

Stylechecker Plug-in for

Cevelop

Bachelor Thesis

Department of Computer Science

University of Applied Science Rapperswil

Spring Term 2018

Author: Zafer Dogan

Advisor: Thomas Corbat

Project Partner: Institute for Software (IFS)

External Co-Examiner: Lukas Felber

Internal Co-Examiner: Stefan Richter

Bachelor Thesis CONTENTS

Contents

1 Abstract 4

2 Assignment 5
2.1 Supervisor and Expert . 5
2.2 Student . 5
2.3 Introduction . 5
2.4 Goals of the Project . 5
2.5 Documentation . 6

3 Management Summary 7
3.1 Initial Situation . 7
3.2 Approach and Technologies . 7

3.2.1 Development Cycles . 7
3.2.2 Implemented Technologies . 7

3.3 Results . 8
3.3.1 Feature Overview . 9
3.3.2 UI Design . 9

3.4 Conclusion . 10
3.4.1 Open Features . 10
3.4.2 Potential for Optimization . 11

4 Initial Situation 12

5 Analysis 13
5.1 Functional Requirements . 13

5.1.1 Stakeholders . 13
5.1.2 Use Case Diagram . 14
5.1.3 Descriptions in Brief . 15
5.1.4 Descriptions in Essential Style . 16

5.2 Non-functional Requirements . 19
5.2.1 Performance . 19
5.2.2 Stability . 19
5.2.3 Usability . 19
5.2.4 Installability . 19
5.2.5 Maintainability . 19
5.2.6 Supportability . 19
5.2.7 Testability . 19

5.3 Styleguide Analysis . 20
5.3.1 Introduction . 20
5.3.2 Abbreviations . 20
5.3.3 Limitations . 20
5.3.4 Discussion . 21
5.3.5 Naming Conventions . 24

5.4 Environement Analysis . 32
5.4.1 Landscape Analysis . 32
5.4.2 Conceptual Model . 36
5.4.3 Class Diagram . 37
5.4.4 Sequence Diagrams . 39

Report 2 HSR FS 2018

Bachelor Thesis CONTENTS

6 Design and Decisions 40
6.1 Stylechecker Checking . 40
6.2 Stylechecker Resolution . 43
6.3 Stylechecker Plug-in User Interface . 45

6.3.1 User Interface conception . 45
6.3.2 Current User Interface . 49

6.4 Persistence . 53
6.5 RTS Testing . 55
6.6 Stylechecker and Codan Preferences . 56
6.7 Performance . 58

7 Architecture 59
7.1 Dependencies . 59

7.1.1 Checker and Quickfix . 59
7.1.2 Plug-in internals . 60

7.2 Packages . 61

8 Conclusion 70
8.1 Open Features . 70
8.2 Potential for Optimization . 71

8.2.1 General optimizations . 71
8.2.2 Architectural optimizations . 71
8.2.3 Rename Refactoring issue . 71

8.3 Outlook . 72

9 Glossary 73

10 References 74

11 Appendix A 75
11.1 Project Plan . 75

11.1.1 Project Overview . 75
11.1.2 Project organisation . 76
11.1.3 Management procedures . 77
11.1.4 Risk management . 83
11.1.5 Work packages . 83
11.1.6 Infrastructure . 84
11.1.7 Quality measures . 85

11.2 Time Analysis . 87

12 Appendix B 89
12.1 Installation Guide . 89
12.2 User Manual . 90

Report 3 HSR FS 2018

Bachelor Thesis CONTENTS

1 Abstract

In design work, a styleguide defines rules and guidelines to be adhered to for achieving a uni-
form visual look. Styleguides as such also exist for source code. Additionally, to contributing to
a visually pleasing codebase, a styleguide increases understandability and readability of source
code. In many projects, coding guidelines exist and are part of the development cycle ranging
from a small set of rules to a broader compilation of guidelines to be followed. Cevelop is an
integrated development environment (IDE) for C++. It is developed and maintained by the
Institute for Software (IFS) at HSR. Cevelop itself is based on the Eclipse C/C++ Development
Tooling (CDT) project. Currently, Cevelop is lacking the feature of styleguide checking.

The primary goal of the Stylechecker plug-in for Cevelop is providing the capabilities to per-
form styleguide checking and rule violation reporting. Furthermore, the plug-in is to offer au-
tomated resolutions wherever possible. In the scope of this project, the focus lies on covering
naming conventions for three predefined styleguides: Google styleguide, Canonical styleguide
and Geosoft styleguide. Additionally, users need to be able to create custom styleguides, define
rules for it, change existing ones and import/export styleguides for sharing with team mem-
bers.

The implemented Stylechecker plug-in realizes styleguide checking as well as automated res-
olutions. To achieve this, the plug-in uses the abstract syntax tree provided by Eclipse CDT.
Furthermore, the Stylechecker plug-in uses CDT’s code analysis (Codan) framework, an in-
tegrated Eclipse CDT plug-in, providing facilities to create markers and resolutions for C++
development. In combination, checking, reporting and initiating resolutions become available.
The Stylechecker plug-in allows users to compose custom styleguide rules by joining one or
more expressions, defining the language elements to check the rules for and providing custom
messages on reporting.

Report 4 HSR FS 2018

Bachelor Thesis CONTENTS

2 Assignment

This section discusses the assignment for the bachelor thesis. It contains the subsections ”Su-
pervisor and Expert”, ”Student”, ”Introduction”, ”Goals of the project” and ”Documentation”.

2.1 Supervisor and Expert

This bachelor Thesis will be developed for the Institute for Software at HSR internally. It will
be supervised by Thomas Corbat (tcorbat@hsr.ch) and Felix Morgner (fmorgner@hsr.ch), HSR,
IFS. An expert independent of HSR will examine the thesis and will be present at the final
presentation:

• Lukas Felber, Quatico (lukas.felber@quatico.com)

2.2 Student

This project is conducted in the context of the module “Bachelor-Arbeit” in the department
“Informatik” by

• Zafer Dogan (zdogan@hsr.ch)

2.3 Introduction

Cevelop is an Eclipse CDT based integrated development environment (IDE) for C++, imple-
mented and maintained by the Institute for Software at HSR [Cev18]. The IDE is responsible
for providing various tools to ease the development of C++ software. For uniform appearance
of source code developed in a software project there usually exist coding guidelines to specify
conventions regarding the source code to be adhered to within the project. Such guidelines
may encompass case sensitivity for names and structure of files. It is desirable that the IDE at
hand automatically checks adherence of the given rules. Cevelop currently lacks the support
for such guidelines in general.

2.4 Goals of the Project

The goal of this term project is the development of a plug-in for Cevelop to check coding guide-
lines for C++ projects. Since different projects or companies specify their own individual rules,
such a plug-in needs to be flexible and configurable for the rules in each project. The first task
in this bachelor thesis is the analysis of given well-known style guides:

• Google C++ Style Guide [Goo18]

• Boost Library Requirements and Guidelines [Boo18]

• One additional C++ style guide chosen by the student

From the examples above, requirements for the automatic checking and correction of violations
of coding guidelines using Stylechecker plug-in have to be derived. The focus in this project
lies on naming conventions. This includes:

• Casesensitivity of C++ elements like variables, functions, classes, etc.

• Camel or Pascal casing

Report 5 HSR FS 2018

Bachelor Thesis CONTENTS

Violations of given naming rules must be reported by the plug-in and if possible an automated
resolution for such violations shall be provided, by invoking the corresponding refactoring.
Eclipse CDT, on which the plug-in will be based on, already provides the corresponding facili-
ties. Predefined (above three) and custom sets of rules must be configurable for the workspace
globally and each project individually. Extended goal (optional): Beside configuring and check-
ing of naming conventions, other structural and semantic guidelines can be added to the feature
set of Stylechecker. There will be weekly meetings with the supervisors. Additional meetings
might be scheduled as required by the students. All Meetings, except for the kick-off meet-
ing, will be prepared by the students with an agenda that is sent to the supervisors at least
one day before the meeting. During the meeting the current progress will be presented (What
has been done? What has been achieved? How much time did it take? What is planned for
the subsequent week?). Decisions of the meeting must be recorded by the students. At the
beginning a project plan has to be devised for with milestones for the semester. This plan is
used as a guide line to check the progress compared to the estimation. The project plan will
be updated according to the actual execution, including time reports and tasks. The students
get feedback for accomplished milestones. The final mark will be given based on the eventual
results handed-in by the deadline at the end of the semester.

2.5 Documentation

This project must be documented according to the guide lines of the “Informatik” department
[HSR18a]. This includes all analysis, design, implementation, project management, etc. sec-
tions. All documentation is expected to be written in English. The project plan also contains
the documentation tasks. All results must be complete in the final upload to the archive server
[HSR18b]. Two copies of the documentation must be handed-in:

• One in color, two-sided

• One in B/W, single-sided

Report 6 HSR FS 2018

Bachelor Thesis CONTENTS

3 Management Summary

The management summary gives a short overview over the entire project. It discusses the
”Intitial’ Situation”, the ”Aproach and Technologies” used and the ”Results” of the project.

3.1 Initial Situation

A styleguide is set of rules and guides to be adhered to in order to achieve a uniform look
and feel. The terminology styleguide is most commonly associated with design work, where
similarly, it is a guideline to establish rules and guides like font size for titles, subtitles and
headings, colors for buttons etc. in order to achieve a uniform look and feel across the entirety
of the design. For source code, styleguides exists as well. Here they govern the look and feel of
the source code by defining guides and rules for naming, casing information and formatting.
A uniform look aides in readability and understandability of source code, as for example const
casing like CONST_VARIABLE inform the developer without knowing the definition or decla-
rations that this is a constant, immutable variable. It’s cues like these which help a developer
in analyzing the code more quickly and more efficiently and therefore increases his/her pro-
ductivity.

Cevelop is an integrated development environment (IDE) for C/C++ development. It is based
on Eclipse C/C++ Development Tooling (CDT) and developed at the Institute for Software
(IFS) at the HSR. It offers a wide range of useful plug-ins easing programming and developing
in C/C++. Currently, Cevelop is lacking the feature to check for styleguide violations. The key
goal of this project is to develop a plug-in providing the Cevelop IDE with this functionality.
Additionally, the plug-in is to offer automated resolutions wherever possible. Furthermore, an
import and export feature for styleguides is desired, so that a styleguide can be quickly shared
among team members.

3.2 Approach and Technologies

As the plug-in is developed for Cevelop IDE, which is a tool based on Eclipse CDT, the ap-
proach in developing the plug-in is to use Eclipse’s extension points. Eclipse in itself is a highly
customizable framework, offering nearly all components (all except core) to be extended via
plug-ins. In order to realize styleguide checking and resolution, the developed plug-in relies
heavily on the Codan plug-in, an Eclipse CDT integrated code analysis plug-in, which offers
functionality to report problems, mark them and provide resolution logic in the editor.

3.2.1 Development Cycles

The project saw two major development cycles. In the first cycle, the necessary setup of plug-
in dependencies and hooks were the major focus. Additionally, the integration of Eclipse CDT
internal functionality, like rename refactoring, needed to be developed. In the second cycle, the
focus shifted to the Stylechecker plug-in internals, like domain elements and UI. In combina-
tion, checker and resolution logic were implemented.

3.2.2 Implemented Technologies

Implemented technologies include the following: Eclipse CDT, Codan plug-in extension, JSON
and Java 8. The Eclipse CDT was used to delegate renaming logic to existing refactoring struc-
tures. Codan plug-in served as basis for editor marker generation, line marking and resolution
offering. JSON was used as the main format for persisting plug-in settings. Java 8 was the
development language.

Report 7 HSR FS 2018

Bachelor Thesis CONTENTS

3.3 Results

The developed Stylechecker plug-in provides styleguide checking and automated resolutions
for naming conventions. Styleguide checkings can be applied to the most important C++ lan-
guage elements such as variables, functions, classes etc. Furthermore, it allows import and
export of styleguides to be shared among team members.

Figure 1: Unchecked, Checked and Resolved States of Stylechecker plug-in

The figure above shows the three states of the Stylechecker plug-in. In the unchecked state,
the Stylechecker plug-in is turned off. In the checked state, the Stylechecker plug-in is turned
on and reports styleguide violations according the currently active styleguide. In the resolved
state, the violations have been fixed via Quickfix operations and no violation is being reported
anymore, the code at this point is styleguide compliant.

The Stylechecker plug-in offers a great flexibility in configuring a styleguide. A user can choose
from three predefined styleguides that come with the plug-in - which are Google, Canonical
and Geosoft C++ styleguides - or create his own. The plug-in preferences provide the neces-
sary UI for these kind of operations.

Report 8 HSR FS 2018

Bachelor Thesis CONTENTS

3.3.1 Feature Overview

In the table below, the implemented features are listed.

Feature Description

Styleguide creation, cus-
tomization and removal

A styleguide definition includes rules definition and rules
definition includes expression definition. This way, multiple
rules with complex expression logic can be created. Rules can
be limited to what concepts to check them on.

Rule and Grouping filtering Rules and Groups can be filtered in the preferences window,
in order to more quickly find rules to edit and customize.

Styleguide, Rule and
Grouping Enable/Disable

A styleguide can be enabled or disabled entirely. A styleguide
can be partially enabled/disabled via enabling/disabling
Groupings it contains. A Grouping can be partially en-
abled/disabled via Rule enabling or disabling Rules it con-
tains. This way, an existing styleguide can be flexibly adjusted
to project needs.

Styleguide Checking and
Reporting

Naming conventions are checked and reported, when a viola-
tion is present.

Automated Resolutions Styleguide violations have automated resolutions. When an
automated resolution fails, user input is requested.

Import & Export of
Styleguides

Styleguides can be imported and exported to be shared
among team members.

Codan File & Folder Inclu-
sion / Exclusion

As the Stylechecker plug-in extends the Codan plug-in, the
checker can be limited to be applied to certain files and folders
via Codan settings.

Workspace & Project Scopes On project level, the Stylechecker plug-in can be config-
ured in three ways. To use workspace settings, to reference
workspace settings or to use project specific settings.

Table 1: Feature overview table

3.3.2 UI Design

The design of the UI was heavily influenced by the Eclipse environment. As the plug-in had
to fit within Eclipse context, it influenced the choice for the UI framework. Most of the UI was
implemented with SWT. The Stylechecker settings appear within the Eclipse settings. Also,
because the Stylechecker plug-in extends the Codan plug-in, it was used as a reference point.

