
UNIVERSITY OF APPLIED SCIENCES RAPPERSWIL
DEPARTMENT OF COMPUTER SCIENCE

BACHELOR THESIS

XMPP-Grid Broker

Authors:
Fabian HAUSER and
Raphael ZIMMERMANN

Advisor:
Prof. Dr. Andreas Steffen

External Co-Examiner:
Dr. Ralf Hauser,
PrivaSphere AG

Internal Co-Examiner:
Prof. Dr. Thomas Bocek

Spring Term 2018

https://www.hsr.ch

i

c⃝Copyright 2018 by Fabian Hauser and Raphael Zimmermann

This documentation is available under the GNU FDL License.

The XMPP-Grid broker software is licensed under the AGPL-License. This does not
apply to third-party libraries.

INS - Institute for Networked Solutions 19.02.2018 Steffen

Bachelorarbeit 2018

XMPP-Grid Broker

Studenten: Fabian Hauser, Raphael Zimmermann

Betreuer: Prof. Dr. Andreas Steffen

Ausgabe: Montag, 19. Februar 2018

Abgabe: Freitag, 15. Juni 2018

Einführung

Die IETF Security Automation and Continuous Monitoring (SACM) Working Group verfolgt

eine Publish-Subscribe Architektur [1] basierend auf dem XMPP Protokoll [2] mit dem poten-

tiell Hunderte oder Tausende von Endpunkten (PCs oder IoT Geräte) in real-time Sicherheitsin-

formationen in einem XMPP-Grid publizieren können. Security Information und Event Ma-

nagement (SIEM) Systeme können sich dann als Subscriber gezielt auf gewisse Themen (rea-

lisiert als XMPP Nodes) abonnieren.

Ein Rapid-Prototype [3] eines XMPP-Grids basierend auf einem Openfire [4] XMPP Server

und einem Python Broker Script wurde am IETF 100 Hackathon Singapur im November 2017

vordemonstriert.

Für die Administration des XMPP-Grids soll eine Broker Applikation mit einem grafischen

Management Interface erstellt werden. Damit sollen Themen (XMPP-Nodes) erstellt und ge-

löscht, sowie Owner, Publisher oder Subscriber Rechte vergeben werden können. Es soll die

Möglichkeit geschaffen werden, Themen hierarchisch zu Collections [8] zusammenzufassen.

Ebenfalls sollen Management-Views über verfügbare Themen, persistierte Items, Subscriber

und Publisher generiert werden können.

Aufgabenstellung

• Einarbeiten in den XMPP Grid Internet Draft [1], den XMPP Standard [2], sowie die

XEP-0004 [5], XEP-0030 [6], XEP-0060 [7] und XEP-0248 [8] Extensions.

• Erfassen der Requirements für einen XMPP Grid Broker.

• Erarbeiten eines Architekturkonzepts für den XMPP Grid Broker, sowie Evaluation

von geeigneten Technologien für die Implementation.

• Implementation, Test und Dokumentation

ii

Task Description

Bachelorarbeit 2018 2

INS - Institute for Networked Solutions 19.02.2018 Steffen

Links

[1] IETF I-D draft-ietf-mile-xmpp-grid
https://tools.ietf.org/html/draft-ietf-mile-xmpp-grid

[2] IETF RFC 6120 Extensible Messaging and Presence Protocol (XMPP): Core
https://tools.ietf.org/html/rfc6120

[3] IETF 100 Hackathon XMPP-Grid Broker Prototype
https://github.com/sacmwg/vulnerability-scenario/tree/master/ietf_hackathon/strongSwan

[4] Openfire Homepage
https://www.igniterealtime.org/projects/openfire/

[5] XEP-0004 Data Forms
https://xmpp.org/extensions/xep-0004.html

[6] XEP-0030 Service Discovery
https://xmpp.org/extensions/xep-0030.html

[7] XEP-0060 Publish-Subscribe
https://xmpp.org/extensions/xep-0060.html

[8] XEP-0248 PubSub Collection Nodes
https://xmpp.org/extensions/xep-0248.html

Rapperswil, 19. Februar 2018

Prof. Dr. Andreas Steffen

iv

Abstract

Fabian HAUSER and Raphael ZIMMERMANN

XMPP-Grid Broker

The IETF Managed Incident Lightweight Exchange (MILE) working group proposes
the standard “Using XMPP for Security Information Exchange” which describes
how an XMPP based publish-subscribe mechanism (XMPP-Grid) can be used to ex-
change security-relevant information between network endpoints.

Currently, no implementation of a production-ready and platform-independent ad-
ministration interface (XMPP-Grid broker) for XMPP-Grids exists.

The goal of this thesis is to design and implement an XMPP-Grid broker to configure
existing controllers (XMPP servers), focusing on portability, extensibility and the as-
pects of security in a production environment. The broker application should enable
administrators to configure XMPP-Grids in a usable and productive way.

Our proposed architecture earmarks a purely client-side web application that com-
municates with the controller via WebSockets or HTTP streams (BOSH). The con-
troller is typically protected by a reverse proxy, which also hosts our application.
User logins are performed using mutual TLS authentication to conform to the IETF
standard draft. The resulting application is implemented in TypeScript using the
Angular5 framework.

The resulting implementation enables administrators to create and configure com-
munication topics, apprehend the underlying hierarchy and manage permissions.
Additionally, persistent items of topics can be inspected and published.

The XMPP-Grid broker implementation incorporates the specified functionality, re-
sulting in a robust, ready-to-use solution. A few supplementary helpers, such as
autocomplete or filtering, could not be implemented due to limitations of the un-
derlying XMPP standards. In the future, it will be possible to realise these improve-
ments by enhancing the related XMPP standards or by specifying and implementing
proprietary protocols.

v

Management Summary

Motivation

The IETF standard draft “Using XMPP for Security Information Exchange” describes
how devices can exchange security-relevant information within a network, a so-
called “XMPP-Grid”, using the widely adopted messaging protocol “XMPP”. Such
security-relevant information can be used to take protective measures automatically,
e.g. to block devices running outdated software.

An administration interface, referred to as XMPP-Grid broker in the standard
draft, is used to configure an XMPP-Grid. Currently, no such XMPP-Grid broker
exists that is production ready and cross-platform.

Project Goals, Approach

The goal of this thesis is to engineer an XMPP-Grid broker that allows administrators
to configure XMPP-Grids in a straight-forward and productive way. The resulting
application should depend only on the underlying standards and not on specific
implementations to support the further standardisation process.

A comprehensive analysis of the underlying standards is carried out in the first
part of this thesis. Particular attention is given to portability, extensibility and as-
pects of security in a production environment. This analysis enables a systematic
selection of possible architecture options to be executed in the form of architectural
decisions.

Results

The resulting implementation enables administrators to create and configure com-
munication topics, apprehend the hierarchy of the underlying XMPP-Grid and man-
age the permissions of network participants. Additionally, persistent messages can
be inspected and published on communication topics.

The XMPP-Grid broker is implemented as an Angular5 web application that con-
nects directly from the web browser to the XMPP-Grid. Secure communication is
assured by the use of mutual authentication via TLS.

Prospects

The XMPP-Grid broker implementation incorporates the specified functionality, re-
sulting in a robust, ready-to-use solution. A few supplementary helpers, such as
autocomplete or filtering, could not be implemented due to limitations of the under-
lying XMPP standards.

In the future, it will be possible to realise these improvements by enhancing the
related XMPP standards or by specifying and implementing proprietary protocols.

vi

Acknowledgements

We would like to thank our advisor, Prof. Dr. Andreas Steffen, for his continuous
support and helpful comments.

Tobias Brunner provided us with valuable feedback on our architecture and in-
troduction section.

Furthermore, we would like to thank Andrea Jurt Massey for her feedback re-
garding writing and language use.

vii

Contents

Task Description iii

Abstract iv

Management Summary v

Acknowledgements vi

Contents vii

1 Introduction 1
1.1 Motivation . 1

1.1.1 Present Situation . 1
1.1.2 Problem and Vision . 1

1.2 Scope Delimitation . 2

2 Analysis 3
2.1 Terminology . 3
2.2 Technical Background . 3

2.2.1 XMPP (Extensible Messaging and Presence Protocol) 3
2.2.2 Relevant XMPP Extensions . 4

2.3 Domain Analysis . 5
2.3.1 IETF Standard Draft: Using XMPP for Security Information

Exchange . 5
2.3.2 Domain Specific Language . 6

2.4 Requirements Analysis . 6

3 Concept 7
3.1 Architecture . 7

3.1.1 Actors and Context . 7
3.1.2 Architectural Style . 7
3.1.3 Platform . 8
3.1.4 Authentication and Connection Security 10
3.1.5 Concurrency, Scalability and Performance 11

3.2 Wireframes . 11
3.3 Security Considerations . 11

3.3.1 The XMPP Protocol . 11
3.3.2 Client Security . 12
3.3.3 Server Security . 13

3.4 Security Risk Mitigation . 14
3.4.1 Development . 14
3.4.2 Client Security Checklist . 14
3.4.3 Operations Security . 15

viii

4 Implementation and Testing 16
4.1 Development Setup . 16
4.2 Encountered Problems . 17

4.2.1 Multiple Administrators . 17
4.2.2 Audit Trails . 17
4.2.3 Logout . 17
4.2.4 XMPP or XEP Standards . 18
4.2.5 Openfire XMPP Server . 19
4.2.6 Limited Error Handling . 19

4.3 Code Quality . 20
4.4 Testing . 20
4.5 Documentation . 21

5 Discussion and Conclusion 23
5.1 Achieved Result . 23

5.1.1 Implemented Requirements . 23
5.1.2 Architecture . 24
5.1.3 Implementation . 25

5.2 Lessons Learned . 26
5.2.1 Project Course . 26
5.2.2 Architectural Decisions . 26
5.2.3 Development, Frameworks and Tooling 27
5.2.4 Standards . 27

5.3 Future work . 28
5.4 Conclusion . 28

Bibliography III

List of Figures IV

List of Tables V

Glossary VI

Appendices IX
A.1 Project Plan . X
A.2 Development Guide . XXV
A.3 Architectural Decisions . XXVI
A.4 Time Accounting . XLIII
A.5 Meeting Minutes . XLIV
A.6 Requirements . LXVI

A.6.1 Authentication . LXVI
A.6.2 List Topics and Collections . LXVII
A.6.3 Create a New Topic . LXVIII
A.6.4 Create a New Collection . LXVIII
A.6.5 Delete an Existing Topic . LXIX
A.6.6 Delete an Existing Collection . LXIX
A.6.7 Manage Topic/Collection Subscriptions LXIX
A.6.8 Manage Topic Affiliations . LXX
A.6.9 Manage Persisted Items of a Topic LXXI
A.6.10 Manage Subscription Requests (optional) LXXII
A.6.11 Validate Controller Configuration (optional) LXXII

ix

A.7 Wireframes . LXXIII
A.8 Comparison of XMPP Server and Libraries LXXVIII

A.8.1 Server . LXXVIII
A.8.2 Libraries . LXXIX

A.9 Personal Reports . LXXXI
A.9.1 Raphael Zimmermann . LXXXI
A.9.2 Fabian Hauser . LXXXI

Declaration of Authorship LXXXII

1

Chapter 1

Introduction

“Every accomplishment starts with the decision to try.”
— unknown

In this chapter, we present the motivation and legitimisation of our thesis and high-
light the scope delimitations.

1.1 Motivation

In this first section, we shall legitimate this thesis and explain the value and applica-
bility of our proposed solution.

1.1.1 Present Situation

The Internet Engineering Task Force (IETF) standard draft Using XMPP for Security
Information Exchange [8], as summarised in section 2.3.1 IETF Standard Draft: Using
XMPP for Security Information Exchange, defines a protocol to exchange security-
relevant information between network endpoints. The draft was created by the Man-
aged Incident Lightweight Exchange (MILE) working group to support computer
and network security incident management.

Hereafter, we refer to this IETF standard draft as XMPP-Grid standard.
To demonstrate the viability of the XMPP-Grid standard a rapid prototype was

developed in November 2017 [37].

1.1.2 Problem and Vision

Currently, no implementation of the XMPP-Grid standard management functional-
ity exists that is ready for production use regarding usability and security.

To solve this problem, a graphical interface with bindings to a suitable broker
must be proposed and implemented. The interface should permit network admin-
istrators to manage and review topics, persisted items and platforms. Additionally,
consumers and providers permissions of topics and platforms must be manageable.

The graphical interface supports administrators to better understand the under-
lying hierarchy and affiliations of topics, enabling them to assess security implica-
tions. As the interface uses familiar terminology known to an administrator, no in-
depth understanding of the underlying XMPP technology is required to configure
and comprehend an XMPP-Grid. Finally, the interface also provides better usabil-
ity than existing command line interfaces and XMPP configuration software, which
leads to fewer configuration mistakes and improved efficiency.

Chapter 1. Introduction 2 /29

We hope that with the help of our implementation the IETF draft “Using XMPP
for Security Information Exchange” will become an established security standard
used in practical industry applications.

1.2 Scope Delimitation

As described in the Task Description, the focus of this thesis is on the evaluation,
design and implementation of the XMPP-Grid broker. Adding missing functionality
or fixing complex bugs in existing server or client implementations are beyond the
scope of this thesis.

3

Chapter 2

Analysis

“Without requirements or design, programming is the art
of adding bugs to an empty text file.”

— Louis Srygley

2.1 Terminology

Taking into account that developers and operators of security reporting systems are
the intended audience for this thesis, we mostly use the Security Automation and
Continuous Monitoring (SACM) terminology [5] and thereby follow the same guide-
lines as the XMPP-Grid standard [8].

2.2 Technical Background

The following sections introduce the XMPP protocol including its terminology and
summarise the relevant extensions (XEPs) used by the XMPP-Grid standard.

2.2.1 XMPP (Extensible Messaging and Presence Protocol)

The Extensible Messaging and Presence Protocol (in short XMPP, formerly known
as Jabber) is an open protocol that enables the near-real-time exchange of small data
between any network endpoints, hereafter called platforms [31]. While originally
designed as an instant messaging (IM) protocol, XMPP can be used for a wide range
of data exchange applications [30].

XMPP is made of small building blocks defined in the core protocol [31] and
numerous extensions called XEPs [33]. The core specifies how encrypted communi-
cation channels must be established, how XML stanzas are exchanged and errors are
handled.

The core is comprised of XML streams, error handling and functionality for es-
tablishing encrypted communication channels. Additional functionality such as ser-
vice discovery [18] and publish-subscribe [23] are defined in separate extensions.

Although XMPP supports peer-to-peer communication, it is often used in a tradi-
tional client-server architecture. A client (platform) can send data to any addressable
entity (any other platforms) using Jabber identifiers, hereafter called JID. If the re-
ceiving JID has a different domain than the current server (controller), the message
is forwarded to the XMPP server responsible for this domain. [31]

The data exchanged over XMPP is in the XML format, which makes the protocol
structured and extensible, but leads to some protocol overhead. An XMPP client

Chapter 2. Analysis 4 /29

communicates with the server over unidirectional data streams, that are basically
long-lived TCP connections. A client opens a channel to the server over this con-
nection, and the server reacts by opening a connection in the opposite direction. In
both streams, an XML document is opened after the connection is established (i.e.
with <stream> XML tags). During the conversation, an arbitrary amount of stanzas
(specified XML child elements) are written to the stream. Before a connection may
be terminated, the root element is closed (i.e. </stream>) and both streams form
valid XML documents [31, 24].

The core stanza types are messages (<message/>), presence (<presence/>) and
info/query (<iq/>). Messages can contain arbitrary data similar to email but are
optimised for immediate delivery. Presence stanzas deal with network availability
and the propagation of user presence information. An info/query stanza consists of
a request and response (similar to the GET and POST HTTP methods), which is used
for feature negotiation, configuration and general information exchange. Because of
these coarse semantics, XMPP provides a generalized communication layer [31, 30].

Figure 2.1 illustrates an example setup with two servers and three clients.

FIGURE 2.1: Two XMPP domains (servers), one with two users and
one with a single mobile user.

2.2.2 Relevant XMPP Extensions

The XMPP-Grid standard is based on multiple XEPs, most notably the publish-
subscribe extension. In this section, we give an overview of the most relevant used
XEPs.

XEP-0004: Data Forms is a flexible protocol that can be used in workflows such as
service configuration. The protocol provides form processing, common field types
and extensibility mechanisms. [11]

XEP-0030: Service Discovery enables entities to discover information about the
identity and capabilities of other entities, e.g. whether the entity is a server or not,
or items associated with an entity, e.g. a list of publish-subscribe nodes. [18]

XEP-0059: Result Set Management allows entities to manage the receipt of large
result sets, e.g. by paging through the result or limiting the number of results. result
set management is often desired when dealing with large dynamic result sets, as

Chapter 2. Analysis 5 /29

from service discovery or publish-subscribe, and when time or other resources are
limited. [26]

XEP-0060: Publish-Subscribe

The publish-subscribe extension, hereafter referred to as pubsub or broker, enables
XMPP entities (providers) to broadcast information via topics to subscribed entities
(consumers). [23]

Nodes, hereafter referred to as topics, are the communication hubs. Entities can
create topics and configure them, e.g. set up subscription timeouts or limit publish-
ing and subscription rights. The configuration mechanism is based on data forms
(XEP-0004). An XMPP server may restrict topic creation to certain entities, which
means that possibly not every XMPP-Server that supports publish-subscribe also
implements this feature [6].

The protocol defines a hierarchy of six affiliations of which only the implemen-
tation of owner and none is required. Implementing the remaining four affiliations is
recommended. An owner of a topic can manage the subscriptions and affiliations of
other entities associated with a given topic.

To simplify the creation of topics, pubsub defines five topic access models (node
access models) that should be available: open, presence, roaster, authorize and whitelist.
The open model allows uncontrolled access while presence and roaster are specific
for IM. Using the authorize model, the owner has to approve all subscription re-
quests. The whitelist model enables the owner to maintain a list of entities that are
allowed to subscribe.

2.3 Domain Analysis

2.3.1 IETF Standard Draft: Using XMPP for Security Information Exchange

This IETF standard draft describes how the XMPP protocol and its extensions can
be used for the exchange and distribution of security-relevant information between
network devices.

One of the primary motivation for using XMPP for this task is the fast propaga-
tion of such security-relevant data. Using XMPP for such a task also comes with its
downsides. Most notably, because the XMPP server (broker/controller) is the central
configuration component in charge of managing access permission, its compromisa-
tion has serious consequences.

The standard describes a trust model, a thread model as well as specific counter-
measures, e.g. to use at least TLS 1.2. These countermeasures also define restrictions
of the XMPP protocol and its extensions, e.g. by limiting the topic access models of
pubsub to whitelist and authorized only [8].

Information Exchange Format

The XMPP-Grid standard states that ‘although [the exchanged] information can take
the form of any structured data (XML, JSON, etc.), this document illustrates the
principles of XMPP-Grid with examples that use the Incident Object Description
Exchange Format (IODEF)’ [10, 8].

As IODEF is not strictly defined nor explicitly recommended by the XMPP-Grid
standard, no specific integrations are in the scope of this thesis.

Chapter 2. Analysis 6 /29

In practice, small payloads are sent over an XMPP-Grid, usually containing ex-
ternal pointers to an API that provides more comprehensive data (see appendix A.5
Meeting Minutes).

2.3.2 Domain Specific Language

Figures 2.2 and 2.3 present an overview of the relevant interactions and relationships
between the different components as specified in the XMPP-Grid standard and the
referenced XEPs (see section 2.2 Technical Background).

controls

transfers data

creates/receives
updates in

Platform
(XMPP Client)

authenticates/authorizes

Controller & Broker
(XMPP Server) handles

replication and
distribution of

receive notifications from

Consumer (Subscriber) Topic (Node)publishes
notifications toProvider (Publisher)

IODEF

transfers data

FIGURE 2.2: Domain specific language of the XMPP-Grid standard.

contains (0..n) Collection Node Leaf Node

discovers

is identified by

connects to

Entity / Client
sends notifications to

Subscriber

sends notifications to

Publisher

JID
(Jabber Identifier)

transfers data
Server

contains (0..n)

manages

Node

transfers data

FIGURE 2.3: Domain specific language of used XMPP XEPs.

