
TypeScript Refactorings

Bachelor Thesis
University of Applied Sciences Rapperswil

Fall 2018

Authors: Giovanni Heilmann, Arooran Thanabalasingam
Advisors: Thomas Corbat, Felix Morgner
Industry Partner: Institute for Software (IFS) HSR
Co-Examiner: Lukas Felber
Co-Reader: Prof. Dr. Farhad Mehta

Assignment

Supervisor and Expert

This bachelor thesis will be conducted with the Institute for Software at HSR.
It will be supervised by Thomas Corbat (tcorbat@hsr.ch) and Felix Morgner
(fmorgner@hsr.ch), HSR, IFS. An expert independent of HSR will examine the
thesis and will be present at the final presentation:

• Lukas Felber, Quatico Solutions AG (lukas.felber@quatico.com)

Student

This project is conducted in the context of the module bachelor thesis at the
department of computer science by

• Giovanni Heilmann (gheilman@hsr.ch)

• Arooran Thanabalasingam (athanaba@hsr.ch)

Introduction

TypeScript is a programming language developed by Microsoft [35]. The devel-
opment environment Visual Studio Code features a builtin plug-in with semantic
support for TypeScript development. Among other functionality, it supports debug-
ging, offers syntax highlighting and code actions like refactorings and quick fixes
[21]. The plug-in uses the TypeScript language server to provide these features.
The TypeScript language server is an open source project, hosted on Github [33]
and external contributions are possible.
Refactoring is a controlled technique to improve the quality of an existing code
base without changing its observable behavior [13]. It is an iterative process
heavily relying on good test coverage of the code to be refactored. A quick fix
is an immediate solution for a transient error or deficiency in the code while
programming. Proper tooling support for both features automates and accelerates
repetitive coding tasks. Besides productivity, such automated code changes are
less error prone than the same modifications applied manually.

i

Goals of the Project

Visual Studio Code currently offers only a few code actions for TypeScript. The
goal of this project is to extend the TypeScript language server with additional
refactorings and quick fixes. This extension affects two components of the plug-in:

• User interface for interaction with the developer.

• TypeScript language server, which contains all capabilities for semantic
analysis of the source code of a project. It also features infrastructure for
rendering the actual code transformations based on modifications of the
abstract syntax tree.

In a preceding analysis of the features already available, additional code actions to
be implemented had been identified. The potential features are recorded on the
TypeScript’s issue tracker on GitHub [34]. The selected items can be seen in table
1. Based on usefulness to the TypeScript community those have been prioritized.
It contains the corresponding issue number for GitHub.
It is estimated that for successful completion at least the following code actions
can be completed:

• Interface stubbing

• Inline local variable

• Lambda to function

• Inline method

A feature is considered complete, when a ready-to-be-merged pull request exists for
the TypeScript plug-in repository. Since the actual integration is not in the hands
of the students and cannot be influenced directly by HSR, it is not a requirement.

If the team progresses faster than the schedule, further code actions will be
implemented. There will be weekly meetings with the supervisors. Additional
meetings might be scheduled as required by the students. All Meetings, except for
the kick-off meeting, will be prepared by the students with an agenda that is sent
to the supervisors at least one day before the meeting. During the meeting the
current progress will be presented (What has been done? What has been achieved?
How much time did it take? What is planned for the subsequent week?). Decisions
of the meeting must be recorded by the students.

At the beginning a project plan has to be devised for with milestones for the
semester. This plan is used as a guide line to check the progress compared to the

ii

estimation. The project plan will be updated according to the actual execution,
including time reports and tasks. The students get feedback for accomplished
milestones. The final mark will be given based on the eventual results handed-in
by the deadline at the end of the semester.
In a concluding presentation, the students will demonstrate the features they have
implemented and discuss their results.

Issue No Description Type Priority
#16755 Interface stubbing Quick-Fix 1
#18459 Inline local variable Refactoring 1
#23299 Lambda to function Refactoring 1
#27070 Inline method Refactoring 1
#662 Reorder parameters Refactoring 2

#18267 String concatenation -> template literals Refactoring 2
#24827 Destructure function parameters Refactoring 2

Move method to module/namespace Refactoring 2
#16010 File capitalization Quick-Fix 3
#22392 Create object from selected variables Refactoring 3
#23552 Named parameter Refactoring 3
#23830 Auto-import module as namespace Quick-Fix 3
#23869 Type alias Refactoring 3
#25175 Logic predicate Refactoring 3
#25946 Var to destructuring Refactoring 3
#26479 Extract function to outer scope Refactoring 3
#26487 Merge imports from same source Refactoring 3

Table 1.: Prioritized issues

iii

Documentation

This project must be documented according to the guide lines of the department
of computer science [2]. This includes all analysis, design, implementation, project
management, etc. sections. All documentation is expected to be written in
English. The project plan also contains the documentation tasks. All results
must be complete in the final upload to the archive server [3]. Two copies of the
documentation must be handed-in:

• One in color, two-sided

• One in B/W, single-sided

Important Dates

17.09.2018 Start of bachelor thesis

Until 18.12.2018

Hand-in of the abstract to the supervisor for checking (on
abstract.hsr.ch). Information about accessing the correspond-
ing web tool will be given by the department office.
Hand-in (by email) of the A0 poster to the supervisor.

21.12.2018, 12.00 Final hand-in of the report through archiv-i.hsr.ch
08.01.2019 Presentation and Oral Exam

Table 2.: Important dates

iv

Evaluation

A successful bachelor thesis counts as 12 ECTS points per student. The estimated
effort for 1 ECTS is 30 hours. (See also the module description [27]). The supervisor
will be in charge for all the evaluation of the project.

Criterion Weighting

1. Organisation, Execution
1

6

2. Report (Abstract, Management Summary, technical and per-
sonal reports) as well as structure, visualization and language of
the whole documentation

1

6

3. Content
3

6

4. Final Presentation of the results and discussion
1

6

Table 3.: Evaluation criteria

Furthermore, the bachelor thesis must adhere to the general regulations of the
department of computer science.

Rapperswil, 17th September 2018

Thomas Corbat

Lecturer
Institut für Software (IFS)
Hochschule für Technik Rapperswil

v

Abstract

Visual Studio Code is a text editor written in TypeScript, which is a superset of
JavaScript with strong typing. Language support and other features can be added
via extensions. Both TypeScript and VS Code are open-source and maintained by
Microsoft. The current TypeScript implementation has in-built language features
like auto-complete, reference lookup, etc. Two such features are refactorings and
quick-fixes. Refactorings are behavior-preserving code changes that make code
clearer and more maintainable. Quick-fixes are code changes that change external
behavior. They fix mistakes or extend existing behavior.
Currently, VS Code lacks a lot of the basic refactorings and quick-fixes for Type-
Script like inline variable or inline function. Some of the few refactorings it
supports, are Extract symbol and Move to new file. The goal of this bachelor thesis
is to contribute some of the missing refactorings and quick-fixes to the TypeScript
repository.
In total, four refactorings have been implemented. First, Inline local replaces one or
all references of a local variable with its value. Inline function is similar to the first,
but it inlines a function declaration. Third, Convert lambda to function converts
an arrow function to a function or vice-versa without changing external behavior.
Lastly, Convert string concatenation to template literal converts a concatenated
string like "hello "+ world to a template literal like ‘hello ${world}‘. Furthermore,
one quick-fix named Interface stubbing has also been implemented. It implements
missing object literal properties similar to how method stubs can be created for
classes that do not correctly implement an interface. At the time of writing this
document, the pull-request for Convert lambda to function has been reviewed and
approved by Microsoft.

vi

Management Summary

Roles

Graduates Giovanni Heilmann, Arooran Thanabalasingam

Examiner Thomas Corbat

Technical Advisor Felix Morgner

Subject Area Software-Engineering

Project Partner Institute for Software

Motivation

Visual Studio Code is an increasingly popular text editor written in TypeScript.
Language support and other features can be added via extensions. Both TypeScript
and VS Code are open-source and maintained by Microsoft. The current TypeScript
implementation has in-built language features like auto-complete, reference lookup,
etc. Two such features are automated refactorings and quick-fixes. Refactorings are
behavior-preserving code changes that make code clearer and more maintainable.
Quick-fixes are code changes that change code behavior. They fix mistakes or
extend existing behavior. Both features are invaluable not only for coding speed and
efficiency, but also for creating maintainable code. Oftentimes, without refactoring,
the code grows out of control and becomes unnecessarily complex. Only by
refactoring can this complexity be reduced and the code be made more maintainable.
Better maintainability reduces long-term maintenance costs and makes it easier
and cheaper to change or add new functionality down the line. However, manual
refactoring is time-consuming and error-prone. Automated refactorings make this
process safe and quick.
Currently, VS Code lacks a lot of the essential refactorings for TypeScript like
inline variable or inline function. Some of the very few refactorings it supports,
are Extract symbol and Move to new file. The goal of this bachelor thesis is to
contribute some of these refactorings and quick-fixes to the TypeScript repository

vii

and thus improve the quality of life and development speed of all TypeScript
developers.

Result

In total, four refactorings have been implemented: Inline local, Inline function,
Convert lambda to function, and Convert string concatenation to template literal.
Furthermore, one quick-fix named Interface stubbing has also been implemented.
Judging from experience and according to ASERG at the Federal University of Minas
Gerais, some of these features are among the most commonly used by developers,
especially Inline local and Inline function which complement the already existing
Extract symbol. [38] At the time of writing this document, the pull-request for
Convert lambda to function has been reviewed and approved by Microsoft.

Outlook

Apart from the approved pull-request, the other ones have not yet been reviewed.
This lies outside our responsibility and we have no influence over the review process.
Once the pull-requests have been reviewed, any necessary changes will be made.
This lies outside the scope of this bachelor thesis, since it has already concluded.
Many common refactorings are yet to be implemented for TypeScript. To name a
few: Move method, Move class, Extract class, Extract interface, Pull up method,
Push down method. These and more can be the task for future projects.
Some issues still remain:
The implemented quick-fix, Interface stubbing, makes use of existing error messages.
However, just before opening the pull-request, one of the error messages did not
appear anymore. A related issue has been opened on Github regarding this matter.
[32]
Apart from that, there is also the matter of the design flaw in the refactoring API,
which prevents the language server to send diagnostic information to the client in
case a refactoring fails. An appropriate issue has been openend on Github. [16]
Lastly, overloaded functions have been overlooked for the refactoring Inline function.
This edge case needs to be implemented.

viii

Contents

1. Introduction 2
1.1. VS Code . 2
1.2. TypeScript . 2
1.3. Code Actions . 3

1.3.1. Refactoring . 3
1.3.2. Quick-Fix . 3

2. Analysis 4
2.1. Architecture . 4

2.1.1. Overview . 4
2.1.2. Language support . 4
2.1.3. Patterns . 5
2.1.4. Communication between VS Code and TypeScript language

server . 7
2.2. Language Server Protocol (LSP) . 8

2.2.1. What is the Language Server Protocol? 8
2.2.2. How does it work? . 9
2.2.3. Specification . 10

2.3. Tsserver . 12
2.3.1. Key differences between LSP and tsserver interface 12
2.3.2. Implementing code actions 14

2.4. TypeScript . 19
2.4.1. Compiler overview . 19
2.4.2. Compiler API . 20

2.5. Quick-Fix: Interface stubbing for object literal 22
2.5.1. Interface . 22
2.5.2. Object literal . 24
2.5.3. Intersection types . 25
2.5.4. Union types . 25
2.5.5. Type checking . 26
2.5.6. Conclusion of considerations 27
2.5.7. Cases . 27

2.6. Refactoring: Lambda to function 35
2.6.1. General considerations . 35

ix

2.6.2. Case by case considerations 36
2.7. Refactoring: Inline variable . 40

2.7.1. Simple case . 40
2.7.2. More than one usage . 40
2.7.3. Member access . 41
2.7.4. Assigned more than once . 42
2.7.5. Declaration not initialized 42
2.7.6. Special keywords . 42
2.7.7. Operator precedence . 42
2.7.8. Unary operators . 43

2.8. Refactoring: Inline function . 43
2.8.1. General . 43
2.8.2. Special keywords . 44
2.8.3. Operator precedence . 45
2.8.4. Closure . 45
2.8.5. Parameters . 45
2.8.6. Multiple return statements 46
2.8.7. Name conflict . 47
2.8.8. Throws . 47
2.8.9. Overloading . 48
2.8.10. Inline method . 48

2.9. Refactoring: String concatenation to template literals 49
2.9.1. Template literals . 49
2.9.2. Cases . 50

3. Design 55
3.1. Quick-Fix: Interface stubbing for object literal 55

3.1.1. General procedure . 55
3.1.2. Basic types . 56
3.1.3. Objects . 56
3.1.4. Methods . 57
3.1.5. Intersection and Union Types 57
3.1.6. Tuples . 57
3.1.7. Type Alias . 57
3.1.8. Generics . 57

3.2. Refactoring: Lambda to function 58
3.2.1. To named function . 58
3.2.2. To anonymous function . 59
3.2.3. To arrow function . 59

3.3. Refactoring: Inline variable . 59
3.3.1. General behavior . 60

x

3.3.2. Restrictions on refactoring 60
3.4. Refactoring: Inline function . 61

3.4.1. General behavior . 61
3.4.2. Multiple return statements 61
3.4.3. Name conflict . 61
3.4.4. Restrictions on refactoring 62

3.5. Refactoring: String concatenation to template literals 62
3.5.1. Template expression structure 63
3.5.2. General procedure . 63
3.5.3. Remove parentheses . 64
3.5.4. Arithmetic expression . 64
3.5.5. New line . 64
3.5.6. Escape backtick and dollar 64
3.5.7. Escape sequences . 65
3.5.8. Add parentheses . 65
3.5.9. Nested . 65
3.5.10. Tagged templates . 65

4. Implementation 66
4.1. Quick-Fix: Interface stubbing for object literal 66

4.1.1. General . 66
4.1.2. Corner cases . 66

4.2. Refactoring: lambda to function . 67
4.2.1. To anonymous function . 67
4.2.2. To named function . 69
4.2.3. To arrow function . 69

4.3. Refactoring: Inline variable . 71
4.4. Refactoring: Inline function . 72

4.4.1. Inlining across multiple files 72
4.4.2. Overloading . 72

4.5. Refactoring: String concatenation to template literals 73
4.5.1. Transforming tree to array 73
4.5.2. Transforming array to tree 73
4.5.3. Creating template literal . 73
4.5.4. Decoding raw string . 73

5. Conclusion 75
5.1. Outlook . 75

A. Time evaluation 82

xi

B. Project Plan 84

C. Guides 95
1. Setup development environment . 95

1.1. Running development VS Code 95
1.2. Override tsserver path in VS Code 95
1.3. Open tsserver log . 96
1.4. Installing additional softwares 96

2. Building tsserver . 96
3. Testing . 96

3.1. Write tests . 97
3.2. Run tests . 97

4. Handling certain TSLint messages 98

1

1. Introduction
This chapter serves as an introduction to this document. It explains essential terms
and concepts used in the document.

