
Integrating Smart Contracts into the
Bazo Blockchain

Bachelor Thesis

Spring Term 2018

Department of Computer Science
University of Applied Sciences Rapperswil

Authors: Ennio Meier, Marco Steiner
Advisor: Prof. Dr. Thomas Bocek
External Co-Examiner: Sven Stucki
Internal Co-Examiner: Prof. Dr. Andreas Steffen

Integrating Smart Contracts into the Bazo Blockchain 2

Abstract

This thesis focuses on the integration of smart contracts into the Bazo Blockchain with the goal
of creating a platform for decentralized applications. Smart contracts are programs that are
stored on a blockchain and can be triggered by transactions. Smart contracts offer opportunities
in automation and bring along advantages provided by blockchains such as immutability, public
visibility of transactions and decentralization. As blockchains are trust-less protocols, it is guar-
anteed that smart contracts are executed as intended. The integration of smart contracts was
solved by implementing a virtual machine that executes the instructions sent by a transaction.
This stack based virtual machine uses byte arrays as base type, which enables the virtual machine
to deal with numbers of arbitrary length. Working with elements of arbitrary size requires taking
the length of the elements into account, when calculating the gas cost, in addition to the base
cost of the instruction type. Furthermore, the virtual machine was embedded within the mining
application, which required to alter the blockchain protocol and the mining application. As a
result, smart contracts can be deployed and transactions that call functions of smart contracts
can be executed. Calling a smart contract function leads to the execution of the contract in
the virtual machine and persisting the result in the blockchain. The Bazo Blockchain continues
to be a research project, this means it’s not ready for production use due to complex setup
and handling. Follow-up theses could simplify the development of smart contracts for the Bazo
Blockchain by creating a high-level programming language that can be compiled to Bazo virtual
machine instructions.

Integrating Smart Contracts into the Bazo Blockchain 3

Management Summary

Integrating Smart Contracts into the Bazo Blockchain

Introduction The Bazo Blockchain is a blockchain to test diverse mechanisms and al-
gorithms. In the current version mechanisms to run it on mobile devices
and Proof of Stake are integrated. It was only possible to transfer Bazo
coins before this thesis. The idea of this work was to enhance the Bazo
Blockchain with smart contracts.

Solution The integration of smart contracts consisted of two sub goals. First a vir-
tual machine had to be implemented which allows to use byte values as
instructions. Therefore, a smart contract can be written as a set of bytes
and stored on the blockchain with minimal memory usage. The second sub
goal was the integration of the virtual machine into the miner, the appli-
cation responsible for processing the transactions. After that, the code has
been refactored and improved.

Findings The project was evaluated on functionality and performance. With the
creation of a tokenization contract the functionality was tested. In order to
evaluate the performance, a modular exponentiation contract was created
and compared with an implementation of modular exponentiation written in
Go. The tests showed that the required functionality has been implemented.
The performance test showed that the resource efficiency of the virtual
machine could be increased.

Outlook Since writing contracts in instructions of the virtual machine is rather time
consuming and complicated to understand, a compiler could be built which
compiles a more easy to read high level language into the byte code of the
virtual machine.

Integrating Smart Contracts into the Bazo Blockchain 4

Acknowledgements

In this section we would like to thank Prof. Dr. Thomas Bocek for his assistance and inputs
throughout. We were continuously impressed about his enthusiasm for Blockchain technology
and his knowledge about it. There were many occasions where we were extraordinarily grateful
to be able to contribute to the Bazo Blockchain. Building your own virtual machine really
brings great insight into how a computer works on a lower level or how some of the programming
languages are platform independent. We are convinced having worked on such a new and possibly
groundbreaking technology has great benefits for our future careers.

We would also like to thank the other students for their work on the Bazo Blockchain. It has
been an educative experience to work on such a fast-growing project that takes many different
aspects into account.

Integrating Smart Contracts into the Bazo Blockchain 5

Contents

1. Introduction 8
1.1. Motivation . 9
1.2. Description of Work . 9

2. Background and Related Work 10
2.1. Background . 10

2.1.1. Blockchain . 10
2.1.2. Smart Contracts . 10
2.1.3. Transactions . 10
2.1.4. Virtual Machine . 11

2.2. Related Work . 11
2.2.1. How Bazo Works - an Overview . 12
2.2.2. Previous Work . 14
2.2.3. Similar Projects . 14

3. Design 16
3.1. Virtual Machine . 16

3.1.1. Types of Virtual Machines . 17
3.1.2. Guidelines . 18
3.1.3. Notable Design Aspects . 18

3.2. Contract Deployment . 19
3.3. Execution of a Contract Method . 19
3.4. VM Integration . 20

3.4.1. Transaction Types of the Miner . 20
3.4.2. Accounts . 21
3.4.3. Execution Context . 22

3.5. Parser . 23
3.5.1. «Enhanced Bazo Byte Code» . 23
3.5.2. Compile Process . 23

3.6. Smart Contracts . 24
3.6.1. Coding Smart Contracts . 24

3.7. Fee . 26

4. Implementation 27
4.1. Software Architecture . 27
4.2. Protocol . 28

4.2.1. Encoding . 29
4.2.2. Decoding . 29

4.3. Miner . 30
4.3.1. Constructors . 30
4.3.2. VM Entry Point . 30

Integrating Smart Contracts into the Bazo Blockchain 6

4.4. Virtual Machine . 31
4.4.1. Stack . 31
4.4.2. VM Instruction Cycle . 31
4.4.3. Error Handling . 33
4.4.4. Gas Calculation . 33
4.4.5. Trace Function . 34

4.5. Opcodes . 35
4.5.1. Arithmetic . 35
4.5.2. Bool Operations . 35
4.5.3. Comparison Operators . 36
4.5.4. Control Flow Operations . 36
4.5.5. Data Structures . 37

4.6. Context . 37
4.6.1. Data from a Transaction . 38
4.6.2. Data from the Receiver Account . 38

4.7. Parser . 39
4.7.1. Tokens File . 39
4.7.2. Parser File . 40

4.8. Testing . 42
4.8.1. Unit Testing . 42
4.8.2. Fuzz Testing . 43
4.8.3. Integration Testing . 43

5. Evaluation 44
5.1. Tokenization Contract . 44

5.1.1. Results . 44
5.2. Benchmarking Contract . 44

5.2.1. Results . 45

6. Conclusion 48
6.1. Future Work . 49

A. Installation Guidelines 53

B. Opcodes 56

C. Tokenization Contract 59

D. Definition of Task 61

Integrating Smart Contracts into the Bazo Blockchain 7

Glossary

instruction set The instruction set is the program or contract itself.
It is an array of opcodes.

opcode Short for operation code. Operation codes are byte
values according to which the vm performs certain
operations.

P2P Peer to peer package, used to communicate between
miners and clients.

panic Terminal exception in Go.
Proof of Stake Consensus mechanism for blockchain.
Proof of Work Consensus mechanism for blockchain.

Integrating Smart Contracts into the Bazo Blockchain 8

1. Introduction

The Bazo
Blockchain

The Bazo Blockchain was started as a research project at the University of
Zürich in cooperation with a Financial Service Provider. The first goal of
Bazo as a research project was, to provide consumer bonus coins based on
blockchain technology for the financial service provider.

Benefits of a
Blockchain
Based Solution

The most important benefit of a blockchain based solution is the reduction
of administrative work for the financial service provider and the businesses
taking part in the coin redemption program. This is because a business
contract between financial service provider and business has to be created
for every product or service before a consumer can buy them with the bonus
points.

Intentions Since the consumer bonus coins become coins of a cryptocurrency the in-
tention is to get businesses and customers to exchange goods directly with
bonus coins without the financial service provider as a third party. As men-
tioned above this is not yet the case, the customers can redeem their coins
only via the financial service provider who previously created contracts with
the businesses to provide their services for the customers.

Vision With the new solution the financial service provider would only take on the
role as exchange point of Bazo coins against fiat currency. Businesses and
customers could use the consumer bonus coins in the same way as an actual
currency.

Evolution of
Bazo

Although the research project with the financial service provider continues,
the requirements of this thesis are independent from the requirements of the
financial service provider. In the spirit of the name Bazo, which means base
in Esperanto, the vision for Bazo is to become a foundation for decentralized
applications.

Scope of Work As smart contracts are an important part of the foundation on which such
distributed applications are built on, this thesis provides the environment
on which smart contracts can be run on by building a virtual machine (VM)
and integrating it into the miner.

Integrating Smart Contracts into the Bazo Blockchain 9

1.1. Motivation

Context As a blockchain in its simplest form solves the problem of keeping track
on who owns what and making transactions of such goods, there is still
a huge chance for automation and reliability. In this stage the blockchain
is basically just a ledger but with the integration of smart contracts, one
transaction can trigger a multitude of different actions which otherwise had
to be executed manually. Triggering the execution of a smart contract is
much faster and more reliable than a human reacting to a received trans-
action towards one account. The limitation here is of course that there has
to be a set of transactions whichs can be dealt with in the same manner to
make automation work but this is usually the case.

Chance As transaction speed and cost approach nearly zero compared to traditional
payment systems like paying a bill at the post office, it is more and more
feasible to make even very small transactions. This could be used to pay
content creators like journalists, artists or musicians fairer by using smart
contracts creating a small transaction each time a video or article is viewed.
This is just an example and having provided the base, of course many other
things can be built upon such a system.

Solution Since the participants of the blockchain are free to exchange coins for goods
or services, a smart contract facilitates these value transactions as it states
in a programming language according to what terms a party is ready to do
business with other parties and also makes such transactions faster as there
is no involvement of humans in order to verify or execute the transaction.
One can be sure that a valid call of the contract results in its execution
according to the terms described in it.

Summary In the context of automation, speed and transparency, smart contracts pro-
vide a huge benefit to the blockchain.

1.2. Description of Work

This thesis is concerned with the integration of smart contracts into the Bazo Blockchain. The
goal of contract integration contained multiple subgoals. First a virtual machine had to be built
which is able to execute the code later stored on the blockchain. The second subgoal was to
implement the VM into the miner of the Bazo Blockchain because contract execution should be
part of transaction verfication.

Integrating Smart Contracts into the Bazo Blockchain 10

2. Background and Related Work

The section Background introduces the tools and technologies used in the Bazo Blockchain. In
the section Related Work the theses of other students who worked on the Bazo Blockchain and
some independent projects are described.

2.1. Background

2.1.1. Blockchain

A blockchain is a distributed database. It consists of blocks of data chained together by hash
functions. The data inside these blocks are transactions. In order to make the transactions
non-repudiable digital signatures are used. The transactions are validated by a miner. The
miner validates the signatures and checks if the assets transmitted by the transaction, usually
tokens or coins representing a real monetary value, actually exists on the account. Since the
Bazo Blockchain is account based, it also updates the balance of the account according to the
transmitted value. Previous theses in the context of Bazo dive deeper into cryptocurrencies and
blockchains. [16] [5]

2.1.2. Smart Contracts

A smart contract is basically an agreement or contract written in computer code, saved in a
transaction and therefore distributed over the whole network. The smart contract can then be
called by another transaction and is executed by a VM which is part of the miner.