Report 9 HSR FS 2018

Bachelor Thesis CONTENTS

3.4 Conclusion

The target features within the scope of the projects were able to be implemented. The
Stylechecker plug-in can check styleguides, report them and offer automated resolutions, wher-
ever possible. But due to time constraints and project group size, some features were imple-
mented in the most basic way, such as File Inclusion / Exclusion feature, which basically is just
a reroute to the Codan plug-in. Along the way, multiple new ideas for new features came up as
well. The following sections will discuss therefore open features that could be implemented in
case of a continuation of development and also will review some potentials for optimization.

3.4.1 Open Features

Feature Description

Bulk solve multiple prob-
lems

Feature to solve multiple problems at the same time.

Advanced UI Mode An advanced UI mode feature, which would allow to use
more complex settings and access more complex concepts to
check against. This way new users wouldn’t be overwhelmed
with the amount of settings and advanced users could cus-
tomize the Stylechecker to their hearts content.

Limitation of checked con-
cepts on Expression Group
basis

A limitation on basis of Expression Groups on which concepts
the Expressions should be checked on would allow for more
complex rule definitions and to perform a resolution in one
step.

Settings versioning and auto
transformation

As the plug-in might change in future, a feature that would
detect changes in the settings structure and offer auto-
matic transformation to the new structure. This way older
styleguide settings wouldn’t be invalidated with newer ver-
sions of the plug-in.

Special code markers for
styleguide checking en-
able/disable

Like @Supress annotation in Java, special comments or mark-
ers in code with which style checking for a certain section of
a code could be enforced or forced to skip.

AI assisted resolution It would be interesting to have a resolution type that would
be a trained AI that would determine how to best convert a
string to a target casing by analyzing multiple code sources.
This would for example allow for semantically correct trans-
formations, considering the meaning of the words in the res-
olution procedure.

String to Regex converter Basically the reverse procedure with regex matching. A fea-
ture that would allow a user to define a target regex, which
would be used as the basis for a resolution. This way resolu-
tions could be defined in a dynamic way.

Table 2: Open features overview table

Report 10 HSR FS 2018

Bachelor Thesis CONTENTS

3.4.2 Potential for Optimization

There is still a lot of potential for optimization in the Stylechecker plug-in. First optimization
source that comes to mind is the Expressions UI part in the Rule dialog, which at the moment
is a little bit overloaded with text. It could be improved by using visual cues to indicate
for example whether a group matches ALL or ANY with an icon rather than with text.
Optimizations like these would make reading the Expressions easier. Additionally, Expression
Groups and Expressions use the same tree view, which results in many fields being empty
for the Expression Groups as those settings just simply don’t exist on that level. A different
approach in visualizing the Expressions and Expression Groups is probably necessary if the
Stylechecker is to be developed further in the future.

Another source of optimization would be a consolidation of all features within the Stylechecker
plug-in itself without having to reference the Codan plug-in. There are ways to initiate Codan
procedure in order to, for example, enable or disable a checker from the outside, but the
implementation can get tricky due to hard to control update procedure that are controlled
by the Codan UI. But a consolidation would make using the Stylechecker plug-in more
convenient, even though most of the settings are one time settings anyway.
Furthermore, some UI elements still could need some proper refactoring work as some of them
are still bloated due to limited time. SettingsComposite for one is still a huge block of code.

Report 11 HSR FS 2018

Bachelor Thesis CONTENTS

4 Initial Situation

A styleguide is set of rules and guides to be adhered to in order to achieve a uniform look
and feel. The terminology styleguide is most commonly associated with design work, where
similarly, it is a guideline to establish rules and guides like font size for titles, subtitles and
headings, colors for buttons etc. in order to achieve a uniform look and feel across the entirety
of the design. For source code, styleguides exists as well. Here they govern the look and feel of
the source code by defining guides and rules for naming, casing information and formatting.
A uniform look aides in readability and understandability of source code, as for example
const casing like CONST_VARIABLE inform the developer without knowing the definition
or declarations that this is a constant, immutable variable. It’s cues like these which help a
developer in analyzing the code more quickly and more efficiently and therefore increases
his/her productivity.

Cevelop is an integrated development environement (IDE) for C/C++ development. It
is based on Eclipse C/C++ Development Tooling (CDT) and developed at the Institute for
Software (IFS) at the HSR. It offers a wide range of useful plug-ins easing programming
and developing in C/C++. Currently, Cevelop is lacking the feature to check for styleguide
violations. The key goal of this project is to develop a plug-in providing the Cevelop IDE
with this functionality. Additionally, the plug-in is to offer automated resolutions wherever
possible. Furthermore, an import and export feature for styleguides is desired, so that a
styleguide can be quickly shared among team members.

As the Stylechecker plug-in builds on a previous work, sometimes it might be referred
to as Ctylechecker. In this context, Stylechecker and Ctylechecker designate the same plug-in.

Report 12 HSR FS 2018

Bachelor Thesis CONTENTS

5 Analysis

This section discusses the requirements analysis for the Stylechecker plug-in. Furthermore a
”Styleguide Analysis” can be found, discussing the chosen styleguides and reflecting about the
implementation of them in the plug-in. It also includes the Environment analysis, analyzing
the context for the plug-in to be developed in and the necessary domain elements required;
including a look at important sequences in the plug-in.

5.1 Functional Requirements

The functional requirements contains the analysis of ”Stakeholders”, the Use Cases as ”De-
scriptions in Brief” and ”Descriptions in Essential Style”.

5.1.1 Stakeholders

The Stakeholders section discusses the primary actor and the remaining stakeholders and their
interests.

5.1.1.1 Primary Actor
C++ Developers

5.1.1.2 Stakeholders and Interests
There are three relevant stakeholders of the Stylechecker plug-in: C++ Developers, C++

Project Managers and C++ Team Leaders.

C++ Developers
C++ Developers want to use existing or custom defined styleguides in their projects without

much hassle. C++ Developers want styleguide violations to be detected and if possible, offered
an option to automatically fix styleguide issues. If auto resolution isn’t possible, C++ Devel-
opers want a convenient way to resolve the issue without much hassle so that they won’t be
impaired in their productivity. C++ Developers also would like to decide for themselves when
styleguide checking should be performed or not and to which files and folders they should be
applicable to.

C++ Project Managers
C++ Project Managers want to define and export styleguidelines, so that their developers

can adhere to a chosen styleguide. Preferable, C++ Project Managers would like to choose
from already existing styleguides to apply to their projects if a certain styleguide (like f.ex.
Google C++ Styleguide) matches their styleguide needs. Furthermore, C++ Project managers
would like to have a preliminary report of styleguide violations, so that they can effectively
discuss styleguide issues with their team leaders.

C++ Team Leaders
C++ Team Leaders want to be able to define where styleguide checking is applied to, so

that they can avoid unnecessary styleguide checking for f.ex. external libraries. Furthermore,
C++ Team Leaders would like to generate a report of styleguide violations, so that they can
distribute the work to fix styleguide issues more effectively. C++ Team leaders also want to
modify existing or custom defined styleguides, in order to adjust them to the needs of their
team.

Report 13 HSR FS 2018

Bachelor Thesis CONTENTS

5.1.2 Use Case Diagram

The use case diagram displays an overview of the relationships between stakeholders and the
use cases.

Figure 2: Use Case Diagram Stylechecker plug-in

Report 14 HSR FS 2018

Bachelor Thesis CONTENTS

5.1.3 Descriptions in Brief

All use cases in this section will be held in brief format and serve as a general overview.

5.1.3.1 UC1 Activate/Deactivate Code Styleguide Checking
A C++ Code Styleguide can be activated and deactivated at will. When active, the Styleguide

Checker will notify about Styleguide violations. A C++ Code Styleguide can be applied to the
entire file, to the entire workspace or a specific line in the code. Styleguides can be activated on
project basis or workspace basis.

5.1.3.2 UC2 CRUD Code Styleguide
C++ Styleguides can be configured via preferences in the IDE. The User can quickly change

between pre-defined styleguides and apply them on the fly. Additionally, a User can define a
custom set of Styleguide’s to be checked against. A User can save as many custom profiles as
he wishes. Profiles are persisted within the IDE. The User can delete custom Code Styleguides
when desired.

5.1.3.3 UC3 Export/Import Code Styleguide Profiles
The User can save and export custom Code Styleguide’s to share with team members and

also import profiles shared by team members. Imported profiles can be edited like any other
custom profiles. And like any other custom profiles, imported profiles can be used project-wide
or workspace wide.

5.1.3.4 UC4 Exclusion of folders and files
The C++ Styleguide checking can be activated/deactivated for specific files and folder struc-

tures. This is especially relevant when working with external dependencies.

5.1.3.5 UC5 Autoresolve of Styleguide violations
Where appropriate and possible, Styleguide violations can be auto resolved with a quickfix.

Where not appropriate, the user will have the option to enter a name manually to be refactored
to. Auto refactoring can be applied per file or project-wide.

5.1.3.6 UC6 Limiting Styleguide checking
A user can limit the type of styleguide checking that is performed according to specifically

coarsely defined groupings like Naming Conventions or Comment Conventions.

5.1.3.7 UC7 Custom Styleguide groupings
A user can define coarse groupings and assign new checker rules within those groupings.

This way any type of C++ styleguide can be adapted to work with the plug-in and currently
existing differences in grouping can be targeted with this feature. Alternatively, the user can
choose from predefined groupings, a groupings catalog, to group custom checker rules. For
example Naming Conventions is a prime example for a predefined grouping.

5.1.3.8 UC8 Styleguide violation report
A user can run a styleguide checking analysis and produce a report. This might be espe-

cially interesting if a project contains a lot of violations and a team needs to properly distribute
refactoring tasks. The output will be generated as an HTML.

Report 15 HSR FS 2018

Bachelor Thesis CONTENTS

5.1.4 Descriptions in Essential Style

This section analyses the most important use cases in essential style.

5.1.4.1 UC1 Activate/Deactivate Code Styleguide Checking

Preconditions

• C++ Project is open

Description
A C++ Code Styleguide can be activated and deactivated at will. When active, the Styleguide

Checker will notify about Styleguide violations. A C++ Code Styleguide can be applied to the
entire file, to the entire workspace or a specific line in the code. Styleguides can be activated on
project basis or workspace basis.

Postconditions

• Styleguide violations are shown or not shown

Main Scenario

1. Open Project Preferences

2. Open Stylechecker register

3. Enable Stylechecker plug-in

4. Save/Apply Changes

Alternatives

3a Disable Stylechecker plug-in

Report 16 HSR FS 2018

Bachelor Thesis CONTENTS

5.1.4.2 UC4 Exclusion of folders and files

Preconditions

• C++ Project is open

• Project has at least one file or folder

• Ctylechecking is activated

Description
The C++ Styleguide checking can be activated/deactivated for specific files and folder struc-

tures. This is especially relevant when working with external dependencies.

Postconditions

• Styleguide violations are not shown for excluded files and folders

Main Scenario

1. Open Project Preferences

2. Open Stylechecker register

3. Activate File and Folder Exclusion

4. Add files and folders to exclusion list

5. Save/Apply Changes

Alternatives

3a Deactivate File and Folder Exclusion (when deactivated, all files and folders are checked)

4a Remove files and folders from exclusion list

Report 17 HSR FS 2018

Bachelor Thesis CONTENTS

5.1.4.3 UC5 Autoresolve of Styleguide violations

Preconditions

• C++ Project is open

• C++ Code is present

• Violation is autoresolveable

Description
Where appropriate and possible, Styleguide violations can be autoresolved with a quickfix.

Where not appropriate, the user will have the option to enter a name manually to be refactored
to. Autorefactoring can be applied per file or project-wide.

Postconditions

• Code is refactored to proper style

• Code is working (i.e. refactoring doesn’t brake Code)

Main Scenario

1. Navigate to Styleguide violation line

2. Call Quickfix operation

3. Execute Autoresolve in file

Alternatives

1a Call context menu in file

1aa Execute Autoresolve styleguide violations in file

1ab Execute Autoresolve styleguide violations in project

1b Call context menu on project

1ba Execute Autoresolve styleguide violations

2a Click violation marker

3a Execute Autoresolve in project

Report 18 HSR FS 2018

Bachelor Thesis CONTENTS

5.2 Non-functional Requirements

This section has a look at the quality attributes the Stylechecker plug-in needs to adhere to.

5.2.1 Performance

- Styleguide resolutions (singular refactoring) need to be executed within:

- three seconds in singular file refactorings

- five seconds on entire workspace refactorings

in small to middle sized projects.

5.2.2 Stability

- Refactorings cannot break the code. Any autoresolve or styleguide fixing refactoring
needs to leave the code in a working state.

- If a refactoring breaks the code, the code can be easily restored to its working state via an
Undo operation

5.2.3 Usability

- Settings UI: A new custom rule can be defined within three steps. Create, Write and Save

- Settings UI: Imported styleguide profiles can be used without additional configuration

5.2.4 Installability

- The plug-in needs to be able to be installed via an Update site. The Update site files and
folders need to conform to Eclipse standards, so that it can be quickly installed via ’Install
new Software’.

5.2.5 Maintainability

- The plug-in needs to be easily extendable without significant architectural adjustment in
case additional predefined styleguides are added in the future

5.2.6 Supportability

- The plug-in shows helpful information respective to settings

- The plug-in shows meaningful error messages when a refactoring didn’t succeed

5.2.7 Testability

- The plug-in Helper components don’t have more than one additional external depen-
dency

Report 19 HSR FS 2018

Bachelor Thesis CONTENTS

5.3 Styleguide Analysis

The styleguide analysis records the naming conventions for the Google, Canonical and Geosoft
styleguides and was used as an aid in the development of the Stylechecker plug-in. The
styleguides are grouped into categories and recorded in table form to better illustrate the dif-
ferences. The styleguide analysis also includes an analysis of the chosen styleguides and a
reflection about styleguides in general in the context of this plug-in

5.3.1 Introduction

The categories for the naming conventions are chosen according to Google’s C++ Styleguide
and will serve as a general guideline for grouping. The direct comparison of the styleguides
in table form can be found at the end of the styleguide analysis section. Before the direct com-
parison of the differences in naming conventions, the three used styleguides will be evaluated
against one another and in general an analysis will be made, to what extent the styleguides go
and to what extent they could have gone based on the C++ language.