1.1. VS Code

Visual Studio Code, also known as VS Code, is an open-source source code editor
maintained by Microsoft. It runs on Windows, Linux and macOS. Apart from
syntax highlighting, it offers support for embedded Git control, debugging and
code actions like refactoring and quick-fixes among other features. In addition, it
is customizable. Users can change keyboard shortcuts, user interface’s theme and
preferences. Furthermore, new features can be added through first and third party
extensions. [37]
VS Code is written almost exclusively in TypeScript. [36] Similar to Atom, VS
Code is built on Electron, which is a framework to run NodeJS applications in a
desktop environment. [5]
VS Code was selected as the most popular developer environment tool in the Stack
Overflow 2018 Developer Survey. [9]

1.2. TypeScript

TypeScript is a programming language that compiles to plain JavaScript. It is
developed and maintained by Microsoft. It is a superset of JavaScript. This means
that existing JavaScript code is also valid TypeScript code. That is why existing
JavaScript libraries can easily be incorporated in a TypeScript project. Since
TypeScript is compiled to plain JavaScript, TypeScript code can also be called
from JavaScript code seamlessly. [35]
Types are optional in TypeScript and are provided through type annotation. If
a type annotation is given, the type checking is done at compile time. The
type annotations can explicitly be omitted in order to use the dynamic typing of
JavaScript. In addition, the TypeScript compiler tries to infer the type of omitted
types. Thanks to type inference, better readable code can be provided while still
having type-safe code. [35]
The TypeScript compiler is written in TypeScript. [33]

2

1.3. Code Actions

In VS Code, a code action is an automated code modification performed by the
editor. Apart from efficiency, the automated code actions are less error prone than
the same modifications performed manually. There are two types of code actions:
refactoring and quick-fix. They are explained in the following subsections. [11]

1.3.1. Refactoring

Refactoring is a technique that improves the quality and maintainability of a code
base through restructuring of the code while preserving its observable behavior.
It is done in a series of tiny transformations without changing its external behavior.
These isolated, standardized transformations are also called refactorings. Each
transformation modifies only little, but an accumulation of these transformations
can lead to a significant restructuring. Since the transformations are kept small,
the refactoring is less error prone.
After each transformation, the system is kept fully working in order to reduce the
risk that a system may get heavily damaged during the restructuring. This can be
accomplished with an automated test framework with many and meaningful tests.
[13]
In conclusion, refactoring can refer to the technique, a standardized code transfor-
mation, or a code action of an editor. In this document, refactoring usually refers
to the code action. [11]

1.3.2. Quick-Fix

While programming, an editor is constantly analyzing the source code for potential
faults. Wherever an issue occurs, the editor offers a list of proposals to fix or
improve the code. Such a proposal, called quick-fix, is an immediate solution to
the detected issue. Then, the user can choose the appropriate solution.
A quick-fix is not necessarily the optimal way of solving the detected issue for there
may be deeper-lying faults. Most of the times, however, even such a suboptimal
solution is sufficient to enable the application to run and start testing.

3

2. Analysis

This chapter describes the context of the project. It explains relevant interfaces
and tools like the Language Server Protocol.

2.1. Architecture

In this section it will be shown how the VS Code editor can be extended.

2.1.1. Overview

The VS Code editor provides a common model to register and load extensions.
Three kinds of extensions exist. The first is just called extension and it represents
the base building block. The second is language server, where enhanced editing
experiences can be provided by binding an external software. The language server
will be explained in more detail in section 2.2. The third one is debugger, where
an external debugger is wired up through a debug adapter. As shown in figure 2.1,
the last two kinds have their own additional protocols. [10]
In order to maintain performance and compatibility, the extensions are run in a
separate process and direct access to DOM is prevented. That means the VS Code
editor can only be extended through the VS Code API. In addition, the extensions
are only loaded in VS Code when they are needed. For example, a Java editing
extension is only loaded when the user opens a Java file. [12]

2.1.2. Language support

Language support can be divided into basic support or advanced support based on
implementation difficulty. Basic language support consists of syntax highlighting,
snippets and smart bracket matching. Those can be provided just with configuration
files. That means there is no need to write source code. Advanced language
support has language features like code actions. There are two approaches to
provide advanced language support. Using the direct implementation approach,
the features are directly implemented as a VS Code extension. Secondly, when
using the language server approach a VS Code extension wires up the services of
language server with the VS Code API. [21]

4

Figure 2.1.: Extensibility architecture Source: [10]

The extensions for the typescript language are directly maintained in code base of
VS Code. [36] The basic language support is located in extensions/typescript-basics/
and advanced language support in extensions/typescript-language-features/. The
language server approach was chosen for the typescript language. The typescript
language server itself is maintained in the code base of typescript. [33]

2.1.3. Patterns

The following patterns are used throughout the VS Code API.

Promises

Asynchronous operations are represented by promises in VS Code. Promise is
abstracted with the type Thenable in order to be independent from any specific
promise libraries. The common denominator for promises is the then-method. [12]

Cancellation tokens

Some operations can be started based on a volatile state. This state can change
before the started operation is finished. For example, after the computation of
auto-complete has been started, the user continues to type and thereby makes

5

result of the previous computation obsolete. Such behavior will pass a cancellation
token. With this token it can be verified whether or not a cancellation has been
triggered (isCancellationRequested). Furthermore, what should happen when a
cancellation is fired can also be defined (onCancellationRequested). [12]

Disposables

The dispose pattern is used for resources which are obtained from VS Code. This
includes event listening, commands, interacting with the UI, to name a few. For
example, the setStatusBarMessage function returns a disposable. To remove the
message from the status bar, the dispose method must be called on the disposable.
[12]

Events

To subscribe to an event, a listener-function must be passed as an argument. Upon
subscription an object implementing the Dispose interface will be returned. This
disposable can later be used to unsubscribe. Events have the following naming
convention formatted in regex [12]:
on[Will|Did]VerbNoun?

Strict null

Prior to typescript 2.0, null and undefined could be assigned to every type. Con-
sequently, it was not possible to explicitly exclude them, and therefore it was
not possible to detect any misuse. TypeScript 2.0 includes a new type checking
mechanism called strict null checking. In strict null checking mode, null and
undefined do not belong to the domain of every type as shown in the listing 2.1.
They can only be assigned to themselves and any. [17]
To support strict null checking, VS Code uses undefined and null. [12] The codebase
of typescript on the other hand only uses undefined. [6]

6

// Compiled with --strictNullChecks
let x: number;
let y: number | undefined;
let z: number | null | undefined;
x = 1; // Ok
y = 1; // Ok
z = 1; // Ok
x = undefined; // Error
y = undefined; // Ok
z = undefined; // Ok
x = null; // Error
y = null; // Error
z = null; // Ok

Listing 2.1: Strict null checking examples Source: [17]

2.1.4. Communication between VS Code and TypeScript
language server

Figure 2.2 shows the interaction between various actors in order to provide the
requested refactoring service. There are five actors involved. The TypeScript
extension represents the client extension for the TypeScript language server.
In this example, the user opens a TypeScript file, where a simple arrow function
is contained. Then, the extension is launched, which automatically starts the
TypeScript language server. The user then selects the arrow function and requests
available refactorings. Once the server replies with the available ones, the user
selects one of them, e.g. "Add braces to arrow function". Thus, the extension
forwards the request to the language server, which applies the refactoring on the
file and notifies the client of the success.

7

Figure 2.2.: Communication between VS Code and TS Server

2.2. Language Server Protocol (LSP)

This section provides an overview of the LSP and protocol details. Please note that
the information provided in this section is not directly relevant to the project because
the TypeScript language server does not implement it, and more importantly,
implementing code actions can be implemented without knowledge of the language
server protocol as described in section 2.3.2. Nonetheless, it provides context for
better understanding of the environment and may be of use for future work. Visit
the LSP overview [22] or the protocol specification [23] for further information.

2.2.1. What is the Language Server Protocol?

Implementing support for features like auto-complete, goto definition, or documen-
tation on hover for a programming language is a significant effort. Traditionally,

8

this work had to be repeated for each development tool, as each provided different
APIs for implementing the same features.
To clarify, let us look at an example. Multiple Java IDEs exist in today’s market.
Eclipse, IntelliJ, and Netbeans are just three of the many tools out there. And
currently, each tool needs to implement their own language support, specifically
syntax trees, syntax highlighting, code completion, refactorings, and so on. There
is no common ground.

Figure 2.3.: A problem of complexity Source: [26]

However, all this work would ideally only be done once per language, since the
functionality is the same. This is where the Language Server comes in. It gets rid of
all the duplicated features by providing one implementation through a standardized
interface. The LSP provides this interface.
This would mean for our Java example, that someone implements a Java Language
Server with all the language smarts, and the clients (Eclipse, IDEA, etc.) can let
that server do the heavy lifting. They only need to implement the front-end.

2.2.2. How does it work?

The language server runs in a separate process from the client. The client can
communicate with the server using the LSP, which is based on JSON-RPC.
Figure 2.2.2 shows requests from a development tool to language servers and
their responses. One can see that the request method consists of a data type
(textDocument) and an action ([goto-]definition). This example shows that the

9

Figure 2.4.: Language Server Protocol communication Source: [10]

protocol uses document references and positions. This is universal to all text-based
programming languages. It has the following benefit for designing the protocol:

“It is much simpler to standardize a text document URI or a cursor
position compared with standardizing an abstract syntax tree and
compiler symbols across different programming languages.” [22]

2.2.3. Specification

This section goes into more detail about the LSP. It explains the base protocol
and the specifics.

Base protocol

As defined by JSON-RPC, Similarly to HTTP, every message consists of a header
and a content part. The header contains a set of header fields, namely Content-
Length and Content-Type. The latter describes the mime type of the content and
can be omitted. In that case it defaults to application/vscode-jsonrpc; charset=utf-8.
The content consists of a JSON object.
JSON-RPC defines three types of messages. Requests, responses and notifications.
Requests sent by the client always require a response from the server, even if no
result is expected. In that case the result must be null. Notifications are like events
and do not require a response. Both clients and servers may send notifications.

10

1 Content -Length: ...
2
3 {
4 "jsonrpc": "2.0",
5 "id" : 1,
6 "method": "textDocument/definition",
7 "params": {
8 "textDocument": {
9 "uri": "file :///p%3A/mseng/VSCode/Playgrounds/cpp/use.cpp"

10 },
11 "position": {
12 "line": 3,
13 "character": 12
14 }
15 }
16 }

Listing 2.2: LSP request Source: [10]

Notifications and requests starting with $/ can be ignored if the command is
unknown, e.g. $/cancelRequest.

LSP specifics

Below, the most important points are summarized. For more detailed information,
please refer to the LSP specification [23].

• Microsoft offers an npm module to parse document URIs.

• The protocol does not support binary document types. Only string-based
documents are supported.

• Line positions cannot be relative to the end of a line.

• Document changes use the TextDocumentEdit interface. It contains a refer-
ence to the document in question and an array of type TextEdit[].

• Bundled TextEdits’ ranges may not overlap, but inserts at the same location
are valid.

• If the start and end location of a range are the same, it signifies an insert.

11

1 interface Range {
2 start: Position;
3 end: Position;
4 }
5
6 interface TextEdit {
7 range: Range;
8 newText: string; // replaces text in range
9 }

10
11 interface TextDocumentEdit {
12 textDocument: VersionedTextDocumentIdentifier;
13 edits: TextEdit [];
14 }

Listing 2.3: TextDocumentEdit interface Source: [10]

2.3. Tsserver

This section describes the standalone language server that TypeScript uses called
tsserver. Its interface differs from the LSP significantly, but is also based on a
JSON protocol. For further reading, refer to the tsserver documentation. [30]

2.3.1. Key differences between LSP and tsserver interface

Historically, tsserver existed before LSP. [15] That is why the tsserver protocol and
the LSP do not share a common interface despite both being developed by Microsoft.
The goal is to have the tsserver implement the LSP in the future according to
GitHub issue #11274. [20] This section will explain the key differences.

Sample request

To illustrate the differences of the JSON structures more closely as they appear
on the wire, let us look at an example. Listings 2.4 and 2.5 show one request
each for the tsserver protocol and LSP respectively. They both request possible
refactorings for a given selection. As can be seen, the LSP interface is broken up
into reusable blocks - textDocument, range, context -, whereas the tsserver interface
has a flatter structure. Furthermore, the LSP interface is more flexible, since it can
send additional diagnostic information and filters for refactorings, code fixes or both.

12

Message

seq: number
type: "request" | "response" | "event"

Request

type="request"
command: string
args?: any

Response

type="response"
request_seq: number
success: boolean
command: string
message?: string
body?: any

Event
type="event"
event: string
body?: any

Figure 2.5.: tsserver protocol

Message
jsonrpc: string

RequestMessage

id: number
method: string
params?: Ar-
ray<any> | object

ResponseMessage

id: number
result?: any
error?: ResponseEr-
ror<any>

Event
method: string
params?: Ar-
ray<any> | object

Figure 2.6.: Language Server Protocol

13

1 {
2 "seq": 1,
3 "type": "request",
4 "command": "getApplicableRefactors",
5 "args": {
6 "file": "c:/path/to/file",
7 "projectFileName": "..." // project name (optional)
8 "startLine": 6,
9 "startOffset": 24,

10 "endLine": 9,
11 "endOffset":42
12 }
13 }

Listing 2.4: tsserver JSON: GetApplicableRefactors request

1 {
2 "jsonrpc": "2.0",
3 "id": 1,
4 "method": "textDocument/codeAction",
5 "params": {
6 "textDocument": {
7 "uri": "file :///c:/path/to/file"
8 },
9 "range": {

10 start: { line: 6, character: 24 },
11 end : { line 9, character : 42 }
12 },
13 "context": {
14 "diagnostics": {...} // diagnostic information relevant to context
15 "only": {"refactor", ...} // code action type filter array
16 }
17 }
18 }

Listing 2.5: LSP JSON: Code action request

2.3.2. Implementing code actions

To implement code actions, it is not necessary to work on the tsserver interface.
There is no work needed on the VS-Code side. Interfaces exist for both refactorings
and quick-fixes, so developers can contribute without any knowledge of the tsserver
protocol.
To make code changes, the AST needs to be transformed. Basic information on
that is found in section 2.4.2.
The actual code changes are tracked by the ChangeTracker in the namespace
ts.textChanges as seen in listing 2.6. The resulting FileTextChanges are then returned

14

to VS Code.
The lambda parameter in with can have one or more text changes depending on
the code action.

1 const edits = textChanges.ChangeTracker.with(
2 context , t => t.replaceNode(file , oldNode , newNode)
3);

Listing 2.6: Change tracker example

Refactoring API

As shown in figure 2.7, the interface for refactoring only requires the following two
methods:

• getAvailableActions

Using the information contained in RefactorContext, applicability of a given
refactoring is verified. If refactoring actions are available, the possible ac-
tions are returned as ApplicableRefactorInfo. If no refactoring actions are
applicable, then an empty array is returned.

• getEditsForAction

This method computes the AST manipulations based on the RefactorContext
information. On success, the AST manipulations are returned as RefactorEditInfo.
Otherwise, it returns undefined.

Thanks to this decoupling of refactoring, the corresponding UI elements has only to
be wired up once with the refactoring interface. Since the UI elements has already
been wired up for VS Code, there is no need to implement anything on VS Code’s
side in order to provide new refactorings.
The refactoring descriptions and action descriptions are externalized in src/compil-
er/diagnosticMessages.json so that messages displayed to user can be localized at
a later time.