2.1.3. Transactions

In the context of data base management systems a transaction is a unit of work performed within
the system. [13] This definition is also applicable for blockchains. As later explained there are
multiple transaction types and only some are used to send coins. Others are used mostly to
change the system state or create a new account.

Integrating Smart Contracts into the Bazo Blockchain 11

2.1.4. Virtual Machine

A virtual machine is an abstraction layer. A VM abstracts a program or even a whole operating
system from the hardware it is actually run on to make it portable.

2.2. Related Work

At the time of writing the thesis, the Bazo Blockchain Github organization contains the software
systems as described in Figure 2.1. There are also some smaller tools which are not further
described. Figure 2.1 shows the Bazo Blockchain and its most important software systems. It
also describes how the systems interact with each other and with the out world. It shows multiple
miner instances to represent the blockchain and to describe how the miners interact with each
other.

Figure 2.1.: Bazo Blockchain system context diagram

https://github.com/bazo-blockchain

Integrating Smart Contracts into the Bazo Blockchain 12

Miner The miner is at the heart of the blockchain. It validates transactions, keeps
the ledger up to date, executes smart contracts via the VM and broadcasts
new transactions or blocks to other miners.

Wallet The wallet allows users to operate on the blockchain. It also stores the
public/private key pair. [2]

Client The client is used to communicate with the miner by creating and sending
new transactions.

Block Explorer The block explorer is used to view transactions. It basically visualizes the
blockchain.

Miscellaneous There are also some smaller tools, like keypairgen but they are not further
discussed here. The organization on Github is accessible under the following
link: https://github.com/bazo-blockchain.

2.2.1. How Bazo Works - an Overview

In Figure 2.2 one of the miners is expanded, which makes it possible to see its packages and their
relationships with other components.

As shown in Figure 2.2 the transactions sent by the user over the Web API are received and
processed by the P2P package. If it receives a new transaction it will add it to the unprocessed
transaction pool via the Storage package.

The miner will continuously fetch transactions from the unprocessed transactions pool, verify
their signature and their validity, add the transaction hash to the current block and save the
transaction in the processed transaction pool. If the transaction calls a contract, the miner will
call the VM and it will execute the called contract function. After that, the miner will change
its state according to the results of the VM.

https://github.com/bazo-blockchain

Integrating Smart Contracts into the Bazo Blockchain 13

Figure 2.2.: Bazo Blockchain container diagram

Integrating Smart Contracts into the Bazo Blockchain 14

2.2.2. Previous Work

As the Bazo Blockchain was started in 2017 there have been several theses. Within these theses
different aspects of the blockchain have been implemented.

Bazo – A Cryptocurrency from Scratch [16] was written by Livio Sgier. He implemented the
miner during this work. He partitioned the software into the P2P, Storage, Miner and
Protocol package.

A Progressive Web App (PWA)-based Mobile Wallet for Bazo [2] was written by Jan von
der Assen. His work was a proof of concept for a portable wallet which allows for mo-
bile payments in a sandbox environment. In Figure 2.1 the result of his work is represented
as the wallet software system.

A Blockchain Explorer for Bazo [4] was written by Luc Boillat. The Bazo Blockchain Explorer
allows users of the blockchain to inspect blockchain data through a graphical user interface,
requiring no installation to use, since the application is available on the internet as a web
app. [4]

Proof of Stake for Bazo [3] was written by Simon Bachmann. Simon Bachmann studied mul-
tiple algorithms and implementations for Proof of Stake and chose the best for the later
implementation of PoS which was also part of the work.

Design and Prototypical Implementation of a Mobile Light Client for the Bazo Blockchain [5]
was written by Marc-Alain Chételat. The blocks of the Bazo Blockchain only contain the
transaction headers but stores the transactions separately. During his work he implemented
a light client which contains only the transaction headers and their hashes but not the ac-
tual transactions. This allows a client to also run on mobile devices. He also implemented
a multi-signature mechanism which allows to verify transactions within three seconds. To
do this a Bazo signature server is used to check if the accounts balance is high enough to
send the transaction. If it does, the transaction is signed and therefore verified.

2.2.3. Similar Projects

Since the code of NEO and Ethereum is on Github and open source, their implementation has
been studied and sometimes been implemented analogously.

NEO NEO is a blockchain project «that utilizes blockchain technology and digital
identity to digitize assets, to automate the management of digital assets
using smart contracts, and to realize a smart economy with a distributed
network.»[11] NEO utilizes a consensus mechanism called the Delegated
Byzantine Fault Tolerance. NEO is implemented in C#. [14]

Integrating Smart Contracts into the Bazo Blockchain 15

Ethereum The goal of Ethereum is to create a platform for the development of decen-
tralized apps in order to create a «more globally accessible, more free, and
more trustworthy Internet, an internet 3.0». [11] There are several imple-
mentations of the client such as go-ethereum (written in Go), cpp-ethereum
(written in C++) and others. Ethereum’s consensus mechanism is Proof of
Work but a Proof of Stake algorithm is already being developed and likely
to go live in 2018.

What are the
Differences to
Bazo

Both, Ethereum and NEO are public, permission-less smart contract plat-
forms. At the time of writing, the Bazo Blockchain is a permissioned
blockchain because of the initial requirements from the financial services
provider. As for now, the Bazo Blockchain is just a research project. The
goal is to become a public, permission-less platform for decentralized ap-
plications. To reach this goal and to be able to create and maintain a
competitive blockchain, a dedicated team would be needed.

Integrating Smart Contracts into the Bazo Blockchain 16

3. Design

As the term software design is generally defined in a broad way to also be suitable for lager
systems first an elaboration on how the term design is used in this thesis. The word design
itself is defined as: Do or plan (something) with a specific purpose in mind. [15] In previous
theses on Bazo, the chapter design also provides an overview over the software. Therefore, it
was decided to provide an overview over the implementation of the Bazo VM and the parser
and to outline the most important purposes they are built for. This chapter also describes the
goals, requirements, restrictions and an overview of the integration of the VM into the miner.
Furthermore, the orientation taken while building the foundation for the creation, deployment
and execution of smart contracts is explained.

3.1. Virtual Machine

Figure 3.1 shows the VM execution cycle. It describes how the VM executes a smart contract.
Afterwards, different types of VMs are explained and the most important guidelines and goals
that were kept in mind throughout the building of the VM are described.

Figure 3.1.: Virtual machine execution cycle overview adapted from [18] and [6]

Integrating Smart Contracts into the Bazo Blockchain 17

3.1.1. Types of Virtual Machines

There are two types of virtual machines. On the one hand, there are register based virtual
machines. Examples of register based virtual machines are the Lua VM and the Dalvik VM. On
the other, there are stack based virtual machines. The Java Virtual Machine and the .NET CLR
are both stack based virtual machines. [17]

Register based The data structure of where the operands are stored is based on registers of
the CPU, therefore the instructions need to contain the addresses (registers)
of the operands. This leads to longer instructions. Figure 3.2 shows how
adding two number works on a register based virtual machine. [17] The
instruction is ADD R1 R3 R2.

Figure 3.2.: Register based virtual machine

Stack based A stack based virtual machine is based on a LIFO (last in, first out) stack.
Operations are carried out by popping and pushing back results on the
stack. The main advantage is a stack pointer that implicitly addresses
the operands, which means that no addresses are passed in instructions.
The instructions set is longer since POP and PUSH instructions have to be
included to retrieve and store the operands. [17] The instruction set to add
two numbers as shown in figure 3.3 are:

1 POP
2 POP
3 ADD
4 PUSH

Integrating Smart Contracts into the Bazo Blockchain 18

Figure 3.3.: Stack based virtual machine

Design decision Despite the register based virtual machine having advantages such as more
possibilities for optimizations and having no overhead from pushing and
popping, over a stack based virtual machine, we decided to implement a
stack based virtual machine. This decision was most influenced by the
implementation of related projects, namely Ethereum and NEO. Besides
that, the implementation of a stack based virtual machine is simpler and
much more resources are available online.

3.1.2. Guidelines

As the Bazo VM continues to be improved or extended by other students, it was paid attention
to make the software readable, testable, changeable and extendable.

Readability In order to make the code readable code reviews were performed that led
to refactorings.

Testability The code has been written using test driven development, which required
writing testable code. In later stages of the project the tests became very
useful and made necessary refactorings easier.

Extendability
and
Changeability

The code should be structured and decoupled enough to make necessary
changes or extensions to the VM easy for following projects. As described
before, having many tests makes the refactoring of the code easier.

3.1.3. Notable Design Aspects

Fault Tolerance As the VM just executes the instructions it receives without any checks, it
could enter an error state and panic. It must not be possible to crash the
miner with a malicious or erroneous contract.

Informative Er-
ror Messages

Throughout the implementation of the VM it was paid attention to write
informative error messages, since that simplifies the development of a com-
piler, which is known to be a follow-up project. Furthermore, the debugging
of smart contracts should be easy and streamlined as possible.

Integrating Smart Contracts into the Bazo Blockchain 19

3.2. Contract Deployment

State of the
Art

Other blockchains such as Ethereum allow to create and deploy a contract
over an IDE. These contracts can be written in a high level language and
they can be deployed automatically. In this work the foundation for smart
contract deployment and execution has been laid out and designed accord-
ingly. To make it as easy for the end user as mentioned above, a lot more
work and resources would have to be invested.

Current
Contract
Deployment

Currently, contracts are account transactions and as Bazo is permissioned,
have to be created with the root key pair. These transactions are added to
the unprocessed transactions pool of the miner. When creating the account
transaction, the contract and the initial values of the contract have to be
provided. The miner then validates the transaction and creates a contract
account.

Restrictions This means that yet only developers can create new contracts.

Rationale To make contract creation available for account owners, it needs to be pos-
sible to create a contract account with any valid key pair of a Bazo account.
Also the P2P package would have to support the features implemented dur-
ing this work. Both tasks by themselves would have exceeded the scope of
this thesis.

3.3. Execution of a Contract Method

State of the
Art

In other blockchains such as Ethereum, smart contracts can be called via
the wallet or the Web API. The results can be checked via API, wallet or
block explorer.

Current
Contract
Execution

In Bazo a transaction which calls a contract has to be added to the unpro-
cessed transactions pool. The miner takes the transaction out of the pool
and validates it. If the data field of the transaction is set, the miner will
setup the VM context and execute the called function in the VM. After a
successful execution, the changed contract variables are written back.

Restrictions As the features are not yet implemented in the client nor the P2P package,
it is not possible to send this kind of transaction via the Web API of the
miner. It is also not yet possible to check the result, since smart contracts
are not part of the block explorer.

Rationale Implementing the features in the other applications as well would have
exceeded the scope of this work.

Integrating Smart Contracts into the Bazo Blockchain 20

3.4. VM Integration

The VM was integrated into the miner. This section describes the most important aspects of
the already existing miner implementation which influenced the integration of the VM and the
reasons for the adjustments made to the miner. The section also introduces the VM context
which is used to provide data for the VM, gives an overview over the data the VM has access to
and the rationale behind the solution with the context.

3.4.1. Transaction Types of the Miner

In previous works concerning the miner, different transaction types were implemented or ex-
tended. Below it is described what the purpose of these transactions is, how they are extended
in this work and why they were chosen for extention.

