
UNIVERSITY OF APPLIED SCIENCES OF EASTERN

SWITZERLAND (HSR FHO)

TERM PROJECT

A Domain-specific Language for
Service Decomposition

Author:
Stefan KAPFERER

Supervisor:
Prof. Dr. Olaf

ZIMMERMANN

A project submitted in fulfillment of the requirements
for the degree of Master of Science FHO in Engineering focusing on

Information and Communication Technologies

in the

Software and Systems
Master Research Unit

December 20, 2018





iii

Declaration of Authorship
I, Stefan KAPFERER, declare that this thesis titled, “A Domain-specific Lan-
guage for Service Decomposition” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Rapperswil, December 20, 2018

Stefan Kapferer





v

UNIVERSITY OF APPLIED SCIENCES OF
EASTERN SWITZERLAND (HSR FHO)

Abstract

Master of Science FHO in Engineering focusing on Information and
Communication Technologies

A Domain-specific Language for Service Decomposition

by Stefan KAPFERER

Microservices have gained a huge attention in the industry and in the academic
field over the last years. Companies are adopting microservice architectures in
order to increase agility, maintainability and scalability of their software. At
the same time, decomposing an application into appropriately sized services
is challenging. With its strategic patterns and especially the Bounded Con-
texts, Domain-driven Design (DDD) provides an approach for decomposing
a domain into multiple independently deployable services. However, exist-
ing modeling tools supporting DDD mainly focus on the tactical patterns. Not
many approaches to a formal definition of the strategic patterns exist and there
are different interpretations and opinions regarding their applicability.

This project presents a Domain-specific Language (DSL) based on the strate-
gic DDD patterns. The model behind the language and its semantic rules aim
to provide one concise interpretation of the patterns and how they can be com-
bined. The DSL concept offers a tool to model a system in an expressive way,
using the DDD language. With the implemented Service Cutter integration we
further provide a proof of concept showing how the DSL can be used as input
for structured service decomposition approaches. The presented results and
our evaluation of this approach illustrate the capabilities of DDD-based mod-
els towards service decomposition. To convert the DSL-based models into a
graphical representation, the developed tool offers an additional transforma-
tion to create PlantUML diagrams.

The DSL is meant to provide a foundation for other service decomposition
approaches. Future projects may propose architectural refactorings for the DSL
based on model transformations. Other approaches based on algorithms and
heuristics similar to Service Cutter could be applied as well. A code genera-
tor to create microservice project templates for the modeled Bounded Contexts
might be another promising feature for the future.





vii

Acknowledgements
I would like to thank my project advisor Prof. Dr. Olaf Zimmermann who pro-
vided insight and expertise which greatly supported this project. The weekly
discussions were of great help and I always appreciated his guidance and as-
sistance.





ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Domain-driven Design Analysis 3
2.1 Strategic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Additional Concepts & Features . . . . . . . . . . . . . . . . . . . 19
2.3 Tactic Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 DSL Requirements 25
3.1 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Personas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Non-Functional Requirements (NFRs) . . . . . . . . . . . . . . . . 29

4 Context Mapper Implementation 31
4.1 Language Workbench Evaluation . . . . . . . . . . . . . . . . . . . 31
4.2 Context Mapping DSL (CML) . . . . . . . . . . . . . . . . . . . . . 32
4.3 Tactic DDD Language Integration . . . . . . . . . . . . . . . . . . . 42
4.4 Service Decomposition with Service Cutter . . . . . . . . . . . . . 45
4.5 Graphical Representation with PlantUML . . . . . . . . . . . . . . 56

5 Evaluation, Conclusion and Future Work 61
5.1 Results & Contributions . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 Requirements Evaluation . . . . . . . . . . . . . . . . . . . . . . . 61
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A Language Reference 67
A.1 Language Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.2 Terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.3 Context Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.4 Bounded Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.5 Subdomain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.6 Domain Vision Statement . . . . . . . . . . . . . . . . . . . . . . . 74
A.7 Partnership . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



x

A.8 Shared Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
A.9 Customer/Supplier . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
A.10 Conformist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
A.11 Open Host Service . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
A.12 Anticorruption Layer . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.13 Published Language . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.14 Responsibility Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.15 Knowledge Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
A.16 Aggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.17 Complete CML Grammar . . . . . . . . . . . . . . . . . . . . . . . 83

B Examples 87
B.1 Insurance Example (Context Map) . . . . . . . . . . . . . . . . . . 87
B.2 Insurance Example (Team Map) . . . . . . . . . . . . . . . . . . . . 92
B.3 DDD Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

List of Figures 99

List of Tables 101

List of Abbreviations 103

Bibliography 105



1

Chapter 1

Introduction

1.1 Context

Domain-driven Design (DDD) has been introduced by Eric Evans in his book
Domain-Driven Design: Tackling Complexity in the Heart of Software [13] more than
10 years ago. With the microservices trend during the last few years, Evans
work has gained even more attention again. The decomposition of an appli-
cation into appropriate sized services is challenging. Achieving high cohesion
and loose coupling between the service boundaries is crucial to keep the appli-
cation scalable and maintainable. DDD plays a key role here. With its strategic
bounded contexts and the tactic aggregates it provides an approach for decom-
posing a domain into multiple components. However, especially regarding
the strategic DDD patterns a certain ambiguity and different interpretations of
how they shall be applied exists. Existing modeling tools which help software
architects and engineers expressing these concepts mainly focus on the tactical
DDD patterns.

1.2 Vision

This work proposes a modeling tool based on strategic DDD patterns. Thereby,
we strive for a meta-model providing a concise interpretation of these patterns
and their applicability, avoiding ambiguity. The created models shall further
be used as input for structured service decomposition approaches, such as Ser-
vice Cutter [20]. The concept of Domain-specific Languages (DSLs) allow the
creation of models in an expressive way, adapted to the common language of
a domain. Further, models can be processed and transformed into other lan-
guages and representations.

With this project, we provide a DSL to model systems based on DDD pat-
terns. The proposed meta-model behind the language and its semantics re-
flect our interpretation of the strategic DDD patterns and how they can be
combined. With the implemented Service Cutter [20] integration we intend to
present a proof of concept showing how such DDD-based models can be used
to decompose services. The DSL shall further provide a foundation for other
structured service decomposition approaches developed by future projects.

Another DSL processing application which may be useful in the context of
a modeling tool, is the convertion of a model into a graphical representation.
The proof of concept implemented by this project converts the DSL models into
Unified Modelling Language (UML) diagrams using PlantUML [42].



2 Chapter 1. Introduction

1.3 Related Work

Decomposing monolithic systems into microservice architectures [56] is a topic
with a huge attention within the last years not only in the industry but in the
academic field as well [5, 17, 19, 21, 26, 34, 40]. Furthermore, DDD with its
bounded contexts is said to be a promising approach facing this challenging
task [17, 26, 30, 34, 41, 43]. However, there are not many tools which support
modeling and specifying a system formally in terms of the strategic DDD pat-
terns in order to decompose it in a structured manner.

Rademacher [44] presents a formal modeling language based on UML. The
UML profile which extends meta-classes with stereotypes for DDD patterns
shall be used for modeling microservice architectures. They further aim to de-
rive microservices code from their UML models in future projects. However,
the profile seems to focus on modeling bounded contexts with the tactical DDD
patterns. The strategic patterns concerning the relationships between bounded
contexts are not mentioned explicitly.

Le et al. [32] propose a DDD approach using meta-attributes to capture
domain-specific requirements. The meta-attributes are implemented as Java
annotations. Their aim is to overcome gaps between different domain models
of different stakeholders such as domain experts, designers and programmers.
This approach mainly aims to support the software designing process on a tac-
tical level as well. Furthermore, it differs from our approach in the sense that it
does not explicitely expresses DDD patterns.

A few projects implementing DSLs based on DDD patterns exist, such as
Sculptor [46], fuin.org’s DDD DSL [18] and DSL Platform [11]. Further ap-
proaches and projects based on annotations exist as well. However, they all
have in common that they focus on the tactic DDD patterns and do not cover
the strategic patterns concerning the relationships between bounded contexts.

Graphical representations of context maps and the strategic DDD patterns
were introduced by Brandolini [3] and Vernon [52]. Plöd [35] further presented
a proposal for a formal notation of context maps. The graphical examples
within this project are inspired by these approaches.



3

Chapter 2

Domain-driven Design Analysis

This chapter will introduce the concepts and patterns on which the proposed
Domain-specific Language (DSL) relies. It presents our understanding of how
the strategic and tactic Domain-driven Design (DDD) patterns can be used and
combined. The interpretations are derived from the DDD literature of Evans
[13] and Vernon [52], personal professional experience [27], the inputs given
by the supervisor of this project and other literature of experts, such as Bran-
dolini [3] and Plöd [36]. The DSL shall offer the possibility to create models
of applications in terms of DDD patterns and thereby strengthen the semantics
and meanings of the patterns, which is foreseen to be one of the scientific con-
tributions of this work. From the perspective of designing a DSL, DDD can be
referred to as the «Meta Model» or «Semantic Model» [16] of the language.

Having a clear understanding of the semantics of the DSL to be developed
and thus, a solid knowledge of the «Semantic Model» is of crucial importance.
Therefore, the following sections aim to give a definition of this model as we
understand it, as precise as possible.

2.1 Strategic Patterns

Since this projects goal is providing a foundation for structured service decom-
position approaches, it focuses mainly on the strategic patterns of DDD. The
DSL has to support the tactic patterns as well, but they will not be specifically
introduced. The interpretations of a few strategic DDD patterns seem to be
somehow ambiguous and used differently by different authors. Within this
chapter decisions for particular interpretations were made, based on personal
experience [27] and the literature [13, 14, 52]. These decisions and pattern de-
scriptions within this section explain and justify the grammar of the designed
DSL.

2.1.1 Pattern Overview & Implementation Decisions

The following sections list all strategic patterns and concepts mentioned in [13]
and [14]. It further documents our decisions wether the patterns are imple-
mented within the DSL or not. The list is ordered by importance for our DSL
and thus, the patterns not covered are listed at the end. The decisions are jus-
tified briefly. This overview is followed by more detailed descriptions of our
understanding of the patterns used for the DSL.



4 Chapter 2. Domain-driven Design Analysis

Context Map

A model describing bounded contexts and especially their relationships. Bran-
dolini [3] provides a very good introduction into context mapping.

Decision: Yes, this pattern is covered by our DSL. Context mapping is the
central feature which should be provided by the language.

Bounded Context

A context with an explicit boundary within which a particular domain model,
implementing parts of subdomains, applies.

Decision: Covered. Bounded contexts are the essential concept needed to-
wards service decomposition approaches.

Partnership

The partnership1 pattern describes an intimate relationship between two bounded
contexts. Their domain models somehow relate and have to be evolved to-
gether.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Shared Kernel

Desribes an intimate relationship between two bounded contexts which share
a common part of the domain model and manage it as a common library.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Customer/Supplier

Describes a relationship where one bounded context is customer and the other
supplier which work closely together. The supplier prioritizes the implemen-
tation with respect to the customers requirements.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Conformist

Describes a role of a bounded context in an Upstream/Downstream relation-
ship. Since there is no influence on the upstream, the downstream team has to
deal with what they get and «conform» to it.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

1Not mentioned in the original DDD book of Evans [13], but in the later published DDD
reference [14].



2.1. Strategic Patterns 5

Open Host Service

Describes a role of a bounded context which is providing certain functionality
needed by many other contexts. Because of the broad usage, a public API is
provided.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Anticorruption Layer

Describes a mechanism used by downstreams in order to protect themselves
from changes of the upstream.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Published Language

The published language describes the shared knowledge two bounded con-
texts need for their interaction. Typically defined by the upstream providing
an Open Host Service.

Decision: Covered. Modeling the relationships between bounded contexts
is central within our DSL.

Subdomain (Core, Supporting, Generic)

A subdomain is a part of the domain. Regarding subdomains we differentiate
between Core Domains, Supporting Subdomains and Generic Subdomains. A
bounded context implements parts of one or multiple subdomains.

Decision: Covered, since it describes which parts of a domain are imple-
mented within a bounded context it might be of interest for users of our DSL.

Domain Vision Statement

A domain vision statement provides a short description of the core domain and
its value (value proposition).

Decision: Covered. The DSL provides an optional possibility to add such a
short description to bounded contexts and subdomains.

Responsibility Layers

Recommends assigning responsibilities to each domain object, aggregate and
module. The responsibilities of all these objects should fit within the responsi-
bility of one layer.

Decision: Covered. The DSL provides an optional possibility to assign bounded
contexts, aggregates and modules its responsibilities.

Knowledge Level

A pattern advising the use of two groups of objects (different levels), one very
concrete, the other reflecting rules and knowledge that a user is able to cus-
tomize. Should be used to avoid that the same objects are used in different



6 Chapter 2. Domain-driven Design Analysis

ways in different situations. Duplication of such classes should be avoided as
well.

Decision: Covered. The DSL offers a simple attribute (enum) to differ be-
tween concrete and meta knowledge level. This attribute is available for bounded
contexts as well as aggregates.

Domain

The domain2 describes the world within your organization is working.
Decision: Implicitly covered. There is no need to explicitely model the con-

cept of a domain within the DSL, since a corresponding model instance as a
whole represents the domain.

Segregated Core

Core concepts should be separated from supporting concepts so that designers
and developers can clearly see the most important relationships within the core
domain.

Decision: Not covered. Separating core domains from supporting domains
is a practical pattern which should be reflected by the resulting model but does
not need a special language concept.

Abstract Core

If there is a lot of communication between subdomains in separate modules,
an abstract model (factor out abstract classes and interfaces) expressing the
interactions should be implemtented in a separate module. The specialized,
detailed implementations are left in their own module.

Decision: Not covered. From our understanding this is more a practice pat-
tern and it further seems to affect the tactical and not strategical patterns.

Highlighted Core

This pattern advices to either write a brief document that describes the core
domain or to flag the elements within the model which are part of the core
domain.

Decision: Not covered. Since the DSL will provide the possibility to map a
bounded context to the subdomains it implements and a subdomain can be a
core domain, this information already exists. However, it can be added to the
DSL later if needed.

Cohesive Mechanisms

If the design is getting complex and the implementation of the «what» is swamped
by the technical, mechanistic «how», such technical mechanisms should be par-
titioned into separate generic subdomains in form of libraries or lightweight
frameworks.

2This is not a pattern in the original DDD book of Evans, but still a very important term
related to the patterns Subdomain and Bounded Context as described by Vernon [52].



2.1. Strategic Patterns 7

Decision: Not covered. This is more a practice pattern than a structural one.
Applying the pattern has an influence on how the subdomains and bounded
contexts are separated but does not need a specific language concept. But it
may be a candidate for a refactoring (splitting bounded contexts) in the next
project.

Continuous Integration

Evans [13, 14] mentions this pattern to keep a bounded context sound within
itself using a process which integrates changes frequenty with automated tests.

Decision: Not covered. This pattern can be seen as an agile practice which is
more a process pattern rather then a structural pattern. Since our DSL expresses
structure, there is no need to represent this pattern explicitely.

Separate Ways

Describes the situation where two bounded contexts have no relationship with
each other.

Decision: Not covered. There is no need to explicitely model this pattern in
the DSL since it is applied by simply do not add a relationship between two
bounded contexts.

Big Ball of Mud

There might be situations where it does not make sense to create separate
bounded contexts in systems where there simply are no boundaries. In such
a case it might be better to draw a boundary arround the whole system and
call it a «Big Ball of Mud»3 [15].

Decision: Not covered. There is no language concept needed to represent
this pattern, since it can be realized by simply model one single bounded con-
text.

Evolving Order

This pattern advices to evolve large-scale structures with the application avoid-
ing over-constraining the design and model decisions.

Decision: Not covered. This pattern manifests itself in the way the DSL is
used but has no influence to the structure of the language.

System Metaphor

This is a practice originating from Extreme Programming (XP), recommending
the use of analogies or metaphors capturing the teams imagination and think-
ing. The metaphor becomes part of the Ubiquitous Language, describing a part
of the system.

Decision: Not covered. This pattern is realized by giving the bounded con-
texts corresponding names. It describes a «best practice» regarding the used
names within the DSL.

3Not mentioned in the original DDD book of Evans [13], but in the later published DDD ref-
erence [14]. However, the term was introduced by Brian Foote and Joseph Yoder [15] originally.



8 Chapter 2. Domain-driven Design Analysis

To summarize the scope of our DSL, the following Table 2.1 lists all patterns
which are decided to be part of the language, grouped by the categorization of
Evans DDD Reference [14].

TABLE 2.1: Implemented patterns

Category Patterns
Putting the Model to
Work

Bounded Context

Context Mapping for
Strategic Design

Context Map, Partnership, Shared Kernel,
Customer/Supplier, Conformist, Anticorrup-
tion Layer, Open Host Service, Published Lan-
guage

Distillation for Strategic
Design

Subdomain, Domain Vision Statement

Large-scale Structure for
Strategic Design

Responsibility Layers, Knowledge Level

Having decided which patterns are part of the DSL, the next section presents
our strategic DDD domain model which illustrates our interpretation of the
relationships between all these patterns.



2.1. Strategic Patterns 9

2.1.2 Domain Model

Figure 2.1 shows the domain model on which our DSL is based on. It connects
the strategic DDD patterns and proposes certain semantics regarding how they
can be combined or not. Note that the model contains a few concepts such as
context map types and context types which will be introduces later in this chapter.

FIGURE 2.1: Strategic DDD Meta-Model (Domain Model)

The following definitions attempt to describe our understanding of the patterns
and the domain model shown in Figure 2.1. They are based on the literature
of Evans [13, 14] and Vernon [52]. These descriptions summarize our interpre-
tation of the patterns and justify the given domain model and the semantics it
implies. We further want to give an insight how context maps and bounded
contexts may evolve [3], since this concerns future work towards service de-
composition based on the provided model and the DSL.



10 Chapter 2. Domain-driven Design Analysis

2.1.3 Bounded Context and Context Map

A bounded4 context defines an explicit boundary within which a particular do-
main model applies. It is a boundary in terms of team organization, physical
manifestations such as code bases and database schemas as well. The team
defines a domain model, expressing a «Ubiquitous Language», which has to
stay strictly consistent within this bounds, but without caring if the domain
model can be applied to other contexts. However, they still need to have an
understanding how their context relates to other contexts, since necessary inte-
grations with those other contexts will require translations.

«Treat bounded contexts like the borders of a country. Nothing
should pass into the bounded context unless it goes through the
border control and is valid.», BOUNDED CONTEXTS = BORDER
CONTROL, Millet [38]

Finding the right borders and thus the bounded contexts is not trivial. Con-
text mapping may provide a powerful tool evolving those. This technique and
some indicators which give you hints that different contexts might be in play
are proposed by Brandolini [3].

The context map provides a global view over all bounded contexts which
are related to the one you or your team is working on. It describes the points
of interaction between bounded contexts and outlines how the translation and
communication is done. Brandolini [3] explaines four possible reasons why
you might be forced to create a new bounded context. These possible indi-
cators which will lead us to proposals for architectural refactorings [55] are
explained step by step in the following paragraphs. To explain the concepts a
fictitious insurance company scenario is used. Note that the example is a com-
bination of personal experience [27] in this sector and inspiration provided by
the «Lakeside Mutual» project [37]. Besides, the example is used throughout
this work to explain concepts and the DSL.

FIGURE 2.2: Context Mapping First Step: The whole system

We start with the most simple context map just containing one bounded context
and we assume that we are working on the «Customer Management» part of
our insurance company software (Figure 2.2).

The first example of an indication that you need a separate bounded context
is having the «same term with different meanings» multiple times. Assume the
development team is implementing a new «Customer Self-Service» frontend,
allowing the insurance customers to change their address online. For this pur-
pose you need «Accounts» for the customers, or lets say users. However you
realize that the term «Account» is already used within your system for storing

4«Bounded» within this context means the adjective with similar meaning to «limited» or
«confined» («begrenzt» in German) and not the past form of the verb «to bound».



2.1. Strategic Patterns 11

data about the customers bank accounts in case of refunds. This is a typical
case of two different domains and therefore two different bounded contexts.
Figure 2.3 shows the introduced bounded context within our context map.

FIGURE 2.3: Context Mapping: «Self-Service» Context

Another reason for splitting bounded contexts described by [3] is «same con-
cept, different use». Imagine your team is implementing the part of your insur-
ance software dealing with contracts and policies. A contract or policy some-
how has to relate to a customer, of course. But should you really reuse the
already exising «Customer» entity? Of course it would be a possible solution
but somehow you are not satisfied since you realize that you do not need the
data and methods on the existing customer entity, even if its conceptually the
same object.

In this case it might make sense to have two different bounded contexts
with their own representation of a customer. Figure 2.4 shows a corresponding
solution applied to our context map.

FIGURE 2.4: Context Mapping: «Policy Management» Context

External systems build bounded contexts as well. For example it might be
reasonable to use an external printing solution for documents and bills which
have to be sent to the customer. Such a context might be also used by multiple
contexts, as you can see in our new context map in Figure 2.5.

Last but not least, scaling up your organization can be a major motivation
to create new bounded contexts. As your company grows and development
teams get bigger you are probably forced to split bounded contexts to build
separate teams working on isolated domains.



12 Chapter 2. Domain-driven Design Analysis

FIGURE 2.5: Context Mapping: «Printing» Context

Figure 2.6 shows an example for such a case. Policy management includes
calculating risks regarding your customers. Assume this risk management part
of your «Policy Management» context gets complex and you decide to build a
new team dealing with it.

FIGURE 2.6: Context Mapping: «Risk Management» Context

Besides providing a definition of context maps and bounded contexts, this con-
text mapping process is explained since it describes a potential service decom-
position approach which may be implemented in a future project using our
DSL. The single steps described above lead us to the following Architectural
Refactorings (ARs) [55] in table 2.2.

TABLE 2.2: Splitting bounded contexts as Architectural Refac-
torings [55]

# Architectural Refactoring Reason for Split
1 Add another bounded

context to resolve ambi-
guity.

Domain model has to be split since a term
with different meanings is present.

2 Split context to reduce do-
main model complexity.

If domain objects are used in many differ-
ent ways the complexity raises and it may
be better to have different objects for the
different usages. (Single Responsibility
Principle)



2.1. Strategic Patterns 13

TABLE 2.2: Splitting bounded contexts as ARs [55] (continued)

# Architectural Refactoring Reason for Split
3 Add additional bounded

context for new external
system.

A certain functionality within a system
may get complex and if it is part of the
core domain, it might be replaced with an
external system. Such an external system
represents a new bounded context.