5.3.2 Abbreviations

Here is a list of abbreviations used in the document

- D: Description

- E: Example

5.3.3 Limitations

In all of the three Guidelines analyzed here, limitations in respect to implementability in
regards to project scope and possibility apply. An example of limitations are the following
from the Geosoft Styleguide definition, which says under specific styleguides:

- The terms get/set must be used where an attribute is accessed directly.
- Plural form should be used on names representing a collection of objects.
- The prefix n should be used for variables representing a number of objects.
- The prefix is should be used for boolean variables and methods.

While not all of these limitations are beyond implementability, they all require major ar-
chitectural extensions (i.e. AST Traverse needs to pickup variable types, which need to be
parsed and made editable etc.). The current architecture supports extensions such as these (i.e.
qualifiers are supported), but the implementation of types into the resolution procedure may
be well beyond the project scope and the work a single student may accomplish during a three
months period.

Report 20 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.4 Discussion

This section has a look at the styleguide definitions and includes a discussion and analysis of
them.

5.3.4.1 Definition
First off, it is prudent to establish a common understanding of what exactly a stylguide is

and what it entails in the scope of this project. The term styleguide isn’t one specific to the IT
world and can be found in various other fields, most prominently in design related works. A
styleguide is a guide to a uniform look and feel of a product; it defines rules and limitations
to be followed in order to achieve a common look. As the primary medium in programming
is plain text, styleguide in respect to programming and more specifically to source code refers
to a common look and feel of source code in order to enhance readability and understanding;
it does not refer to visual styling like spacing, kerning etc. as may be the case in design
related styleguides. Styleguides in the IT world are target-oriented set of rules to enhance
understanding; it tries not to be visually pleasing. For example a common widespread ”style”
in the programming world is the use of all caps lettering for constant variables, like const int

PI_NUMBER{3.1415...}. As programmers we immediately now by only reading the name and
not even looking at the type specification that this variable is a constant variable. It’s cue’s like
these that improve readability and in effect, understanding of code. In the same way we give
our functions meaningful names to indicate what it does and with it, make it easier for other
programmers to understand our code, by adhering to styleguides we can ease the analysis of
code and increase productivity.

In the scope of this project with styleguide we refer to the set of rules that guide and
contribute to a common look and feel of C++ Code.

5.3.4.2 Google, Geosoft and Canonical - A comparison
Before we begin with a comparison, the three chosen styleguides need to be elaborated in

respects to from which companies they actually are. As Google is a worldwide well-known
company, it needs no further explanation. Their C++ styleguide is one of the most known
examples for a styleguide for C++. Canonical is a british linux distributing company and
their styleguide is very similar to Google’s C++ styleguide definition in look and structure,
but deviates in many points from Google’s guidelines significantly, qualifying it as an addi-
tional predefined styleguide for which naming conventions are to be provided. Canonical
additionaly serves as replacement for the Boost Library styleguide - as defined in the project
goals - as the Boost Library is poorly defined and in fritters, it was deemed it unfit as a
predefined styleguide to be implemented in the scope of this project. Finally, there is the
Geosoft styleguide, a predefined styleguide chosen by the student. Geosoft styleguide belongs
to the company ”Geotechnical Software Services” and differs in its presentation and structure
from Google and Canonical. But in case of naming conventions, many overlapping areas are
found, which is why it was chosen as the last of the three predefined stylguides to implement.

All three styleguides follow a certain structure and have different sections, like Header
Files, Scoping, Classes, Naming and the like. Not all sections define a clear style related rule,
for example, Google styleguide has a section detailing that the use of the friend keyword is
OK and should be used within reason. Now for a programmatic application of a styleguide
checking it is hard to determine what is within reason and what not. Other deviations exist
also among the styleguides, e.g. Geosoft has styleguide definitions that go like: Use calculate
in function name, if the function is performing some calculation. This kind of styleguide is
unique to Geosoft and can’t be found in Google or Canonical. In respect to naming rules, a lot
of commonalities can be observed.

Report 21 HSR FS 2018

Bachelor Thesis CONTENTS

For the scope of the project, the most relevant part from all of the styleguides is the sec-
tions related to naming. Other sections, such us Classes e.g. detail in some extend dos and
don’ts, like to use explicit keyword on single parameter Constructors or to provide Copy
Constructors only if needed and if not, to disable them explicitly with = delete. As the naming
sections show commonalities, they also serve as a good base for the Stylechecker plug-in for
development.

Styleguides do have explicit and suggestive parts, a tool can enforce the explicit parts,
with some Machine Learning magic maybe even cover suggestive parts to some extent, but all
in all, not enforce it entirely. This is a limitation to be aware of. But this doesn’t mean a tool for
style checking is pointless, it serves as a safety net to cover in the very least a certain amount
of the styleguide.

5.3.4.3 The good and the bad
The good parts of all the chosen styleguides are the proper sectioning (which not all

styleguides always adhere to, e.g. the Boost Library styleguide is scattered) and especially the
section related to the naming conventions as they are the most specific and clearly defined.
There are no ambiguities and are mostly illustrated with examples. The naming conventions
cover the most general concepts in C++, like classes, local variables and functions and can by
themselves can contribute in a significant way to a common look as they are the most used
elements in C++ programming.

The bad part that all the styleguides share is that they try to be more than styleguides at
times, especially the Google Styleguide is a good example in this respect. It has a section on
how to use the Boost library (i.e. only approved libraries). The usage of a certain library has
not much to do with a common look at feel of the code base and as such should not be part of
the styleguide. Furthermore all three styleguides try to generalize wherever possible, which is
why for example the same format can be defined for all types of functions. In the context of a
purely textual description without any tools to check, this approach, of course, makes sense,
because the more rules a styleguide defines, the harder it becomes to implement it correctly.

5.3.4.4 Postanalysis
In all fairness, all three chosen styleguides do a relatively good job on defining clear

styleguides to achieve a common look of the codebase. They cover naming guides and also
formatting guides, both of which affect significantly the look and feel of the code. All of the
styleguides do one thing in common: they don’t cover or distinguish more specific concepts of
C++ like UDL’s or template variables. In the styleguides of Google and Canonical I’ve seen a
lack of discussion of parameters in generall. Geosoft suggests naming a parameter as the type
name itself, but that’s it.

And that’s where we have to ask ourselves, for which concepts in the C++ language
styleguides make sense and at what point do we reach the limit? Generalizations with minor
variations can make more sense if we are to achieve a uniform source code look. Therefore
that’s a basis from where to look beyond. In the context of generalizations, it is better to choose
one casing for a general group of names, e.g. Pascal Casing for all types of functions makes
more sense than different casings for the different function types as defining a different format
for all different variations of functions might clutter the code in such a way that a uniformity
couldn’t be recognized in the source code anymore. This way (one casing for different types
of functions) a function can be quickly identified by its casing only while keeping the visual
uniform look. Could we designate member functions, free functions etc. with something other

Report 22 HSR FS 2018

Bachelor Thesis CONTENTS

than casing information? Yes, we could. For this purpose prefixes or suffixes could play a
useful role. Although not defined in any styleguides, something along the following could
help distinguish function types better:

Type Example

Free functions void FPrintAll();

Member functions void MPrintAll();

Template functions void TPrintAll();

Table 3: Prefix variations on function types

But in the same way, it could also make reading the functions harder as the names get
polluted. Most of the function types are clear by context use alone and in most cases a special
designation doesn’t really add to the readability nor understanding of the code.

As we can see, the generalization approach of all of the predefined styleguides has some
rationale behind it. But what about covered language elements? All three styleguides cover
the most common C++ language elements like variables, function, classes etc., but all three
also lack distinguished definitions for templates, be they template variables, functions or
else. It would be wrong to say they’re entirely absent, but usually the suggested norm is to
follow the actual C++ norm, i.e. a ”T” for a template parameter. Most of the time template
based defintions fall into the same generalizations like any other, i.e. template functions are
named like normal functions, template variables are named like normal variables etc. One
C++ language element that isn’t covered by all three styleguides, but which would make sense
to be covered, are UDLs, i.e. user defined literals. A quick example of a UDL:

int operator�� _KM(int param){...}

int distance_to_school = 2_KM;

User defined literals provide us meaningful literals we can attach to values to make them more
telling of what kind of value they’re representing. As such their textual representation can
influence how effectively we interpret them. Therefore a styleguide definition for UDLs makes
sense. In the scope of this project UDLs weren’t included for naming conventions, reasons
being:

1) They aren’t defined in the three predefined styleguides
2) The Abstract Syntax Tree (AST) injected into the Codan (Code Analysis) plug-in Checkers
by Eclipse C/C++ Development Tooling (CDT) don’t pick the user defined literal as an
IASTName by itself, it registers it with the operator keyword.

Beyond this, most of the language elements or at least the most important and visible
ones are already covered by the styleguides.

With tools like the Stylechecker plug-in a more distinguished approach to C++ language
elements could make sense, as with it a tool would aid in adhering to the styleguide and thus
freeing up developers from having to remember specific parts o fthe styleguide. But then
again, an approach like in Table 3.

Report 23 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5 Naming Conventions

This section discusses the naming conventions for the three chosen styleguides and lays them
out in a tabular fashion for easier comparison. It is important to note that not all language
element variations are listed simply because in most cases a styleguide definition applies to all
variations, like on type of casing for functions, be they member, free or template.

5.3.5.1 File Naming

This section compares the naming conventions for ”Files”.

File Body Naming

Google[Goo18] Canonical[Can18] Geosoft[Geo18]

D Filenames should be all
lowercase and can include
underscores (_) or dashes (-
). An underscore is pre-
ferred.

Same as Google A class should be declared
in a header file and defined
in a source file where the
name of the files match the
name of the class. Names
representing types must be
in mixed case starting with
upper case.

E my_useful_class.h

class MyUsefulClass...;
Same as Google MyClass.h

class MyClass...;

Table 4: File Body Naming

File Ending Naming

Google Canonical Geosoft

D C++ files should end in .cc
and header files should end
in .h. Files that rely on
being textually included at
specific points should end
in .inc (see also the section
on self-contained headers)

C++ files should end
in .cpp and header files
should end in .h.

C++ header files should
have the extension .h (pre-
ferred) or .hpp. Source files
can have the extension .c++
(recommended), .C, .cc or
.cpp.

E my_useful_class.cc

my_useful_class.h

my_useful_class.cpp

my_useful_class.h

MyClass.c++

MyClass.C

MyClass.cc

MyClass.cpp

MyClass.h

MyClass.hpp

Table 5: File Ending Naming

Report 24 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5.2 Type Naming

This section compares the naming conventions for ”Types” like classes and structs.

Class Naming

Google Canonical Geosoft

D Type names start with a
capital letter and have a
capital letter for each new
word, with no underscores

Type names start with a
capital letter and have a
capital letter for each new
word, with no underscores

Names representing types
must be in mixed case start-
ing with upper case

E class MyClass...; class MyClass...; class MyClass...;

Table 6: Class Naming

Struct Naming

Google Canonical Geosoft

D Same as class. Same as class. Same as class.

E struct MyStruct...; struct MyStruct...; struct MyStruct...;

Table 7: Struct Naming

Report 25 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5.3 Variable Naming

This section compares the naming conventions for ”Variables”.

Common Variable Naming

Google Canonical Geosoft

D Contains three areas of ap-
plication: Common Vari-
able names, Class Data
Members and Struct Data
Members

Variable names are all low-
ercase, with underscores
between words. Class
member variables follow
this convention

Mixed case, starting with
lowercase. Private class
members with suffix _.
Generic variables, such as
parameters should have
the same name as their
type.

E std::string table_name

std::string tablename

std::string table_name

std::string tablename

std::string tableName

Private Class member:
std::string tableName_

Generic Variable (Param):
void myFunc(Database

database)

Table 8: Common Variable Naming

Constant Variable Naming

Google Canonical Geosoft

D Variables declared const-
expr or const, and whose
value is fixed for the du-
ration of the program, are
named with a leading "k"
followed by mixed case

Name constants like other
variables, using all lower-
case, with underscores be-
tween words

Named constants (includ-
ing enumeration values)
must be all uppercase us-
ing underscore to separate
words.

E const int

kDaysInAWeek = 7

auto const

match =

map.find(value);

int const width1024

const int

MAX_ITERATIONS = 25;

const std:.string

COLOR_RED =�#ff0000�;

const float PI =

3.1415;

Table 9: Constant Variable Naming

Report 26 HSR FS 2018

Bachelor Thesis CONTENTS

Parameter Naming

Google Canonical Geosoft

D No guide defined. No guide defined. Paremeter names should be
the same as the typename.

E void

openConnection(Database

database)...

Table 10: Parameter Naming

Report 27 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5.4 Function Naming

This section compares the naming conventions for ”Functions”.

Regular functions

Google Canonical Geosoft

D Regular functions have
mixed case; accessors and
mutators may be named
like variables.

Regular functions, acces-
sors, and mutators are all
lowercase, with under-
scores between words.

Names representing meth-
ods or functions must be
verbs and written in mixed
case starting with lower
case.

E AddTableEntry()

DeleteUrl()

Optional for getters and
setters:
int count()

void set_count(int

count)

add_table_entry()

delete_url()

open_file_or_die()

getName()

computeTotalWidth()

Table 11: Regular functions

Member functions

Google Canonical Geosoft

D Accessors and mutators
may be named like vari-
ables. No specific guideline
for other types of mem-
ber functions. Treated as
regular functions.

Regular functions, acces-
sors, and mutators are all
lowercase, with under-
scores between words.

Names representing meth-
ods or functions must be
verbs and written in mixed
case starting with lower
case.

E Optional for getters and
setters:
int count()

void set_count(int

count)

add_table_entry()

delete_url()

open_file_or_die()

getName()

computeTotalWidth()

Table 12: Member functions

Report 28 HSR FS 2018

Bachelor Thesis CONTENTS

Free functions

Google Canonical Geosoft

D No guide defined, treated
as regular functions.

No guide defined, treated
as regular functions.

No guide defined, treated
as regular functions.

Table 13: Free functions

Template functions

Google Canonical Geosoft

D No guide defined, treated
as regular functions.