FundsTx This type of transaction is used to transfer Bazo coins from one account to
another and can be used by any externally owned account.[16] For this rea-
son it was extended with a Data field to enable users to call smart contract
functions.

1 type FundsTx struct {
2 Header byte
3 Amount uint64
4 Fee uint64
5 TxCnt uint32
6 From [32]byte
7 To [32]byte
8 Sig1 [64]byte
9 Sig2 [64]byte

10 Data []byte
11 }

Figure 3.4.: Struct of the type
FundsTx

Integrating Smart Contracts into the Bazo Blockchain 21

AccTx The account transaction is used to create a new account. As for now, this
type of transaction is only allowed to root accounts, since the signature has
to be signed with the private key of a root account. [16] It is important to
note that since the miner distinguishes between the transaction types for
the corresponding functionality by a switch case in most of its files. It would
have been very time consuming to extend the miner by another transaction.
Therefore and because most importantly a smart contract needs all fields of
an account anyway, it was decided to add the required fields for the contract
to the account transaction and leave them set to nil in a normal account
transaction. The required fields are Contract which stores the code of the
contract and ContractVariables which contains the state variables.

1 type AccTx struct {
2 Header byte
3 Issuer [32]byte
4 Fee uint64
5 PubKey [64]byte
6 Sig [64]byte
7 Contract []byte
8 ContractVariables []byteArray
9 }

Figure 3.5.: Struct of the type AccTx

ConfigTx This type of transaction is used to change system parameters such as block
size, block interval or minimum fee. No changes to the configuration trans-
action were necessary. For more information about this transaction type,
see the thesis of Livio Sgier [16].

StakeTx Since the Bazo Blockchain is in transition from Proof of Work to Proof of
Stake there is a StakeTx transaction type. This type of transaction is being
continuously improved in other works. For more information refer to the
theses of Simon Bachmann [3] and Marc-Alain Chételat [5].

3.4.2. Accounts

An account is the result of processing an account transaction. Account specifically refers to the
object created on the heap of the miner created by an account transaction. Accounts can be
modified by a funds transaction. Figure 3.6 shows the struct for Account.

Integrating Smart Contracts into the Bazo Blockchain 22

1 type ByteArray []byte
2

3 type Account struct {
4 Address [64]byte // 64 Byte
5 Issuer [32]byte // 32 Byte
6 Balance uint64 // 8 Byte
7 TxCnt uint32 // 4 Byte
8 IsStaking bool // 1 Byte
9 HashedSeed [32]byte // 32 Byte

10 StakingBlockHeight uint32 // 4 Byte
11 Contract []byte
12 ContractVariables []ByteArray
13 }

Figure 3.6.: Struct of the type Account

Externally
Owned
Accounts

Externally owned accounts are accounts that are owned by the person who
has access to the combination of the public and private key. Having both,
the person is able to execute transactions from the account. Externally
owned accounts do not have an Issuer, a Contract or ContractVariables.

Smart Contract
Accounts

Smart contract accounts are created and owned by externally owned ac-
counts. The field Issuer is set and shows which externally owned account
issued the account transaction of the contract account. A smart contract
account contains its code in the contract field and if necessary contains
its state in contract variables. Contract variables can be altered through
contract functions.

3.4.3. Execution Context

Consistency Since the blockchain is a distributed database and the VM needs to change
the data of the blockchain eventually, consistency was a very important
aspect of its integration. In order to keep the data of the miner consistent
even after a potential failure of the VM, the context in which the VM is
executed is created by the miner and passed to the VM. This is referred to
as execution context.

Content of the
Context

The execution context is composed with data coming from the transaction
and the account. The execution context contains all the data needed to
start the execution of the contract.

Access to the
Data

Specific instructions that get the value from the context and put it on the
top of the stack are provided. This for example allows the creation of a
contract with functions only the contract issuer can call. In this case, the
issuer field is accessed from the contract to verify ownership.

Integrating Smart Contracts into the Bazo Blockchain 23

3.5. Parser

Since writing all contracts directly in byte code can be very complicated and time-consuming, it
was decided to write a very basic parser. The goal of the parser was to make writing contracts
easier by allowing the usage of labels and comments. Having labels resolves the problem of
counting addresses when using control flow opcodes like JMP and CALL since they generally take
an address as argument and change the program counter accordingly. The parser could be used
as foundation for building a compiler which translates a contract written in a high-level language
into »Bazo Byte Code«. For the rest of this thesis the code that can be interpreted by the parser
is referred to as «Enhanced Bazo Byte Code» and the code the virtual machine operates on and
which is stored on the blockchain as «Bazo Byte Code».

3.5.1. «Enhanced Bazo Byte Code»

Figure 3.7 shows an example of a contract written in «Enhanced Bazo Byte Code». It is possible
to have single line comments and inline comments as well, as seen in line 1 and line 5. Comments
and empty lines are ignored by the parser. The first word in line is either an opcode or a label,
which ends with a colon. Opcodes are optionally followed by arguments. It is predefined what
types of arguments an opcode has. The CALL opcode in line 4 for instance takes a label and a
byte as argument.

1 # This is a simple program which calls a function
2 PUSH 55780
3 PUSH 5
4 CALL addNums 2
5 HALT # stops execution
6

7 addNums:
8 LOAD 0
9 LOAD 1

10 ADD
11 RET

Figure 3.7.: Basic contract with function call written in «Enhanced Bazo Byte Code»

3.5.2. Compile Process

First the parser splits the contract written in «Enhanced Bazo Byte Code» into tokens. A token
consists of a token type and a value. The token type represents a kind of lexical unit e.g. opcode,
label or a sequence of input characters. The token types are the symbols that are processed by
the parser. [1] To get to the «Bazo Byte Code» the resulting set is iterated and the token is
replaced by the corresponding byte value.

Integrating Smart Contracts into the Bazo Blockchain 24

3.6. Smart Contracts

A smart contract consists of an ABI (application binary interface) and one or more callable
functions. Smart contracts are deployed by a transaction (AccTx) and executed by a transac-
tion (FundsTx). When someone wants to call a certain function in a smart contract, a special
transaction to the public address of the smart contract is executed. The transaction contains
an identifier in the data field, so the ABI can match the identifier with the function the caller
wants to execute. Arguments passed to that function are also transmitted in that field. Since
a transaction is processed simultaneously on all nodes of the network, all functions have to be
deterministic.

3.6.1. Coding Smart Contracts

Smart contracts for the NEO blockchain can be developped in C#, Java, Kotlin, F# or Python.
[14] There are different ways to create an Ethereum smart contract. There are different high-
level programming languages that can be compiled to Ethereum byte code. Solidity has been
developed by the Ethereum community and is the industry standard. Solidity is heavily inspired
by JavaScript with the idea to attract JavaScript developers to write smart contracts. In this
section a simple contract is written once in Solidity and once in «Enhanced Bazo Byte Code».

Sample Smart Contact in Solidity

1 contract MyFirstContract {
2 uint myData; //State variable
3

4 function set(uint x) public {
5 myData = x;
6 }
7

8 function add(uint amount) public {
9 myData += amount;

10 }
11

12 function sub(uint amount) public {
13 myData -= amount;
14 }
15

16 function get() public constant returns (uint) {
17 return myData;
18 }
19 }

This contract has the state variable myData. Calling the function set() with an uint parameter
sets the variable. Calling the function add or sub allows the transaction sender to either add or

Integrating Smart Contracts into the Bazo Blockchain 25

subtract a certain amount from that variable. In order to call a function a transaction must be
executed.

Sample smart contract in «Enhanced Bazo Byte Code»

Compiled Smart Contract with ABI would look like this:

1 CALLDATA # Puts the arguments passed to the smart contract
2 # and the function hash on top of stack
3 # ABI:
4 DUP
5 PUSH set
6 EQ
7 JMPIF set
8

9 DUP
10 PUSH add
11 EQ
12 JMPIF add
13

14 DUP
15 PUSH sub
16 EQ
17 JMPIF sub
18

19 HALT
20

21 :set # set function
22 SSTORE myData # stores the variable in ContractVariables
23 HALT
24

25 :add # add function
26 POP
27 SLOAD myData # loads the variable and puts a local copy on the stack
28 ADD
29 SSTORE myData # overwrites the variable in ContractVariables
30 HALT
31

32 :sub # sub function
33 ...

Integrating Smart Contracts into the Bazo Blockchain 26

3.7. Fee

Incentive Running a node in the network carries costs and the node operators want to
be compensated. It is also an incentive to get more people to mine blocks
because they can earn money by doing so.

Security
Aspects of the
Fee

Moreover, the fee can be seen as a way to secure the network. The exe-
cution of a contract must be deterministic. Since the virtual machine is
Turing complete, it is possible to create contracts, which stay in an endless
loop causing the network to get stuck and not accepting new transactions.
Subtracting gas with the processing of every instruction, the processing of
the transaction comes to an end eventually because no more gas is available.

Fees in other
Blockchains

In Ethereum and NEO this fee is called gas. Ethereum calculates the cost
depending on which instruction is used and uses the smallest unit of its
currency. NEO even separates the fee from the actual currency in order to
keep the costs of a transaction stable even if the value of the coin itself rises.
Bitcoin calculates the cost depending on the size of the transaction.

Fees in Bazo The fee is expressed in the smallest unit of Bazo coins. The cost of execution
vary depending on the complexity of the opcode and depending on the size of
the processed elements, since it is possible to work with elements of arbitrary
size. Separating fee from the coins of the blockchain was considered. See
Chapter 6 for more information.

Integrating Smart Contracts into the Bazo Blockchain 27

4. Implementation

This chapter focuses on explaining why things were implemented in a certain manner. In this
chapter the trade-offs and decisions which were made while building the VM are documented.
Since this should be useful for follow-up work, it was done in a way that makes it easier to decide
if something needs to be changed or to help reach the same conclusion.

4.1. Software Architecture

Figure 4.1 shows the structure of the project on package-level and the dependencies among pack-
ages. The miner application was built with software engineering principles in mind. Particular
attention was paid to modularity. This made it easy to integrate the virtual machine into the
existing miner application. Furthermore, the following figure shows which packages were added
and which where modified to integrate smart contracts into the Bazo Blockchain. As the miner
and all other projects are written in Go, the new components are written in Go as well.

Figure 4.1.: UML Package Diagram

Protocol This package contains the building blocks for the Bazo Blockchain. In particular it
contains the structure, encoding, decoding and hashing functions of all transaction types,

Integrating Smart Contracts into the Bazo Blockchain 28

blocks and accounts. In addition a transaction interface is defined, allowing an abstract
treatment of transactions. [16]

Miner The Miner package contains all mining related components. This includes the validation
and consolidation of transactions into blocks, the calculation of the consensus mechanism
and the building of the merkle tree. In addition to that, blockchain related tasks such as
rollback operations and state changes are contained in this package. Access to P2P and
Storage packages are needed in order to handle transactions over the network and signal
storage-related operations. [16] To execute the virtual machine and access its results, the
miner also needs access to the VM package.

VM This package contains the virtual machine itself and all its components, namely the evalua-
tion stack, the call stack, the implementations of data structures and all available opcodes.

P2P All networking related operations are implemented in the P2P package [16]. Since for the
integration of the virtual machine nothing had to be changed, the content of this package
is not discussed any further.