4 Split contexts by domain
concept for scaling rea-
sons.

In order to scale your organization,
you may split bounded contexts by do-
main concepts which were solved in one
bounded context so far.

After this introduction into the patterns bounded context and context map, the
next sections will discuss subdomains and the relationships between bounded
contexts.

2.1.4 Subdomains

The domain describes the world within an organization is working or what the
organization does. Banking, Insurance or IT in a broad sense, can be seen as
examples for domains. Further, every domain has its subdomains. For example
in insurance companies you will find subdomains like Customer Management,
Contract / Policy Management or Claim Management.

Subdomains are differentiated by the three specializations Core Domain,
Supporting Domain and Generic Subdomain. A Core Domain covers a subdo-
main which is very important for the success of your software or the company
working with it. If a subdomain is still essential and somehow related to the
business but not part of the core, it is a Supporting Domain. A Generic Subdo-
main is still needed for the whole system to be successful but it is not directly
related to the core and the main business of the software.

A bounded context may implement one specific or parts of a subdomain.
But it is also possible that a bounded context implements multiple parts of
different subdomains, as we illustrated in our domain model in Figure 2.1.

2.1.5 Domain Vision Statement

Especially in the beginning of a project it is important to have a vision to focus
the development. However, having a description of the most important values
of a system can be useful during the whole lifetime of a project. A Domain
Vision Statement is a short text describing the core domain and its value.

Within our domain model, the Domain Vision Statement is realized as an
attribute of a bounded context or subdomain.

2.1.6 Relationships between Bounded Contexts

As already seen in the domain model in Figure 2.1, bounded contexts have
different kinds of relationships with each other. The next sections will describe
each of those relationships and illustrate them within our insurance example.



14 Chapter 2. Domain-driven Design Analysis

Symmetric vs. Asymmetric & Upstream vs. Downstream Terminology

Note that we differentiate between symmetric and asymmetric relationships.
In asymmetric relationships we use the terms Upstream and Downstream, as
Evans [13] and Vernon [52] do it in their books. To clarify this terminology, the
upstream is always influencing the downstream. In other words, the down-
stream depends on functionality or features of the upstream, whereas the up-
stream is not influenced by the model of the downstream. Thus, the upstream
is the bounded context which provides some functionality, for example by im-
plementing the Open Host Service and/or Published Language pattern, whereas
the downstream consumes this functionality and often implements the Anti-
corruption Layer or Conformist pattern. These asymmetric relationships are
called Upstream/Downstream relationships, as long it is not a Customer/ Sup-
plier relationship. A Customer/Supplier relationship is a special case of an Up-
stream/Downstream relationship, where the Upstream is called Supplier and
the Downstream is called Customer.

The Shared Kernel and Partnership patterns in comparison, describe very
intimate relationships where no clear Upstream and Downstream can be de-
fined, which is why we call them symmetric relationships.

Shared Kernel

A Shared Kernel provides a solution for teams which work on two bounded
contexts which are very closely related. If the two domain models overlap
very much, permanently implementing translations at the boundaries of the
contexts might cause more work than simply, continuously integrate the same
domain model. The Shared Kernel contains the common parts of the domain
model which are maintained by both teams, working closely together. Keeping
the Shared Kernel as small as possible and defining a continuous integration
process is very important for success here.

In order to have a representative example which contains all relationship
patterns, we extend the insurance example with another bounded context. If
a customer has a contract, he will also receive bills. We assume that the whole
debt collection management was implemented within the policy management
context, but due to complexity the insurance company decides to form a sepa-
rate bounded context called «Debt Collection».

FIGURE 2.7: «Policy Management» Context & «Debt Collec-
tion» Context Shared Kernel Example



2.1. Strategic Patterns 15

Since their domain model still overlaps substantially, they decide to implement
a Shared Kernel. Thus, we get a new context map for our scenario, which
is illustrated by Figure 2.7. Note that the debt collection context depends on
the printing context as well, since bills have to be printed. Shared Kernels are
typically implemented as libraries which are used by both bounded contexts.

Partnership

As the Shared Kernel did, a Partnership indicates a very intimate relationship
between two bounded contexts. Nevertheless, a Partnership is technically not
that close as a Shared Kernel. Two teams in a Partnership have to work very
closely together on an organizational level. Their bounded contexts are some-
how related and have to evolve together. The resulting product of the two
bounded contexts can only fail or success as a whole. Thus, the two teams
coordinate and plan their developments «in-sync» with each other.

FIGURE 2.8: «Risk Management» Context & «Policy Manage-
ment» Context Partnership Example

The «Risk Management» and «Policy Management» contexts in our example
represent a valid scenario for such a relationship (Figure 2.8).

Customer/Supplier

As already mentioned, in a Customer/Supplier relationship the Customer is
the downstream and the Supplier the upstream. However, if the upstream
in a Upstream/Downstream relationship succeeds interdependently with the
downstream, the needs of the downstream become relevant for the upstream
and they may form a Customer/Supplier relationship.

FIGURE 2.9: «Customer Management» Context & «Customer
Self-Service» Context Customer/Supplier Example



16 Chapter 2. Domain-driven Design Analysis

In comparison to a generic Upstream/Downstream relationship, the supplier
cares about the customer and his requirements. This means that the planning
in the Supplier team is done with respect to the priorities of the Customer team.

Within our insurance example, the relationship between the customer self-
service context and the customer management context seems to be a plausible
scenario for such a relationship. The self-service context represents the cus-
tomer which needs the functionalities of the customer management context.
However, the customer management context may be also interested that the
self-service application for the customers always succeeds. Therefore the two
contexts form a Customer/Supplier relationship, as visualized in Figure 2.9.

Inspired by Brandolini [3] and Vernon [52], the illustrations of context maps
within this work use a «U» and a «D» to indicate which bounded context is the
Upstream and which one is the Downstream within a relationship.

Open Host Service (OHS)

If a team is in a upstream role and has to provide its service to multiple down-
streams, integrating with all downstreams separately may be get too expensive.
Thus, the team may decide to implement an Open Host Service (OHS), which
is a protocol that gives all the downstreams a unified access to the services. It is
an public Application Programming Interface (API), all other contexts can use
if they need it.

In our insurance example, the printing context clearly represents such a
situation. It provides the same feature for multiple other bounded contexts
and therefore it makes perfectly sense to provide one API/OHS for all down-
streams. Maybe another example might be the customer management context.
Even if our example is too small to illustrate it, but the customer management
context is typically a very central context in an insurance scenario which is
used by many other contexts. Applying the mentioned OHS cases to our con-
text map, results in the map illustrated by Figure 2.10.

FIGURE 2.10: «Open Host Service» Examples

According to our understanding and our strategic DDD model from Figure 2.1,
another remark concerning this pattern has to be mentioned, since this is not
explicitly defined in the DDD literature and thus may be new to the reader.
The OHS pattern is not applicable within a Customer/Supplier relationship,



2.1. Strategic Patterns 17

since their pattern descriptions are contradictory. Whereas the supplier con-
text in a Customer/Supplier relationship implements its services according to
the customers specific needs, an upstream implementing the OHS pattern im-
plements a «one for all» solution, without caring about the needs of a single
downstream. Thus, according to our interpretation of these DDD patterns, the
OHS pattern only fits to Upstream/Downstream relationships which are not
Customer/Supplier relationships.

Published Language (PL)

Communication between two bounded contexts needs a common language,
since both contexts have their own ubiquitous language which differ from each
other. Thus, a so-called Published Language has to be defined which is always
used for translation. This patterns is often used together with Open Host Ser-
vice (OHS), since the context providing the OHS mostly defines the Published
Language (PL) as well.

FIGURE 2.11: «Published Language» Examples

Conformist

Sometimes two bounded contexts are in an Upstream/Downstream relation-
ship and the upstream does not care about the needs of the downstreams. In
such a case the upstream context just defines which services it provides and
how they are implemented. The downstream context simply has to deal with
what it gets. If a downstream team needs those services and decides to use the
services, they maybe decide to just conform with the language published by
the upstream. Thus, their role in the relationship is called «Conformist». They
always adapt according to the changes of the upstream context.

According to our interpretation, this pattern is not applicable in a Cus-
tomer/ Supplier relationship, since the pattern mentions that the upstream
does not care about the needs of the downstream. Further, we will see in the
next section that a downstream either implements the Conformist pattern or
the Anticorruption Layer but not both. The Anticorruption Layer can be seen
as the inverse pattern of the Conformist for situations where a downstream has
to deal with an upstream who does not care about the downstream needs.



18 Chapter 2. Domain-driven Design Analysis

To apply this pattern to our insurance example, we assume that the cus-
tomer management context provides an OHS without caring about the needs
of the downstreams.

FIGURE 2.12: «Conformist» Examples

Thus, the policy management context team may decide to conform to this API
which leads to the context map in Figure 2.12.

Anticorruption Layer (ACL)

Translation between bounded contexts can become difficult if the teams are not
in a Partnership, Shared Kernel or Customer/Supplier relationship. The up-
stream is somehow dictating how the communication has to be done and the
downstream team might want to protect itself from breaking changes of the
upstream as good as possible. An Anticorruption Layer isolates the upstream
model from the downstreams own model. Thus, the downstream team is able
to use the other system in terms of their own domain model, since the Anti-
corruption Layer (ACL) makes the translation. Changes in the upstream do
no longer affect the downstream domain model. As already mentioned in the
last section, this is somehow the opposite or inverse pattern to the Conformist
pattern. Thus, they can not be applied both in one relationship. Further, it is
less likely that this pattern is used in combination with Customer/Supplier, at
least according to our interpretation of the patterns.

FIGURE 2.13: «Anticorruption Layer» Examples



2.2. Additional Concepts & Features 19

In a Customer/Supplier relationship, the customer is not «dictated» by the sup-
plier and therefore has no motivation to protect itself. However, the down-
stream context may implement a translation layer anyway, but since it has not
a defensive purpose we would not call it Anticorruption Layer. Nevertheless,
the DSL implementation shall allow this combination.

This pattern might be used by our customer management, policy manage-
ment, and debt collection contexts to protect themselves from the changes of
the printing context (Figure 2.13).

All relationship patterns have been presented now. Note that Figure 2.13 illus-
trates the final context map for the insurance example which will be used in
Chapter 4 again to explain the implemented DSL.

2.1.7 Responsibility Layers

This pattern addresses Responsibility-driven Design which can be applied on
different levels. As programmers we give classes and objects responsibilities
and try to avoid implementing multiple responsibilities within the same classes
according to the single responsibility principle. This idea of splitting things by
responsibilities can be applied on higher levels such as aggregates, modules
and bounded contexts as well.

2.1.8 Knowledge Level

When roles and relationships between entities vary in different situations, the
complexity of the software can explode. Often neither full generality nor a
highly customizable systems are the perfect solution. The concept of having
concrete and abstract objects is familiar to a programmer and often provides a
solution for keeping the complexity in such situations under control. Similar
to the last pattern, this concept can be applied to higher levels as well.

This pattern suggests to create two levels of objects, one concrete, the other
reflecting the rules and knowledge that a user or super-user is able to cus-
tomize.

2.2 Additional Concepts & Features

In addition to the DDD patterns a few other features were added to the DSL.
These additional features are our own input and proposals based on experi-
ence.

2.2.1 «FAST» Context Types

Bounded contexts are created for different reasons as already explained, us-
ing the reasons presented by Brandolini [3]. Our DSL provides an optional
attribute on bounded contexts which reflects this kind of type or reason why
the context has been evolved. Table 2.3 lists the supported bounded context
types, Feature, Application, System and Team (FAST). We further understand
these types as different viewpoints corresponding to the «4+1» view model of
software architecture [29].



20 Chapter 2. Domain-driven Design Analysis

TABLE 2.3: «FAST» Context Types

Type Description
Feature / Function A bounded context reflecting a certain feature or re-

quirement which has been identified by the Object-
oriented Analysis (OOA) [31]. In terms of the «4+1»
model [29], it represents a context from the «Sce-
nario» viewpoint.

Application A bounded context which represents a certain appli-
cation, such as the «Self-Service» application in our
insurance example. It is evolved by Object-oriented
Design (OOD) [31] and from our understanding re-
flects the «Logical» and «Development» viewpoint in
terms of «4+1» [29].

System A bounded context representing an external system.
The printing context in our insurance example might
be such an external system which has to be integrated
but is implemented by another software vendor. By
using this type a bounded context illustrates a system
from the physical and/or process viewpoint («4+1»
[29]). This perspective concerns about how systems
communicate and integrate, for example by imple-
menting Enterprise Integration Patterns (EIP) [22].

Team A bounded context of this type represents a team.
A new context of this type might be created when a
team has to be split to scale the company. However,
this perspective is inspired by Conway’s Law [10],
stating that a systems design copies the communica-
tions structures of an organization.

2.2.2 Context Map Types

Inspired by Brandolini [3] once again, it might be interesting to consider a con-
text map in the perspective of a team organization. Instead of thinking about
systems, features or applications, one might think about bounded contexts in
terms of teams. For this reason we added a type attribute to the context map
on our domain model. This type differentiates between a «System Landscape»
which shows typical bounded contexts representing features, applications and
systems, and «Organization» maps which reflect the teams and their relation-
ships. Thus, the DSL provides the two different context map types as shown in
table 2.4.

TABLE 2.4: Context Map Types

Type Description
System Landscape A context map showing the involved systems, fea-

tures, applications and their relationships. Such a
map should contain bounded contexts of the types
«Feature», «Application» or «System» only.



2.2. Additional Concepts & Features 21

TABLE 2.4: Context Map Types (continued)

Type Description
Organizational Map Such a context map shows the bounded contexts

in perspective of team organization. The bounded
contexts must be of the type «Team».

To give an example of a map of the type «Organizational», the insurance exam-
ple can by analyzed again from this perspective. We assume that the customer
self-service context is implemented by the team «Customers Frontend» and the
customer management context by the team «Customers Backend». Further the
team «Contracts» implements the policy management context while the risk
management context is implemented by the team «Claims». This would lead
to a organization context map as seen in Figure 2.14.

FIGURE 2.14: Example: Map of type «Organization»

The Printing context is not part of this map since it is an external system and
thus not implemented by a team of the organization. Of course one could also
imagine that a team implements multiple contexts which might lead to another
organizational map.

FIGURE 2.15: Example map: teams «realize» bounded contexts



22 Chapter 2. Domain-driven Design Analysis

Additionally, the DSL shall provide the possibility to combine the two ap-
proaches and visualize which bounded contexts are realized by which team,
as in Figure 2.15.

2.2.3 Represented State: «As-Is» vs. «To-Be»

A context map can either represents the current situation of a system («as-is»)
or the desired state to be developed («to-be»). The DSL provides an attribute
to classify a context map by those two states.

2.3 Tactic Patterns

Specifying the bounded contexts by using tactic DDD patterns shall be sup-
ported by the DSL as well. This is crucial in order to be able to apply struc-
tured service decomposition approaches. The coupling and cohesion between
bounded contexts is defined by their domain models. As already mentioned in
Chapter 1, DSL approaches based on tactic DDD patterns already exist. Thus,
we do not want to realize our own language concerning the tactic patterns, but
use and integrate one of the existing approaches.

FIGURE 2.16: Tactic DDD Meta-Model (Domain Model)



2.3. Tactic Patterns 23

However, we still want to quickly mention the patterns we expect from such
an approach to be supported. Additionally, the already presented patterns Re-
sponsibility Layers, Knowledge Level and Domain Vision Statement affect the
tactic DDD part of the model and have to be integrated. Figure 2.16 illustrates
the tactic DDD patterns within a domain model. Note that the domain model
contains all tactical DDD patterns according to [13, 14], even if we do not re-
quire all of them to be supported by the DSL.

In order to be able to describe a bounded contexts structure, the DSL shall
at least support the patterns Aggregate (and Aggregate Root), Entity and Value
Object. The aggregate additionally has an attribute knowledge level representing
the implementation of the Knowledge Level pattern. Further, it has an attribute
to realize the Domain Vision Statement pattern on tactical level as well as on
strategical level. Last but not least, multiple responsibilities can be assigned to
an aggregate which implements the Responsibility Layers pattern.

FIGURE 2.17: Connection between Strategic and Tactical DDD

Figure 2.17 illustrates how to strategic DDD domain model presented in Figure
2.1 is connected with the tactical model from Figure 2.16. A bounded context
contains one or multiple aggregates. Additionally, the DSL provides the pos-
sibility to specify entities within a subdomain. With this feature it is possible
to describe a subdomain in more detail and specify which domain objects are
part of the subdomain. However, these entities are currently not used in any
transformations and provide just a modeling feature allowing to increase the
meaning of a subdomain. The aggregates and the structure inside the aggre-
gates are relevant for the transformations, concretely the Service Cutter [20]
input and the PlantUML [42] diagram generation.



24 Chapter 2. Domain-driven Design Analysis

This chapter introduced all concepts, especially the strategic DDD patterns,
and the model on which the proposed DSL is based on. By evolving an exam-
ple DDD context map step by step, it further suggested ideas for architectural
refactorings [55] which may be implemented in future projects using the DSL
presented by this work. The next chapter will present the requirements poten-
tial users of the implemented DSL may expect to be fulfilled. The presented
user stories will explain for which use cases we expect the DSL to be a use-
ful tool. Additionally, the Non-Functional Requirements (NFRs) we expect the
language to fulfill will be introduced.



25

Chapter 3

DSL Requirements

This chapter discusses the requirements the Domain-specific Language (DSL)
presented by this project should cover. Besides the functional requirements,
which are described as User Stories, the chapter also presents the Non-Functional
Requirements (NFRs) the DSL has to fulfill.

3.1 User Stories

With the User Stories (US) presented in this section it is shown which stake-
holders in a software project might be interested in using our DSL to create
models and what goals they would be able to achieve with it. As table 3.1
shows, the following User Stories cover all common disciplines of a software
development process.

TABLE 3.1: Modeling in software development disciplines

Discipline User Stories
Business Modeling & Requirements US-1
Analysis & Design US-1, US-2, US-4, US-5
Implementation & Test US-2, US-5, US-6
Operating & Maintaining US-2, US-3, US-4, US-5

The User Stories [2] are based on the «Role-Feature-Reason» template [1] in-
vented 2001 by a team at Connextra in the UK.

«As a <type of user>, I want <some goal> so that <some reason>.»

3.1.1 US-1: Understanding and Analyzing the Domain

As a project member1, I want to develop a domain model reflecting the aquired
knowledge about the problem domain and the project scope so that all stake-
holders have the same understanding of the domain and a common vocabulary
is established.

1Project members include all roles involved in the software engineering process (domain
experts, business analysts, software architects, software engineers, etc.).



26 Chapter 3. DSL Requirements

DDD Variant: Evolving a Ubiquitous Language

As a team member2, I want to develop a domain model, using tactic Domain-
driven Design (DDD) patterns, reflecting the aquired knowledge about the
problem domain and the scope so that the team speaks a Ubiquitous Language
and all members have the same understanding of the domain.

3.1.2 US-2: Describing and Communicating the Architecture

As a software architect responsible for big and/or complex systems, I want to
model and communicate architecture which decomposes the whole system into
smaller components so that the implementation of separated components can
be assigned to specialized teams and the software engineers know the bound-
aries of those components.

DDD Variant: Splitting a Domain into multiple Bounded Contexts

As a software architect responsible for big and/or complex systems, I want to
evolve a context map, using strategic DDD patterns, reflecting the bounded
contexts and their relationships so that I can arrange specialized teams work-
ing on a single context and I am able to clearly communicate the boundaries
between the contexts/teams.

3.1.3 US-3: Generating other Representations of the Model

As a software architect or engineer, I want to generate alternate representations
of my model so that I can generate code, represent the model in different ways
according to the target audience or process the model within other tools.

Variant 1: Generate Service Cutter Output for Service Decomposition

As a software architect or engineer, I want to generate a representation of my
model which can be used as input for Service Cutter [20] so that I can generate
proposals for new bounded contexts.

Variant 2: Generate Graphical Representation of the Model

As a software architect or engineer, I want to generate a graphical represen-
tation out of a model using tools such as PlantUML [42] so that it is easier to
understand and I can use it for discussions and/or presentations with stake-
holders.

3.1.4 US-4: Modeling the Design of Components

As a software engineer, I want to model the design of my component (maybe
using tactic DDD patterns) before I start coding so that I develop a better un-
derstanding of what I am building, being able to manage the complexity and
understand the design and its risks.

2A team member works in a development team working on one bounded context.



3.2. Personas 27

3.1.5 US-5: Analysing Existing Architecture and Finding Problems

As a software architect or engineer, I want to create models of existing sys-
tems and review them manually or (semi-) automatically with provided tools,
such as Service Cutter [20], so that technical debts and Architectural Smells
[55], such as circular dependencies, can be detected and corrected using DDD
patterns.

3.1.6 US-6: Compare Alternative Design Specifications

As a software architect or engineer, I want to specify and compare different de-
sign solutions for particular problems so that I can discuss pros and cons with
peers and form decisions with respect to realization and maintenance require-
ments.

3.1.7 US-7: Transforming Models

As a software architect or engineer, I want to apply manual or automatic trans-
formations and «Architectural Refactorings» [55, 6] to my model so that I can
port and modernize the architecture.

DDD Variant: Service Decomposition as Transformation on Context Map

As a software architect or engineer, I want to apply manual or automatic trans-
formations and «Architectural Refactorings» [55, 6] to my DDD Context Map
so that I can decompose services (Bounded Contexts) in order to decrease the
coupling between them.

3.2 Personas

In order to sharpen our understanding of potential users, we briefly introduce
the roles Domain Expert / Business Analyst, Software Architect and Software
Engineer used in the user stories above. People in all of these roles are typically
faced with constraints given by the projects setup. Such constraints may also
influence the requirements of the users regarding tools.

3.2.1 Martin Analyst

Martin is a business analyst / domain expert with many years of experience
within the domain the project is working on. Before he started working in the
current software company as a domain expert he has worked for one of the
customers using the software. Thus, he has a deep knowledge of the business
and the domain.

Martin talks with the customer and brings the requirements into the team.
His goal is to raise the knowledge about the domain within the team. However,
Martin does not want to translate the business language into another, lets say
«developer» language, since he knows from his experience that this always
leads to misunderstandings. He insists on speaking the businesses language
and wants to create models using the terms he knows.