2.4 Requirements Analysis

We collected the functional requirements in the form of user stories. User stories
are an established and widespread concept for describing and managing require-
ments in agile software projects. In comparison to traditional tools for requirement
analysis, user stories are more concise, leaving more space for change. [41]

We also created user stories for non-functional requirements. Additional non-
functional requirements can be added during the project in the form of constraints.
[41]

In the early phase of the project, we collected an initial set of user stories in col-
laboration with Prof. Dr. Steffen. This initial set covered the creation and deletion of
topics as well as granting publish and subscribe privileges. All user stories are listed
in appendix A.6 Requirements.

After setting broad priorities, Prof. Dr. Steffen approved the initial set of user
stories that then served as the basis for the architectural concept.

7

Chapter 3

Concept

“Perfection (in design) is achieved not when there is nothing more to add,
but rather when there is nothing more to take away.”

— Antoine de Saint-Exupery

3.1 Architecture

In this section, we present the architecture and fundamental architectural decisions
of the XMPP-Grid broker application. All architectural decisions we took are fully
documented in appendix A.3 Architectural Decisions.

We illustrate the concepts and structures using the C4 Model for Software Archi-
tecture [7].

3.1.1 Actors and Context

The context diagram pictured in figure 3.1 shows the actors and surrounding sys-
tems that are given for the XMPP-Grid broker, as described in the Task Description.

One or more administrators manage the XMPP-Grid by adding or removing plat-
forms and configuring topics. To minimize the required work and reduce the error-
proneness, administrators interact with the XMPP-Grid broker.

The XMPP-Grid broker configures the XMPP-Grid, which consists of a controller
and platforms.

Administrator
[Person]

manages the XMPP-Grid

XMPP-Grid Broker
[Software System]

interface to manage the
XMPP-Grid

XMPP-Grid
[Software System]

controller and platforms

interacts with
[user interface]

configures
[e.g. XMPP]

FIGURE 3.1: Architecture diagram showing the context of the XMPP-
Grid broker application.

3.1.2 Architectural Style

To implement the XMPP-Grid broker, we evaluated three possible architecture styles:
An XMPP server plug-in (e.g. extension for the Openfire XMPP server), an imple-
mentation using the Jabber Component Protocol [32] and an implementation acting
as a regular XMPP client ("bot").

Chapter 3. Concept 8 /29

We decided to build an XMPP client/bot because, unlike a server plugin, it is
not coupled to a specific XMPP server. In contrast to the XMPP component, XMPP
clients support strong authentication mechanisms with SASL.

The full decision argument is documented in appendix A.3 Architectural Decisions.

3.1.3 Platform

The proposed XMPP client might be implemented in different ways: as rich client
application with a command line or graphical interface as illustrated in figure 3.2,
and in the form of a web application, illustrated in figures 3.3 and 3.4.

Rich Client Application

The idea of a rich client application is to communicate directly from a graphical
desktop application with the XMPP-Grid, as illustrated in figure 3.2.

XMPP-Grid

Administrator
[Person]

manages the XMPP grid

XMPP Server
[Software System]

controller of the XMPP Grid

XMPP Client
[Software System]

platform in the XMPP-Grid,
i.e. as publisher or

subscriber

interacts with
[user interface]

configures
[XMPP over TLS]

exchange notifications
[XMPP]

XMPP Grid Broker
[Container: e.g. Python/QT]

desktop application to
manage the XMPP-Grid

FIGURE 3.2: Architecture container diagram showing a possible rich
client architecture.

Web Application

In contrast to a rich client application, a web application has the significant advan-
tage to be easily installable and upgradable with minimal interaction on the user’s
side (i.e. only requires a web browser to be executed).

Therefore, we decided to implement the XMPP-Grid broker as web application.
To manage the controller from the broker interface, we considered either directly

connecting to the XMPP server over WebSockets [38] or HTTP (BOSH [27]), and the
indirect communication with the XMPP server via custom web API proxy. These
topologies are illustrated in figure 3.3 and figure 3.4.

Chapter 3. Concept 9 /29

XMPP-Grid

Administrator
[Person]

manages the XMPP-Grid

XMPP Server
[Software System]

controller of the XMPP-Grid

XMPP Client
[Software System]

platform in the XMPP-Grid,
i.e. as publisher or

subscriber

interacts with
[user interface]

configures
[XMPP over WebSockets

or BOSH over TLS]

exchange notifications
[XMPP]

XMPP-Grid Broker
[Container: JavaScript,

HTML, CSS]

web interface to manage the
XMPP-Grid

FIGURE 3.3: Architecture container diagram showing the web appli-
cation topology with WebSockets or BOSH.

Web API Proxy

A web API proxy could be realised with a custom browser-to-proxy protocol, as
implemented in the XMPP-FTW JavaScript library1. However, this approach leads
to a high coupling between a concrete library and the web application.

Another approach would be the implementation of a custom WebSocket-to-XMPP
Proxy, which allows connecting to XMPP servers that do not support WebSockets or
BOSH. If such a proxy is implemented transparently, the client is not aware of the
server limitations. Therefore, the client implementation is no different from direct
communication with an XMPP server.

As the XMPP over WebSocket protocol differs from the normal XMPP protocol,
a transparent proxy implementation would inevitably need to hold the connection
state and implement custom keep-alive mechanisms [38].

XMPP-Gird

Administrator
[Person]

manages the XMPP-Grid

XMPP Server
[Software System]

controller of the XMPP Grid

XMPP Client
[Software System]

platform in the XMPP-Grid,
i.e. as publisher or

subscriber

interacts with
[user interface]

configures
[XMPP over TLS]

exchange notifications
[XMPP]

XMPP-Grid Broker
[Container: JavaScript,

HTML, CSS]

web interface to manage the
XMPP-Grid

XMPP-Grid Broker Proxy
[Container: e.g.
Python/Django]

proxy to translate web API
calls to XMPP commands

uses
[HTTPS or WebSockets]

FIGURE 3.4: Architecture container diagram showing the web API
proxy topology.

1http://docs.xmpp-ftw.org/

http://docs.xmpp-ftw.org/

Chapter 3. Concept 10 /29

Implemented Web Application Topology

As described in the according architectural decision (see appendix A.3 Architec-
tural Decisions), we decided on the option that connects directly via WebSockets,
if possible with a fallback to BOSH. This topology simplifies the implementation
and deployment of the application in comparison to a web API proxy. WebSockets
offer stateful TCP-sockets to exchange data with XMPP servers in contrast to BOSH,
which uses HTTP long polling to emulate bidirectional streams and is, therefore, less
efficient [27].

To increase the XMPP server security, an HTTP reverse proxy (e.g. nginx2) be-
tween the client and the XMPP server might be added as shown in figure 3.5. The
reverse proxy might also be used to serve the web application and provide authen-
tication (see section 3.1.4 Authentication and Connection Security) and security fea-
tures (see section 3.4.3 Operations Security).

XMPP-Grid

Administrator
[Person]

manages the XMPP-Grid

XMPP Server
[Software System]

controller of the XMPP-Grid

XMPP Client
[Software System]

platform in the XMPP-Grid,
i.e. as publisher or

subscriber

interacts with
[user interface]

configures
[XMPP over WebSockets

or BOSH over TLS]

exchange notifications
[XMPP]

XMPP-Grid Broker
[Container: JavaScript,

HTML, CSS]

web interface to manage the
XMPP-Grid

Transparent HTTP Proxy
[Software System]

proxy to manage TLS
authentication and enforce

security policies

FIGURE 3.5: Architecture container diagram showing the imple-
mented web application topology.

3.1.4 Authentication and Connection Security

XMPP uses SASL as authentication mechanism [31]. To authenticate against the
XMPP-Grid controller, we decided to use the SASL EXTERNAL [42] mechanism
whenever possible to authenticate the client.

We decided against SASL SCRAM [16], the alternative authentication method
that is also recommended by in the XMPP-Grid standard. As described in the corre-
sponding architectural decision (see appendix A.3 Architectural Decisions), the main
reason for SASL EXTERNAL is its higher level of security and and its relatively sim-
ple scaling capabilities.

2https://nginx.org/

https://nginx.org/

Chapter 3. Concept 11 /29

SASL EXTERNAL implies that the authentication takes place on a lower layer
than the actual XMPP protocol. In our case, this implies authentication over TLS,
i.e. X.509 user certificates as specified in RFC6120 [31].

Currently, not all XMPP servers that implement BOSH and Websockets also im-
plement SASL EXTERNAL with TLS authentication (e.g. Openfire currently sup-
ports TLS authentication with BOSH but not with Websockets3). To circumvent this
limitation, an HTTP reverse proxy (see section 3.1.3 Implemented Web Application
Topology) might be used to handle TLS authentication.

3.1.5 Concurrency, Scalability and Performance

As presented in the architecture above, the broker application communicates di-
rectly from the user’s web browser with the XMPP server. By adopting this ap-
proach, the main scalability concern is on the XMPP server. This approach is also in
alignment with the XMPP philosophy to move as much complexity as possible on
the server [36].

Concurrency and scalability are the responsibility and speciality of the underly-
ing XMPP server and therefore not directly relevant for the broker application [36].

Regarding performance, the network is the primary source of potential slow-
downs. The XMPP-Grid broker must reduce the number of requests needed to a
minimum and whenever possible execute requests in parallel. Additionally, the ini-
tial loading time of the application can be optimised.

A potentially used reverse proxy must be scaled with the number of administra-
tors. As this number is usually rather small, no extra effort is usually required.

3.2 Wireframes

We created wireframes for most screens to visualise the initial set of user stories.
They helped us to find missing requirements, most notably the support of collec-
tions. All wireframes are listed in appendix A.7 Wireframes.

3.3 Security Considerations

Regarding the XMPP-Grid broker application, there are three primary attack vectors:

Client-Side Attacks, e.g. via web browser, web browser extension or malicious
software on the client operating system.

Web Server Attacks, e.g. misconfiguration or insufficient hardening.

XMPP Server Attacks, e.g. misconfiguration or insufficient hardening.

Details on all these attack vectors are discussed in the following sections.

3.3.1 The XMPP Protocol

An in-depth security analysis of the XMPP protocol is beyond the scope of this the-
sis. A detailed discussion of security concerns can be found in the XMPP specifi-
cation [31] and most XEPs [23, 34]. In this section, we highlight the most crucial
security concerns relevant to this thesis.

3https://github.com/igniterealtime/Openfire/blob/02c22e/src/java/org/jivesoftware/

openfire/websocket/OpenfireWebSocketServlet.java

https://github.com/igniterealtime/Openfire/blob/02c22e/src/java/org/jivesoftware/openfire/websocket/OpenfireWebSocketServlet.java
https://github.com/igniterealtime/Openfire/blob/02c22e/src/java/org/jivesoftware/openfire/websocket/OpenfireWebSocketServlet.java

Chapter 3. Concept 12 /29

Transport Security

XMPP reuses many established and standardised mechanisms to improve protocol
security. By layering protocols in a strict manner (XMPP with SASL over TLS over
TCP), many attack scenarios such as replaying or eavesdropping are minimised.
The protocol also requires clients and servers to validate the certificates of the other
party. [35, 31]

Protocol

Since XMPP is based on XML, it inherits some of its security implications. XMPP
prohibits some XML features such as comments and external entity references which
mitigate common attacks. [31]

The protocol itself cannot mitigate attacks where an attacker gains access to ac-
count credentials. To reduce the risk of these attack vectors best practices such as
storing certificates and passwords securely must be followed.

PubSub Collection Nodes

The use of XEP-0248 PubSub Collection Nodes [34] can leak private data if not con-
figured properly. Administrators must take great care when configuring collection
nodes. The XMPP-Grid broker should support administrators to detect such data
leaks.

3.3.2 Client Security

Because the web gives rise to many potential security concerns, above all a modern
web browser is critical for client security. Legacy web browsers can not provide an
adequate level of security. [15]

Most web browsers support extension mechanisms which have rather signifi-
cant capabilities [29]. The usage of untrusted and uncertified browser extensions is
strictly discouraged.

The same applies to the client operating system and all software installed on
clients.

Authentication and Authorisation

Regarding authentication and authorisation, the XMPP server does most of the heavy
lifting such as storing passwords and validating certificates. On the client side, the
web browser does most of that work too (i.e. validating certificates).

The responsibility of a client implementation is to establish a secure channel to
the XMPP server and warn the user if a problem occurs during this process (e.g.
invalid server certificate).

Angular Framework

Using the Angular framework impacts client security significantly. Angular is built
with security in mind and is adopted in the industry in security-relevant environ-
ments. Therefore, Angular receives frequent security updates and is well tested.
It’s unlikely that a similar security level might be reached with plain JavaScript in a
reasonable implementation timespan.

On the project website, three best practices regarding security are recommended [1].

Chapter 3. Concept 13 /29

• Keep up with the latest Angular library releases.

• Don’t modify your copy of Angular.

• Avoid Angular APIs marked in the documentation as ”Security Risk”.

We can ensure the latter two by making them acceptance criteria. Keeping cur-
rent with the latest Angular releases is harder, as our work on this project is limited.
To ensure that future updates can easily be applied we deviate as little as possible
from the standard angular setup (e.g. by not ejecting the Webpack configuration4).

Keeping Angular up-to-date is of paramount importance as potential vulnerabil-
ities (e.g. XSS) can be exploited if not patched.

Angular Content Security

Except for persisted items, no XMPP content is displayed directly but serves as the
basis for rendered HTML components. To protect against malicious payloads, the
received XML messages must be validated before their usage.

Persisted items can contain arbitrary content and must therefore be escaped be-
fore rendering to prevent Cross-Site Scripting (XSS) attacks.

Angular supports these measures by treating all values (except Angular tem-
plates) as untrusted by default. To prevent user-generated data to influence An-
gular templates, the offline template compiler is used. To fully utilise the security
measures provided by Angular, official APIs must be used at all times instead of
direct use of the DOM-APIs. [1]

Using Content-Security-Policy (CSP) provides additional XSS-protection mecha-
nisms [40]. The XMPP-Grid broker should document an appropriate CSP that must
be supported in a production environment.

3.3.3 Server Security

Authentication and Authorisation

The XMPP server implements most of the authentication and authorisation mech-
anisms used in an XMPP-Grid broker implementation, such as storing passwords
and validating certificates.

If BOSH or WebSockets are used, the XMPP server should support most HTTP
security features as listed in section 3.3.3 Web Server. Additionally, the origin of
WebSockets and BOSH requests must be verified (by either the Origin header or
CORS support. [21, 39]

The web server hosting the client application has no active authentication or au-
thorisation responsibility, except to ensure the integrity and authenticity of the ap-
plication, i.e. by using TLS.

Web Server

To minify security concerns on the server side, we decided to keep the application
files static (see A.3 Architectural Decisions). This allows operators to use any stan-
dard web server (e.g. nginx, Apache, etc.) to serve the client. Securing such stan-
dard web servers is common knowledge for operators and is beyond the scope of
this analysis.

4https://github.com/Angular/Angular-cli/wiki/eject

https://github.com/Angular/Angular-cli/wiki/eject

Chapter 3. Concept 14 /29

In addition to these general best practices, we explicitly recommend the follow-
ing security measures to improve client security:

• Enable Content Security Policy (CSP) [40].

• Use secure TLS configurations such as secure cipher suites, strictly honor ci-
pher order, HSTS, HPKP and OCSP Stapling[14].

These recommendations should be documented in the application installation
guide.

XMPP Server

XMPP server security depends on the chosen implementation and the application
domain. Discussing XMPP server security in detail is beyond the scope of this the-
sis. Operators should adhere to the security recommendations of their XMPP server
vendor and follow general security best practices as outlined by the XMPP-Grid
standard.

3.4 Security Risk Mitigation

To mitigate the security risks as discussed in section 3.3 Security Considerations, the
measures as described in the following subsections are implemented.

3.4.1 Development

1. Conduct code reviews for all newly added code using GitHub pull requests
and a security checklist (see next section)

2. Conduct an architectural analysis with an industry expert5

3. Automate build and release processes to minimise the time required to patch

4. Stay as close to the default Angular setup to simplify further updates

5. Avoid additional third-party dependencies whenever possible

3.4.2 Client Security Checklist

• The latest Angular-version is used

• No customizations are made to the Angular version

• No direct access to DOM-APIs

• APIs marked in the documentation as “Security Risk” are not used

• No usage of any methods starting with bypassSecurityTrust

• The client is fully Content Security Policy (CSP) compliant

• The client is fully Same Origin Policy (SOP) / Cross-Origin Resource Sharing
(CORS) compliant

5Was carried out on 2018-04-16, see A.5 Meeting Minutes.

Chapter 3. Concept 15 /29

• Only compile templates with the offline template compiler (AOT)

• User input is always escaped using the mechanisms provided by the frame-
work (eg. Angular Forms)

• XMPP messages are validated to contain only the specified result-types

3.4.3 Operations Security

Administrators must configure the surrounding systems correctly to mitigate certain
security risks. To support administrators, we recommend the following measures.

Content Security Policy

The Content Security Policy (CSP) helps to mitigate certain types of attacks such as
Cross Site Scripting (XSS) as a second line of defence [40]. The recommended values
are directly documented in the project source code repository.

Verify Origin

The XMPP server should be configured to only accept WebSockets/BOSH connec-
tions from the origin of the XMPP-Grid broker application. The Origin header sent
by the web browser must match the domain on which the XMPP-Grid broker ap-
plication is hosted. Otherwise, connection requests must be ignored. If an XMPP
server does not support this feature, a proxy server should be used to verify the
Origin header. In the provided development setup, this security feature must not
necessarily be implemented.

16

Chapter 4

Implementation and Testing

“Any fool can write code that a computer can understand. Good programmers
write code that humans can understand.”

— Martin Fowler

4.1 Development Setup

Figure 4.1 illustrates the development setup in the form of an UML deployment dia-
gram. Developers connects from their browsers to the reverse proxy that serves the
static broker web application. The HTTP connection from the client to the server is
secured using mutual TLS authentication. The same reverse proxy also routes the
XMPP connections. The proxy establishes a mutual authenticated TLS connection
to the XMPP server. The reasons for this setup are described in more detail in sec-
tion 4.2.5 Openfire XMPP Server.

«device»
Developer Computer «network»

Docker Compose Group

«web browser»
Firefox / Chrome / etc.

«web server»
nginx

«XMPP server»
Openfire

«application server»
Angular CLI

/http-bind/

/*
«protocol»

HTTPS

«protocol»
BOSH (over TLS)

«protocol»
BOSH (over TLS)

«protocol»
HTTP

FIGURE 4.1: UML deployment diagram presenting the development
setup.

As the previously described structure is not trivial, the guiding principle for our
development setup was to maximise automation and minimise manual efforts. This
principle is the basis for durable software. We decided on a docker and docker-
compose1 based stack that provides a correctly configured Openfire instance, a pre-
configured nginx instance as well as client and server certificates. Everyday tasks
such as building and testing the application and documentation were automated as
bash scripts.

The efforts invested in this docker setup proved valuable when we began to write
integration tests that run in the same environment.

1https://www.docker.com/

https://www.docker.com/

Chapter 4. Implementation and Testing 17 /29

We deliberately decided to run unit tests outside of the docker environment as
unit tests are executed more often, and the additional docker-overhead would be
unnecessarily expensive. Also, debugging is more straightforward without indirec-
tions.

4.2 Encountered Problems

4.2.1 Multiple Administrators

Requirement A.6.1.5 Multiple Administrators states that multiple administrators
should be able to access the application.

When authenticating users with SASL EXTERNAL, the client certificate exten-
sion field xmppAddr is interpreted as user JID by the XMPP server.

In practice, most XMPP-Grid broker deployments require an HTTP proxy in
front of the XMPP server as security measure (see section 3.1.3 Implemented Web
Application Topology). Usually, the HTTP proxy can also be used to serve the bro-
ker application, as realised in the development setup. Such an HTTP proxy might
also accept multiple client certificates.

If the client connects to the XMPP server over secure WebSockets (WSS) in combi-
nation with SASL EXTERNAL, the WebSocket URL must already be authenticated,
as most browsers do not permit certificate selection on background requests [12].
This might be achieved by serving the broker from the same domain or by using
client certificate policies [13].