No guide defined, treated
as regular functions.

No guide defined, treated
as regular functions.

Table 14: Template functions

5.3.5.5 Namespace Naming

This section compares the naming conventions for ”Namespaces”.

Google Canonical Geosoft

D Namespace names are all
lower-case.

Same as Google Same as Google

E websearch::index

websearch::index_util

- model::analyzer

io::iomanager

common::math::geometry

Table 15: Namespace Naming

Report 29 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5.6 Enumerator and Enumaration Naming

This section compares the naming conventions for ”Enumerators” and ”Enumarations”.

Enumaration Naming

Google Canonical Geosoft

D Enumaration names are
Pascal Case. They corre-
spond to type naming.

Enumeration names are
Pascal Case. They corre-
spond to type naming.

No guide defined.

E enum UrlTableErrors {

...

};

enum

AlternateUrlTableErrors

{

...

};

enum class

UrlTableErrors {

...

};

Table 16: Enumaration Naming

Enumarator Naming

Google Canonical Geosoft

D Enumerators (for both
scoped and unscoped
enums) should be named
either like constants or like
macros: either kEnum-
Name or ENUM_NAME

Enumerators should be
named like member vari-
ables: out_of_memory,
enclosed within an enum
class.

Named constants (includ-
ing enumeration values)
must be all uppercase us-
ing underscore to separate
words.

E enum UrlTableErrors {

kOK = 0,

kErrorOutOfMemory,

kErrorMalformedInput,

};

enum

AlternateUrlTableErrors

{

OK = 0,

OUT_OF_MEMORY = 1,

MALFORMED_INPUT = 2,

};

enum class

UrlTableErrors {

ok,

out_of_memory,

malformed_input,

};

MAX_ITERATIONS

COLOR_RED

PI

Table 17: Enumarator Naming

Report 30 HSR FS 2018

Bachelor Thesis CONTENTS

5.3.5.7 Macro Naming

This section compares the naming conventions for ”Variables”.

Google Canonical Geosoft

D Macro names are defined in
const case

Same as Google No guideline defined

E #define ROUND(X)

#define PI_ROUNDED 3.0

Same as Google -

Table 18: Macro Naming

Report 31 HSR FS 2018

Bachelor Thesis CONTENTS

5.4 Environement Analysis

This section discusses the environement analysis. It has a look at the Eclipse and Codan plug-in
landscape into which the Stylechecker plug-in is to be integrated. It also contains an analysis
of the domain elements and has a look at the most important sequences.

5.4.1 Landscape Analysis

The landscape analysis looks at the context elements the plug-in is using. Therefore, the sec-
tions looked at are the Rename Refactoring from the Eclipse CDT and the Checkers from the
Codan plug-in.

5.4.1.1 Eclipse CDT Rename Refactoring

Figure 3: CRefactory Class relationships

Report 32 HSR FS 2018

Bachelor Thesis CONTENTS

What Description

PlatformObject Is used to access Eclipse’s GUI

Refactoring A Base class, which other Refactorings need to imple-
ment in order to be used with the Eclipse Refactoring

CRefactoring Realizes the C/C++ specific refactoring tasks

ProcessorBasedRefactoring A refactoring, that uses a special processor to execute the
change

CRenameProcessor A C/C++ specific rename refactoring processor

Action An absract Action class for UI related executions

RefactoringAction A Refactoring Action. This starts a new UI in which a
refactoring can be performed

CRenameAction A C/C++ specific rename action. Starts a rename refac-
toring wizard.

CRenameRefactoring A C/C++ specific rename refactoring implementation

RenameSupport A support class for renaming procedures, used by CRe-
nameRefactoring and also when delegating to Eclipse
CDT internal rename refactoring from within the plug-
in

CRefactory A Singleton class providing a singular interface for access
to C/C++ related refactorings

CRenameRefactoringPreferences As the name suggests, preferences class for the CRe-
nameRefactoring procedure

CRenameProcessorDelegate A delegate class that encapsulates the Eclipse CDT
C/C++ Refactorings

Table 19: Conceptual Elements

Report 33 HSR FS 2018

Bachelor Thesis CONTENTS

5.4.1.2 Codan Extension Points

Figure 4: Relevant Codan Extension Points

What Description

IChecker Codan Interface class for Checkers

AbstractChecker Convenience implementation of IChecker in-
terface with default implementations of com-
mon methods

AbstractCheckerWithProblemPreferences AbstractChecker that has extra methods to sim-
plify adding problem preferences

AbstractIndexAstChecker Convenience implementation of checker class
that works on an index-based AST of a specific
C/C++ program

AbstractStyleChecker A special convenience class to gather common
functionalities across user implemented check-
ers

DynamicStyleChecker A Checker implementation for dynamic style
checking for names

Report 34 HSR FS 2018

Bachelor Thesis CONTENTS

Table 20: Left Side, Checker Extension Point

What Description

ICodanMarkerResolution Codan Interface for Resolution implementa-
tions

AbstractCodanMarkerResolution Generic class for Codan Marker resolution.
Used as base class for Codan’s marker resolu-
tion extension.

AbstractStyleResolver Convenience inbetween class to provide com-
mon functionalities across user implemented
resolution implementations

DynamicStyleResolution A Resolution implementation for Dynamic-
StyleChecker violations

Table 21: Right Side, Resoluttion Extension Point

Report 35 HSR FS 2018

Bachelor Thesis CONTENTS

5.4.2 Conceptual Model

The conceptual represents the conceptual ideas of the Stylechecker plug-in. Based on this, a
more specific class diagram mapping will evolve. The model shows the basic relationships
between the conceptual entities.

Figure 5: Conceptual model Stylechecker

What Description

Styleguide A Styleguide represents the sum of all settings of Styleguide profile

Target An exclusion Target

Folder Self explanatory

File Self explanatory

Grouping A grouping represents a specific set of rules that belong to the same
domain, f.ex. Naming Conventions is an example of a Grouping

Rule A rule is a specific set of checking configuration, according to which
problems are reported

Problem A problem is a specific type of styleguide violation

Resolution A resolution is a specific type of solution to a reported styleguide vio-
lation problem

Table 22: Conceptual Elements

Report 36 HSR FS 2018

Bachelor Thesis CONTENTS

5.4.3 Class Diagram

The class diagram shows the relationships of the concrete domain elements used to model the
Stylechecker plug-ins core business logic.

Figure 6: Class Diagram Stylechecker

What Description

AbstractCtyle
Element

Abstract class that provides common fields and methods to most of
the domain elements. Specifically, the AbstractCtyleElement provides
facilities that are used when persisting domain objects, like ID informa-
tion.

Styleguide Represents a styleguide and consists of groupings and rules

Grouping A grouping is a class to group rules

Rule A rule is next to an expression the heart piece of the Stylechecker plug-
in, it defines the checking logic, resolution logic and scope of language
elements.

Concept A Concept models C++ language elements in the DOM. e.g. CPPVari-
able is a Concept, that models C++ Variables.

Table 23: Class Diagram Elements, part 1

Report 37 HSR FS 2018

Bachelor Thesis CONTENTS

What Description

ExpressionGroup An ExpressionGroup models a set of Expressions and how they’re
checked against. ExpressionGroup’s can contain nested Expression-
Groups.

Expression An Expression models what to check for when controlling source code.
They reference a resolution, with which a violation can be solved.

ResolutionHint A ResolutionHint is used to manage resolution procedures. Different
resolutions react differently to types of ResolutionHints. This is an
enum specificer.

OrderPriority An enum defining which Expressions should be processed first or last.

AbstractRename
Resolution

Abstract base class that contains common functionality for all resolu-
tion types.

AddSuffix
Resolution

Resolution, that adds a suffix.

CaseTransformer
Resolution

Resolution that performas a CaseTransformation.

AddPrefix
Resolution

Resolution that adds a prefix.

DefaultRename
Resolution

Resolution that indicates a resolution by user input.

Replace
Resolution

Resolution that replaces a certain string according to matching regex
capture group.

Configuration Represents Stylechecker plug-in configuration and holds all currently
available styleguides.

ConfigurationType An enum modeling what kind of Configuration is currently active.
There exist three types, Workspace, Workspace reference and Project.

ExpressionType Represents an expression type. Currently, there are two expression
types: Single, which is a singular expression and Group, which is a
group consisting of multiple expressions and expression groups.

Table 24: Class Diagram Elements, part 2

Report 38 HSR FS 2018

Bachelor Thesis CONTENTS

5.4.4 Sequence Diagrams

There are two important sequences in the Stylechecker plug-in. The first one is the loading of
the configurations during each checking to access the active styleguide. The active styleguide
is used to perform the styleguide checking within the DynamicStyleChecker.

Figure 7: SSD Configuration loading when checking

The second sequence is the Quickfix procedure. When a quickfix operation is kicked off, Dy-
namicStyleResolution class, the Quickfix class for the Stylechecker plug-in, first retrieves the
rule via the JSON string delivered with the Marker when reported. After the rule is retrieved,
it is passed to the internal fix procedure(applyFix), where, depending on the reporting type
(file, ast) the corresponding refactoring is called to apply the necessary transformations.

Figure 8: SSD Quickfix with IRule retrieval

Report 39 HSR FS 2018

Bachelor Thesis CONTENTS

6 Design and Decisions

This section discusses the design choices of the Stylechecker plug-in and the decisions that
went with them. The aim is to provide a better insight into certain aspects of the Stylechecker
plug-in and its structure; whether it be user interface related choices or architectural designs.

6.1 Stylechecker Checking

The Stylechecker plug-in extends the Codan (Code Analysis) plug-in and uses a singular
Checker (DynamicStyleChecker). This way the facilities to check, report and provide quick-
fixes are automatically given. It was decided to use only one Checker (DynamicStyleChecker)
for the entire styleguide checking rather than to implement separate checkers for all different
cases (File, Variables, Functions etc.).

Figure 9: Simple code excerpt

The Codan Checkers use the Abstract Syntax Tree (AST), a representation of the source code
in tree form, provided by the Eclipse CDT to perform Checker logic. In the same way, the
DynamicStyleChecker relies on the AST as well. Figures 9 and 10 show how a source code is
parsed into the AST. The AST is realized via the Composite Pattern [EGea94].

Figure 10: AST representation excerpt of Code from Figure 9

Report 40 HSR FS 2018

Bachelor Thesis CONTENTS

As the Stylechecker plug-in’s scope required to check for naming conventions, only name
nodes of the AST are considered when performing a checking as shown in Figure 11.

Figure 11: AST name traversal example

With the single Checker approach the AST needs to be traveled only once rather than multiple
times. When reporting a violation, the DynamicStyleChecker embeds the reporting rule into
the Marker for later retrieval at quickfix time (i.e. when a quickfix is called on a Marker).

Figure 12: DynamicStyleChecker problem reporting excerpt

Via the ResourceType the type of reported resource is given as an additional information when
reporting a problem. This was necessary for the checking of names that weren’t covered by
the Abstract Syntax Tree during traversal. An example of that would be Macro definitions and
File names. Depending on the resource type, the corresponding Quickfix (DynamicStyleRes-
olution) determines what kind of refactoring to use (i.e. rename on Resource or on language
concepts). This way the Stylechecker can be easily extended to different types of refactoring
should the need arise. An example could be formatting related checkings and fixes that might
need a different refactoring approach (e.g. comments or control structures, that only need to be
reformatted rather than replaced, could have a refactoring logic that uses some custom logic to
achieve the necessary target representation via ASTRewrite or something similar).

The primary design goal of the DynamicStyleChecker was to provide a solid basis for
flexible checking logic. Although the checking procedure itself covers that or at least offers the
flexibility to easily extend towards it, the domain specific logic still needs adjustment. They
currently work for naming conventions, i.e. they fulfill the requirements of the project’s main
goal of implementing naming conventions. But they still need to be tweaked a little more to be
fully independent and extensible. More on this subject can be found in the section 8.2 relating
to optimization potentials.

Report 41 HSR FS 2018

Bachelor Thesis CONTENTS

On every checking, the active styleguide is loaded from the configuration files.

Figure 13: DynamicStyleChecker configuration loading excerpt

This approach was chosen in order to always work with the newest configurations. Rather
than manage a global object, the configuration is loaded from the configuration file when it is
needed and doesn’t exist beyond its usage scope. As the Stylechecker plug-in only uses one
Checker for styleguide checking, retrieving the configuration from the configuration file isn’t
causing too much overhead.

Report 42 HSR FS 2018

Bachelor Thesis CONTENTS

6.2 Stylechecker Resolution

Similar to the checking logic, the Stylechecker resolution implementation, DynamicStyleReso-
lution, is a singular Quickfix. It delegates a Quickfix request to the internal logic, where de-
pending on the reported rule the appropriate resolutions are applied. The DynamicStyleRes-
olution decides which type of refactoring to use depending the ResourceType passed to the
Marker at checking time and applies all violated expression resolutions to the corresponding
name before the refactoring.

Figure 14: DynamicStyleResolution apply excerpt

Figure 14 shows the DynamicStyleResolution.apply implementation. The ResourceType ap-
proach was chosen due to the different types of refactorings needed for different aspects of
styleguide checking like AST and file name. But this design choice also allows to easily ex-
tend for future refactorings that go beyond simple name modifications. All refactorings extend
AbstractRenameRefactoring, which contains common logic to apply multiple resolutions to a
reported name violation. It basically iterates over the reported rule and picks out the expres-
sions that are violated by the name and applies their resolution in order before starting the
refactoring process. Figure 15 shows a delegation to the AST refactoring procedure.

Figure 15: DynamicStyleResolution applyFix excerpt

The applyTransformations method is used internally by all refactoring types and provides the
dynamic resolution applications. Figure 16 shows the basic applyTransformations method.

Report 43 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 16: AbstractRenameRefactoring applyTransformations excerpt

Through this design approach, the amount of resolutions can be dynamically applied to a
reported violation. New features only need to define a new resolution (IResolution) that fixes
the according violation to the required target format.

Although this approach allows for multiple resolutions to be applied at once, it can be
problematic, meaning: A previous resolution’s fix could be destroyed by a following res-
olution. Therefore, to manage the multiple resolutions, a specific ordering approach was
implemented as shown in Figure 17.

Figure 17: Resolution ordering excerpt

With this approach the order of the resolutions is known beforehand and the Quickfix proce-
dure can react accordingly, resulting in multiple resolution application without destructive side
effects.