28 Chapter 3. DSL Requirements

Constraints

From the role of a domain expert such as described above, requirements and
constraints regarding a potential modeling tool can be derived. The way of
how a model is expressed should not require any programming skills. The
language should be as similar as possible to the natural language. This type of
user expects from the modeling tool that he or she can create models using the
natural language. Further, they do not want to learn a complex syntax such as
typical programming languages may provide. They simply aim to focus on the
core domain and its language.

3.2.2 Lisa Developer

Lisa works as a senior software engineer for the team. She loves program-
ming and is always interested in new technology and programming languages.
However, since the projects time budget is tight as always, she is focused on
producing software efficiently while still keeping the quality high. Thus, she
does not like to do things multiple times. She appreciates models which clearly
communicate the domain knowledge and reduce the complexity of the system,
but she only wants to use modeling tools supporting transformations into other
representations such as code. Maintaining and synchronizing equal models in
different representations is no option for her.

Contraints

Software engineers want to focus on their development tasks. Models should
ideally be written in a way which can be processed automatically with a pro-
gram. Graphical models which have to be synchronized with code manually
are difficult to establish among developers.

3.2.3 Bob Architect

Bob is software architect and his goal is to influence architectural decisions of
the development teams and ensure that they are properly documented and jus-
tified. He further coaches the teams regarding design and architecture issues
coming up. He analyzes problems in existing architectures and tries to propose
solutions. Models are the major tool for Bob to communicate with the other
roles and stakeholders. With models he is able to illustrate potential architec-
tural improvements or simply describe the actual state of a system. Since Bob
communicates with different audiences he wants to create models on different
levels of abstraction.

Contraints

A software architect may has to supervise many teams implementing different
applications or bounded contexts. Thus, he maybe does not have the time and
budget to familiarize himself with very complex tools at the beginning of a
project. The creation of models shall be efficient and ideally the tool allows the
architect to adapt the level of abstraction to the target audience.



3.3. Non-Functional Requirements (NFRs) 29

3.3 Non-Functional Requirements (NFRs)

Besides the functional aspect, several non-functional requirements have to be
satisfied in order to achieve a high-quality design of the language and the tools
arround it.

3.3.1 Simplicity of the DSL

The DSL grammar should satisfy the requirements but still be designed as sim-
ple as possible. A software architect or engineer knowing the concepts of DDD
should be able to understand introductory examples written in the DSL within
15 to 20 minutes. With provided examples and tutorials one should also be
ready to start creating an own model within at most one hour.

3.3.2 Size of Specification

The design of the DSL grammar should not exceed a certain complexity. Our
goal is to provide a tool not only for research purposes but also for being used
in «real world» applications. The complexity of the language design is mea-
sured by the amount of its grammar rules and should not exceed 10 to 100
rules.

3.3.3 Representativeness and Expressiveness

The grammer of the DSL should cover all the «strategic» DDD [13, 52] concepts
needed to model an application with its «Bounded Contexts» according to the
Application Architecture DDD lectures by Olaf Zimmermann (2017)3. Further,
it shoud represent these concepts in an expressive manner.

3.3.4 Future-oriented Use of Tools and Frameworks

The tools and libraries used for the development of the DSL and its tools should
be well established, open and sustainable. Libraries and frameworks with no
activity/commits during the last year should be avoided. At least be sure that
the tools can be replaced by using open and sustainable data formats (such as
XML or ECore).

3.3.5 Reliability and Performance

The developed tools should work reliable having no crashes and/or data losses.
To achieve these goals the tools have to be implemented in an resilient fashion
and should be tested well (Unit Tests, Integration Tests and manual User Tests).
Additionally, the model transformations (Service Cutter Output and Graphical
Representation) must be performed in 7 - 10 seconds.

3This scope and all covered DDD patterns are documented in chapter 2.



30 Chapter 3. DSL Requirements

3.3.6 Licences

Since the project is planed to be open source, licences such as «Apache license
2.0» and «Eclipse Public License 1.0» are prefered. Libraries or frameworks
under «General Public License (GPL)» must not be used.

3.3.7 Supportability and Maintainability

The projects code quality should be kept at a good level. Setup appropriate
tools and mechanisms to support this goal (Updating Master only by Pull Re-
quest, Integrate Static Code Analysis Tools into the Continuous Integration
Pipeline). The code should be clean and understandable, also for a Junior Soft-
ware Engineer. Do not use very special (not well-known) language features
and create a documentation if it is needed for more complex components.



31

Chapter 4

Context Mapper Implementation

This chapter explains how the Domain-specific Language (DSL) has been im-
plemented. Besides the language, it presents the design and architecture of the
surrounding tools, states important decisions, and illustrates the results with
examples.

4.1 Language Workbench Evaluation

There exist several frameworks or language workbenches for creating DSLs,
since implementing such a language with a parser and all needed tools from
scratch would be too complex and time-consuming. Fowler uses the well-
known parser generator ANTLR [4] within his DSL book [16]. However, Xtext
[12], MPS [25] and Spoofax [48] are more powerful and provide way more con-
venience in comparison. Further, these three tools are called «the current state
of the art» in Voelters book DSL Engineering [53], which was published a few
years later (2013).

Xtext actually uses ANTLR for generating the parser, but provides other
tools and features such as a typed Abstract Syntax Tree (AST), scoping, un-
parsing (AST back to text) and validation. Whereas Xtext and Spoofax are
parser-based approaches using conventional text files, MPS is an projection-
based approach. The storage format of MPS is not plain text but a tool-specific
format. This enables MPS to provide features such as embedding arbitrary
languages into your own language, which might be an advantage for more
complex scenarios. However, in our case a text-based approach is perfectly
satisfying. Furthermore, the complexity of implementing a language in MPS
is much higher and it has a steep learning curve in comparison with the other
candidates. Since this project can not substantially benefit of these advanced
features provided by MPS, we decided against it.

Spoofax is an academic project which is the least used approach of the three.
Since Xtext is widespread and very mature we decided to use it for implement-
ing our DSL. Additionally, while Spoofax implements its own parser, Xtext
uses ANTLR, which can be a fall-back in case Xtext runs out of support in the
future.

4.1.1 Integrated Development Environments (IDEs)

Unfortunately, none of the presented language workbenches provides a wide
IDE support. Both, MPS as well as Xtext, somehow try to lock you into their
own world. This is a disadvantage if the provided DSL is expected to be used



32 Chapter 4. Context Mapper Implementation

by many users. A software architect or software engineer probably will not
use the language if there is no support for his or her preferred IDE. Since we
decided for Xtext and implementing additional IDE plugins would have been
too time-consuming during the project, the DSL has to be used within Eclipse
[50] at the moment. However, providing support for other IDEs would be de-
sirable, as the Eclipse user base tends to decrease these days. This issue is also
mentioned by Chapter 5 as potential future work.

The eclipse foundation tends to be more open regarding integration with
other IDEs, since an integration with IntelliJ IDEA [24] existed [51]. Unfortu-
nately it is no longer supported since the Xtext release 2.11 due to development
capacity. According to the project team, IDEA’s Application Programming In-
terface (API) is subject to frequent change which makes it hard for them to keep
pace. A revival of the native IntelliJ support seems unlikely since the integra-
tion with the Language Server Protocol (LSP) is the pursued solution. The LSP
protocol might help integrating the DSL into other IDEs but currently IntelliJ
does not officially support it. Using the single available open source plugin
providing LSP support for Intellij [23] did not work with IDEA 2018.2 (plugin
together with Xtext LSP lead to crashes), admitting that not many efforts have
been put into solving this issue so far. Note that we have not found any evi-
dence that IntelliJ is putting efforts into supporting other IDEs for MPS-based
languages, which would mean that using MPS would not be an improvement
regarding the vendor «lock-in» problem.

In summary, the IDE support of the DSL aside from Eclipse is an open issue
and will hopefully be addressed in a future project.

4.2 Context Mapping DSL (CML)

This section presents the implemented DSL named Context Mapper DSL (CML)
[8], the major result of this work. First, the language structure and its syntax is
explained using the AST and example DSL snippets implementing the insur-
ance example introduced in Chapter 2. Afterwards, the implemented seman-
tics are introduced.

Note that this paper mainly describes the concepts and the design of the
implementation. For current examples we refer to the Context Mapper exam-
ples repository [9]. The code of the examples by December 2018 can be found
in Appendix B. For guidance how to download and use the Eclipse Plugin we
refer to the Context Mapper website1 [8]. The DSL implementation is open
source and can be found in our Github repository2. All examples, design and
semantic descriptions within this paper are compatible with Context Mapper
in the version v1.0.23.

1https://contextmapper.github.io/
2https://github.com/ContextMapper/context-mapper-dsl
3https://github.com/ContextMapper/context-mapper-dsl/tree/v1.0.2

https://contextmapper.github.io/
https://github.com/ContextMapper/context-mapper-dsl
https://github.com/ContextMapper/context-mapper-dsl/tree/v1.0.2


4.2. Context Mapping DSL (CML) 33

4.2.1 Syntax (AST)

As already mentioned in the last section, the Context Mapper DSL is imple-
mented with Xtext [12]. Xtext uses EMF [49] models for representing the gener-
ated AST. This section uses this EMF model of our DSL to explain the structure
of the language, since it is easier to illustrate and understand than the gram-
mar rules. If the reader is interested in the grammar we refer to the language
reference in Appendix A.

AST Model

Figure 4.1 illustrates the AST of the Context Mapper DSL. The ContextMap-
pingModel object is the root node of the tree, aggregating the context map, a
list of subdomains and a list of bounded contexts. Thus, these three objects are
the top-level objects within a DSL file, which has the file extension «cml». A
bounded context can reference multiple subdomains from which it is imple-
menting parts. A context map references all bounded contexts which are part
of the map and defines the relationships between these contexts. As already de-
fined during the analysis in Chapter 2, a relationship can either be symmetric
or asymmetric. The asymmetric relationships are named UpstreamDownstream-
Relationships in the grammar and the AST respectively.

FIGURE 4.1: CML EMF Model (Abstract Syntax Tree) Diagram
generated with Eclipse (Ecore Diagram)

A symmetric relationship either implements the Partnership or the Shared-
Kernel Domain-driven Design (DDD) pattern. Upstream-Downstream rela-
tionships are enhanced with the roles or relationship patterns implemented by
the upstream or downstream. While the upstream can implement Published



34 Chapter 4. Context Mapper Implementation

Language and Open Host Service, the possible downstream patterns are Anti-
corruption Layer and Conformist. A special form of an Upstream-Downstream
relationship is the Customer-Supplier relationship.

Bounded Contexts

Listing 1 illustrates the syntax of a bounded context, which is defined indepen-
dently and later referenced on a context map.

1 /* Syntax example: Bounded Context */

2 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

3 type = FEATURE

4 domainVisionStatement = "The customer management context is responsible for managing

5 all the data of the insurance companies customers."

6 implementationTechnology = "Java, JEE Application"

7 responsibilities = Customers, Addresses

8 }

LISTING 1: Syntax example: «Customer Management»
bounded context of the insurance scenario

With the implements keyword, the subdomain which is implemented by this
bounded context can be referenced (see Listing 2). Within the example in List-
ing 1, this expresses that the CustomerManagementContext implements the
CustomerManagementDomain or a part of it. It is further possible to charac-
terize a bounded context with the following optional attributes:

TABLE 4.1: Bounded Context Attributes

Attribute Possible values
type A value of the enumeration BoundedContext-

Type. FEATURE, APPLICATION, SYSTEM or
TEAM.

domainVisionStatement A text describing the domain vision statement
(pattern mentioned in Chapter 2).

implementationTechnology A text allowing to describe the technology
used to implement this bounded context.

responsibilities List of responsibilities which can be defined
freely.

knowledgeLevel Allows to define the knowledge level, META
or CONCRETE, according to the knowledge
level pattern.

Subdomain

Listing 2 illustrates how a subdomain is specified. As on a bounded context, the
domain vision statement pattern can be applied here as well. Further, the type
of the subdomain can be defined by a value of the SubDomainType enumeration
depicted in Figure 4.1. A subdomain is further allowed to contain entities. With
this feature it is possible to add detailed information regarding which domain
objects belong to a certain subdomain. Note that these entities are currently



4.2. Context Mapping DSL (CML) 35

not used in the generators presented later. They use the entities within the
bounded contexts and aggregates. The syntax of the entities is defined by the
Sculptor [46] DSL.

1 /* Syntax example: Subdomain */

2 Subdomain CustomerManagementDomain {

3 type = CORE_DOMAIN

4 domainVisionStatement = "Subdomain managing everything customer-related."

5

6 Entity Customer {

7 String firstname

8 String familyname

9 }

10

11 /* Add more entities ... */

12 }

LISTING 2: Syntax example: «Customer Management» subdo-
main of the insurance scenario

Context Maps

The core element of the model is the context map which connects the bounded
contexts and subdomains with each other. A syntax example of a simple con-
text map with only one bounded context is visualized in Listing 3. A context
map is either of the type SYSTEM_LANDSCAPE which specifies the bounded
contexts and their relationship, or of the type ORGANIZATIONAL. An organi-
zational map or «team» map illustrates teams and their relationships.

1 /* Syntax example: Context Map */

2 ContextMap {

3 type = SYSTEM_LANDSCAPE

4 state = TO_BE

5

6 /* Add bounded context to this context map: */

7 contains CustomerManagementContext

8 }

LISTING 3: Syntax example: Context Map

With the keyword contains, a bounded context is added to the corresponding
context map. Our insurance example introduced in Chapter 2 contains the
following bounded contexts:

• Customer Management Context

• Customer Self-Service Context

• Policy Management Context

• Risk Management Context

• Debt Collection Context

• Printing Context



36 Chapter 4. Context Mapper Implementation

Since this would take too much space, not every context is illustrated in CML at
this point. We refer to Appendix B which contains the complete CML file of the
insurance example. The following listings will introduce the syntax of bounded
context relationships using the bounded contexts you can find there. However,
to remind you of the example, Figure 4.2 shows the graphical representation
again.

FIGURE 4.2: Context Map: Insurance Example

Relationships

Symmetric relationships are given between the risk management context and
the policy management context, and between the policy management context
and the debt collection context. Listing 4 illustrates the CML syntax of these
two relationship patterns Partnership and Shared Kernel.

1 ContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains PolicyManagementContext

6 contains RiskManagementContext

7 contains DebtCollection

8

9 @Risk_Policy_Partnership // optional relationship name

10 RiskManagementContext <-> PolicyManagementContext : Partnership {

11 implementationTechnology = "RabbitMQ"

12 }

13

14 @Policy_Debt_SharedKernel // optional relationship name

15 PolicyManagementContext <-> DebtCollection : Shared-Kernel {

16 implementationTechnology = "Shared Java Library, Communication over RESTful HTTP"

17 }

18 }

LISTING 4: Syntax for Partnership & Shared Kernel

The <-> sign between the bounded contexts expresses the symmetry of the
relationship. Therefore, if a context is written on the left side or on the right
side has no semantical impact. The implementationTechnology attribute allows
the user to specify some details regarding how the communication between



4.2. Context Mapping DSL (CML) 37

the two bounded contexts is implemented. Additionally, every relationship
can optionally be annotated with a name as illustrated in Listing 4.

Listing 5 shows the asymmetric relationship between the customer man-
agement context and the policy management context.

1 ContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains PolicyManagementContext

6 contains CustomerManagementContext

7

8 PolicyManagementContext -> CustomerManagementContext : Upstream-Downstream {

9 implementationTechnology = "RESTful HTTP"

10 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

11 downstream implements CONFORMIST

12 }

13 }

LISTING 5: Syntax for Upstream-Downstream Relationship (1)

Note that in this case the semantic changes if the bounded contexts are switched
between the left and right side, since the arrow -> always points from the
downstream to the upstream. However, since the arrow is allowed to be used
in both directions, you can still switch the contexts without changing the se-
mantics as long as you change the arrow as well:

• Downstream -> Upstream

• Upstream <- Downstream

Thus, the relationship written as in Listing 6 has the same semantical meaning
as the one in Listing 5.

1 CustomerManagementContext <- PolicyManagementContext : Upstream-Downstream {

2 implementationTechnology = "RESTful HTTP"

3 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

4 downstream implements CONFORMIST

5 }

LISTING 6: Syntax for Upstream-Downstream Relationship (2)

Note that an alternative syntax is supported, which only uses the relationship
keywords Upstream-Downstream, Customer-Supplier, Partnership and Shared Ker-
nel without the arrows. Listing 7 illustrates examples for this alternative. For
detailed descriptions of the possible syntax variants for each pattern, we re-
fer to the language reference in Appendix A. Both variants evolved during the
developments of this project. However, since we do not have enough experi-
ence and user feedback regarding the syntax in order to already decide for one
variant, they shall be further tested in terms of an A/B testing [54] during the
upcoming projects.



38 Chapter 4. Context Mapper Implementation

1 PolicyManagementContext Shared-Kernel DebtCollection {}

2

3 RiskManagementContext Partnership PolicyManagementContext {}

4

5 CustomerManagementContext Upstream-Downstream PrintingContext {}

6

7 CustomerSelfServiceContext Customer-Supplier CustomerManagementContext {}

LISTING 7: Alternative Syntax for Relationships

With the keywords upstream implements and downstream implements the relation-
ship patterns implemented by the two contexts can be specified. The syntax for
a customer/supplier relationship barely differs from the upstream/downstream
relationship. Listing 8 shows an example for the relationship between the cus-
tomer self-service and the customer management context. Note the main differ-
ence at the keywords supplier implements and customer implements introducing
the relationship patterns. Note that this examples purpose is the illustration of
the syntax and implementing an anticorruption layer in a customer/supplier
relationship leads to a semantic warning, as we will explain later in the section
about semantics.

1 ContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains CustomerManagementContext

6 contains CustomerSelfServiceContext

7

8 CustomerSelfServiceContext -> CustomerManagementContext : Customer-Supplier {

9 implementationTechnology = "RESTful HTTP"

10 supplier implements PUBLISHED_LANGUAGE

11 customer implements ANTICORRUPTION_LAYER

12 }

13 }

LISTING 8: Syntax for Customer-Supplier Relationship

Team Maps

The last not yet introduced syntactical element concerns team maps. A team
map is created as a context map with the type ORGANIZATIONAL.

1 ContextMap {

2 type = ORGANIZATIONAL

3 state = TO_BE

4

5 contains CustomersFrontofficeTeam // Add teams to this organizational map

6 contains CustomersBackofficeTeam

7

8 @CustomerTeamsRelationship // name of relationship (optional)

9 CustomersFrontofficeTeam -> CustomersBackofficeTeam : Customer-Supplier

10 }

LISTING 9: Team Map Example (1)



4.2. Context Mapping DSL (CML) 39

Such a team map is only allowed to contain bounded contexts of the type
TEAM. CML further allows to define which bounded contexts of the types
FEATURE, APPLICATION or SYSTEM a team realizes.

11 BoundedContext CustomersBackofficeTeam realizes CustomerManagementContext {

12 type = TEAM

13 domainVisionStatement = "This team is responsible for implementing the customers

14 module in the back-office system."

15 }

16 BoundedContext CustomersFrontofficeTeam realizes CustomerSelfServiceContext {

17 type = TEAM

18 domainVisionStatement = "This team is responsible for implementing the front-office

19 application for the insurance customers."

20 }

21 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

22 type = FEATURE

23 }

24 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

25 type = APPLICATION

26 }

LISTING 10: Team Map Example (2)

Listings 9 and 10 illustrate such an example team map according to the example
for the insurance scenario introduced in Chapter 2. The realizes keyword allows
to define the bounded context a team is implementing.

4.2.2 Semantics

After we have seen the syntax of the CML language, this section is going to give
you an overview over the implemented semantics. Note that this not only pro-
vides a feature every language needs, but it also describes our interpretations
how the strategic DDD patterns interact and how they can be combined.

The implementation of the language accomplishes semantical rules con-
cerning the strategical DDD patterns in two different ways. On the one hand,
the AST, and thus the grammar of the language, already provides semantic
rules by its design. Of course, this is no coincidence since the design of the lan-
guage is driven by the semantic model developed and presented in Chapter 2.
On the other hand, specific Xtext validators have been implemented to ensure
certain semantic rules not covered by the structure of the language.

The following Table 4.2 lists important semantic rules given by the AST:

TABLE 4.2: Semantic rules defined by the AST

# Rule Reason / Motivation
1 The patterns Open Host

Service (OHS) and Pub-
lished Language can
only be implemented by
the upstream in an Up-
stream/Downstream rela-
tionship.

Trivially given by the definition of these
patterns. Applying them to the down-
stream does not make sense, since the
downstream context is calling the up-
stream context.



40 Chapter 4. Context Mapper Implementation

TABLE 4.2: Semantic rules defined by the AST (continued)

# Rule Reason / Motivation
2 The relationship pat-

terns ACL and Con-
formist can only be im-
plemented by the down-
stream context in an Up-
stream/Downstream rela-
tionship.

Trivially given by the definition of these
patterns. Applying them to the upstream
does not make sense, since the upstream
context is the one who is called by the
downstream. The upstream itself does not
depend on the downstream and therefore
does not have to conform or protect itself
from changes of the downstream.

3 The relationship patterns
Open Host Service (OHS),
Published Language, An-
ticorruption Layer (ACL)
and Conformist are not
applicable for Partnership
and Shared Kernel rela-
tionships.

A violation of this rule would lead to
contradictions regarding the definitions
of the patterns and how we understand
them. In a Shared Kernel relationship, two
bounded contexts share a subset of its do-
main model and thus, technically, share
code. The interaction between the two
bounded contexts happens via this shared
code. The usage of the four mentioned pat-
terns contradicts with this approach. The
same applies to the very tightly coupled
Partnership pattern. Even if the contexts
do not share code, both can only succeed
or fail together.

In addition, semantic checkers have been implemented for rules which are not
implicitely ensured by the AST. The following Table 4.3 lists these currently
implemented checkers:

TABLE 4.3: Implemented semantic checkers

# Rule Reason / Motivation
1 A bounded context

which is not contained
by the context map
can not be part of a
relationship either.

This checker provides consistency within the
generated model.

2 The Conformist pat-
tern is not applica-
ble within a Cus-
tomer/Supplier rela-
tionship.

In a Customer/Supplier relationship, the cus-
tomer has an influence on the supplier and
can at least negotiate regarding priorities of
the requirements and the implementation. A
conformist in contrast has no possibilities to
influence the upstream and has to conform to
what he gets.



4.2. Context Mapping DSL (CML) 41

TABLE 4.3: Implemented semantic checkers (continued)

# Rule Reason / Motivation
3 The Open Host Service

(OHS) pattern is not
applicable within a
Customer/Supplier
relationship.