As the proxy intercepts the TLS connection, it must verify the client certificate
sent by the browser and establish a connection to the XMPP server using a client
certificate as well. Therefore, the xmppAddr field of the proxy’s client certificate is
used by the XMPP server. If multiple users should be differentiated on the XMPP
server, an HTTP proxy might choose different client certificates for connecting to the
XMPP server based on the web browser’s client certificate xmppAddr.

4.2.2 Audit Trails

Actions of administrators should be traceable with an audit trail according to re-
quirement A.6.1.6 Audit Trail.

As outlined in section 4.2.1 Multiple Administrators, practical deployments of
XMPP-Grid brokers mostly use an HTTP proxy. The proxy can also be used to keep
an audit trail of client requests. These requests can then be correlated with the query
log on the XMPP server.

Audit trails on the client side are not trustworthy, as users might prevent trail
entries by manipulating the client application. Therefore, no such mechanism was
implemented.

4.2.3 Logout

Administrators should be able to terminate a session by using a logout function, as
stated in requirement A.6.1.7 Logout.

We decided to use TLS client certificate authentication as part of SASL EXTER-
NAL. As a result of our decision to write a web application, the web browser au-
thenticates users with TLS certificates.

Chapter 4. Implementation and Testing 18 /29

Unfortunately, web browsers do not expose a standardised way to log out of a
TLS client authenticated session [25]. To close the TLS session, administrators must
close their browser window after using the XMPP-Grid broker.

4.2.4 XMPP or XEP Standards

Multiple shortcomings in the relevant XEPs were discovered during the realisation
of the proposed architecture, that would have led to a highly inefficient implemen-
tation of some requirements.

Recursive Listing and Filtering of All Topics

Requirement A.6.2.1 List All Topics states that an administrator should be able to list
all topics recursively.

This requirement could not be implemented efficiently, as the current publish-
subscribe XEP does not support recursive queries of topics, but only root topics and
subtopics.

Therefore, we implemented a recursive approach on the client side, that queries
all root topics and recursively requests all subtopics to be displayed.

For the same reason, we did not implement requirement A.6.2.8 Topic and Col-
lection Name Filter as searching the whole topic tree would require traversal on the
client side. With an assumed count of approximately 1000 topics, this would result
in large performance overhead.

Filtering and Paging of Persisted Items

Requirements A.6.9.2 Filter Persisted Items and A.6.9.3 Paged Persisted Items were
built on the premise that filtering and paging of persisted items would be possible
with the result set management XEP.

Retrieving multiple persisted items in result set management pages was added
in version 1.12 (2008-09-03) of the publish-subscribe XEP. An XMPP server does not
report, which version of the standard draft it supports.

Therefore, we could not presume an implementation of result set management.
In fact, the Openfire XMPP server we used in our setup has no support for retriev-
ing persisted items with result set management. We were still able to fetch the per-
sisted items in pages using service discovery, as the result set management draft
uses service-discovery as an example, making the server side support more likely
[26].

Create and Configure Topics

We have four requirements related to the initial configuration of topics:

• A.6.4.1 Override Default Topic Configuration

• A.6.4.2 Override Default Collection Configuration

• A.6.4.3 Initial topic Consumers and Providers

• A.6.4.4 Initial Collection Consumers

Providing initial configuration for a topic is only partially possible due to limi-
tations in the publish-subscribe XEP. The default configuration can be fetched, but

Chapter 4. Implementation and Testing 19 /29

it must not necessarily comprise all possible configuration options of a topic. As
managing consumers (via subscriptions) and providers (via consumers) are sepa-
rate concepts from the configuration and can only be configured after a topic has
been created, we concluded that a two-step process is more appropriate.

4.2.5 Openfire XMPP Server

As discussed in section 4.1 Development Setup, the Openfire XMPP server was used
in the development setup. This section details the encountered limitations while
implementing the XMPP-Grid broker.

WebSocket SASL EXTERNAL Support

At time of writing, Openfire does not support SASL EXTERNAL in combination
with XMPP over WebSockets. Therefore, the current implementation of the XMPP-
Grid broker was developed with BOSH, but also supports communication over Web-
Sockets thanks to the Stanza.io2 XMPP library.

Lost Updates

When editing the configuration of a topic, Openfire exposes multiple fields that are
mutually dependent. One example of this is the configuration of how many per-
sisted items should be kept. If persisting items on a topic is disabled, Openfire
does neither update the field nor respond with an error as specified in the standard
[23, 11].

This behaviour is not user-friendly at all, as an administrator might want to
change configuration options pro-actively. To circumvent this problem, a function-
ality to compare any changes in the new configuration of a topic after storing all
changes might be implemented in the future.

Different Field Types

At time of writing, Openfire returns data form field types for some publish-subscribe
configuration fields that deviate from the specification. Although modifing the field
type is explicitly allowed by the standard [23], the usability of these fields suffers.
A prominent example is the ‘pubsub#node_type’ field, which is presented as a text
field instead of a selection.

A support request at the Openfire project regarding this issue was opened3,
which is mandatory before filing an issue in the Openfire issue tracker. However,
there has been no response by the editorial deadline of this thesis.

Should the type of such fields change in the future, the flexible implementation
of data forms in our implementation is sufficient to reflect the new form type.

4.2.6 Limited Error Handling

Running entirely in the browser comes with some limitations. As certificate han-
dling is the browsers responsibility, handling errors such as wrongly chosen client
certificates is impossible. When using a reverse proxy, this problem can be mitigated
by returning appropriate error sites.

2https://github.com/legastero/stanza.io
3https://discourse.igniterealtime.org/t/wrong-field-type-of-pubsub-node-type-and-how-to-update-it/

81596

https://github.com/legastero/stanza.io
https://discourse.igniterealtime.org/t/wrong-field-type-of-pubsub-node-type-and-how-to-update-it/81596
https://discourse.igniterealtime.org/t/wrong-field-type-of-pubsub-node-type-and-how-to-update-it/81596

Chapter 4. Implementation and Testing 20 /29

More crucially, errors in the reverse proxy or XMPP server configuration, such as
missing client certificates, are hard if not impossible to detect on the client. Indicators
for a misconfigured proxy can be HTTP status codes, which Stanza.io does sadly not
expose.

4.3 Code Quality

As our XMPP-Grid broker implementation is intended to be a maintainable, production-
ready application rather than a prototype, we have placed much emphasis on code
quality. The measures taken can broadly be divided into three categories: technical
measures, strategic decisions and processes.

Technical Measures and Strategic Decisions

Using Angular and the default Angular CLI was mostly a strategic decision. Deviat-
ing as little as possible from the standard configuration ensures long-term maintain-
ability, better security and relatively straight-forward upgrades to newer Angular
versions. Another benefit of the Angular CLI project setup is that it comes with
codelyzer4 (including tslint) for static code analysis and style linting.

Apart from using the built-in linting mechanism, we followed Angular’s style
guide [2]. Using IntelliJ Ultimate5 turned out to be particularly helpful as they give
quick feedback for frequent mistakes and even violations of the angular style guide.

We would have preferred to use more tools, especially for code metrics such as
Lack of Cohesion of Methods (LCOM), and Afferent/Efferent Coupling. However,
we were not able to find tools that were actively maintained and work with Type-
Script.

Processes

On the process side, we tried to apply test driven development as much as possible.
Doing so turned out to be harder than expected as Angular’s component testing in-
frastructure deviates from a real web browser environment (see section 4.4 Testing).

Another process we heavily relied on to improve code quality and security were
code reviews. Each change, for the documentation and code, was reviewed using
GitHub pull-requests6. In most cases, minor changes were detected and addressed
during these reviews. Continuous integration with TravisCI7 ensured that these
changes never contained compilation errors or failing tests.

We also regularly discussed architectural and structural questions in our retro-
spectives and standup meetings.

In general, writing clean, modular and testable code has been our main priority.

4.4 Testing

High quality tests are inevitable for long-lived software projects. They help devel-
opers to ensure that everything (still) works as expected after a change. For the

4http://codelyzer.com/
5https://www.jetbrains.com/
6https://www.github.com/
7https://travis-ci.com/

http://codelyzer.com/
https://www.jetbrains.com/
https://www.github.com/
https://travis-ci.com/

Chapter 4. Implementation and Testing 21 /29

XMPP-Grid broker, we focused on unit and end-to-end tests. Following the princi-
ples of the test pyramid [9], we wrote many fast and cheap unit tests verifying the
fundamental behaviour and fewer complex and expensive end-to-end tests.

Unit Tests

Testing the Angular services was rather straightforward with the aid of Jasmine and
its mocking functionality. We deliberately abstained from using Angular’s testing
framework for services to keep tests simple and comprehensible. Since the primary
task of most services is to send and receive XMPP-commands, integration and end-
to-end tests are better suited in most cases.

Writing tests for Angular components was not always essential, as actual ren-
dering in a web browser is required. To off fine-grained control and to be able to
conduct tests, Angular provides a rather complex set of testing tools. Because of this
indirection, tests are conceptually not identical with the actual Angular application,
making test driven development harder if not impossible.

End-to-End Tests

The end-to-end tests were written using Protractor8, Angular’s official end-to-end
testing framework. Protractor starts the development setup and verifies the applica-
tion using a remote-controlled browser.

End-to-end tests are usually more challenging to write than unit tests, as differ-
ent types of race conditions and varying delays to backend applications can occur.
Protractor usually resolves these issues with the aid of Zone.js, a library that creates
“execution context[s] that persists across async tasks” called zones. To create zones,
Zone.js intercepts most web browser APIs, like HTTP requests. [3]

Because Zone.js is aware of all open HTTP requests, Protractor can wait until a
request has been completed before continuing with test execution.

However, due to our use of BOSH in the end-to-end tests (see section 3.1.3 Imple-
mented Web Application Topology), we could not benefit from the Zone.js change
detection. BOSH uses HTTP long polling to communicate with the XMPP server,
which leads to a Zone that always has open requests [27].

Therefore, we had to manually implement waiting conditions.
Writing tests paid off quickly as they promptly caught many potential bugs in-

troduced by small changes and refactorings.

4.5 Documentation

Installation instructions and security best practices are directly documented in the
git source code repository using the plain text file format called AsciiDoc. Interested
parties can browse the documentation directly on GitHub, which is not uncommon
in the open source community.

A compact getting started guide for developers is also available in the source
code repository. The source code has JSDoc9 based documentation optimised for
compodoc10, a “documentation tool for your Angular applications”.

As already discussed in section 3.1 Architecture, all architectural decisions were
documented systematically. These decisions enable new developers and interested

8http://www.protractortest.org/
9http://usejsdoc.org/

10https://compodoc.app/

http://www.protractortest.org/
http://usejsdoc.org/
https://compodoc.app/

Chapter 4. Implementation and Testing 22 /29

parties to comprehend why certain decisions were made. With the idea of making
project documentation durable, all decisions were written in the same plaintext for-
mat as the other project documentation.

23

Chapter 5

Discussion and Conclusion

“Wisdom is not a product of schooling but of the lifelong attempt to acquire it.”
— Albert Einstein

5.1 Achieved Result

In this section, we describe the achieved results during this thesis and how we man-
aged to reach them.

5.1.1 Implemented Requirements

As listed in table 5.1, we implemented about 86% of the overall requirements that
we had planned to accomplish. The five remaining requirements could not be imple-
mented due to technical constraints as discussed in depth in section 4.2 Encountered
Problems. To compensate for it, we implemented two optional requirements.

Requirement Group implemented

A.6.1 Authentication partial (4/7)

A.6.2 List Topics and Collections partial (5/6)

A.6.3 Create a New Topic complete (1/1)

A.6.4 Create a New Collection complete (3/3)

A.6.5 Delete an Existing Topic complete (1/1)

A.6.6 Delete an Existing Collection complete (3/3)

A.6.7 Manage Topic/Collection Subscriptions complete (5/5)

A.6.8 Manage Topic Affiliations complete (4/4)

A.6.9 Manage Persisted Items of a Topic partial (4/5)

A.6.10 Manage Subscription Requests (optional) not implemented

A.6.11 Validate Controller Configuration (optional) complete (2/2)

Total 32/37 ≈ 86%

TABLE 5.1: Fulfilled requirements by groups.

Chapter 5. Discussion and Conclusion 24 /29

5.1.2 Architecture

Concurrency, Scalability and Performance

Due to our chosen architecture style (see section 3.1 Architecture), concurrency, scal-
ability and performance are primarily the concern of the XMPP server.

Our implementation submits queries to the XMPP server in parallel whenever
possible and reduces redundant queries via data sharing.

Usability

Usability was a priority in our application and we implemented several features for
ease of use. A good example is the use of so-called bread-crumbs, which allow fast
and direct navigation through different application levels.

We regret that it was not possible to conduct a usability test with a typical user
during the thesis.

Security

In an expert review of our architecture, a high level of security was attested.
To prevent risks due to misconfiguration or missing features of the XMPP server

or reverse proxy, we added additional documentation alongside the application,
containing recommendations for administrators. More details on this can be found
in section 3.4 Security Risk Mitigation and the docs folder in the source code reposi-
tory.

Architectural Decisions

In this section, we reflect on our Architectural Decisions and how they turned out.

Architecture Style Due to limitations of the XEPs, features like autocomplete and
filtering could not be implemented. This would probably have worked better with a
server plug-in, but would have resulted in close coupling to a specific XMPP server.

Platform The implementation of a web application proved portable and flexible as
intended.

SASL Authentication Strategy The use of SASL EXTERNAL proved to be sub-
optimal. We discovered that due to the chosen architecture and policies in current
web browsers, a reverse-proxy is nearly always required (see section 4.2.1 Multiple
Administrators).

In hindsight, to use SASL SCRAM with username and password would probably
have eased the development and deployment of the application.

Role Management We are convinced that the decision to model role management
with collection nodes is an ideal solution. However, we were not able to verify this
functionality, as Openfire has not implemented collection nodes according to the
latest version of the publish-subscribe XEP draft [34].

Chapter 5. Discussion and Conclusion 25 /29

Web Application Communication Topology In general, using XMPP directly from
the web browser worked well. However, due to the incomplete WebSocket imple-
mentation in Openfire and the browsers policies concerning SASL EXTERNAL, we
had to use BOSH and an HTTP proxy in front of the XMPP server. See section 4.2
Encountered Problems for more details.

Frontend Framework The decision to use Angular with TypeScript in combination
with the IntelliJ IDEA IDE has turned out to be an efficient and clean solution.

UI Library The decision for the Spectre.css1 library provided us with a reasonable
compromise regarding productivity and long-term maintainability.

Frontend Structure To split the application into multiple modules worked well
and helped to structure the code. We had to slightly modify the initial design in the
course of the project, to address the increasing complexity.

XMPP Client Library The Stanza.io XMPP library has served its purpose. We
opened two pull requests with error corrections on GitHub2, which were quickly
merged and released.

5.1.3 Implementation

Tests

As described in section 4.4 Testing, good tests and a solid test coverage are important
for a long-lived project.

To measure unit tests coverage, we used the istanbul coverage tool3. We achieved
a total of 93.69% statement coverage, thanks to our comprehensive set of unit tests.

The code coverage achieved using the integration tests is not included in the test
coverage, as no such tooling exists.

In total, we have approximately 2.25 test code lines per line of application code.

Category Lines of Code

Typescript Application Code 2’060

HTML Application Code 600

CSS Application Code 163

Total Application Code 2’823

Unit Test Code 5’347
Integration Test Code 994

Total Test Code 6’341

TABLE 5.2: Lines of code by category excluding third-party code.

1https://picturepan2.github.io/spectre/
2See https://github.com/otalk/jxt-xmpp/pull/23 and https://github.com/legastero/

stanza.io/pull/264
3https://gotwarlost.github.io/istanbul/

https://picturepan2.github.io/spectre/
https://github.com/otalk/jxt-xmpp/pull/23
https://github.com/legastero/stanza.io/pull/264
https://github.com/legastero/stanza.io/pull/264
https://gotwarlost.github.io/istanbul/

Chapter 5. Discussion and Conclusion 26 /29

Test Category Number of Tests

Unit Tests 305
Integration Tests 19

Total 324

TABLE 5.3: Number of tests per test category.

5.2 Lessons Learned

In this section, we describe unexpected project events and the lessons we learned
from them.

5.2.1 Project Course

Issues and Time Management

In general, our issue management and time tracking with JIRA4 and our Scrum-
based approach worked very well.

While discussing time management issues in retrospective 3, we noted that we
significantly underestimated the required time for several implementation issues.
Many implementation issues were quite comprehensive, in some cases estimated at
more than hours.

To address these estimation issues, we decided to create smaller issues and list
tangible subtasks in the form of check-lists. A check-list extension for JIRA facilitated
this task.

Despite the reduced task sizes, estimating and specifying tasks precisely remained
a challenge. Our limited experience with the Angular framework and the XMPP
ecosystem were undoubtedly large contributing factors.

Documentation

To accomplish high-quality documentation, we used GitHub pull requests to carry
out peer reviews. To simplify this process, we also set up continuous integration
builds which always posted the latest stable documentation and appendices on the
project website. We think that this approach led to a high overall documentation
standard.

It was difficult to summarise the technical background and describe our archi-
tecture due to the different terminology used by the XMPP and IETF standards. We
discuss this in section 5.2.4 Standards.

5.2.2 Architectural Decisions

Architecture-relevant decisions were carried out and justified in the form of archi-
tectural design decisions [19] (see appendix A.3 Architectural Decisions).

This approach helped us to systematically document influences and plan the ar-
chitecture in a structured way.

Retrospectively, we should have made more architectural decisions later on in
the project, e.g. concerning barrel imports or to establish layering guidelines.

4https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

Chapter 5. Discussion and Conclusion 27 /29

5.2.3 Development, Frameworks and Tooling

Test Driven Development was not possible in the way we had anticipated.
Due to the use of Angular, the testing environment differed substantially from

the actual application context. Therefore, it was challenging to create tests before
implementing most of the actual code structure. A factor that also contributed to
this difficulty was our prior lack of Angular expertise.

Nevertheless, writing many tests proved to be very valuable. It helped us to be
confident during development and will be useful to future developers extending the
application.

The Docker Development Environment has proven to be valuable. It provides
developers with a very productive way to test modifications in a realistic yet portable
environment.

Compodoc, the tool we used to document and visualise the structure of our Angu-
lar application, did not add as much value to the project documentation as we had
hoped.

We assume that Compodoc is better suited for Angular libraries than applica-
tions.

5.2.4 Standards

During the course of this thesis, we learned valuable lessons about working with
standards and about the way these standards pose challenges or support develop-
ment.

Terminology

The XMPP-Grid standard uses SACM terminology [5], whereas the XMPP standard
and all XEPs use a different terminology. Most concepts and term definitions differ
or overlap slightly, making it difficult to comprehend and connect both formats. It
also makes the use of a consistent terminology impossible, as some concepts from
XMPP/XEPs are not reflected in SACM terminology and vice versa.

XEPs Draft Versions

Many of the used XMPP Extension Procotols (XEPs) are not yet final but still in the
draft phase. Most notably, these include the Publish-Subscribe (XEP-0060 and XEP-
0248), Result Set Management (XEP-0059) and BOSH (XEP-0206) XEPs. Only the
core XEPs, such as Service Discovery (XEP-0030) and Data Forms (XEP-0004), are
declared final.

Because many drafts have not received major updates (XEP-0059, for example,
has not been modified for over 10 years) these drafts are treated as de facto standards
in the community, neglecting the possibility of significant changes. Unfortunately,
not all drafts are stable.

A prominent example of a modified standard draft is the publish-subscribe XEP.
In the last few years, significant changes have been made and the concept of “Collec-
tion Nodes” was even extracted into a separate standard draft [34]. In our case, the
Openfire XMPP server implemented an older version of this XEP, not supporting all
features that we planned to use in this thesis.

Chapter 5. Discussion and Conclusion 28 /29

Deprecated XEPs

Many XEPs build on functionality specified by other, cross-referenced XEPs. This is
problematic, especially as some referenced standards are not active anymore.

An example is the PubSub Collection Nodes XEP [34], which currently has a
deferred status, but is still used in the latest version of the publish-subscribe XEP [23],
which currently has a draft status.