Report 44 HSR FS 2018

Bachelor Thesis CONTENTS

6.3 Stylechecker Plug-in User Interface

This section discusses the design and conception of the Stylechecker plug-in’s user interface.

6.3.1 User Interface conception

The Stylechecker user interfaces underwent several iterations, each with a short usability test
with the advisers. The initial concept is represented in Figures 18 and 19.

Figure 18: Initial UI design Stylechecker preferences page

Figure 19: Initial dialog design for Rules

The first iteration had an overloaded UI for the Stylechecker preferences page. Additionally,
the rules dialog was still very simple.In the next iteration, the main entrance point to the
Stylechecker plug-ins settings, the Stylechecker preferences page, was tried to be simplified.

Report 45 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 20: Second iteration design Stylechecker preferences

Additionally a new dialog was introduced for grouping of rules. In the initial concept for the
dialog, there was a category element to the groupings. The idea was to limit available options
for the rules, like to provide certain resolutions in rules that were grouped within. This idea
was abandoned in later iterations.

Figure 21: Second iteration, grouping dialog

The second iteration brought new elements to the rule dialog as well. As it became apparent
that a rule needed a lot more flexibility in the configurations, the rule dialog was adjusted
accordingly. At this stage, the plug-in had closer ties to the Codan plug-in, the Severity field
being an indicator of that.

Report 46 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 22: Second iteration, Rule dialog

In later stages, the UI developed more and more according to the needs of the domain. Afer
it became apparent that a rule needed to allow for alternative valid forms, expression groups
were introduced. Figures 23 and 24 show the redesign of the UI to accommodate for the new
domain element. Instead of a table representation for expressions a tree view was chosen, so
that expressions and expression groups could displayed at the same time and in relation. Due
to the new UI structure, additional dialogs for defining expressions and expression groups
needed to be designed as well, Figure 24 shows the conception of these dialogs.

Report 47 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 23: Third iteration, rule dialog

Figure 24: Third iteration Expression dialogs

The final design of the UI will be discussed in more detail in the following section. The only
major deviation from the last iteration is that for the displaying of the expression and expres-
sion group values the additional dialogs were dropped and the values were displayed directly
in the main tree view, which reduced the total dialog count from four to three.

Report 48 HSR FS 2018

Bachelor Thesis CONTENTS

6.3.2 Current User Interface

The active styleguide with the defined rules can be viewed in the Stylechecker plug-in set-
tings. As shown in Figure 25, the preferences page contains a list of the currently defined
rules. From here, new rules can be defined. Rules can be also grouped in order to better
distinguish certain rule sets. Additionally, styleguides can be exported and imported in the
Stylechecker preferences pages. An imported styleguide can be directly activated and used
without any further configurations. As the Stylechecker plug-in is connected to the Codan
plug-in (Stylechecker extends Codan), a quick access to Codan settings can be found here as
well. Codan settings control to what files and folders a checker is applied. Furthermore, Codan
settings manage whether the checker is considered in code analysis procedure or not. It differs
from the Stylechecker plug-in enabling in one way. The Stylechecker enabling controls internal
checking, whereas the Codan controls whether the checker is at all considered.

Figure 25: Stylechecker plug-in Preferences page

Report 49 HSR FS 2018

Bachelor Thesis CONTENTS

New rules can be added via the preference page as well as customized. For new rules as well
as customization of existing rules, a new dialog is opened as shown in Figure 3. The rule dialog
contains various configurable fields, such as rule name, rule message, expressions and checked
concepts. The rule message is shown, when a violation is found. The expressions fields are
used to define constraints on what is a valid styleguide and what is not via regular expres-
sions. There exist two kind of expressions, predefined and custom expressions. Predefined
expressions contain pre-configured expressions for common expression types such as pascal
casing, snake case, prefix, suffix and the like. Custom expressions allow for, as the name sug-
gests, defining own expressions. The expressions fields have two types of expression objects.
One is the plain Expression, the other is the Expression Group. Expression group offer the def-
inition of valid alternatives and can be set to match either ALL expressions it contains within
or ANY expressions. With these two types, complex checking expressions can be constructed
to be used on names. And finally, the checked concepts fields define on which C++ Concepts,
like variables, functions, member functions etc. the rule will be applied to. In Figure 4, you
can also see the qualifiers available for some concepts in order to limit the application of a rule
even more.

Figure 26: Rule dialog

Report 50 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 27: Different rule dialog with close up

Figure 28: Predefined expression dialog

Figures 5 and 6 show the dialogs for defining a new Expression, Figure 5 representing a Prede-
fined Expression dialog, Figure 6 a Custom Expression dialog. Expressions have a name and
a regex field. The regex field can be controlled with a match flag, indicating whether a check
should match or not match the given regex. Expressions also contain information on how it can
be solved in case of violation in the resolution field. For this, there is a set of existing resolutions
that can be chosen from. Furthermore, there is a hint field that can be set. Hint’s are used by the
resolution process in order to determine how to apply a resolution. In an Expression Group for
example, if there are multiple alternative expressions a check can match, like a variable, that
can be snake case or pascal case, with a hint, the user can define which of the alternative cases
should be resolved to (via Hint: PREFERED). Different resolutions have different hints. The
field for processing priority defines the processing order of the expressions at resolution time.
This way, resolutions can be optimized so that they don’t conflict all to much with one another.

Report 51 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 29: Custom expression dialog

Report 52 HSR FS 2018

Bachelor Thesis CONTENTS

6.4 Persistence

Due to the requirement of persisting plug-in configurations in Eclipse fashion, Eclipse persis-
tence utilities were used; specifically in the Stylechecker plug-in’s case, the persistence inter-
faces IEclipsePreferences and IPreferenceStore served as primary gateways to Eclipse internal
persistence. Eclipse persistence files usually consist of key-value pairs. Because Stylechecker
plug-in configuration can become quite extensive, it was decided to persist the configuration
data in JSON format. This way only a few key-value pairs are necessary, which makes persis-
tence management easier and more convenient. An additional benefit to JSON format persis-
tence is that the configuration is human readable.

Figure 30: Stylechecker plug-in excerpt

For serialization and deserialization the Gson library was used. Due to its Appache License
2.0 licensing it is ideal to use in the Stylechecker plug-in. The Gson library is delivered as an
additional dependency within the Stylechecker plug-in and is downloaded automatically upon
installation via Updatesite.

Figure 31: Gson license [Gso18]

Project and workspace settings differ in the amount of key-value pairs they manage. Both con-
figuration files, in project and in workspace, manage the ctylechecker.config key, which per-
sists the entire configuration in JSON format as its value. The project settings additionally man-
age two keys: ctylechecker.config.reference and ctylechecker.config.setting. With the help of
these additional informations, a project can use workspace settings, reference styleguides from
the workspace or use entirely unique configurations on project level. An example of this can
be seen in Figure 32.

Report 53 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 32: Different setting configurations on project basis

Report 54 HSR FS 2018

Bachelor Thesis CONTENTS

6.5 RTS Testing

In order to test the Checkers and Quickfixes, RTS Tests were used. RTS Tests are a special form
of integration tests provided by the IFS’s testing plug-in (ch.hsr.ifs.cdttesting.testingPlugin),
which allows to define TestCases as before and after file states, specifically file state after a
Checker has been applied or before and after file states of a Quickfix application. TestCases
look like in Figures 33 and 34.

Figure 33: DynamicStyleCheckerTest Checker TestCase

Figure 34: DynamicStyleResolutionTest Quickfix TestCase

For Stylechecker plug-in tests, an additional test property was introduced in the form of
activeStyleguide=[OPTION]:[VALUE]. Over this property a TestCase can run with specific
styleguides. There are three options for the activeStylguide property: predefined, custom
and file. Predefined option allows to load a styleguide from the set of predefined styleguides
(Google, Canonical and Geosoft). The custom option allows to define a styleguide in JSON
format directly in the TestCase. The third option file allows to reference a styleguide file to
be used for that TestCase. Referenced files are loaded from the styleguides folder as shown in
Figure 35.

Figure 35: Styleguides folder excerpt

Report 55 HSR FS 2018

Bachelor Thesis CONTENTS

These styleguide files can be generated via the styleguide dialog in the Stylechecker preferences
(export styleguide). This way there exists a convenient way to define styleguide files and use
them as TestCases without having to manually type the JSON representation of a styleguide
directly.

Figure 36: Styleguide file excerpt

With these three options, the Stylechecker plug-in can be extensively tested.

6.6 Stylechecker and Codan Preferences

Because the Stylechecker plug-in extends the Codan plug-in, some of its settings are depen-
dent on Codan settings. These settings are mostly Checker specific settings, which determine
whether a Checker is to be considered at all in the code analysis procedure, for which files to
consider a Checker and when to run the specific Checker. A Checker’s Codan settings look like
in Figure 37.

Figure 37: Codan Checker settings excerpt

The decision to delegate to Codan settings where Checker specific configurations are concerned
was made due to the many complications that would arise otherwise. Manipulating the Codan
settings from outside of Codan plug-in is very tricky and relies on unsafe operations. That
is why there are info messages in the Stylechecker preferences where Codan settings are con-
cerned and a quick access is implemented so that the Codan settings can be reached quickly
from the Stylechecker plug-in.

Report 56 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 38: Stylechecker Codan relationship

Due to its strong relation to the Codan plug-in, the Stylechecker plug-in is also grouped under
the Codan settings page.

Report 57 HSR FS 2018

Bachelor Thesis CONTENTS

6.7 Performance

The Stylechecker plug-ins performance related non-functional requirements are defined as fol-
lows:

- Styleguide resolutions (singular refactoring) need to be executed within:

- three seconds in singular file refactorings

- five seconds on entire workspace refactorings

in small to middle sized projects.

For Stylechecker plug-in internal operations, these goals hold true. But because the
Stylechecker plug-in delegates rename operations to the Eclipse CDT’s Rename Refactoring,
these goals might not hold true for very large projects where a name is referenced in multiple
files and across projects. This might be especially relevant in larger projects where custom C++
libraries are referenced in multiple projects.

Nonetheless, the decision to use the internal Rename Refactoring from the Eclipse CDT
is still a sound one: Relying on the Eclipse CDT’s Rename Refactoring brings with it the benefit
of optimized and working rename refactoring logic. Therefore the tradeoff for non-functional
requirements not exactly holding true for very large projects is acceptable.

Another performance boost is delivered by the CDT’s Abstract Syntax Tree (AST) ap-
proach. Rather than searching all files manually for a specific character string, using the AST
from the Eclipse CDT improves name lookup significantly by relying on the visitor pattern
[EGea94] to travel over all name nodes of the AST.

Figure 39: AST name traversal example

The additional benefit of using this approach is that via a found name, all references of the
same name can be automatically retrieved from the name provided by the AST (IASTName
interface).

Report 58 HSR FS 2018

Bachelor Thesis CONTENTS

7 Architecture

This section analyzes the Stylechecker plug-in’s architecture and explains the most important
relationships.

7.1 Dependencies

Figure 40: General overview packages

Figure 40 shows a general overview of the packages of the Stylechecker plug-in and their de-
pendencies. The ui, checker and quickfix packages use the service package to access the cor-
responding models for styleguide operations. The persisted data are called once per Checking
and Quickfix, to ensure access to the most recent configuration.

7.1.1 Checker and Quickfix

Figure 41: Checker and Quickfix overview

Report 59 HSR FS 2018

Bachelor Thesis CONTENTS

7.1.2 Plug-in internals

Figure 42: Plug-in internals overview

Report 60 HSR FS 2018

Bachelor Thesis CONTENTS

7.2 Packages

This section discusses the packages of the Stylechecker plug-in and provides a quick summary
about the packages and their roles. The domain package is looked at in-depth due to its central
role in the Stylechecker plug-in.

com.cevelop.ctylechecker.domain

The com.cevelop.ctylechecker.domain package contains all styleguide relevant objects, such as
Styleguide, Grouping, Rule, Expression and many more. The dependencies among the domain
elements can be seen in Figure 43.

Figure 43: com.cevelop.ctylechecker.domain overview

The com.cevelop.ctylechecker.domain package contains the interfaces and enumerations of the
concrete implementations. Beyond the service level, only the interfaces are referenced, which
is why in the packages overview ui has references to the domain layer.

Although a better separation could be reached with DTOs on the business layer (where
packages service, checker and quickfixes live), it is an intermediary solution due to time
constraints not allowing to implement an additional in-between layer to decouple ui
and domain more properly. The same goes for com.cevelop.ctylechecker.checker and
com.cevelop.ctylechecker.quickifx packages. They also reference only the interfaces from the
domain layer. Calls to the domain layer are realized via the service package. This approach
was deemed acceptable, as Codan plug-in uses the same approach. See the discussion in the
Conclusion section 8.2 for more information.

Report 61 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 44: com.cevelop.ctylechecker.domain.types overview

The com.cevelop.ctylechecker.domain.types package contains the concrete implementations,
Figure 44 shows the relationships between the classes. It can be useful to know that Ab-
stractCtyleElemenet implements ICtyleElement and AbstractRenameResolution implements
IResolution; both provide common logic for concrete classes implementing these interfaces.

Noteworthy interfaces and their methods are discussed in more detail below. Simple
getters and setters were excluded. Figure 45 shows and overview of the interfaces to be
discussed.

Report 62 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 45: Important domain interfaces and methods

ICtyleElement

The interface ICtyleElement provides common methods for all domain elements that
are to be uniquely persisted.

What Description

getId Method that retrieves a unique ID. The idea is generated at random
when a new object is created and serves to uniquely identify persistence
relevant domain objects.

Table 25: ICtyleElement methods

Report 63 HSR FS 2018

Bachelor Thesis CONTENTS

IConcept

The interface IConcept describes an implementation of a language element, a language
concept.

What Description

getType Returns the type a concept is representing. A type can be e.g. CPPVari-
able, CPPFunction etc., each representing a C++ language element.

Table 26: IConcept methods

IConfiguration

The interface IConfiguration represents a contract for configuration implementations.
It models Stylechecker plug-in configurations.