Whereas the Customer/Supplier pattern
implies that the two involved teams work
closely together, meaning that the down-
stream team delivers the input in the up-
streams planning sessions, the OHS pattern is
meant to be applied if an upstream is used by
many downstreams and the upstream team
decides to implement one API in an «one for
all» approach. This is somehow contradic-
tory since it is unlikely that such an upstream
implementing an OHS is able to have a close
Customer/Supplier relationship with all its
downstreams and fulfill all their expectations
at the same time.

4 The Anticorruption
Layer (ACL) pat-
tern should not be
needed within a Cus-
tomer/Supplier rela-
tionship. Note: This
checker only produces
a compiler warning,
not an error.

Similarly as in rule #3 the application of the
ACL pattern is contradictory with the close
Customer/Supplier relationship, where it
should not be the case that the supplier im-
plements changes from which the down-
stream has to protect itself. However, we only
produce a warning questioning this situation
since one might argue that a translation layer
can be needed anyway and the difference be-
tween a translation layer and an anticorrup-
tion layer is not clearly defined or depends on
how defensive it is implemented.

5 A context map of
the type ORGANI-
ZATIONAL (team
map), can only con-
tain bounded contexts
of the type TEAM.

This checker provides consistency within
team maps. On such a map a bounded con-
text represents a team and not a classical
bounded context such as a system, feature
or application.

6 A bounded context
of the type TEAM
can not be contained
by a context map
of the type SYS-
TEM_LANDSCAPE.

This checker provides consistency within con-
text maps. Can be seen as the inverse case of
rule #5.

7 Only teams can realize
bounded contexts.

This checker ensures that the realize keyword
introduced in Listing 10 can only be used for
bounded contexts of the type TEAM. The key-
word is added to the language definition in
order to reference the bounded contexts a
team is realizing. It would not make sense for
a classical bounded context (system, feature
or application).



42 Chapter 4. Context Mapper Implementation

All CML concepts concerning strategic DDD have been introduced now. Note
that the language reference in Appendix A provides an additional documen-
tation of all supported patterns and corresponding sample code snippets. The
following section will quickly introduce the language features regarding tactic
DDD.

4.3 Tactic DDD Language Integration

Since the models written in CML shall be used by service decomposition tools
such as Service Cutter [20], they have to provide the inner structure of the given
bounded contexts. Only with this details it is possible to propose service cuts
or how the bounded contexts should be split. Thus, a tactic DDD language is
needed which allows to model the insides of the bounded contexts.

4.3.1 Tactic DSL Evaluation

DSLs for tactic DDD already exist and therefore we decided to use an already
existing language and integrate it in CML rather then implement it from scratch.
The research resulted in the following three existing tactic DDD DSLs:

TABLE 4.4: Existing tactic DDD DSLs

# Name Description
1 Sculptor [46] «Sculptor is an open source productivity

tool that applies the concepts from Domain-
Driven Design and Domain Specific Lan-
guages for generating high quality Java code
and configuration from a textual specifica-
tion.» (citation from sculptors website)

2 fuin.org’s DDD DSL [18] Xtext based DSL supporting Domain-driven
design (DDD).

3 DSL Platform [11] «DSL Platform is a service which helps you
design, build and maintain business appli-
cations.» (citation from DSL Platform’s web-
site)

We decided to integrate option #1, Sculptor, for the following reasons. Sculptor
coverages all tactic DDD patterns which we at least require: Module, Aggre-
gate (and Aggregate Root), Entity, Value Object, Domain Event, Repository and
Service. These objects in Sculptor are all named after the original patterns in
Evans book [13], whereas fuin.org’s DDD DSL (#2) renamed certain patterns
as for example the Module pattern. Further, Sculptor is licenced under the
Apache 2.0 licence, while option #2 is licenced by a General Public License
(GPL). Besides, using a library with a GPL licence violates our Non-Functional
Requirements (NFRs) as specified in Chapter 3. Option #3, DSL Platform, is
not a real option since it does not seem to be open source.

However, Sculptor perfectly fits our requirements and the fact that it is writ-
ten in Xtext as well simplifies the integration. As described in the next section,
a few little changes where applied to the Sculptor DSL used in CML.



4.3. Tactic DDD Language Integration 43

4.3.2 Syntax

The following examples illustrate how the integrated tactic DDD DSL, Sculptor,
is used within CML. Note that we not explain the whole language and all its
concepts since it is based on another project. The Sculptor website already
provides a complete documentation [45] about their language.

Nevertheless, an introdcution to the most important concepts and an exam-
ple is given below. Table 4.5 lists the changes applied to the original Sculptor
DSL.

TABLE 4.5: Changes applied to Sculptor DSL for CML

# Change Description
1 Changed aggregate

concept to make it
more explicit.

In Sculptor no explicit grammar rule for the ag-
gregate pattern exists. Each entity is an aggre-
gate root by default, if it is not declared other-
wise with !aggregateRoot or belongsTo. With the
belongsTo keyword, an entity, value object or do-
main event can be assigned to an aggregate root.
In CML we changed this behavior and intro-
duced an explicit aggregate grammar rule which
includes all its entities, value object, etc. in a hi-
erarchical way. An entity is not an aggregate
root by default, but has to be marked as such
with the keyword aggregateRoot.

2 Responsibility Lay-
ers pattern on ag-
gregate.

The new aggregate rule further supports the Re-
sponsibility Layer pattern. This means that the
user is allowd to assign certain responsibilities to
an aggregate.

3 Knowledge Level
pattern on aggre-
gate

The Knowledge Level pattern is supported on
an aggregate as well. For every aggregate, you
can specify if the knowledge level is CONCRETE
or META, as it is possible on bounded contexts.

To illustrate the syntax the policy management context of our insurance ex-
ample is used. The root elements of the tactic DSL which can be used as the
first-level child objects inside a bounded context are Module and Aggregate. Us-
ing modules is therefore optional.

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Module contracts {

3 Aggregate Offers {}

4 Aggregate Contracts {}

5 }

6 }

LISTING 11: Tactic DSL: Modules & Aggregates

You can either use modules and include the aggregates inside them, as shown
in Listing 11. Or you can use the aggregates directly without modules, as
shown in Listing 12.

http://sculptorgenerator.org/


44 Chapter 4. Context Mapper Implementation

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Aggregate Offers {}

3 Aggregate Contracts {}

4 Aggregate Products {}

5 }

LISTING 12: Tactic DSL: Aggregates

Within aggregates and modules it is now possible to use all the language fea-
tures of Sculptor [45] which are allowed to be used inside their modules, such
as domain objects, repositories, service, etc. Sculptor’s root elements Applica-
tion and ApplicationPart are not used, since those concepts are represented by
bounded contexts in our language.

Listing 13 illustrates an example of a bounded context specification with the
tactic DSL concepts inside. Every aggregate contains one Entity with the key-
word aggregateRoot, establishing it as the root entity within the corresponding
aggregate.

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 type = APPLICATION

3 domainVisionStatement = "This bounded context manages the contracts and policies of

4 the customers."

5 responsibilities = Contracts, Policies

6 implementationTechnology = "Java, Spring App"

7

8 Aggregate Products {

9 Entity Product {

10 aggregateRoot // keyword to define aggregate root

11

12 - ProductId identifier

13 String productName

14 }

15 ValueObject ProductId {

16 int productId key

17 }

18 }

19

20 Aggregate Contract {

21 Entity Contract {

22 aggregateRoot // keyword to define aggregate root

23

24 - ContractId identifier

25 - Customer client

26 - List<Product> products

27 }

28 ValueObject ContractId {

29 int contractId key

30 }

31 Entity Policy {

32 int policyNr

33 - Contract contract

34 BigDecimal price

35 }

36 }

37 }

LISTING 13: Bounded Context Example in CML

Attributes of all domain objects, such as entities, value objects and domain
events are allowed to use the primivite datatypes defined by Sculptor and the



4.4. Service Decomposition with Service Cutter 45

types defined by your own domain objects. Note that references start with a
hyphen (-). You can reference objects throughout the whole model, even if the
referenced object belongs to another bounded context. For this reason it is not
possible to use the name of a domain object twice within one model.

In our examples repository [9] you can find the whole insurance example
with all bounded contexts. Further, we specified the DDD Sample [7] from
Evans original DDD book [13] in CML, which can be found there as well.

All the CML language features have been introduced now and the next sections
will explain the implemented transformations towards service decomposition
and a graphical representation of the models.

4.4 Service Decomposition with Service Cutter

With the integration of Service Cutter [20] a proof of concept towards service
decomposition is presented. Other approaches with the same goal using the
CML language may be part of future projects. The following quotation intro-
duces the Service Cutter concept briefly. For further defails, we refer to the
corresponding paper [20].

«We propose a structured approach to service decomposition by
providing a comprehensive catalog of 16 coupling criteria. We ab-
stracted them from existing literature, the experience of our indus-
try partner and our thesis advisor.

These coupling criteria are the basis of the Service Cutter tool, a pro-
totype that extracts coupling information out of well-established
software engineering artifacts such as domain models and use cases.
Using this information, the Service Cutter suggests service cuts to
assist an architect’s decomposition decisions.

We developed a scoring system that transforms the coupling data
into an undirected, weighted graph. On this graph, we employ two
graph clustering algorithms from the literature to find densely con-
nected clusters as service candidates. This approach ensures that
the Service Cutter produces service cuts that minimize coupling be-
tween services while promoting high cohesion within a service.»
– Gysel et al. [20]

In order to integrate Service Cutter and calculate proposals for bounded con-
text boundaries, a CML model has to be transformed into the Service Cutter
input files. Figure 4.3 shows a Unified Modelling Language (UML) class dia-
gram representing the Service Cutter input.

The input is splitted into two files. One file contains the EntityRelationship-
Diagram part, whereas the other file contains the UserRepresentationContainer.
The Entity Relationship Diagram (ERD) input file describes the structure of the
given application in terms of entities and so-called nanoentities, while the user
representations represent use cases, related groups and characteristics which
influence the coupling criteria and thus, the Service Cutter result.



46 Chapter 4. Context Mapper Implementation

FIGURE 4.3: Service Cutter Input Model

A result of this project are two generators which produce these Service Cutter
input files with a CML model as input. The processes of how the two inputs
are generated out of a CML model are now described separately.

4.4.1 ERD Input Generation

The Service Cutter ERD input file is required in JavaScript Object Notation
(JSON) format. The generator converts the given CML model (AST) into the
Service Cutter input model (Figure 4.3) and serializes it to JSON.

The current implementation of the model transformation uses all bounded
contexts of the given context map, the aggregates, entites, value objects and
domain events. Note that entities, value objects and domain events have the
common super type domain object in the Sculptor model. Each domain object
has attributes and references, which are used in the transformation as well. All
domain objects are simply mapped to entities and the attributes of a domain
object to nanoentities. References to other domain objects of the context map
are mapped to EntityRelation’s. We further create an entity for every aggregate
and bounded context. The according relations between bounded context and
aggregates are mapped to EntityRelations, similarly as the relations between
aggregates and domain objects.

Figure 4.4 expresses the transformation from the CML model to the Service
Cutter model as a class diagram, which might be easier to understand then a
textual description. The dashed lines indicate the mapping of every class and
every relation.



4.4. Service Decomposition with Service Cutter 47

FIGURE 4.4: Mapping: CML to Service Cutter ERD Model

Additionally, Table 4.6 summarizes the mapping. The left column is mapped
to the right. The Relationtype of the Service Cutter model is currently set to
AGGREGATION in all cases, since it is not possible to derive such a distinction
from our CML model.

TABLE 4.6: Mapping table: CML → Service Cutter

CML model Service Cutter model
Bounded Context Entity
Aggregate Entity
Reference: Bounded Context / Aggregate EntityRelation
Domain Object (Entity, Value Object, Domain
Event)

Entity

Reference: Aggregate / Domain Object EntityRelation
Attribute Nanoentity
Reference EntityRelation
Reference EntityRelation

How the transformations are triggered within the Context Mapper Eclipse plu-
gin is explained on our documentation website4 [8].

4.4.2 User Representations Generation

The second file used by Service Cutter is describing the user representations
part of the model shown in Figure 4.3. However, this input can not be fully
derived from a CML model but has to be manually worked out. Since it has to

4https://contextmapper.github.io/

https://contextmapper.github.io/


48 Chapter 4. Context Mapper Implementation

be provided in the JSON format as well and a manual preparation of the data
without tool-support is very time-consuming, we decided to provide another
DSL in order to simplify this process.

The DSL files end with the file extension «scl» for Service Cutter DSL (SCL)
and its AST exactly corresponds to the Service Cutter user representations model
(Figure 4.3, right part). Further, a generator which produces an SCL example
file from an CML model has been implemented.

Use Cases

Use cases are specified by declaring the nanoentities which are read and written
in the specific case, as illustrated in Listing 14.

1 UseCase UpdateCustomer {

2 reads "SocialInsuranceNumber.sin"

3 writes "Customer.firstname", "Customer.lastname", "Address.addresses"

4 }

LISTING 14: Service Cutter Use Case in SCL

The generator produces example use cases as templates to simplify the specifi-
cation for the user.

Compatibilities

The compatibilities block contains the following Service Cutter concepts:

• Availability Criticality

• Consistency Criticality

• Content Volatility

• Security Criticality

• Storage Similarity

• Structural Volatility

Once again, we generate a sample block derived by the CML model by picking
attributes randomly, but it can be used as a template. Listing 15 illustrates the
syntax. If the user does not want to specify certain criteria, the corresponding
blocks can be deleted. For more details regarding the presented criteria and
how they influence the resulting service cuts we refer to the Service Cutter
documentation [20, 47].

Related Groups

The last type of the user representations part are the Related Groups. Specifi-
cally, Service Cutter supports the following related groups of nanoentities:

• Entities



4.4. Service Decomposition with Service Cutter 49

• Aggregates

• Predefined Services

• Security Access Groups

• Separated Security Zones

• Shared Owner Groups

The current implementation of the SCL generator derives Aggregates and Pre-
defined Services from the CML model. For the other related groups templates
and examples are generated.

1 Compatibilities {

2 AvailabilityCriticality {

3 characteristic Normal // Allowed characteristics: Critical, Normal, Low

4 "ProductId.productId", "ContractId.contractId"

5 }

6 ConsistencyCriticality {

7 characteristic Weak // Allowed characteristics: High, Eventually, Weak

8 "SocialInsuranceNumber.sin", "CustomerRiskFactor.totalRiskFactor"

9 }

10 ContentVolatility {

11 characteristic Often // Allowed characteristics: Often, Regularly, Rarely

12 "Customer.firstname", "SocialInsuranceNumber.sin"

13 }

14 SecurityCriticality {

15 characteristic Public // Allowed characteristics: Critical, Internal, Public

16 "Address.postalCode", "Risk.risk"

17 }

18 StorageSimilarity {

19 characteristic Normal // Allowed characteristics: Tiny, Normal, Huge

20 "ProductId.productId", "UserAccount.username"

21 }

22 StructuralVolatility {

23 characteristic Normal // Allowed characteristics: Often, Normal, Rarely

24 "Address.city", "Product.productName"

25 }

26 }

LISTING 15: Service Cutter Compatibilities in SCL (Examples)

Listing 16 shows two examples for the syntax of the Related Groups. The syn-
tax for all other groups is identical.

1 /* This aggregate was generated by your CML model. You do not have to change it. */

2 Aggregate Risks {

3 "CustomerRiskFactor.totalRiskFactor", "Risk.likelihood", "Risk.risk"

4 }

5

6 /* Shared Owner Groups cannot be derived from ContextMap.

7 * This is a template/example how you can define them. If you do not want to specify

8 any, remove this block. */

9 SharedOwnerGroup SharedOwnerGroupTemplate {

10 "Product.productName", "Risk.risk"

11 }

LISTING 16: Service Cutter Related Groups in SCL (Examples)



50 Chapter 4. Context Mapper Implementation

The keywords to start the specifications are Entity, Aggregate, PredefinedService,
SecurityAccessGroup, SeparatedSecurityZone and SharedOwnerGroup.

CML to SCL Transformation Mapping

Figure 4.5 provides a graphical summary of the transformation from CML to
SCL as it was given for the ERD part of the Service Cutter input. However, as
already mentioned and illustrated in the figure, not many objects are derived
automatically. The aggregates in CML can be mapped directly to the aggre-
gates in the service cutter input (SCL), since it represents the same concept in
both worlds. Predefined services in the Service Cutter input describe already
separated services which fit to our already existing bounded contexts before
the service cutting process. Thus, the transformation creates a predefined service
related group for every bounded context.

The nanoentities within the aggregate related groups of the SCL model are
derived from all attributes within the corresponding aggregate defined in the
CML model. The nanoentities in a predefined service related group are derived
by all attributes within the corresponding bounded context accordingly.

FIGURE 4.5: Mapping: CML to SCL (User Representations)

Another transformation provided by the implemented Eclipse plugin converts
the SCL file into the JSON representation required by Service Cutter.

After having explained how the two input files for Service Cutter are gen-
erated, the next section presents the evaluation results using our insurance ex-
ample.

4.4.3 Evaluation

The implemented service decomposition approach using Service Cutter has
been evaluated with the insurance example and the DDD sample application.
The bounded contexts of the insurance scenario are inspired by Lakeside Mu-
tual [37], a fictitious insurance company. However, the inner structures of the



4.4. Service Decomposition with Service Cutter 51

bounded contexts using the tactic DDD patterns are freely modeled based on
our moderate knowledge about the insurance business. Regarding the tactic
DDD concepts, the DDD sample application is modeled according to its orig-
inal [7] as it is presented in Evans book [13]. Although, to make the example
more interesting with respect to the strategic design, we split the application
into three bounded contexts. Both examples with the complete CML source
code can be found in our examples repository [9].

Expected Results

In order to evaluate our approach towards service decomposition, the imple-
mented model transformation to the Service Cutter input and the modeled ex-
amples, we expect that the Service Cutter output reflects the given bounded
contexts of the input CML model. If the modeled bounded contexts achieve
high cohesion and loose coupling between each other, the Service Cutter out-
put should result in the same bounded contexts.

Insurance example

The context map of the insurance example has already been shown in Figure
4.2. Note that we evaluated the results with a user representations file (SCL)
containing the related groups which can be derived from the CML model,
namely aggregates and predefined services. We have not yet specified any use
cases for the insurance example.

The result produced by the Girvan-Newman algorithm [39] provided by
Service Cutter is illustrated in Figure 4.6. The printing context, customer man-
agement context and customer self service context are reflected precisely. In
Figure 4.6 Service C represents the customer management context, Service F the
customer self service context and Service E the printing context.

FIGURE 4.6: Result: Insurance example (Girvan-Newman)

However, the other services produced by Service Cutter slightly derive from
our bounded contexts. The algorithm merges the policy management context



52 Chapter 4. Context Mapper Implementation

and the debt collection context together to Service A. The risk management con-
text is split into the two services Service B and Service D. The latter might be an
effect of the number of services parameter, which we set to six since this is the
number of bounded contexts in our input. However, this result already fulfills
our expectations to a certain degree since we are able to identify the structure
of our model, concretely the bounded contexts, within the Service Cutter out-
put. Note that the Predefined Service Constraint parameter actually had to be
decreased to the value XS in order to produce this result. For some reason, the
predefined services scoring does not seem to have the impact we expected with
the Girvan-Newman algorithm.

Increasing the weight of this scoring parameter leads to a fully decomposed
graph which is somehow contradictory. Increasing the parameter should actu-
ally increase the coupling between the entities and nanoentities of an existing
bounded context. However, this phenomenon has not been further studied
since the result is already good and the scoring based on the predefined ser-
vices has a positive influence if the Leung [33] algorithm is used.

FIGURE 4.7: Result: Insurance example (Leung)

The result produced with the Leung [33] algorithm is shown in Figure 4.7. As
already mentiond, the aggregates and predefined services user representations
had a positive influence on that algorithm and lead to a result perfectly reflect-
ing our bounded contexts. Further, the result is surprisingly stable. Even if
the Leung algorithm is known to be non-deterministic, it produces always the
same result in this case.

Table 4.7 shows how the services in Figure 4.7 map to the modeled bounded
contexts.



4.4. Service Decomposition with Service Cutter 53

TABLE 4.7: Leung Service Cutter Result Mapping

Resulted Service Bounded Context
Service A Printing Context
Service B Risk Management Context
Service C Policy Management Context
Service D Debt Collection Context
Service E Customer Management Context
Service F Customer Self-Service Context

Sample DDD application

To evaluate the approach with a second example, the DDD sample app was
split into three bounded contexts. Evans [13] already mentions the idea of cre-
ating a separate bounded context for the Voyage Planning part of the applica-
tion. With this split we get two bounded contexts. The voyage planning con-
text and the original cargo booking context. Evans further suggests a Shared
Kernel between those contexts. Additionally, inspired by Rademacher [44], we
created another bounded context managing the locations. With both changes
the example results in the context map as shown in Figure 4.8.

FIGURE 4.8: DDD Sample split into three Bounded Contexts

The result with the Girvan-Newman algorithm reflects the bounded contexts
very well, if the priority of the predefined service constraint is adapted again.

FIGURE 4.9: Result: DDD Sample (Girvan-Newman)



54 Chapter 4. Context Mapper Implementation

Figure 4.9 illustrates the result. Besides a few small derivations the resulting
services can be mapped to the bounded contexts. For example, the nanonentity
Location.portcode seems to be very tightly coupled to the cargo booking context
and is not part of the location context. However, Service B clearly represents the
cargo booking context, Service A the voyage planning context and Service C the
location context.

The Leung algorithm behaves non-deterministic for the DDD sample. Thus,
we cannot present one stable result. However, the results still have strong sim-
ilarities and a few parts which are stable. Figure 4.10 shows just one arbitrary
result. What all results have in common is the clearly identifiable cargo book-
ing context, which is Service A in the example in Figure 4.10.

FIGURE 4.10: Result: DDD Sample (Leung)

Further, we determined that the Leung algorithm always splits the nanoen-
tities Delivery.routingStatus and Delivery.transportStatus into a separate service
(Service C in Figure 4.10). This may be an indicator that their coupling towards
the cargo tracking context is not very strong. The location context and voyage
planning context are reflected in this concrete example, but overall not stable
with this algorithm.

In summary, the results for the implemented proof of concept fulfilled our
expectations. The CML models and the structure which is generated with the
Service Cutter input transformation reflects the services which are created by
the graph clustering algorithms for both examples. The bounded contexts were
always identifiable in the results and with changing the priorities of the Service
Cutter constraints it is possible to assess that the generated user representations
have an influence on the service cuts.