Non-Binding Standardisation

Many features required for the XMPP-Grid broker implementation are marked as
optional in the corresponding XEPs. To some extent, the availability of these fea-
tures can be queried using the feature discovery mechanism [18], but not all optional
features are exposed in this way.

The publish-subscribe XEP contains multiple such optional features.
Additionally, some features are not explicitly specified in the according XEP, but

rather implicitly demonstrated using examples.
These limitations make it difficult to rely on the availability of some features

described in these XEPs.

5.3 Future work

The result of our bachelor thesis is a fully functional application, ready to prove
itself in production. Even though all specified functionality was implemented, the
user experience can still be further improved.

Conducting usability tests by observing administrators who manage XMPP-Grids
can reveal significant insights [20].

To further improve the user experience, auto-complete for users and topics might
be helpful. As already discussed in section 4.2 Encountered Problems, this cannot
be implemented efficiently due to shortcomings in the publish-subscribe XEP. One
option would be to propose the required functionality in the XEP standardisation
process. A more short-term solution would be to tie the implementation closer to
a specific XMPP server that supports these features over proprietary APIs. Alter-
natively, an unofficial XEP including corresponding server plugins can be specified
and implemented.

Working around shortcomings of the XMPP server implementations, lost up-
dates for example (see section 4.2.5 Lost Updates), could advance the usability as
well. However, it must be noted that adding more logic in the client contradicts the
XMPP philosophy that encourages simple clients and complex server implementa-
tions [36].

5.4 Conclusion

The XMPP-Grid broker application enables administrators to configure XMPP-
Grids in a straight-forward and productive way. The modern web interface fa-
cilitates obtaining a comprehensive view of the configuration and structure of an
XMPP-Grid. Apart from improving the usability significantly, the application is also
cross-platform and not tied to a particular XMPP server implementation.

Chapter 5. Discussion and Conclusion 29 /29

Our proposed architecture has proven to work in practice. Although the initial
setup with a proxy server is complex, the architecture will pay off in practice regard-
ing security and maintainability as reverse proxies are commonly used, and static
sites are easy to maintain and upgrade.

Angular and Stanza.io turned out to be a good choice for the implementation.
Angular provides productive tools and a comprehensive testing infrastructure that
allowed us to build an application that can be maintained efficiently in the long-
term.

Stanza.io met most of our requirements concerning XMPP support and allowed
us to extend and improve it where needed.

Using Openfire as an XMPP server backend was demanding at times due to the
scanty implementation of the publish-subscribe standard. Some of these shortcom-
ings, however, revealed problematic limitations of the standard which otherwise
might not have been considered.

The Bachelor Thesis went well from our point of view. Not only were we able to
reach all major requirements, but also deliver a robust and ready-to-use solution.

In the future, the application must prove itself in practice. Based on feedback from
users in industry, the usability and feature set can further be refined.

To support some features efficiently, the implementation must either be bound to
a specific XMPP server or new extensions to the XMPP standard must be proposed.

We hope that with the help of our implementation the IETF draft “Using XMPP
for Security Information Exchange” will become an established security standard
used in practical industry applications.

I

Bibliography

[1] Angular guide: Security. https://angular.io/guide/security, 2017.

[2] Angular style guide. https://angular.io/guide/styleguide#style-guide,
2018.

[3] Zone.js readme. https://angular.io/guide/security, 2018.

[4] Agile Alliance. What are user stories? https://www.agilealliance.org/

glossary/user-stories, 2015.

[5] H. Birkholz, J. Lu, J. Strassner, N. Cam-Winget, and A. W. Montville. Secu-
rity Automation and Continuous Monitoring (SACM) Terminology. Internet-
Draft draft-ietf-sacm-terminology-14, Internet Engineering Task Force, Dec.
2017. Work in Progress.

[6] S. O. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC
2119, Mar. 1997.

[7] S. Brown. The c4 model for software architecture. https://c4model.com/.

[8] N. Cam-Winget, S. Appala, S. Pope, and P. Saint-Andre. Using XMPP for Secu-
rity Information Exchange. Internet-Draft draft-ietf-mile-xmpp-grid-05, Inter-
net Engineering Task Force, Feb. 2018. Work in Progress.

[9] M. Cohn. Succeeding with Agile: Software Development Using Scrum. Addison-
Wesley Professional, 1st edition, 2009.

[10] R. Danyliw. The Incident Object Description Exchange Format Version 2. RFC
7970, Nov. 2016.

[11] R. Eatmon, J. Hildebrand, J. Miller, T. Muldowney, and P. Saint-Andre. Data
Forms. XEP-0004, Aug. 2007.

[12] C. P. et al. Secure websocket with client certificate not working. Chromium
Bug Tracker, 2013. https://bugs.chromium.org/p/chromium/issues/detail?
id=329884#c24.

[13] G. I. et al. Manage client certificates on chrome devices. Chrome Documenta-
tion, 2013. https://support.google.com/chrome/a/answer/6080885?hl=en#

manage-certs.

[14] M. et al. Security/server side tls. MozillaWiki, 2018. https://wiki.mozilla.

org/index.php?title=Security/Server_Side_TLS&oldid=1191414.

[15] S. Frei, T. Duebendorfer, and B. Plattner. Firefox (in) security update dynamics
exposed. SIGCOMM Comput. Commun. Rev., 39(1):16–22, Dec. 2008.

[16] T. Hansen. SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple Authentica-
tion and Security Layer (SASL) Mechanisms. RFC 7677, Nov. 2015.

https://angular.io/guide/security
https://angular.io/guide/styleguide#style-guide
https://angular.io/guide/security
https://www.agilealliance.org/glossary/user-stories
https://www.agilealliance.org/glossary/user-stories
https://c4model.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=329884#c24
https://bugs.chromium.org/p/chromium/issues/detail?id=329884#c24
https://support.google.com/chrome/a/answer/6080885?hl=en#manage-certs
https://support.google.com/chrome/a/answer/6080885?hl=en#manage-certs
https://wiki.mozilla.org/index.php?title=Security/Server_Side_TLS&oldid=1191414
https://wiki.mozilla.org/index.php?title=Security/Server_Side_TLS&oldid=1191414

BIBLIOGRAPHY II

[17] S. Hares, J. Strassner, D. Lopez, L. Xia, and H. Birkholz. Interface to Net-
work Security Functions (I2NSF) Terminology. Internet-Draft draft-ietf-i2nsf-
terminology-05, Internet Engineering Task Force, Jan. 2018. Work in Progress.

[18] J. Hildebrand, P. Millard, R. Eatmon, and P. Saint-Andre. Service Discovery.
XEP-0030, Oct. 2017.

[19] A. Jansen and J. Bosch. Software architecture as a set of architectural design
decisions. In Software Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP
Conference on, pages 109–120. IEEE, 2005.

[20] S. Krug. Don’t Make Me Think: A Common Sense Approach to the Web (2Nd Edition).
New Riders Publishing, Thousand Oaks, CA, USA, 2005.

[21] A. Melnikov and I. Fette. The WebSocket Protocol. RFC 6455, Dec. 2011.

[22] A. Menon-Sen, A. Melnikov, N. Williams, and C. Newman. Salted Challenge
Response Authentication Mechanism (SCRAM) SASL and GSS-API Mecha-
nisms. RFC 5802, July 2010.

[23] P. Millard, P. Saint-Andre, and R. Meijer. Publish-Subscribe. XEP-0060, Feb.
2018.

[24] J. Moffitt. Professional XMPP Programming with JavaScript and jQuery. Wrox Press
Ltd., Birmingham, UK, UK, 2010.

[25] A. Parsovs. Practical issues with tls client certificate authentication. Cryptology
ePrint Archive, Report 2013/538, 2013. https://eprint.iacr.org/2013/538.

[26] I. Paterson, P. Saint-Andre, V. Mercier, and J.-L. Seguineau. Result Set Manage-
ment. XEP-0059, Sept. 2006.

[27] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout, and W. Tilanus.
Bidirectional-streams Over Synchronous HTTP (BOSH). XEP-0124, Nov. 2016.

[28] E. Rescorla and T. Dierks. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246, Aug. 2008.

[29] A. Saini, M. S. Gaur, and V. Laxmi. The darker side of firefox extension. In Pro-
ceedings of the 6th International Conference on Security of Information and Networks,
SIN ’13, pages 316–320. ACM, 2013.

[30] P. Saint-Andre. Streaming xml with jabber/xmpp. IEEE Internet Computing,
9(5):82–89, Sept 2005.

[31] P. Saint-Andre. Extensible Messaging and Presence Protocol (XMPP): Core. RFC
6120, Mar. 2011.

[32] P. Saint-Andre. Jabber Component Protocol. XEP-0114, Jan. 2012.

[33] P. Saint-Andre and D. Cridland. XMPP Extension Protocols. XEP-0001, Nov.
2016.

[34] P. Saint-Andre, R. Meijer, and B. Cully. PubSub Collection Nodes. XEP-0248,
Sept. 2010.

https://eprint.iacr.org/2013/538

BIBLIOGRAPHY III

[35] P. Saint-Andre and me@thijsalkema.de. Use of Transport Layer Security (TLS)
in the Extensible Messaging and Presence Protocol (XMPP). RFC 7590, June
2015.

[36] P. Saint-Andre, K. Smith, and R. Tronon. XMPP: The Definitive Guide Building
Real-Time Applications with Jabber Technologies. O’Reilly Media, Inc., 2009.

[37] A. Steffen. XMPP-Grid HSR Rapid-Prototype. https:

//github.com/sacmwg/vulnerability-scenario/blob/

b3bf6a5b21f242b788488ba8991595172fe663e7/ietf_hackathon/strongSwan/

pubsub_client.py, Nov 2017.

[38] L. Stout, J. Moffitt, and E. Cestari. An Extensible Messaging and Presence Pro-
tocol (XMPP) Subprotocol for WebSocket. RFC 7395, Oct. 2014.

[39] A. van Kesteren. Cross-origin resource sharing. W3C recommendation, W3C,
Jan. 2014. http://www.w3.org/TR/2014/REC-cors-20140116/.

[40] D. Veditz, M. West, and A. Barth. Content security policy level 2. W3C rec-
ommendation, W3C, Dec. 2016. https://www.w3.org/TR/2016/REC-CSP2-
20161215/.

[41] R. Wirdemann. Scrum mit User Stories. Carl Hanser Verlag München, 2017.

[42] K. Zeilenga and A. Melnikov. Simple Authentication and Security Layer
(SASL). RFC 4422, June 2006.

https://github.com/sacmwg/vulnerability-scenario/blob/b3bf6a5b21f242b788488ba8991595172fe663e7/ietf_hackathon/strongSwan/pubsub_client.py
https://github.com/sacmwg/vulnerability-scenario/blob/b3bf6a5b21f242b788488ba8991595172fe663e7/ietf_hackathon/strongSwan/pubsub_client.py
https://github.com/sacmwg/vulnerability-scenario/blob/b3bf6a5b21f242b788488ba8991595172fe663e7/ietf_hackathon/strongSwan/pubsub_client.py
https://github.com/sacmwg/vulnerability-scenario/blob/b3bf6a5b21f242b788488ba8991595172fe663e7/ietf_hackathon/strongSwan/pubsub_client.py

IV

List of Figures

2.1 XMPP example overview . 4
2.2 DSL of the XMPP-Grid standard . 6
2.3 DSL of used XMPP XEPs . 6

3.1 Architecture context diagram . 7
3.2 Architecture container diagram: Rich client 8
3.3 Architecture container diagram: Web application 9
3.4 Architecture container diagram: Web proxy 9
3.5 Architecture container diagram: Web application with proxy 10

4.1 Development setup deployment diagram 16

1 Use case diagram . LXVI
2 Login-screen wireframe . LXXIII
3 Controller overview wireframe . LXXIII
4 All collections wireframe . LXXIV
5 All topics wireframe . LXXIV
6 New collection wireframe . LXXIV
7 New topic wireframe . LXXV
8 Collection overview wireframe . LXXV
9 Topic overview wireframe . LXXV
10 Topic/Collection affiliations wireframe LXXVI
11 Topic/Collection configuration wireframe LXXVI
12 Topic parent collections items wireframe LXXVI
13 Persisted items wireframe . LXXVII

V

List of Tables

5.1 Fulfilled requirements by groups. 23
5.2 Lines of code by category excluding third-party code. 25
5.3 Number of tests per test category. 26

VI

Glossary

BOSH

Bidirectional-streams Over Synchronous HTTP [27]

Broker

See XMPP-Grid broker

Component

An encapsulation of software that communicates using Interfaces, that is com-
posed of SACM capabilities. [5, 17]

Consumer

"In SACM, an entity that contains functions to receive information from other
components; as used here, the term refers to an XMPP publish-subscribe Sub-
scriber." [8]

Control Plane

"An architectural component that provides common control functions to all
SACM components." [5]

Controller

"In SACM, a ‘component containing control plane functions that manage and
facilitate information sharing or execute on security functions‘; as used here,
the term refers to an XMPP server, which provides core message delivery
[RFC6120] used by publish-subscribe entities." [8, 5]

Data Forms

XMPP Data Forms Extension

HTTP

Hypertext Transfer Protocol

IETF

Abbreviation for Internet Engineering Task Force

Info/Query

XMPP info/query stanza

Jabber

Originial Name of XMPP

Glossary VII

Jabber Search

XMPP/Jabber Search Extension, historically used to search for jabber users, eg.
in the "Jabber User Directory"

JID

Jabber IDentifier, e.g. bob@example.com/mobile

Message

XMPP message stanza

MILE

Abbreviation for the ‘Managed Incident Lightweight Exchange’ working group

Persisted Item

XMPP messages that are persisted in a topic.

Platform

"Any entity that connects to the XMPP-Grid in order to publish or consume
security-related data." [8]

Presence

XMPP presence stanza

Provider

"In SACM An entity that contains functions to provide information to other
components; as used here, the term refers to an XMPP publish-subscribe Pub-
lisher." [8]

Publish-Subscribe

XMPP Publish-Subscribe Extension

PubSub

Common abbreviation for publish-subscribe

Result Set Management

XMPP Result set Management Extension

SACM

Abbreviation for Security Automation and Continuous Monitoring

SASL

“The Simple Authentication and Security Layer (SASL) is a framework for pro-
viding authentication and data security services in connection-oriented proto-
cols via replaceable mechanisms.” [42]

SASL EXTERNAL

A SASL authentication mechanism, which is not directly implemented by SASL
but rather by external means to authenticate the client, e.g. TLS. [42]

Glossary VIII

SASL SCRAM

“a family of [SASL] authentication mechanisms called the Salted Challenge
Response Authentication Mechanism (SCRAM)” [22]

Service Discovery

XMPP Service Discovery Extension

Stanza

An XMPP a fragment of XML that is sent over a stream, e.g. a message.

TCP

Transmission Control Protocol

TLS

Transport Layer Security [28]

Topic

"A contextual information channel created on a Broker at which messages gen-
erated by a Provider are propagated in real time to one or more Consumers.
Each Topic is limited to a specific type and format of security data (e.g., IODEF)
and provides an XMPP interface by which the data can be obtained." [8]

XEP

XMPP Extension Protocol

XML

eXtensible Markup Language

XMPP

eXtensible Messaging and Presence Protocol

XMPP-Grid

”A method for using the Extensible Messaging and Presence Protocol (XMPP)
[RFC6120] to collect and distribute security-relevant information among net-
work platforms, endpoints, and any other network-connected device.“ [8]

XMPP-Grid broker

“A SACM broker Controller is a controller that contains control plane functions
to provide and/or connect services on behalf of other SACM components via
interfaces on the control plane” [5]

XMPP-Grid standard

The IETF MILE ‘Using XMPP for Security Information Exchange draft-ietf-
mile-xmpp-grid-05’ draft. [8]

IX

Appendices

XMPP-Grid Broker: Project Plan

Authors:
Fabian HAUSER and
Raphael ZIMMERMANN

Advisor:
Prof. Dr. Andreas STEFFEN

Spring Term 2018

Appendices X

A.1 Project Plan

i

Contents

Contents i

1 Project Overview 1

2 Project Organisation 2
2.1 Roles . 2

3 Project Management 3
3.1 Components . 3
3.2 Time Budget . 3
3.3 Schedule . 3

3.3.1 Iterations & Milestones . 3
3.3.2 Meetings . 4

4 Risk Management 6

5 Infrastructure 8
5.1 Project Management and Development 8

5.1.1 Development Tools . 8
5.2 Backup and Data Safety . 8

6 Quality Measures 9
6.1 Documentation . 9
6.2 Project Management . 9

6.2.1 Sprint Planning . 9
6.2.2 Definition of Done . 9

6.3 Development . 10
6.4 Testing . 10

Bibliography I

List of Figures II

List of Tables III

1

Chapter 1

Project Overview

The goal of the bachelor thesis is to build a broker application and graphical user
interface to administer XMPP-Grids according to draft-ietf-mile-xmpp-grid, as de-
scribed in the task description [3].

2

Chapter 2

Project Organisation

All team members have the same strategic rights and duties. Prof. Dr. Andreas
Steffen is our project advisor.

2.1 Roles

Due to the small team size, most roles are performed by both team members.

Raphael Zimmermann
project management, software engineering, quality assurance.

Fabian Hauser
infrastructure management, software engineering, quality assurance.

3

Chapter 3

Project Management

3.1 Components

For a better overview and to allow us a sophisticated time assessment, we decided to
group tasks into categories, i.e. JIRA components. Components represent processes,
documents and products which are to be released.

Currently, tasks are separated into following components:

• Application

• Final Submission Document

• Management

• Poster

• Presentation

• Project Plan

3.2 Time Budget

The project started with the Kickoff Meeting on 19.02.2018 and will be completed
after 16 weeks by 15.06.2018. The two team members are available for 360 hours
each during the semester which corresponds to a weekly time budget of 20 hours
per person and two weeks with a weekly time budget of 40 hours per person.

Apart from the statutory holidays, there are no further absences planned.

3.3 Schedule

The project schedule is an iterative process based on elements of SCRUM.
We decided on a sprint duration of approximately one week, but allow devia-

tions in working hours depending on statutory holidays.

3.3.1 Iterations & Milestones

Retrospective 1 Retrospective 2 Retrospective 3 Retrospective 4

Kickoff Sprint 1 Sprint 2 Sprint 3 Sprint 4 Sprint 5 Sprint 6 Sprint 7 Sprint 8 Sprint 9 Sprint 10 Sprint 11 Sprint 12 Sprint 13 Sprint 14 Sprint 15

W08 W09 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24-W26

alpha release beta release Presentation

testing concept fixed

Presentation
Sprint

project plan
completed

basic architecture
fixed

final technology
fixed

feature
freeze

code
freeze

documentation
completed

basic requirements &
analysis completed

presentation
prepared

task description
fixed

final release
/ submission

license &
usage rights defined

FIGURE 3.1: Overview of the iterations

The goals and milestones resulting from each sprint are shown in Figure 3.2.

Chapter 3. Project Management 4 /10

TABLE 3.1: Meeting Time Budget

Meeting Type Total Duration per Person Total Duration for the Team
Supervision Meetings 12 hours 24 hours
Standup Meetings 16 hours 32 hours
Sprint Planning Meetings 18 hours 36 hours
Retrospective 4 hours 8 hours
Total 50 hours 100 hours

3.3.2 Meetings

The team works every Monday (08:00 - 12:00) and Tuesday (08:00 - 17:00) together in
the study room and remotely Fridays (08:00 - 17:00). Wednesday and Friday begin
with a daily stand-up meeting taking no longer than 15 minutes. Sprint planning
meetings are carried out on Tuesday at 10:00. Table 3.1 shows an overview of the
total meeting time budget.

Regular meetings with the project advisor usually take place on Monday in Prof.
Dr. Steffen’s office.

Raphael Zimmermann will take meeting notes for every meeting. Meeting min-
utes are published as appendix of the thesis afterwards.