What Description

findStyleGuide Method to find a styleguide by name from existing styleguides in con-
figuration object.

addStyleguide Styleguides can be added via a name string, which creates an empty
styleguide, which is added to thel ist of available styleguides in the
configuration. Alternatively, a styleguide can be created from the out-
side and added to the configuration.

getSetting There are three types of settings for a configuration: Workspace (Con-
figurationType.WORKSPACE), referencing workspace from project
(ConfigurationType.REFERENCE) and project settings (Configura-
tionType.PROJECT). This method returns an enum designating the
type of configuration this object represents.

removeStyleguide In order to remove a styleguide from the configuration, the styleguides
is passed as an argument. Internally, the styleguide ID is used to
uniquely identify the relevant styleguide.

isWorkspaceSetting Returns true if configuration type is ConfigurationType.WORKSPACE.

isReferenceSetting Returns true if configuration type is ConfigurationType.REFERENCE.

isProjectSetting Returns true if configuration type is ConfigurationType.PROJECT.

Table 27: IConfiguration methods

Report 64 HSR FS 2018

Bachelor Thesis CONTENTS

IStyleguide

The IStyleguide interface defines a contract for styleguide implementations. It models
the entirety of a styleguide definition.

What Description

addRule Rules can be added to a styleguide via this method. Every added rule
is saved in a map, where the ID of the rule is the key.

removeRule Rules can be removed from the styleguide via their ID.

addGrouping Groupings can be added to a styleguide via this method. Every group-
ing, like rules, are saved via their ID.

removeGrouping Groupings can be removed from the styleguide via their ID.

Table 28: IStyleguide methods

IGrouping

The interface IGrouping defines a contract for grouping implementations. A grouping
implementation is used to group rules in a styleguide to provide better overview.

What Description

addRule A Grouping groups rules. Via this method, rules can be added to the
Grouping. Like with styleguides, rules are stored with their ID in an
internal map.

removeRule Rules can be removed via their ID from a Grouping.

Table 29: IGrouping methods

Report 65 HSR FS 2018

Bachelor Thesis CONTENTS

IExpression

The IExpression interface defines a contract for base Expression implementations. It is
extended by ISingleExpression and IGroupExpression, more concrete contracts for more
concrete implementations.

What Description

getType There are two types of Expression, one is Expression and the other Ex-
pressionGroup. The ExpressionType enum models this with Expres-
sionType.SINGLE and ExpressionType.GROUP. This method offers a
quick identification.

check The check method checks whether a given input string is matched by
the Expression or Expressions in an ExpressionGroup.

isPrefered A simple indicator, whether the current Expression/ExpressionGroup
is preferred or not. This is a special kind of ResolutionHint that indi-
cates which Expressions/ExpressionGroups to reference when resolv-
ing a violation.

Table 30: IExpression methods

IRule

The IRule interface defines a contract for Rule implementations. A rule describes what is
considered a violation and what isn’t.

What Description

matches The matches method provides business logic to check whether a string
or a IASTName conforms to the constraints set by the rule.

isApplicable Checks whether an IASTName is applicable to this rule. With this
method the checker decides whether a rule is relevant for this type of
IASTName.

isApplicableToFile This method is used to check whether a rule is applicable to a file name
(body).

isApplicableTo
FileEnding

Like isApplicableToFile, this method checks whether a rule is applica-
ble to a file ending.

Table 31: IRule methods

Report 66 HSR FS 2018

Bachelor Thesis CONTENTS

IGroupExpression

The IGroupExpression interface defines a contract for expression group implementa-
tions. Expression groups model a set of expressions, which can be matched against. This is
especially important for allowing variations within a rule.

What Description

getPrefered Retrieves all expressions and expression groups with the Resolution-
Hint.PREFERED.

containsPrefered Checks whether an expression group contains expressions or expres-
sion groups with ResolutionHint.PREFERED.

Table 32: IGroupExpression methods

ISingleExpression

The ISingleExpression interface defines a contract for singular expressions. They model the
smallest unit of checking logic.

What Description

shouldMatch A boolean value indicating whether an expression’s regex is supposed
to be matched or not.

Table 33: ISingleExpression methods

IResolution

The IResolution interface defines a contract for resolution implementations.

What Description

transform This method defines the transformation logic a resolution implements
when solving a violation.

Table 34: IResolution methods

Report 67 HSR FS 2018

Bachelor Thesis CONTENTS

com.cevelop.ctylechecker.ui

The com.cevelop.ctylechecker.ui package contains the classes for the Stylechecker plug-in user
interface. It contains the necessay dialogs and preference pages. It also contains all the compos-
ite’s that make up the internals of the UI elements. As the Stylechecker plug-in’s user interface
is mainly situated in the Eclipse preferences, the user interface elements consist mainly of com-
posites, which are used in the plug-in hooks for the preference and property pages. Composites
that need to access the business logic layer extend the AbstractCtylecheckerComposite(see Fig-
ure 13), which provides access to the services.

Figure 46: AbstractCtylecheckerComposite class

In the figure below, an overview of the ui package is illustrated.

Figure 47: Overview com.cevelop.ctylechecker.ui package

Due to special options for the Stylechecker plug-ins project preferences, the property page
needs to be updated from within the SettingsComposite, which is why there exists a circular
dependency between the ui.preferences and ui.component packages.

com.cevelop.ctylechecker.service

The com.cevelop.ctylechecker.service package contains services like IRuleService,
IStyleguideService etc. and provides business logic in the business logic layer. The
com.cevelop.ctylechecker.service package also contains the necessary facilities to persist
Styleguide plug-in settings. It uses persistency entry points, such as IEclipsePreferences or
IPreferenceStore to persist data in the Eclipse environement. For this, the ConfigurationService
converts domain objects into JSON representation and persists them in the corresponding
configuration files (workspace and project level).

Report 68 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 48: Overview com.cevelop.ctylechecker.service package

com.cevelop.ctylechecker.checker

The com.cevelop.ctylechecker.checker package contains the DynamicStyleChecker checker
class and is the main source for checker operations. It is a singular entry point to all styleguide
related checker operations.

com.cevelop.ctylechecker.quickfix

The com.cevelop.ctylechecker.quickfix package contains the DynamicStyleResolution quickfix
class and is the main source for quickfix operations of the Stylechecker plug-in. It uses helper
classes like ASTRenameRefactoring and FileNameRefactoring to delegate refactoring logic to
Eclipse internal refactoring facilities.

Figure 49: Overview com.cevelop.ctylechecker.quickfix package

com.cevelop.ctylechecker.common

The com.cevelop.ctylechecker.common package contains common logic to presentation, busi-
ness and domain layer. It is situated in the corss-cutting layer.

Report 69 HSR FS 2018

Bachelor Thesis CONTENTS

8 Conclusion

The target features within the scope of the projects were able to be implemented. The
Stylechecker plug-in can check styleguides, report them and offer automated resolutions, wher-
ever possible. But due to time constraints and project group size, some features were imple-
mented in the most basic way, such as File Inclusion / Exclusion feature, which basically is just
a reroute to the Codan plug-in. Along the way, multiple new ideas for new features came up as
well. The following sections will discuss therefore open features that could be implemented in
case of a continuation of development and also will review some potentials for optimization.

8.1 Open Features

Feature Description

Bulk solve multiple prob-
lems

Feature to solve multiple problems at the same time.

Advanced UI Mode An advanced UI mode feature, which would allow to use
more complex settings and access more complex concepts to
check against. This way new users wouldn’t be overwhelmed
with the amount of settings and advanced users could cus-
tomize the Stylechecker to their hearts content.

Limitation of checked con-
cepts on Expression Group
basis

A limitation on basis of Expression Groups on which concepts
the Expressions should be checked on would allow for more
complex rule definitions and to perform a resolution in one
step.

Settings versioning and auto
transformation

As the plug-in might change in future, a feature that would
detect changes in the settings structure and offer auto-
matic transformation to the new structure. This way older
styleguide settings wouldn’t be invalidated with newer ver-
sions of the plug-in.

Special code markers for
styleguide checking en-
able/disable

Like @Supress annotation in Java, special comments or mark-
ers in code with which stylechecking for a certain section of a
code could be enforced or forced to skip.

AI assisted resolution It would be interesting to have a resolution type that would
be a trained AI that would determine how to best convert a
string to a target casing by analyzing multiple code sources.
This would for example allow for semantically correct trans-
formations, considering the meaning of the words in the res-
olution procedure.

String to Regex converter Basically the reverse procedure with regex matching. A fea-
ture that would allow a user to define a target regex, which
would be used as the basis for a resolution. This way resolu-
tions could be defined in a dynamic way.

Table 35: Open features overview table

Report 70 HSR FS 2018

Bachelor Thesis CONTENTS

8.2 Potential for Optimization

In this section the optimization potentials for the Stylechecker plug-in are discussed. The sec-
tion is divided into two subsections: ”General optimizations” and ”Architectural optimiza-
tions”.

8.2.1 General optimizations

There is still a lot of potential for optimization in the Stylechecker plug-in. First optimization
source that comes to mind is the Expressions UI part in the Rule dialog, which at the moment
is a little bit overloaded with text. It could be improved by using visual cues to indicate
for example whether a group matches ALL or ANY with an icon rather than with text.
Optimizations like these would make reading the Expressions easier. Additionally, Expression
Groups and Expressions use the same tree view, which results in many fields being empty
for the Expression Groups as those settings just simply don’t exist on that level. A different
approach in visualizing the Expressions and Expression Groups is probably necessary if the
Stylechecker is to be developed further in the future.

Another source of optimization would be a consolidation of all features within the Stylechecker
plug-in itself without having to reference the Codan plug-in. There are ways to initiate Codan
procedure in order to, for example, enable or disable a checker from the outside, but the
implementation can get tricky due to hard to control update procedure that are controlled
by the Codan UI. But a consolidation would make using the Stylechecker plug-in more
convenient, eventhough most of the settings are one time settings anyway.
Furthermore, some UI elements still could need some proper refactoring work as some of them
are still bloated due to limited time. SettingsComposite for one is still a huge block of code.

8.2.2 Architectural optimizations

The current architecture provides a special service layer to access domain elements. Further-
more the UI only references the interfaces from the domain layer like the Codan plug-in. Still,
this leads to a strong coupling between the UI and domain layer. Although the elements for
a proper architectural separation are provided, the separation is incomplete. Additionally,
some domain elements still have business logic within them, which could make extending the
Stylechecker plug-in problematic for future features (bloating of domain objects). Therefore
two optimizations are suggested.

The first is to decouple the UI even stronger by providing DTOs to communicate with
the service layer. This way the UI would not need to reference the domain layer directly and
the UI would become more resistant to change. The second optimization is to implement
business objects in the business logic loayer using domain elements to provide business logic
rather than having business logic directly in the domain elements. Through this approach new
business logic could be introduced easier and domain objects would become thinner.

8.2.3 Rename Refactoring issue

During development a bug in the rename refactoring for C++ template functions was found.
The bug [Ecl18] was reported on the Eclipse Bug Report site.

Report 71 HSR FS 2018

Bachelor Thesis CONTENTS

8.3 Outlook

The Stylechecker plug-in now offers the functionality to check and fix naming conventions.
But naming conventions only make up a part of a styleguide. In order for the Stylechecker
plug-in to comprehensively aid in the adherence to a styleguide, multiple additional features
still need to be implemented; some of them are mentioned in the open features section.

Currently other ”style” checkers exist for C++. They often focus on more standard re-
lated adjustments than a true styleguide approach. For example Vera++ [Ver18] reports ”style”
violations like ”trailing whitespace”, ”if not followed by a single space” etc. In this respect
existing ”style” checkers are most often more like linters, although some of them, e.g. Vera++,
do also provide transformations in certain situations. Furthermore, only a few use an Abstract
Syntax Tree (AST) approach like for example the ”Clang-format” tool.

With the Stylechecker plug-in now a solid basis for a more comprehensive styleguide
checking tool is provided. The Stylechecker plug-in can benefit from previous work done in
various different C++ style checker implementations and in future maybe even collect the most
interesting angles to style and styleguide checking within one powerful tool. Vera++’s Script
API approach is one additional feature that directly comes to mind that could be interesting to
have inside the Stylechecker plug-in. But it is important to properly distinguish what kind of
tool the Stylechecker plug-in is or is to be when considering features like these. Is it to be a style
checking tool only, i.e. only checking the look and feel of source code or is it to offer additional
features as well, like what is proper coding style in order to avoid problems at execution time.
Questions like these are important when considering to extend the Stylechecker plug-in even
further in the future.

A comprehensive styleguide checking tool could make styleguides and properly styled
source code more popular and increase readability and understandability of source code;
ultimately increasing productivity of developers. Therefore it will be interesting to follow the
development of this plug-in in the future.

Report 72 HSR FS 2018

Bachelor Thesis CONTENTS

9 Glossary

The glossary contains all abbreviations and terms that need further elaboration.

Term Description

Codan Code Analysis. The Codan plug-in is an internal plug-in of the Eclipse
CDT providing code analysis capabilities.

Checker A Checker is an implementation that ”validates” the contents of a
source code and upon violations reports those via Markers in the ed-
itor.

Quickfix A quickfix is the counterpart to a Checker and allows to apply a fix/a
resolution to the reported violation by the Checker

Marker A special indicator in a file, reporting a problem/violation found by a
Checker.

Styleguide A styleguide is a set of rules that guide the look and feel of source code.

Grouping A construct to ”group” rules.

Rule A rule is a specific guide definition within the styleguide that controls
whether something is OK or not. The Stylechecker Checkers use rules
as their basis when reporting violations.

Expression An expression in the context of the Stylechecker is a domain element
containing a regular expression and additional information like name,
resolution, hints etc. An expression therefore is a beefed up regex con-
struct used by rules to determine validity of source code.

IDE Integrated development environment

Eclipse An open-source, highly extendable IDE developed by IBM and avail-
able for multiple languages.

CDT C/C++ Development Tooling.

AST Abstract Syntax Tree. A representation of source code in tree form.

IFS Institute for Software

JSON JavaScript Object Notation

Gson JSON Library from Google

AI Artificial intelligence

DTO Data Transfer Object

Report 73 HSR FS 2018

Bachelor Thesis CONTENTS

10 References

[Boo18] Boost. Boost requirements. http://www.boost.org/development/requirements.html,
Accessed on: 9th June 2018.

[Can18] Canonical. Canonical C++ Style Guide.
http://people.canonical.com/m̃sawicz/guides/c++/cppguide.html,
Accessed on: 12th March 2018.