Quick-Fix API

As shown in figure 2.8, the interface for quick-fix can have the following 4 members:

• errorCodes

This property specifies all possible error codes, upon which the quick-fix’s
getCodeActions can be invoked. These can be already supplied by the compiler.
However, it may be necessary to create own error messages.

15

• getCodeActions

This function computes the AST manipulations for fixing a single faulty
scenario based on the CodeFixContext information. On failure, this function
returns undefined. On success, it returns the AST manipulations as an array
of CodeFixAction.

• fixIds

This property is optional. A fix id is an unique name for a certain quick-fix’s
action. This property specifies all the fix ids, upon which the quick-fix’s
getAllCodeAction can be called.

• getAllCodeActions

This function is also optional, but when the property fixIds is specified, then
this function must be provided. This function computes the AST manip-
ulations for fixing multiple faulty scenarios based on the CodeFixAllContext
information. It returns the AST manipulations as CombinedCodeActions.

16

Refactor
getEditsForAction(context: RefactorContext, actionName: string)
: RefactorEditInfo | undefined
getAvailableActions(context: RefactorContext)
: ReadonlyArray<ApplicableRefactorInfo>

RefactorContext
file: SourceFile
startPosition: number
endPosition?: number
program: Program
cancellationToken?: CancellationToken
preferences: UserPreferences

RefactorEditInfo
edits: FileTextChanges[]
renameFilename?: string
renameLocation?: number
commands?: CodeActionCommand[]

ApplicableRefactorInfo
name: string
description: string
inlineable?: boolean
actions: RefactorActionInfo[]

Figure 2.7.: Interface Refactor

17

CodeFixRegistration

errorCodes: ReadonlyArray<number>
getCodeActions(context: CodeFixContext): CodeFixAction[] | undefined
fixIds?: ReadonlyArray<string>
getAllCodeActions?(context: CodeFixAllContext): CombinedCodeActions

CodeFixContextBase
file: SourceFile
program: Program
cancellationToken: CancellationToken
preferences: UserPreferences

CodeFixAllContext
fixId:

CodeFixContext
errorCode: number
span: TextSpan

CodeAction
description: string
changes: FileTextChanges[]
commands?: CodeActionCommand[]

CodeFixAction
fixName: string
fixId?:
fixAllDescription?: string

CombinedCodeActions
changes: ReadonlyArray<FileTextChanges>
commands?: ReadonlyArray<CodeActionCommand>

Figure 2.8.: Interface Quick-fix

18

2.4. TypeScript

This section describes the TypeScript language. It explains the compiler and its
API. Information is taken from Basarat’s book [4] and TypeScript’s wiki [25].

2.4.1. Compiler overview

The TypeScript compiler reads the source file as a token stream, builds an AST,
from which it generates a symbol table for semantics and type checking. The
compilation process is described in the following section.
The scanner, controlled by the parser, reads the source file and generates a token
stream. Tokens are a logical bundling of characters that allow the compiler to
analyze the code. A token may be a number, a string literal, or an identifier like a
type or variable name. There are more kinds of tokens.
The parser creates the AST from the token stream of a given file. Its type is
SourceFile and it consists of a tree of Nodes and additional information like the file
name.
The binder generates Symbols and binds them to nodes in the AST. Multiple Nodes
may be linked to the same Symbol. E.g., the code sample int x = 41; x++; contains
the Node x twice, but since they are the same entity, they both share the same
Symbol.
At this point, symbols are only unified file-wide. To get a global view of all symbols,
a Program is created. It contains a list of SourceFiles and CompilerOptions. From the
Program, a TypeChecker can be created. It is responsible for relationships between
Symbols from different files and their types. To do that, it first builds a global
symbol table, merging equal Symbols.
The TypeChecker is lazy. That is to say, it computes type information only on
request. Irrelevant information is ignored.
Lastly, the Emitter, also created from the Program, generates the .js or .d.ts-files.

Figure 2.9.: Compiler Overview

19

2.4.2. Compiler API

The compiler provides an API for AST traversal and manipulation found in
src/compiler/factory.ts.
It contains functions like createSourceFile or updateFunctionDeclaration. These are
used to manipulate nodes instead of doing it by hand. These factory-methods
should not be circumvented to edit AST nodes.

AST manipulation

The following example shows how to manipulate the AST. The code aims to replace
the body of a selected function. Internally, the whole function is replaced as seen
in figure 2.10.

Figure 2.10.: AST manipulation

20

1 function getEditsForAction(
2 context: RefactorContext ,
3 actionName: string): RefactorEditInfo | undefined {
4 const { file , startPosition } = context;
5 const info = isApplicable(file , startPosition);
6 if (!info) return undefined;
7
8 const {fun} = info;
9 const secretStr = createStringLiteral("kitty");

10 const statements = [createReturn(secretStr)];
11 const body = createBlock(statements , /* multiline */ true);
12 const type = createKeywordTypeNode(SyntaxKind.StringKeyword);
13 const newFun = createFunctionDeclaration(
14 fun.decorators ,
15 fun.modifiers ,
16 fun.asteriskToken ,
17 fun.name ,
18 fun.typeParameters ,
19 type ,
20 body
21);
22
23 const edits = textChanges.ChangeTracker.with(
24 context , t => t.replaceNode(file , fun , newFun));
25 return { edits };
26 }

Listing 2.7: Replace node example

First, a replacement node needs to be created with the API, as seen on lines 9
through 13. The node is a function with a single return statement. The method
createReturn creates a return statement with the expression passed as an argument.
The resulting statement is then passed to createBlock, which creates a statement
block node. Furthermore, the function’s type is changed accordingly.
After that, desired changes are tracked with the ChangeTracker on lines 15 & 16.
The with-function requires a callback with the change in question. In this case, the
original function node is replaced with newFun. Other actions include insertNodeAfter
and delete.

Type query

As discussed in subsection 2.4.1, the TypeChecker is responsible for type resolution.
The example code in listing 2.8 shows its usage.

21

1 const {scope , symbol , node} = getInfo ();
2 const isJS = isInJSFile(scope);
3 let typeNode: TypeNode | undefined;
4 if (!isJS) {
5 const checker = context.program.getTypeChecker ();
6 const type = checker.getBaseTypeOfLiteralType(
7 checker.getTypeOfSymbolAtLocation(symbol , node)
8);
9 typeNode = checker.typeToTypeNode(

10 type ,
11 scope ,
12 NodeBuilderFlags.NoTruncation
13);
14 }
15 node.type = typeNode;

Listing 2.8: Type query

The function getTypeOfSymbolAtLocation on line 7 may return a very constrained type
with undesired annotations. Thus, getBaseTypeOfLiteralType is used to generalize
the type. From this type, a TypeNode can be generated to be assigned to an
AST-node.

2.5. Quick-Fix: Interface stubbing for object
literal

This quick-fix is available, when an object literal implements an interface but the
required members for interface are partially or fully missing. It creates missing
members along with corresponding default values.
First, the object literal and its interface are analyzed to find the commonalities.
Subsequently, intersection types, union types and type checking are also taken into
account in order to gain deeper insights. Finally, each case is examined separately.

2.5.1. Interface

An interface helps defining contracts within code. It can contain properties,
methods, indexers and function signatures. But, function signature is not relevant
for objects.
The indexer describes, which type can be used for indexing into the object and
it also defines the return type of indexing. Since properties of an object can be
accessed through indexer in JavaScript, there is no need to explicitly provide an
indexing function as demonstrated in listing 2.9. [19]

22

1 interface Example {
2 prop: string; // Property
3 optProp ?: string; // Optional property
4 readonly readProp: number; // Readonly property
5 method (): void; // Method
6
7 [propName: string]: any; // Indexer
8 }
9

10 let obj: Example = {
11 prop: "stringo",
12 readProp: 42,
13 method (){}
14 };
15 obj["optProp"] = "for accessing elements";

Listing 2.9: Interface with properties and indexer

As shown in listing 2.10, a function signature defines the parameter types and the
return type of a function. It is only meant to be used in combination with function
expressions and not with objects. [19]

1 interface Finder {
2 (array: number[], element: number): number // Function signature
3 }
4 let positionFinder: Finder;
5 positionFinder = function (array: number[], element: number) {
6 return -1;
7 }

Listing 2.10: Interface with function signature

An interface can inherit from other interfaces as well as from classes. Inheriting
from a class is the same behavior as inheriting from an interface as demonstrated
in listing 2.11. In case the inherited class contains a private property, the interface
becomes useless because it cannot have private property. [19]

1 interface Drive { speed: number }
2 class Vehicle { seats: number = 0 }
3
4 interface Car extends Drive , Vehicle {}
5 let myCar: Car = { speed: 120, seats: 2 };
6
7 class Tank { private gun: string = "75mm" }
8 interface SpeedyTank extends Tank {}
9 let uselessTank: SpeedyTank = { gun: "25mm" };

10 // Property ’gun’ is private in type ’SpeedyTank ’
11 // but not in type ’{ gun: string; }’.

Listing 2.11: Interface inheritance

23

2.5.2. Object literal

Apart from using a constructor new Object() or the static method Object.create(),
JavaScript allows the use of the object literal notation { } to create a new object.
An object literal contains a list of properties. Each property has a name and a
value as demonstrated in listing 2.12.
Since ECMAScript 6, it is possible to declare properties by writing only its name if
such a exists in that scope as shown on line 8. In addition, the property’s name
can be computed dynamically.
Apart from value properties, object literals can also contain methods, get/set
accessors and spread properties. With the spread operator ..., properties of an
object can be copied into a new object as demonstrated on line 18. When using the
same name for a property, the value will be overwritten as shown on line 18. [28]

1
2 let foo = "Daisy", bar = false;
3
4 const newObj = {
5 greeting: "Hi there", // Property
6 _magicNo: 42, // Property
7 foo: foo , // Property
8 bar , // Shorthand property
9 ["computed"+33]: true // computed propert name

10 method (){ return "nada"}, // Method
11 get magicNo (){ return this._magicNo }, // Get accessor
12 set magicNo(no){ this._magicNo = no } // Set accessor
13 }
14
15 let obj1 = { foo: ’duck’, x: 42 };
16 let obj2 = { foo: ’bear’, y: 13 };
17
18 const mergedObj = { ...obj1 , ... obj2 }; // spread property
19 // Object { foo: "bear", x: 42, y: 13 }

Listing 2.12: Object literal example

JSON vs object literal

The object literal is not the same thing as the JavaScript Object Notation (JSON).
Although they both look very similar, there are differences. In JSON, a property’s
name must be double-quoted and it cannot be declared in a shorthand. JSON
cannot have function declarations like methods or accessors. Furthermore, JSON
allows only a handful of types. [28]

24

2.5.3. Intersection types

An intersection type combines multiple types into one type. As shown in listing
2.13, an object of intersection type must have all members of all types from the
intersection and therefore, the eagle is both Bird and Predator. The ampersand is
used to combine types. Intersection types are commonly used for mixins. [1]

1 interface Bird {
2 WingLength: number;
3 Height: number;
4 }
5 interface Predator {
6 Prey: string;
7 }
8
9 const eagle: Bird & Predator = {

10 WingLength: 2,
11 Height: 0.4,
12 Prey: "Rabbit"
13 };

Listing 2.13: Intersection type example

2.5.4. Union types

A union type defines a type which can be one of the specified types. In other words,
pet in listing 2.14 can either be Eagle or Magpie. If a variable has a union type, then
it is only possible to access members that are common to all types in the union as
demonstrated on line 16. As long as the real type is not clear, it is only possible to
work with intersection of Eagle or Magpie as shown on line 16. The vertical bar is
used to separate each type as shown. [1]

25

1 function parseInt(value: string | number) { ... }
2 parseInt("foobar4 rocks"); // Okay
3 parseInt (42.233); // Okay
4 parseInt(false); // Compile -Time Error
5
6 interface Eagle {
7 fly (): void;
8 hunt (): void;
9 }

10 interface Magpie {
11 fly (): void;
12 steal (): void;
13 }
14 function getBird (): Eagle | Magpie { ... }
15
16 let pet = getBird ();
17 pet.fly (); // Okay
18 pet.steal (); // Error

Listing 2.14: Union type example

2.5.5. Type checking

1 interface Bulk {
2 width: number;
3 height ?: number;
4 }
5
6 function applySize(dimension: Bulk){}
7
8 let threeDim = { width: 42, height: 52, depth: 33 };
9 applySize(threeDim); // Okay

10
11 applySize ({ width: 42, height: 52, depth: 33 }); // Error
12 let bulk3d: Bulk = { width: 42, height: 52, depth: 33 }; // Error
13 // Object literal may only specify known properties ,
14 // and ’depth’ does not exist in type ’Bulk ’.
15
16 applySize ({ width: 42, hight: 52 }); // Error
17 applySize ({ width: 42, height: 52, depth: 33 } as Bulk); // Okay

Listing 2.15: Excess property checking

The error on line 11 of listing 2.15 might be confusing at first glance, since the object
literal fulfills the interface’s requirements like the threeDim object. Nevertheless, an
error is reported.
The reason is that TypeScript treats object literals regarding type checking in

26

a special way. If an object literal is assigned to a variable or it is passed as an
argument, it undergoes excess property checking. That means if an object literal
has any properties that the target type does not possess, an error will be reported.
This general attitude is taken in order to avoid situations like on line 16. Since
the property height is optional, the misspelling of height would fail silently in
JavaScript. Thanks to excess property checking, such mistakes are detected.
If code authors are confident about their code, they can simply circumvent this
check with a type assertion as shown on the line 17. [19]

2.5.6. Conclusion of considerations

After taking interface and object literal into account, the common denominator of
member kinds are property and method. Since optional properties are allowed to
be omitted, they will be left out.
For the following reasons, accessors, shorthand/spread properties, function sig-
natures and indexers will be ignored for further procedures: Get/set accessors
cannot be enforced through an interface. An implementation for indexers cannot be
provided because they are automatically generated. Shorthand and spread property
are convenient features, but for interface stubbing they are not useful.
If an interface inherits from a class with private member, then this interface is
already broken. Since the checker reports this error accordingly and only humans
can fix such an error, no further steps are taken to solve this problem.

2.5.7. Cases

Since an object literal can either be assigned to a variable or passed as function
argument, the following existing error messages are considered suitable to invoke
this quick-fix:

• Type_0_is_not_assignable_to_type_1

• Argument_of_type_0_is_not_assignable_to_parameter_of_type_1

As function argument

In the following situation, a function parameter requires a certain interface, but the
argument is an empty object literal. As demonstrated in listing 2.16, the empty
object literal must be completed with all the properties of the required interface.

27

1 interface Foo {
2 field: string
3 }
4 function example(arg1: string , arg2: Foo , arg3: number) { ... }
5
6 // before
7 example("arg1", {}, 0);
8
9 // after

10 example("arg1", {
11 field: ""
12 }, 0);

Listing 2.16: As function argument

Basic types

This is the other base case where a variable requires a certain interface and an
empty object literal is assigned. For such simple types, a property with the default
values will be created as shown in listing 2.17.

