [19]. Some examples for POIs are:

• Churches, schools, town halls, distinctive buildings
• Post offices, shops, postboxes, telephone boxes
• Pubs
• Tourist attractions

Figure 2.4 shows POIs related to food and drinks in Rapperswil using the web application Open-
PoiMap2, which allows to visualize POIs.

2Available at http://openpoimap.org
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Figure 2.4.: POIs of Rapperswil, related to food and drink, visualized with openpoimap.org.

Objects in OpenStreetMap have tags. For example, a node or polygon which has the tag amenity
with the value pub maps a pub. Therefore, the POIs are selected based on their tags. A list for AOIs
relevant tags can be found in the Appendix A.1.

2.2.1.2. Cluster Selected POIs

After the POIs have been selected, they are clustered in the next step. The clustering algorithm
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is suitable for this purpose.

The DBSCAN clustering algorithm takes two arguments, minPts and a radius ε. If two points are
within a maximal distance of ε they are called directly reachable. If in the radius ε of a point are at
least minPts points, it is a core point. All core points, at least one, and points which are directly
reachable from core points build a cluster. Points which are not reachable from a core point, are called
outliers. This is illustrated in Figure 2.5 where the red points are core points, the yellow points are
directly reachable from a core point and the blue point is a outlier. The arrows indicate the reachability
between the points [28].
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Figure 2.5.: Illustration of the DBSCAN clustering algorithm. Source: [28]

Figure 2.6 illustrates the created clusters when DBSCAN was applied to multiple polygons. As one
can see, nearby reachable polygons are clustered, which is indicated by the numbers 0, 1 and 2. Red
polygons are noise and therefore not part of a cluster.

Figure 2.6.: DBSCAN clustering on multiple polygons. Three clusters 0, 1 and 2 are created. Red
polygons are not density reachable and therefore not part of a cluster.

Suitable values for minPts and ε of the DBSCAN algorithm are evaluated in Section 5.1.3.
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2.2.1.3. Create Areas Based on Clusters

After the POIs are clustered, areas can be drawn around the clusters. Either a convex, or a concave
hull may be suitable. Figure 2.7 shows a convex and a concave hull around some selected POIs in
Rapperswil. Which of the hulls look better— is a matter of personal discretion. In the scope of this
thesis only convex hulls are considered. The resulting hulls can be seen as very basic AOIs.

(a) Convex Hull (b) Concave Hull

Figure 2.7.: Example for different hulls around certain POIs in Rapperswil.

2.2.1.4. Extend Areas Based on the Network Centrality

The resulting AOIs are only very basic, since they simply express Areas-of-Interest based on concen-
trations of Points-of-Interest. One way to improve the expressiveness of these AOIs is to take the
centrality of the street network into account. This adds value for viewers of the map, as POIs are
naturally connected by streets.

The idea is, to express the importance of streets, based on how central they are. To quantify this,
concepts from the graph theory can be used. In network analysis and graph theory, the concept
of centrality expresses how important an edge is. Different measures of centrality exist, which cal-
culates centrality from different considerations. For example, degree centrality, closeness centrality,
betweenness centrality and many more.

The closeness centrality defines the centrality of a vertex in a graph as the sum of distances of the
shortest paths to all other vertices in the same graph. This is expressed as equation 2.1 where d(y, x)
equals the distance of the shortest path between y and x. The centrality is expressed as the reciprocal
of the sum, since larger distances to all other vertices equals less centrality.

C(x) =
1

∑y d(y, x)
. (2.1)

To apply the closeness centrality to a street network, a graph based on the nodes of the network can
be created. Nodes in a street network are intersection points of the streets. Figure 2.8 illustrates the
street network and the corresponding nodes of Rapperswil.
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(a) Street network of Rapperswil (b) Resulting nodes of street intersections

Figure 2.8.: Street network and the corresponding nodes of Rapperswil.

On the created graph, the closeness centrality algorithm can be applied. The results are the calculated
values for the centrality of all nodes. This is illustrated in Figure 2.9.

Figure 2.9.: Results of closeness centrality algorithm. Nodes are colored by their relative centrality,
from lowest in dark purple to highest in bright yellow.

Alternatively, the nodes can be seen as edges and the streets as vertices of a graph. This is the inverse
of the previous graph, where the centrality of the streets (instead of the intersections) are calculated
by applying the closeness centrality algorithm. The resulting graph is illustrated in Figure 2.10.
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Figure 2.10.: Results of closeness centrality algorithm on line graph. Streets are colored by their
relative centrality, from lowest in dark purple to highest in bright yellow.

The general idea of combining the network centrality with the AOIs from Section 2.2.1.3 is, to slightly
extend the AOIs to certain zones where important roads are located. Figure 2.11 illustrates this by
overlaying an example AOI in Rapperswil with the corresponding network centrality graph. Sections
where the AOI could be extended slightly, are highlighted with red.

Figure 2.11.: Example AOI of Rapperswil overlaid with network centrality. Zones where the AOI could
be extended are marked red.
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2.2.1.5. Sanitize AOIs

To improve the significance of the AOIs, certain areas needs to be excluded. For example, lakes and
rivers are useless as AOIs. Figure 2.12 shows this with an example of a river which is included in a
AOI of Zürich.

Figure 2.12.: An example AOI which includes rivers. Areas which should be excluded are marked red.

2.2.1.6. Export AOIs

After the AOIs have been sanitized, they are ready to export. A suitable format is GeoJSON which
encodes geographic data structures. It is specified with RFC 79463.

3Formoredetailsseehttps://tools.ietf.org/html/rfc7946
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3. Use Case Event Count

As already mentioned in Section 1, this use case is a request of an industrial partner. The task is
to count all events which have taken place within a given polygon and a specified range of time. An
example would be to count all events which have taken place at the main railway station in Zürich,
between the 1st and 14th of August 2017.

To count the occurrence of events inside a given polygon and within a range of time, all events
are filtered by time stamp and locations. Since the use of GPS causes the accuracy of the captured
location to vary between a few meters and hundreds of meters, an event is considered to have occurred
inside a polygon if at least 50 percent of the area of an event is inside the polygon. As Figure 3.1
shows, the area of an event is represented by a circle with the location as the center and the accuracy
as the radius of the circle. Figure 3.2 shows the different possible cases of the intersection of an event
area and a polygon.

Figure 3.1.: The area of an event is represented as a circle with the even location as the center and
its accuracy as the radius of the circle.

(a) Not intersecting (b) Intersecting < 50% (c) Intersecting > 50% (d) Intersecting 100%

Figure 3.2.: Different cases of an event area intersecting a polygon.
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3.1. Data

This sections describes the nature of data that are processed and analyzed for the use case. Table 3.1
lists all attributes of the data with the corresponding data type and an example value.

Table 3.1.: Attributes of the data with the corresponding data type and an example value

Attribute Data Type Example Value

id bigint 13
consumer_id varchar (64) 30f2795dbeaafee586cefd63bfe. . .
occurred_at timestamp 20170711 08:53:15+00
location geometry (Point, 4326) 0101000020E6100000D64C08670. . .
horizontal_accuracy double 65
session_id bigint 99

Brief explanations for some important attributes are provided below.

location

The location attribute is a point geometry with the WGS84 geographic coordinate reference system1.
This is because GPS is used to record the location.

horizontal_accuracy

The horizontal accuracy attribute is also part of the captured location. The value represents in meters
with what accuracy it was possible to capture the location. This depends on the quality of the GPS,
Wifi and phone signal. Figure 3.3 shows the distribution of those values which are special cases or
have more than 100000 records.

1The WGS84 CRS has the EPSG identifier 4326

23



Figure 3.3.: Distribution of horizontal_accuracy attribute (special cases and values with more than
100000 records).

Obviously, an accuracy less then 0 makes no sense, therefore it is wrong data. For values equal to
0, the same applies, because the typical accuracy of GPS-enabled smartphones is 4.9 meters and
increases near buildings and trees [13]. Therefore, it is even questionable if values lower than 5 meters
are meaningful. Since Android returns 0 if no horizontal accuracy is available, 0 values should be
ignored [11].

The largest spike in the distribution is at 65 meters. This can be explained by the plausible use of
Assisted GPS (AGPS). AGPS combines the initial GPS signal with the cellular network location. This
leads to a much lower power consumption, but only a slightly lower accuracy. Additionally, it is much
faster and works better in the vicinity of buildings. The accuracy of GPS is minimum 5 meters,
whereas the accuracy of AGPS is up to 65 meters [4].
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4. Geospatial Big Data

4.1. Big Data

Big Data is only loosely defined. General speaking, Big Data covers datasets which are so big that
traditionally used software is not able to handle it in a viable amount of time. Often Big Data is
defined with the following three main characteristics [21]:

• Volume
• Velocity
• Variety

Big Data covers large volumes of data. Moreover, it is important to maintain an acceptable velocity
even with growing data sets. Variety refers to the fact that Big Data is often not homogeneous but
varies in content, for example, in a collection of data from different data sources.

4.2. Apache Spark

Figure 4.1.: Logo of Apache Spark.

Apache Spark is an open-source cluster computing framework to do tasks such as ETL, analytics or
machine learning on large volumes of data. Apache Spark aims to hold as much data as possible in-
memory, which leads to a high speedup compared to other cluster computing technologies like Apache
Hadoop or Google MapReduce1.

Figure 4.2 shows the architecture of an Apache Spark cluster. It uses a master/ worker architecture.
The Driver Program, which executes the program, talks to the Cluster Manager, which is the master.
The master then coordinates the execution of the program on the Worker Nodes. Apache Spark
supports multiple cluster managers, such as Apache Mesos, Hadoop YARN or Kubernetes. Additionally
it ships with an own cluster manager, which is called Standalone.

1MapReduce is a programming model and an associated implementation, whereas Apache Hadoop is a open-source
implementation of MapReduce.
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Figure 4.2.: Spark architecture.

4.2.1. Language and API

Apache Spark is written in Scala, but developer APIs for different languages exists. The most popular
choices are Scala and Python but one can even use Java or R. The choice of the language depends
on the context of the use case. Performance wise, Scala outperforms Python2. Python on the other
hand has a lower learning curve and a large variety of existing libraries. Therefore, the best suitable
language must be evaluated based on the developer capabilities and project needs.

Besides the choice of the language, different APIs exists from which any one can be chosen. The
common APIs for Apache Spark are RDDs, DataFrames and Datasets. Since the understanding of
the concepts of these APIs is important, they are summarized shortly.

4.2.1.1. RDDs

Resilient distributed dataset (RDD) was the first API available for Apache Spark. RDDs can be de-
scribed as fault-tolerant immutable collection of data distributed across worker nodes. Listing 4.1
shows an example use of RDD with Scala. A text file is first read, the resulting elements are trans-
formed and filtered, and the filtered elements are counted in the end. It is very important to understand
that the first three lines of the code example do not trigger an execution of the code on the cluster.
The call of the map and the filter functions are so-called transformations. Only with the last line,
the counting of the filtered elements, the code is sent to the workers of the cluster and executed
there. Functions which triggers an execution are called actions. This behaviour is described as lazy
execution.

1 val rdd = sc.textFile (...) // reading a text file
2 val transformed_rdd = rdd.map(element => transform(element))
3 val filtered_rdd = transformed_rdd.filter(element => element == " ")
4 val count = filtered_rdd.count()

Listing 4.1: Example use of RDDs.

2. . . which can be overridden when Apache Spark DataFrames are properly used.
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One has to be aware that an RDD does not exists only on one place, but is distributed over multiple
worker nodes. Apache Spark takes care of the distribution of the data to the different worker nodes,
and coordinates the execution of the transformations and actions on the worker nodes.

As already mentioned, RDD stands for resilient distributed dataset. They are resilient because each
transformation on an RDD is recorded in a graph. This means, it is possible for Apache Spark to
recreate each state of an RDD at any point of time. Therefore, if an error occurs in one transformation,
the affected RDD can be recreated.

The biggest problem with RDD is that Apache Spark is not able to optimize the transformations
applied to RDDs. For example, when the transform function in Listing 4.1 is very costly, it could be
preferable to do the filtering of the elements first and then apply the transform on each element. But
Apache Spark does not know enough about the data contained in the RDD, wherefore it is not able
to do this optimization. This handicap is solved with DataFrames and Datasets.

4.2.1.2. DataFrames

DataFrames were released with Apache Spark 1.3 and are built on top of RDDs. As a result, they are
also a distributed collection of data. But with DataFrames the relevant data is organized into named
columns, similar to a relational database management system (DBMS) such as PostgreSQL. Since
Apache Spark now has more information about the data contained in the DataFrame, it is able to
optimize the queries and create a suitable query plan.

Another big advantage of DataFrames is that a more intuitive syntax can be used. With RDDs it was
necessary to pass lambda functions to the transformations. With DataFrames a more intuitive set
of functions exists. Listing 4.2 shows an example of the simpler syntax of DataFrames compared to
RDDs.

1 // calculate average per key on RDD
2 rdd.map(lambda (x, y): (x, (y, 1))).reduceByKey(lambda x, y: (x[0] + y[0], x[1]⤦

+ y[1])).map(lambda (x, (y, z)): (x, y / z))
3

4 // does the same on a DataFrame
5 df.groupBy("name").agg(avg("age"))

Listing 4.2: Same operation with RDDs and DateFrames.

DataFrames can also make use of SparkSQL, which allows to use a query language identical to SQL.
Listing 4.3 shows an example use of SparkSQL with DataFrames.