4.4.4 Service Cutter Results to CML Transformation

The results produced by Service Cutter can be transformed back to CML. Within
the Service Cutter UI it is possible to export the result as a JSON file. A con-
verter provided by the Context Mapper tool can be used to transform this file



4.4. Service Decomposition with Service Cutter 55

into CML. However, the current implementation only uses the data which are
available in the Service Cutter output file and therefore the feature has its limi-
tations. Figure 4.11 illustrates the Service Cutter output model.

FIGURE 4.11: Service Cutter Output Model

The result contains services and service relations which are mapped to bounded
contexts and bounded context relationships in CML. Since Service Cutter does
not know aggregates, we just create one aggregate for every bounded context.
Within this aggregate we create the entities and nanoentites. Service relations
of the types INCOMING and OUTGOING are mapped to corresponding Up-
stream/Downstream relationships. If a service relation has the direction BIDI-
RECTIONAL, we create a Shared Kernel relationship. The Listings 17 and 18
illustrate the produced CML for the DDD sample result of Figure 4.9.

1 ContextMap {

2 contains ServiceA

3 contains ServiceB

4 contains ServiceC

5 ServiceA Shared-Kernel ServiceB

6 ServiceC Upstream-Downstream ServiceB

7 }

8 BoundedContext ServiceA {

9 Aggregate AggregateA {

10 Entity A_CarrierMovement {

11 Nanoentity departureTime

12 Nanoentity arrivalTime

13 }

14 Entity A_VoyageNumber {

15 Nanoentity number

16 }

17 }

18 }

LISTING 17: DDD Sample produced by Service Cutter (1)



56 Chapter 4. Context Mapper Implementation

19 BoundedContext ServiceB {

20 Aggregate AggregateB {

21 Entity B_Cargo {

22 Nanoentity trackingId

23 }

24 /* other entities removed here (saving space) */

25 }

26 }

27 BoundedContext ServiceC {

28 Aggregate AggregateC {

29 Entity C_UnLocode {

30 Nanoentity unLocode

31 }

32 }

33 }

LISTING 18: DDD Sample produced by Service Cutter (2)

One limitation is that Service Cutter does not know the datatypes of the na-
noentities. Thus, as you can see in Listing 18, the generated type for all at-
tributes is Nanoentity. Additionally, the entities are currently prefixed by the
service identifier and an underscore, since the entities can be part of multiple
bounded contexts after the cutting process and the Sculptor [46] DSL does not
allow multiple entities with the same name.

This implementation has to be seen as a proof of concept. It illustrates that it
is possible to fully integrate Service Cutter and generated results can be trans-
fered back to CML. Obviously, the process could be improved by using the
data from the original CML file which for example contains the datatypes. The
generated bounded context relationships may have to be customized manually
after the cutting process.

4.5 Graphical Representation with PlantUML

An additional delivery of this project is a transformation of the DSL model into
a visual representation. As a proof of concept, a PlantUML [42] generator has
been implemented. Two types of UML diagrams are generated out of a con-
text map. On the one hand, a component diagram representing the bounded
contexts and their relationships is generated. Each bounded context is visual-
ized as a component. On the other hand, a class diagram is generated for each
bounded context. The class diagram illustrates the aggregates, modules and all
domain objects of a bounded context.

4.5.1 Component Diagram

The component diagram contains a component for every bounded context on
the context map. Figure 4.12 illustrates the generated component diagram for
the insurance example.

The bounded context name is mapped to the component name. Relation-
ships of the types Partnership or Shared Kernel are illustrated with a simple



4.5. Graphical Representation with PlantUML 57

bidirectional connector (<–>) in PlantUML, as illustrated by the examples be-
tween the risk management context, policy management context and debt col-
lection context. The connector is labeled with the relationship name and the im-
plementation technology (implementationTechnology property in CML) in brack-
ets:

• Partnership ({implementationTechnology})

• Shared Kernel ({implementationTechnology})

FIGURE 4.12: Insurance Example Component Diagram

Upstream/Downstream relationships produce an interface which is provided
by the upstream and consumed by the downstream. The consumer arrow
towards the interface is marked with the keyword «use». The interface is
named after the implementationTechnology in CML. In the special case of a Cus-
tomer/Supplier relationship the name is «Customer-Supplier» and the imple-
mentation technology is mentioned in brackets:

• Customer-Supplier ({implementationTechnology})

The upstream and downstream relationship patterns OHS, Published Language,
ACL and Conformist are added to the arrow label towards the interface, as il-
lustrated in Figure 4.12.

4.5.2 Class Diagram

The class diagram generator creates a rectangle for each aggregate. Inside the
rectangle, all domain objects of the types entity, value object and domain event
are created as classes. Domain objects of the type Enum are mapped to enum’s



58 Chapter 4. Context Mapper Implementation

in PlantUML. The class or enum name is given by the corresponding name of
the domain object in the CML model.

FIGURE 4.13: Insurance Example Class Diagram (1)

All attibutes of the domain objects are mapped to corresponding attributes in
PlantUML. References are listed as attributes within the classes as well. If the
type of a reference is equal to a domain object within the same bounded con-
text, a plantUML reference is created. Figure 4.13 illustrates an example, con-
cretely the policy management context of the insurance example. The tactic
DDD patterns entity, value object and domain event are mapped to the class
stereotype. A special case is the aggregate root. The aggregate root’s stereo-
type is «Aggregate Root» instead of «Entity».

FIGURE 4.14: Insurance Example Class Diagram (2)

If modules are used within a bounded context they are mapped to packages in
PlantUML, as shown in Figure 4.14. Note that the current implementation of
the PlantUML generator is a proof of concept and not all concepts and possibil-
ities of the Sculptor tactic DDD DSL are used and transformed into PlantUML.
For example methods, services and repositories are currently not converted.



4.5. Graphical Representation with PlantUML 59

4.5.3 PlantUML Evaluation

As illustrated in the last sections, the implemented PlantUML transformation
has been tested and evaluated with the the insurance example. It was further
tested with the sample DDD application and the generator produced reason-
able results in both cases. However, both diagrams, the class and the compo-
nent diagram, could be further enhanced with CML data which are currently
not used.

Component Diagram

The component diagram which illustrates the bounded contexts and their re-
lationships currently does not use the relationship name. Further it does not
illustrate the subdomains which are implemented by the bounded contexts.
The domain vision statement could be incorporated with an upcoming release
as well. Even if there is no specific UML notation for those concepts, a future re-
lease of the generator could add these information by using comments/notes.

Class Diagram

The class diagram currently describes a bounded context with all the domain
objects such as entities, value objects and domain events with their attributes
and references. This already illustrates the structure of the bounded context
and provides a satisfying solution for this proof of concept. However, the
Sculptor DSL [46] provides additional features which could be used to enhance
the diagrams. For example, the domain objects are also allowed to specify
methods. Further, the generator currently does not use services and reposito-
ries.

With the graphical representation transformation all implementation details
of this project have been introduced. This chapter explained the CML lan-
guage with its syntax and implemented semantics. It further documented the
transformations for the service decomposition approach using Service Cutter
and evaluated the results. The next chapter will summarize and evaluate the
projects results overall. It further discusses potential future work.





61

Chapter 5

Evaluation, Conclusion and
Future Work

This last chapter summarizes the results of the project, evaluates the fulfillment
of the requirements and gives an outlook to future work.

5.1 Results & Contributions

This work presented a Domain-specific Language (DSL) which allows the cre-
ation of models based on Domain-driven Design (DDD) patterns. While the
individual patterns already have been introduced and explained by the litera-
ture [13, 14, 52, 38], this work aims to contribute one particular interpretation
how the patterns could work together within one meta-model. The design of
the language with the presented domain model in Chapter 2 and the resulting
semantics provide concise rules stating which patterns are allowed to be com-
bined. With this approach we try to tackle predominant ambiguities regarding
these patterns and possible pattern combinations.

Besides this conceptual contribution, the implemented DSL provides a tool
to specify context maps. The models are written in a form which can be pro-
cessed and transformed. Thus, the Context Mapper DSL (CML) language of-
fers a foundation for any tools which intend to visualize context maps or apply
transformations on them. With the implemented PlantUML [42] diagram gen-
erator we provided a proof of concept illustrating such a transformation into
a graphical representation. Further, this work suggested architectural refactor-
ings [55] inspired by a context mapping approach [3] which could be imple-
mented by processing CML.

A major goal achieved by this project is the DSL as a basis for structured
service decomposition approaches. Future approaches aiming for automatic
decomposition or for algorithmic service decomposition suggestions, such as
Service Cutter [20], may use our DDD-based DSL. The implemented Service
Cutter integration provides a proof of concept for such a DSL processing to-
wards service decomposition.

5.2 Requirements Evaluation

The critical success factors which were defined at the beginning of this project
required a proof of concept consisting of the DSL grammar, the implementa-
tion of semantic validators, a transformation into a graphical representation



62 Chapter 5. Evaluation, Conclusion and Future Work

and the Service Cutter integration. These requirements are fulfilled and docu-
mented in-depth in Chapter 4. Example applications of the DSL were given by
the insurance example throughout the whole report and the DDD sample, both
completely available in Appendix B and [9]. From the project definition and its
goals functional requirements represented as user stories and Non-Functional
Requirements (NFRs) were derived. These are presented in Chapter 3. The fol-
lowing sections aim to evaluate these requirements briefly. Section 5.2.2 further
summarizes the feedback we have received of the first users, for which we are
very grateful.

5.2.1 User Stories

With the user stories and personas in Chapter 3, we presented the values our
DSL should offer to the users. This section compares the promised values with
the actual results. It highlights the contributions this project has achieved
regarding the functional requirements and what the open issues for future
projects are.

US-1: Understanding and Analyzing the Domain

The implemented DSL allows a user to create a domain model in terms of the
tactic DDD patterns within every bounded context. It further provides the pos-
sibility to create models within subdomains. With these features a project team
is able to model the knowledge of the every part of the domain in terms of their
ubiquitous language.

US-2: Describing and Communicating the Architecture

A software architect is able to model a system and to decompose it into smaller
components by using bounded contexts. He can communicate the architecture
by using CML or the generated Unified Modelling Language (UML) diagrams.
The modeled bounded contexts allow the architect to illustrate the boundaries
of the individual domain models and to assign the implementation of single
bounded contexts to corresponding teams (team map).

US-3: Generating other Representations of the Model

With this project we implemented two model transformations as a proof of con-
cept. The first transformation converts a CML model into Service Cutter [20]
input while the second transformation creates PlantUML [42] diagrams. How-
ever, this proof of concept might not fulfill the requirements of this user story
completely. Future transformations may provide other representations of the
model and/or generate code from CML. By providing more alternative repre-
sentations of the model, the value of this user story can certainly be improved.

US-4: Modeling the Design of Components

With the integrated Sculptor [46] DSL a software engineer is able to model the
design of a component using all tactic DDD patterns. This helps the engineer
to strengthen the understanding of the domain and to manage the complexity



5.2. Requirements Evaluation 63

of the component. However, a transformation to automatically generate code
out of a bounded context CML model would probably increase the acceptance
of such a modeling tool among software engineers.

US-5: Analyzing Existing Architectures and Finding Problems

The current tool at least provides the possibility to model an existing system
and thereby find problems manually. With the Service Cutter [20] integration
we demonstrated how the DSL can be used to analyze an existing system with
automated transformations and according tools. However, other automated
approaches to inspect existing architectures will be part of the next project.

US-6: Compare Alternative Design Specifications

With the current implementation of Context Mapper a software architect or
engineer is able to model multiple alternative design specifications. However,
the comparison of the models is manual work and no tool support exists to
simplify this process. The comparison of two model instances can be done
manually on the basis of CML or by comparing the generated PlantUML [42]
diagrams. The Service Cutter [20] integration at least provides the possibility
to compare models in terms of coupling between multiple bounded contexts.

US-7: Transforming Models

We have mentioned the idea of implementing architectural refactorings [55] as
model transformations based on CML within this report. With the paper [28],
we have already realized a small proof of concept towards processing our DSL
with a model transformation approach. This user story is not fulfilled yet, but
will be a major focus of the next project.

5.2.2 Evaluators Feedback

Note that we have not conducted a representative user test to measure the ful-
fillment of these requirements. However, the tool has been used by the super-
visor of this project as part of an excercise lesson of an application architecture
lecture at our university1. This gave us the opportunity to collect first feed-
backs regarding the tool and the DSL examples from a senior software archi-
tect (supervisor) and nearly 20 exercise participants. The following table 5.1
summarizes their impressions and the feedback we have got.

TABLE 5.1: Evaluators Feedback

Topic Summarized Feedback
Examples &
Syntax

All the users mentioned that it is possible to understand the
examples written in the DSL within 15 to 20 minutes. Note
that we specificly asked for that to have an input for evaluat-
ing the NFR «Simplicity of the DSL». However, we received
a few critical feedbacks regarding the syntax as well.

1Thanks to Prof. Dr. Olaf Zimmermann for using the Context Mapper tool in one of his
application architecture exercise lessons and providing the valuable feedback.



64 Chapter 5. Evaluation, Conclusion and Future Work

TABLE 5.1: Evaluators Feedback (continued)

Topic Summarized Feedback
Examples
& Syntax
(continued)

The alternative syntax using the pattern names between the
contexts instead of the arrows (see Appendix A for details)
can be understood faster. The variant with the arrows tends
to be unclear in the beginning. Additionally, the declara-
tion of the relationship roles might be more clear if the key-
words upstream implements and downstream implements are
extended by adding the name of the corresponding context.
With the current syntax a beginner might not directly recog-
nize which context is upstream and which is downstream.

Features &
Tools

An issue mentioned and already identified before is the IDE
support. Users are not willing to install Eclipse if it is not
the IDE they use in general. To increase the value for the
users, additional transformations into other representations
and/or code should be implemented. If a user for example
is only interested in UML diagrams, it is probably easier to
use a graphical tool specifically for that purpose. An inter-
esting idea might be a transformation which generates ap-
plication stubs out of bounded contexts. Generating CML
from existing applications has been mentioned as another
potential feature.

General
Feedback

In summary, the feedback regarding the syntax and the ex-
amples was satisfying, taking into account that the goal of
this project was to implement a proof of concept and not
a fully-fledged product. However, providing a good doc-
umentation explaining the language concepts seems to be
important in order to start beeing productive with the lan-
guage quickly.

5.2.3 Non-Functional Requirements

Besides the functional requirements, we want to briefly evaluate the fulfillment
of the NFRs as well.

Simplicity of the DSL

As already mentioned in the last section, a representative user test has not been
conducted. However, the results and feedbacks from the evaluators mentioned
in Section 5.2.2 indicates that it is possible to achieve the defined 15 to 20 min-
utes time limit to understand the examples. Even though, we can not finally
evaluate this requirement without a representative test.

Size of Specification

The specification of the language can be found in Appendix A. The Context
Mapper DSL without the Sculptor [46] integration consists of 16 grammar rules.



5.3. Conclusion 65

The integrated Sculptor DSL for the tactic DDD patterns consists of 57 gram-
mar rules. With 73 grammar rules in total, the required limit of 10 to maximal
100 grammar rules is fulfilled.

Representativeness and Expressiveness

Within Chapter 2 all the strategic DDD patterns have been analyzed. Further,
a decision if it is needed for the language has been made for each pattern. The
decisions have been justified as well. The DSL supports all the patterns accord-
ing to the mentiond resource2 in the NFR.

Future-oriented Use of Tools and Frameworks

All tools used by our implementation are well established and open. However,
the sustainability of the Xtext framework is difficult to judge. Nevertheless, the
produced Abstract Syntax Tree (AST) is stored in the ECore format which can
be said to be an sustainable format, due to its usage. Further, the Xtext [12] tool
generates an ANTLR [4] parser, which might simplify a technological switch.

Reliability and Performance

The tool is tested with unit and integration tests and currently (v1.0.2) a test
coverage of 89 percent is measured. During the last weeks of the project, man-
ual tests have been made to ensure the stability of the current release. All model
transformations using models of the size of our examples can be performed in
less then 7 seconds.

Licences

This NFR is fulfilled since only tools and libraries with «Apache licence 2.0»
and «Eclipse Public Licence 1.0» were used.

Supportability and Maintainability

Tools and mechanisms promoting a good code quality have been set up. Direct
commits to the master branch of the repository are not allowed and always
have to be made via a pull request. A continuous integration pipeline builds
every commit, executing the unit and integration tests. The test coverage is
measured by a corresponding tool as well. Finally, no special language features
have been used and a junior software engineer should be able to understand
the code, as required by this NFR.

5.3 Conclusion

In summary, the critical requirements and goals of this project were fulfilled.
Besides the concrete deliverables, this project offered the opportunity to strengthen
the personal knowledge regarding the DDD patterns and software architecture
in general. Even if DDD was introduced many years ago, it is a very current

2Application Architecture DDD lectures by Olaf Zimmermann (2017), HSR FHO



66 Chapter 5. Evaluation, Conclusion and Future Work

topic and different opinions regarding their interpretation and how they can
be combined exist. The presented DSL which describes our interpretation of
the patterns is open source and publicly available3. It is currently still a work
in progress and it would be a pleasure to discuss feedback and different opin-
ions with other experts in the field. Contributions4 are very welcome as well.
The achieved results with Service Cutter [20] and our example CML models
as input have confirmed that the DDD-based model is suitable for designing
components with low coupling and high cohesion. Unfortunately, the poor
IDE support is a downside we have to acknowledge. DSLs in general do not
seem to be extremely popular anymore, since no other development tools ex-
ist which really offer a broad IDE support. However, we have identified this
issue and it will hopefully be addressed in one of the next projects. In the
next project we will focus on other service decomposition approaches based on
DDD and bounded contexts. We further have many ideas for other exciting fu-
ture projects. The next section presents an overview over potential future work
based on our DSL.

5.4 Future Work

The syntax of the DSL currently provides multiple options for expressing cer-
tain patterns, especially regarding the relationships between bounded contexts.
Identifying the best solution in such a case needs experience and future ap-
plications may provide deeper insights. Through the experiences of our first
evaluators we have already received valuable feedback and hopefully more
users will share their opinions to improve the language. Through experience
and user feedback the syntax can be improved and certain variants may be re-
moved in the future. Note that the project is open source and corresponding
issues, feature requests and ideas for improvements can be placed there [8].

The support of other Integrated Development Environments (IDEs) than
Eclipse seems to be a crucial issue to win more users. Current trends indicate
that more and more users switch from Eclipse to other poplar IDEs on the mar-
ket, such as IntelliJ IDEA [24]. Decoupling the DSL from the current Eclipse
plugin and providing support for multiple IDEs would probably increase the
acceptance of a novel modeling tool considerably. In Chapter 4, Section 4.1, we
summarized the current technological situation by December 2018 and explain
why an IntelliJ [24] integration has not been implemented within this proof of
concept. However, it is highly desirable to address this issue in a future project.

Within the next project we want to investigate and propose other approaches
towards service decomposition which use our DSL. The analysis in Chapter 2
already implied an idea for decomposition using architectural refactorings [55].
This idea could be realized by processing the DSL using model transformation
[28]. Further, approaches similar to Service Cutter [20] could be implemented
by finding other algorithms and heuristics. Another potential feature is the
generation of code or «microservice project stubs». Given a model written in
our DSL, project templates using microservice API patterns inspired by Lake-
side Mutual [37] could be generated for all given bounded contexts.

3https://contextmapper.github.io/
4https://github.com/ContextMapper/context-mapper-dsl

https://contextmapper.github.io/
https://github.com/ContextMapper/context-mapper-dsl


67

Appendix A

Language Reference

This appendix contains a reference for the Context Mapper DSL (CML) lan-
guage, listing all supported Domain-driven Design (DDD) patterns and the
corresponding syntax. Note that this reference is based on the Context Mapper
release v1.0.21, released in December 2018. The tactic DDD pattern syntax is
not documented within this reference since it is based on the existing Sculptor
[46] Domain-specific Language (DSL), except the additionally added Aggre-
gate pattern. For an impression of the most common tactic DDD patterns used
in CML we refer to the examples in Appendix B.

Note that this language reference does not explain the DDD patterns itself.
We refer to Evans DDD reference [14] for pattern details.

A.1 Language Design

The design of our DSL and its rules is based on the domain model presented in
Chapter 2. We also understand this model as the semantic model of our DSL,
inspired by Fowler [16]. He introduces the term semantic model as a special form
of a DSL-related domain model.

Currently we use the Ecore [49] model populated by the Xtext [12] frame-
work as input for our generators directly. If this model which basically corre-
sponds to the Abstract Syntax Tree (AST) tends to deviate from the semantic
model substantially in the future, we have to develop a separate implementa-
tion of the semantic model on code-level. However, we currently implemented
the grammar and thus the AST in a way that almost completely matches the
semantic model presented in Chapter 2.

Thereby the domain concepts, concretely the DDD patterns in our case, are
getting the first class citizens of the language. With this approach we also com-
ply with Voelter [53] who mentions that a good DSL should be declarative and
provide linguistic abstractions for relevant domain concepts. By following this
concept it should be possible to understand the domain semantics of a model
without sophisticated analysis of the code.

1https://github.com/ContextMapper/context-mapper-dsl/tree/v1.0.2

https://github.com/ContextMapper/context-mapper-dsl/tree/v1.0.2


68 Appendix A. Language Reference

A.2 Terminals

The grammar snippets within the language reference use the terminals defined
in Listing 19.

1 terminal OPEN: '{';

2 terminal CLOSE: '}';

LISTING 19: Xtext CML Terminals

A.3 Context Map

The context maps grammar rule is shown in Listing 20. With the state keyword
the ContextMapState is assigned, whereas the type keywords allows the assign-
ment of the ContextMapType. With the contains keyword multiple bounded
contexts can be assigned to the context map. At the end of the grammar rule
body the bounded context relationships can be added.

1 ContextMap:

2 {ContextMap}

3 'ContextMap'

4 OPEN

5 (('state' '=' state = ContextMapState)? &

6 ('type' '=' type = ContextMapType)?)

7 ('contains' boundedContexts += [BoundedContext])*

8 relationships += Relationship*

9 CLOSE

10 ;

LISTING 20: Xtext Context Map Grammar Rule

Listing 21 illustrates an example for the context map rule. Note that the order
of the state and type does not matter.

1 ContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = AS_IS

4

5 contains CargoBookingContext

6 contains VoyagePlanningContext

7 contains LocationContext

8

9 CargoBookingContext <-> VoyagePlanningContext : Shared-Kernel

10 }

LISTING 21: Syntax example for the ContextMap rule

Listing 22 shows the enums ContextMapState and ContextMapType which de-
fine the possible values for the context map attributes type and state.