1 interface Foo {
2 varchar: string ,
3 numero: number ,
4 boolo: boolean ,
5 array: number[],
6 zero: null ,
7 every: any
8 }
9

10 // before
11 const bar: Foo = {};
12
13 // after
14 const bar: Foo = {
15 varchar: "",
16 numero: 0,
17 boolo: false ,
18 array: [],
19 zero: null
20 every: "any",
21 };

Listing 2.17: Basic types

28

Objects

The constructor is called for class instances as well as for primitive wrapper objects,
e.g. Boolean or String. The type object, written in lower case, represents any
non-primitive type. The type Object, written in upper case, describes functionality
that is common to all objects. [29] As demonstrated in listing 2.18, the default
value for an enum is its first value.

1 class Building {}
2 enum Direction { Up, Down , Right , Left }
3
4 interface Foo {
5 clazz: Building ,
6 bigObj: Object ,
7 str: String ,
8 nested: { a: { b: string}},
9 smallObj: object ,

10 enumo: Direction
11 }
12
13 // before
14 const bar: Foo = {};
15
16 // after
17 const bar: Foo = {
18 clazz: new Building(),
19 bigObj: new Object(),
20 str: new String(),
21 nested: {
22 a: {
23 b: ""
24 }
25 },
26 smallObj: new Object("anyObject"),
27 enumo: Direction.Up
28 };

Listing 2.18: Objects

Methods

Function stubs are always implemented with a throw expression so that the user
will be notified in case of accidental use. There are two ways to declare a function
in an interface: One is as a method and the other is as an arrow function as shown
in listing 2.19.

29

1 interface Foo {
2 methodo(a: string , b: number): boolean ,
3 lambda: (a: number , b: string) => void
4 }
5
6 // before
7 const bar: Foo = {};
8
9 // after

10 const bar: Foo = {
11 methodo: (a: string , b: number): boolean => {
12 throw new Error("Function not implemented.")
13 },
14 lambda: (a: number , b: string): void => {
15 throw new Error("Function not implemented.")
16 }
17 };

Listing 2.19: Methods

Intersection and union types

In case of an intersection type, default values must be provided for all members
of all types. When a member’s name is the same as that of another type, they
must all have same type. As demonstrated in listing 2.20, a default value for the
duplicated members should only be provided once. If the duplicated members have
different types, then it is an error which can only be resolved by a human. In case
of a union type, a default value must only be provided for one of the types.

30

1 interface Z { z: boolean; y: number }
2 interface X { x: string; y: number }
3
4 interface Foo {
5 intersection: X & Z,
6 union: string | number ,
7 }
8
9 // before

10 const bar: Foo = {};
11
12 // after
13 const bar: Foo = {
14 intersection: {
15 x: "",
16 y: 0,
17 z: false
18 },
19 union: ""
20 };

Listing 2.20: Intersection and union types

Tuples

Tuples can contain almost any type, even an arrow function. For the sake of
simplicity, not all types are mentioned in listing 2.21.

1 interface Foo {
2 basic: [string , number , Boolean],
3 fn: [() => string],
4 nested: [number , [number , [string , boolean]]]
5 }
6
7 // before
8 const bar: Foo = {};
9

10 // after
11 const bar: Foo = {
12 basic: ["", 0, new Boolean ()],
13 fn: [(): string => {
14 throw new Error("Function not implemented");
15 }],
16 nested: [0, [0, ["", false]]]
17 };

Listing 2.21: Tuples

31

Type alias

The real types can be hidden behind a type alias. In such cases, the default values
must still be provided. Again, not all types are mentioned in listing 2.22.

1 interface Z { z: boolean; }
2 interface X { x: string; }
3 interface A { o: Z; }
4 interface B { o: X; }
5
6 type Intersection = A & B;
7 type Union = A | B;
8 type ArrowFn = (a: string) => void;
9 type ObjLiteral = {a: number };

10
11 interface Foo {
12 intersection: Intersection ,
13 union: Union ,
14 arrowFn: ArrowFn ,
15 obj: ObjLiteral
16 }
17
18 // before
19 const bar: Foo = {};
20
21 // after
22 const bar: Foo = {
23 intersection: {
24 o: {
25 z: false ,
26 x: ""
27 }
28 },
29 union: {
30 o: {
31 z: false
32 }
33 },
34 arrowFn: (a: string): void => {
35 throw new Error("Function not implemented.")
36 },
37 obj: {
38 a: 0
39 }
40 };

Listing 2.22: Type alias

32

Generics

Classes or functions can be generic. As shown in listing 2.23, the important thing
is that type arguments for generic are copied correctly.

1 class Box <T> {}
2 interface Foo {
3 clazz: Box <Building >,
4 arrow: <T>(a: T) => boolean ,
5 fn <E>(a: E, b: E): void
6 }
7
8 // before
9 const bar: Foo = {};

10
11 // after
12 const bar: Foo = {
13 clazz: new Box <Building >(),
14 arrow: <T>(a: T): boolean => {
15 throw new Error("Function not implemented.")
16 },
17 fn: <E>(a: E, b: E): void => {
18 throw new Error("Function not implemented.")
19 }
20 };

Listing 2.23: Generics

Inheritance

An interface may inherit from another interface or from a class. Accordingly, default
values must be provided for the interface’s members as well as for any inherited
members as demonstrated in listing 2.24.

33

1 class Base1 {
2 state: boolean
3 }
4
5 interface Base2{
6 attribute: number
7 }
8
9 interface Foo extends Base1 , Base2 {

10 field: string
11 }
12
13 // before
14 const bar: Foo = {};
15
16 // after
17 const bar: Foo = {
18 state: false ,
19 attribute: 0,
20 field: ""
21 };

Listing 2.24: Inheritance

Partially existing and nullable members

An object literal can already contain some members of the target interface. Subse-
quently, only the default values for the missing members must be provided. If a
property is optional, then it will be ignored as shown in listing 2.25.

34

1 interface Foo {
2 field1: string ,
3 field2: boolean ,
4 field3: any ,
5 optField ?: number
6 }
7
8 // before
9 const bar: Foo = {

10 field3: "occupied",
11 field1: "conquered"
12 };
13
14 // after
15 const bar: Foo = {
16 field2: false ,
17 field3: "occupied",
18 field1: "conquered"
19 };

Listing 2.25: Partially existing and nullable members

2.6. Refactoring: Lambda to function

This refactoring converts an arrow function, the Javascript-specific name for lambda
function, to a function and vice-versa. Arrow function and lambda will be used
interchangeably in this document. The considerations made are documented in
this section. First, there is a set of general considerations that are universally valid.
Then, each case is looked at separately.

2.6.1. General considerations

There are a few things that are equally important for all cases. These will be listed
here.

Closure

Closure is a concept defined by JavaScript and thus also relevant for TypeScript.
In short, any function can access symbols from outer scopes. This is also valid for
lambdas. In the example listing 2.26, foo can access bar1 and bar2, but not bar3,
because it is in a different scope.

35

1 let bar1 = 6;
2 function func () {
3 let bar2 = 9;
4 let foo = bar1 * 10 + bar2 - bar3;
5 }
6
7 function funky () {
8 let bar3 = 42;
9 }

Listing 2.26: Closure

In the case of this refactoring, it is not relevant, since functions behave the same
as lambdas. Furthermore, there is no change in scope, i.e. no function is moved
anywhere else. The refactoring is a strict transformation. The same goes for
externally defined constants and global variables. They are visible before and after
the operation.

Type considerations

The refactoring is a mere conversion. The return and parameter types stay the
same.

Comments

When implementing the refactoring, comments must be preserved in the process.
Since they usually are not part of the syntax tree, they must be handled with care.
Listing 2.27 shows possible locations of comments to be considered.

1 const foo1 = (a) => /*c1*/ a+1; //c2
2 const foo2 = (a) => { /*c3*/ return a+1; }; //c4

Listing 2.27: Comments

A preliminary study showed that c1 is not preserved by default, but c3 & c4 are.
Further discussions are necessary to determine whether c1 is an actual use-case
and needs to be preserved.

2.6.2. Case by case considerations

There are four cases to consider:

• To anonymous function

• To named function

• To arrow function

36

• Lambda expression to named function declaration

Each case has to be given consideration, which will be discussed below.

To anonymous function

This action converts a lambda expression to a function expression and vice-versa.
Listing 2.28 shows an example for this refactoring:

1 function someFoo(foo) { foo (); }
2
3 someFoo (() => "beta");
4
5 // <->
6
7 someFoo(function () {
8 return "beta";
9 });

Listing 2.28: Lambda to anonymous function

One important consideration is that a lambda expression may have an expression
or a statement block as a body, but a normal function only accepts a statement
block. A conversion is therefore necessary.
The following consideration has been made post-development and is not reflected
in the code: This action should be called To function expression, because function
expressions can have a name as seen earlier. Thus, To anonymous function is a
misnomer.

To named function

This action converts a lambda declaration as seen in listing 2.29 to a named
function.

1 // before
2 const alpha = () => "beta";
3
4 // after
5 function alpha () {
6 return "beta";
7 }

Listing 2.29: Lambda to named function

There are certain edge cases to be considered as well. For example, when there are
multiple variable declarations in the same statement as seen in listing 2.30. In this
case, the function must be extracted to a new line and the other declarations must
be left intact.

37

1 // before
2 let a, b = () => "DragonBall";
3
4 // after
5 let a;
6 function b() {
7 return "DragonBall";
8 }

Listing 2.30: Multiple declarations

Another thing to consider are modifiers like export. Modifiers must be kept when
converting.

1 // before
2 export let a = () => "DragonBall";
3
4 // after
5 export function a() {
6 return "DragonBall";
7 }

Listing 2.31: Modifiers

To arrow function

There are two cases this action could be applied:

• Function expression to lambda expression

• Function declaration to lambda variable declaration

Listing 2.32 shows the first case:
1 // before
2 function someFoo(foo) { foo (); }
3
4 someFoo(function () {
5 return "beta";
6 });
7
8 // after
9 function someFoo(foo) { foo (); }

10
11 someFoo (() => "beta");

Listing 2.32: Function expression to arrow function

A conversion to an expression body is done if the function body contains only one
statement and that statement is a return statement.

38

Furthermore, a function expression can have a name, but it is not required. Lambdas,
however, cannot have a name. Thus, a function expression must not be converted
to a lambda if it has a name that is referenced. As it is illustrated in listing 2.33:
This was brought to our attention by Andy Hanson on Github. [14]

1 function someFoo(foo) { foo (); }
2
3 someFoo(function fac(n) {
4 return n > 1 ? n * fac(n-1) : 1;
5 });

Listing 2.33: Function expression with referenced name

The second case converts a named function declaration to a lambda declaration.
This case must not be supported because of hoisting – or rather the lack thereof.
JavaScript implements hoisting, which enables function declarations and var vari-
ables to be visible before they are declared. However, const and let do not share
this behavior. As shown in listing 2.34, if the function hoisted was converted into
the lambda declaration trap, then it would change the visibility.

1 trap (); // not visible
2 hoisted (); // visible
3
4 const trap = () => "It’s a tarp!";
5 function hoisted () {
6 return "Yo , ho , and a bottle of rum";
7 }

Listing 2.34: Hoisting

Lambda expression to named function declaration

When researching how the refactoring should work and what it should support,
Webstorm was used as a reference. With Webstorm, it is possible to convert a
lambda expression to a named function using the code action "Convert to named
function" as can be seen in listing 2.35. However, this is rather an extraction, not
strictly a conversion, as pointed out by Kingwl in the issue’s thread [7]. Another
reason, why this should not be implemented, is that the refactoring Extract symbol
already supports it.

39

1 // before
2 applyFn(c => "gamma");
3
4 // after
5 applyFn(gammaFn);
6
7 function gammaFn(c) {
8 return "gamma";
9 }

Listing 2.35: Lambda expression extracted

2.7. Refactoring: Inline variable

This refactoring replaces one or all usages of a local variable with its definition and
deletes it if there is no usage left. This section talks about considerations made for
this refactoring.

2.7.1. Simple case

This is the most basic case with one declaration and one usage as shown in listing
2.36. In this case, someexpression should replace variable as the function argument.
More generally, any variable usage should be replaced with its value.

1 // before
2 const variable = someexpression;
3 foo(variable);
4
5 // after
6 foo(someexpression);

Listing 2.36: Inline variable - simple case

One must be able to invoke the refactoring from the declaration or usage. More on
that in the following case.

2.7.2. More than one usage

If the same variable is referenced more than once, the user can inline all usages
or just one. When inlining only one usage, the variable declaration must not be
deleted.

40

1 // before
2 const variable = expr;
3 foo(variable);
4 const copycat = variable + otherexpr;
5
6 // after - ok
7 foo(expr);
8 const copycat = expr + otherexpr;
9

10 // after - problematic
11 foo(variable); // variable undefined
12 const copycat = expr + otherexpr;

Listing 2.37: Inline variable - multiple usages

One must be able to invoke the refactoring from the declaration or any usage.
Two options should be available depending on context:

• Inline all

– Inline all usages

– Delete declaration

– Invokable from declaration or usage

• Inline here

– Inline one usage

– Do not delete declaration

– Invokable only from usage

2.7.3. Member access

There are cases when inlining a variable produces garbage code. For example, in
listing 2.38 the inlined variable is an new object declaration. Each replacement
creates a new object, which does not preserve behavior. The user may invoke the
refactoring at his own risk, this is not to be prevented.

1 // before
2 const variable = new Class ();
3 variable.member ();
4 foo(variable);
5
6 // after
7 (new Class ()). member ();
8 foo(new Class ());

Listing 2.38: Inline variable - nonsense refactoring

41

2.7.4. Assigned more than once

In the case that the variable is assigned more than once like in listing 2.39, it is
unclear which value should be used. Therefore, one should not be able to invoke
the refactoring at all.

1 let variable = someexpression;
2 variable = otherexpression; // culprit
3 foo(variable);

Listing 2.39: Inline variable - assigned twice.

2.7.5. Declaration not initialized

In case the variable is not initialized at declaration, the refactoring must not be
invoked, since there is no value given. One consideration is to allow it if it is
assigned later on, but this becomes ambiguous regarding the previous case.

2.7.6. Special keywords

Refactoring behavior may change depending on the keyword used. There are only
two keywords that can be used in the context of variable declaration: export and
default. The latter can furthermore only be used in conjunction with the former.
Effectively, only export needs to be considered. This keyword signifies that the
tagged variable is exported from the module. In this case, inlining deletes a public
variable, which could be problematic. Thus, one must not be able to invoke the
refactoring.

2.7.7. Operator precedence

Operator precedence comes into play if both of the following conditions are met:

• the inlined variable is a binary expression and

• an operand of a binary or unary expression

In case these two conditions are met, it may be necessary to surround the inlined
expression with parentheses. This depends on the operator precedence given by
the TypeScript language. Generally, if the inlined binary expression’s operator
precedence is lower than the outer one, it needs to be parenthesized. If it is higher,
then not. If the outer and inner precedences are the same, further considerations
are necessary. This is true even if the no binary expressions are involved, for
example with unary expressions. If the target node’s parent is indeed a unary

42

expression, parentheses are only necessary, if the parent’s operator precedence is
higher. Both other cases can safely be ignored.