Storage The storage package is concerned with memory-related tasks. The lower-level function-
ality was implemented with the external BoltDB package. Since entries are encoded before
writing to storage and decoded when loaded [16], this package could be left unaltered. For
that reason, this package is also not described further.

BoltDB This package contains the BoltDB package which is an external dependency. BoltDB is
a simple, lightweight key/value base. [16]

Parser The Parser package contains the parser, which consists of a Tokenize and Parse function
and tokens. These components are needed to compile «Enhanced Bazo Byte Code» to a
byte code instruction set that can be interpreted by the virtual machine. This package is
completely stand-alone and does not have any dependencies. The package is also kept in a
separate repository.

4.2. Protocol

As mentioned in Chapter 3.4 the structs of Account, FundsTx and AccTx had to be adapted.
The structs originally had a fixed length. The structs are transferred encoded between the
individual components. The original encoding and decoding functions of those structs is based
on the fixed length of the struct. Since the added fields are optional and have an arbitrary
length, the encoding and decoding functions had to be redesigned. It was decided to use the gob
package, which is a package from the Go standard library. The gob package manages streams
of binary values between an encoder and decoder. A stream of gobs is self-describing. [8] The
main disadvantage is that these functions are no longer platform independent. It was decided to
use gob since all other software system which directly interact with the miner are implemented
in Go and because it is the fastest standard encoding library in Go.

Integrating Smart Contracts into the Bazo Blockchain 29

4.2.1. Encoding

The new encoding function for the AccTx struct is shown in figure 4.2. Switching to gob has
lead to a better readability and to fewer lines of code. The type information is defined in line
2. The function .Encode() in line 12 makes sure that all type information data is sent before it
is needed. [8] The encoding functions of the other structs, that were redesigned are very similar
and therefore not further described.

1 func (tx *AccTx) Encode() (encodedTx []byte) {
2 encodeData := AccTx{
3 tx.Header,
4 tx.Issuer,
5 tx.Fee,
6 tx.PubKey,
7 tx.Sig,
8 tx.Contract,
9 tx.ContractVariables,

10 }
11 buffer := new(bytes.Buffer)
12 gob.NewEncoder(buffer).Encode(encodeData)
13 return buffer.Bytes()
14 }

Figure 4.2.: New gob based encoding function

4.2.2. Decoding

Figure 4.3 shows the decoding function of AccTx. The decoder.Decode() function in line 5
reads the next value from the input stream and stores it in the data represented by the AccTx
interface. [8]

1 func (*AccTx) Decode(encodedTx []byte) *AccTx {
2 var decoded AccTx
3 buffer := bytes.NewBuffer(encodedTx)
4 decoder := gob.NewDecoder(buffer)
5 decoder.Decode(&decoded)
6 return &decoded
7 }

Figure 4.3.: New gob based decoding function

Integrating Smart Contracts into the Bazo Blockchain 30

4.3. Miner

This section describes what changes had to be made to the miner to integrate the VM.

4.3.1. Constructors

AccTxs now have an optional field for contracts and contract variables. If the AccTx is meant
to create an external account nil has to be passed for both parameters in the constructor. If the
FundsTx is intended to transfer coins, the data field has to be nil.

4.3.2. VM Entry Point

The balance of a FundsTx is updated in addFundsTx() in the block.go file. Therefore, it was
decided to use it as entry point for the VM. Figure 4.4 shows the function without parts that
are irrelevant for the integration. Before the function checks whether the transaction calls a
smart contact, it performs various checks, i.e. if the account exists or if the sender has a balance
high enough to transfer the defined amount of Bazo coins. If all these checks are successful the
function validates if the transaction is a valid smart contract call. If so, a new context object
with the receiver account and the transaction is created as seen in line 8. As next step the virtual
machine is initialized with the context object. In line 12 the Exec() function is called which
starts the virtual machine. If the Exec() function returns with an error the execution of the
addFundsTx is aborted and the context changes are not persisted. After the VM execution, the
finalizing steps are carried out, such as updating the balances of both accounts and writing the
block header to storage.

1 func addFundsTx(b *protocol.Block, tx *protocol.FundsTx) error {
2 ... // Various checks
3 // Check if transaction has data and receiver is a smart contract account
4 if tx.Data != nil && b.StateCopy[tx.To].Contract != nil {
5 context := protocol.NewContext(*b.StateCopy[tx.To], *tx)
6 virtualMachine := vm.NewVM(context)
7

8 // Check if vm execution run without error
9 if !virtualMachine.Exec(false) {

10 return errors.New(virtualMachine.GetErrorMsg())
11 }
12 //Update changes vm has made to the contract variables
13 context.PersistChanges()
14 }
15 ... // Finalization
16 }

Figure 4.4.: addFundsTx function

Integrating Smart Contracts into the Bazo Blockchain 31

4.4. Virtual Machine

This chapter describes the most important parts of the VM implementation and the rationale
behind it.

4.4.1. Stack

Maximum
Stack Size

Facing the concern of excess memory usage of the contract on the miner, we
decided to limit the stack size to 1MB which seems to be well above what
the contracts will need. We neglected using the gas amount for maximum
storage determination because it would be just a soft limit.

Data Structure As underlying data structure of the stack, keeping in mind to keep the code
of the VM as short and simple as possible and without unnecessary con-
versions it was decided to use a two dimensional byte array. We neglected
using a simple array of bytes as data structure where elements with greater
length than a byte are pushed using multiple indexes, as it is common when
having no abstraction layer. We have also neglected the use of big.Int as
the underlying data type which is used by Ethereum. Big.Int can also be
of arbitrary length. The reason for this decision was that converting signed
operations to unsigned operations and optimizing the elimination of leading
zeros posed a problem. Still, big.Int was used for many opcodes of the Bazo
VM. A multidimensional byte array was chosen to achieve simplicity, read-
ability and extendability of the code. The downside of smaller conversions
from big.Int to byte array are accepted.

Data Type It was important that the data type used for the underlying data structure
of stack was of arbitrary length or at least very big because of cryptographic
applications. Splitting up an element into multiple bytes so that it can be
saved when using an array of fixed length as underlying data structure would
have been a lot more complex and more error-prone to implement.

Pass by
Reference

We neglected working with references because even though there are more
elements created on the heap of the physical machine, it shouldn’t make a
difference considering the vast availability of resources on modern computers
and our rather small contracts. In hindsight and considering the results of
Chapter 5 working with references and using pass by reference might have
improved the performance of the VM in the benchmark test.

4.4.2. VM Instruction Cycle

This section describes the Exec() function shown in figure 3.1. The instruction cycle can be
described as an end-less loop with a switch statement that interprets the instructions one after

Integrating Smart Contracts into the Bazo Blockchain 32

another and acts accordingly.

Precondition The virtual machine is embedded into the miner. Precondition that the
VM instruction cycle is started is that the transaction must be sent to a
smart contract account and the transaction data field is not empty. If these
preconditions can be fulfilled, the VM instruction cycle is started by the
miner.

Starting point At the starting point of the execution cycle the virtual machine contains
a set of instructions, has access to the execution context and the program
counter set to zero.

Steps The instruction cycle can be divided into three steps which are repeated
over and over again until an invalid instruction occurs. Furthermore, the
execution can be halted by an instruction or if the program counter is out
of bounds. All this steps are handled in the Exec() function. These are the
three steps:

1. Fetch The instruction the program counter points to is fetched. After
it is fetched, the program counter is increased, which then points to
the next element.

2. Decode In this step the instruction is matched with pre-defined opcodes,
which can be interpreted by switch statement of the Exec() function.
Within this section of the function, the costs for the instruction are
subtracted.

3. Execute The instruction is executed according to the opcode. There
are opcodes for arithmetic operations, e.g. ADD, MOD, SUB, for flow
operations e.g. JMP, CALL, RET which are allowed to change the pro-
gram counter and therefore move back and forward in the instruction
set, cryptographic operations, such as SHA3, CHECKSIG and context
operations, e.g. ADDRESS, ISSUER, CALLER, CALLDATA that can be
used to push context data composed from the transaction and the re-
ceiver account to the stack and opcodes for storing and loading state
variables SSTORE, SLOAD. All implemented opcodes are listed in table
B.1.

Return Value The Exec() function returns a boolean. If the return value is true the
execution was successful and no error occurred. If the return value is false
an error occurred.

Persisting state
variables

Changes to the state variables are loaded and persisted explicitly. That
means, when loading a state variable a copy is pushed to the stack, all
changes are made to the copy. The changes are only persisted if the Exec()
function returns with true. This way, there is no need to roll back if the
contract could not be executed successfully.

Integrating Smart Contracts into the Bazo Blockchain 33

4.4.3. Error Handling

Problem Since the virtual machine just processes one instruction after another and
as the contracts are currently written in the opcodes directly, it is easily
possible to make a mistake and write a contract which the VM can not
execute.

Example An example for this is an opcode which tells the VM to push six bytes on
the stack, when there is only one byte left in the instruction set. This causes
an error in the VM which could terminate the miner. This should neither
be possible by accident nor by choice.

Solution As a result, many guards in front of operations which could panic have been
placed. This allows the graceful failure of the VM. As the error handling of
Go works over separate return values they have been added to the functions.

Implementation The message of this error object is later pushed on the stack of the VM
after that the VM halts. Also to make the debugging less complicated, the
name of the opcode in which the error occurred is prepended to the error
message. Therefore, it is possible to determine what caused the error up to
instruction type. An example error message is shown in Figure 4.5.

Things Left
Out

It would also have been possible to provide the number of the instruction
that failed but as the code of a contract gets larger and as the instructions
are not enumerated, it becomes very time consuming to count all codes to
determine which one failed. This seemed not to add value or make contract
creation easier and therefore this has been neglected.

Figure 4.5.: Example of an error message.

4.4.4. Gas Calculation

The goal is to calculate the price based on the instruction and based on the size of the elements
used by the instruction. This was solved by adding a gas price and a gas factor to every opcode.
The gas price shows the base price of the instruction. The gas price is subtracted before the
operation is executed. The gas factor is a multiplier. The length of any element popped from the
stack is divided by 64, rounded up and multiplied by the gas factor. The result of this equation

Integrating Smart Contracts into the Bazo Blockchain 34

is the gas cost that is subtracted when elements are popped from the stack. This ensures that
a sufficient amount of gas is available, before the actual manipulation is done. Figure 4.6 shows
how the gasCost is calculated.

gasCost =
(
lengthelement+63

64

)
× gasFactor

Figure 4.6.: Gas cost equation

4.4.5. Trace Function

The trace function is activated by passing true as a parameter to the Exec() function. The trace
function prints the instruction that is processed, its parameters, the contents of the evaluation
stack and the memory usage to the console. This is useful for debugging. Every opcode has a
list of parameter types. This list shows, which parameters are taken from the instruction set.
Available parameter types are BYTES, BYTE, ADDR and LABEL. The trace function loops through
the parameter types list of the current opcode and treats every opcode as specified using a switch
statement. Figure 4.7 shows an example trace output.

BYTES are variable length, the first byte that follows after the opcode in the instruction set
defines how many bytes are pushed. Counting starts at zero, therefore the maximum is
256 bytes.