[Cev18] Cevelop. Cevelop. https://www.cevelop.com, Accessed on: 9th June 2018.

[Cor18] Thomas Corbat. Assignment bachelor thesis "Cevelop C++ Stylechecker Plugin, As-
signment.pdf. E-Mail, 26th February 2018.

[Dog18] Zafer Dogan. Session protocol. https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-
stylechecker/blob/master/docs/02_protocols/Protokoll_26022018.pdf, Accessed
on: 26th February 2018.

[Ecl18] Eclipse. Eclipse Bug with ID 536160. https://bugs.eclipse.org/bugs/show_bug.cgi?id=536160,
Accessed on: 22th June 2018.

[EGea94] Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[Geo18] Geosoft. Geosoft C++ Styleguide. http://geosoft.no/development/cppstyle.html,
Accessed on: 4th March 2018.

[Goo18] Google. Google C++ Styleguide. https://google.github.io/styleguide/cppguide.html,
Accessed on: 4th March 2018.

[Gso18] Gson. Gson github page. https://github.com/google/gson, Accessed on: 22th June
2018.

[HSR18a] HSR. HSR Allgemeine Infos Diplom Bachelor. https://www.hsr.ch/Allgemeine-
Infos-Diplom-Bach.4418.0.html, Accessed on: 9th June 2018.

[HSR18b] HSR. HSR Archiv Website. https://archiv-i.hsr.ch, Accessed on: 9th June 2018.

[Lar05] Craig Larman. Applying UML and Patterns - An Introduction to Object-Oriented Analy-
sis and Design and Iterative Development. Pearson Education inc., third edition edition,
2005.

[Ver18] Vera++. Vera++ Bitbucket page. https://bitbucket.org/verateam/vera/wiki/Home,
Accessed on: 22th June 2018.

Report 74 HSR FS 2018

http://www.boost.org/development/requirements.html
http://people.canonical.com/~msawicz/guides/c++/cppguide.html
https://www.cevelop.com
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/blob/master/docs/02_protocols/Protokoll_26022018.pdf
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/blob/master/docs/02_protocols/Protokoll_26022018.pdf
https://bugs.eclipse.org/bugs/show_bug.cgi?id=536160
http://geosoft.no/development/cppstyle.html
https://google.github.io/styleguide/cppguide.html
https://github.com/google/gson
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html
https://archiv-i.hsr.ch
https://bitbucket.org/verateam/vera/wiki/Home

Bachelor Thesis CONTENTS

11 Appendix A

11.1 Project Plan

The project plan lays out the plan for the bachelor thesis. It also includes a record of all the
meetings, used tools and arrangements to ensure code quality.

11.1.1 Project Overview

The stylechecker plug-in for Cevelop, a C++ IDE developed by the IFS at the HSR, is a plug-in
to check different C++ coding styleguides and is developed for the IFS within the scope of the
bachelor thesis by Zafer Dogan.

Purpose and Objective
The goal of the project is to develop a C++ coding styleguide’s stylechecker plug-in for the

IFS developed Cevelop IDE. The plug-in is to support two major styleguides, in the scope of
the bachelor thesis these being the Google and Boost C++ styleguides, out of the box with a
third one chosen by the student. The plug-in also needs to allow for custom styleguides to be
defined, so company internal styleguides can be defined and used with the plug-in.

Delivery Scope
The project will be delivered as an installable plug-in. Additionally, following documents

will be provided: Project plan, domain model, use cases and non-functional requirements,
sequence diagrams, contracts, SAD, test definitions, test protocols, final version of the plug-in,
final report and the presentation of the project.

Assumptions and Limitations
One of the major limitations of the project is the extent of the stylechecker plug-in that can

be realistically developed. As the bachelor thesis initially was designed for 2-3 students, the
limitation of providing naming convention checking as a must have was set due to the project
being executed by only one student. Additionally, the following limitations have been set: The
documentation needs to be in English [Cor18] and written in LaTeX [Dog18]. Furthermore,
after analysis of the Boost Styleguide, it was decided to opt for a more convenient guideline
due to the nature of the Boost Styleguide definition being not very clear about its structure and
providing a common interface by using it would prove too difficult. This doesn’t mean the
Boost Styleguide won’t be able to be defined in the plug-in itself, it just won’t be one of the
predefined Styleguides provided by default.

Report 75 HSR FS 2018

Bachelor Thesis CONTENTS

11.1.2 Project organisation

Only one person is participating in this project and accordingly, is filling out all roles that usu-
ally arise during the development life cycle. Tasks are split into work packages and distributed
to iteration. The development style for the project is agile. The assurance of information and
time management are responsibilities of the project leader, which in this case is the same per-
son as the project developer and other roles. The supervisor observes the project flow and is
responsible for the grading. The final grade will be determined after the review of the final
project by an external expert. The project will be partitioned into the four RUP phases[Lar05]
inception, elaboration, construction and transition, but do only serve as a coarse grouping as
the project is developed in agile manner.

Organisation structure

Project leader & developer: Zafer Dogan, zdogan@hsr.ch

External interfaces
Supervisor: Thomas Corbat, thomas.corbat@hsr.ch

Technical Advisor: Felix Morgner, felix.morgner@hsr.ch

Expert: Lukas Felber, lukas.felber@quatico.com

Report 76 HSR FS 2018

mailto:zdogan@hsr.ch
mailto:thomas.corbat@hsr.ch
mailto:felix.morgner@hsr.ch
mailto:lukas.felber@quatico.com

Bachelor Thesis CONTENTS

11.1.3 Management procedures

This section details the plans for management of the project, including estimations and separa-
tions into development phases.

Estimate of costs
For the execution of the project 16 weeks are available. In this period, every student has an

investment budget of 360 hours (12 Credits). This results in a time budget of total 360 hours
as only one student is working this project. The project starts on the 19.02.2018 and ends on
29.06.2018.

Time plan
The detailed planning and management of work packages will be managed and tracked

with GitLab’s Issue tracking system. The plan will be iteratively adjusted during the projects
life cycle according to the needs of the projects circumstances and is coarsely partitioned into
RUP Phases.

Issues page:
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/issues

Figure 50: Iteration plan

Phases/Iterations
The development will be partitioned into the RUP phases inception, elaboration, construc-

tion and transition and serve as coarse grouping for a general reference of the project’ state.
The individual iterations carry the names of the phases they belong to and are numbered in an
ascending order. The iterations are managed with GitLab’s Issue tracking system. The project
is being developed in agile manner.

Report 77 HSR FS 2018

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/issues

Bachelor Thesis CONTENTS

Start End Name Details

19.02.2018 26.02.2018 I1

- Setup of

– Workspace

– Document structure

– Code repository

- Researched

– Code Styleguides

– Eclipse PDE

– Stylechecker Plug-in

26.02.2018 12.03.2018 E1

- Preliminary requirements acquired

- Use Cases in brief format defined

- Working prototype exists

- Domain analysis performed and model created

- Rough drafts of Settings UI prepared

12.03.2018 26.03.2018 E2

- Non-functional requirements defined

- SAD started

- Use Cases in brief and essential style defined

- First working UI prototype impelmented (Settings
UI) and basic usability test performed

26.03.2018 09.04.2018 C1

- Naming convention feature finished for Google and
Canonical

- SAD extended

Table 36: Iteration table, part 1

Report 78 HSR FS 2018

Bachelor Thesis CONTENTS

Start End Name Details

09.04.2018 23.04.2018 C2

- Naming convention feature finished for additional
student styleguide

- First draft of custom styleguide definition for nam-
ing conventions finished

- SAD extended

23.04.2018 07.05.2018 C3

- Comment convention feature finished for Google
and Canonical

- SAD extended

07.05.2018 21.05.2018 C4

- Comment convention feature for student styleguide
finished

- SAD extended

- Feature freeze

21.05.2018 04.06.2018 C5

- Bugfixes and refactorings performed

- SAD extended

- Code freeze

04.06.2018 08.06.2018 T1

- Delivery of A0 Poster and Abstract

- Code freeze

08.06.2018 29.06.2018 T2

- All project documentation finished and packaged to
delivery format

- Bachelor thesis presentation finished

Table 37: Iteration table, part 2

Report 79 HSR FS 2018

Bachelor Thesis CONTENTS

Milestones

Date Milestone Delivery of

26.03.2018 MS1 - Documentation

- Project plan

- Domain model

- Use cases

- Non-functional requirements

- UI Draft for plug-in settings

09.04.2018 MS2 - Alpha version

- Contracts

- Sequence diagrams

- SAD Prototype

- Settings UI in plug-in

- Naming convention feature
for Google and Canonical

- Test definitions

07.05.2018 MS3 - Beta version

- Beta version

- Naming convention feature completed

- Comment feature for Google
and Canonical

21.05.2018 MS4 - Release Candi-
date - Release Candidate

- Test protocols

04.08.2018 MS5 - Release version

- Release version

- Test protocols

Table 38: Milestones table, part 1

Report 80 HSR FS 2018

Bachelor Thesis CONTENTS

08.06.2018 MS6 - Abstract and A0
Poster - Abstract

- A0 Poster

29.06.2018 MS7 - Final Delivery

- Entire project documentation

- Delivery folder

- Presentation

Table 39: Milestones table, part 2

Meetings

This section contains a listing of all the meetings held during the project development.

Discussions
Once a week there is a meeting with the project supervisors. The meetings ordinarily will be

held at Mondays at 10 o’clock in building 8, room 8.261. At these meetings, the current state of
the project will be discussed.

Reviews

Date Review Details

19.02.2018 R0 Initial meeting, assignment discussion

26.02.2018 R1 Discussion project structure, GitLab setup and GitLab Pipelines
and Plug-in delivery

05.03.2018 R2 Discussion first use cases, setup Updatesite

12.03.2018 R3 Discussion Updatesite location (GitLab instead of own server), use
cases, preliminary domain analysis

19.03.2018 R4 Discussion UI Prototype, discussion finished requirement analy-
sis, discussion domain analysis

26.03.2018 R5 TBD

02.04.2018 R6 No meeting

Table 40: Review table, part 1

Report 81 HSR FS 2018

Bachelor Thesis CONTENTS

Date Review Details

09.04.2018 R7 Discussion of persistence implementation, settings UI

16.04.2018 R8 Discussion GSON for persistence, settings UI

23.04.2018 R9 Discussion domain element resolution implementation, check
against logic

30.04.2018 R10 Discussion of Prefix and Suffix resolution, autoresolve, adjustment
rule ui

07.05.2018 R11 Discussion Expression conflict resolution and new UI elements for
Expression/ExpressionGroup

14.05.2018 R12 Discussion Resource Rename refactoring, file marker, refactoring
rule composite and adjustment of Expression domain (moved res-
olutions from Rule to Expression)

21.05.2018 R13 No meeting

29.05.2018 R14 Discussion Expression UI, RTS properties for styleguide checking,
import and export feature and styleguide documentation

07.06.2018 R15 Discussion Documentation, Bugfixing, Abstract, A0 Poster and
Unit Tests

15.06.2018 R16 Discussion Documentation, Abstract and A0 Poster adjustments

21.06.2018 R17 Discussion Documentation

Table 41: Review table, part 2

Report 82 HSR FS 2018

Bachelor Thesis CONTENTS

11.1.4 Risk management

It was determined with the supervisor that no risk management will be needed for this partic-
ular project.

11.1.5 Work packages

Work packages will be defined and tracked in GitLab’s issue tracking system. GitLab provides
multiple views on the issues, i.e. in list or board form and also allows partitioning into
milestones. Furthermore it is possible to filter according to milestones and also to define time
estimates and time spent values on issues themselves.

Link: https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/issues

Updatesite
The most recent installable plug-in via Updatesite can be queried via following link:

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw
/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite

This is a special URL that resolves to the latest master branch build. To get the current
Updatesite URL resolve the URL and use the resolved URL as the Updatesite. You can ignore
the 404 message on the resolved URL; this is a view permission issue with GitLab.

Report 83 HSR FS 2018

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/issues
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite

Bachelor Thesis CONTENTS

11.1.6 Infrastructure

- Development language

- Java 8

- Development environment

- Eclipse PDE, Oxygen 2

- Libraries

- Eclipse environment libraries

– See Manifest.mf for further detail on versions

- Google GSON Library 2.7.0

– Used for saving and loading configuration files in JSON format. Distributed un-
der Apache License 2.0

- Tools

- WindowBuilder 1.9.0, Eclipse plug-in

– For UI design of SWT UI’s

- ObjectAid 1.2.2, Eclipse plug-in

– For UML design

- STAN IDE 2.2.1, Eclipse plug-in

– For structure analysis and dependency optimization

- PASTA 9.4.1, Eclipse plug-in

– Abstract Syntax Tree analyzer for C++

- Testing

- JUnit 4

- IFS CDT Testing plug-in 9.4.0

- Documentation

- TexWorks: For writing documentation in LaTeX

- GitLab: LaTeX documentation source files

- Astah for diagrams

- draw.io for diagrams

- Pencil Evolus for diagrams, UI prototyping, UML etc.

- Management

- GitLab: Code repository, Issue tracking system and
Continuous Delivery (Pipelines)

- SourceTree: Version management tool

- Operating systems

- Windows 10: As the plug-in is developed in Java, cross platform compatibility is
automatically provided.

Report 84 HSR FS 2018

Bachelor Thesis CONTENTS

11.1.7 Quality measures

The quality measures section lays out steps to ensure code and project quality.

Documentation
The documentation and its version are managed on GitLab in the form of LaTeX files

(.tex), PDF outputs and Wiki entries. The corresponding invites to relevant persons, like the
supervisors, have been performed. Access to relevant sites:

GitLab:
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/tree/develop/docs

GitLab Wiki:
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/wikis/home

Project management
GitLab will be used for the execution of this project. GitLab provides facilities for issue

tracking, CD and documentation.

GitLab:
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker

No login information needs to be provided, as the GitLab server is on the internal HSR
server and the relevant persons are already present on the platform. They have been granted
"Reporter" level permissions to the repository.

Development
For development, Git is used as a versioning tool. The code is managed on GitLab. The

corresponding permissions have been granted to the relevant persons (i.e. supervisors). See the
link in Project management section for GitLab - Repo link. The code quality will be guaranteed
through code reviews.