• Left-associated operator: parenthesize if right operand (e.g. ==, ||)

• Right-associated operator: parenthesize if left operand (i.e. **)

• Commutative operator: no parentheses necessary (i.e. +, *)

1 // before
2 const sum = 2 + 4;
3 const prod = 9 * sum;
4
5 // faulty after
6 const prod = 9 * 2 + 4;
7
8 // correct after
9 const prod = 9 * (2 + 4);

Listing 2.40: Inline variable - operator precedence

2.7.8. Unary operators

The unary operators ++ and -- can only be used with variables. Inlining that
variable may break the behavior but that is not caught by the refactoring. This
case is ignored.

1 // before
2 let sum = 4 + 2;
3 const prod = 9 * --sum;
4
5 // after
6 const prod = 9 * --(4 + 2);

Listing 2.41: Inlining

2.8. Refactoring: Inline function

This refactoring replaces one or all function calls with the body of its referenced
function.

2.8.1. General

All statements in the declaring function except for the return statement are inserted
before the call statement. If the function returns a value, the call is replaced with
the function’s return expression.

43

1 // before
2 function foo() {
3 const sod = 42;
4 return sod;
5 }
6 function bar() { const meaningOfLife = foo (); }
7
8 // after
9 function bar() {

10 const sod = 42;
11 const meaningOfLife = sod;
12 }

Listing 2.42: Inline function - base case

The refactoring has two actions:

• Inline all:

– Inline all occurences

– Delete function declaration

• Inline here:

– Inline selected occurence

– Do not delete function delcaration

Inline all is available on both function declaration and calls. Inline here is available
on function calls.

2.8.2. Special keywords

Similar to 2.7 Refactoring: Inline variable, the refactoring may change the behavior
depending on keywords. In addition to the two already known keywords export
and default, the following candidates exist:

• async: signifies asynchronous function

• public: changes class method visibility

• private: changes class method visibility

• protected: changes class method visibility

• static: method can be called on class and not only on instances

They keyword static is the only one which can potentially change behavior signifi-
cantly. But it should still be allowed if the user requires it for some reason.

44

2.8.3. Operator precedence

If the return expression of a function is not simple, it may be required to parenthesize
it. Refer to section 2.7 Refactoring: Inline variable for specifics, since the behavior
is the same.

2.8.4. Closure

If a function contains closures, the referenced symbols may not necessarily be
defined in the target location. If that is the case, then the refactoring is not
permissible.

2.8.5. Parameters

If the function has parameters, a new variable declaration must be created for each
one. The declarations are initialized with the arguments of the function call.

1 // before
2 function square(arg: number) { return arg*arg; }
3 function bar() { return square (2); }
4
5 // after
6 function bar() {
7 const arg = 2;
8 return arg*arg;
9 }

Listing 2.43: Inline function - parameters

Destructured parameters

Destructured parameters must be handled as well. Two kinds of destructuring
exist: object destructuring and array destructuring. Only array destructuring is
shown below:

45

1 // before
2 function foo({arg0 , arg1}) {
3 return arg0 * arg1;
4 }
5 function bar() {
6 return foo({ arg0: 21, arg1: 2 });
7 }
8
9 // after

10 function bar() {
11 const { arg0 , arg1 } = { arg0: 21, arg1: 2 };
12 return arg0 * arg1;
13 }

Listing 2.44: Inline function - object destructuring

2.8.6. Multiple return statements

Functions with multiple return statements can be inlined if they are not of void
type. First, a new variable declaration is created. Then, all return statements are
replaced with assignments to the variable. Lastly, the function call is replaced with
this variable.

1 // before
2 function foo() {
3 const x = 2;
4 if (x < 0) return 42;
5 else return 69;
6 }
7 function bar(arg: number) {
8 const someValue = foo();
9 return arg * someValue;

10 }
11
12 // after
13 function bar(arg: number) {
14 const x = 2;
15 let expr;
16 if (x < 0) expr = 42;
17 else expr = 69;
18 const someValue = expr;
19 return arg * someValue;
20 }

Listing 2.45: Inline function - multiple return statements

Functions of void type cannot be inlined as is, because of how the return statement
changes the program flow. The return after doOneThing in listing 2.46 breaks the

46

flow. doFinally is not executed if the condition is true. Thus, void type functions
are not inlined. Other IDEs like Webstorm do not inline functions with multiple
return statements at all.

1 function foo() {
2 if (condition) {
3 doOneThing ();
4 return;
5 }
6 else {
7 doOtherThing ();
8 }
9 doFinally (); // is only executed if condition is false

10 }

Listing 2.46: Inline function - multiple return statements

2.8.7. Name conflict

Local names may conflict with those in the target location. Thus, it is imperative
to resolve this name conflict. Each conflicting local name needs to be replaced with
a unique name. This is done for any parameter and other local declarations like
variables and functions.

1 // before
2 function square(arg: number) { return arg*arg; }
3
4 function bar(arg: number) {
5 return arg * square (2);
6 }
7
8 // after
9 function bar(arg: number) {

10 const arg_1 = 2;
11 return arg * arg_1 * arg_1;
12 }

Listing 2.47: Inline function - name conflict

2.8.8. Throws

In case the function does not exit in a controlled way, e.g. via a throw statement,
inlining that function changes the behavior because more code will be skipped if a
throw occurs. The user should be aware of this problem. Thus, this case will be
ignored.

47

2.8.9. Overloading

Overloading in TypeScript is allowed as long as there are no duplicate function
definitions. This can be used to make APIs more understandable instead of having
to look at a long list of optional parameters.

1 // not allowed
2 function square () { return undefined; }
3 function square(n: number) { return n * n; }
4
5 // before
6 function square (): number;
7 function square(n: number): number;
8 function square(n?: number) { return n * n; }
9 const result = square (2);

10
11 // after
12 function square (): number;
13 function square(n: number): number;
14 function square(n?: number) { return n * n; }
15 const n = 2;
16 const result = n * n;

Listing 2.48: Inline function - overloading

2.8.10. Inline method

Just like functions, methods can also be inlined. When inlining a method, there are
two cases to be considered: inlining within the same class and inlining across class
borders. One of the main problems is the member-access with the this keyword.
Listing 2.49 illustrates this problem. The Car’s method drinkAndDrive is inlined into
the Driver’s method. It references its class’ own method drive with this.drive();.
If the code is copied as is, this would change the behavior, because the Driver’s
drive method would be called, which may or may not be defined. Thus, this must
be replaced with this.car or just car if it was not a property.

48

1 // before
2 class Car {
3 drive() { return "vroom"; }
4 drinkAndDrive () { return "glug " + this.drive (); }
5 }
6 class Driver {
7 car: Car = new Car ();
8 drinkAndDrive () { return this.car.drinkAndDrive (); }
9 }

10
11 // after
12 class Car {
13 drive() { return "vroom"; }
14 }
15 class Driver {
16 car: Car = new Car ();
17 drinkAndDrive () { return "glug " + this.car.drive (); }
18 }

Listing 2.49: Inline method

2.9. Refactoring: String concatenation to
template literals

This refactoring converts a string concatenation to a string interpolation and the
other way around. First, the template literal is analyzed to gain deeper insight.
Afterwards, each case is examined individually.

2.9.1. Template literals

Template literals allow to write multi-line strings and to evaluate strings containing
placeholders. Instead of single or double quotes, template literals are enclosed by
backticks ‘...‘. A placeholder consists of a dollar sign and an expression enclosed
by curly braces ${expression}.
It is also possible to place a tag function before the template string, which gives
the opportunity to pre-process the template literal. As illustrated in listing 2.50,
an array of all string literal sections are passed as the first argument and all the
values of the placeholders are passed as the remaining arguments. [31]

49

1 const age = 12;
2 const interpolated = ‘Tom is ${age} years old‘;
3 const newLine = ‘wait for the break
4 booom , here is the the new line‘;
5
6 function tagArrow(literals: TemplateStringsArray ,
7 ... placeholders: number []) {
8 let output = "";
9

10 for (let i = 0; i < placeholders.length; i++) {
11 output += literals[i];
12 output += "-> ";
13 output += placeholders[i];
14 }
15
16 return output;
17 }
18
19 const taggedTemplate = tagArrow ‘Peter ${20}, Rachel ${27}‘;
20 // Peter -> 20, Rachel -> 27

Listing 2.50: Template literal example

2.9.2. Cases

This refactoring must be invokable from any context, whether it is a variable
declaration or a function call.

As function argument

In listing 2.51, the function expects a string and a string concatenation is provided.
In such situations, this refactoring must offer the action To template literal.

1 // before
2 console.log("foobar is " + 32 + " years old");
3
4 //after
5 console.log(‘foobar is ${ 32 } years old‘);

Listing 2.51: As function argument

As variable declaration

This is the other base case, where a string concatenation is assigned to a variable.
Even in such situations, this refactoring must offer the option To template literal.

50

1 // before
2 const age = 42;
3 const foo = "foobar is " + age + " old";
4
5 // after
6 const age = 42;
7 const foo = ‘foobar is ${age} old‘;

Listing 2.52: As variable declaration

Remove parentheses

If an expression is parenthesized in a string concatenation, then the parentheses
are stripped away for the template literal as demonstrated in listing 2.53.

1 // before
2 const foo = "foobar is " + (42 + 5) + " old";
3
4 // after
5 const foo = ‘foobar is ${ 42 + 5 } old‘;

Listing 2.53: Remove parentheses

Arithmetic expression

The evaluation of an arithmetic expression depends on the expression’s location
in a string concatenation. Any arithmetic expression prior to the first string is
evaluated normally and therefore, it can contain any arithmetic operators as shown
in listing 2.54. Arithmetic expressions after the first string are evaluated based on
their relative operator precedence as demonstrated on line 4 and onward.

1 // before
2 const foo1 = 4 + 4 + " Result"; // 8 Result
3 const foo2 = 5 - 4 + " Result"; // 1 Result
4 const foo3 = "Result " + 4 + 4; // Result 44
5 const foo4 = "Result " + 5 - 5; // Error
6 const foo5 = "Result " + 5 * 5; // Result 25
7
8 // after
9 const foo1 = ‘${4 + 4} Result ‘;

10 const foo2 = ‘${5 - 4} Result ‘;
11 const foo3 = ‘Result ${4}${4}‘;
12 // refactoring for foo4 not available
13 const foo5 = ‘Result ${5 * 5}‘;

Listing 2.54: Arithmetic expression

51

New line

When a string concatenation contains a line feed character \n, then it must be
converted to an actual new line in template literal as illustrated in listing 2.55.

1 // before
2 const foo = "wait for new line\n"
3 + "bada bum!";
4
5 // after
6 const foo = ‘wait for new line
7 bada bum!‘;

Listing 2.55: New line

Escape backtick and dollar

Backticks and dollar signs with opening brace must be escaped before the conversion
as shown in listing 2.56.

1 // before
2 const foo = "I contain a‘ backtick and a dollar ${}";
3
4 // after
5 const foo = ‘I contain a\‘ backtick and a dollar $\\{}‘;

Listing 2.56: Escape backtick and dollar

Escape sequences

Klaus Meinhardt has pointed out in pull request that octal escape sequences are
not allowed in template literals. [24] Therefore, when a string contains an octal
escape sequence, the octal sequence must be converted to unicode characters as
demonstrated in listing 2.57.

1 // before
2 const foo = "Unicode \u0023 \u{0023} " + "Hex \x23 " + "Octal \43";
3
4 // after
5 const foo = ‘Unicode # # Hex # Octal #‘;

Listing 2.57: Escape sequences

To string concatenation

When converting to string concatenation, all expressions must be placed in the
right position of concatenation. In such situations, this refactoring must offer the

52

option To string concatenation.
1 // before
2 const age = 42;
3 const foo = ‘foobar is ${age} old‘;
4
5 // after
6 const age = 42;
7 const foo = "foobar is " + age + " old";

Listing 2.58: To string concatenation

Add parentheses

When a placeholder contains a compound expression, then this expression must be
parenthesized before converting to string concatenation as shown in listing 2.59.

1 // before
2 const foo = ‘foobar is ${ 42 + 5 } old‘;
3
4 // after
5 const foo = "foobar is " + (42 + 5) + " old";

Listing 2.59: Add parentheses

Nested template literals

As demonstrated in listing 2.60, if a template literal contains another template
literal, just the selected template literal is transformed. In other words, embedded
expressions’ template literals will not be converted recursively. In case the outer
template literal is selected, then only outer one is converted as show on line 6. In
case the inner template literal is selected, then only inner one is converted as shown
on line 10.

1 // before
2 const foo = ‘foobar is a
3 ${ ‘grown -up ${ age > 60 ? "and needs assistance" : ""}‘ }‘;
4
5 // after outer
6 const foo = "foobar is a " +
7 ‘grown -up ${ age > 60 ? "and needs assistance" : ""}‘;
8
9 // after inner

10 const foo = ‘foobar is a
11 ${ "grown -up " + (age > 60 ? "and needs assistance" : "")" }‘;

Listing 2.60: Nested template literals

53

Tagged templates

As shown in listing 2.61, when a template literal is used in combination with a tag
function, then this refactoring must not be provided because the tag function can
only be used with a template literal.

1 // before
2 function myTag (literals: TemplateStringsArray , ... exprs: any[]) {}
3 const foo = myTag‘foobar ${4 + 6} rocks‘;
4
5 // refactoring not available

Listing 2.61: Tagged templates

54

3. Design

This chapter contains all the design decisions made for each refactoring or quick-fix.

3.1. Quick-Fix: Interface stubbing for object
literal

This section describes the design decision made for this quick-fix. First, the general
procedure is explained. Afterwards, each case will be discussed in more detail.
Since the cases as function argument, inheritance and partially existing and nullable
members are dealt with in general procedure, these cases will not be discussed
separately.

3.1.1. General procedure

There are four major steps to this quick-fix.

1. Get interface’s declaration

Since this quick-fix is available for variable declarations and function calls,
there are two starting points.

If this quick-fix is triggered from a variable declaration, the interface’s decla-
ration is simply extracted from the variable’s type.

In case of a function call, it is more involved. Since the type information for
arguments is not available in a function call, the function declaration must
first be retrieved. Thereafter, the right parameter is fetched based on the
concerning argument’s position. Subsequently, the interface’s declaration is
extracted from the parameter’s type.

2. Fetch all members

All members are fetched from the concerning interface and inherited inter-
faces/classes. The next step is to filter out existing members and optional
properties.

55

3. Create missing members

For creating a property, two pieces of information are needed: a name for the
property and an expression. The symbol, which was fetched in the previous
step, contains the relevant information. One is the name, which is directly
reused for the creating the property. The other one is its type, which is
indirectly used for creating of expression. How the expressions are created
will be explained in the following subsections because it is handled for each
type differently.

4. Manipulate AST

The new members will be inserted at the start of the corresponding object
literal.

3.1.2. Basic types

The default values of basic types can be created using a lookup table such as table
3.1.2. Since the type any can have any value, it was decided that the default value
is "any" so that it can be distinguished from others at a glance.

Type Default value
string ""

number 0

boolean false

null null

any "any"

array []

Table 3.1.: lookup table for basic types

3.1.3. Objects

There are two options to deal with classes. One is to always call their default
constructor. The other is to call the existing constructor and to fill it with random
data. The latter poses the danger of misuse. That is why it was decided to always
call the default constructor.
In case there is no default constructor available, the checker notifies the user that
the constructor is missing arguments. The default constructor is called for primitive
wrapper objects as well.
In order to distinguish the type object (lowercased) from the type Object (upper-
cased), it was decided that the argument "anyObject" is passed to the constructor
for the type object (lowercased).