A.3. Context Map 69

1 enum ContextMapState:

2 AS_IS | TO_BE

3 ;

4

5 enum ContextMapType:

6 SYSTEM_LANDSCAPE | ORGANIZATIONAL

7 ;

LISTING 22: Xtext: ContextMapState & ContextMapType

The Relationship rule which can be used to add bounded context relationships
to a context map, allows the application of the two rules SymmetricRelation-
ship and UpstreamDownstreamRelationship, as shown in Listing 23.

1 Relationship:

2 SymmetricRelationship | UpstreamDownstreamRelationship

3 ;

LISTING 23: Xtext: Relationship Rule

The SymmetricRelationship rule further allows the application of the rules
Partnership or SharedKernel (Listing 24).

1 SymmetricRelationship:

2 Partnership | SharedKernel

3 ;

LISTING 24: Xtext: SymmetricRelationship Rule

For the syntax of the Partnership rule we refer to Section A.7. The SharedKernel
rule is explained in Section A.8.

The rule UpstreamDownstreamRelationship shown in Listing 25 allows either
the application of the CustomerSupplierRelationship rule or directly writing a
generic Upstream/Downstream relationship.

1 UpstreamDownstreamRelationship:

2 CustomerSupplierRelationship |

3 (('@'name=ID)?

4 (((upstream = [BoundedContext] 'Upstream-Downstream' downstream = [BoundedContext] |

5 (upstream = [BoundedContext] '<-' downstream = [BoundedContext] ':'

6 'Upstream-Downstream') |

7 (downstream = [BoundedContext] '->' upstream = [BoundedContext] ':'

8 'Upstream-Downstream')

9 ))

10 (OPEN

11 ('implementationTechnology' '=' implementationTechnology=STRING)?

12 (('upstream' 'implements' (upstreamRoles+=UpstreamRole)

13 ("," upstreamRoles+=UpstreamRole)*)? &

14 ('downstream' 'implements' (downstreamRoles+=DownstreamRole)

15 ("," downstreamRoles+=DownstreamRole)*)?)

16 CLOSE)?))

17 ;

LISTING 25: Xtext: UpstreamDownstreamRelationship Rule



70 Appendix A. Language Reference

With an «@» followed by an ID, the relationship can be named, optionally. As
declared in the grammar rule, there are three alternative syntaxes which allow
the specification of the same Upstream/Downstream relationship. The Listings
26, 27 and 28 show a corresponding example in all possible ways.

1 CargoBookingContext -> LocationContext : Upstream-Downstream

LISTING 26: Xtext: Upstream/Downstream Variant 1

1 LocationContext <- CargoBookingContext : Upstream-Downstream

LISTING 27: Xtext: Upstream/Downstream Variant 2

1 LocationContext Upstream-Downstream CargoBookingContext

LISTING 28: Xtext: Upstream/Downstream Variant 3

Note that if one of the variants with the arrows (-> or <-) are used, the arrow
always points from the downstream towards the upstream, reflecting the de-
pendency (the downstream depends on the upstream).

Within the body of the rule (inside the terminals OPEN and CLOSE), the im-
plementation technology, the upstream roles and the downstream roles can be
defined. The corresponding keywords are implementationTechnology, upstream
implements and downstream implements. An example is shown in Listing 29.

1 VoyagePlanningContext -> LocationContext : Upstream-Downstream {

2 implementationTechnology = "RESTful HTTP"

3 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

4 downstream implements ANTICORRUPTION_LAYER

5 }

LISTING 29: Xtext: Upstream/Downstream Example

The allowed UpstreamRole’s and DownstreamRole’s are specified by the enums
UpstreamRole and DownstreamRole shown in Listing 30.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE | OPEN_HOST_SERVICE

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER | CONFORMIST

7 ;

LISTING 30: Xtext: UpstreamRole & DownstreamRole

The alternative UpstreamDownstreamRelationship defined by the role Cus-
tomerSupplierRelationship is explained in Section A.9.



A.4. Bounded Context 71

A.3.1 Context Map Semantic Rules

Note that semantic validators exist for a Context Map. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Context Map:

• A bounded context which is not part of the context map (referenced with
the contains keyword), can not be referenced from a relationship rule
within that context map.

• A bounded context of the type TEAM (BoundedContextType rule) can
not be contained in a context map if the context map type is
SYSTEM_LANDSCAPE (ContextMapType rule).

• If the context map type of a context map is ORGANIZATIONAL (Con-
textMapType rule), every bounded context added to the context map
(with the contains keyword) has to be of the type TEAM (BoundedCon-
textType rule).

A.4 Bounded Context

A bounded context can be defined according to the BoundedContext grammar
rule, shown in Listing 31.

1 BoundedContext:

2 'BoundedContext' name=ID (('implements' (implementedSubdomains+=[Subdomain])

3 ("," implementedSubdomains+=[Subdomain])*)? & ('realizes' bcRealizedByTeam =

4 [BoundedContext])?)

5 (

6 OPEN

7 (('domainVisionStatement' '=' domainVisionStatement=STRING)? &

8 ('type' '=' type=BoundedContextType)? &

9 (('responsibilities' '=' responsibilities+=Responsibility)

10 ("," responsibilities+=Responsibility)*)? &

11 ('implementationTechnology' '=' implementationTechnology=STRING)? &

12 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

13 modules += Module*

14 aggregates += Aggregate*

15 CLOSE

16 )?

17 ;

LISTING 31: Xtext: BoundedContext rule

With the keyword domainVisionStatement a Domain Vision Statement is assigned
to the bounded context. The keyword type allows the assigning of a Bounded-
ContextType. With the responsibilities keyword, multiple Responsibility Layers
can be assigned. The keyword implementationTechnology assigns an implemen-
tation technology and the keyword knowledgeLevel allows the assigning of a
KnowledgeLevel.

The allowed values for the enum’s BoundedContextType and KnowledgeLevel
are given by the rules in Listing 32.



72 Appendix A. Language Reference

1 enum BoundedContextType:

2 FEATURE | APPLICATION | SYSTEM | TEAM

3 ;

4 enum KnowledgeLevel :

5 META | CONCRETE

6 ;

LISTING 32: Xtext: BoundedContextType & KnowledgeLevel

The Responsibility rule is explained in Section A.14.

The bounded context further allows to contain Modules and Aggregates. Mod-
ules are not further explained within this language reference since it is a Sculp-
tor [46] concept. However it is modified and can contain Aggregates in addi-
tion to the other Sculptor [46] elements. Aggregates are explained in Section
A.16.

With the implements keyword it is further possible to define which subdomains
the bounded context implements. Figure 33 shows an example for a bounded
context specification.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = Customers, Addresses { "The addresses of a customer" }

6 knowledgeLevel = CONCRETE

7

8 Module addresses {

9 Aggregate Addresses {

10 Entity Address {

11 String city

12 }

13 }

14 }

15 Aggregate Customers {

16 Entity Customer {

17 aggregateRoot

18

19 - SocialInsuranceNumber sin

20 String firstname

21 String lastname

22 - List<Address> addresses

23 }

24 }

25 }

LISTING 33: Xtext: Bounded Context Example

If the bounded context is of the type TEAM, it is allowed to use the realizes key-
word and specify which bounded context is implemented by the team. Listing
34 shows an example for this use case.



A.5. Subdomain 73

1 BoundedContext CustomersBackofficeTeam implements CustomerManagementDomain realizes

2 CustomerManagementContext {

3 type = TEAM

4 domainVisionStatement = "This team is responsible for implementing ..."

5 }

LISTING 34: Xtext: realizes Keyword Example

A.4.1 Bounded Context Semantic Rules

Note that semantic validators exist for a Bounded Context. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Bounded Context:

• The realizes keyword of the BoundedContext rule can only be used if the
type of the bounded context is TEAM (BoundedContextType rule).

A.5 Subdomain

The Subdomain pattern is defined by the grammar rule in Listing 35. As on a
bounded context (A.4) the subdomain allows to specify a domain vision state-
ment string. The type attribute on subdomains allows values defined by the
SubDomainType enum, illustrated in Figure 36.

1 Subdomain:

2 'Subdomain' name=ID

3 (

4 OPEN

5 (('type' '=' type=SubDomainType)? &

6 ('domainVisionStatement' '=' domainVisionStatement=STRING)?)

7 entities += Entity*

8 CLOSE

9 )?

10 ;

LISTING 35: Xtext: Subdomain Rule

The subdomain further offers the possibility to add entities (Sculptor [46], En-
tity rule), which may be useful to describe the subdomain in more detail. How-
ever, note that they are currently not used within the generators. The entities
within bounded contexts and aggregates are relevant there.

1 enum SubDomainType:

2 CORE_DOMAIN | SUPPORTING_DOMAIN | GENERIC_SUBDOMAIN

3 ;

LISTING 36: Xtext: SubDomainType enum



74 Appendix A. Language Reference

A.6 Domain Vision Statement

The Domain Vision Statement pattern is implemented as a description attribute
(String) on bounded contexts (A.4) and subdomains (A.5). For the correspond-
ing grammar rules, we refer to Section A.4 and Section A.5. Listing 37 shows
an example bounded context with a domain vision statement, and Listing 38 a
subdomain accordingly.

1 BoundedContext CustomerContext {

2 domainVisionStatement = "This context is responsible for ..."

3 }

LISTING 37: Xtext: Domain Vision Statement on Bounded Con-
text

1 Subdomain CustomerManagementDomain {

2 type = CORE_DOMAIN

3 domainVisionStatement = "Subdomain managing everything customer-related."

4 }

LISTING 38: Xtext: Domain Vision Statement on Subdomain

A.7 Partnership

The Partnership relationship pattern is defined by the grammar rule illustrated
in Listing 39. With an «@» followed by an ID, the relationship can be named,
optionally.

1 Partnership:

2 ('@'name=ID)?

3 ((participant1 = [BoundedContext] 'Partnership' participant2 = [BoundedContext]) |

4 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext] ':'

5 'Partnership'))

6 (OPEN

7 ('implementationTechnology' '=' implementationTechnology=STRING)?

8 CLOSE)?

9 ;

LISTING 39: Xtext: Partnership Rule

Note that there are two possible syntax variants to declare the relationship.
Listing 40 shows an example for the first syntax variant and Listing 41 for the
second respectively.

1 ContractsContext <-> ClaimsContext : Partnership {

2 implementationTechnology = "Messaging"

3 }

LISTING 40: Xtext: Partnership Syntax Variant 1



A.8. Shared Kernel 75

1 ContractsContext Partnership ClaimsContext {

2 implementationTechnology = "Messaging"

3 }

LISTING 41: Xtext: Partnership Syntax Variant 2

As the Listings illustrate, both syntax variants allow to declare the implemen-
tation technology for the relationship.

A.8 Shared Kernel

The Shared Kernel relationship pattern is defined by the grammar rule illus-
trated in Listing 42. With an «@» followed by an ID, the relationship can be
named, optionally.

1 SharedKernel:

2 ('@'name=ID)?

3 ((participant1 = [BoundedContext] 'Shared-Kernel' participant2 = [BoundedContext]) |

4 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext] ':'

5 'Shared-Kernel'))

6 (OPEN

7 ('implementationTechnology' '=' implementationTechnology=STRING)?

8 CLOSE)?

9 ;

LISTING 42: Xtext: Partnership Rule

Note that there are two possible syntax variants to declare the relationship.
Listing 43 shows an example for the first syntax variant and Listing 44 for the
second respectively.

1 CargoBookingContext <-> VoyagePlanningContext : Shared-Kernel {

2 implementationTechnology = "Java Library"

3 }

LISTING 43: Xtext: Shared Kernel Syntax Variant 1

1 CargoBookingContext Shared-Kernel VoyagePlanningContext {

2 implementationTechnology = "Java Library"

3 }

LISTING 44: Xtext: Shared Kernel Syntax Variant 2

As the Listings illustrate, both syntax variants allow to declare the implemen-
tation technology for the relationship.



76 Appendix A. Language Reference

A.9 Customer/Supplier

The Customer/Supplier relationship pattern is defined by the grammar rule
illustrated in Listing 45. With an «@» followed by an ID, the relationship can
be named, optionally. Note that Customer/Supplier is a special case of a Up-
stream/Downstream relationship. Thus, the syntax is principally the same
besides the keywords. The Upstream-Downstream keyword is replaced with
Customer-Supplier, the upstream implements keyword with supplier implements
and downstream implements is replaced with customer implements.

1 CustomerSupplierRelationship:

2 ('@'name=ID)?

3 (((downstream = [BoundedContext] 'Customer-Supplier' upstream = [BoundedContext]) |

4 (downstream = [BoundedContext] '->' upstream = [BoundedContext] ':'

5 'Customer-Supplier') |

6 (upstream = [BoundedContext] '<-' downstream = [BoundedContext] ':'

7 'Customer-Supplier')

8 )

9 (OPEN

10 ('implementationTechnology' '=' implementationTechnology=STRING)?

11 (('supplier' 'implements' (upstreamRoles+=UpstreamRole)

12 ("," upstreamRoles+=UpstreamRole)*)? &

13 ('customer' 'implements' (downstreamRoles+=DownstreamRole)

14 ("," downstreamRoles+=DownstreamRole)*)?)

15 CLOSE)?)

16 ;

LISTING 45: Xtext: Customer/Supplier Rule

As declared in the grammar rule, there are three alternative syntaxes which al-
low the specification of the same Customer/Supplier relationship. The Listings
46, 47 and 48 show a corresponding example in all possible ways.

1 CustomerSelfServiceContext -> CustomerManagementContext : Customer-Supplier

LISTING 46: Xtext: Customer/Supplier Variant 1

1 CustomerManagementContext <- CustomerSelfServiceContext : Customer-Supplier

LISTING 47: Xtext: Customer/Supplier Variant 2

1 CustomerSelfServiceContext Customer-Supplier CustomerManagementContext

LISTING 48: Xtext: Customer/Supplier Variant 3

Note that if one of the variants with the arrows (-> or <-) are used, the arrow al-
ways points from the customer towards the supplier, reflecting the dependency
(the customer depends on the supplier).

Within the body of the rule (inside the terminals OPEN and CLOSE), the
implementation technology, the upstream roles and the downstream roles can



A.10. Conformist 77

be defined. The corresponding keywords are implementationTechnology, supplier
implements and customer implements. An example is shown in Listing 49.

1 @Customer_Frontend_Backend_Relationship // Relationship name is optional

2 CustomerSelfServiceContext -> CustomerManagementContext : Customer-Supplier {

3 implementationTechnology = "RESTful HTTP"

4 supplier implements PUBLISHED_LANGUAGE

5 customer implements ANTICORRUPTION_LAYER

6 }

LISTING 49: Xtext: Customer/Supplier Example

The allowed UpstreamRole’s and DownstreamRole’s are specified by the enums
UpstreamRole and DownstreamRole shown in Listing 50.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE | OPEN_HOST_SERVICE

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER | CONFORMIST

7 ;

LISTING 50: Xtext: UpstreamRole & DownstreamRole

A.9.1 Customer/Supplier Semantic Rules

Note that semantic validators exist for the Customer/Supplier relationship.
This means that not everything is allowed, even if it is syntactically correct
according to the rules explained above. The following rules apply to Cus-
tomer/Supplier:

• The Conformist pattern (DownstreamRole) is not applicable in a Cus-
tomer/Supplier relationship.

• The Open Host Service pattern (UpstreamRole) is not applicable in a Cus-
tomer/Supplier relationship.

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a Customer/Supplier relationship.

– Note that this rule produces a Warning only.

A.10 Conformist

The Conformist pattern is implemented as a value of the DownstreamRole
enum, as shown in Listing 51.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER | CONFORMIST

3 ;

LISTING 51: Xtext: Conformist implementation



78 Appendix A. Language Reference

The CONFORMIST role can be used as a role for the downstream context in
any Upstream/Downstream relationship. Listing 52 illustrates an example.

1 PolicyManagementContext -> CustomerManagementContext : Upstream-Downstream {

2 implementationTechnology = "RESTful HTTP"

3 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

4 downstream implements CONFORMIST

5 }

LISTING 52: Xtext: Conformist Example

A.10.1 Conformist Semantic Rules

Note that semantic validators exist for the Conformist pattern. This means that
not everything is allowed, even if it is syntactically correct according to the
rules explained above. The following rules apply to Conformist:

• The Conformist pattern (DownstreamRole) is not applicable in a Cus-
tomer/Supplier relationship.

A.11 Open Host Service

The Open Host Service pattern is implemented as a value of the UpstreamRole
enum, as shown in Listing 53.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE | OPEN_HOST_SERVICE

3 ;

LISTING 53: Xtext: Open Host Service implementation

The OPEN_HOST_SERVICE role can be used as a role for the upstream context
in any Upstream/Downstream relationship. Listing 54 illustrates an example.

1 PrintingContext <- PolicyManagementContext : Upstream-Downstream {

2 implementationTechnology = "SOAP"

3 upstream implements OPEN_HOST_SERVICE

4 downstream implements ANTICORRUPTION_LAYER

5 }

LISTING 54: Xtext: Open Host Service Example

A.11.1 Open Host Service Semantic Rules

Note that semantic validators exist for the Open Host Service pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Open Host Ser-
vice:

• The Open Host Service pattern (DownstreamRole) is not applicable in a
Customer/Supplier relationship.



A.12. Anticorruption Layer 79

A.12 Anticorruption Layer

The Anticorruption Layer pattern is implemented as a value of the Down-
streamRole enum, as shown in Listing 55.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER | CONFORMIST

3 ;

LISTING 55: Xtext: Anticorruption Layer implementation

The ANTICORRUPTION_LAYER role can be used as a role for the downstream
context in any Upstream/Downstream relationship. Listing 56 illustrates an
example.

1 DebtCollection -> PrintingContext : Upstream-Downstream {

2 implementationTechnology = "SOAP"

3 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

4 downstream implements ANTICORRUPTION_LAYER

5 }

LISTING 56: Xtext: Anticorruption Layer Example

A.12.1 Anticorruption Layer Semantic Rules

Note that semantic validators exist for the Anticorruption Layer pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Anticorruption
Layer:

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a Customer/Supplier relationship.

– Note that this rule produces a Warning only.

A.13 Published Language

The Published Language pattern is implemented as a value of the Upstream-
Role enum, as shown in Listing 57.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE | OPEN_HOST_SERVICE

3 ;

LISTING 57: Xtext: Published Language implementation

The PUBLISHED_LANGUAGE role can be used as a role for the upstream con-
text in any Upstream/Downstream relationship. Listing 58 illustrates an exam-
ple.



80 Appendix A. Language Reference

1 PolicyManagementContext -> CustomerManagementContext : Upstream-Downstream {

2 implementationTechnology = "RESTful HTTP"

3 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

4 downstream implements CONFORMIST

5 }

LISTING 58: Xtext: Published Language Example

A.14 Responsibility Layers

A Responsibility is given by the rule in Listing 59 and is either a single ID or an
ID with a description string in brackets.

1 Responsibility:

2 name=ID ('{' description=STRING '}')?

3 ;

LISTING 59: Xtext: Responsibility rule

The responsibilities can be used on bounded contexts and on aggregates, as the
Listings 60 and 61 illustrate.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = Customers, Addresses { "Address description ..." }

6 }

LISTING 60: Xtext: Responsibility Layers Example (1)

1 Aggregate Customers {

2 responsibilities = Customers, Addresses { "Address description ..." }

3

4 Entity Customer {

5 aggregateRoot

6

7 - SocialInsuranceNumber sin

8 String firstname

9 String lastname

10 - List<Address> addresses

11 }

12 }

LISTING 61: Xtext: Responsibility Layers Example (2)

A.15 Knowledge Level

The Knowledge Level pattern is implemented with an Xtext enum which can
be used on bounded contexts and aggregates. The allowed values are defined
by the KnowledgeLevel enum, illustrated in Listing 62.



A.16. Aggregate 81

1 enum KnowledgeLevel :

2 META="META" | CONCRETE="CONCRETE"

3 ;

LISTING 62: Xtext: KnowledgeLevel enum

Listing 63 shows an example on a bounded context and Listing 64 on an aggre-
gate.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 knowledgeLevel = CONCRETE

6 }

LISTING 63: Xtext: Knowledge Level Example (1)

1 Aggregate Customers {

2 responsibilities = Customers, Addresses { "Address description ..." }

3 knowledgeLevel = CONCRETE

4

5 Entity Customer {

6 aggregateRoot

7

8 - SocialInsuranceNumber sin

9 String firstname

10 String lastname

11 - List<Address> addresses

12 }

13 }

LISTING 64: Xtext: Knowledge Level Example (2)

A.16 Aggregate

The Aggregate rule shown in Listing 65 has been added to the Sculptor [46]
grammar in order to extend the tactic DDD DSL accordingly. Note that all
other tactic DDD patterns are not documented here. We refer to the Sculptor
project [46] and their documentation [45].



82 Appendix A. Language Reference

1 Aggregate :

2 (doc=STRING)?

3 "Aggregate" name=ID "{"

4 ((('responsibilities' '=' responsibilities+=Responsibility)

5 ("," responsibilities+=Responsibility)*)? &

6 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

7 ((services+=Service) |

8 (resources+=Resource) |

9 (consumers+=Consumer) |

10 (domainObjects+=SimpleDomainObject))*

11 "}"

12 ;

LISTING 65: Xtext: Aggregate rule

The aggregate supports the Responsibility Layers pattern (A.14) and the Knowl-
edge Level pattern (A.15) explained in Section A.14 and Section A.15 respec-
tively. An aggregate can further contain Services, Resources, Consumers and
SimpleDomainObjects (Entities, Value Objects, Domain Events, etc.) which are
not further introduced here. The according rules are defined by the Sculptor
[46] DSL, as already mentioned. However, Listing 66 illustrates an example of
an aggregate to provide an impression how the rule can be used.

1 Aggregate Contract {

2 responsibilities = Contracts, Policies

3 knowledgeLevel = CONCRETE

4

5 Entity Contract {

6 aggregateRoot

7

8 - ContractId identifier

9 - Customer client

10 - List<Product> products

11 }

12

13 ValueObject ContractId {

14 int contractId key

15 }

16

17 Entity Policy {

18 int policyNr

19 - Contract contract

20 BigDecimal price

21 }

22 }

LISTING 66: Xtext: Aggregate Example



A.17. Complete CML Grammar 83

A.17 Complete CML Grammar

The following Listings 67, 68 and 69 contain the complete CML grammar in the
version v1.0.2.