Chapter 3. Project Management 5 /10
S

p
ri

n
t

S
p

ri
n

t
1

S
p

ri
n

t
2

S
p

ri
n

t
3

S
p

ri
n

t
4

Ta
g

0
.1

.0
0
.2

.0
0
.3

.0
0
.4

.0
D

a
te

2
0
.0

2
.2

0
1
8
 –

 2
7
.0

2
.2

0
1
8

2
7
.0

2
.2

0
1
8
 -

 0
6
.0

3
.2

0
1
8

0
6
.0

3
.2

0
1
8
 –

 1
3
.0

3
.2

0
1
8

1
3
.0

3
.2

0
1
8
 –

 2
0
.0

3
.2

0
1
8

M
il
e
s
to

n
e
s

-
ta

sk
 d

e
sc

ri
p
ti

o
n
 fi

xe
d

-
b
a
si

c
re

q
u
ir

e
m

e
n
ts

 &
 a

n
a
ly

si
s

co
m

p
le

te
d

-
b
a
si

c
a
rc

h
it

e
ct

u
re

 fi
xe

d

T
im

e
 B

u
d

g
e
t

4
0

4
0

4
0

4
0

Ta
s
k
s

S
p

ri
n

t
S

p
ri

n
t

5
S

p
ri

n
t

6
S

p
ri

n
t

7
S

p
ri

n
t

8
Ta

g
0
.5

.0
0
.6

.0
0
.7

.0
0
.8

.0
D

a
te

2
0
.0

3
.2

0
1
8
 –

 2
7
.0

3
.2

0
1
8

2
7
.0

3
.2

0
1
8
 –

 1
0
.0

4
.2

0
1
8

1
0
.0

4
.2

0
1
8
 –

 1
9
.0

4
.2

0
1
8

1
9
.0

4
.2

0
1
8
 –

 2
4
.0

4
.2

0
1
8

M
il
e
s
to

n
e
s

T
im

e
 B

u
d

g
e
t

4
0

8
0

4
0

4
0

Ta
s
k
s

-
C

h
a
p
te

r
"O

u
r

A
p
p
ro

a
ch

"
co

m
p
le

te
d

S
p

ri
n

t
S

p
ri

n
t

9
S

p
ri

n
t

1
0

S
p

ri
n

t
1
1

S
p

ri
n

t
1
2

Ta
g

0
.9

.0
0
.1

0
.0

0
.1

1
.0

0
.1

2
.0

D
a
te

2
4
.0

4
.2

0
1
8
 –

 0
1
.0

5
.2

0
1
8

0
1
.0

5
.2

0
1
8
 –

 0
8
.0

5
.2

0
1
8

0
8
.0

5
.2

0
1
8
 –

 1
5
.0

5
.2

0
1
8

1
5
.0

5
.2

0
1
8
 –

 2
2
.0

5
.2

0
1
8

M
il
e
s
to

n
e
s

-
a
lp

h
a
 r

e
le

a
se

 (
2
9
.0

4
.2

0
1
8
)

T
im

e
 B

u
d

g
e
t

4
0

4
0

4
0

4
0

Ta
s
k
s

-
a
lp

h
a
 r

e
le

a
se

 b
u
n
d
le

S
p

ri
n

t
S

p
ri

n
t

1
3

S
p

ri
n

t
1
4

S
p

ri
n

t
1
5

P
re

s
e
n

ta
ti

o
n

 S
p

ri
n

t
Ta

g
0
.1

3
.0

0
.1

4
.0

1
.0

.0
-

D
a
te

2
2
.0

5
.2

0
1
8
 –

 3
1
.0

5
.2

0
1
8

3
1
.0

5
.2

0
1
8
 –

 0
6
.0

6
.2

0
1
8

0
6
.0

6
.2

0
1
8
 –

 1
3
.0

6
.2

0
1
8

1
3
.0

6
.2

0
1
8
 –

 2
7
.0

6
.2

0
1
8

M
il
e
s
to

n
e
s

-
co

d
e
 f

re
e
ze

T
im

e
 B

u
d

g
e
t

4
0

5
0

8
0

3
0

Ta
s
k
s

-
b
e
ta

 r
e
le

a
se

 b
u
n
d
le

-
p
re

se
n
ta

ti
o
n

-
lic

e
n

se
 &

 u
sa

g
e
 r

ig
h

ts
 d

e
fi
n
e
d

-
se

tu
p
 r

e
m

a
in

in
g
 p

ro
je

ct
 i
n
fr

a
st

ru
ct

u
re

-
re

a
d
 i
e
tf

 d
ra

ft
,

X
E

P
 s

ta
n
d

a
rd

s
e
tc

.
-

co
m

p
ile

 l
is

t
o
f

o
p
e
n
 q

u
e
st

io
n
s

-
b
e
g

in
 w

it
h
 c

h
a
p
te

r
“i

n
it

ia
l
si

tu
a
ti

o
n
”

-
a
n
a
ly

ze
 e

x
is

ti
n
g
 p

y
th

o
n
 p

ro
o
f-

o
f-

co
n
ce

p
t

-
co

lle
ct

 n
o
n
-f

u
n
ct

io
n

a
l
re

q
u
ir

e
m

e
n

ts
 (

N
FR

s)
-

co
m

p
ile

 s
e
t

o
f

u
se

r
st

o
ri

e
s

-
d
ra

w
 w

ir
e
fr

a
m

e
s

-
re

se
a
rc

h
 f

ra
m

e
w

o
rk

s
a
n
d
 t

e
ch

n
o
lo

g
y
:

P
re

p
a
re

a
rc

h
it

e
ct

u
ra

l
d
e
ci

si
o
n
s

-
e
x
te

n
d
 N

FR
s,

 u
se

r
st

o
ri

e
s,

 w
ir

e
fr

a
m

e
s

-
m

a
ke

 fi
rs

t
a
rc

h
it

e
ct

u
ra

l
d
e
ci

si
o
n
s

-
fu

rt
h
e
r

fr
a
m

e
w

o
rk

 a
n

d
 t

e
ch

n
o
lo

g
y
 r

e
se

a
rc

h
-

im
p
le

m
e
n
t

p
ro

o
f

o
f

co
n

ce
p
ts

 f
o
r

ci
ri

ti
ca

l
co

m
p

o
n
e
n
ts

-
m

a
ke

 b
ig

 a
rc

h
it

e
ct

u
ra

l
d
e
ci

si
o
n

s
-

im
p
le

m
e
n
t

p
ro

o
f

o
f

co
n

ce
p
ts

 f
o
r

ci
ri

ti
ca

l
co

m
p
o
n

e
n
ts

D
o
c
u

m
e
n

ts
 /

C
h

a
p

te
rs

 /

A
rt

e
fa

c
ts

-
ch

a
p
te

r
"I

n
it

ia
l
S
it

u
a
ti

o
n
"

co
m

p
le

te
d

-
si

g
n
e
d
 t

a
sk

 d
e
sc

ri
p
ti

o
n

-
fi
n

a
l
te

ch
n
o
lo

g
y
 fi

x
e
d

-
te

st
in

g
 c

o
n

ce
p
t

fi
x
e
d

-
im

p
le

m
e
n
t

p
ro

o
f

o
f

co
n
ce

p
ts

 f
o
r

ci
ri

ti
ca

l
co

m
p
o
n
e
n

ts
-

d
ra

ft
 t

e
st

in
g
 c

o
n
ce

p
t

-
im

p
le

m
e
n
t

p
ro

o
f

o
f

co
n

ce
p
ts

 f
o
r

ci
ri

ti
ca

l
co

m
p

o
n
e
n
ts

-
fi
n

a
lis

e
 t

e
st

in
g
 c

o
n

ce
p
t

-
Im

p
le

m
e
n
t

m
o
st

 i
m

p
o
rt

a
n
t

u
se

r
st

o
ri

e
s

-
m

a
ke

 f
u
rt

h
e
r

a
rc

h
it

e
ct

u
ra

l
d
e
ci

si
o
n
s

-
Im

p
le

m
e
n
t

m
o
st

 i
m

p
o
rt

a
n
t

u
se

r
st

o
ri

e
s

-
m

a
ke

 f
u
rt

h
e
r

a
rc

h
it

e
ct

u
ra

l
d
e
ci

si
o
n
s

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s

D
o
c
u

m
e
n

ts
 /

A
rt

e
fa

c
ts

-
Im

p
le

m
e
n
t

se
co

n
d
a
ry

 u
se

r
st

o
ri

e
s

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s
-

Im
p
le

m
e
n
t

se
co

n
d
a
ry

 u
se

r
st

o
ri

e
s

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s
-

Im
p
le

m
e
n
t

se
co

n
d
a
ry

 u
se

r
st

o
ri

e
s

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s
-

Im
p
le

m
e
n
t

re
m

a
in

g
in

g
 u

se
r

st
o
ri

e
s

-
Im

p
ro

v
e
 c

o
d
e
 b

a
se

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s

D
o
c
u

m
e
n

ts
 /

A
rt

e
fa

c
ts

-
b
e
ta

 r
e
le

a
se

-
fu

tu
re

 f
re

e
ze

-
d
o
cu

m
e
n
ta

ti
o
n
 c

o
m

p
le

te
d

-
fi
n

a
l
re

le
a
se

 /
 s

u
b
m

is
si

o
n

-
p
re

se
n

ta
ti

o
n
 p

re
p
a
re

d
-

p
re

se
n

ta
ti

o
n

-
Im

p
le

m
e
n
t

re
m

a
in

g
in

g
 u

se
r

st
o
ri

e
s

-
Im

p
ro

v
e
 c

o
d
e
 b

a
se

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s

-
Im

p
ro

v
e
 c

o
d
e
 b

a
se

-
w

ri
te

 i
n
te

g
ra

ti
o
n
 t

e
st

s
-

w
ri

te
 d

o
cu

m
e
n
ta

ti
o
n

-
fi
x
 e

v
e
n
tu

a
l
b
u
g
s

-
w

ri
te

 d
o
cu

m
e
n
ta

ti
o
n

-
su

b
m

it
 d

o
cu

m
e
n

ts

D
o
c
u

m
e
n

ts
 /

A
rt

e
fa

c
ts

-
a
b
st

ra
ct

-
m

a
n
a
g
e
m

e
n
t

su
m

m
a
ry

-
fi
n

a
l
re

le
a
se

 b
u
n
d
le

-
p
o
st

e
r

-
p
e
rs

o
n
a
l
re

p
o
rt

s
-

ti
m

e
 a

cc
o
u

n
ti

n
g

FIGURE 3.2: Detailed overview with tasks and milestones of all
sprints.

6

Chapter 4

Risk Management

An assessment of the project-specific risks is carried out in Table 4.2 as time loss
during the whole project. The risk matrix in Table 4.1 provides an overview of the
risk weighting.

To account for these risks, we reduce our weekly sprint time by the total weighted
risk applicable to the planned task topics (on average approximately 13.5%). We also
review the risk assessment after every sprint, adapt it and take measures if necessary.

Probability
Severity

High (≥ 5d) Medium (2-5d) Low (≤ 2d)

High (≥ 60%) 1

Medium (30-60%) 6

Low (≤ 30%) 3, 4, 5

TABLE 4.1: The risk matrix. Numbers reference to the risk assessment
Table 4.2

Chapter 4. Risk Management 7 /10

TA
B

L
E

4.
2:

R
is

k
as

se
ss

m
en

tt
ab

le
.T

im
e

in
ho

ur
s

ov
er

th
e

to
ta

lp
ro

je
ct

du
ra

ti
on

.

#
Ti

tl
e

D
es

cr
ip

ti
on

Pr
ev

en
ti

on
/

R
ea

ct
io

n
R

is
k

[h
]

Pr
ob

ab
ili

ty
=

[h
]

1
In

co
m

pl
et

e
re

fe
re

nc
e

do
cu

m
en

ta
ti

on
Th

e
re

fe
re

nc
e

do
cu

m
en

ta
ti

on
/

st
an

da
rd

s
ar

e
in

co
m

pl
et

e
or

di
f-

fic
ul

tt
o

co
m

pr
eh

en
d.

D
is

cu
ss

m
is

si
ng

pa
rt

s
w

it
h

pr
oj

ec
ta

dv
is

or
60

60
%

36

2
C

om
m

un
ic

at
io

n
er

ro
rs

Er
ro

rs
du

e
to

m
is

co
m

m
un

ic
a-

ti
on

or
m

is
ap

pr
eh

en
si

on
.

M
ai

nt
ai

n
a

hi
gh

le
ve

l
of

in
te

r-
ac

ti
on

,
pr

ec
is

e
sp

ec
ifi

ca
ti

on
of

ta
sk

s
re

sp
on

si
bi

lit
ie

s,
co

nd
uc

t
m

ee
ti

ng
s

if
am

bi
gu

it
ie

s
ex

is
t.

30
50

%
15

3
Pr

ob
le

m
s

w
it

h
pr

oj
ec

ti
nf

ra
st

ru
ct

ur
e

Th
e

us
ed

pr
oj

ec
t

in
fr

as
tr

uc
tu

re
is

no
to

r
on

ly
pa

rt
ia

lly
av

ai
la

bl
e,

or
da

ta
lo

ss
oc

cu
rs

w
it

hi
n

m
an

-
ag

em
en

ts
of

tw
ar

e.

C
le

an
se

tu
p

an
d

se
lf

-h
os

ti
ng

of
th

e
to

ol
s

to
pr

ev
en

t
th

ir
d-

pa
rt

y
de

pe
nd

en
ci

es
.

45
30

%
13

.5

4
Sc

op
e

cr
ee

p
Th

e
pr

oj
ec

t’s
sc

op
e

is
ex

te
nd

ed
ov

er
th

e
pr

oj
ec

tc
ou

rs
e.

D
efi

ne
th

e
pr

oj
ec

t
sc

op
e

an
d

lim
it

at
io

ns
pr

ec
is

el
y.

D
is

cu
ss

ch
an

ge
s

w
it

h
th

e
pr

oj
ec

t
ad

vi
-

so
r.

45
30

%
13

.5

5
D

ep
en

de
nc

y
er

ro
rs

Th
er

e
ar

e
er

ro
rs

/b
ug

s
in

th
ir

d-
pa

rt
y

de
pe

nd
en

ci
es

,
i.e

.
li-

br
ar

ie
s.

C
ar

ef
ul

ly
se

le
ct

lib
ra

ri
es

an
d

lim
it

th
id

-p
ar

ty
de

pe
nd

en
cy

to
a

m
in

im
um

.

30
30

%
9

6
M

is
si

ng
de

pe
nd

en
cy

do
cu

m
en

ta
ti

on
Se

le
ct

ed
lib

ra
ri

es
ar

e
la

ck
in

g
pr

op
er

do
cu

m
en

ta
ti

on
Th

e
do

cu
m

en
ta

ti
on

qu
al

it
y

of
a

lib
ra

ry
sh

ou
ld

be
a

se
le

ct
io

n
cr

i-
te

ri
on

.

30
40

%
12

To
ta

lw
ei

gh
te

d
ri

sk
99

8

Chapter 5

Infrastructure

5.1 Project Management and Development

For project management we utilise JIRA [1], hosted on our HSR project server, which
runs a standard Ubuntu Linux 17.10.

As document/code storage, git repositories on GitHub are used, the continuous
integration/deployment will be defined in the course of the project.

5.1.1 Development Tools

The development tools will be defined in the course of the project.

5.2 Backup and Data Safety

An incremental backup of the project server including the source code and docu-
mentation is created on an independent system every night.

As our documents and code is stored in a git repository, they are also distributed
on all development systems.

9

Chapter 6

Quality Measures

To maintain a high standard of quality, we take the following measures:

• short sprint reviews

• four extended retrospectives

• code reviews

• automated unit and integration
testing

• publish all documentation on the
project website using continuous
integration/delivery.

• using continuous integration for
source code

6.1 Documentation

The official documents such as the final submission document, meeting minutes as
well as this project plan are written in LATEX respectively ASCIIDoc and published
on the project website1 containing all PDF documents.

The sources are in both cases kept under version control in the same repository,
which allows us to use the same tools and processes for documentation and code.
The continuous integration server builds and publishes the website whenever new
changes are pushed to the repository.

6.2 Project Management

Because the project plan allows for an iterative process, we use JIRA with its SCRUM-
features (such as sprint creation or boards) for project management.

6.2.1 Sprint Planning

Each sprint is mapped to JIRA, which allows the project advisor to trace the project
progress. Sprints are represented as boards on which the current state and assignee
of any issue is easily visible ("To Do", "In Progress", "Review", "Done").

6.2.2 Definition of Done

An issue may be closed if all of the following conditions are met:

• All functionality conforms to the specification. Any deviations must be dis-
cussed and decided by the team.

• The source code is reasonably documented.

1https://xgb.redbackup.org

Chapter 6. Quality Measures 10 /10

• No code is commented out.

• No warnings and errors by the compiler or any other quality tool.

• A review is performed and accepted in a pull request.

• The corresponding branch is merged into the stable branch (e.g. master).

• All documents are up to date including the project website.

• Reasonable unit and integration tests exist and pass.

• The complete continuous integration pipeline works.

• All time is logged.

6.3 Development

We decided to use GitHub Flow[2], a straightforward development workflow.

FIGURE 6.1: GitHub Flow illustrated (Source [2])

Since the effective technology will be fixed later in the project, concrete coding
guidelines, tools, metrics and an error policy will be defined when appropriate.

6.4 Testing

All functionality must be automatically testable using continuous integration. Any
non-trivial function/method must be verified with unit tests.

Integration tests verify extended test scenarios.

I

Bibliography

[1] Atlassian Inc. Open Source Services by Atlassian Inc. https://developer.

atlassian.com/opensource/, 2018.

[2] Github Inc. Github Flow, 2018.

[3] A. Steffen. Task Description ”xmpp-grid broker”. https://xmpp-grid-broker.
github.io/documents/final-submission-document.pdf, 2018.

II

List of Figures

3.1 Overview of the iterations . 3
3.2 Detailed overview with tasks and milestones of all sprints. 5

6.1 Organigram . 10

III

List of Tables

3.1 Meeting Time Budget . 4

4.1 Risk matrix . 6
4.2 Risk assessment . 7

1. Tools
• Git >= 2.0 for version control

2. Writing Guidelines
In order to have a consistent style of writing, we defined the following guidelines. These guidelines apply
to all documents related to the redbackup project.

• Keep it brief, clear and objective

• Write short and straightforward sentences

• Do not use synonyms for concepts etc. (always use the same wording, e.g. 'client' or 'node')

• Abbreviations must be introduced the first time they occur in the text (except well-known ones)

• Prevent ambiguity in sentences

• Use personal style ("we") whenever appropriate; usually for the description of our work.

• When a gender-specific pronoun is required, use "he/she".

• Use present tense except for the description of (our) completed work.

3. Definition of Done
To maintain our high quality needs, we determined following definition of done guidelines:

• All functionality conforms to the specification. Any deviations must be discussed and decided by the
team.

• A review is performed and accepted in a pull request.

◦ The source code is reasonably documented.

◦ No code is commented out.

◦ No warnings and errors by the compiler or any other quality tool.

◦ Reasonable unit and integration tests exist and pass.

◦ All documentations are up to date including the project website.

◦ The complete continuous integration pipeline works.

◦ The code is formatted according to the guidlines (i.e. according to RustFmt)

• The corresponding branch is merged into the stable branch (e.g. master).

• All time is logged.

1

Appendices XXV

A.2 Development Guide

1. Architecture Style
There are three common variants to participate in XMPP communication and manage server
configurations: As XMPP server plugin, XMPP component or an XMPP Client/Bot.

The implementation style fundamentally restricts the set of implementation languages and has a profound
impact on the fundamental architecture.

The following aspects must be taken into account to find the most suitable architecture style:

• All required management functionality must be supported over the available APIs and protocols.

• Compatibility with most XMPP servers

• Keep the implementation complexity as low as possible

1.1. Considered Options
• XMPP server plugin, e.g. for Openfire Plugin.

• XMPP component (XEP-0114).

• XMPP Client/Bot

1.2. Decision Outcome
Chosen option: XMPP Client/bot, because it is not coupled to a specific XMPP server as the Server Plugin
and, in contrast to the XMPP component, supports strong authentication.

1.3. Pros and Cons of the Options

1.3.1. Server Plugin

• Good, because all features could be implemented directly on the XMPP server.

• Good, because there is minimal protocol overhead and abstraction.

• Bad, because a very high coupling to a specific XMPP server is required and
compatibility/interoperability is therefore limited

• Bad, because the high coupling to a specific XMPP server usually limits the possible implementation
language.