BYTE reads a single byte.

ADDR reads 32 bytes from the instruction set. This type is used to read addresses.

LABEL reads the next two bytes and threats them as an integer. This type is mainly used for
control flow opcodes.

1 0000: push [10] (bytes)
2 Stack: [[10]]
3 1 of max. 1000000 Bytes in use
4 ...
5 0003: push [8] (bytes)
6 Stack: [[8] [10]]
7 2 of max. 1000000 Bytes in use
8 ...
9 0006: call 11 (label) [2] (byte)

10 Stack: []
11 0 of max. 1000000 Bytes in use
12 ...

Figure 4.7.: Trace function output

Integrating Smart Contracts into the Bazo Blockchain 35

4.5. Opcodes

In this section the implementation of the opcodes, the rationale behind their implementation
and the most important aspects when working with them are described.

4.5.1. Arithmetic

Implementation Arithmetic opcodes use the arithmetic operations provided by big.Int. The
two elements on top of the stack are popped, the operation is executed and
the result is pushed back to the stack.

Element Size It is not necessary to take care of the length of the elements, since big.Int
allows for elements of arbitrary size.

Signing Byte Important to note is that, these operations are always signed. Therefore
when pushing a number the signing byte has to be provided in the first
byte by setting it to zero or one. If this is not done, an error can occur or
result in strange effects, because the first byte is used to describe the sign
of the number.

Rationale for
big.Int

Concerning the implementation of arithmetic opcodes for the VM facing
the need to provide operations for large elements it was decided to use
big.Int. It was and neglected to use Int64 in order to achieve the possibility
to work with numbers of at least 256 byte. The downside of adjusting the
gas calculation to take the element size into account was accepted.

4.5.2. Bool Operations

Implementation To the category of bool operations belong EQ, NEQ, LT, GT, LTE and GTE. All
of these opcodes use the the operations provided by big.Int and all of them
work with signed numbers. Only EQ and NEQ work also with bytes.

EQ and NEQ While writing the integration tests it turned out that the opcodes EQ and
NEQ are oftentimes used for the comparison between function hashes in
the ABI. Since function hashes are not signed numbers but just bytes it
was decided to make these operations unsigned because the parsing of the
signing byte would destroy the byte representation of the hash. As a result,
signed numbers and bytes can be compared.

Rationale As mentioned before the most prominent use case for EQ and NEQ is the
comparison of function hashes. Therefore, they are unsigned. For the other
opcodes an order has to exist and therefore the first byte of the elements is
parsed to set the sign of the big.Ints on which the operation is performed
on.

Integrating Smart Contracts into the Bazo Blockchain 36

4.5.3. Comparison Operators

Implementation Bit operations are the two opcodes SHIFTR and SHIFTL for shifting bits to
the right and the left. Same as for the arithmetic operations, this is based
on the implementation of big.int.

Unsigned Important to note is that these operations are primarily thought to be used
for bytes. They do not parse the leading byte in order to set the sign in
big.Int. This means that when these operations are used on signed numbers
the result could be that the signing byte becomes greater than zero or one
and the number therefore is set into an invalid state. To avoid this the
opcode has to be changed or reimplemented depending on the use case.

Rationale Concerning the implementation of opcodes for bit operations facing the need
to provide operations for large elements it was decided to use the opera-
tions provided by big.Int instead implementing the operations by ourselves
to achieve the possibility to work with numbers bigger than 256 byte. It
was also decided to make the operations unsigned because they are primar-
ily thought of as bit operations. The downsides of having to adjust gas
calculation to take element size into account is accepted. If in hindsight
these operations are primarily used for numbers the implementation can be
changed easily.

4.5.4. Control Flow Operations

Implementation Control flow opcodes like JMP are used to change the the program counter
and therefore changing the sequence of execution. These opcodes read labels
from the instruction set.

Call Stack The CALL and CALLIF opcodes are special, since a new call stack is allocated
when they are executed. The call stack has a return address and copies of
the values that are passed to the call stack. How many values have to be
passed to the call stack is provided by an argument of the CALL and CALLIF
opcode. These copies are used for the operations within the scope of the
called function. RET is used at the end of the function to jump back to the
return address. The remaining values on the call stack are pushed to the
evaluation stack and the call stack is deleted.

Rationale Control flow opcodes are essential to make the virtual machine Turing com-
plete. Having this type of opcodes allows the contract creator to build loops
and conditions. With the introduction of a call stack it is possible to make
function calls.

Integrating Smart Contracts into the Bazo Blockchain 37

4.5.5. Data Structures

Overview The two basic data structures map and array are directly implemented
as opcodes. Structs could be created on top of an array. For each data
structure opcodes are available to add, remove, set and retrieve values.

Implementation Both data structures were implemented on top of a byte array. The required
methods to add, remove, set and retrieve values for both data types have
been implemented.

Rationale The ability to marshal the data structures into a byte array in order to push
it on the stack was important. The overhead for doing this should be as low
as possible. Further important concerns are keeping the implementation
simple and the contents of the structure viewable in the trace function for
debugging. It was decided to implement the data structures on top of byte
array. The possibility of using the Go native implementation of map and
array were neglected. The reasons for this decision are that the array or
map would have to be marshalled and unmarshalled by each opcode in
order to pop the data structure from the stack, perform the operation and
push it back. Also, an array of bytes could not be used as an index for a
map since it is not comparable. The heightened possibility of errors in the
implementation in contrast to using the Go standard types was accepted,
since the blockchain is a research blockchain although measures have been
taken to provide as much correctness as possible.

4.6. Context

For the VM execution to have any effect it is necessary to change the miner’s state eventually.
This section describes how the state changes of a contract execution are persisted and explains
the data the context is composed with. Figure 4.8 shows the interface for the VM context.

Consistency One problem with an immediate change of the miner’s state is that the
contract execution could fail in the middle of the contract resulting in in-
consistencies. Such inconsistencies could be resolved with a rollback but
this was neglected since this is more complicated to implement than letting
the VM work on copies. Therefore, it was decided to provide the VM with
copies of the state variables.

Decoupling In order to reduce the coupling of the miner it was decided to provide the
access to the state variables via a context object which implements the
necessary getters and setters. The context object contains the logic needed
to create copies and to avoid encapsulation breaches. The context object is
setup by the miner, the reference to it is then passed to the VM and the
changes are written back after a successful execution of the contract by the
miner again.

Integrating Smart Contracts into the Bazo Blockchain 38

Readability To clearly describe which operations the VM uses to access state variables
in the code of the VM an interface was created which the VM uses and
the context implements. If necessary this would also allow for easier testing
since this makes the mocking and overwriting of specific methods of the
context possible.

1 type Context interface {
2 GetContract() []byte
3 GetContractVariable(index int) ([]byte, error)
4 SetContractVariable(index int, value []byte) error
5 GetAddress() [64]byte
6 GetIssuer() [32]byte
7 GetBalance() uint64
8 GetSender() [32]byte
9 GetAmount() uint64

10 GetTransactionData() []byte
11 GetFee() uint64
12 GetSig1() [64]byte
13 }

Figure 4.8.: Context interface

4.6.1. Data from a Transaction

Sender/Address The sender field shows the public address of the transaction sender

Fee The maximum price the transaction can cost.

TransactionData This field contains the identifier to the function the sender wants to call on a
certain smart contract and its arguments.

Amount This field shows the amount of Bazo units send in this transaction.

4.6.2. Data from the Receiver Account

Issuer/Owner This field contains the public address of the account owner.

Balance This field contains the number of coins in this account.

Contract This field is the smart contract itself and contains the byte code. The data type is
[]byte, so it can be packed into a transaction field.

Integrating Smart Contracts into the Bazo Blockchain 39

ContractVariables This field contains the state variables that are changed by executing trans-
actions.

4.7. Parser

The language that the parser processes cannot be described as a high-level programming language
and is very strongly aligned to the actual byte code. The parser package contains two classes
and a test file. One file is tokens.go which contains the available opcodes with its arguments and
the token types. The second file is parser.go which can be split into two main functions. The
following sections contain an elaboration of mentioned files.

4.7.1. Tokens File

Token Struct
and Types

Figure 4.9 shows the Token struct. The tokenType field can be OPCODE
(Value: 0), BYTES (Value: 1), BYTE (Value: 2), ADDR (Value: 3), LABEL
(Value: 4) which are all int constants. The value field contains the argument
passed to the token.

1 type Token struct {
2 tokenType int
3 value string
4 }

Figure 4.9.: Token Struct

Opcodes The opcodes are needed to replace the opcode token with the matching
value and to make sure only valid opcodes are passed. The opcodes need
to be the same as in the virtual machine and are int constants.

Array of
Opcodes

The array of opcodes shows which opcodes have arguments and how many
of them, in order to check if only the allowed amount of words is found in
a single line of the contract. If more arguments than defined are passed to
an opcode token, an illegal word in line exception is thrown.

Integrating Smart Contracts into the Bazo Blockchain 40

4.7.2. Parser File

Tokenize()
Function

The function that is run first is the Tokenize() function. The process of
the Tokenize() function is shown in figure 4.10. The source code of the
contract written in «Enhanced Bazo Byte Code» is passed as a string. The
string is converted to an array of lines. The Tokenize() function takes
every first word in every line and matches it with available token types.
Every first word in line must either be a comment, a label, empty or an
opcode. The rest of the words in the same line are the parameters of the
opcode or an inline comment, marked with a #. Comments and empty lines
are ignored. Labels end with an colon (e.g. addNums:). If the first word is
a label it is added to the labelMap to later replace it with the address.

Figure 4.10.: UML Activity Diagram of the Tokenize Function

Token Set Figure 4.11 shows the generated token set to the basic contract shown in
Figure 3.7.

Integrating Smart Contracts into the Bazo Blockchain 41

1 {
2 [{0 PUSH} {1 55780}],
3 [{0 PUSH} {1 5}],
4 [{0 CALL} {4 addNums} {2 2}],
5 [{0 HALT}],
6 [{0 LOAD} {2 0}],
7 [{0 LOAD} {2 1}],
8 [{0 ADD}],
9 [{0 RET}],

10 }

Figure 4.11.: Token set of contract shown in 3.7

Parse()
Function

The Parse() function compiles the token set to «Bazo Byte Code». Figure
4.12 shows the process of the function. The function iterates over all tokens
in the token set and matches the different types. If the type is OPCODE the
matching byte value is added to the instruction set. If the type is LABEL the
value is loaded from the labelMap, which is the jump address. A special
type is BYTES. If an opcode takes BYTES as an argument the first byte of
the value shows the length of the byte representation. That means, that
the byte representation of the value must be prepended with the amount
of bytes. BYTE appends a single byte value to the instruction set. ADDR
appends 32 bytes to the instruction set.

Figure 4.12.: UML Activity Diagram of the Parse Function

Instruction Set Figure 4.13 shows the resulting instruction set.

Integrating Smart Contracts into the Bazo Blockchain 42

1 {
2 0, 1, 217, 228, 0, 0, 5, 21, 0, 13, 2, 50, 28, 0, 28, 1, 4, 24,
3 }

Figure 4.13.: Contract compiled to «Bazo Byte Code»

4.8. Testing

The virtual machine, the parser and the code written for the integration were extensively tested
from the start. Depending on the type of component and its relations, different testing methods
have been applied. Overall a relatively high test coverage could be achieved. In the sections
below, the different testing methods for each package are explained.