1 df.createOrReplaceTempView("my_data")
2

3 spark.sql("SELECT name , avg(age) FROM my_data GROUP BY 1")

Listing 4.3: Use of SparkSQL with DataFrames.

The biggest disadvantage of DataFrames is, that they are not type safe. The attributes are only
referred by their string names and therefore DataFrames are not type safe in compilation time. This
leads to exceptions during runtime. However, this problem is solved with Datasets.
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4.2.1.3. Datasets

Datasets are the last and the newest API of Apache Spark. They’ve been introduced with version
1.6. With Apache Spark 2.0 the APIs of DataFrames and Datasets are actually merged, whereas
DataFrames corresponds to untyped Datasets. Besides that, a typed version of Datasets exists.

The key benefit of Datasets is the type safety of the API. Therefore, type mismatches can be detected
at compile time, which can be a big a advantage in developing code.

Since Python is a dynamically typed language, it does not have the support for the Dataset API.
Therefore, the Dataset API is only available in Scala and Java.

4.2.1.4. Summary

As already mentioned, the choice of a suitable API depends on the use case. RDDs need to specifically
instruct Apache Spark how to do something, whereas it is sufficient for DataFrames and Datasets
to indicate what to do— while Apache Spark chooses the best way to do it. The latter allows
better optimization. On the other hand, it is not possible for DataFrames or Datasetes to work with
unstructured data, when it would be necessary to use RDDs. When handing structured data, it is
most advisable to use Datasets, which ensures type safety during compilation and optimization of
computing resources.

4.2.2. Geo Spatial Data Analytics

Apache Spark is not suitable for out of the box spatial data analytics. For that, an extension of
Apache Spark is necessary. An appropriate extension for the use cases of this thesis is discussed in
Section 7.
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Part II.

Implementation with PostgreSQL and
PostGIS
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5. Use Case AOI

5.1. Implementation

In this section the implementation of generating the AOIs using PostgreSQL and PostGIS is described
in detail. The theory used in the approach is introduced in Section 2.

The following technology stack is used for the implementation:

• Python 3.6
• PostgreSQL 10
• PostGIS 2.4

More details can be found in the source code. The full implementation runs inside docker containers.
The corresponding docker-compose.yml can be found in the Appendix A.2.

5.1.1. Work with OpenStreetMap

To work with the data of OpenStreetMap, the data needs to be imported to PostgreSQL. Multiple
tools exists to do this. A widely used tool is osm2pgsql1. It is as is a command-line based program
that converts OpenStreetMap data to postGIS-enabled PostgreSQL databases [20]. OpenStreetMap
data in the PBF format can be imported with the following bash command:

1 osm2pgsql --create --slim --database gis /data/switzerland -latest.osm.pbf

Listing 5.1: Import switzerland-latest.osm.pbf to PostgreSQL database

With the above command the OpenStreetMap elements of Switzerland, like streets, buildings, lakes
etc. are imported to the database. The geometries are converted to PostGIS compatible geometries.
Additionally, all tags on the elements are imported too, and made available for PostgreSQL queries.

Since only the OpenStreetMap elements with certain tags are relevant for the POI clustering, one can
import a subset of elements. This is not possible with osm2pgsql, but for example with Osmfilter2 or
Osmosis3 makes it possible. The procedure for using osmfilter can be found in the Appendix A.3.

5.1.2. Pre-Cluster POIs

The clustering of the POIs will be done locally with different parameters of the clustering algorithm.
This is necessary because the same clustering algorithm cannot be used for small as well as large cities.
For example, five nearby POIs have a different meaning in a sparsely populated mountain village in
Switzerland as compared to a densely populated city like New York.

1https://github.com/openstreetmap/osm2pgsql
2https://wiki.openstreetmap.org/wiki/Osmfilter
3https://wiki.openstreetmap.org/wiki/Osmosis
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Adequate parameters will be evaluated in the next Section 5.1.3. But first it is necessary to pre-cluster
the POIs to have separated areas for clustering in the next step. Therefore, one can simply cluster all
POIs using DBSCAN with a large value for ε. The resulting clusters will separate the POIs coarsely.
Figure 5.1 shows the resulting clusters when using the PostgreSQL query in Listing 5.2. This totally
results in 2̃500 clusters for Switzerland.

Figure 5.1.: Resulting clusters of pre-clustering POIs.

1 WITH clustered_pois AS (
2 SELECT geometry , ST_ClusterDBSCAN(geometry , 100, 3) over () as cid FROM pois
3 )
4 SELECT ST_ConvexHull(ST_Union(geometry)),
5 ST_Area(ST_ConvexHull(ST_Union(geometry))),
6 COUNT(geometry)
7 FROM clustered_pois AS hull WHERE cid > 0 GROUP BY cid

Listing 5.2: Query to pre-cluster POIs.
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5.1.3. DBSCAN Local Adaption

As already described in Section 2.2.1.2 the DBSCAN clustering algorithm takes two parameters, viz.
ε which defines the maximal distance of two points to be reachable and minPts which defines how
many points must be reachable by a core point.

For ε a value of 35 meters has been evaluated. The evaluation has been done by comparing the
resulting clusters for different values of ε4. Figure 5.2 shows the resulting clusters for Zürich for
different values of ε.

(a) Resulting clusters with ε = 30 and minPts = 3 (b) Resulting clusters with ε = 35 and minPts = 3

(c) Resulting clusters with ε = 40 and minPts = 3 (d) Resulting clusters with ε = 50 and minPts = 3

Figure 5.2.: Comparing resulting clusters for different values of ε in the DBSCAN algorithm

The optimal value of ε = 35 is evaluated as the best value since the resulting clusters are neither too
small as with the value 30 (Figure 5.2a), nor too large as with ε ≥ 40 (Figures 5.2c and 5.2d).

Besides ε, a suitable value for minPts must also be evaluated. This is done in the same manner, by
comparing the different outputs. Figure 5.3 shows the resulting clusters for Zürich.

4Admittedly, deciding the best value for ε by comparing the outputs is a very subjective choice.
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(a) Resulting clusters with ε = 35 and minPts = 3 (b) Resulting clusters with ε = 35 and minPts = 5

(c) Resulting clusters with ε = 35 and minPts = 8 (d) Resulting clusters with ε = 35 and minPts = 10

Figure 5.3.: Comparing resulting clusters for Zürich with different values of minPts in DBSCAN

With a small value like 3, a lot of small clusters result, which is not very useful for AOIs. The number
and size of the clusters gets better after increasing the value for minPts. The value 8 seems to be
the most suitable in this context.

However, the values ε = 35 and minPts = 8 have been evaluated for one city, Zürich. Figure 5.4a
shows the resulting clusters when the same values have been used for a small city like Stäfa. Only
one cluster results, which is obviously not good. The reason for this is, that Stäfa has fewer POIs
and therefore the same values as for Zürich cannot be applied here. By comparing different results,
the values ε = 35 and minPts = 3 have been evaluated. Interestingly, ε has the same value for both
cities and only minPts differs. Figure 5.4b shows the resulting clusters for Stäfa with the new values
for the DBSCAN algorithm.

33



(a) Clusters for Stäfa with ε = 35 and minPts = 8 (b) Clusters for Stäfa with ε = 35 and minPts = 3

Figure 5.4.: Comparing resulting clusters for Stäfa with different values of minPts in DBSCAN

Table 5.1 shows the evaluated values for other cities.

Table 5.1.: Evaluated DBSCAN parameters for different cities.

City evaluated ε evaluated minPts

Zürich 35 8
Bern 35 5
Genf 35 5
Stäfa 35 3
Rüti 35 3
Rapperswil 35 3
Hombrechtikon 35 3

As one can see, the value ε = 35 is suitable for all cities. Only the parameter minPts differs. With this
insight, a formula can be defined, which returns a suitable value for minPts based on the size of the
city and the amount of POIs.

For finding a suitable formula y = f (x1, x2), where x1 is the size of the city, x2 the amount of POIs
and y the resulting value for minPts, linear regression can be used, based on example values. The
example values are listed in Table 5.2.

Table 5.2.: Input values for linear regression to find suitable formula for minPts

City Size in m2 Amount of POIs minPts

Zürich 12514226 2071 8
Bern 3995449 664 5
Genf 3893063 382 5
Rüti 472063 69 3
Rapperswil 444458 104 3
Stäfa 363218 50 3
Hombrechtikon 67687 11 3

A multiple linear regression can be easily done online5. Equation (5.1) shows the resulting formula.

5For example, http://www.xuru.org/rt/MLR.asp
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Since the formula is derived from only 7 samples, it is doubtful that it is applicable for every area
on earth. Especially since it are only Swiss cities, whereas bigger cities in other countries will have a
different spatial density of POIs. However, for a proof of concept it is adequate and can be refined in
the future. It is also possible to derive a formula for calculating the ε the same way.

y = 2.91 − 5.34×10−7
⋅ x1 + 5.74×10−3

⋅ x2 (5.1)

This formula can now be applied to all pre-clusters created in Section 5.1.2. Therefore the pre-
clustered POIs are inserted into the table preclusters. Later the minPts value of each row is updated
based on the area and number of POIs. The query is shown in Listing 5.3. As one can see, the value
of minPts is limited to the minimum of 2.

1

2 CREATE TABLE preclusters (
3 id SERIAL ,
4 hull geometry ,
5 area integer ,
6 pois_count integer ,
7 dbscan_minPts integer
8 );
9

10 -- pre -cluster POIs and insert into preclusters table
11 -- ...
12

13 UPDATE preclusters SET dbscan_minPts = GREATEST(2, round ((2.91 - 5.34 * 10^( -7) *⤦
area + 5.74 * 10^( -3) * pois_count

14 )));

Listing 5.3: Set DBSCAN parameter minPts for preclustered POIs.

5.1.4. Cluster POIs

The POIs are now pre-clustered and each pre-cluster has an assigned minPts value for the DBSCAN
algorithm. With this, the POIs can now be clustered for each pre-cluster. Later a convex hull is
generated for each resulting cluster. Listing 5.4 shows the corresponding query.

1 WITH clusters AS (
2 SELECT geometry ,
3 ST_ClusterDBSCAN(geometry , eps := 35, minpoints := preclusters.⤦

dbscan_minpts) over () AS cid
4 FROM pois , preclusters
5 WHERE ST_Within(geometry , preclusters.hull)
6 )
7 SELECT cid , ST_ConvexHull(ST_Union(geometry))
8 FROM clusters
9 WHERE cid IS NOT NULL

10 GROUP BY cid

Listing 5.4: Clustering POIs of each pre-cluster.
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5.1.5. Network Centrality

As described in Section 2.2.1.4 hulls of the clustered POIs are extended based on the network centrality
of the paths and streets inside these hulls. Therefore, the street network is fetched as graph first.
Figure 5.5 shows the hulls and the corresponding street network. As one can see, the street network
is larger then the hulls. This is on purpose, since the network centrality calculated later on is more
meaningful if it includes the outer streets around the hull too.

Figure 5.5.: Street network per POI cluster hull of Rapperswil.

The street network is fetched as graph using the library osmnx6. Next, the network centrality is
calculated on this graph, using networkx7. After the centrality of each node is calculated using the
closeness centrality, the nodes are filtered and only the top 10% of the nodes are taken for further
processing. Figure 5.6 illustrates the resulting nodes.

6https://github.com/gboeing/osmnx
7https://networkx.github.io/
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(a) All nodes of street network graph (b) The 10% most central nodes

Figure 5.6.: Nodes of street network graph.

Now, all streets of these nodes are selected. These selected streets not only contain streets which
are fully inside the hulls but also streets which are outside the hull. The streets outside are cut with
a 50 meter buffer around the hull. This is illustrated in Figure 5.7.

Figure 5.7.: 10% of the most central streets, cut with a 50 meter threshold outside the hull.

Finally, the hulls can be extended by combining them with the cut-off central streets. This can be
done easily, by drawing a concave hull around the original hull and the extending streets. Figure 5.8
illustrates the resulting hulls. The extension is marked red.
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Figure 5.8.: Hulls extended with network centrality. The extensions are marked red.

Listing 5.5 shows the Python code for fetching the street graph and calculating the most central node
ids. The PostgreSQL query which extends the hulls is shown in Listing 5.6.

1

2 # hulls = hulls of clustered POIs
3 central_nodes = []
4

5 for hull in hulls.geometry:
6 # fetch street graph using osmnx
7 # the buffer of 50 corresponds to 50 meteres
8 street_graph = osmnx.graph_from_polygon(hull.buffer (50), network_type=’all’)
9

10 # calculate closeness centrality of all nodes in street graph using networkx
11 closeness_centrality = networkx.closeness_centrality(street_graph)
12

13 # sort nodes by its centrality
14 sorted_nodes = sorted(closeness_centrality.items (), key=operator.itemgetter (1),⤦

reverse=True)
15

16 # and take the first 10 %
17 central_nodes += [node [0] for node in sorted_nodes [:len(sorted_nodes) // 10]]
18

19 # concat all node ids to a comma separated string
20 central_nodes_ids = ’, ’.join([f’{key}’ for key in central_nodes ])

Listing 5.5: Fetch street graph and calculate most central nodes.
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1 WITH hulls AS ({ hulls_query }),
2 intersecting_lines AS (
3 SELECT hulls.cid , ST_Intersection(way , ST_Buffer(hulls.geometry , 50)) AS ⤦

geometry FROM planet_osm_line , hulls
4 WHERE osm_id = ANY(
5 SELECT id FROM planet_osm_ways
6 WHERE nodes && ARRAY[{ central_nodes_ids }]:: bigint []
7 )
8 AND ST_DWithin(planet_osm_line.way , hulls.geometry , 50)
9 )

10 SELECT ST_ConcaveHull(ST_Union(geometry), 0.99) AS geometry FROM (
11 SELECT cid , geometry FROM hulls
12 UNION
13 SELECT cid , geometry FROM intersecting_lines
14 ) AS hull_and_lines
15 GROUP BY cid

Listing 5.6: Extending hulls based on most central nodes.