1.3.2. XMPP Component

• Good, because the application style fits very well in the components model.

• Bad, because the specification of components is marked as Historical and might therefore not be
implemented by many XMPP Servers.

◦ Note: Openfire supports components

• Bad, because some XMPP client libraries might support components.

• Bad, because the authentication mechanisms might not suffice the required standards of the XMPP-
Grid standard.

• Bad, because it uses a own handshake based digest authentication message.

1

Appendices XXVI

A.3 Architectural Decisions

1.3.3. XMPP Client/Bot

• Good, because a Bot is basically a normal XMPP client, which is supported by every XMPP server

• Good, because all XMPP client libraries implement this feature.

• Good, because secure connections to the XMPP server are supported (SASL).

• Bad, because the application is conceptually not a normal XMPP-Client.

2

2. Platform
The chosen platform has a fundamental impact on the resulting application as well as on the user
experience: Where is it used, from whom and from which device.

2.1. Considered Options
• Client Application with Command Line Interface

• Client Application with Graphical User Interface

• Web application

2.2. Decision Outcome
Chosen option: Web Application because it can easily be installed, updated and provides maximal user
acceptance. The development team has experience in writing web applications meaning they know
common pitfalls and limitations of the platform. Command line users might use the already existing proof
of concept instead.

2.3. Pros and Cons of the Options

2.3.1. Client Application with Command Line Interface

• Good, because cross-platform support can be achieved relatively easy (depending on the chosen
language/runtime).

• Good, because the development team has experience writing command line applications.

• Good, because all OS-functionality is available.

• Good, because command line tools are relatively simple to implement.

• Bad, because additional runtimes might be required (python, JVM, .NET etc.).

• Bad, because not all users appreciate command line tools.

• Bad, because cross-platform testing is expensive.

• Bad, because mobile devices (phones, tablets, chromebooks) are not supported.

• Bad, because updates must be performed on every client.

• Bad, because additional rights are required for setup.

2.3.2. Client Application with Graphical User Interface

• Good, because graphical interfaces have a broad acceptance.

• Good, because all OS-functionality is available.

• Bad, because additional runtimes might be required (python, JVM, .NET etc.).

• Bad, because additional libraries are required (e.g. QT).

• Bad, because cross-platform testing is expensive.

• Bad, because mobile-devices (phones, tablets, chromebooks) are not supported.

• Bad, because updates must be performed on every client.

• Bad, because additional rights are required for setup.

3

• Bad, because the development team has no experience writing graphical user interfaces.

2.3.3. Web Application

• Good, because graphical interfaces have a broad acceptance.

• Good, because the development team has experience writing command line applications.

• Good, because no additional runtime on the client side (except the browser) is required.

• Good, because no additional rights are required for setup.

• Good, because updates must only be performed on the server side (clients need no updates but the
platform, i.e. the browser).

• Good, because it scales well.

• Bad, because only limited OS-functionality is available.

• Bad, because testing of multiple browsers and browser versions is expensive.

• Bad, because the supported features vary significantly depending on the browser and version.

• Bad, because a backend server is required although its importance might vary on the chosen
architecture.

• Bad, because it has a potentially large attack vector depending on how and where it is deployed.

4

3. SASL Authentication Strategy
User Story: 1.2 Authentication: Secure XMPP Connection

The XMPP-Grid standard states in section 8.3.1 that

The XMPP-Grid controller MUST authenticate the XMPP-Grid platform either
using the SASL EXTERNAL mechanism or using the SASL SCRAM mechanism
(with the SCRAM-SHA-256-PLUS variant being preferred over the SCRAM-SHA-
256 variant and SHA-256 variants [RFC7677] being preferred over SHA-1 varients
[RFC5802]).

The chosen authentication mechanism has an impact on the implementation of the broker application as
well as on the XMPP server support.

Note that this architectural decision has no impact on the communication between the controller and other
platforms (i.e. other XMPP clients and the XMPP server).

3.1. Considered Options
• SASL SCRAM

◦ SASL SCRAM-SHA-256-PLUS is described in RFC 7677.

◦ In summary, SASL SCRAM-SHA-256-PLUS means XMPP over TLS with the client authenticating
using a username (JID) and password with challenge-response-exchange.

◦ In our case, we may assume that SASL SCRAM-SHA-256-PLUS is currently the only variant
supporting a strong hash mechanism

• SASL EXTERNAL

◦ SASL EXTERNAL is described in RFC 4422 Appendix A.

◦ The SASL EXTERNAL mechanism for XMPP in combination with TLS/PKIX certificates is
described in XEP-0178.

◦ In our case, we may assume SASL EXTERNAL means XMPP over TLS with the client
authenticating using an X.509 certificate, as this is currently the only practical available
implementation.

3.2. Decision Outcome
Chosen option: SASL EXTERNAL, because it offers the highest security level and is well suited for large-
scale deployments.

3.3. Pros and Cons of the Options

3.3.1. SASL SCRAM

• Good, because SASL SCRAM is widely supported and used by XMPP servers.

• Good, because SASL SCRAM is easy to use for small deployments, as it only requires a JID and
password for authentication.

• Good, because SASL SCRAM fulfils the XMPP-Grid standard requirements.

5

• Bad, because the key management is on the XMPP controller, which leads to a single point of failure
and might lead to additional administration efforts.

• Bad, because shared keys (i.e. the password) are used, which cannot be limited to a validity date or
selectively revoked.

• Bad, because shared keys(i.e. the password) are difficult to manage in a large scale, decentralised and
automated infrastructure.

3.3.2. SASL EXTERNAL

• Good, because a very high-security level can be achieved with X.509 certificates.

• Good, because certificates can be integrated efficiently in a large scale, (mostly) decentralised and
automated infrastructure.

• Good, because SASL SCRAM fulfils the XMPP-Grid standard requirements.

• Bad, because a Certification Authority (CA) must be used to issue certificates, which may lead to
additional administration efforts and complexity, especially for small deployments.

• Bad, because not all XMPP server and clients have comprehensive support for SASL EXTERNAL.

◦ Openfire does not support SASL EXTERNAL with WebSockets, however, it is supported with
BOSH.

◦ Ejabberd only supports SASL EXTERNAL in the paid professional edition.

6

4. Role Management
The XMPP Publish-Subscribe mechanism (XEP-0060) lacks an explicit description of how to implement
role-based authentication for topics(nodes). It implies two possibilities on how to do so: collection nodes
and the roster access model.

The following aspects must be taken into account:

• Preferably use existing XMPP protocols/mechanisms

• The chosen strategy must be usable in most practical use-cases.

4.1. Considered Options
• Usage of Collection Nodes (XEP-0248)

• Roster Access Model which supports groups (XEP-0144)

• Custom Roles implemented on the broker

4.2. Decision Outcome
Chosen option: Usage of Collection Nodes (XEP-0248), because the mechanism is the least intrusive that yet
allows a powerful role-concept. We must, however, keep in mind that the XEP is deferred and might
therefore not be fully supported by all XMPP servers.

4.3. Pros and Cons of the Options

4.3.1. Usage of Collection Nodes (XEP-0248)

• Good, because existing XMPP mechanisms can be used.

• Good, because with it few consumers can subscribe to many topics indirectly.

• Good, because publishing permissions are managed on a topic level which encourages per-device
topics.

• Good, because this mechanism is used in production.

• Bad, because XEP-0248 is deferred

• Bad, because the Collection Nodes must be structured in a specific way to support access management

4.3.2. Roster Access Model which supports groups (XEP-0144)

• Good, because existing XMPP mechanisms can be used.

• Good, because XEP-0144 is a draft (not deferred).

• Bad, because the roster concept aims for IM.

• Bad, because the Roster Access Models is discouraged by the IETF XMPP-Grid standard.

4.3.3. Custom Roles implemented on the broker

• Good, because it enables maximal flexibility

• Bad, because existing XMPP mechanisms cannot be used.

7

• Bad, because the controller must manage its own data instead of delegating it to the XMPP server.

• Bad, because the controller must periodically check that the affiliations are still appropriately
configured on the XMPP server.

8

5. Web Application Communication Topology
As we decided to build a web application, it remains open how the communication the backing XMPP
server flows.

5.1. Considered Options
• XMPP from the Browser with WebSockets (RFC 7395)

Directly speak XMPP over a WebSocket connection with the XMPP server.

• XMPP from the Browser with BOSH (XEP-0206)
Directly speak XMPP over an HTTP long polling connection with the XMPP server.

• XMPP via WebAPI Proxy
Create a standalone application that proxies the XMPP server and exposes a web-API to the client (e.g.
a RESTful API).

5.2. Decision Outcome
Chosen option: XMPP from the Browser with WebSockets to reduce duplicated code and use standardised
XMPP features. In case the required features are not implemented, a fallback to BOSH should be possible.

In comparison to XMPP via WebAPI Proxy, WebSockets simplify the deployment of new features because
they must not be added in two places (the UI and the WebAPI). In comparison to BOSH, WebSockets offer
a stateful TCP-connection based on relatively modern standards while BOSH support is provided by many
frameworks as a fallback option.

5.3. Pros and Cons of the Options

5.3.1. XMPP from the Browser with WebSockets (RFC 7395)

• Good, because when building an SPA-Client, it is sufficient to serve just static files which provides a
higher level of security and performance.

• Good, because actively maintained clients exists (e.g. Stanza.io). Some libraries also support fallback to
BOSH.

• Good, because existing client-certificates can be re-used.

• Good, because existing XMPP-mechanisms are used.

• Bad, because additional server plugins must be enabled which is an additional attack vector.
(Workaround: Implement a custom proxy)

• Bad, because it is not a standard yet (Proposed Standard).

• Bad, because SASL EXTERNAL is not well supported with WebSockets

◦ Openfire does not implement SASL EXTERNAL with WebSockets.

◦ WebSockets connections over authenticated TLS is not extensively specified, support may therefore
vary depending on the browser implementation.

• Bad, because it might lead to security issues (i.e. CSRF) if used in combination with SASL
EXTERNAL/TLS, if no strict request-origin verification is done by the server implementation.

9

5.3.2. XMPP from the Browser with BOSH (XEP-0206)

• Good, because when building an SPA-Client, it is sufficient to serve just static files which provide
higher levels of security and performance.

• Good, because actively maintained clients exists (e.g. strophe.js).

• Good, because existing client-certificates can be re-used.

• Good, because existing XMPP-mechanisms are used.

• Bad, because additional server plugins must be enabled which is an additional attack vector.
(Workaround: Implement a custom proxy)

• Bad, because it is not a standard yet (Draft).

• Bad, because not all HTTP-features might be implemented by the XMPP server, which might be a
security risk.

◦ OPTION preflight requests are not supported by Openfire.

◦ A reverse HTTP proxy might be used, to support additional HTTP security features.

5.3.3. XMPP via WebAPI Proxy

• Good, because it decouples the client from the effective XMPP calls (separation of concerns).

• Good, because only minimal HTTP and JavaScript features are used leading to a broad compatibility.

• Bad, because the indirection can limit the performance significantly.

• Bad, because a server application must be installed and maintained (security updates).

• Bad, because existing XMPP-mechanisms are not used.

10

6. Frontend Framework
To create a user interface for the web application frontend, we must utilise a framework. User Interfaces
are too complex these days to implement them in pure JavaScript.

The frontend framework fundamentally restricts the set of implementation languages and has a profound
impact on the web interface architecture.

The following aspects must be taken into account to find the most suitable architecture style:

• The effort to learn and master the frameworks best practices must be reasonable.

• The framework must be scalable because the web application is not trivial.

• The number of third party libraries must be kept to a minimum to prevent cost-intense maintenance
work in the future.

6.1. Considered Options
• SPA with Angular5

• SPA with React

• SPA with Vue.js

• Django App

6.2. Decision Outcome
Chosen option: Angular because it comes with batteries included and we, therefore, must not rely on
additional third-party libraries for everyday tasks. Because Angular is opinionated, there is a clear way to
do things which will help us to structure the application. For these benefits, we are willing to accept a
steeper learning curve.

6.3. Pros and Cons of the Options

6.3.1. SPA mit Angular5

• Good, because it scales well.

• Good, because the performance is automatically optimised for production builds.

• Good, because it comes with all tools required for building and structuring a sophisticated SPA:
components, modules, dependency injection and more.

• Good, because it is very popular, especially in (modern) enterprise applications.

• Good, because it has a large community and is built by Google.

• Good, because it is opinionated, there is a clear way to do things.

• Good, because it uses TypeScript that brings additional safety.

• Bad, because it is heavyweight and hard to learn/understand.

• Bad, because API migrations in the past were costly and hard.

• Bad, because it uses TypeScript which brings indirections and cannot be eliminated.

• Neutral: It is a tool for everything and cannot be used partially.

11

6.3.2. SPA mit React

• Good, because it scales well.

• Good, because it is lightweight.

• Good, because it encourages functional programming and discourages state.

• Good, because it provides components.

• Good, because it uses modern JavaScript features (ES6).

• Good, because it has a large community and is built by Facebook.

• Bad, because its "lightweightness" leads to lots of third-party dependencies.

• Bad, because it is not trivial to learn (e.g. "pseudo" inline HTML requires custom attributes className).

• Bad, because it only defines a minimal core and many standard problems must be solved manually.

• Bad, because additional libraries such as Redux must be used and understood to create complex
applications.

• Neutral: Uses JS for everything which is a matter of taste.

• Neutral: Can be used partially.

6.3.3. SPA mit Vue.js

• Good, because it scales well.

• Good, because it is lightweight.

• Good, because it provides components.

• Good, because it makes no assumptions about the JavaScript version used.

• Good, because it elegantly separates template (HTML), styling (CSS) and logic (JS).

• Good, because the core team also maintains fundamental additional such as routing and state
management.

• Good, because it has a large and active community.

• Bad, because its "lightweightness" leads to lots of third-party dependencies.

• Bad, because it only defines a relatively small core and some standard problems must be solved
manually.

• Bad, because there is no standard way for non-trivial setups (complex SPA, automated testing, etc.).

• Bad, because additional libraries such as Vuex must be used and understood to create complex
applications.

• Neutral: Can be used partially.

6.3.4. Django App

• Good, because Django has excellent documentation.

• Good, because Django has a (mostly) stable API.

• Good, because Django is used in other projects in the INS.

• Good, because Django has a very active community.

• Bad, because multiple languages (Python and JavaScript) are required in the frontend.

12

• Bad, complex client logic (e.g. paging) must still be implemented in JavaScript and might require an
additional framework.

• Bad, because it is very heavyweight (includes ORM, migrations and much more) with lots of features
that we do not need.

• Bad, because it requires a backend instance in comparison to the SPAs.

13

7. UI Library
To create a modern and aesthetically pleasing cross-browser user experience and to reduce the
implementation efforts, a UI-library shall be used.

7.1. Considered Options
• Angular Material: Material Design components for Angular

• Semantic UI Angular 2

• Spectre.css with custom components

7.2. Decision Outcome
Chosen option: Spectre.css with custom components, because it has minimal third-party dependencies.

Positive consequences:

• From a security point of view, a pure CSS library does not require updates.

◦ An Angular component library might introduce security vulnerabilities (e.g. XSS).

◦ If the CSS library project is discontinued, the XMPP-Grid broker can continue to use the latest
available version.

Negative consequences:

• Additional effort is required for creating and testing new components.

• Angulars component features such as style scoping are not fully utilised.

14

8. Frontend Structure
We must establish a clean architectural structure to keep the frontend maintainable.

8.1. Considered Options
• Monolyth: All components and services in a single module to support fast-prototyping

• Module-Based: Hierarchical Module-Structure, grouping related components.

8.2. Decision Outcome
We decided on the module-based option as it follows software engineering best practices for long-lived
projects. We accept a slower starting phase to benefit in the long-term from a clean architecture.

Following the Angular Style Guide, we decided on two primary modules: core, shared as well as
additional widget and feature modules.

Each module can have submodules to refine the structure even further.

Because the current scope is rather small, all modules are loaded eagerly.

The core module contains the XMPP connection setup, authentication and other functionality that is
required at all times.

The shared module contains simple components that do not depend on any services but are just plain
components used to render common structures, e.g. buttons.

AppModule

Feature Modules

SharedModule

TopicCreationModule TopicDetailsModule TopicOverviewModule

CoreModule

...

TopicWidgetsModule

15

9. XMPP Client Library
To communicate via XMPP from the client via Websockets or Bosh an existing client library shall be used
to benefit from an existing implementation.

Primarily, the following aspects are relevant for the decision, ordered by priority:

1. Community Support: How well is the project maintained

2. Plugin API: Is it easy to create or replace existing plugins

3. TypeScript binding: Are there existing TypeScript bindings?

9.1. Considered Options
• Stanza.io

• strophe.js

9.2. Decision Outcome
Chosen option: stanza.io, because it offers solid community support and provides a clean plugin API with
minimal dependencies. Although strophe.js has a more active community, some plugins have
dependencies on jQuery and are implemented in CoffeeScript. That is the main reason why we selected
Stanza.io over strophe.js.

To fully benefit from TypeScript, we could implement the TypeScript bindings.
https://www.typescriptlang.org/docs/handbook/declaration-files/introduction.html

9.3. Evaluations of the Options

9.3.1. Stanza.io

1. Community Support

◦ > 20 Contributors

◦ primarily maintained by one person

◦ Project receives frequent updates since 2014

◦ Used by 40 Repos and 3 Packages (2018-04-10)

◦ > 10 Pull-Requests closed/merged since 2017-01-01

2. Plugin API

◦ New plugins can easily be added

◦ Existing plugins can be replaced

3. TypeScript binding

◦ No TypeScript bindings exist

9.3.2. strophe.js

1. Community Support (only core repository)

◦ > 50 Contributors

16

◦ minor fixes in the last year by different contributors

◦ Project regularly updated since 2008

◦ Used by >90 Repos and >20 Packages (2018-04-10)

◦ > 25 Pull-Requests closed/merged since 2017-01-01

2. Plugin API

◦ Some Plugins depend on jQuery

◦ Minimal core allows to add and replace existing plugins simply

◦ Many plugins are written in CoffeeScript (whereas the core is in JavaScript)

3. TypeScript binding

◦ Bindings for the core exist (not tested!), see @types/strophe on NPM

17

Time Accounting

Time Spent per Sprint

Time Spent per Component

Estimated Cost

Time Spent per Person

We spent on average 46.29 hours per sprint conforms to the usually intended 40 hours. The
work, however, is not distributed equally over the sprints.

As intended, we spent the most time on the application. The management that includes sprint
planning, standup and advisory meetings, as well as infrastructure tasks, took approximately a
seventh of the projects time budget. We also spent a lot of time on the final submission
document, as it is an essential part of the bachelor thesis.

Using the hourly wage from the module Software Engineering 2, the total project costs would be
66'408.00 CHF in practice.

S
pr

in
t

1

S
pr

in
t

2

S
pr

in
t

3

S
pr

in
t

4

S
pr

in
t

5

S
pr

in
t

6

S
pr

in
t

7

S
pr

in
t

8

S
pr

in
t

9

S
pr

in
t 1

0

S
pr

in
t 1

1

S
pr

in
t 1

2

S
pr

in
t 1

3

S
pr

in
t 1

4

S
pr

in
t 1

5

S
pr

in
t P

re
se

nt
at

io
n

0

10

20

30

40

50

60

70

80

90
16

.7
5

h

39
.7

5
h

39
.2

5
h

44
.7

5
h

38
.5

0
h

25
.5

0
h

66
.4

5
h

70
.0

0
h

24
.5

0
h

67
.2

5
h

18
.7

5
h

43
.7

5
h

48
.5

0
h

76
.7

5
h

72
.2

5
h

48
.0

0
h

spent estimated

ho
ur

s
sp

en
t

384.70 h 385.25 h
Fabian Hauser

Raphael Zimmermann

423.00 h

173.75 h

109.70 h

6.50 h

50.50 h

6.50 h

Application

Final Submission Document

Management

Poster

Presentation

Project Plan

Appendices XLIII

A.4 Time Accounting

1. Meeting 2018-02-19

1.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

1.2. Agenda
1. Administrative tasks

2. Where to start

3. Date and time for the next meeting

◦ 2018-02-26, 09:00 in SFFs office

1.3. Discussions / Decisions
1. Administrative tasks

◦ All documentation artifacts will be published on the project website.