56

If type is an object literal, step 4 Create missing members will be triggered using
members of the object literal. Thanks to this recursion, nested object literals can
be created.

3.1.4. Methods

An arrow function can be assigned to a method signature or property with a
function type, whereas a method can only be assigned to a method signature. In
order to keep the complexity level low, it was decided to create an arrow function
in either case.
First, relevant attributes like parameters and return type are collected. Subse-
quently, a new arrow function is created with collected attributes as well as a new
function body containing a throw expression.

3.1.5. Intersection and Union Types

In case of a union type, the first type is picked. Thereafter, a default value is
provided for the picked type.
In case of an intersection type, all types are fetched from the intersection. Subse-
quently, all properties are retrieved from those types. After that, these properties
are combined into one pool of properties, making sure there are no duplicates.
Finally, a default value is provided for each property.

3.1.6. Tuples

The encapsulated types are extracted from tuple type. Afterwards, a default value
is provided for each encapsulated type.

3.1.7. Type Alias

If a type alias is different from a real type such as intersection or union types, the
real type is revealed with TypeChecker.

3.1.8. Generics

As long as functions and classes copy the type argument for generic correctly, there
will be no trouble.

57

3.2. Refactoring: Lambda to function

This section discusses the design decisions made for the refactoring Lambda to
function.
To implement this refactoring, the AST must be modified. These modifications
vary based on the cases discussed in the analysis chapter.

3.2.1. To named function

The lambda expression node is nested in a variable node. The hierarchy must be
traversed to get all the needed information. Furthermore, the correct node needs
to be replaced. The replacement needs to happen on the statement-level. An
illustration of the corresponding fields can be seen in figure 3.1. Name, parameters,
and return type can be copied as is depending on implementation. The body needs
to be converted if it is an expression. In that case, a statement block with a single
return statement containing the expression should be created.

Figure 3.1.: Lambda declaration to named function

In case the lambda declaration is part of a multi-declaration line, the variable
declaration containing the lambda expression must be removed from the list instead
of deleting the whole statement node. In that case, a new function declaration
node must be inserted after that statement node as seen in listing 3.1:

58

1 // before
2 const a = 3, b = n => n * 2;
3
4 // after
5 const a = 3;
6 function b(n) {
7 return n * 2;
8 }

Listing 3.1: Multi-declaration

3.2.2. To anonymous function

In this case, the substitution is simpler. The lambda expression is replaced by a
function expression as seen in figure 3.2. The function’s name is left empty. The
body conversion is handled the same as in the previous case.

Figure 3.2.: Lambda expression to anonymous function

3.2.3. To arrow function

This is the reverse case of the previous one. The same considerations must be made
here with exception of the body. A lambda’s body can be either an expression or a
statement block. A simple solution would be to just copy the block and be done
with it. However, if that function has a singular return statement, it is converted
to an expression body.

3.3. Refactoring: Inline variable

This section discusses the design decisions made for the refactoring inline variable.
To implement this refactoring, the AST must be modified. These modifications
vary based on the cases discussed in the analysis chapter.

59

3.3.1. General behavior

There are three steps to this refactoring.

1. Check if refactoring applicable

2. Find references with the help of symbols

3. AST manipulation

As laid out in the analysis chapter, there are two basic cases when the refactoring
may be applied. When a local variable declaration or its usage is selected.
Three pieces of information are necessary to execute the refactoring:

• the variable declaration

• the references to – or usages of the variable

• (optional) the selected usage, if invoking Inline here

The second step of the refactoring requires finding all references in the outermost
scope, where the variable is visible. This is done by finding which scope the
declaration is in. Usages of the variable may be in a nested scope, so it is dangerous
to use them to set the scope.
Once all references have been found, the third step is to manipulate the AST.

Inline all

In the case of Inline all, as the name suggests, all usages must be replaced. Then,
the declaration can be removed.

Inline here

In the case of Inline here, only the selected usage is replaced. If there are no other
usages left, the declaration is removed.

3.3.2. Restrictions on refactoring

As discussed in the analysis, there are three cases where the refactoring should not
be invoked but should still be initially provided for transparency.
The current refactoring interface provides two methods, of which getEditsForAction
executes the refactoring. It should report the failure accordingly.
In its current state, however, the interface does not support this behavior. There
is no way to send a refactoring report message. The only way to prevent the
refactoring is to not provide it at all.

60

3.4. Refactoring: Inline function

This section discusses the design decisions made for the refactoring Inline function.
To implement this refactoring, the AST must be modified. These modifications
vary based on the cases discussed in the analysis chapter.

3.4.1. General behavior

There are three steps to this refactoring.

1. Verify that refactoring is applicable

2. Find references in file with the help of symbols

3. Manipulate AST

As laid out in the analysis chapter, there are two basic cases when the refactoring
may be applied. When a function or method declaration is selected, or its call.
Three pieces of information are necessary to execute the refactoring:

• The function or method declaration

• The function or method calls respectively

• The selected call, if invoking Inline here

When transforming the AST, the function-call node is the anchor. The function’s
statements are inserted before that node’s parent statement. The same goes for
any parameters, which need to be converted to local variable declarations.
If the call node’s parent is a statement, that statement is deleted. Otherwise, the
call node is replaced with the function’s return expression.

3.4.2. Multiple return statements

If the function has multiple return statements and its type is not void, a return-value
variable declaration is inserted before the function’s statements. Furthermore, the
call node is replaced with that variable.

3.4.3. Name conflict

In order to resolve name conflicts, certain steps need to be taken:

1. Determine all names in the target location

61

2. Compare them with names in the function

3. Replace conflicting names with unique ones

Special care needs to be taken for object literal’s properties. If the shorthand is used,
it must be replaced with the longer notation, { property_name: variable_name }, as
seen in listing 3.2. Reason being that arg is the property’s name. Simply replacing
it with arg_1 would make the compiler retrieve a different property, which would
change behavior.

1 // before
2 function foo({arg}) {
3 return arg;
4 }
5 function bar(arg: number) {
6 return arg * foo({ arg: 21 });
7 }
8
9 // after

10 function bar(arg: number) {
11 const { arg: arg_1 } = { arg: 21 };
12 return arg * arg_1;
13 }

Listing 3.2: Destructuring name conflict

3.4.4. Restrictions on refactoring

As discussed in the analysis chapter, there are cases where the refactoring should
not be invoked but should still be initially provided for transparency.
The current refactoring interface provides two methods, of which getEditsForAction
executes the refactoring. It should report the failure accordingly.
In its current state, however, the interface does not support this behavior. There
is no way to send a refactoring report message. Thus, the only way to prevent
the refactoring is to not provide it at all, which is done in the getAvailableActions-
function.

3.5. Refactoring: String concatenation to
template literals

This section describes the design decisions made for this refactoring. First, the
template expression is explained. Thereafter, the general procedure is described.
Afterwards, each case will be discussed in more detail. Since the cases as function

62

argument, as variable declaration and to string concatenation are dealt with in
general procedure, these cases will not be discussed separately.

3.5.1. Template expression structure

As illustrated in figure 3.3, a template expression is made of two parts: a template
head and template spans. A template span either have a template middle or a
template tail. A template span must have a string and an expression, whereas a
template head has only a string.

Figure 3.3.: Template expression structure

3.5.2. General procedure

Since this refactoring offers two actions: To template literal and To string concate-
nation, there are two general procedures.

To template literal

1. Get top binary expression

A string concatenation consists of nested binary expressions. The binary tree
is traversed up until top binary expression is reached. Thereafter, the top
binary expression is returned.

2. Transform tree to array

Element access is cumbersome in a tree. Therefore, the tree is first converted
to an array of nodes with correct order.

63

3. Create template literal

Template head and tail need to be created individually. The template middle
parts are created for each of the remaining nodes in the array.

4. Replace node

Finally, the top binary expression node is replaced by the template literal.

To string concatenation

1. Create array of expressions

An array of expressions is created based on the template literal.

2. Transform array to tree

An binary tree with correct traversal order is created based on the array of
expressions.

3. Replace node

Finally, the template literal is replaced by the newly created binary expression
tree.

3.5.3. Remove parentheses

If an expression is wrapped in parentheses, then the expression is extracted.

3.5.4. Arithmetic expression

All arithmetic expressions prior the first string are considered and handled as single
expression. This ensures that the whole expression will be calculated correctly.

3.5.5. New line

A preliminary study has been done on whether it is possible to explicitly set a new
line in a template literal. But it appears that the string writer does not support
the explicit setting of a new line. That is why this case will not be implemented.

3.5.6. Escape backtick and dollar

The backtick is escaped by inserting a backslash in front of it. The dollar sign can
be escaped in two ways: putting a backslash in front of the dollar sign or putting a
backslash between the dollar sign and the opening brace. There is no behavioral
difference, thus it was decided to use the latter option.

64

3.5.7. Escape sequences

If a string contains a backslash and a sequence of numbers from 0 to 7, then this
octal escape sequence must be converted to a unicode character. First, the octal
number must be converted to hexadecimal. Finally, a unicode character is created
based on the hexadecimal value.

3.5.8. Add parentheses

If the placeholder of a template literal has a compound expression, then parentheses
are added to the compound expression.

3.5.9. Nested

From the selected token, the first template literal ancestor in the node hierarchy is
chosen for the conversion to string concatenation.

3.5.10. Tagged templates

If the parent of a template literal is a tag function, then this refactoring is not
provided.

65

4. Implementation

This chapter shows how all refactorings and quick-fixes are effectively implemented.

4.1. Quick-Fix: Interface stubbing for object
literal

4.1.1. General

Retrieving the interface’s declaration from a variable is very simple. In case of a
function call, it requires some additional steps, but it is still easy. And thanks to
TypeChecker all properties can easily be retrieved from the relevant interface and
its inherited classes/interfaces with just one method call.
As the design part has shown, when a method is required, an arrow function is
provided instead of a method implementation. Thanks to this insight, all member
kinds for object literal can be considered as properties without any change in
external behavior. Thus, further branch divergence could be avoided.
Before creating a property or expression, the syntax kind may need to be redirected
in order to provide the right default value. Difficulties lied in redirecting the syntax
kinds without disturbing already working implementations.

4.1.2. Corner cases

Redirect interface

If a property’s type is an interface, it is desired that an object literal is produced.
But if a property’s type is an primitive wrapper objects, it is expected that a
new-expression is created. Both have the type interface because the wrapper’s
functionalities are defined in interface. Since the wrapper’s declarations are not all
interfaces, this knowledge is leveraged to separate them from each other.

Redirect union

Booleans and enums are represented as union types internally. Therefore, the first
type from union is only picked as long as the the property is not boolean and not
enum.

66

Redirect anonymous object

When a function or object literal is behind a type alias, then they have the type
anonymous object. In such cases it is first checked whether it can be a function or
not. Afterwards, it is redirected to the right syntax kind accordingly.

Generic class

Normally, a class has the type class. But the generic class has the type reference.
Therefore, when creating the default expression for a class instance, it also is
checked, whether it can be a reference type.
Before creating a new-expression for a class, an identifier is needed. The identifier
is created based on a string. The function typeToString() of TypeChecker is used
to create the string. In case of a generic class, the returned string still contained
the angle brackets with type argument. Thus, the identifier could not be created.
There is a filter before creating the identifier that ensures the angle brackets with
its content are removed.

Intersection

Since an intersection type can be behind type alias, it is checked, whether it can
be an intersection type or not. Thereafter, it is accordingly redirected to syntax
kind intersection.
Retrieving the types from an intersection works fine for most cases. However, there
is one particular case, which needs a special treatment. This situation arises only,
if an intersection type is behind a type alias and this type alias is inside a tuple.
For that, a flag named wasRedirectedForIntersection was created to retrieve the
types differently.

4.2. Refactoring: lambda to function

As the analysis has shown, only three of four considered cases are necessary.
Therefore, only these three cases are discussed in this section.

4.2.1. To anonymous function

This action is visible for every lambda expression independent of surrounding code.
That means it does not matter, if the lambda expression is meant to be a function
argument or variable declaration. In order to invoke a refactoring, source code
must be selected. Whether this refactoring is provided or not depends only on the
starting point of the selection. Thus, to invoke this code action, the selection must

67

begin with the head of the lambda expression. But if the selection begins inside
the body of the lambda expression, then this code action will not appear because
it already is a different code context.

Procedure

Almost every attribute is copied from the ArrowFunction node into a new Func-
tionExpression node without any modification. As demonstrated in figure 4.1, if
the body of the ArrowFunction is a single expression, then a new ReturnState-
ment will be created where the extracted expression is inserted. After that a new
FunctionBlock will be created with the ReturnStatement. If the body of the Arrow-
Function is already a FunctionBlock, then it will be copied without modification.
The name of the new FunctionExpression node is left empty. Thereafter, the old
ArrowFunction node is replaced by the new FunctionExpression node.

Figure 4.1.: AST transformation with single variable

Corner cases

The comments are not a part of the AST. In order to handle comment manipulation,
there are helper functions available. When a single expression is transformed to a
function block, as shown in listing 4.1, the multiline comment cannot be preserved
despite the helper functions. The reason for this behavior is unknown as it has not
been pursued. Since this is an unusual location for writing a comment, no further
steps are taken to fix this particular issue. In other situations the comments are
preserved.

68

1 # Before
2 const foo = () => /* comment */ "bar";
3
4 # After
5 const foo = function (){
6 return "bar";
7 }

Listing 4.1: difficult comment

4.2.2. To named function

This action is only available if the lambda expression is defined as a variable
declaration. It can be invoked, if lambda expression or variable declaration is
partially selected. In case of single variable declaration, it does not matter if
the variable name or the keyword like const is selected. But in case of multiple
variable declaration, it works only if the corresponding variable name of the lambda
declaration is selected.

Procedure

Most attributes from ArrowFunction are used to create the new FunctionDec-
laration node. As shown in figure 4.2, the modifiers like export are taken from
VariableStatement node. The name is extracted from the corresponding Vari-
ableDeclaration node. Like To anonymous function, if the body of ArrowFunction
is a single expression, then the Expression is transformed to a Block with a single
ReturnStatement. In case of single VariableDeclaration, the VariableStatement
node is replaced by the newly created FunctionDeclaration node.
In case of multiple VariableDeclaration, the relevant VariableDeclaration node is
removed and the newly created FunctionDeclaration node is inserted right after
VariableStatement as demonstrated in figure 4.3.

4.2.3. To arrow function

This action is visible for every function expression as long as the name is not
used. To invoke this action, function expression must be partially selected and the
selection must begin with header of function. If the selection starts inside the body,
then this action will not appear because it already is a different code context.

Procedure

Apart from body, every attribute is copied from FunctionExpression node into
new ArrowFunction node. If the body of FunctionExpression contains only one

69

Figure 4.2.: AST transformation with single variable

statement and this statement is a ReturnStatement, then the expression of the
single statement will be used as the new body for ArrowFunction node. In other
situations the body is just copied without modification to new ArrowFunction node.
After that the old FunctionExpression node is replaced with the new ArrowFunction
node.