5.1.6. Exclude Water

To exclude water from the AOIs, one can select all OpenStreetMap elements which have a corre-
sponding tag. Therefore all elements which have a tag for the keys waterway or water are selected. As
a special case, waterways or water inside a tunnel are excluded8. The polygons of these elements can
then be subtracted from the AOIs. Figure 5.9 illustrates this step. Listing 5.7 shows the corresponding
query.

(a) Before water is excluded. (b) After water is excluded

Figure 5.9.: Exclude water from AOIs.

8For example underneath the train station in Zürich flows a river.
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1 WITH hulls AS ({ hulls_query })
2 SELECT ST_Difference(hulls.geometry , (
3 SELECT ST_Union(way) AS geometry FROM planet_osm_polygon
4 WHERE (water IS NOT NULL OR waterway IS NOT NULL)
5 AND (tunnel IS NULL OR tunnel = ’no’)
6 AND st_intersects(way , hulls.geometry)
7 )) AS geometry
8 FROM hulls

Listing 5.7: Exclude water from AOIs

5.1.7. Sanitize AOIs

As last step, the AOIs needs to be sanitized. This includes:

• Merge overlapping polygons
• Remove invalid polygons
• Remove polygon artifacts with no value

An examples for this is shown in Figure 5.10. The corresponding PostgreSQL query is shown in
Listing 5.8.

(a) Before (b) After

Figure 5.10.: Sanitize AOIs

1 WITH aois AS ({ aois_query })
2 SELECT ST_Simplify (( ST_Dump(ST_Union(geometry))).geom , 5) AS geometry
3 FROM aois
4 WHERE ST_IsValid(geometry)

Listing 5.8: Sanitize AOIs
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5.1.8. Export AOIs

After sanitizing the AOIs in Section 5.1.7, they are ready to be exported. For this, the gdal library,
a translator library for raster and vector geospatial data formats9 can be used. It includes the cli
command ogr2ogr10 which allows to export a PostgreSQL + PostGIS table to GeoJSON. The corre-
sponding bash command is shown in Listing 5.9.

1 ogr2ogr -f GeoJSON /path/to/aois.geojson -sql "SELECT ST_Transform(hull , 4326) ⤦
FROM aois"

Listing 5.9: Export AOIs as GeoJSON

5.2. Web Application

To quickly visualize and test the AOIs, a web application has been implemented. This section summa-
rizes the used technologies and illustrates the web interface. The source code of the implementation
is not described in detail. The documentation to setup and run the web application can be found in
the Appendix A.3.

For the web application flask11, a Python microframework is used. GeoPandas12 allows to query a
PostgreSQL + PostGIS database for geometries. To render the maps, the Python library folium13 is
used. One can pass a GeoJSON to folium for rendering. Since GeoPandas can convert geometries to
GeoJSON, one can pass a GeoPandas DataFrame directly to folium. For map rendering the CartoDB
Basemaps(Positron) 14 are used.

9http://www.gdal.org/
10http://www.gdal.org/ogr2ogr.html
11http://flask.pocoo.org/
12https://github.com/geopandas/geopandas/
13https://github.com/python-visualization/folium
14https://github.com/CartoDB/CartoDB-basemaps
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Figure 5.11.: Interface of the web application.

Figure 5.11 shows the main interface of the web application. One can either select a location from
the location-dropdown or insert a custom location. The tags are shown readonly for a better under-
standing. As a second option, one can chose between the convex and concave hull algorithm for the
AOIs. When selecting the checkbox Explain steps when generating AOIs (slower) the output contains
each step of the AOI generation, as shown in Figure 5.12. If the checkbox is not checked, the output
only contains the final AOIs, as shown in Figure 5.13.

Alternatively, one can browse all AOIs of Switzerland either visualized with Folium or as overlay on a
Google Maps. The overlay on Google Maps allows to compare the AOIs quickly. This is illustrated in
Figure 5.14.
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Figure 5.12.: Explained steps of AOI generation of web application
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Figure 5.13.: Generated AOIs of web application

(a) On map generated with Folium (b) On Google Maps

Figure 5.14.: Overlay of all generated AOIs.
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5.3. Benchmarks

In this section the implementation from Section 5.1 is benchmarked and the major bottlenecks are
identified.

5.3.1. Hardware

The benchmarks are executed on a HP EliteBook 6930p with the following specification:

• Intel(R) Core(TM)2 Duo CPU P8600 @ 2.40GHz
• 6 GB memory
• SSD Storage

PostgreSQL was configured with the recommended parameters of PGTune15. The parameters can
be found in the Appendix A.4.

5.3.2. Results

Table 5.3 contains the runtime of the different phases when generating the AOIs for Switzerland.
The OpenStreetMap data of Switzerland is downloaded from Geofabrik16 and has a size of 278
megabytes.

The runtime of the import are not listed, since it is not relevant for this use case. About the perfor-
mance of osm2pgsql a lot of literature and benchmarks exists17.

After the OSM data is imported and the POIs are pre-clustered, generating the AOIs is done with
one big query, which covers all steps described in Section 5.1, except calculating the network central-
ity. Calculating the network centrality is done beforehand. Accordingly, the runtime of the network
centrality is listed separately and the runtime of the other steps are summarized.

Table 5.3.: Runtimes when generating AOIs for Switzerland

Step Runtime

Pre-Clustering 30s
Generating AOIs without network centrality 23s
Generating AOIs with network centrality 59min
Export AOIs 25s

As one can see, the generation of the AOIs are much faster when it does not include the network
centrality. This is because calculating the network centrality includes fetching the street graph and
performing expensive calculations on the graph.

The pre-clustering and generating of the AOIs without network centrality takes up almost the same
time. The low runtime is due to the small amount of POIs which are processed. Switzerland contains
only 43301 POIs with the defined tags.

15https://pgtune.leopard.in.ua
16http://download.geofabrik.de/europe.html
17https://wiki.openstreetmap.org/wiki/Osm2pgsql/benchmarks
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When calculating the AOIs for a certain area, for example when using the web application, the runtime
depends on the selected area. Table 5.4 contains the runtimes for various areas. Again, the network
centrality is the most expensive part to calculate. The runtime with the network centrality is not
listed, if it exceeded a certain threshold time.

Table 5.4.: Generating AOIs for different areas

Area With Network Centrality Without Network Centrality

Stäfa 7s 80ms
Rapperswil 7.3s 200ms
Zürich 157s 1.1s
Canton of Bern 3.8s
Canton of Zürich 4.7s

5.3.3. Summary

The major bottleneck is the calculation of the network centrality algorithm. This is due to osmnx,
which fetches the street graph from an external source. But even if this fetch is cached and osmnx
only has to read the graph from the file system, calculating the network centrality is still slow, because
it includes complex calculations.

Besides that, the bottleneck when calculating the AOIs for Switzerland concerns the missing ability of
PostGIS to parallelize queries. To improve this, one could split the query manually in multiple queries
and then run them in parallel. This would add some complexity to the creation of the queries but it
would be a viable solution.

If generating the AOIs need to be done periodically, for example once a week, then it can be said
that the performance is already good enough, except the network centrality. But if an API need to be
provided to generate AOIs for larger areas in real time, the performance gets critical.
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6. Use Case Event Count

6.1. Existing Implementation

This section describes the existing implementation with PostgreSQL 9.6 and PostGIS 2.4. Even though
the industrial partner provided their own implementation, it was written from scratch. This way it was
possible to reduce the implementation to the most important parts and remove dependencies which
are not necessary for the use case.

The most relevant part of the implementation is the querying of the events, since it is the slowest
part according to the industrial partner. The following two are the input parameters:

• The area to query the events for. These areas are provided in the GeoJSON format.
• The date range to query the events for. The range is provided with a start- and end-date.

With these input parameters, the events are queried with the following two steps:

1. Creating Areas

Since the areas are provided as GeoJSON, it is necessary to make them accessible to the PostgreSQL
query. Therefore, the GeoJSON is parsed with Python and inserted into a new PostgreSQL table,
which is named areas. Listing 6.1 shows the create query of the table.

1 CREATE TABLE areas(
2 area geometry(Polygon , 4326) ,
3 buffered geometry(Polygon , 4326)
4 );

Listing 6.1: Query to create areas table.

The table consists of an area and a buffered area. The buffered area is simply the area buffered
with 500 meters.

Each feature in the input GeoJSON is now collected in the areas table. Figure 6.1 shows an example
for an input GeoJSON and the resulting rows of the areas table.
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(a) Input GeoJSON

(b) Resulting rows in areas table

Figure 6.1.: Each feature of the input GeoJSON results in one row in the areas table.

2. Querying Events

After the GeoJSON have been included into the areas table, the events can be queried. As already
described in Section 3, the query should return all events that occurred within the input date range and
inside an area more than half of which lies within the input area. Listing 6.2 shows the corresponding
query.

1 SELECT app_id , consumer_id , session_id , occurred_at
2 FROM events_view , areas
3 WHERE occurred_at BETWEEN ’{from_date}’ AND ’{to_date}’
4 AND ST_Within(location , areas.buffered)
5 AND ST_Area(ST_Intersection(areas.area , ST_Transform(ST_Buffer(⤦

ST_Transform(ST_MakeValid(location) ,3857), accuracy), 4326))) / ⤦
ST_Area(ST_Transform(ST_Buffer(ST_Transform(ST_MakeValid(location), ⤦
3857), accuracy), 4326)) > 0.5

Listing 6.2: Query to get events.
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The query contains three conditions:

The first condition filters on the basis of date range.

The second condition filters events which are inside the buffered area.

The last condition gets the area of the intersection of the event and the input areas in m2. This
value is divided by the area of the event in m2. If the result is larger then 0.5, which means at
least 50% of the event area is inside an input area, then the event is taken into consideration.

The second condition would actually not be necessary, because the last would filter the events anyway.
But the second condition performs much better then the last one, since indexes can be used by
PostgreSQL. Therefore, it is advisable to keep all three due to performance reasons.

The query returns the relevant events which can be evaluated in a succeeding step. However, the
evaluation of the events is not relevant for the use case of this thesis.

6.2. Benchmarks and Bottlenecks

As pointed out by our industrial partner, the query for the events described in Section 6.1 works, but
gets slower with more data. To verify this, multiple benchmarks are performed.

A database server with PostgreSQL 9.6 was provided by our industrial partner. It has 2 CPUs, 8 GB
of memory and 175 GB SSD storage.

6.2.1. Areas

Different benchmarks are accordingly defined to measure different aspects. Each benchmark is defined
by a GeoJSON which contains the relevant areas to query the data for. Table 6.1 names and illustrates
the different benchmark areas.

Name GeoJSON

Multiple small areas
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One big area

Multiple big areas

One big complex area
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Multiple big complex areas

Huge amount of areas
GeoJSON received from industrial partner. It contains ∼ 1300
areas with ∼ 28000m2 each.

Table 6.1.: Different areas for the benchmarks.

To run the benchmarks against different amounts of data, the date range of the query can be varied.
Table 6.2 lists the number of events per date range, and inside the different benchmark areas, where an
event is considered to be inside a benchmark area if at least 50% of the buffered event area intersects
with the benchmark area.

Table 6.2.: Count of events intersecting the different benchmark areas with at least 50%

Benchmark Area / Weeks 2 weeks 4 weeks 6 weeks 8 weeks 10 weeks

Multiple small areas 2927 5111 8535 12276 16103
One big area 63194 122747 206004 304931 402162
Multiple big areas 80146 159044 265003 393098 519971
One big complex area 31466 60759 101315 149818 196843
Multiple big complex areas 57487 112547 187805 278051 367776
Huge amount of small areas 18544 36833 61587 92446 123726

6.2.2. Indexes

PostgreSQL indexes have a huge impact on the performance of the queries. The following indexes
exists:

• btree index on events.occurred_at
• gist index on events.location
• gist index on areas.area
• gist index on areas.buffered
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6.2.3. Runtimes

Figure 6.2 contains the runtimes (in seconds) of the query described in Section 6.1. The query is
executed with all benchmark areas and increasing time ranges. Each query is executed five times and
the average of the runtime is documented. Since PostgreSQL does some caching, the documented
runtimes do not correspond to the runtimes on a cold-start. However, its effect is neglected, as it
applies for all benchmarks.

Figure 6.2.: Runtimes in seconds for different benchmark areas and increasing amount of data.

One can very well see that the runtimes are longer when more weeks of data are queried. The longest
runtime has the benchmark area “Huge amount of small areas” which takes almost ten minutes when
querying for 10 weeks of data.

6.2.4. Bottlenecks

As documented in Section 6.2.3, the execution become slower with more data being processed. Fig-
ure 6.3 shows the output of the PostgreSQL command EXPLAIN ANALYZE1 for the query, querying
for the benchmark area “Huge amount of small areas” and one week.