4.8.1. Unit Testing

All packages have been unit tested. The test coverage of each modified package is compared with
its coverage before the integration to ensure that the test coverage is not negatively affected by
the integration.

Protocol As described in the sections before, not many changes have been made to
the Protocol package. The test coverage before the VM integration was
70%. The updated test coverage is 68%. The reason for a lower coverage
is that the vm_context.go file has been added, which has many getters and
setters that do not need to be tested.

Miner The test coverage before the VM integration was 65%. The updated test
coverage is 65%, which shows that the integration has not negatively affected
the coverage.

VM The overall statement coverage is 81%. Every component of the VM pack-
age has a test coverage over 79%. The main component is the vm.go file.
For every opcode at least one unit test has been made. Arithmetic opcodes
are based on the big.Int implementation, which has been considered stable.
This test coverage is influenced by the fuzz test described in Section 4.8.2.

Parser The parser should be seen as a utility that is not part of the core project.
For this reason, the necessity to test of this package was of low priority. Still
a test coverage of 82% could be achieved, because the package is small and
the core class consists only of two main functions and a few helper methods.

Integrating Smart Contracts into the Bazo Blockchain 43

4.8.2. Fuzz Testing

An instruction set of a smart contract must never be able to crash the miner. Calling a smart
contract function with malicious instructions would cause the whole blockchain to collapse. To
check if the VM fails gracefully, a fuzz test was implemented which creates contracts with random
bytes and then executes them. Contracts causing the miner to crash were reproduced as unit test
in order to find the bug. Once the bug was found it was mitigated. This process was repeated
over and over again. The fuzz test is executed with five million random contracts with every
commit to the remote repository using Travis CI which helped us to find many bugs that could
have crashed the miner.

4.8.3. Integration Testing

To test whether the virtual machine could be successfully integrated, an integration test was
made. The goal of this test is to show that deploying and calling smart contracts over transactions
are possible. The integration test consists of multiple small unit tests. It was tested whether it
is possible to create smart contract accounts, call functions of these smart contracts and whether
state variables are persisted over several transactions. The integration test could successfully be
implemented and run.

Integrating Smart Contracts into the Bazo Blockchain 44

5. Evaluation

This chapter covers the evaluation of the work by describing the implementation of a tokeniza-
tion contract in order to show an example of the possible functionality and by providing the
implementation of a modular exponentiation contract. The modular exponentiation contract is
set in comparison with a Go implementation of the algorithm in order to show the overhead of
the execution on the Bazo VM.

5.1. Tokenization Contract

Tokenization is the process of recording the rights to an asset as a digital token on a blockchain in
the form of sub-currencies. [7] Tokenization is the first use-case for smart contracts that has found
wide application. New possibilities for funding start-ups and companies have emerged in the form
of initial coin offerings (ICOs) also known as token sales. The tokens of an ICO can be bought
by sending money in the form of the blockchain currency to a smart contract. The investor then
receives the corresponding amount in tokens. Ideally, the token is an integral component within
the ecosystem of the company hosting the ICO. [10] Since tokenization contracts have become
so widely used and because they are generally simple, it was decided to write a tokenization
contract. The implementation of a very basic tokenization contract consists of a map of account
addresses and balances and methods to transfer those tokens from one account to another.

5.1.1. Results

As a result, a contract was created which allows to store addresses together with balances. Only
the account address which is recorded as minter is allowed to change balances. The balance can
be reduced by sending negative values or increased by sending positive values. If the map does
not yet contain an address when sending tokens, it is added automatically. The contract is shown
in Appendix C.

5.2. Benchmarking Contract

The performance of the virtual machine is crucial for the speed of execution and the blockchain
in general. For this reason a smart contract has been developed which is suitable for comparing
the speed of execution on different implementations and platforms. Taking into consideration
that blockchains and its use cases depend heavily on public-key cryptography, it was decided to
implement a smart contract which performs modular exponentiation. Modular exponentiation

Integrating Smart Contracts into the Bazo Blockchain 45

is a one-way function and frequently used in cryptography. Figure 5.1 shows the straightforward
method to calculate c.

c ≡ be mod m

Figure 5.1.: Modular exponentiation straightforward method

Considering b is at least 256 bits for strong cryptography, this method is not very efficient.
Therefore, a more memory efficient method has been implemented, which is shown in figure 5.2.
[12] The benchmarking function has been implemented in Go and as a contract in «Bazo Byte
Code». The main goal is to compare the overhead.

1 function modular_pow(base, exponent, modulus)
2 if modulus = 1 then return 0
3 c := 1
4 for e_prime = 0 to exponent-1
5 c := (c * base) mod modulus
6 return c

Figure 5.2.: Memory efficient method to compute modular
exponentiation

5.2.1. Results

The Go testing package contains a subset of functions to measure the performance of Go code.
A benchmark function runs the code b.N times. b.N is adjusted during execution, until the
benchmark function can be timed reliably. [9] Three benchmark functions for both, the Go
implementation and the contract, have been implemented, where the only difference is the length
of b. The length of b is 32 bytes in the first benchmark function, which is the minimum length
for strong cryptography. In the second benchmark function the length of b is 128 bytes and
in the last, b has a length of 255 bytes, which is the maximum length the virtual machine can
process. The values of b, e and m are random generated every run. The benchmarks have
been measured on a Fujitsu Celsius W530, with 15.6 GiB RAM, an Intel Xeon CPU E3-1245 v3
3.40GHz x 8 processor, running Ubuntu 17.10 as operating system. The following benchmarking
measurements have been analyzed.

Nanoseconds
per operation

Figure 5.3 shows how many nano seconds the operation took. Operation
describes the code that was run, in this case the Go implementation and
the benchmarking contract. The benchmarking contract took 9.41 times
longer than the Go implementation in the first benchmark function with
b = 32 bytes. In the second function with b = 128 bytes, the factor was
7.24. In the last function with b = 255 bytes this factor went down to 5.89.
The conclusion is, that the longer b is, the better the performance of the
benchmarking contract gets, compared to the program written in Go.

Integrating Smart Contracts into the Bazo Blockchain 46

Figure 5.3.: Nanoseconds per operation diagram

Bytes per
operation

Figure 5.4 shows how many bytes per operation have been allocated. The
factor between the Go implementation and the benchmarking contract was
stable during benchmark functions. The benchmarking contract needs
about 10 times more memory. This result was expected since the bench-
marking contract often needs to duplicate and roll values to permute a loop.

Figure 5.4.: Bytes per operation diagram

Allocations per
operation

Figure 5.5 shows how many bytes per operation have been allocated. The
factor between the Go implementation and the benchmarking contract was
stable in all benchmarks. The benchmarking contract needs about 12 times
more bytes. This result was expected, for the same reason mentioned above.

Integrating Smart Contracts into the Bazo Blockchain 47

Figure 5.5.: Allocation per operation diagram

Integrating Smart Contracts into the Bazo Blockchain 48

6. Conclusion

Summary This thesis consisted of the sub goals of building and integrating a virtual
machine into the Bazo Blockchain, to make the execution of smart contracts
possible. The exact details needed to realize these requirements were not
known at the beginning and were defined by the analysis of other smart
contract platforms such as Ethereum or NEO and blockchains in general.
An important conclusion from this analysis was, that it is very important
to ensure the VM is fault tolerant and does not crash when a malicious
contract is executed. The possibility of extensions by follow-up works was
kept in mind. For this reason, the VM has been implemented in a manner
that new opcodes can be defined easily. In addition, care was taken to
describe the error messages as helpful as possible.

Unique
Features

When calculating the gas costs a different approach was chosen, which is not
used by any another blockchain, as both the instruction and the size of the
elements are taken into account. Furthermore, our VM differs from others
because it can work with elements of arbitrary size, which is helpful for
many cryptographic functions. The only limitation here is that the current
maximal pushable element cannot be larger than 256 bytes.

Parser The parser was originally not part of the scope. The decision to implement
this simple parser was made when larger contracts had to be implemented,
which contained many control flow opcodes and therefore addresses often
had to be counted. This parser could serve as a basis for future works.

Concluding
statements

The goals of this thesis could be achieved. The achievement of these goals
was successfully proven by extensive testing. This work laid the foundation
for Bazo as a platform for decentralized applications. However, in order to
keep up with existing smart contract platforms, performance improvements
and an increase in usability for creating and calling contracts would be
necessary.

Integrating Smart Contracts into the Bazo Blockchain 49

6.1. Future Work

Compiler Whilst it is already possible to write contracts using the opcodes of the VM
or »Enhanced Bazo Byte Code«. This is very hard to read for humans. To
make the writing of contracts easier, a compiler which processes a higher-
level language and translates it into the »Bazo Byte Code« would be useful.

IDE There should also be an environment in which contracts can be written,
tested and directly deployed.

Separation of
Gas and
Currency

The execution of a contract costs a certain amount of coins. This is called
gas. When blockchains gain popularity the price of the coin in fiat currency
usually rises. Since the gas price stays the same but the coin becomes more
valuable the actual execution cost of a contract rises too. A solution to this
problem is to provide a separate currency for the gas.

Contract Pays
the Fee

Another feature would be the ability call a contract and execute a function
where the fee is paid by the contract instead of the caller. So there is no
need for the user to own Bazo coins in order to interact with the blockchain.

Platform
Independent
Encoding

The mechanism which is used to encode and decode transactions should
be platform independent. Currently the encoding of transactions is im-
plemented in a Go dependent encoding mechanism. This is currently no
problem since all software systems are implemented in Go and actually
faster, but it also restricts future projects to the use of Go as well.

Integrating Smart Contracts into the Bazo Blockchain 50

List of Figures

2.1. Bazo Blockchain system context diagram . 11
2.2. Bazo Blockchain container diagram . 13

3.1. Virtual machine execution cycle overview adapted from [18] and [6] 16
3.2. Register based virtual machine . 17
3.3. Stack based virtual machine . 18
3.4. Struct of the type FundsTx . 20
3.5. Struct of the type AccTx . 21
3.6. Struct of the type Account . 22
3.7. Basic contract with function call written in «Enhanced Bazo Byte Code» 23

4.1. UML Package Diagram . 27
4.2. New gob based encoding function . 29
4.3. New gob based decoding function . 29
4.4. addFundsTx function . 30
4.5. Example of an error message. 33
4.6. Gas cost equation . 34
4.7. Trace function output . 34
4.8. Context interface . 38
4.9. Token Struct . 39
4.10. UML Activity Diagram of the Tokenize Function 40
4.11. Token set of contract shown in 3.7 . 41
4.12. UML Activity Diagram of the Parse Function . 41
4.13. Contract compiled to «Bazo Byte Code» . 42

5.1. Modular exponentiation straightforward method 45
5.2. Memory efficient method to compute modular exponentiation 45
5.3. Nanoseconds per operation diagram . 46
5.4. Bytes per operation diagram . 46
5.5. Allocation per operation diagram . 47

Integrating Smart Contracts into the Bazo Blockchain 51

Bibliography
[1] Alfred V. Aho, ed. Compilers: principles, techniques, & tools. 2nd ed. OCLC: ocm70775643.