Procedure
The project is developed in agile manner in iterations of two weeks in general. The agenda

of iterations will be determined on a weekly basis and adjusted if the need arises.

Continuous Delivery
The GitLab platform provides facilities for Issue tracking, documentation and Continuous

delivery (Pipelines). Through Pipelines, CD will be provided for this project in the form of
installable plugins.

Code Reviews
Code reviews will be performed according to need and will be scheduled by the student with

the supervisors. Code reviews will be performed with the supervisors as in this projects case
they are also stakeholders.

Code Style Guidelines
No particular Code Style Guideline will be followed for the development with Java, though

compliance with previous plug-in code will be tried to be reached.

Report 85 HSR FS 2018

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/tree/develop/docs
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/wikis/home
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker

Bachelor Thesis CONTENTS

Unit Tests
Unit tests will be written for all relevant parts of the code with JUnit. As the plug-in is

mostly a "invisible" functionality, the tests will be mostly focused on the code itself (i.e. no UI
automation tests etc.). For proper unit tests, the code will need to be properly isolated where
possible.

Integration Tests
After a certain point in the development of the project, integration tests will be written as

well. This certain point will be reached when significant component interaction can be ob-
served and the need to ensure their proper cooperation arises (i.e. they aren’t operating in
isolation anymore). Some integration tests are already available as Stylechecher plug-in is used
as basis for this project. Integration tests will be written as RTS Tests using the IFS CDT Testing
plug-in.

Usability Tests
Minor usability tests will be performed to ensure the creation of custom styleguides is intu-

itivie and easy to use. Beyond that, there isn’t much UI interaction for the plug-in.

System Tests
Due to the scope of the project (i.e. a plug-in), no system tests will be performed.

Report 86 HSR FS 2018

Bachelor Thesis CONTENTS

11.2 Time Analysis

This section lists the analysis of time spent during the project, including budgeted and planned
time. The time analysis is presented in two forms. The first is in tabular format and the second
as a column chart. The target hours for the bachelor thesis amounts to 360, 12 credits, per credit
30 hours, 12 * 30 = 360.

Table 42: Time analysis table

Report 87 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 51: Time analysis diagram

Report 88 HSR FS 2018

Bachelor Thesis CONTENTS

12 Appendix B

12.1 Installation Guide

The most recent installable plug-in via Updatesite can be queried via following link:

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw
/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite

Once the resolved URL is retrieved, it can be used in Eclipse directly. For this use the
URL in the ”Help > Install New Software...” dialog as shown below.

Figure 52: Install New Software dialog excerpt

Follow the instructions. After the installation is complete, Cevelop will restart and the plug-in
will become available under Codan Analysis in the preferences.

Report 89 HSR FS 2018

https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite
https://gitlab.dev.ifs.hsr.ch/zdogan/cevelop-stylechecker/-/jobs/artifacts/master/raw/com.cevelop.ctylechecker.updatesite/target/repository/?job=deploy_updatesite

Bachelor Thesis CONTENTS

12.2 User Manual

The user manual contains information about the use of the plug-in and focuses on the most
important aspects of it.

Starting point

The starting point of the plug-in settings is the preference page. In Eclipse, there are two vari-
ations of this page, one being the preference page on the workspace level, the other being the
preference page on project level, usually called property page.

Figure 53: Preference page Stylechecker

The preference/property page of the Stylechecker plug-in shows a list of groupings and rules
of the currently active styleguide. The active styleguide can be changed via the ”Active
Styleguide” combo. From here as well, a new styleguide can be created.

Report 90 HSR FS 2018

Bachelor Thesis CONTENTS

Creating a Styleguide

In order to create a new styleguide, you can click on the ”new” button next to the’ ”Active
Styleguide” combo box. A simple dialog appears, where you can enter the name of the new
styleguide. After pressing ”OK”, the new styleguide is available under the list of styleguides.

Figure 54: New styleguide creation

Report 91 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 55: New styleguide available in list

When a new styleguide is created, it is empty, no groupings, no rules. An empty styleguide can
be used like a normal styleguide, it just won’t check anything and is basically equal to having
the Stylechecker plug-in disabled.

Creating a Grouping

Figure 56: New Grouping dialog

A new Grouping can be created via the ”New Grouping” button, a simple dialog for the Group-
ing name and enabled state is presented. To confirm the Grouping, press the ”New Group”
button in the dialog. Once a new grouping is created, it will appear as an item in the tree view
of the preference page. Groups can be identified by their ”G” icon. To add a rule to a group
directly, keep a selection on the Grouping while clicking on ”New Rule”; this way it will auto-
matically set the root of the Rule to that Grouping. See the ”Root” combo box in the rule dialog
Figure 57.

Report 92 HSR FS 2018

Bachelor Thesis CONTENTS

Creating a Rule

To create a new Rule, click on the ”New Rule” button in the preference page. A new dialog
will be opened, like in Figure 57. The New Rule dialog has five significant sections. The top
row controls the enabled state of the Rule and also contains info about which Grouping the
Rule belongs to. Next comes the Rule Name, with which a Rule can be identified by in the
tree presentation of the styleguide. After the Rule Name, a message can be entered for the
Rule. This message is used when a Rule violation is reported in the IDE. Following that comes
the section for Expressions. Expression make up the guts of a Rule and define Expression and
ExpressionGroups, which will be checked on the selected concepts. The Expressions section has
two sets of Expression lists, predefined and custom. Predefined expressions are special types
of Expressions, prepared up front to be used. Custom expressions allow for the definition of
own regular expressions to check a language element with. And finally, there is the Checked
concepts section, where the language elements to check the Rule with can be selected.

Figure 57: New Rule dialog

Report 93 HSR FS 2018

Bachelor Thesis CONTENTS

Creating a New Predefined Expression

A new predefined expression can be created via the ”New” button. A new dialog will be
opened, which allows to select from a predefined list of expressions. For predefined expres-
sions, only a certain degree of adjustment is possible. This is to ensure the proper use of prede-
fined expressions.

Figure 58: New Predefined Expression dialog

A new expression has several fields that can be set. In the case of a predefined expression, the
name and the regex can’t be set. The predefined regex’s match policy can be manipulated via
the Match checkbox. A checked Match checkbox means the regex is to validate to true. The
resolution can be changed as well. The resolution field determines how an expression is to be
resolved in case it is violated. The Hint field is a helper field for the expression and is tied to
the resolution field. With it the resolution logic can be manipulated. Next to casing hints and
the lack of a hint (NONE), there is a special hint called PREFERED. The PREFERED hint is an
indicator for the resolution logic which expressions and expression groups to consider when
resolving a violation. The last field, processing priority, controls in what order resolutions are
applied. HIGH means they’re applied in the first turn, LOW means they’re applied in the last
run. This way checking and resolution logic can be explicitly controlled.

Report 94 HSR FS 2018

Bachelor Thesis CONTENTS

Creating a New Expression Group

Next to singular Expressions, Expression groups can be created via the ”New Group” button.
This will open another simple dialog to enter group relevant information, like group name,
Match policy and hint. The Match policy serves to determine how the contained expressions
in the expression groups are to be checked with, i.e. do all expressions have to be fulfilled or
does only one expression need to be fulfilled (alternatives for language elements can be defined
this way, i.e. if a const variable can be CONST_CASE or SNAKE_CASE). Expression groups,
similar to singular expression, can have hints as well.

Figure 59: New grouping dialog

Hints for Expression Groups are limited to two types, NONE and PREFERED. When the PREF-
ERED hint is set on an Expression Group, it and the contained Expresssions and Expression
Groups will be considered when applying a resolution. In combination with the Hints for sin-
gular expressions, a specific set for a resolution logic can be set via the hint field. The selective
application of resolutions of Expressions and Expressions contained in Expression Groups gets
only activated if the PREFERED Hint is applied at least once, otherwise all resolutions of all
Expressions and Expression Groups will be applied. This approach is valid for all nested levels
as well (i.e. if an expression group contains other expression groups).

Report 95 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 60: Predefined Expressions tree view with Expression and Expression Group

Created Expressions and Expression Group will be shown in the tree view of the corresponding
tab in the Rule dialog. They give an overview of the relationships and display all the relevant
fields in the tree views for the Expressions section as can be seen in Figure 60. The same com-
positions can be achieved for custom expressions as well.

Report 96 HSR FS 2018

Bachelor Thesis CONTENTS

Creating a New Custom Expression

The only way custom expressions differ from the predefined expressions is that in the New
Expression dialog, the user can additionally set a custom name and regex in the dialog. Here
as well the Hints are tied to the resolutions, as can be seen in Figures 62 and 63 .

Figure 61: New grouping dialog

Figure 62: Hints for DefaultRenameResolution

Report 97 HSR FS 2018

Bachelor Thesis CONTENTS

Figure 63: Hints for AddPrefixResolution

As a user can enter custom regexes in the custom expression dialog, a simple regex checking is
performed. If a regex is invalid, it is reported with a warning yellow background. Is a regex
invalid, an expression can’t be saved.

Figure 64: Regex checking in Custom Expression dialog

When defining regexps, it’s important to do so with the active resolution in mind. Certain
expressions need to be defined in a special way in order to function properly, an example of
this being the ReplaceResolution. The ReplaceResolution depends on capturing groups, with
which it knows where to replace a target string. The info icon next to the Resolution label shows
in a tool tip what needs to be considered when working with the currently active resolution
type.

Report 98 HSR FS 2018

Bachelor Thesis CONTENTS

Setting the language elements to check in a Rule

Finally, within a Rule, a user can decide which language elements the current rule applies to.
In the qualifiers tab, a language element can be limited even further to qualifiers like public,
const and the like as shown in Figures 65 and 66.

Figure 65: New grouping dialog

Figure 66: New grouping dialog

Report 99 HSR FS 2018

Bachelor Thesis CONTENTS

Changing the Grouping of a Rule

A Rule can be adjusted via the ”Customize Selected” button in the preference page. From here,
you can change also the belonging to a Grouping of a Rule via theRoot combo at the top. The
value ROOT stands for root level, i.e. rules that don’t belong to any group.

Figure 67: Customizing a Rule’s grouping

Via the ”Customize Selected” button Groupings and Rules can be adjusted in general. Figures
67 and 68 show a before and after of a Grouping change of a Rule.

Figure 68: Updated tree view after Grouping of a Rule is changed

Report 100 HSR FS 2018

Bachelor Thesis CONTENTS

Setting project specific settings

Property pages offer additional settings for the Stylechecker plug-in. Here project specific set-
tings can be applied. There are three variations. Workspace, Reference Workspace and Project
settings. When using workspace settings, the project will reference the workspace itself for the
currently active styleguide. When referencing a workspace, it can be chosen on the project level
which styleguides from the workspace one wants to use for this project. And finally, the last
is the option to use project settings, which is defining your own styleguides entirely on project
level.

Figure 69: Project specific setting variations

Report 101 HSR FS 2018

Bachelor Thesis CONTENTS

Import and Export of Styleguides

Via the ”Import” and ”Export” buttons, styleguides can be exported and imported to be shared
among team members. When exporting a styleguide, it is saved with .ctyleguide file ending. It
contains the JSON representation of the styleguide. Figures 70 and 71 show the corresponding
dialogs.

Figure 70: Export Styleguide dialog

Figure 71: Import Styleguide dialog

Report 102 HSR FS 2018

Bachelor Thesis CONTENTS

When importing a styleguide, if the name already exists, it’s name will have a ”copy” ap-
pended to it automatically to distinguish it from the existing one. This can be seen in Figure
72. An imported styleguide is directly available in the combo of available styleguides and can
be directly activated by selecting it in the preference page.

Figure 72: New grouping dialog

Report 103 HSR FS 2018

Bachelor Thesis CONTENTS

Filtering for Rules and Groupings

Especially in more complex styleguides, it can be difficult to find certain rules. To find Rules
and Groupings quickly, a user can use the filter input field. It filters the Rules and Groupings
while typing.

Figure 73: Filter being applied

Report 104 HSR FS 2018

Bachelor Thesis CONTENTS

Stylechecker vs Codan settings

As the Stylechecker plug-in is connected to the Codan plug-in, so are some of its settings. It is
important to keep the Codan settings in mind as well. For this, a user needs to ensure that the
Codan settings page has the necessary Checkers activated on the correct level (Codan also has
workspace and project specific settings).

Figure 74: Codan settings

The relevant Checkers for the Stylechecker plug-in are Dynamic Style Problem and Dynamic
Style Problem for Files.

Report 105 HSR FS 2018

Bachelor Thesis CONTENTS

File inclusion and exclusion

Via the Codan Checker settings, the Stylechecker plug-in can additionally be limited to certain
files and folder via the Scope tab in the Checker settings.

Figure 75: Codan settings for Stylechecker Checkers

Report 106 HSR FS 2018

	Abstract
	Assignment
	Supervisor and Expert
	Student
	Introduction
	Goals of the Project
	Documentation

	Management Summary
	Initial Situation
	Approach and Technologies
	Development Cycles
	Implemented Technologies

	Results
	Feature Overview
	UI Design

	Conclusion
	Open Features
	Potential for Optimization

	Initial Situation
	Analysis
	Functional Requirements
	Stakeholders
	Use Case Diagram
	Descriptions in Brief
	Descriptions in Essential Style

	Non-functional Requirements
	Performance
	Stability
	Usability
	Installability
	Maintainability
	Supportability
	Testability

	Styleguide Analysis
	Introduction
	Abbreviations
	Limitations
	Discussion
	Naming Conventions

	Environement Analysis
	Landscape Analysis
	Conceptual Model
	Class Diagram
	Sequence Diagrams

	Design and Decisions
	Stylechecker Checking
	Stylechecker Resolution
	Stylechecker Plug-in User Interface
	User Interface conception
	Current User Interface

	Persistence
	RTS Testing
	Stylechecker and Codan Preferences
	Performance

	Architecture
	Dependencies
	Checker and Quickfix
	Plug-in internals

	Packages

	Conclusion
	Open Features
	Potential for Optimization
	General optimizations
	Architectural optimizations
	Rename Refactoring issue

	Outlook

	Glossary
	References
	Appendix A
	Project Plan
	Project Overview
	Project organisation
	Management procedures
	Risk management
	Work packages
	Infrastructure
	Quality measures

	Time Analysis

	Appendix B
	Installation Guide
	User Manual