1 grammar org.contextmapper.dsl.ContextMappingDSL with org.contextmapper.tactic.dsl.

2 TacticDDDLanguage

3

4 generate contextMappingDSL "http://www.contextmapper.org/dsl/ContextMappingDSL"

5

6 ContextMappingModel:

7 (

8 (map = ContextMap)? &

9 (boundedContexts += BoundedContext)* &

10 (subdomains += Subdomain)*

11 )

12 ;

13

14 ContextMap:

15 {ContextMap} // make sure there is always a context map

16 'ContextMap'

17 OPEN

18 (('state' '=' state=ContextMapState)? &

19 ('type' '=' type=ContextMapType)?)

20 ('contains' boundedContexts += [BoundedContext])*

21 relationships += Relationship*

22 CLOSE

23 ;

24

25 BoundedContext:

26 'BoundedContext' name=ID (('implements' (implementedSubdomains+=[Subdomain])

27 ("," implementedSubdomains+=[Subdomain])*)? &

28 ('realizes' bcRealizedByTeam = [BoundedContext])?)

29 (

30 OPEN

31 (('domainVisionStatement' '=' domainVisionStatement=STRING)? &

32 ('type' '=' type=BoundedContextType)? &

33 (('responsibilities' '=' responsibilities+=Responsibility)

34 ("," responsibilities+=Responsibility)*)? &

35 ('implementationTechnology' '=' implementationTechnology=STRING)? &

36 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

37 modules += Module*

38 aggregates += Aggregate*

39 CLOSE

40 )?

41 ;

42

43 Subdomain:

44 'Subdomain' name=ID

45 (

46 OPEN

47 (('type' '=' type=SubDomainType)? &

48 ('domainVisionStatement' '=' domainVisionStatement=STRING)?)

49 entities += Entity*

50 CLOSE

51 )?

52 ;

53

54 Relationship:

55 SymmetricRelationship | UpstreamDownstreamRelationship

56 ;

LISTING 67: Xtext: Complete CML grammar (1)



84 Appendix A. Language Reference

57 SymmetricRelationship:

58 Partnership | SharedKernel

59 ;

60

61 Partnership:

62 ('@'name=ID)?

63 ((participant1 = [BoundedContext] 'Partnership' participant2 = [BoundedContext]) |

64 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext] ':'

65 'Partnership'))

66 (OPEN

67 ('implementationTechnology' '=' implementationTechnology=STRING)?

68 CLOSE)?

69 ;

70

71 SharedKernel:

72 ('@'name=ID)?

73 ((participant1 = [BoundedContext] 'Shared-Kernel' participant2 = [BoundedContext]) |

74 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext] ':'

75 'Shared-Kernel'))

76 (OPEN

77 ('implementationTechnology' '=' implementationTechnology=STRING)?

78 CLOSE)?

79 ;

80

81 UpstreamDownstreamRelationship:

82 CustomerSupplierRelationship |

83 (('@'name=ID)?

84 (((upstream = [BoundedContext] 'Upstream-Downstream' downstream = [BoundedContext] |

85 (upstream = [BoundedContext] '<-' downstream = [BoundedContext] ':'

86 'Upstream-Downstream') |

87 (downstream = [BoundedContext] '->' upstream = [BoundedContext] ':'

88 'Upstream-Downstream')

89 ))

90 (OPEN

91 ('implementationTechnology' '=' implementationTechnology=STRING)?

92 (('upstream' 'implements' (upstreamRoles+=UpstreamRole)

93 ("," upstreamRoles+=UpstreamRole)*)? &

94 ('downstream' 'implements' (downstreamRoles+=DownstreamRole)

95 ("," downstreamRoles+=DownstreamRole)*)?)

96 CLOSE)?))

97 ;

98

99 CustomerSupplierRelationship:

100 ('@'name=ID)?

101 (((downstream = [BoundedContext] 'Customer-Supplier' upstream = [BoundedContext]) |

102 (downstream = [BoundedContext] '->' upstream = [BoundedContext] ':'

103 'Customer-Supplier') |

104 (upstream = [BoundedContext] '<-' downstream = [BoundedContext] ':'

105 'Customer-Supplier')

106 )

107 (OPEN

108 ('implementationTechnology' '=' implementationTechnology=STRING)?

109 (('supplier' 'implements' (upstreamRoles+=UpstreamRole)

110 ("," upstreamRoles+=UpstreamRole)*)? &

111 ('customer' 'implements' (downstreamRoles+=DownstreamRole)

112 ("," downstreamRoles+=DownstreamRole)*)?)

113 CLOSE)?)

114 ;

LISTING 68: Xtext: Complete CML grammar (2)



A.17. Complete CML Grammar 85

115 enum UpstreamRole:

116 PUBLISHED_LANGUAGE | OPEN_HOST_SERVICE

117 ;

118

119 enum DownstreamRole:

120 ANTICORRUPTION_LAYER | CONFORMIST

121 ;

122

123 enum ContextMapState:

124 AS_IS | TO_BE

125 ;

126

127 enum ContextMapType:

128 SYSTEM_LANDSCAPE | ORGANIZATIONAL

129 ;

130

131 enum BoundedContextType:

132 FEATURE | APPLICATION | SYSTEM | TEAM

133 ;

134

135 enum SubDomainType:

136 CORE_DOMAIN | SUPPORTING_DOMAIN | GENERIC_SUBDOMAIN

137 ;

138

139 // define terminals

140 terminal OPEN: '{';

141 terminal CLOSE: '}';

LISTING 69: Xtext: Complete CML grammar (3)





87

Appendix B

Examples

This appendix contains the complete Context Mapper DSL (CML) source code
of the examples according to the Context Mapper version v1.0.2 (state Decem-
ber 2018). The current versions of all examples are available in our examples
repository [9].

B.1 Insurance Example (Context Map)

1 /* Example Context Map written with 'ContextMapper DSL' */

2 ContextMap {

3 type = SYSTEM_LANDSCAPE

4 state = TO_BE

5

6 /* Add bounded contexts to this context map: */

7 contains CustomerManagementContext

8 contains CustomerSelfServiceContext

9 contains PrintingContext

10 contains PolicyManagementContext

11 contains RiskManagementContext

12 contains DebtCollection

13

14 /* Define the contexts relationships */

15 @Customer_Frontend_Backend_Relationship // Relationship name is optional

16 CustomerSelfServiceContext -> CustomerManagementContext : Customer-Supplier

17

18 CustomerManagementContext -> PrintingContext : Upstream-Downstream {

19 implementationTechnology = "SOAP"

20 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

21 downstream implements ANTICORRUPTION_LAYER

22 }

23

24 PrintingContext <- PolicyManagementContext : Upstream-Downstream {

25 implementationTechnology = "SOAP"

26 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

27 downstream implements ANTICORRUPTION_LAYER

28 }

29

30 RiskManagementContext <-> PolicyManagementContext : Partnership {

31 implementationTechnology = "RabbitMQ"

32 }

33

34 PolicyManagementContext -> CustomerManagementContext : Upstream-Downstream {

35 implementationTechnology = "RESTful HTTP"

36 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

37 downstream implements CONFORMIST

38 }

LISTING 70: Examples: Insurance Example - Context Map (1)



88 Appendix B. Examples

39 DebtCollection -> PrintingContext : Upstream-Downstream {

40 implementationTechnology = "SOAP"

41 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

42 downstream implements ANTICORRUPTION_LAYER

43 }

44

45 PolicyManagementContext <-> DebtCollection : Shared-Kernel {

46 implementationTechnology = "Shared Java Library, Communication over RESTful HTTP"

47 }

48

49 }

50

51 /* Bounded Context Definitions */

52 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

53 type = FEATURE

54 domainVisionStatement = "The customer management context is responsible for managing

55 all the data of the insurance companies customers."

56 implementationTechnology = "Java, JEE Application"

57 responsibilities = Customers, Addresses

58

59 Aggregate Customers {

60 Entity Customer {

61 aggregateRoot

62

63 - SocialInsuranceNumber sin

64 String firstname

65 String lastname

66 - List<Address> addresses

67 }

68

69 Entity Address {

70 String street

71 int postalCode

72 String city

73 }

74

75 ValueObject SocialInsuranceNumber {

76 String sin key

77 }

78 }

79

80 }

81

82 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

83 type = APPLICATION

84 domainVisionStatement = "This context represents a web application which allows the

85 customer to login and change basic data records like the

86 address."

87 responsibilities = AddressChange

88 implementationTechnology = "PHP Web Application"

89

90 Aggregate CustomerFrontend {

91 DomainEvent CustomerAddressChange {

92 aggregateRoot

93

94 - UserAccount issuer

95 - Address changedAddress

96 }

97 }

LISTING 71: Examples: Insurance Example - Context Map (2)



B.1. Insurance Example (Context Map) 89

98 Aggregate Acounts {

99 Entity UserAccount {

100 aggregateRoot

101

102 String username

103 - Customer accountCustomer

104 }

105 }

106 }

107

108 BoundedContext PrintingContext implements PrintingDomain {

109 type = SYSTEM

110 responsibilities = Document_Printing

111 domainVisionStatement = "An external system which provides printing services to the

112 other Bounded Contexts."

113

114 Aggregate Printing {

115 DomainEvent PrintingJob {

116 aggregateRoot

117

118 int printingId

119 - Document document

120 - Template template

121 }

122

123 Entity Document {

124 DomainObject source

125 String template

126 }

127 }

128

129 Aggregate Templating {

130 Entity Template {

131 aggregateRoot

132

133 int templateId

134 String templateName

135 }

136 }

137 }

138

139 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

140 type = FEATURE

141 domainVisionStatement = "This bounded context manages the contracts and policies of

142 the customers."

143 responsibilities = Offers, Contracts, Policies

144 implementationTechnology = "Java, Spring App"

145

146 Aggregate Offers {

147 Entity Offer {

148 aggregateRoot

149

150 int offerId

151 - Customer client

152 - List<Product> products

153 BigDecimal price

154 }

155 }

156

157 Aggregate Products {

158 Entity Product {

159 aggregateRoot

160

161 - ProductId identifier

162 String productName

163 }

LISTING 72: Examples: Insurance Example - Context Map (3)



90 Appendix B. Examples

164 ValueObject ProductId {

165 int productId key

166 }

167 }

168

169 Aggregate Contract {

170 Entity Contract {

171 aggregateRoot

172

173 - ContractId identifier

174 - Customer client

175 - List<Product> products

176 }

177

178 ValueObject ContractId {

179 int contractId key

180 }

181

182 Entity Policy {

183 int policyNr

184 - Contract contract

185 BigDecimal price

186 }

187 }

188 }

189

190 BoundedContext RiskManagementContext implements RiskManagementDomain {

191 type = FEATURE

192 domainVisionStatement = "Uses data from PolicyManagement context to calculate

193 risks."

194 responsibilities = Customer_Risk_Calculation

195 implementationTechnology = "Java, Spring App"

196

197 Aggregate Risks {

198 Entity CustomerRiskFactor {

199 aggregateRoot

200

201 int totalRiskFactor

202 - List<Risk> risks

203 - Customer client

204 }

205

206 ValueObject Risk {

207 int likelihood

208 String risk

209 }

210 }

211 }

212

213 BoundedContext DebtCollection implements DebtsDomain {

214 type = FEATURE

215 domainVisionStatement = "The debt collection context is responsible for the

216 financial income of the insurance company (the debts)

217 which depend on the corresponding contracts and policies."

218 responsibilities = Debts, Dunning

219 implementationTechnology = "JEE"

220

221 Aggregate Debts {

222 Entity Debt {

223 aggregateRoot

LISTING 73: Examples: Insurance Example - Context Map (4)



B.1. Insurance Example (Context Map) 91

224 int debtNr

225 - Policy policy

226 Date creationDate

227 Date paymentDate

228 Date paymentDeadline

229 BigDecimal price

230 PaymentStatus status

231 - List<Dunning> dunnigs

232 }

233

234 Entity Dunning {

235 int dunningNr

236 - Debt debt

237 Date dunningDate

238 Date paymentDeadline

239 }

240 }

241 }

242

243 /* Subdomain Definitions */

244 Subdomain CustomerManagementDomain {

245 type = CORE_DOMAIN

246 domainVisionStatement = "Subdomain managing everything customer-related."

247 }

248 Subdomain PolicyManagementDomain {

249 type = CORE_DOMAIN

250 domainVisionStatement = "Subdomain managing contracts and policies."

251 }

252 Subdomain PrintingDomain {

253 type = SUPPORTING_DOMAIN

254 domainVisionStatement = "Service (external system) to solve printing for all

255 kinds of documents (debts, policies, etc.)"

256 }

257 Subdomain RiskManagementDomain {

258 type = GENERIC_SUBDOMAIN

259 domainVisionStatement = "Subdomain supporting everything which relates to

260 risk management."

261 }

262 Subdomain DebtsDomain {

263 type = GENERIC_SUBDOMAIN

264 domainVisionStatement = "Subomain including everything related to the

265 incoming money (debts, dunning, etc.)"

266 }

LISTING 74: Examples: Insurance Example - Context Map (5)



92 Appendix B. Examples

B.2 Insurance Example (Team Map)

1 /* Example Context Map written with 'ContextMapper DSL' */

2 ContextMap {

3 type = ORGANIZATIONAL

4 state = TO_BE

5

6 /* Add teams to this organizational map: */

7 contains CustomersFrontofficeTeam

8 contains CustomersBackofficeTeam

9 contains ContractsTeam

10 contains ClaimsTeam

11

12 /* Define the team relationships */

13 @CustomerTeamsRelationship // name of relationship (optional)

14 CustomersFrontofficeTeam -> CustomersBackofficeTeam : Customer-Supplier

15

16 ContractsTeam -> CustomersBackofficeTeam : Upstream-Downstream

17

18 ContractsTeam <-> ClaimsTeam : Partnership

19 }

20

21 /* Team Definitions */

22 BoundedContext CustomersBackofficeTeam implements CustomerManagementDomain realizes

23 CustomerManagementContext {

24 type = TEAM

25 domainVisionStatement = "This team is responsible for implementing the

26 customers module in the back-office system."

27 }

28

29 BoundedContext CustomersFrontofficeTeam implements CustomerManagementDomain realizes

30 CustomerSelfServiceContext {

31 type = TEAM

32 domainVisionStatement = "This team is responsible for implementing the

33 front-office application for the insurance

34 customers."

35 }

36

37 BoundedContext ContractsTeam implements PolicyManagementDomain realizes

38 PolicyManagementContext {

39 type = TEAM

40 domainVisionStatement = "This team is responsible for implementing the

41 contract- and policy-management modules in the

42 back-office system."

43 }

44

45 BoundedContext ClaimsTeam implements RiskManagementDomain realizes

46 RiskManagementContext {

47 type = TEAM

48 domainVisionStatement = "This team is responsible for for implementing

49 the claims module and providing customer

50 risks information."

51 }

LISTING 75: Examples: Insurance Example - Team Map (1)



B.2. Insurance Example (Team Map) 93

52 /* Bounded Context Definitions */

53 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

54 type = FEATURE

55 domainVisionStatement = "The customer management context is responsible for managing

56 all the data of the insurance companies customers."

57 implementationTechnology = "Java, JEE Application"

58 responsibilities = Customers, Addresses

59

60 Aggregate Customers {

61 Entity Customer {

62 aggregateRoot

63

64 - SocialInsuranceNumber sin

65 String firstname

66 String lastname

67 - List<Address> addresses

68 }

69

70 Entity Address {

71 String street

72 int postalCode

73 String city

74 }

75

76 ValueObject SocialInsuranceNumber {

77 String sin key

78 }

79 }

80

81 }

82

83 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

84 type = APPLICATION

85 domainVisionStatement = "This context represents a web application which allows

86 the customer to login and change basic data records like

87 the address."

88 responsibilities = AddressChange

89 implementationTechnology = "PHP Web Application"

90

91 Aggregate CustomerFrontend {

92 DomainEvent CustomerAddressChange {

93 aggregateRoot

94

95 - UserAccount issuer

96 - Address changedAddress

97 }

98 }

99

100 Aggregate Acounts {

101 Entity UserAccount {

102 aggregateRoot

103

104 String username

105 - Customer accountCustomer

106 }

107 }

108 }

109

110 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

111 type = FEATURE

112 domainVisionStatement = "This bounded context manages the contracts and policies of

113 the customers."

114 responsibilities = Offers, Contracts, Policies

115 implementationTechnology = "Java, Spring App"

LISTING 76: Examples: Insurance Example - Team Map (2)



94 Appendix B. Examples

116 Aggregate Offers {

117 Entity Offer {

118 aggregateRoot

119

120 int offerId

121 - Customer client

122 - List<Product> products

123 BigDecimal price

124 }

125 }

126

127 Aggregate Products {

128 Entity Product {

129 aggregateRoot

130

131 - ProductId identifier

132 String productName

133 }

134

135 ValueObject ProductId {

136 int productId key

137 }

138 }

139

140 Aggregate Contract {

141 Entity Contract {

142 aggregateRoot

143

144 - ContractId identifier

145 - Customer client

146 - List<Product> products

147 }

148

149 ValueObject ContractId {

150 int contractId key

151 }

152

153 Entity Policy {

154 int policyNr

155 - Contract contract

156 BigDecimal price

157 }

158 }

159 }

160

161 BoundedContext RiskManagementContext implements RiskManagementDomain {

162 type = FEATURE

163 domainVisionStatement = "Uses data from PolicyManagement context to calculate risks."

164 responsibilities = Customer_Risk_Calculation

165 implementationTechnology = "Java, Spring App"

166

167 Aggregate Risks {

168 Entity CustomerRiskFactor {

169 aggregateRoot

170

171 int totalRiskFactor

172 - List<Risk> risks

173 - Customer client

174 }

175

176 ValueObject Risk {

177 int likelihood

178 String risk

179 }

180 }

181 }

LISTING 77: Examples: Insurance Example - Team Map (3)



B.3. DDD Sample 95

182 /* Subdomain Definitions */

183 Subdomain CustomerManagementDomain {

184 type = CORE_DOMAIN

185 domainVisionStatement = "Subdomain managing everything customer-related."

186 }

187 Subdomain PolicyManagementDomain {

188 type = CORE_DOMAIN

189 domainVisionStatement = "Subdomain managing contracts and policies."

190 }

191 Subdomain RiskManagementDomain {

192 type = GENERIC_SUBDOMAIN

193 domainVisionStatement = "Subdomain supporting everything which relates to risk

194 management."

195 }

196 Subdomain DebtsDomain {

197 type = GENERIC_SUBDOMAIN

198 domainVisionStatement = "Subomain including everything related to the

199 incoming money (debts, dunning, etc.)"

200 }

LISTING 78: Examples: Insurance Example - Team Map (4)

B.3 DDD Sample

1 /* The DDD Cargo sample application modeled in CML. Note that we split the application

2 into multiple bounded contexts. */

3 ContextMap {

4 contains CargoBookingContext

5 contains VoyagePlanningContext

6 contains LocationContext

7

8 /* As Evans mentions in his book (Bounded Context chapter): The voyage planning

9 * can be seen as separated bounded context. However, it still shares code with

10 * the booking application (CargoBookingContext). Thus, they are in a

11 * 'Shared-Kernel' relationship.

12 */

13 CargoBookingContext <-> VoyagePlanningContext : Shared-Kernel

14

15 /* Note that the splitting of the LocationContext is not mentioned in the

16 * original DDD sample of Evans. However, locations and the management around them,

17 * can somehow be seen as a separated concept which is used by other

18 * bounded contexts. But this is just an example, since we want to demonstrate our

19 * DSL with multiple bounded contexts.