Boston: Pearson/Addison Wesley, 2007. 1009 pp. isbn: 978-0-321-48681-3.

[2] Jan von der Assen. A Progressive Web App (PWA)-based Mobile Wallet for Bazo. Accessed
22 Mai 2018. 2018-01. url: https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-
Jan-von-der-Assen.pdf.

[3] Simon Bachmann. Proof of Stake for Bazo. Accessed 22 Mai 2018. 2018-02. url: https:
//files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Simon-Bachmann.pdf.

[4] Luc Boillat. A Blockchain Explorer for Bazo. Accessed 22 Mai 2018. 2018-01. url: https:
//files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Luc-Boillat.pdf.

[5] Marc-Alain Chételat. Design and Prototypical Implementation of a Mobile Light Client for
the Bazo Blockchain. Received on request to Prof. Dr. Thomas Bocek. 2018-03.

[6] Ethereum Block Architecture Image. Accessed 15 June 2018. url: https : / / ethereum .
stackexchange.com/questions/268/ethereum-block-architecture/6413#6413.

[7] Ethereum Foundation. Ethereum White Paper. Accessed 25 Mai 2018. url: https://github.
com/ethereum/wiki/wiki/White-Paper.

[8] Golang Package gob. Accessed 5 June 2018. url: https://golang.org/pkg/encoding/gob/.

[9] Golang Package testing. Accessed 11 June 2018. url: https://golang.org/pkg/testing/.

[10] Initial coin offerings - Legal Frameworks and regulations for ICOs. Accessed 5 June 2018.
url: https://www.pwc.ch/en/industry-sectors/financial-services/fs-regulations/ico.html.

[11] Noam Levenson. NEO versus Ethereum: Why NEO might be 2018’s strongest cryptocur-
rency – Hackernoon. Accessed 18 April 2018. 2017-12. url: https://hackernoon.com/neo-
versus-ethereum-why-neo-might-be-2018s-strongest-cryptocurrency-79956138bea3.

[12] Modular exponentiation. In: Page Version ID: 841062658. 2018-05-13. url: https ://en.
wikipedia.org/w/index.php?title=Modular_exponentiation&oldid=841062658 (visited on
2018-06-14).

[13] multiple. Database transaction. Accessed 21 Mai 2018. 2018-04. url: https://en.wikipedia.
org/wiki/Database_transaction.

[14] NEO White Paper. Accessed 25 Mai 2018. 2016-04. url: http://docs.neo.org/en-us/index.
html.

[15] Oxford Dictionaries Design. Accessed 8 June 2018. url: https://en.oxforddictionaries.
com/definition/design.

[16] Livio Sgier. Bazo – A Cryptocurrency from Scratch. Accessed 22 Mai 2018. 2017-08. url:
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Livio-Sgier.pdf.

[17] Mark Sinnathamby. Stack based vs Register based Virtual Machine Architecture, and the
Dalvik VM. Accessed 25 Mai 2018. 2012-07. url: https://markfaction.wordpress.com/
2012/07/15/stack-based-vs-register-based-virtual-machine-architecture-and-the-dalvik-
vm/.

https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Jan-von-der-Assen.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Jan-von-der-Assen.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Simon-Bachmann.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Simon-Bachmann.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Luc-Boillat.pdf
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Luc-Boillat.pdf
https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture/6413#6413
https://ethereum.stackexchange.com/questions/268/ethereum-block-architecture/6413#6413
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://golang.org/pkg/encoding/gob/
https://golang.org/pkg/testing/
https://www.pwc.ch/en/industry-sectors/financial-services/fs-regulations/ico.html
https://hackernoon.com/neo-versus-ethereum-why-neo-might-be-2018s-strongest-cryptocurrency-79956138bea3
https://hackernoon.com/neo-versus-ethereum-why-neo-might-be-2018s-strongest-cryptocurrency-79956138bea3
https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&oldid=841062658
https://en.wikipedia.org/w/index.php?title=Modular_exponentiation&oldid=841062658
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction
http://docs.neo.org/en-us/index.html
http://docs.neo.org/en-us/index.html
https://en.oxforddictionaries.com/definition/design
https://en.oxforddictionaries.com/definition/design
https://files.ifi.uzh.ch/CSG/staff/bocek/extern/theses/BA-Livio-Sgier.pdf
https://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-based-virtual-machine-architecture-and-the-dalvik-vm/
https://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-based-virtual-machine-architecture-and-the-dalvik-vm/
https://markfaction.wordpress.com/2012/07/15/stack-based-vs-register-based-virtual-machine-architecture-and-the-dalvik-vm/

Integrating Smart Contracts into the Bazo Blockchain 52

[18] Dr Gavin Wood. Ethereum Yellow Paper. Accessed 15 June 2018. url: https://ethereum.
github.io/yellowpaper/paper.pdf.

https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

Integrating Smart Contracts into the Bazo Blockchain 53

A. Installation Guidelines

A.1. Miner Application

A.1.1. Prerequisites

The programming language Go (developed and tested with version >= 1.9) must be installed,
the properties $GOROOT and $GOPATH must be set. For more information, please check out
the official documentation.

Before the bazo-miner can be started, two public-private key-pairs are required. The key-pairs
can be generated with the bazo-keypairgen application. Run the following instructions in your
terminal.

1. Download the bazo-keypairgen application.

go get github.com/bazo-blockchain/bazo-keypairgen

2. Build the application.

$GOPATH/src/github.com/bazo-blockchain/bazo-keypairgen
go build

3. Run the application to generate the validator public-private keypair. The validator is the
keyfileś name containing the validatorś public key.

./bazo-keypairgen validator.txt

4. Run the application to generate the multisig public-private keypair. The multisig is the
keyfileś name containing the multi-signature serverś public key.

./bazo-keypairgen multisig.txt

Integrating Smart Contracts into the Bazo Blockchain 54

A.1.2. Getting Started

1. Download the bazo-miner application.

go get github.com/bazo-blockchain/bazo-miner

2. Copy both previously generated files validator.txt and multisig.txt into the root folder of
the bazo-miner folder.

$GOPATH/src/github.com/bazo-blockchain/bazo-keypairgen
cp validator.txt $GOPATH/src/github.com/bazo-blockchain/bazo-miner/validator.txt
cp multisig.txt $GOPATH/src/github.com/bazo-blockchain/bazo-miner/multisig.txt

3. Open the storage configuration file storage/configs.go in an editor of your choice.

$GOPATH/src/github.com/bazo-blockchain/bazo-keypairgen
cp validator.txt $GOPATH/src/github.com/bazo-blockchain/bazo-miner/validator.txt
cp multisig.txt $GOPATH/src/github.com/bazo-blockchain/bazo-miner/multisig.txt

Replace the value of INITROOTPUBKEY1 with the first line of validator.txt. Replace the
value of INITROOTPUBKEY2 with the second line of validator.txt.

4. Build the application.

$GOPATH/src/github.com/bazo-blockchain/bazo-miner
go build

5. Run the application.

./bazo-miner "database_file.db" ":8000" "validator.txt" "seedfile.txt" "multisig.txt"

The ipport number must be prefixed with ":". If the miner is intended to run locally, the
localhost ip address has to be passed with the ipport. Otherwise the miner tries to connect
to the network. Note that "database_file.db" and "seedfile.txt" are created if they do not
exist.

Integrating Smart Contracts into the Bazo Blockchain 55

A.2. Parser Application

A.2.1. Prerequisites

The programming language Go (developed and tested with version >= 1.9) must be installed,
the properties $GOROOT and $GOPATH must be set. For more information, please check out
the official Go documentation.

A.2.2. Getting Started

1. Download the bazo-parser application

go get github.com/bazo-blockchain/bazo-parser

2. Build the application.

$GOPATH/src/github.com/bazo-blockchain/bazo-parser
go build

3. Run the application

./bazo-parser

4. Define the path to the smart contract. After hitting enter, the parser prints the compiled
byte code instructions, ready to copy to the virtual machine or the miner.

Define the path to your contract
./contracts/addNums.sc

Integrating Smart Contracts into the Bazo Blockchain 56

B. Opcodes

This table shows which opcodes are available. The description right of the arrow shows how the
instruction is processed. The result is then pushed onto the stack. The arguments column shows
which arguments are read from the instruction set.

Table B.1.: List of available opcodes

Mnemonic op-
Code Arguments Description Gas

price
Gas

factor

PUSH 0x00 bytes (bytes) stack ← bytes 1 1

DUP 0x01 - stack ← 2x pop1 1 1

ROLL 0x02 index (byte) removes element at index and
push to ToS 1 2

POP 0x03 - pops ToS 1 1

ADD 0x04 - stack ← pop1 + pop2 1 2

SUB 0x05 - stack ← pop1 - pop2 1 2

MULT 0x06 - stack ← pop1 * pop2 1 2

DIV 0x07 - stack ← pop1 / pop2 1 2

MOD 0x08 - stack ← pop1 % pop2 1 2

NEG 0x09 - stack ← pop1 1 2

EQ 0x0a - stack ← 1 if pop1 == pop2, 0
otherwise 1 2

NEQ 0x0b - stack ← 1 if pop1 != pop2, 0
otherwise 1 2

LT 0x0c - stack ← 1 if pop1 <pop2, 0
otherwise 1 2

GT 0x0d - stack ← 1 if pop1 >pop2, 0
otherwise 1 2

LTE 0x0e - stack ← 1 if pop1 <= pop2, 0
otherwise 1 2

GTE 0x0f - stack ← 1 if pop1 >= pop2, 0
otherwise 1 2

SHIFTL 0x10 nrOfShifts (byte) stack ← pop 1 <<nrOfShifts 1 2

Integrating Smart Contracts into the Bazo Blockchain 57

Table B.1.: List of available opcodes

Mnemonic op-
Code Arguments Description Gas

price
Gas

factor

SHIFTR 0x11 nrOfShifts (byte) stack ← pop 1 >>nrOfShifts 1 2

NOP 0x12 - does nothing 1 1

JMP 0x13 address (label) jump to address 1 1

JMPIF 0x14 address (label) jumps to address if pop1 == 1 1 1

CALL 0x15 address (label),
nrOfArgs (byte)

call a function at address with a
given amount of arguments 1 1

CALLIF 0x16 address (label),
nrOfArgs (byte)

calls a function if pop1 == 1 at
address with a given amount of
arguments

1 1

CALLEXT 0x17

address (address),
functionHash (4x
byte), nrOfArgs
(byte)

calls a function with
functionHash from an external
smart contract account with a
given amount of arguments

1000 2

RET 0x18 - returns from function 1 1

SIZE 0x19 - stack ← size(pop1) 1 1

STORE 0x1a - stores pop1 in callStack 1 2

SSTORE 0x1b index (byte) stores pop1 in contractVariables
at index 1000 2

LOAD 0x1c index (byte) loads variable at index from
callStack to evaluationStack 1 1

SLOAD 0x1d index (byte)
loads variable at index from
contractVariables to
evaluationStack