The following conclusions can be drawn from the output:

• PostgreSQL makes use of the indexes on the occured_at and location columns
• The index occured_at column is very fast
• PostgreSQL performs a bounding box check with the location of the event and the buffered area
• Calculating the intersection and checking if it is 50% of the events area takes the most time.

Now that the bottlenecks are identified, optimizations can be applied to improve the performance of
the query. This is done in Section 6.3.

1The output is visualized with explain.depesz.com
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Figure 6.3.: Output of PostgreSQL command EXPLAIN ANALYZE when querying benchmark "Huge amount of small areas" for one week of data.
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6.3. Optimizations

This section contains all optimizations applied to the PostgreSQL and PostGIS implementations. In
this context, it is important to weigh up the cost and return of single optimizations, since one could
invest almost any amount of time needed to improve the performance. Section 6.4 contains the
benchmark results performed after the optimizations have been applied.

6.3.1. Preprocessing Events

The original query contained, among others, the following steps:

• Calculate buffered area of event with ST_Buffer(location, accuracy)
• Calculate area of event in m2 with ST_Area(area)
• Change CRS of locations with ST_Transform(location, 3857)

To improve the performance of the queries, these steps can be done once for each event in the
preprocessing stage. Later, the queries are executed on the preprocessed events. This reduces the
runtime of the queries.

Additionally only events having a meaningful accuracy should be queried. As described in Section 3.1
the test data contains events with an accuracy less than 0 and more than 1000. Both are not practical
and should therefore be ignored.

6.3.2. Utilizing Convex Hull properties instead of Buffers on Areas

As described in Section 6.1, the query contains a condition which filters all events that are inside a
500 meters buffer of the input areas (ST_Within(location, areas.buffered)). This condition is
used because it is faster than calculating and comparing the intersections. However, the condition
can be improved since it returns events for which it is impossible to have more than 50% intersection
of the areas. A better approach is, to filter the events by using the convex hull property of the areas.
If the location of an event is not inside the convex hull of an area, it can under no circumstances have
more than 50% intersection. The new condition can filter out more events in the initial stage, so that
less events need to be checked against the expensive intersection condition.
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6.3.3. PostGIS ST_Buffer

The PostGIS Function ST_Buffer takes an input geometry and returns a geometry extended by a
given radius. Figure 6.4 shows an example for a point, buffered with a radius of 100m.

(a) Point without buffer (b) Point buffered with 100m radius

Figure 6.4.: Example for use of PostGIS function ST_Buffer

It is important to mention that the buffer is only an approximated circle, which is actually represented
by a polygon using 32 points. With the ST_Buffer function it is possible to customize the style of
the buffer, such as the number of points used to approximate the circle. By adjusting the parameter
quad_segs from the default value of 8 to a value of 2, the number of segments is reduced by a factor
of 4, which results in 8 instead of 32 points to approximate the circle. Figure 6.5 visualizes this.

(a) quad_segs = 8 (Default value) (b) quad_segs = 2

Figure 6.5.: Adjusting the quad_segs parameter of ST_Buffer

As one can see, the area of the polygon varies depending on how accurately the circle is approximated.
The area of a perfect circle is A = πr 2. This results in A ≈ 31416 when r = 100. Table 6.3 shows the
decreasing accuracy of the area when decreasing the value of the quad_seg parameter2

2As one can guess, a circle approximated with 4 points is a square, where the resulting area is A = 2r 2
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Table 6.3.: Resulting areas with varying value of quad_segs parameter.

quad_segs Area of resulting polygon Difference to area of circle

8 ∼ 31214m2
∼ 0.6%

6 ∼ 31058m2
∼ 1.1%

4 ∼ 30614m2
∼ 2.5%

3 ∼ 30000m2
∼ 4.5%

2 ∼ 28284m2
∼ 9.9%

1 ∼ 20000m2
∼ 36.3 %

Since the size of the event areas are varying, it may be expected that the count of events intersecting
the benchmark areas would vary too. Table 6.4 shows the counts for the benchmark area Multiple big
areas for 10 weeks of data in case of different values of quad_segs. As one can see, its impact on
the results is really small.

Table 6.4.: Impressions of 10 weeks with frequency cap of 10.

quad_segs = 8 quad_segs = 4 quad_segs = 3 quad_segs = 2 quad_segs = 1

449821 449821 449824 449866 449866

The decreasing complexity of the polygons has a positive impact on the performance of the calculation
of the intersections, shown in Figure 6.6. The benchmarks are executed with 4 weeks of data.

Figure 6.6.: Runtimes in seconds for different values of quad_segs parameter and benchmark areas.

Since the impact on the final results is very minor and there is a positive impact on the performance,
the lowest value of 1 for the quad_segs parameter is considered to be optimal.

A further improvement of this approach could be possible by increasing the radius of the buffer slightly
when using a small value for the quad_segs parameter. The resulting area would overlap more with
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the original circular area (or when using a larger value for the quad_segs parameter). However, this
is not implemented in this thesis.

6.3.4. Simplify Areas

One way to improve the performance is to reduce the complexity of the areas. Simpler area polygons
lead to faster querying of the events. For example, in Figure 6.7 one can see one event area in red,
and the corresponding simplified area in blue. This simplification was done with the PostGIS function
ST_Simplify with a tolerance of 100, which uses the Douglas-Peucker algorithm [23].

Figure 6.7.: The blue event area results when running ST_Simplify with a tolerance of 100 on the
red event area.

As one can see in Figure 6.7 the resulting area uses fewer points to express the polygon and is therefore
simpler. On the downside, the resulting area is smaller than the original. This has an impact on the
results. Benchmarks have shown that this impact is quite high. Hence a very low tolerance value
is suggested. A low value, for example 10, will have a small impact on the area by reducing the
complexity of the polygons slightly if possible.

6.3.5. Cluster Events

Calculating the intersections is the bottleneck of the algorithm. Therefore, a longer runtime results
with more data. One approach to improve the runtime is, to reduce the number of events which need
to be queried. This can be done by clustering the events to reduce the amount of records to query.
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The idea of clustering the events is simple: Merge nearby events together, which share almost the
same area. Since the area of events is calculated with their accuracy, events are only allowed to be
clustered, when they have the same accuracy. For example, Figure 6.8a shows two events which share
the same location, but since their area is totally different, it makes no sense to cluster them. Neither
does it make sense to cluster events which share the same accuracy, but only have a partly common
area, as shown in Figure 6.8b. On the other hand, Figure 6.8c shows two events which share almost
the same area and can therefore be clustered safely.

(a) Two events with the same location but different
accuracies

(b) Two events with the same accuracy but different
locations

(c) Two events with the same accuracy and almost the
same location

Figure 6.8.: Different cases of an event area intersecting a polygon.

A certain threshold in percent must be evaluated, which defines how much percent of the area must
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be shared by both, so as to cluster them.

Since overlapping areas of events have the same radius, the only difference is the center of the
area. Figure 6.9 shows the areas of two events, where the difference in location of one event is m,
horizontally and vertically. For simplicity, the areas are visualized as squares instead of circles.

Figure 6.9.: Two areas of overlapping areas.

The position of the blue event in Figure 6.9 differs from the position of the area of the red event by
a distance m horizontally as well as vertically. Therefore, the area of intersection P can be calculated
as P = (d −m)2. The area of one event is A = d 2. One can get the percentage of the intersecting
area by dividing P by A. For example, if one wants the areas of the events to overlap by 50%, the
maximum difference in the location can be found with the following equation:

P/A = 0.5

(d −m)2/d 2
= 0.5

m ≈ 0.3d

(6.1)

The maximum allowable difference between the locations of two events is therefore 0.3 times the
diameter of the event area d . It’s not surprising that m is dependent on the diameter of the area,
since a larger area allows a larger distance between the events locations, as shown in Figure 6.10.
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Figure 6.10.: One large and one small event area moved by one meter.

Now that the maximum difference of the event locations is defined by m, the easiest way to cluster
the events is to snap the events to a grid with a grid size of m. For example, when m = 5, the grid
size is 5. Therefore, all locations of the events are snapped horizontally and vertically to the nearest
multiple of 5, as shown in Figure 6.11.

(a) Locations of events before snapping to grid (b) Snapping events to grid with grid size = 5

Figure 6.11.: Example for snapping event locations to grid.

When the location of the events are snapped to the grid, all events which share the same location
belong to one cluster. The cluster itself has a location too. However, the location of the clusters
is not its location after snapping to the grid, but the centroid of all original locations of the events
the cluster contains. Figure 6.12 shows the locations and areas of two events in blue and green.
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Additionally, is the resulting location and area of the cluster shown in red. This way, the difference of
the area of the events and the cluster is reduced.

Figure 6.12.: Location and area of events (green, blue) and location and area of resulting cluster (red)

6.3.5.1. Implementation

Thankfully PostGIS contains all the necessary utilities to cluster the events. To query the events for
the clusters the following query can be executed:

1 FOR distinct_accuracy IN (SELECT DISTINCT(accuracy) FROM events_view)
2 SELECT occurred_at ::date ,
3 ST_Centroid(ST_Union(array_agg(location))) AS location ,
4 array_agg(id) AS event_ids
5 FROM events_view
6 WHERE accuracy = distinct_accuracy
7 GROUP BY occurred_at ::date ,
8 ST_SnapToGrid(location , (distinct_accuracy * 2 * M))
9 END LOOP;

The loop over the distinct accuracies is necessary, because events should only be clustered with other
events if they share the same accuracy. Therefore, the clustering is processed for each accuracy
separately.

As one can see, the locations of the events are snapped to the grid with the PostGIS function
ST_SnapToGrid. The function takes the location and the size of the grid as first and second param-
eters. The size of the grid is determined based on the accuracy of the event. Since the accuracy of
an event is the radius, it is multiplied by two to get the diameter. Then, the diameter is multiplied
with a predefined factor of M. Following the calculations in eqn. (6.1) the value M = 0.0125 ensures
that the clustered events share at least 95% of their area. The ideal value for M will be evaluated in
the next Section.

After the locations of the events are snapped to the grid, all events are grouped by their dates and
locations. This leads to an array of events for every date and location. One could also cluster the
events over the full date range and not separately for each date. However, this would later lead
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to difficulties when querying the clusters, since querying for an indexed date column is extremely
efficient.

The location of the new cluster is the center of the locations of the clustered events. This is done
with the PostGIS function ST_Centroid.

After the events have been clustered, the query to fetch the matches must be adopted to query the
clusters instead of the events directly. This results in the new query, shown in Listing 6.3

1 WITH event_ids AS (
2 SELECT unnest(event_ids) AS ids
3 FROM clustered_events AS clusters , areas
4 WHERE occurred_at BETWEEN ’{from_date}’ AND ’{to_date}’
5 AND ST_Intersects(clusters.location , areas.area)
6 AND (ST_Covers(areas.area , clusters.area)
7 OR ST_Area(ST_Intersection(areas.area , clusters.area)) > half_area⤦

)
8 ),
9 matches AS (

10 SELECT DISTINCT ON (session_id) app_id , consumer_id , session_id , occurred_at
11 FROM events_view , event_ids
12 WHERE id = ANY(ARRAY[event_ids.ids])
13 )
14 SELECT app_id , consumer_id , array_agg(occurred_at)
15 FROM matches
16 GROUP BY app_id , consumer_id

Listing 6.3: Query events from clustered events

As one can see, is the query is almost the same. The only difference is, that the clustered_events
table is queried, instead of the events_view. Since the clustered events contain the grouped events
as array, the queried arrays are unnested to get the corresponding events from the events_view.

6.3.5.2. Benchmarks

This section contains the impact of the clustering approach on the amount of events to query, the
runtime of the benchmarks and the difference of the results. With the clustering approach, a small
difference in the results must be accepted, since clustering nearby events introduces a small error.
The maximum tolerable error is evaluated at the end of this section.

Amount of Clusters The amount and size of the resulting clusters is dependent on the factor p,
which defines how much of the event areas must intersect, so as to cluster them. Figure 6.13 contains
the amount of resulting clusters for different values for p. It is important to note that clusters with
only one event are counted too.
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Table 6.5.: Resulting count of events when querying different clusters

No Clustering 90% 70% 50% 30% 10%

Multiple small areas 16143 16415 16399 16397 16391 16411
One big complex area 196553 199293 199293 199241 199249 199326
One big area 402222 408002 408089 408111 408057 407930
Multiple big areas 520006 527827 527836 527838 527840 527978
Multiple big complex areas 367323 372586 372516 372574 372593 372633
Huge amount of small areas 127556 129322 129151 128795 128990 129267

Figure 6.13.: Resulting amount of clusters for different values of p

Benchmark Results As already mentioned, the clustering introduces an error by grouping nearby
events which have almost the same area. After clustering, some events may be counted as intersecting
a benchmark area by more than 50%, even though the original event was not. Table 6.5 lists the count
of events for each benchmark area, with events of 10 weeks. The full range of benchmark values can
be found in the Appendix B.1.

As expected, the clustering has an impact on the count of the events. As one can see, the largest
difference happens when comparing no clustering with a 90% clustering. The count increases about
1.4% for all benchmark areas. Interestingly, the difference in counts for 90% to 10% clustering is
negligible. This can be seen even better when visualizing the count of events in one benchmark area
as graph in Figure 6.14.
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Figure 6.14.: Resulting count of events for benchmark area "Huge amount of small areas"

The small dimension of error, even with very low values of p, leads to the conclusion that the test
data is very sparse. Since the clustering is done separately for every date, it is to be expected that
the error gets bigger when more data is present for a given date. This is shown in Figure 6.15 and
Figure 6.16 where one can see the resulting event counts when the clusters were built per week or
month, instead of per day.