20 */

21 CargoBookingContext -> LocationContext : Upstream-Downstream {

22 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

23 }

24 VoyagePlanningContext -> LocationContext : Upstream-Downstream {

25 upstream implements OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE

26 }

27 }

LISTING 79: Examples: DDD Sample - Context Map (1)



96 Appendix B. Examples

28 /* The original booking application context */

29 BoundedContext CargoBookingContext {

30 Module cargo {

31 basePackage = se.citerus.dddsample.domain.model

32

33 Aggregate CargoItineraryLegDeliveryRouteSpecification {

34 Entity Cargo {

35 aggregateRoot

36

37 TrackingId trackingId

38 - LocationShared origin

39 - RouteSpecification routeSpecification

40 - Itinerary itinerary

41 - Delivery delivery

42

43 Repository CargoRepository {

44 @Cargo find(TrackingId trackingId) throws CargoNotFoundException;

45 List<@Cargo> findAll;

46 store(@Cargo cargo);

47 TrackingId nextTrackingId();

48 }

49 }

50

51 ValueObject Delivery {

52 - TransportStatus transportStatus;

53 - LocationShared lastKnownLocation;

54 - Voyage currentVoyage;

55 boolean misdirected;

56 Date eta;

57 - HandlingActivity nextExpectedActivity;

58 boolean isUnloadedAtDestination;

59 - RoutingStatus routingStatus;

60 Date calculatedAt;

61 - HandlingEvent lastEvent;

62 }

63

64 ValueObject HandlingActivity {

65 HandlingEvent.Type handlingEventType

66 - LocationShared location

67 - Voyage voyage

68 }

69

70 ValueObject Itinerary {

71 ItineraryNumber itineraryNumber

72 - List<Leg> legs

73 }

74

75 ValueObject Leg {

76 - Voyage voyage

77 - LocationShared loadLocation

78 - LocationShared unloadLocation

79 Date loadTime

80 Date unloadTime

81 }

82

83 ValueObject RouteSpecification {

84 - LocationShared origin

85 - LocationShared destination

86 Date arrivalDeadline

87 }

88

89 enum TransportStatus {

90 NOT_RECEIVED, IN_PORT, ONBOARD_CARRIER, CLAIMED, UNKNOWN

91 }

LISTING 80: Examples: DDD Sample - Context Map (2)



B.3. DDD Sample 97

92 enum RoutingStatus {

93 NOT_ROUTED, ROUTED, MISROUTED

94 }

95

96 Service RoutingService {

97 List<@Itinerary> fetchRoutesForSpecification(@RouteSpecification

98 routeSpecification) throws LocationNotFoundException;

99 }

100

101 }

102 }

103 Module handling {

104 basePackage = se.citerus.dddsample.domain.model

105

106 Aggregate Handling {

107 DomainEvent HandlingEvent {

108 aggregateRoot

109 persistent

110

111 Type handlingType;

112 - Voyage voyage;

113 - LocationShared location;

114 Date completionTime;

115 Date registrationTime;

116 - Cargo cargo;

117

118 Repository HandlingEventRepository {

119 @HandlingHistory lookupHandlingHistoryOfCargo(TrackingId trackingId);

120 }

121 }

122

123 ValueObject HandlingHistory {

124 - List<HandlingEvent> handlingEvents

125 }

126 }

127 }

128 }

129

130 /* We split the Voyage Planning into a separate bounded context as Evans proposes

131 * it in his book. */

132 BoundedContext VoyagePlanningContext {

133 Module voyage {

134 basePackage = se.citerus.dddsample.domain.model

135

136 Aggregate Voyage {

137 Entity Voyage {

138 aggregateRoot

139

140 - VoyageNumber voyageNumber;

141 - Schedule schedule;

142

143 Repository VoyageRepository {

144

145 }

146 }

147

148 ValueObject CarrierMovement {

149 - LocationShared departureLocation;

150 - LocationShared arrivalLocation;

151 Date departureTime;

152 Date arrivalTime;

153 }

154

155 ValueObject Schedule {

156 - List<CarrierMovement> carrierMovements

157 }

LISTING 81: Examples: DDD Sample - Context Map (3)



98 Appendix B. Examples

158 ValueObject VoyageNumber {

159 String number

160 }

161 }

162 }

163 }

164

165 /* Separate bounded context for managing the locations. */

166 BoundedContext LocationContext {

167 Module location {

168 basePackage = se.citerus.dddsample.domain.model

169

170 Aggregate Location {

171 Entity Location {

172 aggregateRoot

173

174 PortCode portcode

175 - UnLocode unLocode;

176 String name;

177

178 Repository LocationRepository {

179 @Location find(@UnLocode unLocode);

180 List<@Location> findAll();

181 }

182 }

183

184 ValueObject UnLocode {

185 String unLocode

186 }

187

188 ValueObject LocationShared {

189 PortCode portCode

190 - Location location

191 }

192 }

193 }

194 }

LISTING 82: Examples: DDD Sample - Context Map (4)



99

List of Figures

2.1 Strategic DDD Meta-Model (Domain Model) . . . . . . . . . . . . 9
2.2 Context Mapping First Step: The whole system . . . . . . . . . . . 10
2.3 Context Mapping: «Self-Service» Context . . . . . . . . . . . . . . 11
2.4 Context Mapping: «Policy Management» Context . . . . . . . . . 11
2.5 Context Mapping: «Printing» Context . . . . . . . . . . . . . . . . 12
2.6 Context Mapping: «Risk Management» Context . . . . . . . . . . 12
2.7 Insurance example: Shared Kernel . . . . . . . . . . . . . . . . . . 14
2.8 Insurance example: Partnership . . . . . . . . . . . . . . . . . . . . 15
2.9 Insurance example: Customer/Supplier . . . . . . . . . . . . . . . 15
2.10 «Open Host Service» Examples . . . . . . . . . . . . . . . . . . . . 16
2.11 «Published Language» Examples . . . . . . . . . . . . . . . . . . . 17
2.12 «Conformist» Examples . . . . . . . . . . . . . . . . . . . . . . . . 18
2.13 «Anticorruption Layer» Examples . . . . . . . . . . . . . . . . . . 18
2.14 Example: Map of type «Organization» . . . . . . . . . . . . . . . . 21
2.15 Example map: teams «realize» bounded contexts . . . . . . . . . . 21
2.16 Tactic DDD Meta-Model (Domain Model) . . . . . . . . . . . . . . 22
2.17 Connection between Strategic and Tactical DDD . . . . . . . . . . 23

4.1 CML: EMF Model (Abstract Syntax Tree) . . . . . . . . . . . . . . 33
4.2 Context Map: Insurance Example . . . . . . . . . . . . . . . . . . . 36
4.3 Service Cutter Input Model . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Mapping: CML to Service Cutter ERD Model . . . . . . . . . . . . 47
4.5 Mapping: CML to SCL (User Representations) . . . . . . . . . . . 50
4.6 Result: Insurance example (Girvan-Newman) . . . . . . . . . . . . 51
4.7 Result: Insurance example (Leung) . . . . . . . . . . . . . . . . . . 52
4.8 DDD Sample split into three Bounded Contexts . . . . . . . . . . 53
4.9 Result: DDD Sample (Girvan-Newman) . . . . . . . . . . . . . . . 53
4.10 Result: DDD Sample (Leung) . . . . . . . . . . . . . . . . . . . . . 54
4.11 Service Cutter Output Model . . . . . . . . . . . . . . . . . . . . . 55
4.12 Insurance Example Component Diagram . . . . . . . . . . . . . . 57
4.13 Insurance Example Class Diagram (1) . . . . . . . . . . . . . . . . 58
4.14 Insurance Example Class Diagram (2) . . . . . . . . . . . . . . . . 58





101

List of Tables

2.1 Implemented patterns . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Splitting bounded contexts as Architectural Refactorings [55] . . . 12
2.2 Splitting bounded contexts as ARs [55] (continued) . . . . . . . . 13
2.3 «FAST» Context Types . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Context Map Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Context Map Types (continued) . . . . . . . . . . . . . . . . . . . . 21

3.1 Modeling in software development disciplines . . . . . . . . . . . 25

4.1 Bounded Context Attributes . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Semantic rules defined by the Abstract Syntax Tree (AST) . . . . . 39
4.2 Semantic rules defined by the AST (continued) . . . . . . . . . . . 40
4.3 Implemented semantic checkers . . . . . . . . . . . . . . . . . . . . 40
4.3 Implemented semantic checkers (continued) . . . . . . . . . . . . 41
4.4 Existing tactic DDD DSLs . . . . . . . . . . . . . . . . . . . . . . . 42
4.5 Changes applied to Sculptor DSL for CML . . . . . . . . . . . . . 43
4.6 Mapping table: CML → Service Cutter . . . . . . . . . . . . . . . . 47
4.7 Leung Service Cutter Result Mapping . . . . . . . . . . . . . . . . 53

5.1 Evaluators Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Evaluators Feedback (continued) . . . . . . . . . . . . . . . . . . . 64





103

List of Abbreviations

ACL Anticorruption Layer. 18, 40, 41, 57

API Application Programming Interface. 16, 18, 32, 41

AR Architectural Refactoring. 12

AST Abstract Syntax Tree. 31–33, 39, 40, 46, 48, 65, 67, 101

CML Context Mapper DSL. 32, 33, 36, 39, 42–51, 54, 57–59, 61–64, 67, 68, 83–85,
87

DDD Domain-driven Design. 1–4, 6–9, 16, 17, 19, 22–24, 26, 27, 29, 33, 39, 42,
43, 45, 50, 51, 53, 55, 58, 61, 62, 65–67, 81

DSL Domain-specific Language. 1–10, 12, 19, 20, 22–25, 29, 31–33, 35, 42–44,
48, 56, 58, 59, 61–67, 81, 82

ERD Entity Relationship Diagram. 45, 46, 50

GPL General Public License. 30, 42

IDE Integrated Development Environment. 31, 32, 66

JSON JavaScript Object Notation. 46, 48, 50

LSP Language Server Protocol. 32

NFR Non-Functional Requirement. 24, 25, 42, 62–65

OHS Open Host Service. 16–18, 39–41, 57

OOA Object-oriented Analysis. 20

OOD Object-oriented Design. 20

SCL Service Cutter DSL. 48–51

UML Unified Modelling Language. 1, 2, 45, 56, 62, 64

US User Story. 25





105

Bibliography

[1] Agile Alliance. Role-Feature-Reason User Story Template. https://www.
agilealliance.org/glossary/role-feature/. [Online; Accessed: 2018-
10-15].

[2] Agile Alliance. User Stories. https://www.agilealliance.org/glossary
/user-stories. [Online; Accessed: 2018-10-15].

[3] Alberto Brandolini. Strategic Domain Driven Design with Context Mapping.
https : / / www . infoq . com / articles / ddd - contextmapping. [Online;
Accessed: 2018-10-12].

[4] ANTLR. ANTLR (ANother Tool for Language Recognition). https://www.
antlr.org/. [Online; Accessed: 2018-11-29].

[5] Luciano Baresi, Martin Garriga, and Alan De Renzis. “Microservices Iden-
tification Through Interface Analysis”. In: Service-Oriented and Cloud Com-
puting. Ed. by Flavio De Paoli, Stefan Schulte, and Einar Broch Johnsen.
Cham: Springer International Publishing, 2017, pp. 19–33. ISBN: 978-3-
319-67262-5.

[6] Christian Bisig. “Ein werkzeugunterstütztes Knowledge Repository für
Architectural Refactoring”. MA thesis. Rapperswil: University of Ap-
plied Sciences HSR, 2016.

[7] Citerus. DDD Sample. https://github.com/citerus/dddsample-core.
[Online; Accessed: 2018-12-03].

[8] ContextMapper. ContextMapper DSL: A Domain-specific Language for Con-
text Mapping & Service Decomposition. https://contextmapper.github.
io/. [Online; Accessed: 2018-12-11].

[9] ContextMapper. ContextMapper Examples. https://github.com/Contex
tMapper/context-mapper-examples. [Online; Accessed: 2018-11-30].

[10] Melvin Conway. Conway’s law. 1968.

[11] dsl-platform.com. DSL Platform: Domain-Driven Design. https://docs.
dsl-platform.com/ddd-foundations. [Online; Accessed: 2018-12-03].

[12] Eclipse Xtext. Xtext - Language Engineering Made Easy! https://www.

eclipse.org/Xtext/. [Online; Accessed: 2018-11-30].

[13] Eric Evans. Domain-driven design : tackling complexity in the heart of soft-
ware. eng. 18th prin. Upper Saddle River, NJ: Addison-Wesley, 2012. ISBN:
978-0-321-12521-7.

[14] Eric Evans. Domain-Driven Design Reference: Definitions and Pattern Sum-
maries. [Online; Accessed: 2018-10-22]. https://domainlanguage.com,
2015. URL: http://domainlanguage.com/wp-content/uploads/2016/
05/DDD_Reference_2015-03.pdf.

https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/user-stories
https://www.agilealliance.org/glossary/user-stories
https://www.infoq.com/articles/ddd-contextmapping
https://www.antlr.org/
https://www.antlr.org/
https://github.com/citerus/dddsample-core
https://contextmapper.github.io/
https://contextmapper.github.io/
https://github.com/ContextMapper/context-mapper-examples
https://github.com/ContextMapper/context-mapper-examples
https://docs.dsl-platform.com/ddd-foundations
https://docs.dsl-platform.com/ddd-foundations
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://domainlanguage.com
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf


106 Bibliography

[15] Brian Foote and Joseph Yoder. “Big Ball of Mud”. In: Pattern Languages of
Program Design. Addison-Wesley, 1999, pp. 653–692.

[16] Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Profes-
sional, 2010. ISBN: 0321712943, 9780321712943.

[17] P. Di Francesco, P. Lago, and I. Malavolta. “Migrating Towards Microser-
vice Architectures: An Industrial Survey”. In: 2018 IEEE International Con-
ference on Software Architecture (ICSA). 2018, pp. 29–2909. DOI: 10.1109/
ICSA.2018.00012.

[18] fuin.org. DDD DSL: Xtext based DSL supporting Domain-driven design (DDD).
https://github.com/fuinorg/org.fuin.dsl.ddd. [Online; Accessed:
2018-12-03].

[19] J. Gouigoux and D. Tamzalit. “From Monolith to Microservices: Lessons
Learned on an Industrial Migration to a Web Oriented Architecture”. In:
2017 IEEE International Conference on Software Architecture Workshops (IC-
SAW). 2017, pp. 62–65. DOI: 10.1109/ICSAW.2017.35.

[20] Michael Gysel et al. “Service Cutter: A Systematic Approach to Service
Decomposition”. In: Service-Oriented and Cloud Computing. Ed. by Marco
Aiello et al. Cham: Springer International Publishing, 2016, pp. 185–200.
ISBN: 978-3-319-44482-6.

[21] S. Hassan, N. Ali, and R. Bahsoon. “Microservice Ambients: An Architec-
tural Meta-Modelling Approach for Microservice Granularity”. In: 2017
IEEE International Conference on Software Architecture (ICSA). 2017, pp. 1–
10. DOI: 10.1109/ICSA.2017.32.

[22] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Design-
ing, Building, and Deploying Messaging Solutions. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003. ISBN: 0321200683.

[23] intellij-lsp. LSP Support for IntelliJ. https://github.com/gtache/intell
ij-lsp. [Online; Accessed: 2018-11-30].

[24] JetBrains. IntelliJ IDEA: The Java IDE for Professional Developers by JetBrains.
https://www.jetbrains.com/idea/. [Online; Accessed: 2018-11-30].

[25] JetBrains. MPS: The Domain-Specific Language Creator by JetBrains. https:
//www.jetbrains.com/mps/. [Online; Accessed: 2018-11-30].

[26] Munezero Immaculée Josélyne et al. “Partitioning Microservices: A Do-
main Engineering Approach”. In: Proceedings of the 2018 International Con-
ference on Software Engineering in Africa. SEiA ’18. Gothenburg, Sweden:
ACM, 2018, pp. 43–49. ISBN: 978-1-4503-5719-7. DOI: 10.1145/3195528.
3195535. URL: http://doi.acm.org/10.1145/3195528.3195535.

[27] Stefan Kapferer. “Architectural Refactoring of Data Access Security”. Pub-
lication: https://eprints.hsr.ch/564/. Semester Thesis. University of
Applied Sciences of Eastern Switzerland (HSR FHO), 2017.

[28] Stefan Kapferer. “Model Transformations for DSL Processing”. Seminar
Paper [In progress]. University of Applied Sciences of Eastern Switzer-
land (HSR FHO), 2018.

https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://github.com/fuinorg/org.fuin.dsl.ddd
https://doi.org/10.1109/ICSAW.2017.35
https://doi.org/10.1109/ICSA.2017.32
https://github.com/gtache/intellij-lsp
https://github.com/gtache/intellij-lsp
https://www.jetbrains.com/idea/
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://doi.org/10.1145/3195528.3195535
https://doi.org/10.1145/3195528.3195535
http://doi.acm.org/10.1145/3195528.3195535
https://eprints.hsr.ch/564/


Bibliography 107

[29] Philippe Kruchten. “The 4+1 View Model of Architecture”. In: IEEE Soft-
ware 12.6 (1995), pp. 42–50. DOI: 10.1109/52.469759. URL: https://doi.
org/10.1109/52.469759.

[30] Einar Landre, Harald Wesenberg, and Harald Rønneberg. “Architectural
Improvement by Use of Strategic Level Domain-driven Design”. In: Com-
panion to the 21st ACM SIGPLAN Symposium on Object-oriented Program-
ming Systems, Languages, and Applications. OOPSLA ’06. Portland, Ore-
gon, USA: ACM, 2006, pp. 809–814. ISBN: 1-59593-491-X. DOI: 10.1145/
1176617 . 1176728. URL: http : / / doi . acm . org / 10 . 1145 / 1176617 .
1176728.

[31] C. Larman and P. Kruchten. Applying UML and Patterns: An Introduction to
Object-oriented Analysis and Design and the Unified Process. Safari electronic
books. Prentice Hall PTR, 2002. ISBN: 9780130925695.

[32] Duc Minh Le, Duc-Hanh Dang, and Viet-Ha Nguyen. “Domain-driven
design using meta-attributes: A DSL-based approach”. In: 2016 Eighth
International Conference on Knowledge and Systems Engineering (KSE). 2016,
pp. 67–72. DOI: 10.1109/KSE.2016.7758031.

[33] Ian XY Leung et al. “Towards real-time community detection in large
networks”. In: Physical Review E 79.6 (2009), p. 066107.

[34] G. Mazlami, J. Cito, and P. Leitner. “Extraction of Microservices from
Monolithic Software Architectures”. In: 2017 IEEE International Conference
on Web Services (ICWS). 2017, pp. 524–531. DOI: 10.1109/ICWS.2017.61.

[35] Michael Plöd. DDD Context Maps - an enhanced view. https://speakerd
eck.com/mploed/context-maps-an-enhanced-view. [Online; Accessed:
2018-12-16].

[36] Michael Plöd. Michael Plöd’s DDD Presentations. https://speakerdeck.
com/mploed. [Online; Accessed: 2018-12-13].

[37] Microservice-API-Patterns. Lakeside Mutual: Example Application for Mi-
croservice API Patterns (MAP) and other patterns (DDD, PoEAA, EIP). http
s://github.com/Microservice-API-Patterns/LakesideMutual. [On-
line; Accessed: 2018-12-05].

[38] S. Millett. Patterns, Principles and Practices of Domain-Driven Design. Wiley,
2015. ISBN: 9781118714706.

[39] Mark EJ Newman and Michelle Girvan. “Finding and evaluating com-
munity structure in networks”. In: Physical review E 69.2 (2004), p. 026113.

[40] Claus Pahl and Pooyan Jamshidi. “Microservices: A Systematic Mapping
Study”. In: Proceedings of the 6th International Conference on Cloud Com-
puting and Services Science - Volume 1 and 2. CLOSER 2016. Rome, Italy:
SCITEPRESS - Science and Technology Publications, Lda, 2016, pp. 137–
146. ISBN: 978-989-758-182-3. DOI: 10.5220/0005785501370146. URL: htt
ps://doi.org/10.5220/0005785501370146.

[41] C. Pautasso et al. “Microservices in Practice, Part 1: Reality Check and
Service Design”. In: IEEE Software 34.1 (2017), pp. 91–98. ISSN: 0740-7459.
DOI: 10.1109/MS.2017.24.

https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1145/1176617.1176728
https://doi.org/10.1145/1176617.1176728
http://doi.acm.org/10.1145/1176617.1176728
http://doi.acm.org/10.1145/1176617.1176728
https://doi.org/10.1109/KSE.2016.7758031
https://doi.org/10.1109/ICWS.2017.61
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed
https://speakerdeck.com/mploed
https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1109/MS.2017.24


108 Bibliography

[42] plantuml.com. Open-source tool that uses simple textual descriptions to draw
UML diagrams. http://plantuml.com/. [Online; Accessed: 2018-10-15].

[43] F. Rademacher, J. Sorgalla, and S. Sachweh. “Challenges of Domain-Driven
Microservice Design: A Model-Driven Perspective”. In: IEEE Software
35.3 (2018), pp. 36–43. ISSN: 0740-7459. DOI: 10.1109/MS.2018.2141028.

[44] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. “Towards a
UML Profile for Domain-Driven Design of Microservice Architectures”.
In: Software Engineering and Formal Methods. Ed. by Antonio Cerone and
Marco Roveri. Cham: Springer International Publishing, 2018, pp. 230–
245. ISBN: 978-3-319-74781-1.

[45] Sculptor Project. Sculptor - Documentation. http://sculptorgenerator.
org/documentation/. [Online; Accessed: 2018-12-03].

[46] Sculptor Project. Sculptor - Generating Java code from DDD-inspired textual
DSL. https : / / github . com / sculptor / sculptor. [Online; Accessed:
2018-12-03].

[47] Service Cutter. Service Cutter Github Wiki. https://github.com/Service
Cutter/ServiceCutter/wiki. [Online; Accessed: 2018-12-05].

[48] Spoofax. The Spoofax Language Workbench. http://www.metaborg.org.
[Online; Accessed: 2018-11-30].

[49] D. Steinberg et al. EMF: Eclipse Modeling Framework. Eclipse Series. Pear-
son Education, 2008. ISBN: 9780132702218.

[50] The Eclipse Foundation. Eclipse desktop & web IDEs. https://www.eclip
se.org/ide/. [Online; Accessed: 2018-11-30].

[51] The Eclipse Foundation. IntelliJ IDEA Support For The Xtext Framework and
the Xtend Programming Language. https://github.com/eclipse/xtext-
idea. [Online; Accessed: 2018-11-30].

[52] Vaughn Vernon. Implementing Domain-Driven Design. 1st. Addison-Wesley
Professional, 2013. ISBN: 0321834577, 9780321834577.

[53] Markus Voelter et al. DSL Engineering - Designing, Implementing and Using
Domain-Specific Languages. dslbook.org, 2013. ISBN: 978-1-4812-1858-0.

[54] Frank Witte. Testmanagement und Softwaretest : theoretische Grundlagen und
praktische Umsetzung. ger. 1. Aufl. 2016. Wiesbaden: Springer Fachmedien
Wiesbaden, 2016. ISBN: 978-3-658-09964-0.

[55] Olaf Zimmermann. “Architectural refactoring for the cloud: a decision-
centric view on cloud migration”. In: Computing 99.2 (2017), pp. 129–145.
ISSN: 1436-5057. DOI: 10.1007/s00607-016-0520-y. URL: https://link.
springer.com/article/10.1007/s00607-016-0520-y.

[56] Olaf Zimmermann. “Microservices tenets”. In: Computer Science - Research
and Development 32.3 (2017), pp. 301–310. ISSN: 1865-2042. DOI: 10.1007/
s00450-016-0337-0. URL: https://doi.org/10.1007/s00450-016-
0337-0.

http://plantuml.com/
https://doi.org/10.1109/MS.2018.2141028
http://sculptorgenerator.org/documentation/
http://sculptorgenerator.org/documentation/
https://github.com/sculptor/sculptor
https://github.com/ServiceCutter/ServiceCutter/wiki
https://github.com/ServiceCutter/ServiceCutter/wiki
http://www.metaborg.org
https://www.eclipse.org/ide/
https://www.eclipse.org/ide/
https://github.com/eclipse/xtext-idea
https://github.com/eclipse/xtext-idea
https://doi.org/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Vision
	Related Work

	Domain-driven Design Analysis
	Strategic Patterns
	Additional Concepts & Features
	Tactic Patterns

	DSL Requirements
	User Stories
	Personas
	Non-Functional Requirements (NFRs)

	Context Mapper Implementation
	Language Workbench Evaluation
	Context Mapping DSL (CML)
	Tactic DDD Language Integration
	Service Decomposition with Service Cutter
	Graphical Representation with PlantUML

	Evaluation, Conclusion and Future Work
	Results & Contributions
	Requirements Evaluation
	Conclusion
	Future Work

	Language Reference
	Language Design
	Terminals
	Context Map
	Bounded Context
	Subdomain
	Domain Vision Statement
	Partnership
	Shared Kernel
	Customer/Supplier
	Conformist
	Open Host Service
	Anticorruption Layer
	Published Language
	Responsibility Layers
	Knowledge Level
	Aggregate
	Complete CML Grammar

	Examples
	Insurance Example (Context Map)
	Insurance Example (Team Map)
	DDD Sample

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