◦ We will use JIRA for project planning.

◦ We will decide later, which continous integration tools we use.

▪ The decision must allow the INS to take over the project after the BA.

▪ reasons for the decision must be documented.

◦ Decisions on the programming language and frameworks are made later.

▪ Our experience and productivity in a given eco system must be considered as well.

2. Where to start

◦ Read the draft XMPP for Security Information Exchange.

◦ Learn more about XMPP (Read the specs and the mentioned XEPs).

◦ IODEF payloads are not the main focus of this project.

◦ It would be nice if a first draft is ready for the IETF Hackathon, starting on March 17.

◦ Main goals of the project:

▪ Design a solid architecture (Openfire plugin or standalone?).

▪ Implement the requirements according to the IETF Draft:

▪ Vanilla XMPP with Discovery und Publish/Subscribe XEPs.

▪ Define Topics/Nodes and manage permissions.

▪ Administrative utilities such as purge, list topics, show number of items, identifier etc.

▪ Most is already implemented in the form of a proof of concept.

3. Date and time for the next meeting:

1

Appendices XLIV

A.5 Meeting Minutes

◦ 2018-02-26, 09:00 in SFFs office

1.4. Upcoming absences
no upcoming absences

2

2. Meeting 2018-02-26

2.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

2.2. Agenda
1. Open questions regarding the task

2. Date for oral exam

3. Is there a presentation during the semester?

4. Date and time for the next meeting

2.3. Discussions / Decisions
1. Open questions regarding the task

◦ Some requirements can influence the chosen architecture fundamentally (e.g. to write a "bot", a
component or a plugin)

▪ a "normal" user (in the "bot" or the component variant) might have limited access to some node.
According to SFF, this issue can be ignored because, in a real-world application, such behaviour
should be limited by strict policies.

▪ SFF emphasises that the authentication mechanisms use must be robust and certificate based.

◦ Next steps:

▪ Write User stories

▪ Draw basic architecture in C4-Diagrams

▪ Risk analysis (e.g. abuse cases)

▪ Evaluation of XMPP servers and libraries. SFF notes that we should not spend too much time
evaluating the server and assume that OpenFire fulfils most requirements.

◦ Issues to address in the XMPP servers and library evaluation:

▪ Can an administrator restrict users to create new topics

▪ Recommended features can be checked queried using service discovery. We can also check for
undesired configurations (e.g. everyone can publish)

▪ Ensure that the libraries support all required functionality, especially authentication!

▪ Assess the performance and usability of the libraries

◦ It is desirable if the service runs is "always on", e.g. to answer subscription requests. However, this
is not strictly required according to SFF.

◦ Any kind of Interface is conceivable, a web interface, however, is very flexible. The core
functionality does not have to be available separately.

◦ The scope of the website is fine according to SFF.

3

2. License

◦ GNU-FDL for the documentation is fine

◦ The license for the code will be AGPL but might change depending on the frameworks we use

3. Is there a presentation during the semester?

◦ An interim with the internal co-examiner will be carried out.

◦ The primary purpose of this presentation is to get familiar with the requirements of the co-
examiner (testing, documentation, protocols etc.)

◦ Should be carried out if a small demo is ready

4. Date for oral exam

◦ If possible, the oral exam will be carried out in early July.

◦ We will continuously complete parts of the document to reduce the examination efforts

5. Date and time for the next meeting

2.4. Upcoming absences
no upcoming absences

4

3. Meeting 2018-03-05

3.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

3.2. Agenda
1. Discuss and clarify Requirements/Wireframes

2. Current state of the Task Description

3. Date and time for the next meeting

3.3. Discussions / Decisions
1. Discuss and clarify Requirements/Wireframes

◦ We discussed the open issues in the current requirements draft.

▪ The application is meant to run in production and must, therefore, meet strict security
requirements

▪ Especially TLS >= 1.2 and certificate-based

▪ The existing python scripts were the prototype and this project is intended to be a proper
implementation

▪ Response time is not very crucial for this application as it is designed for maintenance work
and not real-time interventions.

▪ We must propose an authentication model, e.g. using TLS mutual authentication and exactly
one broker user.

▪ SFF notes that SASL is quite complex. We might not need it although the IETF draft explicitly
requires it.

▪ The number of consumers and producers depends strongly on the concrete application. In most
cases, however, there will be much more publishers than subscribers. SFF gave the following
estimates as reference values.

▪ > 1000 Producers

▪ 100 Subscribers

▪ 1-4 Toplevel Topics

▪ > 1000 Subtopics (eg. one for every publisher)

▪ > 10000 persisted items (note that these items might contain large payloads)

▪ We plan to include search, filtering and paging functionality for most listings. We will include
these features in the next requirements draft.

▪ SFF points out that subtopics are missing in the current draft as well as the wireframes. We will
include this in the next requirements draft.

5

▪ SFF notes that a role concept might be needed to simplify the administration. We might be able
to use existing XMPP features for this (e.g. XEP-0144).

▪ According to SFF, Subscription Requests and Validation are nice to have but have low priority.

▪ Instead of validation, unsupported functionality should not be visible

▪ For deleting persisted items, SFF suggests a "bulk delete" functionality, which allows
administrators to delete all items that match certain criteria.

▪ SFF prefers a standalone application over a server plugin to reduce coupling.

▪ The implementation language is not of paramount importance to SFF although he prefers
Python or Java. A single page app written in JavaScript using a Python backend is also a viable
option for him.

▪ We should not rely on too many third-party libraries that save us several hours during the
project but might require extra maintenance effort in the future (SFF gave a Django paging
extension as an example)

2. Current State of the Task Description

◦ SFF will complete the task description after he receives the revised user stories and wireframes.

3. Date and time for the next meeting

◦ 2018-03-12, 09:00 in SFFs office

3.4. Upcoming absences
• No weekly meeting on 2018-03-19 (SFF is absent)

6

4. Meeting 2018-03-12

4.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

4.2. Agenda
1. Discuss Requirements / Wireframes

2. Architectural Decisions

◦ Architectural Decision: Roles

◦ Architectural Decision: XMPP over Websockets/BOSH/Backend

◦ Architectural Decision: Client Framework

3. Current State of the Task Description

4. Date and time for the next meeting

4.3. Discussions / Decisions
1. Discuss Requirements / Wireframes

◦ We will send SFF the updated wireframes and requirements.

◦ Next week, SFF will accept/reject the current state as the target set of requirements for the thesis.

◦ SFF considers the current wireframes as good.

2. Architectural Decisions

◦ Architectural Decisions Template

▪ SFF appreciates the current format.

▪ We must give more context for non-experts (e.g. what is an XMPP-Bot?).

◦ Architectural Decision: Roles

▪ We discussed the pros and cons as described in the Architectural Decision.

▪ The biggest downside is the limited Openfire support as well as the deferred state of XEP-0248.

▪ SFF ratifies this solution.

◦ Architectural Decision: XMPP over Websockets/BOSH/Backend

▪ SFF says, that this is an interesting approach to experiment with.

▪ We must conduct experiments to ensure that all functionality indeed works as expected.

▪ SFF says, that from a security aspect, a new interface is not that bad as long as it uses secure
authentication mechanisms such as TLS.

▪ If we decide to use WebSockets/BOSH, we should investigate how an adapter could be
implemented.

7

◦ Architectural Decision: Client Framework (e.g. React, Vue, Angular)

▪ For SFF, the most important criteria is to not rely on too many third-party dependencies.

▪ Otherwise, we should use the best tool for the task.

▪ The institute has not preferred framework.

3. Current State of the Task Description

◦ Will be finished until the next meeting, based on our revised requirements.

◦ SFF will send the current draft.

4. Date and time for the next meeting

◦ No weekly meeting on 2018-03-19

◦ Next weekly meeting is on 2018-03-23 10:00

4.4. Upcoming absences
• No weekly meeting on 2018-03-19 (SFF is absent)

8

5. Meeting 2018-03-23

5.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

5.2. Agenda
1. Discuss Requirements / Wireframes

2. Current State of the Task Description

3. The current state of co-examinator

4. "Broker" Term

5. Architectural analysis with an industry expert (XGB-97)

6. Date and time for the next meeting

5.3. Discussions / Decisions
1. Discuss Requirements / Wireframes

◦ SFF accepts the current state of the wireframes.

2. Current State of the Task Description

◦ We collectively declared the Task Description final.

◦ SFF suggests to move it up in the document before the abstract (XGB-105).

3. The current state of co-examinator

◦ Prof. Dr Thomas Bocek is the co-examinator of this thesis.

◦ We will organise the interim presentation in 2-5 weeks from now, ideally combined with a weekly
meeting and not on Tuesdays.

4. "Broker" Term

◦ While reading the XMPP-Grid IETF draft, we were confused by the definition of "Broker", and
whether it applies to our application.

◦ SFF sees no discrepancy. We might not implement the complete broker but at least parts of it.

5. Architectural security analysis with an industry expert (XGB-97)

◦ SFF suggests conducting the security analysis with Tobias Brunner on a Monday.

6. Date and time for the next meeting

◦ No weekly meeting on 2018-03-26 (SFF absent)

◦ No weekly meeting on 2018-04-02 (Easter Monday)

◦ Next weekly meeting on 2018-04-09

9

5.4. Upcoming absences
• No weekly meeting on 2018-03-26 (SFF absent)

• No weekly meeting on 2018-04-02 (Easter Monday)

10

6. Meeting 2018-04-09

6.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

6.2. Agenda
1. Current State and Next Steps

2. Administrative Tasks

3. Date and time for the next meeting

6.3. Discussions / Decisions
1. Current State and Next Steps

◦ rzimmerm presents a demo of the current client

◦ fhauser explains the TLS client certificate issues we encountered in the last weeks.

◦ SFF suggest to make and document assumptions (eg. nginx and openfire are co-located) and begin
with the implementation

◦ SFF suspects issues with the XMPP client libraries

2. Administrative Tasks

◦ Intermediate Presentation: SFF suggest we do this in the next three weeks with a working demo
including XMPP

◦ Final Presentation:

◦ 2018-06-27 is the ideal date for rzimmerm and fhauser

◦ We will contact Prof. Dr. Thomas Bocek concerning this date

◦ SFF will contact Dr. Ralf Hauser

3. Date and time for the next meeting

◦ Next weekly meeting on 2018-04-16

6.4. Upcoming absences
none

11

7. Meeting 2018-04-16

7.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

• Tobias Brunner

Minute Taker: rzimmerm

7.2. Agenda
1. Administrative Tasks

2. Demo

3. Architectural Security Review

4. Date and time for the next meeting

7.3. Discussions / Decisions
1. Administrative Tasks

◦ intermediate presentation

▪ No response yet from Prof. Dr. Thomas Bocek. We will ask him today in the exercises session.

▪ SFF is unavailable next Monday and suggests to do the presentation without him

◦ Final presentation

▪ No response yet from Prof. Dr. Thomas Bocek. We will ask him today in the exercises session.

▪ SFF will contact Dr. Ralf Hauser until next week

2. Demo

◦ fhauser demonstrates a working XMPP connection from the Angular application using TLS with
Client certificates

◦ rzimmerm demonstrates the generic data forms implementation

◦ We will enable SFF to try it out with his setup next Week.

3. Architectural Security Review

◦ Tobias Brunner notes, that TLS Client Certificates without an Origin policy can be problematic

▪ When using WebSockets or Bosh, the XMPP server (or Nginx) must verify the Origin header

4. Date and time for the next meeting

◦ SFF is unavailable next Monday.

◦ The meeting is postponed to 2018-04-26

7.4. Upcoming absences
• SFF: 2018-04-23

12

• fhauser: 2018-04-30

13

8. Meeting 2018-04-26

8.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

8.2. Agenda
1. Administrative Tasks

2. How to Test-Drive

3. Presentation Date

4. Review: Issues we encountered

5. Date and time for the next meeting

8.3. Discussions / Decisions
1. Administrative Tasks

◦ The Interim presentation took place on Monday

2. How to Test-Drive

◦ SFF wants to try out the application as discussed last week

◦ To use an existing XMPP server, we recommend using the development setup with another
upstream XMPP server

▪ The CA and Client Certificate for connecting to the XMPP server must be replaced

▪ The upstream URL must be replaced

◦ We will publish an alpha release this week

3. Presentation Date

◦ Prof. Dr. Thomas Bocek is available on 2018-06-27

◦ SFF will clarify if this date works for the other groups and the expert as well.

4. Review: Issues we encountered

◦ We were missing some functionality in the XMPP standards

▪ loading all available configuration options before the creation of a topic

▪ Lost updates when updating the topic configuration (eg. max-items and node_type)

◦ We decided to only focus on the features as Openfire support it

5. Date and time for the next meeting

◦ fhauser is absent on 2018-04-30 (Zivilschutz)

◦ The meeting is postponed to 2018-05-07

14

8.4. Upcoming absences
• fhauser: 2018-04-30 (Zivilschutz)

15

9. Meeting 2018-05-07

9.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

9.2. Agenda
1. Review: Test-Drive

2. Prioritisation: On what should we focus?

3. Presentation Date

4. Date and time for the next meeting

9.3. Discussions / Decisions
1. Review: Test-Drive

◦ SFF has not been able to try it out yet.

◦ SFF wants to have a look at it tomorrow

2. Prioritisation: On what should we focus?

◦ We discussed all open user stories

◦ The core functionality is (almost) complete

▪ Subtopics/Parent Collections view is missing

▪ Subscription view is missing

▪ Persisted Items

◦ SFF wants us to add persisted items next

▪ Autocomplete has a low priority for SFF

◦ We also discussed the "problematic" user stories, e.g. that a logout mechanism is not possible.

▪ We agree that they are no show-stoppers.

3. Presentation Date

◦ Prof. Dr. Thomas Bocek is available on 2018-06-27

◦ SFF will clarify if this date works for the other groups and the expert as well.

4. Date and time for the next meeting

◦ SFF is absent on 2018-04-14

◦ The meeting is postponed to 2018-05-17, 09:00

16

9.4. Upcoming absences
• SFF: 2018-04-14

• Whitmonday: 2018-04-21

17

10. Meeting 2018-05-17

10.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

10.2. Agenda
1. Current State & Issues

2. Review: Test-Drive

3. Presentation Date

4. Date and time for the next meeting

10.3. Discussions / Decisions
1. Current State & Issues

◦ We showed SFF the demo of the persisted items view

◦ We discussed the limitations of the XEPs (XEP-0060, XEP-0059) and their implication on the feature
set that we can implement

▪ For SFF it’s not the highest priority to implement these features (e.g. autocomplete, search and
filtering)

2. Review: Test-Drive

◦ SFF was quite busy and has not had the time yet to try it out

3. Presentation Date

◦ SFF will contact Dr. Ralf Hauser today

4. Date and time for the next meeting

◦ Next weekly meeting on 2018-04-28

◦ If SFF has feedback concerning the test drive, a short-dated meeting will be carried out on 2018-04-
24.

10.4. Upcoming absences
• Whitmonday: 2018-05-21

18

11. Meeting 2018-05-28

11.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

11.2. Agenda
1. Review: Test-Drive

2. Presentation

3. Date and time for the next meeting

11.3. Discussions / Decisions
1. Review: Test-Drive

◦ The location of the install instruction was not clear

◦ Having a documentation repository can be confusing

◦ We will add a note admonition to the documentation page

2. Presentation

◦ The date and time for the presentation is fixed: 2018-06-27T15:00

◦ We will start with a presentation (20-30 minutes) covering…

▪ the problem

▪ our solution

▪ the biggest challenges

▪ special/notable efforts

▪ demo

3. Date and time for the next meeting

◦ Next weekly meeting on 2018-06-04 09:00

11.4. Upcoming absences
None

19

12. Meeting 2018-06-04

12.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

12.2. Agenda
1. Review Test-Drive

2. Discuss Abstract

3. Project state

4. Date and time for the next meeting

12.3. Discussions / Decisions
1. Review Test-Drive

◦ SFF noted the following issues:

▪ The application is slow in SFFs setup, which might be improved by modifying the TLS options
(proxy_ssl_session_reuse and proxy_request_buffering). Issue: XGB-217.

▪ Timeouts occur even if manually configuring a bigger value. Issue: XGB-216.

▪ The page size is too small and should be configurable or at least 50 elements. XGB-217.

▪ The error message when returning 403 can be improved ("connection lost").

▪ As discussed, this can be fixed properly by configuring nginx differently.

2. Project state

◦ We added a new installation guide.

◦ We wrote more documentation.

▪ We will send a draft on Thursday to SFF for review.

◦ We will address the issues from the test drive.

◦ We will extend the e2e tests if we have enough time.

3. Discuss Abstract

◦ SFF suggests extending the implementation section.

▪ Discuss Architecture in one paragraph and the functionality in another one.

▪ clarify that it’s a 100% web-based application that (usually) requires a proxy.

▪ Try to "sell" the project.

▪ Can be longer.

▪ The target audience has generic software know-how (e.g. knows what JS is) but has no
expertise in XMPP.

20

◦ SFF says, that the management summary is not necessary.

4. Date and time for the next meeting

◦ Will be arranged at short notice if needed.

12.4. Upcoming absences
None

21

13. Meeting 2018-06-13

13.1. Attendees
• Fabian Hauser, fhauser

• Raphael Zimmermann, rzimmerm

• Prof. Dr. Andreas Steffen, SFF

Minute Taker: rzimmerm

13.2. Agenda
1. Signing of the usage rights

2. Abstract status

3. Review of the final submission document draft

4. Electronic submission

5. Project transfer

13.3. Discussions / Decisions
1. Signing of the usage rights

◦ SFF signed the usage rights.

2. Abstract status

◦ SFF accepted and forwarded our abstract to the administration.

3. Review of the final submission document draft

◦ SFF notes that he would have prefered parts of the appendix (eg. architectural decisions) in the
main content.

◦ The IODEF parts are not 100% accurate anymore and can safely be removed.

4. Electronic submission

◦ According to SFF, it is sufficient to upload the artifacts via the official tools.

5. Project transfer

◦ We will install SFF as organisation administrator on our GitHub repository.

◦ Further steps can be arranged bilaterally.

22

Appendices LXVI

A.6 Requirements

The following sections describe the primary requirements in the form of user sto-
ries [4]. Figure 1 shows an overview of the primary use stories.

FIGURE 1: UML use case diagram presenting an overview of the pri-
mary user stories.

A.6.1 Authentication

A.6.1.1 Login

As an Administrator,
I want to log in
- preferably using an existing client TLS certificate -
so that only I can inspect and manage topics.

A.6.1.2 Secure XMPP Authentication

As an Administrator concerned with security requirements,
I want to use either SASL EXTERNAL or SASL SCRAM mechanism for authentica-
tion -

• preferably the SCRAM-SHA-256-PLUS variant and

• preferably using mutual certificate-based authentication including revocation
status checking

- so that the controller is fully compatible with the XMPP-Grid standard [8].
To achieve this goal, I am willing to accept:

• More costly and less user friendly authentication

• limited compatibility of supported XMPP servers

Appendices LXVII

A.6.1.3 Secure XMPP Connection

As an Administrator concerned with security requirements,
I want to use minimally TLS 1.2 [RFC5246] to communicate with the XMPP server
at all times
to achieve maximal security and compatibility with the XMPP-Grid standard [8].

A.6.1.4 Secure Connection

As an Administrator concerned with security requirements,
I want to use minimally TLS 1.2 [RFC5246] to communicate with the broker
to achieve maximal security.

A.6.1.5 Multiple Administrators

As an Administrator,
I want to grant access to administrators
so that they can also manage the application.

A.6.1.6 Audit Trail

As an Administrator concerned with security requirements,
I want to be able to access an audit log
- preferably using existing XMPP mechanisms -
so that I can reconstruct what other Administrations did on the controller.

A.6.1.7 Logout

As an Administrator,
I want to log out
so that I can terminate a session.

A.6.2 List Topics and Collections

A.6.2.1 List All Topics

As an Administrator,
I want to see a list of all topics of the associated controller
so that I can quickly assimilate which topics exist.