Figure 6.15.: Resulting count of events for benchmark area "Huge amount of small areas" with clusters
created per week instead of day.

64



Figure 6.16.: Resulting count of events for benchmark area "Huge amount of small areas" where
clusters created per month instead of day.

Still, the count of clusters per week are not very different from the clusters per day, since the error
between no clustering and clusters with 10% is only 1.3%. First with clusters per month the error
gets larger, with an error of 8.5% between no clustering and a 90% clustering. But one has to bear
in mind that clusters per week deals with a dataset of 7×21M = 147M records and clusters per month
equals a dataset of 30×21M = 630M records. Additionally, the “simulated” record is not comparable
with a real data with so many records, since the distribution of the events would be different.

Benchmark Runtime Since the amount of events is reduced after clustering, the runtime decreases
considerably. The fact that less data can be queried faster has already been shown with the original
implementation in Section 6.2.3.

6.3.5.3. Conclusion

By reducing the amount of data to query, the runtime decreases appreciably. The error introduced is
tolerable. For the benchmarks, the recommended value of p for the clustering algorithm is 0.4, which
says that two events must at least intersect 40% in order to cluster them together. This sounds like
a small intersection, but it must be calculated on a relative-basis since the area of the cluster is built
based on the centroid of the event locations. One must keep in mind, that it will be necessary to
evaluate which value for p is the best, based on the data. If other amounts of data or data with a
different distribution is used, it may be necessary to evaluate a new suitable value for p.

6.3.6. Reduce Accuracy Distribution

In Section 3.1 the accuracy attribute has been described. The amount of different values is very
large. This distribution of different values can be reduced, which leads to advantages for the clustering
algorithm, since only events with the same accuracy are clustered.

For example, events with the accuracies 10, 11 and 12 are now using the accuracy 10. Therefore, no
events with the accuracies 11 and 12 exists anymore. This leads to new areas for the events, which
accuracy was altered. But this is negligible if the difference in the area is not too large. How large the
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difference in the area can be tolerable, depends on the accuracy of the event. The larger the accuracy,
the more room for adjustment.

When defining that only accuracies are summarized which resulting event areas differ by only 10%,
the following formula can be used to calculate the maximal difference in the accuracy, based on the
accuracy.

or i g i nal_ar ea = accur ac y2
∗pi

new_ar ea = (accur ac y −max_shi f t)2 ∗pi

1−
new

or i g i nal_ar ea
= 0.1

max_shi f t ≈ 0.05∗accur ac y

With the formula max_shi f t ≈ 0.05∗accur ac y the maximal shift for each accuracy can be calculated.
The value is round off to the nearest integer, with a minimal value of 1. The resulting value is named
r educti on_ f actor . With this reduction factor, the new reduced accuracy can be calculated with
this formula:

r educed_accur ac y = accur ac y −(accur ac y mod r educti on_ f actor)

After applying this formula to all accuracies, the different accuracy values for events with accuracies
between 1 and 1000 are reduced from 1000 different values to 148 different values. This has a positive
impact on the clustering algorithm.

6.3.7. Parallel Queries

PostgreSQL version 9.6 and higher supports parallel queries. With parallel queries, the workload of one
big query is divided into multiple sub queries, which can be executed in parallel [25]. Unfortunantely,
PostgreSQL, even in version 10, combined with PostGIS 2.4, is not good in parallelizing spatial
queries [22]. Forks for PostgreSQL 10 and PostGIS 2.4 exists, which adds better support for parallel
queries with PostGIS, but it is not yet possible in a stock PostgreSQL.

Instead of using the capabilities of PostgreSQL to parallelize, it is possible to split a big query into
sub queries before sending them to PostgreSQL. For the queries of this use case, this is quite simple,
since queries getting slow means the defined date range is large. Therefore, the splits of the queries
can be done based on the date range.

For example, instead of querying events for a range of four weeks, one can split the query in four
subqueries, where each subquery queries for one week of data. The results can then merged together
before processing them further.

Figure 6.17 shows the benchmark results for querying events with different number of subqueries. As
one can see, the runtime only improves significantly when switching from one to two queries. This is
most likely due to the fact, that the host system, where the benchmarks are executed, only have two
CPU cores3.

3Since the query to the database is an I/O query, it should release the global interpreter lock of Python for other
Threads. However, this must be supported by the used library psycopg2. It is maybe worth to test other libraries for
better multi-threading capabilities.
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Figure 6.17.: Benchmarks when splitting query in multiple sub queries and executing them parallel.

6.3.8. Multicolumn Index

As described in Section 6.2.2 two indexes are created on the events table. A btree index on the
occured_at column and a gist index on the location column. However, it is not guaranteed that
PostgreSQL will use both indexes for querying the events. To ensure that both queries are executed on
both indexes, and as benchmarks have shown better performance, creating one multicolumn index is
more suitable. To create a multicolumn index which mixes a btree and a gist index, the PostgreSQL
extension btree_gist is necessary [24]. Listing 6.4 shows the query to create this multicolumn
index.

1 CREATE EXTENSION IF NOT EXISTS btree_gist;
2 CREATE INDEX clusters_occured_at_location ON clusters USING gist(occurred_at , ⤦

location);

Listing 6.4: Creating multicolumn index on occurred_at and location
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6.4. Benchmarks after Optimizations

This section contains the benchmark results after all optimizations of Section 6.3 have been applied.
This includes:

• Preprocessing events
• Using convex hull instead of buffered areas
• Simplifying input areas with a tolerance of 5
• quad_segs = 1 for buffering
• Reduction of accuracies by a factor of 3
• Clustering of events with p = 40
• Amount of threads = amount of weeks

Figure 6.18 shows the runtimes for the benchmarks, when querying the events with the applied opti-
mizations.

Figure 6.18.: Benchmark results for different benchmark areas and increasing amount of data.

The queries are executing significantly faster then before. Table 6.6 compares the results of the
original query benchmarks from Section 6.2.3 with benchmark results of the optimized queries. For

the comparison the runtimes for 10 weeks of data are shown. Additionally the speedup (
t1

t2
) is listed.

Table 6.6.: Comparing the benchmark results of the original and the optimized queries.

Not optimized Optimized Speedup

Multiple small areas 129s 7s 18.42
One big complex area 12s 1s 12.00
One big area 161s 8s 20.12
Multiple big areas 111s 10s 11.10
Multiple big complex areas 202s 16s 12.62
Huge amount of small areas 547s 17s 32.17
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6.4.1. Further Optimizations

As already mentioned, one could invest almost infinite time to improve the performance of the imple-
mentation with PostgreSQL and PostGIS further. A promising approach is the ability of PostgreSQL
to parallelize queries for using multiple CPU cores. This feature is named Parallel Query and was in-
troduced with PostgreSQL 9.6 and has got multiple improvements with PostgreSQL 10.0. However,
PostgreSQL is not yet able to parallelize all kind of queries and PostGIS is a special case by itself.
There are efforts to extend PostGIS accordingly, but this is not yet production ready [26] [27] but it
is definitely worth to keep an eye on this.

Another approach to scale the implementation is sharding. With sharding, the data and queries gets
distributed across multiple machines for faster processing. For example, the company citusdata.com4

provides this for PostgreSQL databases [3]. If and how this works with PostGIS queries was not
tested.

4https://www.citusdata.com/
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Part III.

Implementation with Apache Spark
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7. Evaluation

There exists many solutions to extend big data frameworks as Hadoop or Apache Spark with spatial
data types. In this section these solutions are described and categorized on the basis of certain criteria.
Finally, the most suitable solution is selected for the implementation.

7.1. Criteria

The criteria for the evaluation, listed in order of their priority, are:

• Compatibility with Apache Spark
• Spatial Analysis Methods with Vector Data
• Support for SparkSQL
• Spatial Partitioning
• Efficient Spatial Joins
• Compatible with pySpark

The focus of this thesis is a solution which works with Apache Spark. Due to the use cases, spatial
analysis methods on vector (rather than raster) data is of utmost importance. The support for
SparkSQL has been given a high priority, as it leads to a very convenient API, especially when coming
from PostgreSQL with PostGIS. Spatial partitioning and efficient spatial joins are preconditions for an
efficient and scalable data processing. The last criterion is compatibility with pySpark and therefore
providing an API for Python. Python is popular in data analysis and geospatial data processing,
therefore a Python API would be a plus. But especially with SparkSQL support, Python bindings are
less relevant. Therefore, the criterion is given a low prioritization.

7.2. Solutions

Based on the above criteria, the existing solutions are shortly summarized.

7.2.1. GeoWave

GeoWave is a software library that connects the scalability of distributed computing frameworks and
key-value stores with modern geospatial software to store, retrieve and analyze massive geospatial
datasets [10]. It supports the kev-value stores Apache Accumulo and Apache HBase.

For querying, multiple options exist. The most common option is to use a GeoServer1 Plugin. Alter-
natively a CLI, a RDD API or SparkSQL can be used. Even though a SparkSQL API exists, it does not
yet cover all methods necessary for the present use cases. For example, it does not contain a method
to return the intersection of two geometries. But since the RDD API implements such method, it
could be extended accordingly.

1http://docs.geoserver.org/
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The focus of GeoWave is on raster data, though vector data is also supported.

7.2.2. GeoMesa

GeoMesa is an open source suite of tools that enables large-scale geospatial querying and analytics on
distributed computing systems. GeoMesa provides spatio-temporal indexing on top of the Accumulo,
HBase, Google Bigtable and Cassandra databases for massive storage of point, line, and polygon
data [5].

The functionality of GeoMesa overlaps to a good extent with the functionality of GeoWave [5], though
GeoMesa has a stronger focus on vector data. Additionally its documentation is more detailed than
that of GeoWave.

GeoMesa has a SparkSQL API2. It supports spatial partitioning and efficient joins with indexes. Similar
to GeoWave, no method exists in GeoMesa to return the intersection of two geometries. Though, it
is possible to extend the functionality to include this feature.

7.2.3. GeoTrellis

GeoTrellis is a Scala library and framework that uses Spark to work with raster data [9]. Even though
its main focus is on raster data, a Scala wrapper around JTS exists, which provides vector data types
and operations. As a distributed vector-feature store, GeoMesa or GeoWave can be used. But both
integrations are still in an experimental level.

GeoTrellis has Python bindings through a project called GeoPySpark3.

7.2.4. STARK

STARK is a framework that tightly integrates with Apache Spark and adds support for spatial and
temporal data types and operations [30]. It was implemented as part of a comparision of existing
solutions for spatial data processing on Apache Hadoop and Apache Spark [14].

It supports spatial partitioning and indexes. However, its functional scope is very limited. It has no
Spark SQL API and no documentation besides the very basic readme of the GitHub repository.

7.2.5. Magellan

Magellan extends Apache Spark with spatial data types and operations [17]. It supports spatial indexes
but no spatial partitioning yet. Even though a SparkSQL API exists, it covers only a small amount of
operations (such as intersects, within and contains).

Magellan has almost no documentation, and with just two code contributors, very little progress has
been made.

Python bindings existed once, but got broken with the newest release of Apache Spark. Therefore, it
does not support pySpark anymore.

2http://www.geomesa.org/documentation/user/spark/sparksql.html
3https://github.com/locationtech-labs/geopyspark
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7.2.6. GeoSpark

GeoSpark extends Apache Spark with a set of out-of-the-box Spatial Resilient Distributed
Datasets (SRDDs) that efficiently load, process, and analyze large-scale spatial vector data across
machines [7].

It supports spatial partitioning and indexes for joins. Additionally, it has an extension for SparkSQL.
Unfortunately, the spatial partitioning is not yet available for SparkSQL, where it is necessary to switch
to SRRDs.

Some of the documentation is still somewhat brief, but covers most of the functionalities. No Python
bindings are available.

7.2.7. LocationSpark

LocationSpark is a spatial data processing system built on top of Apache Spark [16]. Since the last
commit was more then one year ago, it is considered to be not maintained anymore.

7.2.8. Combine with GeoPandas

One could use an existing library such as GeoPandas to extend Apache Spark. GeoPandas is an open
source project to work with geospatial data in python [6]. Although this would be possible, no spatial
partitioning or indexes would be supported. Additionally, no SparkSQL API would be available with
this solution.

7.3. Summary

Table 7.1 and 7.2 lists a summary of the criteria for each solution. If a criteria is only partly fulfilled,
it is marked with additional parentheses.

Based on these results, GeoSpark is chosen for implementing the use cases of this thesis. GeoWave
and GeoTrellis were dismissed for the focus on raster data. GeoMesa would be an interesting solution,
but due to its additional dependency on Apache Accumulo, was dismissed too.