Corner Cases

When the body of FunctionExpression is transformed into a expression, the com-
ments from FunctionExpression will be lost because comment is not a part of the
AST. Fortunately, there is a helper function which can copy comments from one
node to other node.
In case the body of FunctionExpression is a single ReturnStatement, it is necessary
to be verified that the expression of the ReturnStatement is not empty. Only then
it is permissible to transform into a expression.
As demonstrated in listing 4.2, in JavaScript the name of function expression can
only be used inside the body like for recursion purpose. If the name is used, then
this refactoring will be not provided.

1 [1,2,3].map(function factorial(n): int {
2 return n <= 0 ? 1 : n * factorial(n - 1);
3 });
4
5 factorial (5); // [ts] Cannot find name ’factorial ’

Listing 4.2: function expression name usages

70

Figure 4.3.: AST transformation with multiple variables

4.3. Refactoring: Inline variable

There are two basic cases when the refactoring may be applied. When a local
variable declaration or its usage is selected. The former is true if the parent node
of the selected token is a VariableDeclaration and it is in a VariableStatement.
The identifier’s symbol has a property named valueDeclaration. This is the symbol’s
declaration node. If this passes the same test as above, we know it is a local variable.
To find all usages of the variable, FindAllReferences.Core.EachReferenceInFile was
used as a first measure. This did not work, however, because it never ran
through more than one reference. Therefore, a custom solution was implemented:
getReferencesInScope.
Regarding the operator precedence, the compiler API does not provide a helper
function to assess if parentheses are necessary in a general case. There is however
a parenthesizeBinaryOperand function, which can decide whether to parenthesize
the expression, based on the target node being part of a binary expression or not.
Other cases need to be handled manually according to the points made in the
analysis chapter.
For Inline all, an extra step needs to be taken, when replacing the node. Since
each node must have a unique id, just copying the expression node and passing
it along is not enough. The id needs to be replaced. Unfortunately, we did not
find any general enough copy-function that could copy any node and assign a new
unique id. To remedy this, a function called makeIdUnique was made. It uses the
API function getNodeId, which assigns a unique id if id is undefined. makeIdUnique

71

uses this knowledge and assigns undefined to the node’s id-property and calls
getNodeId. This is a hack and if a better solution is found in the future, this should
be rewritten.

4.4. Refactoring: Inline function

This section talks about implementation details for the refactoring Inline function
that may not be immediately evident and are not explained in the code.

canInline Inlining only makes sense if a function has a body and if that body is
not empty. Thus, appropriate checks are performed.

getCallsInScope When inlining a method a simple symbol comparison is not
enough. Because TypeScript is a prototype-based language, object members can
be modified after instantiation. Thus, a method drive could be rewritten to do
something else than a class Car, of which the object is a member, defines. This
means that a class instance’s member cannot have the same symbol as the class’
member. That is why the indirection via an object’s type is necessary.

getInlineInfo To transform a function body, getInlineInfo uses the visitor pattern.
The visitor is the function called transformVisitor. It needs to be an inner function
because it only accepts one argument, but requires contextual information, which
is fed in using closure.

4.4.1. Inlining across multiple files

According to Microsoft’s specifications, the function getAvailableActions must be
very quick. To our knowledge however, the TypeScript compiler API does not
provide a quick and efficient way to search a file for references to a symbol. Therefore,
the only way is to traverse all nodes in every file to find references. This may take
a very long time for large code bases. But due to the current lack of feedback
in getEditsForAction, it must be determined whether the refactoring should be
provided in getAvailableActions. Thus, it was decided to only provide inlining
within a file. This should not be too much of a limitiation. Judging from personal
experience, this refactoring is rarely used across multiple files.

4.4.2. Overloading

Currently, overloaded functions are not supported. This is not too complex to
implement, though. Symbol has a member declarations, which contains all dec-

72

larations. If iterating over that array results in a function declaration which is
applicable for the refactoring, it is chosen.

4.5. Refactoring: String concatenation to
template literals

This section talks about implementation details for the refactoring String con-
catenation to template literals that may not be immediately evident and are not
explained in the code.

4.5.1. Transforming tree to array

The array of expressions is built while the binary tree is traversed in-order. As long
as no string literal is visited for the first time, the visited expressions are considered
as a single expression. During the traversal, if an expression is a parenthesized
expression, the inner expression is extracted.

4.5.2. Transforming array to tree

A binary expression tree is needed for creating string concatenation. A binary tree
is built using an array of expressions. The binary tree is built in a left-associative
manner with plus operators.

4.5.3. Creating template literal

As shown in design, the template expression structure expects that a string is
followed by an expression and an expression is followed by a string. In other words,
a string cannot be followed by another string.
That is problematic when a string concatenation is made of consecutive strings. The
solution is to consume consecutive strings in a greedy manner. In other words, the
string is concatenated with the next string internally while as the next expression
is a string literal. Subsequently, the string is inserted in a template part.

4.5.4. Decoding raw string

For handling octal escape sequence, it is required to retrieve the raw string because
the text property from string literal nodes is already interpreted. The raw string is
retrieved with the node’s method getText().
First, the single or double quotes must removed from raw string. Apart from the
octal escape sequence, the unicode and hexadecimal escape sequence must also

73

interpreted to a unicode character, since the interpretation of the raw string is
done manually.

74

5. Conclusion

The following code actions have been implemented:

• Inline local – Pull-request: #28522

• Inline function – Pull-request: #29096

• Convert lambda to function – Pull-request: #28250

• Convert string concatenation to template literal – Pull-request: #28923

• Interface stubbing for object literal – Pull-request: #28863

At the time of writing this document, the pull-request for Convert lambda to
function has been reviewed and approved by Microsoft. Others have not been
reviewed yet.
Initially, we anticipated that we could implement more code actions. However,
unfamiliarity and other unforeseen problems made it more difficult. What is more,
the split focus between refactorings and quick fixes drained additional resources.
This was due to there being significant differences in their APIs, which were not
documented well. This forced us to invest a lot of time to understand how to
use them. In hindsight, we should have focused only on refactorings to be able
to contribute more. Lack of documentation was a general problem, so there was
always a need to invest a lot of time into understanding how to use the various
APIs, i.e. the compiler’s AST API. One more reason why it took longer for each
feature was our initial limited understanding of TypeScript. Neither of us had a
lot of experience with TypeScript. We learned very much about the language itself
while working on this project.
On a more positive note, the internal code reviews improved the final code quality
significantly. Some even revealed bugs. Doing code reviews was certainly worth
the time investment. Writing test before implementing a feature, as suggested by
Thomas Corbat, also proved very helpful while refactoring.

5.1. Outlook

Since not all code actions have been reviewed yet, it is expected that there will be
additional work cleaning the code. Since the repository is managed by Microsoft,

75

https://github.com/Microsoft/TypeScript/pull/28522
https://github.com/Microsoft/TypeScript/pull/29096
https://github.com/Microsoft/TypeScript/pull/28250
https://github.com/Microsoft/TypeScript/pull/28923
https://github.com/Microsoft/TypeScript/pull/28863

it is not possible to say when this work will be finished. Thus, it does not lie in
the scope of this project.
The implemented quick-fix, Interface stubbing, makes use of existing error messages.
However, just before opening the pull-request, one of the error messages did not
appear anymore. A related code change in the master branch seems to be causing
this. Therefore, issue #28767 has been opened on Github regarding this matter.
[32]
Apart from that, there is also the matter of the design flaw in the refactoring API,
which prevents the language server to send diagnostic information to the client in
case a refactoring fails. This would be useful for transparency. For example, the
user should know why inlining a function fails, when the function has an empty
body. The user expects the refactoring to be possible, but currently, the refactoring
is just not available. Instead, the refactoring should be shown initially, but if the
command is invoked, an error message should tell the user that the function cannot
be inlined because the function body is empty. An appropriate issue has been
openend on Github. [16]
Lastly, overloaded functions have been overlooked for the refactoring Inline function
as mentioned in section 4.4.2.

76

Glossary

API Application Programming Interface. viii, ix, 4, 5, 9, 15, 19–21, 48, 71, 72, 75,
76

AST The Abstract Syntax Tree is a tree that represents the abstract syntactic
structure of source code. 14–16, 19, 20, 22, 56, 58–61, 68, 70, 71, 75

JSON JavaScript Object Notation. 10, 12, 14, 24, 77

JSON-RPC is a remote procedure call protocol encoded in JSON. It is a very
simple protocol, defining only a few data types and commands [39]. 9, 10, 77

LSP The Language Server Protocol is an open, JSON-RPC-based protocol for
use between source code editors or integrated development environments and
servers that provide programming language-specific features[40]. ix, 8–12, 14

mixin The mixin concept allows a class to add more functionality without making
use of inheritance’s specialization . In other words, a class implements an
interface with implemented methods [41]. 25

77

Bibliography

[1] Advanced Types. Microsoft. url: https://www.typescriptlang.org/docs/
handbook/advanced-types.html (visited on 12/02/2018).

[2] Allgemeine Infos Diplom. HSR. url: https://www.hsr.ch/Allgemeine-
Infos-Diplom-Bach.4418.0.html (visited on 09/28/2018).

[3] Archive. HSR. url: https://archiv-i.hsr.ch/ (visited on 09/28/2018).

[4] basarat. TypeScript Compiler Internals. url: https://basarat.gitbooks.
io/typescript/docs/compiler/overview.html (visited on 10/19/2018).

[5] Build cross platform desktop apps with JavaScript, HTML, and CSS. Electron.
url: https://electronjs.org/ (visited on 12/18/2018).

[6] Coding guidelines. Microsoft. May 11, 2018. url: https://github.com/
Microsoft/TypeScript/wiki/Coding-guidelines (visited on 10/23/2018).

[7] Convert lambda expression declaration to function issue #23299. url: https:
//github.com/Microsoft/TypeScript/issues/23299#issuecomment-
429288585 (visited on 10/24/2018).

[8] Debugging Language Service in VS Code. Microsoft. url: https://github.
com/Microsoft/TypeScript/wiki/Debugging-Language-Service-in-
VS-Code (visited on 12/10/2018).

[9] Developer Survey Results 2018. Stackoverflow. url: https://insights.
stackoverflow.com/survey/2018/ (visited on 12/18/2018).

[10] Extending Visual Studio Code. Microsoft. url: https://code.visualstudio.
com/docs/extensions/overview (visited on 10/14/2018).

[11] Extensibility Principles and Patterns. Microsoft. url: https://code.visualstudio.
com/docs/editor/refactoring (visited on 12/16/2018).

[12] Extensibility Principles and Patterns. Microsoft. url: https://code.visualstudio.
com/docs/extensionAPI/patterns-and-principles (visited on 10/14/2018).

[13] Martin Fowler. Refactoring. url: https://refactoring.com/ (visited on
12/16/2018).

[14] Andy Hanson. add support to convert lambda to function and vice-versa.
Nov. 7, 2018. url: https://github.com/Microsoft/TypeScript/pull/
28250%5C#issuecomment-436695129 (visited on 11/30/2018).

78

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html
https://www.hsr.ch/Allgemeine-Infos-Diplom-Bach.4418.0.html
https://archiv-i.hsr.ch/
https://basarat.gitbooks.io/typescript/docs/compiler/overview.html
https://basarat.gitbooks.io/typescript/docs/compiler/overview.html
https://electronjs.org/
https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines
https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines
https://github.com/Microsoft/TypeScript/issues/23299#issuecomment-429288585
https://github.com/Microsoft/TypeScript/issues/23299#issuecomment-429288585
https://github.com/Microsoft/TypeScript/issues/23299#issuecomment-429288585
https://github.com/Microsoft/TypeScript/wiki/Debugging-Language-Service-in-VS-Code
https://github.com/Microsoft/TypeScript/wiki/Debugging-Language-Service-in-VS-Code
https://github.com/Microsoft/TypeScript/wiki/Debugging-Language-Service-in-VS-Code
https://insights.stackoverflow.com/survey/2018/
https://insights.stackoverflow.com/survey/2018/
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/extensions/overview
https://code.visualstudio.com/docs/editor/refactoring
https://code.visualstudio.com/docs/editor/refactoring
https://code.visualstudio.com/docs/extensionAPI/patterns-and-principles
https://code.visualstudio.com/docs/extensionAPI/patterns-and-principles
https://refactoring.com/
https://github.com/Microsoft/TypeScript/pull/28250%5C#issuecomment-436695129
https://github.com/Microsoft/TypeScript/pull/28250%5C#issuecomment-436695129

[15] Mohamed Hegazy. TSServer: Use JSON-RPC as RPC protocol (discus-
sion). Microsoft. Oct. 7, 2016. url: https://github.com/Microsoft/
TypeScript / issues / 11423 % 5C # issuecomment - 252105101 (visited on
10/18/2018).

[16] Giovanni Heilmann. Extend tsserver interface to allow refactoring failure
reporting. Nov. 8, 2018. url: https://github.com/Microsoft/TypeScript/
issues/28410 (visited on 11/30/2018).

[17] Anders Hejlsberg. Non-nullable types. Microsoft. Feb. 18, 2016. url: https:
//github.com/Microsoft/TypeScript/pull/7140 (visited on 10/23/2018).

[18] How to Contribute. Microsoft. url: https://github.com/Microsoft/
vscode/wiki/How-to-Contribute (visited on 12/10/2018).

[19] Interfaces. Microsoft. url: https://www.typescriptlang.org/docs/
handbook/interfaces.html (visited on 12/02/2018).

[20] Mickael Istria. tsserver should implement the Language Server Protocol.
Sept. 30, 2016. url: https : / / github . com / Microsoft / TypeScript /
issues/11274 (visited on 10/15/2018).

[21] Language Extension Guidelines. Microsoft. url: https://code.visualstudio.
com/docs/extensionAPI/language-support (visited on 10/14/2018).

[22] Language Server Protocol Overview. url: https://microsoft.github.io/
language-server-protocol/overview.

[23] Language Server Protocol Specification. url: https://microsoft.github.
io/language-server-protocol/specification.

[24] Klaus Meinhardt. add refactoring: string concatenation to template literals
#28923. Dec. 9, 2018. url: https://github.com/Microsoft/TypeScript/
pull/28923#discussion_r240027801 (visited on 12/09/2018).

[25] Microsoft. Compiler Internals. url: https://github.com/Microsoft/
TypeScript/wiki/Compiler-Internals (visited on 10/19/2018).

[26] Microsoft. Creating Language Servers for Visual Studio Code. url: https://
code.visualstudio.com/docs/extensions/example-language-server
(visited on 12/20/2018).

[27] Modulbeschreibung. HSR. url: http://studien.hsr.ch/allModules/
19419_M_BAI.html (visited on 09/28/2018).

[28] Object initializer. Mozilla. url: https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Object_initializer
(visited on 12/02/2018).