A.6.2.2 List All Top-Level-Collections

As an Administrator,
I want to see a list of all top-level-collections of the associated controller
so that I can quickly assimilate which collections exist.

A.6.2.3 List All Parent-Collections of a Topic

As an Administrator,
I want to see a list of all transitive parent collections that contain a given topic
so that I can quickly assimilate in which collections items are published.

Appendices LXVIII

A.6.2.4 List All Subtopics and Subcollection of a Collection

As an Administrator,
I want to see a list of all collections and topics that a given collection contains
so that I can quickly assimilate the collection hierarchy.

A.6.2.5 List Available topics With Limited Access (optional)

As an Administrator,
I want to see a list of all topics of the associated controller to which I have limited
access to,
to simplify troubleshooting and locate errors.

A.6.2.6 List Available collections With Limited Access (optional)

As an Administrator,
I want to see a list of all collections of the associated controller to which I have limited
access to,
to simplify troubleshooting and locate errors.

A.6.2.7 Topic and Collection Paging

As an Administrator,
I want to be able to page through any set of collection/topic with more than 10 Items
so that I can work with more than 1000 collections and topics more effectively.

A.6.2.8 Topic and Collection Name Filter

As an Administrator,
I want to be able to quickly filter any set of collections/topics with more than 10
Items
so that I can work with more than 1000 collections and topics more effectively.

A.6.3 Create a New Topic

As an Administrator,
I want to create a new topic on the associated controller
so that I am not tied to a fixed set of topics.

A.6.4 Create a New Collection

As an Administrator,
I want to create a new collection on the associated controller
so that I can flexibly patch topics together.

A.6.4.1 Override Default Topic Configuration

As an Administrator in the process of creating a new topic,
I want to override the default configuration (e.g. the affiliations)
so that I can restrict access and provide reasonable defaults.

Appendices LXIX

A.6.4.2 Override Default Collection Configuration

As an Administrator in the process of creating a new collection,
I want to override the default configuration (e.g. the affiliations)
so that I can restrict access and provide reasonable defaults.

A.6.4.3 Initial topic Consumers and Providers

As an Administrator in the process of creating a new topic,
I want to specify an initial set of consumers and providers
so that I can restrict access to that topic and provide reasonable defaults.

A.6.4.4 Initial Collection Consumers

As an Administrator in the process of creating a new collection,
I want to specify an initial set of consumers
so that I can restrict access to that collection and provide reasonable defaults.

A.6.5 Delete an Existing Topic

As an Administrator,
I want to delete an existing topic on the associated controller
so that I can get rid of obsolete topics.

A.6.6 Delete an Existing Collection

As an Administrator,
I want to delete an existing collection on the associated controller
so that I can get rid of obsolete collections.

A.6.6.1 Fault Prevention On Topic-Delete

As an Administrator in the process of deleting a topic,
I want a mechanism to prevent me from deleting the wrong topic on the associated
controller
(e.g. require me to enter the name of the topic manually).

A.6.6.2 Fault Prevention On Collection-Delete

As an Administrator in the process of deleting a collection,
I want a mechanism to prevent me from deleting the wrong collection on the associ-
ated controller
(e.g. require me to enter the name of the collection manually).

A.6.7 Manage Topic/Collection Subscriptions

A.6.7.1 List Consumers

As an Administrator,
I want to list all consumers (including their JIDs) of a given topic/collection on the
associated controller,
so that I can verify that specific consumers are subscribed, and others are not.

Appendices LXX

A.6.7.2 Inspect Detailed Subscription Configuration

As an Administrator,
I want to inspect the detailed topic/collection subscription configuration of a given
consumer,
so that I can reproduce and reason about the receipt of data on that consumer and
find potential misconfiguration.

A.6.7.3 Partially Modify Subscription Configuration

As an Administrator,
I want to modify parts of the topic/collection subscription configuration of a given
consumer,
so that I can fix misconfiguration.

A.6.7.4 Unsubscribe Consumer

As an Administrator,
I want to manually unsubscribe a specific consumer from a particular topic/collection
on the associated controller,
so that I can remove obsolete or undesired subscriptions.

A.6.7.5 Subscribe Consumer

As an Administrator,
I want to manually subscribe a specific consumer on a particular topic/collection on
the associated controller,
so that I can faster setup and manage consumers.

A.6.8 Manage Topic Affiliations

A.6.8.1 Inspect Affiliations

As an Administrator,
I want to list all Affiliations (JID and "Role") for a particular topic/collection on the
associated controller
so that I can find potential misconfiguration.

A.6.8.2 Modify Affiliations

As an Administrator,
I want to modify the Affiliation ("Role") of a given JID for a particular topic/collection
on the associated controller
so that I can fix potential misconfiguration.

A.6.8.3 Fault Prevention When Modifying My Affiliation

As an Administrator in the process of modifying my Affiliation for a particular
topic/collection on the associated controller,
I want a mechanism to prevent me from accidentally downgrading my rights.

Appendices LXXI

A.6.8.4 Meaningful Error For Topics/Collection With Limited Access

As an Administrator,
I want to receive a meaningful error message when inspecting a topic/collection to
which I have limited access
so that I can quickly comprehend why the configuration options are limited.

A.6.9 Manage Persisted Items of a Topic

A.6.9.1 Inspect Persisted Items

As an Administrator,
I want to list all persisted items for a particular topic on the associated controller
so that I can get an overview and check for misconfiguration.

A.6.9.2 Filter Persisted Items

As an Administrator,
I want to be able to filter all persisted items of a specific topic by

• the timestamp of its publication

• the publishers JID

so that I can work with more than 10000 persisted items more effectively.

A.6.9.3 Paged Persisted Items

As an Administrator working with filtered persisted items,
I want to be able to page through the resulting items
- given that this feature is supported by the associated controller -
so that I can work with more than 10000 persisted items more effectively.

A.6.9.4 Delete a Persisted Items From a Topic

As an Administrator,
I want to delete a particular persisted item from a specific topic
- given that this feature is supported by the associated controller -
so that I can clean up test items and remove obsolete or corrupted items.

A.6.9.5 Purge All Persisted Items From a Topic

As an Administrator,
I want to purge persisted items from a specific topic
- given that this feature is supported by the associated controller -
so that I can clean up test items and remove obsolete or corrupted items.

A.6.9.6 Delete Set of Persisted Items From a Topic (optional)

As an Administrator,
I want to delete a set of persisted item that match a given criteria from a specific
topic
- given that this feature is supported by the associated controller -
so that I can clean up test items and remove obsolete or corrupted items.

Appendices LXXII

A.6.10 Manage Subscription Requests (optional)

A.6.10.1 List Subscription Request

As an Administrator,
I want to list pending subscription requests for a given topic
- given that this feature is supported by the associated controller -
so that I can quickly assimilate pending requests.

A.6.10.2 Accept Subscription Request

As an Administrator,
I want to accept a pending subscription request for a given topic
- given that this feature is supported by the associated controller -
to enable more dynamic access models than just maintaining a black- or whitelist.

A.6.10.3 Reject Subscription Request

As an Administrator,
I want to reject a pending subscription request for a given topic
- given that this feature is supported by the associated controller -
so that I can deny user access in accordance with the XMPP standards.

A.6.11 Validate Controller Configuration (optional)

A.6.11.1 Validate Supported XEPs Configurations

As an Administrator,
I want to validate that a minimum set of XEPs are supported by the associated con-
troller
so that I can quickly identify incompatibilities.

A.6.11.2 Validate Optional XEP Implementations

As an Administrator,
I want to validate that the required features that are marked as optional or recom-
mended in the XEPs are implemented by the associated controller
so that I can quickly identify incompatibilities.

Appendices LXXIII

A.7 Wireframes

FIGURE 2: Login-screen wireframe

FIGURE 3: Controller overview wireframe

Appendices LXXIV

FIGURE 4: All collections wireframe

FIGURE 5: All topics wireframe

FIGURE 6: New collection wireframe

Appendices LXXV

FIGURE 7: New topic wireframe

FIGURE 8: Collection overview wireframe

FIGURE 9: Topic overview wireframe

Appendices LXXVI

FIGURE 10: Topic/Collection affiliations wireframe

FIGURE 11: Topic/Collection configuration wireframe

FIGURE 12: Topic parent collections items wireframe

Appendices LXXVII

FIGURE 13: Persisted items wireframe

Appendices LXXVIII

A.8 Comparison of XMPP Server and Libraries

A.8.1 Server

To find a suited server to develop, test and document our application with, we con-
sidered the three major open source XMPP servers, which are still under active main-
tenance and provide extensive documentation on their XEP-implementations.

For our implementation, we might require the following XEPs respectively RFCs.
Any deviations are noted under “XEP/RFC Support”.

XEP-0004 Data Forms

XEP-0030 Service Discovery

XEP-0059 Result Set Management

XEP-0060 Publish-Subscribe

XEP-0114 Jabber Component Protocol

XEP-0133 Service Administration

XEP-0178 Best Practices for Use of SASL EXTERNAL with Certificates

XEP-0206 XMPP Over BOSH

XEP-0248 PubSub Collection Nodes

RFC-7395 An XMPP Subprotocol for WebSocket

A.8.1.1 Openfire

Programming Language Java

Plugin Architecture Java JAR5

XEP/RFC Support XEP-0133 Partial, also not explicitly supported6

XEP-0178 Partial, also not explicitly supported7

XEP-0248 Partial, as part of outdated XEP-00608

All other required XEPs are supported9

5http://download.igniterealtime.org/openfire/docs/latest/documentation/

plugin-dev-guide.html
6https://issues.igniterealtime.org/browse/OF-284
7https://github.com/Connectify/Openfire/blob/master/src/java/org/jivesoftware/

openfire/net/SASLAuthentication.java and
https://issues.igniterealtime.org/browse/OF-1191

8https://igniterealtime.jiveon.com/thread/38929
9http://download.igniterealtime.org/openfire/docs/latest/documentation/

protocol-support.html

http://download.igniterealtime.org/openfire/docs/latest/documentation/plugin-dev-guide.html
http://download.igniterealtime.org/openfire/docs/latest/documentation/plugin-dev-guide.html
https://issues.igniterealtime.org/browse/OF-284
https://github.com/Connectify/Openfire/blob/master/src/java/org/jivesoftware/openfire/net/SASLAuthentication.java
https://github.com/Connectify/Openfire/blob/master/src/java/org/jivesoftware/openfire/net/SASLAuthentication.java
https://issues.igniterealtime.org/browse/OF-1191
https://igniterealtime.jiveon.com/thread/38929
http://download.igniterealtime.org/openfire/docs/latest/documentation/protocol-support.html
http://download.igniterealtime.org/openfire/docs/latest/documentation/protocol-support.html

Appendices LXXIX

A.8.1.2 Prosody

Programming Language Lua

Plugin Architecture Luascript10

XEP/RFC Support XEP-0059 Not supported

XEP-0178 Not supported

XEP-0248 Not supported

All other required XEPs are supported11

A.8.1.3 Ejabberd

Programming Language Erlang

Plugin Architecture Erlang/Elixir12

XEP/RFC Support XEP-0178 Partial, commercially only13

RFC-7395 Partial, not explicitly supported14

All other required XEPs are supported15

A.8.2 Libraries

To find a suited library to implement our application with, we considered various
open source XMPP libraries, which are still under active maintenance and provide
extensive documentation on their XEP-implementations. We also limited the pro-
gramming languages to Python, Java and JavaScript as discussed in the project meet-
ing of 2018-03-05 (see A.5 Meeting Minutes).

For our implementation, we might require the following XEPs. Any deviations
are noted under “Limitations”.

XEP-0004 Data Forms

XEP-0030 Service Discovery

XEP-0059 Result Set Management

XEP-0060 Publish-Subscribe

XEP-0114 Jabber Component Protocol

XEP-0133 Service Administration

XEP-0178 Best Practices for Use of SASL EXTERNAL with Certificates

XEP-0206 XMPP Over BOSH

XEP-0248 PubSub Collection Nodes
10https://prosody.im/doc/developers/modules
11https://prosody.im/doc/modules and https://prosody.im/doc/xeplist
12https://docs.ejabberd.im/developer/extending-ejabberd/modules/
13Server to server only in community edition
14https://docs.ejabberd.im/xmpp
15http://www.ejabberd.im/protocols

https://prosody.im/doc/developers/modules
https://prosody.im/doc/modules
https://prosody.im/doc/xeplist
https://docs.ejabberd.im/developer/extending-ejabberd/modules/
https://docs.ejabberd.im/xmpp
http://www.ejabberd.im/protocols

Appendices LXXX

RFC-7395 An XMPP Subprotocol for WebSocket (mentioned only if differs from
XEP-0206 implementation status)

Name Language Plugins Limitations

SleekXMPP16 Python 2 Yes17 Not Supported: XEP-114, XEP-133,
XEP-248, XEP-0206
Partial: XEP-006018

SliXMPP19 Python 3 Yes20 Not Supported: XEP-114, XEP-133,
XEP-248, XEP-0206
Partial: XEP-006021

aioxmpp22 Python 3.4 Yes23 Not Supported: XEP-0114, XEP-
0133, XEP-0178, XEP-248, XEP-0206

Smack24 Java Yes25 Not Supported: XEP-0114, XEP-0206

Babbler26 Java Yes27 Not Supported: XEP-0133, XEP-0248

XMPP-FTW28 JS(Browser) Yes29 Not Supported:
XEP-0114, XEP-0133, XEP-0248
Unclear: XEP-0206, XEP-0178
Note: Requires Server Abstraction

Stanza.io30 JS(Browser) Yes31 Not Supported:
XEP-0114, XEP-0133, XEP-0248
Partial: XEP-017832

strophe.js33 JS(Browser) Yes34 Not Supported:
XEP-0114, XEP-0133, XEP-0248
Partial: XEP-017835

16http://sleekxmpp.com/xeps.html
17http://sleekxmpp.com/create_plugin.html
18Client-side only
19https://github.com/poezio/slixmpp/blob/master/docs/xeps.rst
20https://github.com/poezio/slixmpp/blob/master/docs/create_plugin.rst
21Client-side only
22https://docs.zombofant.net/aioxmpp/devel/#from-xmpp-extension-proposals-xeps
23https://docs.zombofant.net/aioxmpp/devel/api/public/index.html#

apis-mainly-relevant-for-extension-developers
24https://download.igniterealtime.org/smack/docs/latest/documentation/extensions/

index.html
25https://github.com/igniterealtime/Smack/tree/master/documentation
26https://sco0ter.bitbucket.io/babbler/xeps.html
27https://sco0ter.bitbucket.io/babbler/customextensions.html
28http://docs.xmpp-ftw.org/manual/
29http://docs.xmpp-ftw.org/
30https://github.com/legastero/stanza.io/blob/master/docs/Supported_XEPs.md
31https://github.com/legastero/stanza.io/blob/master/docs/Create_Plugin.md
32Not explicitly supported
33https://github.com/strophe/strophejs-plugins
34https://github.com/strophe/strophejs-plugins
35Not explicitly supported

http://sleekxmpp.com/xeps.html
http://sleekxmpp.com/create_plugin.html
https://github.com/poezio/slixmpp/blob/master/docs/xeps.rst
https://github.com/poezio/slixmpp/blob/master/docs/create_plugin.rst
https://docs.zombofant.net/aioxmpp/devel/#from-xmpp-extension-proposals-xeps
https://docs.zombofant.net/aioxmpp/devel/api/public/index.html#apis-mainly-relevant-for-extension-developers
https://docs.zombofant.net/aioxmpp/devel/api/public/index.html#apis-mainly-relevant-for-extension-developers
https://download.igniterealtime.org/smack/docs/latest/documentation/extensions/index.html
https://download.igniterealtime.org/smack/docs/latest/documentation/extensions/index.html
https://github.com/igniterealtime/Smack/tree/master/documentation
https://sco0ter.bitbucket.io/babbler/xeps.html
https://sco0ter.bitbucket.io/babbler/customextensions.html
http://docs.xmpp-ftw.org/manual/
http://docs.xmpp-ftw.org/
https://github.com/legastero/stanza.io/blob/master/docs/Supported_XEPs.md
https://github.com/legastero/stanza.io/blob/master/docs/Create_Plugin.md
https://github.com/strophe/strophejs-plugins
https://github.com/strophe/strophejs-plugins

Appendices LXXXI

A.9 Personal Reports

A.9.1 Raphael Zimmermann

This project was an exciting journey for me because I wasn’t familiar with the subject
matter and the XMPP protocol at all.

I was surprised that many of the XEPs we used were still in a draft state even
though they were around for over ten years and implemented in most servers. It
was even more surprising to me that these XEPs were modified significantly, con-
tradicting my wishful thinking to rely on the specification entirely. I also learned,
that having too many optional features in a standard makes working with it tedious,
especially if this functionality seems pivotal.

Because I had no prior experience with Angular, it took much work to under-
stand all relevant underlying concepts. In hindsight, I must admit that I underesti-
mated the complexity and familiarisation period. As a result, I was shifting my focus
unintentionally from other practices that I usually focus on, such as clean layering.
Nonetheless, I am glad to get familiar with Angular and I mostly enjoyed working
with it.

Fabian and I are a well-practised team and as in our study project, working to-
gether was a pleasure.

A.9.2 Fabian Hauser

“The important thing is not to stop questioning.”
— Albert Einstein

I find this quote very fitting for our thesis - not only was it our task to decide on
options, but also keep questioning them to find the best possible solution.

We used architectural design decisions to find and question possible solutions.
This technique supported our problem solving process greatly in my opinion. The
most surprising turn resulting from an architectural decision during the project was
our decision to write a client only application, which I wouldn’t have expected from
the task description.

During the project, I often had the feeling that we didn’t advance as fast as I had
hoped for. I think the main reason for this feeling is the time it took to get familiar
with the complex XMPP standards.

Working together with Raphael was a very pleasant experience. Although we
often worked remote from home, we had great discussions and conversations. Nev-
ertheless, I think that it was helpful that we took the time to meet at least one time a
week, which improved our communication and team spirit.

LXXXII

Declaration of Authorship

We, Fabian HAUSER and Raphael ZIMMERMANN, declare that this thesis and the
work presented in it are our own, original work. All the sources we consulted and
cited are clearly attributed. We have acknowledged all main sources of help.

Fabian Hauser

Raphael Zimmermann

Rapperswil, June 13, 2018

	Task Description
	Abstract
	Management Summary
	Acknowledgements
	Contents
	Introduction
	Motivation
	Present Situation
	Problem and Vision

	Scope Delimitation

	Analysis
	Terminology
	Technical Background
	XMPP (Extensible Messaging and Presence Protocol)
	Relevant XMPP Extensions

	Domain Analysis
	IETF Standard Draft: Using XMPP for Security Information Exchange
	Domain Specific Language

	Requirements Analysis

	Concept
	Architecture
	Actors and Context
	Architectural Style
	Platform
	Authentication and Connection Security
	Concurrency, Scalability and Performance

	Wireframes
	Security Considerations
	The XMPP Protocol
	Client Security
	Server Security

	Security Risk Mitigation
	Development
	Client Security Checklist
	Operations Security

	Implementation and Testing
	Development Setup
	Encountered Problems
	Multiple Administrators
	Audit Trails
	Logout
	XMPP or XEP Standards
	Openfire XMPP Server
	Limited Error Handling

	Code Quality
	Testing
	Documentation

	Discussion and Conclusion
	Achieved Result
	Implemented Requirements
	Architecture
	Implementation

	Lessons Learned
	Project Course
	Architectural Decisions
	Development, Frameworks and Tooling
	Standards

	Future work
	Conclusion

	Bibliography
	List of Figures
	List of Tables
	Glossary
	Appendices
	Project Plan
	Development Guide
	Architectural Decisions
	Time Accounting
	Meeting Minutes
	Requirements
	Authentication
	List Topics and Collections
	Create a New Topic
	Create a New Collection
	Delete an Existing Topic
	Delete an Existing Collection
	Manage Topic/Collection Subscriptions
	Manage Topic Affiliations
	Manage Persisted Items of a Topic
	Manage Subscription Requests (optional)
	Validate Controller Configuration (optional)

	Wireframes
	Comparison of XMPP Server and Libraries
	Server
	Libraries

	Personal Reports
	Raphael Zimmermann
	Fabian Hauser

	Declaration of Authorship