Table 7.1.: Evaluation summary Part 1

GeoWave GeoMesa GeoTrellis GeoSpark

Compatibility with Apache Spark " " " "

Spatial Analysis Methods with Vector Data (") " (") "

Support for SparkSQL (") (") (") "

Spatial Partitioning " " " (")
Efficient Spatial Joins " " " "

Comprehensive Documentation (") " " (")
Compatible with pySpark % % " %
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Table 7.2.: Evaluation summary Part 2

STARK Magellan LocationSpark GeoPandas

Compatibility with Apache Spark " " " "

Spatial Analysis Methods with Vector Data " " " "

Support for SparkSQL % (") % %

Spatial Partitioning " " % %

Efficient Spatial Joins " " " %

Comprehensive Documentation % % % (")
Compatible with pySpark % % % "

7.4. Data Source

Apache Spark can read from various data sources. It is even possible to use a JDBC driver to connect
to PostgreSQL Other data sources are files with different data formats, for example text files like CSV
or TSV. Alternatively more specific data formats like Avro4 (row-based) or Parquet5 (column-based)
exist. In terms of reading-speed and compressions, they are more suitable than plain text files.

The data source, is it a file or a JDBC connection must be accessible by each worker node of the
Apache Spark cluster. Files are therefore typically provided on a distributed file system, like the Hadoop
Distributed File System (HDFS)6 or an object storage like Amazon S37.

Since the Parquet file format is very common and has excellent performance benchmarks, it is chosen
for the implementation of both use cases.

4https://avro.apache.org/
5https://parquet.apache.org/
6HadoopDistributedFileSystem
7https://aws.amazon.com/s3/

74

https://avro.apache.org/
https://parquet.apache.org/
Hadoop Distributed File System
https://aws.amazon.com/s3/


8. Use Case AOI

8.1. Implementation

This Section describes the implementation of the AOI use case with Apache Spark extended with
GeoSpark. It is based on the scope of the PostgreSQL and PostGIS implementation. Differences and
limitations are documented accordingly.

8.1.1. Work with OpenStreetMap

Multiple options exist to work with OpenStreetMap data using Apache Spark. For example, with the
tool OpenStreetMap Parquetizer,1 PBF files can be converted to Parquet files.

Alternatively, one can read directly from a PostgreSQL database. However, this is slower than reading
from Parquet files.

For this implementation, the OpenStreetMap data is read from the PostgreSQL database and written
to Parquet files. This allows a better control of the data layout, than using a tool like OpenStreetMap
Parquetizer.

Listing 8.1 shows the corresponding lines of Scala code, to read the data from the PostgreSQL
database and write it to a Parquet file. Only the relevant tags are written to the Parquet file.

1 // opts = connection parameter for database
2 sparkSession.read
3 .format("jdbc")
4 .options(opts)
5 .option("dbtable", "planet_osm_point")
6 .load
7 .createOrReplaceTempView("points")
8

9 sparkSession.sql("SELECT way AS geometry , amenity , leisure , landuse , shop , access⤦
FROM points")

10 .write
11 .parquet("out/points.parquet")

Listing 8.1: Read points from PostgreSQL database and write to Parquet file.

Listing 8.2 shows the code to read from the created Parquet file and how the rows can be accessed
using SparkSQL.

1 sparkSession.read
2 .parquet("out/points.parquet")
3 .createOrReplaceTempView("points")
4

5 val poisDataFrame = sparkSession.sql("SELECT ST_GeomFromWKB(geometry) FROM points⤦
WHERE array_contains(array(’cafe ’, ’restaurant ’), ’shop ’)")

1https://github.com/adrianulbona/osm-parquetizer
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Listing 8.2: Read from Parquet file.

8.1.2. Pre-Cluster POIs

As in the PostgreSQL + PostGIS implementation, it is necessary to pre-cluster the POIs as done in
Section 5.1.2. Therefore, the DBSCAN clustering algorithm is used. However, GeoSpark does not
come with an implementation of the DBSCAN clustering algorithm, for which an additional dependency
is necessary.

Helmut Neukirchen [18] benchmarked multiple DBSCAN implementations for Apache Spark. Unfortu-
nately, the results are devastating. DBSCAN on Spark2 only returns a proximity of the clusters based
on bounding box calculation. Neukirchen notes that this leads to completely wrong clusters. RDD
DBSCAN3 is not able to scale to more than 16 to 32 cores. And Spark DBSCAN4 is marked as experi-
mental, and even slow with more than 900 cores. However, the documentation of the Spark DBSCAN
implementation is better than the documentation of the RDD DBSCAN implementation. Additionally,
the benchmarks of Neukirchens are more then 2 years old and the corresponding implementations have
been developed. Therefore Spark DBSCAN is used for this thesis.

The implementation only works on points and not on polygons, as in the PostgreSQL implementation.
The points are partitioned using a density based partitioner5. Then, the neighbors of each point are
identified. Points are neighbors if they lie within the distance ε. For points which are near the border
of a partition, neighbors across partitions are identified too. Then, the points are clustered for each
partition. And finally, clusters which share neighbors across partitions are merged. Figure 8.1 illustrates
the approach.

2https://github.com/mraad/dbscan-spark
3https://github.com/irvingc/dbscan-on-spark
4https://github.com/alitouka/spark_dbscan
5More details about the density based partitioning can be found here: https://github.com/alitouka/spark_dbscan/

wiki/Density-based-partitioning

76

https://github.com/mraad/dbscan-spark
https://github.com/irvingc/dbscan-on-spark
https://github.com/alitouka/spark_dbscan
https://github.com/alitouka/spark_dbscan/wiki/Density-based-partitioning
https://github.com/alitouka/spark_dbscan/wiki/Density-based-partitioning


(a) Density based partitioning of all points. (b) Cluster points for each partition.

(c) Merge clusters across partitions.

Figure 8.1.: Illustrations of DBSCAN algorithm on Spark. Source: [29]

The resulting clusters, when applied to the points in Switzerland, are shown in Figure 8.2a. Besides
that, Figure 8.2b shows the same clusters from the PostgreSQL+PostGIS implementation. Since the
Apache Spark clustering algorithms only work on points and not on whole polygons, different shapes
of clusters are formed.
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(a) Apache Spark implementation. (b) PostgreSQL + PostGIS implementation

Figure 8.2.: Resulting clusters of DBSCAN clustering of Switzerland.

Since the DBSCAN algorithm is not part of GeoSpark, the clustering cannot be applied directly on
the GeoSpark geometry instances. Therefore, transformation of the data from GeoSpark types to
the DBSCAN clustering algorithm types and vice versa, is necessary. Due to the implementational
overhead, this could have negative impacts on the benchmarks.

Listing 8.3 shows the Scala code to pre-clusters the POIs. The code is explained with comments in
detail.

1

2 // map GeoSpark geometries to Point class of DBSCAN clustering algorithm
3 val pois = poisDataFrame.rdd.map(row => new Point(row.getAs[Geometry ](1).⤦

getCoordinates ()(0).y, row.getAs[Geometry ](1).getCoordinates ()(0).x))
4

5 // init clustering settings , eps = 100 meters , minPts = 3
6 val clusteringSettings = new DbscanSettings ().withEpsilon (100).withNumberOfPoints⤦

(3)
7

8 // cluster pois
9 val model = Dbscan.train(pois , clusteringSettings)

10

11 // map clustered pois to Spark Rows
12 val preclusteredPois = model.clusteredPoints.map { point => Row(point.coordinates⤦

(0), point.coordinates (1), point.clusterId)}
13

14 // create DataFrame from spark rows
15 val schema = new StructType(Array(StructField("x",DoubleType),StructField("y",⤦

DoubleType),StructField("cluster_id",LongType)))
16 sparkSession.createDataFrame(preclusteredPois , schema).createOrReplaceTempView("⤦

preclustered_pois")
17

18 // finally , the rows can be casted back to GeoSpark geometries
19 sparkSession.sql("SELECT ST_Point(CAST(x AS Decimal (24 ,20)),CAST(y AS Decimal⤦

(24 ,20))) AS geometry , cluster_id FROM preclustered_pois").⤦
createOrReplaceTempView("preclustered_pois")

Listing 8.3: Pre-clustering of the POIs.
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8.1.3. DBSCAN Local Adaption

As in the PostgreSQL + PostGIS implementation, a minPts parameter for the DBSCAN algorithm
is calculated for each pre-cluster, based on the area and the amount of POIs. To calculate the area
of the pre-clusters, a convex hull of the clustered points must be calculated. GeoSpark contains the
function ST_ConvexHull to calculate the convex hull of a polygon. Unfortunantly, GeoSpark does not
contain a function to aggregate the clustered points to one polygon. In PostgreSQL one would use
ST_Union, which exists in GeoSpark as ST_Union_Aggr but only works on polygons [8]. Alternatively,
the function ST_Envelope_Aggr exists, which can be used as aggregations of points, but only returns
an envelop. Listing 8.4 shows the corresponding Spark SQL queries to draw the hulls of the pre-
clusters and calculate the minPts value. The formula to calculate the minPts value was derived in
Section 5.1.3.

1 sparkSession.sql(
2 """ SELECT cluster_id , ST_ConvexHull(ST_Envelope_Aggr(geometry)) AS hull ,
3 |ST_Area(ST_ConvexHull(ST_Envelope_Aggr(geometry))) AS area ,
4 |COUNT(geometry) AS pois_count
5 |FROM preclustered_pois
6 |GROUP BY cluster_id """.stripMargin).createOrReplaceTempView("preclusters")
7

8 sparkSession.sql(
9 """ SELECT cluster_id ,

10 |GREATEST(2, round (( -5.342775355 * 0.0000001 * area + 5.738819175 * ⤦
0.001 * pois_count + 2.912834423))) AS dbscan_minPts

11 |FROM preclusters """.stripMargin).createOrReplaceTempView("preclusters")

Listing 8.4: Draw hulls of the pre-clusters and calculate minPts value.

8.1.4. Cluster POIs

After the POIs have been pre-clustered, the POIs in each pre-cluster can now be clustered individually.
However, it is not possible to use the chosen DBSCAN algorithm implementation from Section 8.1.2.
This is because the implementation only works with RDDs and therefore nested RDDs would be
required, which is not allowed with Apache Spark.

Since running the clustering algorithm on one pre-cluster is not performance-critical and it is not
necessary to do this in a distributed manner, one can use a non-distributed implementation of the
DBSCAN algorithm. A widespread implementation is part of the Apache Commons, a project focused
on reusable Java components6.

Listing 8.5 shows the Scala code which uses the DBSCANClusterer of Apache Commons to cluster
the POIs of each pre-cluster. Comments inside the code explains it in more detail.

1 class OwnPoint(x: Double , y: Double) extends Clusterable {
2 override def getPoint: Array[Double] = {
3 return Array(x, y)
4 }
5 }
6

7 val pois = preclusteredPoisWithMinPts.groupBy(poi => poi.getLong (0)).map {
8 case (cluster_id , pois) => {
9 val minPts = pois.last.getDouble (1).asInstanceOf[Int]

10 val eps = 35 // 35 meters

6https://commons.apache.org/
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11

12 // map the pois to an own class which can be used by the DBSCANClusterer
13 val points = pois.map(row => new OwnPoint(row.getAs[Point ](2).getCoordinates⤦

()(0).x,
14 row.getAs[Point ](2).getCoordinates⤦

()(0).y))
15

16 val clusterer = new DBSCANClusterer[OwnPoint ](eps , minPts)
17

18 // cluster the points
19 val clusters = clusterer.cluster(points.asJavaCollection)
20

21 // map the resulting clusters to an array of tuples (cluster_id , points)
22 // the cluster_id is derived by combining the pre -cluster_id and the new ⤦

cluster_id
23 // the points are mapped back to tuples of doubles (x, y)
24 clusters.toArray ().map(cluster => (cluster_id << 3 + clusters.indexOf(cluster⤦

),
25 cluster.asInstanceOf[Cluster[OwnPoint ]].⤦

getPoints.toArray ().map(point => point⤦
.asInstanceOf[OwnPoint ]. getPoint)))

26 }
27 }. reduce(_++_) // merge resulting lists
28 .map { case (cluster_id , points) => points.map(point => (point (0), point (1), ⤦

cluster_id)) } // map to (x, y, cluster_id)
29 .reduce(_++_) // merge resulting lists
30 .map { clustered_poi => Row(clustered_poi._1 , clustered_poi._2 , clustered_poi.⤦

_3)} // map to Spark rows

Listing 8.5: Draw hulls of the pre-clusters and calculate minPts value.

The variable pois now contains an array of Apache Spark rows, where each row contains a POI
with the coordinates and a cluster id. These rows can then be converted back to an Apache Spark
DataFrame to be used with SparkSQL and GeoSpark. This is shown in Listing 8.6.

1 // a shema is necessary to convert a RDD to a DataFrame
2 val clustered_pois_schema = new StructType(Array(StructField("x",DoubleType),⤦

StructField("y",DoubleType),StructField("cluster_id",LongType)))
3 sparkSession.createDataFrame(sparkSession.sparkContext.parallelize(pois), ⤦

clustered_pois_schema).createOrReplaceTempView("clustered_pois")

Listing 8.6: Convert POIs RDD to DataFrame.

Finally, the clustered POIs are available in SparkSQL and the hull can be drawn using GeoSpark.
The only aggregation function in GeoSpark to combine polygons calculates a rectangle around the
polygons. The corresponding code is shown in Listing 8.7.

1 // the POIs need to be cast to an GeoSpark point using ST_Point
2 sparkSession.sql(""" SELECT ST_Point(CAST(x AS Decimal (24 ,20)),
3 | CAST(y AS Decimal (24 ,20))) AS geometry ,
4 | cluster_id FROM clustered_pois """.stripMargin).⤦

createOrReplaceTempView("clustered_pois")
5

6 // finally the hull can be drawn for each cluster
7 val aois = sparkSession.sql("SELECT ST_ConvexHull(ST_Envelope_Aggr(geometry)) AS ⤦

aoi FROM clustered_pois GROUP BY cluster_id")

Listing 8.7: Draw hulls with GeoSpark.
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Due to the use of the ST_Envelope_Aggr function, the resulting AOIs are rectangular. This is
illustrated in Figure 8.3. Even though the AOIs are not useful, benchmarking the implementation will
be possible. The results are compared with the AOIs of the PostgreSQL+PostGIS implementation in
Section 8.2.