10 1

ADDRESS 0x1e - stack ← receiver account address 1 1

ISSUER 0x1f - stack ← receiver account issuer 1 1

BALANCE 0x20 - stack ← receiver account
balance 1 1

CALLER 0x21 - stack ← contract caller 1 1

CALLVAL 0x22 - stack ← transaction amount in
bazo coins 1 1

CALLDATA 0x23 - stack ← transaction data 1 1

NEWMAP 0x24 - stack ← new map 1 2

MAPHASKEY 0x25 - stack ← search map for key and
push bool value for result 1 2

MAPPUSH 0x26 - stack ← pop1.insert(pop2, pop3) 1 2

Integrating Smart Contracts into the Bazo Blockchain 58

Table B.1.: List of available opcodes

Mnemonic op-
Code Arguments Description Gas

price
Gas

factor

MAPGET-
VAL 0x27 - stack ← pop1[pop2] 1 2

MAPSETVAL 0x28 - pop1[pop2] = pop3 1 2

MAPRE-
MOVE 0x29 - stack ← pop1.remove(pop2) 1 2

NEWARR 0x2a - stack ← new array 1 2

ARRAPPEND 0x2b - stack ← pop1.append(pop2) 1 2

ARRINSERT 0x2c - stack ← pop1[pop2] = pop3 1 2

ARRRE-
MOVE 0x2d - pop1.remove(pop2) 1 2

ARRAT 0x2e - stack ← pop1[pop2] 1 2

SHA3 0x2f - stack ← SHA3_HASH(pop 1) 1 2

CHECKSIG 0x30 - stack ← ecdsa.Verify(pop 1,
pop2) 1 2

ERRHALT 0x31 - return from Exec() function
with false 0 1

HALT 0x32 - return from Exec() function
with true 0 1

Integrating Smart Contracts into the Bazo Blockchain 59

C. Tokenization Contract

1 CALLDATA
2 # ------- ABI -------------------------
3 DUP
4 PUSH 1
5 EQ
6 CALLIF mint 3
7 HALT
8

9 # ------ Contract ---------------------
10 mint:
11 LOAD 1 # load value
12 LOAD 0 # load key
13 SLOAD 1 # load address of minter
14 CALLER
15 EQ
16 CALLIF adjustBalance 2
17 RET
18

19 adjustBalance:
20 LOAD 1 # load value
21 LOAD 0 # load key
22 DUP
23 SLOAD 2 # load map
24 MAPHASKEY
25 CALLIF addKeyIfNotExists 2
26 LOAD 1 # load value
27 LOAD 0 # load key
28 SLOAD 2 # load map
29 MAPPUSH
30 SSTORE 2 # store the map
31 HALT
32

33 addKeyIfNotExists:
34 LOAD 1 # load key
35 SLOAD 2 # load map
36 MAPGETVAL
37 LOAD 0 # load value
38 ADD
39 LOAD 1 # load key
40 SLOAD 2 # load map
41 MAPSETVAL

Integrating Smart Contracts into the Bazo Blockchain 60

42 SSTORE 2 # store the map
43 HALT

Integrating Smart Contracts into the Bazo Blockchain 61

D. Definition of Task

 Abteilung Informatik Frühjahrssemester 2018
Bachelorarbeit „ Integrating Smart Contracts into the Bazo Blockchain “

Aufgabenstellung Bachelorarbeit
"Integrating Smart Contracts into the Bazo Blockchain"

1. Betreuer und Experte

Diese Arbeit wird von Prof. Dr. Thomas Bocek, HSR, IFS, tbocek@hsr.ch betreut.

Industriepartner:

• Keine

2. Studierende

Diese Arbeit wird als Bachelorarbeit an der Abteilung Informatik durchgeführt von

• Ennio Meier

• Marco Steiner

3. Einführung

Die Bazo Blockchain ist eine Blockchain um verschiedene Mechanismen und Algorithmen zu testen. In der

momentanen Version sind Proof of Stake integriert, sowie Mechanismen um die Bazo Blockchain auf einem

mobilen Gerät laufen zu lassen. Es lassen sich nur Bazo Coins transferieren. Die Idee dieser Arbeit ist es die

Bazo Blockchain um Smart Contracts zu erweitern.

4. Ziele der Arbeit

Das Ziel dieser Arbeit ist das Design, Implementation und die Evaluation einer virtuellen Maschine für Smart

Contracts für die Bazo Blockchain. Diese Arbeit dokumentiert das Vorgehen, Entwurfsentscheidungen und

das Design und diskutiert alle wichtigen Details und Erweiterungen. Das Ziel dabei ist es, eine minimal

funktionale virtuelle Maschine testen und evaluieren zu können.

Es sollen dabei aktuelle Ansätze angeschaut (wie zum Beispiel die Ethereum Virtual Machine) und

Verbesserungen vorgenommen werden.

Die virtuelle Maschine sollte turing-complet sein, das heisst, es soll eine generische virtuelle Maschine für

Smart Contracts erstellt werden. Ein Smart Contract soll dabei States von Accounts lesen aber auch

persistieren können.

Die Bazo Blockchain baut auf einer vorgängigen Bachelor- und Masterarbeit auf, die sich mit den Grundlagen

und ausgewählten Mechanismen auseinandergesetzt haben. Es kann davon ausgegangen werden, dass die

Resultate aus der Vorarbeit in brauchbarer Form verfügbar sind. Änderungen an der vorherigen Arbeit

notwendig um die virtuelle Maschine ins bestehende System zu integrieren. Zusätzliche Funktionen können

je nach Zeitbudget und Priorität umgesetzt werden.

 Abteilung Informatik Frühjahrssemester 2018
Bachelorarbeit „Integrating Smart Contracts into the Bazo Blockchain“

Es finden wöchentliche Besprechungen mit dem Betreuer statt. Zusätzliche Besprechungen sind nach Bedarf

durch die Studierenden zu veranlassen.

Alle Besprechungen, ausser der Kick-off Besprechung, sind von den Studierenden mit einer Traktandenliste

vorzubereiten und zu leiten. Bei jedem Meeting soll der aktuelle Stand des Projektes präsentiert werden

(Was wurde gemacht? Was wurde erreicht?). Die Beschlüsse der Besprechungen sind durch die

Studierenden zu protokollieren und an den Betreuer anschliessend zuzustellen. Die Zeit-Protokollierung wird

bei Bedarf oder nach Wunsch des Betreuers eingesehen.

Für die Durchführung der Arbeit ist ein Projektplan zu erstellen. Dabei ist auf einen kontinuierlichen und

sichtbaren Arbeitsfortschritt zu achten. An Meilensteinen (oder auch Zwischenversionen) gemäss

Projektplan sind einzelne Arbeitsresultate in vorläufigen Versionen abzugeben. Über die abgegebenen

Arbeitsresultate erhalten die Studierenden ein vorläufiges Feedback. Eine definitive Beurteilung erfolgt auf

Grund der am Abgabetermin abgelieferten Resultate.

5. Dokumentation

Über diese Arbeit ist eine Dokumentation gemäss den Richtlinien der Abteilung Informatik zu verfassen. Die

zu erstellenden Dokumente bzw. Berichtsteile sind im Projektplan festzuhalten. Alle Dokumente sind

nachzuführen, d.h. sie sollten den Stand der Arbeit bei der Abgabe in konsistenter Form dokumentieren.

6. Termine

Siehe auch Terminplan auf dem Skripteserver (Fachbereich/Bachelor-Arbeit_Informatik/BAI/)

Montag, den 19.02.2018 Beginn der Studienarbeit

08.06.2018 Die Studierenden geben den Abstract für die Diplomarbeitsbroschüre
zur Kontrolle an ihren Betreuer/Examinator frei. Die Studierenden erhalten
vorgängig vom Studiengangsekretariat die Aufforderung mit den
Zugangsdaten zur Online-Erfassung des Abstracts im DAB-Tool.

Die Studierenden senden per Email das A0-Poster zur Prüfung an
ihren Examinator/Betreuer.

Vorlagen sowie eine ausführliche Anleitung betreffend Dokumentation
stehen auf dem Skripteserver zur Verfügung.

13.06.2018 Der Betreuer/Examinator gibt das Dokument mit dem korrekten und
vollständigen Abstract der Broschüre zur Weiterverarbeitung an das
Studiengangsekretariat frei.

Fertigstellung und Weitergabe des A0 Posters per Email bis 10.00 Uhr
an das Studiengangsekretariat.

15.06.2018 Abgabe des Berichts an den Betreuer bis 12.00 Uhr

Präsentation und Ausstellung der Bachelorarbeiten, 16 bis 20 Uhr

Integrating Smart Contracts into the Bazo Blockchain 62

 Abteilung Informatik Frühjahrssemester 2018
Bachelorarbeit „Integrating Smart Contracts into the Bazo Blockchain“

Bis zum 24.08.18 Mündliche BA-Prüfung

7. Beurteilung

Eine erfolgreiche Bachelorarbeit zählt 12 ECTS-Punkte pro Studierenden. Für 1 ECTS Punkt ist eine Arbeits-

leistung von 30 Stunden.

Für die Beurteilung ist der verantwortliche Dozent zuständig.

Gesichtspunkt Gewicht

1. Organisation, Durchführung 1/6

2. Berichte (Abstract, Mgmt Summary, technischer u. persönliche Berichte)
sowie Gliederung, Darstellung, Sprache der gesamten Dokumentation

1/6

3. Inhalt*) 3/6

4. Mündliche Prüfung 1/6
*) Die Unterteilung und Gewichtung von 3. Inhalt wird im Laufe dieser Arbeit präzisiert

(u.A. durch die Bewertungsmatrix)

Im Übrigen gelten die Bestimmungen der Abteilung Informatik für Studienarbeiten.

Rapperswil, den 12. April 2018.

Prof. Dr. Thomas Bocek

Integrating Smart Contracts into the Bazo Blockchain 63

	Introduction
	Motivation
	Description of Work

	Background and Related Work
	Background
	Blockchain
	Smart Contracts
	Transactions
	Virtual Machine

	Related Work
	How Bazo Works - an Overview
	Previous Work
	Similar Projects

	Design
	Virtual Machine
	Types of Virtual Machines
	Guidelines
	Notable Design Aspects

	Contract Deployment
	Execution of a Contract Method
	VM Integration
	Transaction Types of the Miner
	Accounts
	Execution Context

	Parser
	«Enhanced Bazo Byte Code»
	Compile Process

	Smart Contracts
	Coding Smart Contracts

	Fee

	Implementation
	Software Architecture
	Protocol
	Encoding
	Decoding

	Miner
	Constructors
	VM Entry Point

	Virtual Machine
	Stack
	VM Instruction Cycle
	Error Handling
	Gas Calculation
	Trace Function

	Opcodes
	Arithmetic
	Bool Operations
	Comparison Operators
	Control Flow Operations
	Data Structures

	Context
	Data from a Transaction
	Data from the Receiver Account

	Parser
	Tokens File
	Parser File

	Testing
	Unit Testing
	Fuzz Testing
	Integration Testing

	Evaluation
	Tokenization Contract
	Results

	Benchmarking Contract
	Results

	Conclusion
	Future Work

	Installation Guidelines
	Miner Application
	Prerequisites
	Getting Started

	Parser Application
	Prerequisites
	Getting Started

	Opcodes
	Tokenization Contract
	Definition of Task