Figure 8.3.: AOIs generated with GeoSpark.

8.1.5. Network Centrality

The used library for the PostgreSQL+PostGIS implementation was osmnx. Since it is a Python library,
it cannot be used with the Apache Spark implementation. Eventually GraphX7 could have been used
for the task, but as it does not contain anything related to network centrality, it would be necessary
to extend it accordingly. This has not been done as part of this thesis.

8.1.6. Exclude Water and Sanitize AOIs

Unfortunately, GeoSpark does not implement anything like the ST_Difference function of PostGIS,
used in Section 5.1.6. Therefore, this step is skipped. The same applies for the ST_Simplify function
of PostGIS, used in Section 5.1.7.

7http://spark.apache.org/graphx/
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8.1.7. Export AOIs

GeoSpark provides a function saveAsGeoJSON to save geometries as GeoJSON. Since it is only
available on RDDs, the AOIs DataFrame must be converted to a RDD first. The corresponding code
is shown in Listing 8.8.

1 val spatialAoisRDD = new SpatialRDD[Geometry]
2 spatialAoisRDD.rawSpatialRDD = Adapter.toRdd(aoisDataFrame)
3 spatialAoisRDD.saveAsGeoJSON("out/aois.export")

Listing 8.8: Export AOIs as GeoJSON

Due to the nature of Apache Spark, files can not be exported as one file, but the AOIs of each partition
are written to its own file. This is illustrated in Figure 8.4. To merge the files, one could use for
example a simple bash command.

(a) Files in export directory.

(b) GeoJSON content of one file.

Figure 8.4.: Resulting files when exporting GeoJSON with GeoSpark.
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8.2. Compare Results

Figure 8.5 compares certain AOIs of the GeoSpark implementation in Section 8.1 with the AOIs of
the PostGIS implementation from Section 5.1.

Figure 8.5.: GeoSpark AOIs (left) compared to PostgreSQL AOIs (right).

As one can see, the AOIs from the GeoSpark implementation are not really useful, compared to the
AOIs of the PostGIS implementation. Due to multiple missing functions in GeoSpark, it was not
possible to implement the same functionality. The AOIs generated with GeoSpark are much smaller,
since it was not possible to apply the DBSCAN clustering to polygons, but only to points. This leads
to a huge difference in the clusters.
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8.3. Benchmarks

In this section the implementation from Section 8.1 is benchmarked.

8.3.1. Hardware

The benchmarks are executed on a cluster with one master and three worker nodes, with 4 CPU cores
and 8 GB memory each. It is only a virtual cluster, since it is configured using Docker and all nodes
are running on the same server. This is not an ideal implementation, as it does not show the problem
of network traffic. On the other hand, each node can be configured and scaled easily by editing the
Docker configuration. The server, where the cluster is running on, has 32 CPU cores and 540 GB of
memory and is therefore capable of running various setups of nodes. The Docker configuration can
be found in the Appendix C.1.

8.3.2. Results

As explained in Section 5.3.2, the benchmarks for the data of Switzerland is processed. The bench-
marks are executed on the Parquet files, generated as described in Section 8.1.1. The steps to
generate the Parquet files are not benchmarked, since the osm2pgsql import of the PostgreSQL +
PostGIS implementation was not benchmarked either.

Table 8.1 contains the runtime of the different phases when generating the AOIs for Switzerland. To
benchmark the capability for scaling of the Apache Spark implementation, the runtimes with one, two
and three worker nodes are listed.

Table 8.1.: Runtimes when generating AOIs for Switzerland with Apache Spark

1 worker node 2 worker nodes 3 worker nodes

Pre-Clustering 36 s 34 s 33 s
Generating AOIs without network centrality 3 s 3 s 3 s
Export AOIs 2 s 2 s 2 s

Figure 8.6 compares the runtime of the PostgreSQL+PostGIS and Apache Spark+GeoSpark imple-
mentation.
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Figure 8.6.: Runtime in seconds of Spark and PostgreSQL implementations.

In the illustration, one can see multiple things. First, generating the AOIs with Spark is much faster
then with PostgreSQL. However, this must be put into perspective since due to the missing function-
ality of GeoSpark, the implementation is much simpler and does not operate on complex polygons but
only on rectangles. Therefore, a comparison is not meaningful.

For the runtimes of the pre-clustering phase, one can see that the Spark implementation is slower
than the PostgreSQL implementation. This is even more surprising, when taking into account that the
Spark implementation is performing on a cluster with three worker nodes, each with 8 GB memory, and
4 CPU cores (total: 24 GB of memory and 16 CPU cores), whereas the PostgreSQL implementation
runs on an older working machine with 2 CPU cores and 6 GB of memory. The explanation for
this lies in the higher complexity of the implementation due to the missing DBSCAN functionality of
GeoSpark. Therefore, the data types must be converted multiple times between different data types
while processing, which hinders Apache Spark to distribute the computations properly on all worker
nodes.

What additionally can be seen in the pre-clustering phase is that the Apache Spark implementation
scales when adding more worker nodes. The speedup is not huge, but as one can see, that Apache
Spark is able to distribute these computations. Even tough, the reduction in the runtime is grossly
proportional to the costs of the additional hardware.

In the export-phase one can see the potential of Apache Spark. Exporting the geometries can be
perfectly parallelized to all worker nodes and their cores. But again, one has to take into account the
fact that the geometries which are exported are less complex. But even with more complex geometries,
Apache Spark would outperform the current PostgreSQL implementation.
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9. Use Case Eventcount

9.1. Implementation

This Section describes the implementation of the Eventcount use case with Apache Spark extended
with GeoSpark. It is based on the scope of the PostgreSQL and PostGIS implementation. Differences
and limitations are documented accordingly.

9.1.1. Data Source

For the implementation of this use case, the data is read form PostgreSQL and converted to Parquet
files. Then the events are initially read from the Parquet file to the memory. All following code
examples will read the data from a Parquet file.

Listing 9.1 shows the corresponding lines of Scala code, to read the events from the PostgreSQL
database and write it to a Parquet file.

1 // opts = connection parameter for database
2 def writeEventsParquet () = {
3 sparkSession.read
4 .format("jdbc").
5 .options(opts).
6 .option("dbtable", "events")
7 .load
8 .createOrReplaceTempView("events")
9

10 // convert event location to GeoSpark geometry with ST_GeomFromWKB
11 val events = sparkSession.sql("SELECT ST_GeomFromWKB(location) AS location , ⤦

accuracy , occurred_at , consumer_id , session_id FROM events")
12

13 events.write.parquet("events.parquet")

Listing 9.1: Read events from PostgreSQL database and write to Parquet file.

The second data input, viz. the areas, are not provided via the database, but as GeoJSON. Unfortu-
nantly, GeoSpark is not able to read a GeoJSON file. It can read the GeoJSON format, but only if
each line of the file represents one feature. Therefore, it is necessary to convert the GeoJSON files
accordingly and the files can be read as shown in Listing 9.2.

1 sparkSession.read
2 .format("csv")
3 .option("delimiter", "\n")
4 .option("header", "false")
5 .load(path)
6 .createOrReplaceTempView("areas_csv")
7

8 sparkSession.sql("SELECT ST_GeomFromWKT(areas._c0) AS area FROM areas")
9 .createOrReplaceTempView("areas_csv")

Listing 9.2: Read areas from CSV file where each line contains a GeoJSON feature.
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9.1.2. Querying Events

A straightforward implementation with GeoSpark is, to use the provided SparkSQL API extensions.
Listing 9.3 shows the corresponding code. The data of the events and areas is read from Parquet files.
With both DataFrames a view for SparkSQL is created. And in the end are the events queried using
SparkSQL. As one can see, the query is identical to the PostgreSQL+PostGIS query. The functions
ST_Intersects, ST_Area and ST_Intersection are provided by GeoSpark1.

1 var eventsDataFrame = sparkSession.read.parquet("events.parquet")
2 eventsDataFrame.cache ()
3 eventsDataFrame.createOrReplaceTempView("events")
4

5 var areasDataFrame = sparkSession.read.parquet("areas.parquet")
6 areasDataFrame.createOrReplaceTempView("areas")
7

8 val count = sparkSession.sql(
9 """ SELECT * FROM events , areas

10 | WHERE occurred_at >= "2017 -04 -01 00:00:00"
11 | AND occurred_at <= "2017 -04 -15 00:00:00"
12 | AND ST_Intersects(ST_Buffer(events.location , events.accuracy), areas.area)
13 | AND ST_Area(ST_Intersection(ST_Buffer(events.location , events.accuracy), ⤦

areas.area)) / ST_Area(ST_Buffer(events.location , events.accuracy)) > 0.5⤦
"""

14 ).count()

Listing 9.3: Query events with GeoSpark Spark SQL

The implementation with SparkSQL is very elegant. Unfortunately, they are two problems with this.
First, the application of the GeoSpark function ST_Area to the output of the function ST_Buffer has
a bug and always returns 0.2 As a solution, the area of the events must already be calculated on the
PostgreSQL database, when converting the events to the Parquet file. This results in a new attribute
area on the events.3

The second problem is, that the GeoSpark SparkSQL API does not yet support caching for the
internally used SpatialRDDs4. To be able to use caching, the RDD API must be used directly.

Listing 9.4 shows the code for preparing the events RDD before any query. On line 1 the Parquet file
is read as before. On line 3, the DataFrame is converted to a SpatialRDD, with a method provided
by GeoSpark. After calling the analyze method on the SpatialRDD, one can do a spatial partitioning
with the spatialPartitioning method. The method takes a parameter for a grid type and the
number of partitions. Finally, on line 8, the spatial partitioned RDD can be cached.

1 val eventsDataFrame = sparkSession.read.parquet("events.parquet")
2 val spatialEventsRDD = new SpatialRDD[Geometry]
3 spatialEventsRDD.rawSpatialRDD = Adapter.toRdd(eventsDataFrame)
4 spatialEventsRDD.analyze ()
5 spatialEventsRDD.spatialPartitioning(GridType.KDBTREE , numberOfPartitions)
6 spatialEventsRDD.spatialPartitionedRDD.cache()

Listing 9.4: Prepare events with GeoSparks SpatialRDDs

1These functions are defined by the Open Geospatial Consortium (OGC) to achieve interoperability between different
spatial databases. However, GeoSpark does not yet provide all of these functions.

2This has been reported to the maintainer.
3This step can be equated with the preprocessing of the events in Section 6.3.1
4Not to be confused with the caching of the event DataFrame (as done in Listing 9.3 on line 2), which is possible, but
does not bring any benefit since GeoSpark uses internally an own version of RDDs (SpatialRDDs).
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Now that the events are properly partitioned and cached, the Spark SQL query from Listing 9.3 must
be reproduced using the RDD API. The corresponding code is shown in Listing 9.5.

1 // join all events and areas which intersects each other (even with less then ⤦
50%)

2 val intersecting = JoinQuery.SpatialJoinQueryFlat(spatialEventsRDD , ⤦
spatialAreasRDD , false , true)

3

4 val events = intersecting.rdd.filter(geometryPair => {
5 // read and parse the timestamp from the user data
6 val occurred_at = Timestamp.valueOf(geometryPair._2.getUserData.toString.split(⤦

"\t")(0))
7

8 // filter with the timestamp
9 occurred_at.after(from_timestamp) && occurred_at.before(to_timestamp)

10 })
11 // and finally filter for all events which intersects more then 50%
12 .filter(geometryPair => geometryPair._1.intersection(geometryPair._2).getArea / (⤦

geometryPair._2.getArea) > 0.5)

Listing 9.5: Query events with GeoSpark RDDs

To make a spatial join with the RDD API, one has to use the JoinQuery.SpatialJoinQueryFlat
method. It takes two SpatialRDDs as arguments and returns one SpatialPairRDD with pairs of two
geometries that intersect. This reveals another oddity of GeoSpark. All additional attributes of one
of the input SpatialRDDs, for example the occurred_at timestamp, are lost after this join. Only
the geometry attribute remains. To carry additional data attributes with the geometries, one has to
prepare them differently when creating. Listing 9.6 shows the difference for the initial import query.
The attributes can be added to the ST_GeomFromWKB and are carried as user data.

1 // old query
2 val events = sparkSession.sql("SELECT ST_GeomFromWKB(location) AS location , ⤦

accuracy , occurred_at , consumer_id , session_id FROM events")
3

4 // new query
5 val events = sparkSession.sql("SELECT ST_GeomFromWKB(location , accuracy , ⤦

occurred_at , consumer_id , session_id) AS location FROM events")

Listing 9.6: Carrying attributes of events as user data of the geometry.

9.2. Benchmarks

In this section the implementation from Section 9.1 is benchmarked. For the cluster, the one in
Section 8.3.1 is used.

The same benchmarks are applied as in Section 6.2. By default the largest area “Huge amount of
small areas” is used for benchmarking.

The time to read all events from the Parquet files into memory, including the spatial partitioning,
takes about 4 minutes. This time is not captured with the benchmarks, since in a production use, the
events will be loaded into memory initially only once. It takes about 11 GB memory for all events.
This value would be smaller if it isn’t necessary to calculate the area on the PostgreSQL database,
due to the bug in GeoSpark.
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Choosing the amount of partitions is essential when using GeoSpark with Apache Spark. It depends on
the amount of data and the amount of worker nodes. Figure 9.1 illustrates the runtimes for different
constellations.

Figure 9.1.: Runtimes in seconds querying benchmark area “Huge amount of small areas” for different
number of partitions and worker nodes. Figures in parenthesis are the number of CPU
cores per node.

The runtimes show that every cluster with different number of worker nodes or cores benefits from
more partitions in the beginning, but the positive effect stagnates when increasing the partitions
further. The performance even decreases with too many partitions. This is because when Apache
Spark reads from a partition a serialization overhead is necessary.

It can be additionally seen fro Figure 9.1, that the runtime benefits from more worker nodes and more
CPU cores per worker node. This seems obvious, but it requires Apache Spark with GeoSpark to be
able to parallelize. Accordingly, the implementation can make use of the distribution execution. For
the further benchmarks, a three worker nodes cluster with 8 CPU cores each and 512 partitions are
used.

Figure 9.2 shows the runtimes for the GeoSpark implementation when increasing the amount of weeks.
The runtimes almost remain the same, even with more data. This is, because the “expensive” join
query is executed in the beginning, and the events are later filtered by date5.

5“Expensive” is written in quotations, since due to the spatial partitioning GeoSpark can execute it efficiently
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Figure 9.2.: Runtimes in seconds querying benchmark area “Huge amount of small areas” for different
number of weeks.

Figure 9.3 shows the runtimes for all benchmark areas for the GeoSpark and the PostGIS implementa-
tion. As one can see, GeoSpark outperforms the PostGIS implementation, especially with more data.
GeoSpark is clearly better in parallelizing the join query. However, when reading this results, one must
keep in mind that the GeoSpark solution is running on much stronger hardware then the PostGIS
solution. For example, the PostGIS implementation could be improved too, if it would run purely in
memory.

Figure 9.3.: Comparing runtimes in seconds for querying different benchmark areas.
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10. Summary of Results

This chapter summarizes the results of this thesis.

An approach to generate Areas-of-Interest (AOIs) with OpenStreetMap data was implemented with
PostgreSQL and PostGIS, with the results presented in Chapter 5. One can either generate the
AOIs for whole countries or the full planet, or use a web application to generate the AOIs for specific
areas. The web application visualizes and explains each step of the AOI generation, which leads to a
high transparency and comprehensibility. The final implementation was benchmarked and bottlenecks
identified.

In Chapter 6 a use case of an industrial partner encountering performance issues with PostgreSQL
and PostGIS was re-implemented with the same technology stack. After identifying the performance
bottlenecks, several approaches were applied to optimize the runtimes. The resulting implementation
runs up to 30 times faster and proves to be a satisfying solution for the industrial partner.

In Chapters 7 to 9 a suitable extension for Apache Spark to handle spatial data types was evaluated.
Based on the functional scope, GeoSpark was chosen. The PostGIS implementations of both use
cases were then re-implemented using Apache Spark and GeoSpark.

In the case of the AOI use case, many limitations of GeoSpark were encountered. Basic operations
contained bugs and many necessary operations were missing. Therefore, only a very basic implemen-
tation with incomplete results could be realized. Nevertheless, the implementation was benchmarked
and the runtimes and generated AOIs compared with the corresponding PostGIS implementation.

The second use case (from the industrial partner) was simpler. Here, GeoSpark was found to be more
suitable for its implementation. It was possible to achieve better runtimes than with the PostGIS
implementation, especially in case of more volume of data.
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11. Conclusion

The bottleneck in generating the AOIs with PostgreSQL and PostGIS was the application of the
network centrality. The relevant library osmnx used here did not seem to be efficient enough for this
task and need to be improved or replaced. Excluding the network centrality, it is possible to generate
the AOIs for the whole planet and make the resulting GeoJSON publicly available. Through the web
application it would be possible for an user to understand how the AOIs are generated.

The procedure for creation of AOIs still has a lot of room for improvement. Theis can be done,
for example by fine-tuning the DBSCAN parameters of the local adaption. Besides that, more data
sources could be considered while generating the AOIs, as for example Twitter Posts, Instagram
Photos or FourSquare reviews. The possibilities are endless.

For the industrial partner, their existing implementation with PostgreSQL and PostGIS was optimized
to their satisfaction. The solution with Apache Spark and GeoSpark was reported to be inappropriate
for their purpose, as it would require too costly hardware and an extensive stack of new technologies.
Since the runtimes with the optimized version are sufficient, they would be able to use it accord-
ingly. There are options to further improve the solution. For example, one could consider running
PostgreSQL in memory or making use of Sharding. Additionally, improvements on parallelization of
PostgreSQL and PostGIS could also be considered.

GeoSpark appears to be still immature for the use of a complex task like generating AOIs. For simpler
tasks it was seen to be able to distribute the calculations and make use of a distributed cluster.
Nevertheless, many bugs were encountered and it still seems premature for a productive environment.
However, GeoSpark is under active development and the quality and scope of functionality increases
continuously. Be it GeoSpark or a different solution like GeoMesa, in the future it hopefully will be
possible to make complex queries, as with PostGIS, on a cluster.
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A. Use Case AOI

A.1. Tags for POIs

The selected tags for the relevant POIs as JSON.

1 ’landuse_tags ’: [
2 ’retail ’
3 ],
4 ’amenity_tags ’: [ ’pub ’, ’bar ’, ’cafe ’, ’restaurant ’, ’pharmacy ’, ’bank ’,
5 ’fast_food ’, ’food_court ’, ’ice_cream ’, ’library ’, ’ferry_terminal ’,
6 ’clinic ’, ’doctors ’, ’hospital ’, ’pharmacy ’, ’veterinary ’, ’dentist ’,
7 ’arts_centre ’, ’cinema ’, ’community_centre ’, ’casino ’, ’fountain ’,
8 ’nightclub ’, ’studio ’, ’theatre ’, ’dojo ’, ’internet_cafe ’, ’marketplace ’,
9 ’post_opffice ’, ’townhall ’

10 ],
11 ’shop_tags ’: [ ’mall ’, ’bakery ’, ’beverages ’, ’butcher ’, ’chocolate ’,
12 ’coffee ’, ’confectionery ’, ’deli ’, ’frozen_food ’, ’greengrocer ’,
13 ’healthfood ’, ’ice_cream ’, ’pasta ’, ’pastry ’, ’seafood ’, ’spices ’, ’tea ’,
14 ’department_store ’, ’supermarket ’, ’bag ’, ’boutique ’, ’clothes ’, ’fashion ’,
15 ’jewelry ’, ’leather ’, ’shoes ’, ’tailor ’, ’watches ’, ’chemist ’, ’cosmetics ’,
16 ’hairdresser ’, ’medical_supply ’, ’electrical ’, ’hareware ’, ’electronics ’,
17 ’sports ’, ’swimming_pool ’, ’collector ’, ’games ’, ’music ’, ’books ’, ’gift ’,
18 ’stationery ’, ’ticket ’, ’laundry ’, ’pet ’, ’tobacco ’, ’toys ’
19 ],
20 ’leisure_tags ’: [ ’adult_gaming_centre ’, ’amusement_arcade ’, ’beach_resort ’,
21 ’fitness_centre ’, ’garden ’, ’ice_rink ’, ’sports_centre ’, ’water_park ’
22 ]
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A.2. docker-compose.yml

1 version: ’3’
2 services:
3 webapp:
4 build: ./ webapp
5 env_file: ./ webapp /.env
6 environment:
7 - PGHOST=postgres
8 - PGUSER=postgres
9 - PGDATABASE=gis

10 volumes:
11 - ./ webapp :/ webapp/
12 - ./data /:/ data/
13 ports:
14 - "5000:5000"
15 depends_on:
16 - postgres
17

18 notebooks:
19 build: ./ notebooks
20 environment:
21 - PGHOST=postgres
22 - PGUSER=postgres
23 - PGDATABASE=gis
24 env_file:
25 - .env
26 volumes:
27 - ./data /:/ data/
28 - ./ notebooks/notebooks :// home/jovyan/
29 ports:
30 - "8888:8888"
31 depends_on:
32 - postgres
33

34 postgres:
35 image: mdillon/postgis :10
36 environment:
37 - POSTGRES_PASSWORD=
38 volumes:
39 - ./ postgres/storage /:/ var/lib/postgresql/data/
40 - ./data/alter_config.sh:/docker -entrypoint -initdb.d/alter_postgres_config.⤦

sh
41 ports:
42 - "54320:5432"
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A.3. Web Application Readme

1 To run the web application locally , the following steps are necessary:
2

3 Build the docker image:
4 docker -compose build webapp
5

6 Init the database:
7 docker -compose run --rm webapp bash import_osm.sh
8

9 This will import the file ‘data/switzerland.osm.pbf ‘ to the database. To change
10 the file , edit the import script ‘webapp/import_osm.sh ‘.
11

12 Since not all OSM elements are necessary for generating AOIs , one can filter
13 the ‘osm.pbf ‘ file before importing it. Therefore , osmfilter can be used. An
14 example is provided in the file ‘pbf_filter_example.sh ‘.
15

16 Prepare the POIs:
17 docker -compose run --rm webapp bash setup_pois.sh
18

19 Start the webapp container:
20 docker -compose up -d webapp
21

22 Now one can access the web interface at http :// localhost :5000.

A.4. PostgreSQL Configuration

1 # DB Version: 10
2 # OS Type: linux
3 # DB Type: web
4 # Total Memory (RAM): 6 GB
5 # CPUs num: 2
6 # Hard drive type: ssd
7

8 ALTER SYSTEM SET
9 max_connections = ’200’;

10 ALTER SYSTEM SET
11 shared_buffers = ’1536MB ’;
12 ALTER SYSTEM SET
13 effective_cache_size = ’4608MB ’;
14 ALTER SYSTEM SET
15 maintenance_work_mem = ’384MB ’;
16 ALTER SYSTEM SET
17 checkpoint_completion_target = ’0.7’;
18 ALTER SYSTEM SET
19 wal_buffers = ’16MB ’;
20 ALTER SYSTEM SET
21 default_statistics_target = ’100’;
22 ALTER SYSTEM SET
23 random_page_cost = ’1.1’;
24 ALTER SYSTEM SET
25 effective_io_concurrency = ’200’;
26 ALTER SYSTEM SET
27 work_mem = ’7864kB ’;
28 ALTER SYSTEM SET
29 min_wal_size = ’1GB ’;
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30 ALTER SYSTEM SET
31 max_wal_size = ’2GB ’;
32 ALTER SYSTEM SET
33 max_worker_processes = ’2’;
34 ALTER SYSTEM SET
35 max_parallel_workers_per_gather = ’1’;
36 ALTER SYSTEM SET
37 max_parallel_workers = ’2’;
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B. Use Case Event Count

B.1. Benchmark Results

Table B.1.: Resulting count of events when querying different cluster.

No Clustering 90% 80% 70% 60%

Multiple small areas 16143 16415 16415 16399 16399
One big complex area 196553 199293 199240 199293 199326
One big area 402222 408002 408041 408089 408079
Multiple big areas 520006 527827 527838 527836 527889
Multiple big complex areas 367323 372586 372533 372516 372553
Huge amount of small areas 127556 129322 129073 129151 128955

Table B.2.: Resulting count of events when querying different cluster.

50% 40% 30% 20% 10%

Multiple small areas 16397 16381 16391 16389 16411
One big complex area 199241 199246 199249 199222 199326
One big area 408111 408038 408057 408109 407930
Multiple big areas 527838 527871 527840 527924 527978
Multiple big complex areas 372574 372468 372593 372617 372633
Huge amount of small areas 128795 128718 128990 128840 129267
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C. Apache Spark

C.1. Spark Cluster

The cluster is setup through the Portainer web interface1, using the following configuration (irrelevant
and private information are skipped):

1 version: ’3.4’
2 services:
3 master:
4 image: gettyimages/spark :2.3.0 - hadoop -2.8
5 volumes:
6 - data:/data/
7 command: bin/spark -class org.apache.spark.deploy.master.Master -h 0.0.0.0
8 networks:
9 - default

10 - web
11 ports:
12 - "4040:4040"
13 expose:
14 - "8080"
15 - "4040"
16 - "7077"
17 - "6060"
18 restart_policy:
19 max_attempts: 3
20 replicas: 1
21 placement:
22 constraints:
23 - node.role == manager
24 logging:
25 driver: "json -file"
26 options:
27 max -size: "256K"
28 worker:
29 image: gettyimages/spark :2.3.0 - hadoop -2.8
30 volumes:
31 - data:/data/
32 environment:
33 SPARK_WORKER_INSTANCES: 1
34 SPARK_WORKER_CORES: 4
35 SPARK_WORKER_MEMORY: 8g
36 command: bin/spark -class org.apache.spark.deploy.worker.Worker spark :// master⤦

:7077
37 networks:
38 - default
39 deploy:
40 restart_policy:
41 max_attempts: 3
42 replicas: 3

1https://github.com/portainer/portainer

100

https://github.com/portainer/portainer


43 placement:
44 constraints:
45 - node.role == manager
46 logging:
47 driver: "json -file"
48 options:
49 max -size: "256K"
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