79

https://github.com/Microsoft/TypeScript/issues/11423%5C#issuecomment-252105101
https://github.com/Microsoft/TypeScript/issues/11423%5C#issuecomment-252105101
https://github.com/Microsoft/TypeScript/issues/28410
https://github.com/Microsoft/TypeScript/issues/28410
https://github.com/Microsoft/TypeScript/pull/7140
https://github.com/Microsoft/TypeScript/pull/7140
https://github.com/Microsoft/vscode/wiki/How-to-Contribute
https://github.com/Microsoft/vscode/wiki/How-to-Contribute
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://www.typescriptlang.org/docs/handbook/interfaces.html
https://github.com/Microsoft/TypeScript/issues/11274
https://github.com/Microsoft/TypeScript/issues/11274
https://code.visualstudio.com/docs/extensionAPI/language-support
https://code.visualstudio.com/docs/extensionAPI/language-support
https://microsoft.github.io/language-server-protocol/overview
https://microsoft.github.io/language-server-protocol/overview
https://microsoft.github.io/language-server-protocol/specification
https://microsoft.github.io/language-server-protocol/specification
https://github.com/Microsoft/TypeScript/pull/28923#discussion_r240027801
https://github.com/Microsoft/TypeScript/pull/28923#discussion_r240027801
https://github.com/Microsoft/TypeScript/wiki/Compiler-Internals
https://github.com/Microsoft/TypeScript/wiki/Compiler-Internals
https://code.visualstudio.com/docs/extensions/example-language-server
https://code.visualstudio.com/docs/extensions/example-language-server
http://studien.hsr.ch/allModules/19419_M_BAI.html
http://studien.hsr.ch/allModules/19419_M_BAI.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Object_initializer

[29] Marius Schulz. TypeScript 2.2: The object Type. Feb. 24, 2017. url: https:
//blog.mariusschulz.com/2017/02/24/typescript-2-2-the-object-
type (visited on 12/14/2018).

[30] Standalone Server (tsserver). Oct. 19, 2018. url: https://github.com/
Microsoft/TypeScript/wiki/Standalone-Server-(tsserver).

[31] Template literals (Template strings). Mozilla. url: https://developer.
mozilla . org / en - US / docs / Web / JavaScript / Reference / Template _
literals (visited on 12/02/2018).

[32] Arooran Thanabalasingam. Missing Type_0_is_not_assignable_to_type_1
on variable declaration. Nov. 30, 2018. url: https://github.com/Microsoft/
TypeScript/issues/28767 (visited on 11/30/2018).

[33] TypeScript. Microsoft. url: https://github.com/Microsoft/TypeScript/
(visited on 09/28/2018).

[34] TypeScript. Microsoft. url: https://github.com/Microsoft/TypeScript/
issues (visited on 09/28/2018).

[35] TypeScript - JavaScript that scales.Microsoft. url: https://www.typescriptlang.
org (visited on 12/02/2018).

[36] Visual Studio Code. Microsoft. url: https://github.com/Microsoft/
vscode (visited on 09/28/2018).

[37] Visual Studio Code - Code Editing. Redefined. Microsoft. url: https://
code.visualstudio.com/ (visited on 09/28/2018).

[38] What are the most common refactoring operations performed by GitHub devel-
opers? Applied Software Engineering Research Group - UFMG. Jan. 4, 2017.
url: https://medium.com/@aserg.ufmg/what-are-the-most-common-
refactorings- performed- by- github- developers- 896b0db96d9d (vis-
ited on 12/14/2018).

[39] Wikipedia. JSON-RPC. url: https://en.wikipedia.org/wiki/JSON-RPC
(visited on 12/20/2018).

[40] Wikipedia. Language Server Protocol. url: https://en.wikipedia.org/
wiki/Language_Server_Protocol (visited on 12/20/2018).

[41] Wikipedia. Mixin. url: https://en.wikipedia.org/wiki/Mixin (visited
on 12/20/2018).

80

https://blog.mariusschulz.com/2017/02/24/typescript-2-2-the-object-type
https://blog.mariusschulz.com/2017/02/24/typescript-2-2-the-object-type
https://blog.mariusschulz.com/2017/02/24/typescript-2-2-the-object-type
https://github.com/Microsoft/TypeScript/wiki/Standalone-Server-(tsserver)
https://github.com/Microsoft/TypeScript/wiki/Standalone-Server-(tsserver)
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://github.com/Microsoft/TypeScript/issues/28767
https://github.com/Microsoft/TypeScript/issues/28767
https://github.com/Microsoft/TypeScript/
https://github.com/Microsoft/TypeScript/issues
https://github.com/Microsoft/TypeScript/issues
https://www.typescriptlang.org
https://www.typescriptlang.org
https://github.com/Microsoft/vscode
https://github.com/Microsoft/vscode
https://code.visualstudio.com/
https://code.visualstudio.com/
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://medium.com/@aserg.ufmg/what-are-the-most-common-refactorings-performed-by-github-developers-896b0db96d9d
https://en.wikipedia.org/wiki/JSON-RPC
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://en.wikipedia.org/wiki/Mixin

Appendix

A. Time evaluation

Figure A.1.: Time consumption per month

Figure A.2.: Time investment per person

82

Since testing was done as a part of implementation, the time consumption for
testing is tracked in the implementation’s time consumption. A major part of
analysis and design was writing it down. That time was tracked as documentation.
Only the actual process of analyzing and designing was marked as such.

Figure A.3.: Time consumption per category

83

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 1

TypeScript Refactorings

Project Plan

Giovanni Heilmann
Arooran Thanabalasingam

Version: 1.5 Date: 18.12.2018

B. Project Plan

84

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 2

Table of Contents

Table of Contents..2

1. Introduction..3

1.1 Purpose...3

1.2 Scope..3

2. Project Overview..4

2.1 Purpose and Goal...4

2.2 Scope of delivery...4

2.3 Assumptions and limitations..4

3. Project Organisation...5

3.1 Organisation Structure..5

4. Management Processes...6

4.1 Weekly Meetings...6

4.2 Time Planning...6

4.2.1 Estimated Plan...7

4.2.2 Actual Procedure..7

4.2.3 Task List...8

5. Infrastructure..9

6. Quality Measures...10

6.1 Documentation..10

6.2 Development...10

6.2.1 Procedure...10

6.2.2 Code Reviews..10

6.2.3 Coding Guideline..10

6.2.4 Static Code Analysis..10

6.3 Testing..10

6.3.1 Unit Test...10

6.4 Definition of Done..11

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 3

1. Introduction

1.1 Purpose
This document is intended to serve as a guideline for the project TypeScript Refactorings.
Among other things, it contains time planning, a rough division of labor and quality measures.
The project plan can be adapted during the project.

1.2 Scope
The project plan is valid throughout the project. Only the latest version is valid.

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 4

2. Project Overview
TypeScript is a programming language which is developed by Microsoft. VS Code is a
source code editor which is open source and extensible. It runs on Windows, macOS and
Linux. Among other things, it has support for debugging, syntax highlighting and code actions
like refactorings and quick fixes. It is mainly written in TypeScript. Apart from TypeScript it
supports many other languages.

As part of this project the TypeScript code base will be extended with further code actions.

2.1 Purpose and Goal

2.2 Scope of delivery
 software
 documentation
 project plan
 meeting minutes
 time evaluation
 personal reports
 declaration on the independent performance of the work

2.3 Assumptions and limitations
Each member has a fixed workload of 360 hours. Therefore, depending team's progress, the
amount of implemented code actions may vary. These will be chosen based on the priority
list. The list should provide enough work even if the team advances quicker than expected.

Version: 1.5 Date: 18.12.2018

Priority Issue No. Description Type
1 #16755 Interface stubbing Quick-Fix
1 #18459 Inline local variable Refactoring
1 #23299 Lambda to function Refactoring
1 #27070 Inline method Refactoring
2 #662 Reorder parameters Refactoring
2 #18267 String concatenation -> template literals Refactoring
2 #24827 Destructure function parameters Refactoring
2 Move method to module/namespace Refactoring
3 #16010 File capitalization Quick-Fix
3 #22392 Create object from selected variables Refactoring
3 #23552 Named parameter Refactoring
3 #23830 Auto-import module as namespace Quick-Fix
3 #23869 Type alias Refactoring
3 #25175 Logic predicate Refactoring
3 #25946 Var to destructuring Refactoring
3 #26479 Extract function to outer scope Refactoring

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 5

3. Project Organisation
The team consist of four people.

3.1 Organisation Structure

Version: 1.5 Date: 18.12.2018

Thomas Corbat
Supervisor

Felix Morgner
Technical Advisor

Giovanni Heilmann
Programmer

Arooran Thanabalasingam
Programmer

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 6

4. Management Processes

4.1 Weekly Meetings
In weekly meetings, the results of the last week will be presented and the work of the
following week will be prioritized. These meetings take place each Thursday at 15:00.

4.2 Time Planning
Since this project is a bachelor thesis, the two programmers each have 360 hours availabe.
That means a total of 720 working hours are available. The project runs from 17.09.2018 to
21.12.2018, which is a total of 14 weeks.

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 7

4.2.1 Estimated Plan
CW PW Milestone Date Description

38 1 project start 17.09.2018
39 2
40 3 LSP documentation
41 4
42 5
43 6
44 7 Prio 1 Code Actions
45 8
46 9 Prio 2 Code Actions
47 10
48 11
49 12 code freeze

50 13 abstract & poster 13.12.2018
finish abstract and release
complete poster and send it to
supervisor

51 14 submission 21.12.2018 submit paper

CW – calendar week
PW – project week

4.2.2 Actual Procedure
CW PW Milestone Date Description

38 1 project start 17.09.2018
39 2
40 3
41 4
42 5 Lambda to function
43 6
44 7
45 8 Inline local
46 9
47 10
48 11 Interface Stubbing

49 12
Inline funciton
Template literal
code freeze

50 13 abstract & poster 15.12.2018
finish abstract and release
complete poster and send it to
supervisor

51 14 submission 21.12.2018 submit paper

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 8

4.2.3 Task List
Description estimated

document interface registerRefactor/registerCodeFix 2h

analyse syntax tree/symbol table 8h

document test infrastructure 2h

first refactor (together)

analysis & design 16h

implementation & testing 16h

document refactoring 4h

review code 1h

review doc 1h

open pull-request (signing CLA) 1h

per refactor

analysis incl. documentation 8h

design incl. documentation 8h

implementation & testing 8h

review code & discussion 2h

review doc & discussion 2h

sequence diagram with concrete example 8h

finalize documentation (formatting, content) 8h

design poster 4h

write abstract 4h

presentation preparation 24h

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 9

5. Infrastructure

VS Code The source code editor supports TypeScript, which will be used for
developing.

Dropbox All documents are stored on Dropbox. Dropbox offers version control
and change history.

Office Suite Smaller documents are created with Office.

TeXstudio The final documentation will be created with LaTeX. TeXstudio was
chosen as the LaTeX editor because it indents whole paragraph.

Git & GitHub Git is used as a version control system for source code. The repository
is hosted on GitHub. Issues are also managed on GitHub.

Travis CI Travis CI offers a free CI service for public repositories. On each
change in the code base, an automated build process will be triggered
with the corresponding execution of test cases.

Toggl For time tracking and evaluation, the service of Toggle is used.

Waffle.io Waffle.io displays Github issues on a clear board, which facilitates the
project managment.

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 10

6. Quality Measures
This chapter describes measures and tools used to ensure the quality of the project.

6.1 Documentation
Documents are saved in a shared Dropbox folder. Dropbox offers a free service, where
changed or deleted files can be restored for up to 30 days.

Documents written by one team member will be reviewed by the other.

6.2 Development
The source code is located on a public repository on GitHub.

 Repository https://github.com/D0nGiovanni/TypeScript

6.2.1 Procedure
Our development process looks roughly structured as follows:

1. Create a Feature branch per Use Case
2. Implement Use Case, including unit and integration tests
3. Create a Pull-Request
4. Review the code (incl. tests) by assigned team member
5. Discussion of possible discrepancies
6. If necessary: correct code back to step 4
7. Merge the Feature branch into Master branch

6.2.2 Code Reviews
Each issue will be assigend to a team member as developer. The other member takes on the
role of reviewer and checks the code before merging into Master branch.

Found discrepancies are discussed between team members and any improvements resulting
therefrom are defined and implemented.

6.2.3 Coding Guideline
Since code actions are contributed to TypeScript, following coding guideline must be
considered:

https://github.com/Microsoft/TypeScript/wiki/Coding-guidelines

6.2.4 Static Code Analysis
In order to detect errors early, a static analysis tool is used. Because Microsoft uses tslint for
linting, tslint is chosen as static analysis tool.

6.3 Testing

6.3.1 Unit Test
Unit tests must be created for all essential functions. On one hand the tests are run manually
by the developer before a commit and on the other hand tests will automatically be executed
with each build. As a result, errors are detected early and can be corrected.

Version: 1.5 Date: 18.12.2018

BA Giovanni Heilmann, Arooran Thanabalasingam
Project: TypeScript Refactorings

Page C - 11

6.4 Definition of Done
 The code is

o implemented
o tested
o committed in vcs

 The code review was conducted and accepted
 The code is documented (analysis, design, implementation)

Version: 1.5 Date: 18.12.2018

C. Guides

1. Setup development environment

It is recommended to use a separate, isolated version of VS Code to run the
tsserver. VS Code only has to be built once. Only the language server must be
built upon each change. The following instructions shows how to run a separate VS
Code instance and how to override the path to tsserver in VS Code. Parts of this
section are taken from the TypeScript contribution guide [8] and from VS Code
contribution guide [18].

1.1. Running development VS Code

First, ensure that all requirements of the following link are installed:
https://github.com/Microsoft/vscode/wiki/How-to-Contribute#prerequisites
Then, in the command-line, enter the following commands.

1. git clone https://github.com/Microsoft/vscode.git

2. cd vscode

3. yarn

4. ./scripts/code.sh or .\scripts\code.bat

• The first launch will take a while to build the entire VS Code.

• The following times, it will reuse the built version and start more quickly.

5. Optional step: add the path /vscode/scripts/ to environmnent variables or
make a symlink to scripts/code.sh

1.2. Override tsserver path in VS Code

• Press CTRL+SHIFT+P

• Open the User Settinsg by typing “Open Settings (JSON)”

• Set the following entries in the User Settings of development VS Code:

95

https://github.com/Microsoft/vscode/wiki/How-to-Contribute#prerequisites

{
"typescript.tsdk": "</PATH/TO/REPO >/built/local",
"typescript.tsserver.log": "verbose",

}

1.3. Open tsserver log

This works only if a TS file is active:

• Press CTRL+SHIFT+P

• Type “Open TS Server log”

1.4. Installing additional softwares

These additional applications are needed for testing.

• npm install --global gulp

• npm install --global jake

2. Building tsserver

• To build: npm run build

• When switching between Git branches, it is important to clean first and then
build:

1. npm run clean

2. npm run build

• For hot-reloading:

1. npm run build - this is only needed for the initial build

2. gulp watch-local

3. To use the changes in the developer VS Code instance:

– Press CTRL+SHIFT+P

– Type “Restart TS server”

3. Testing

This section describes how to write and run tests.

96

3.1. Write tests

• Testfiles are located in /TypeScript/tests/cases/fourslash/

• Naming convention is as follows: refactor<refactor_name>_<testcase_name>.ts

• Test-file structure:
– After //// comes the initial state
– /*a*/ is a marker for the selection
– newContent contains the expected code state after refactoring

/// <reference path=’fourslash.ts’ />

//// function /*a*/ catTheGreat ()/*b*/: void { };

goTo.select("a", "b");
edit.applyRefactor ({

refactorName: "Kitty enchantment",
actionName: "Invoke kitty",
actionDescription: "Invoke kitty",
newContent: ‘function catTheGreat (): string {
return "Meow";

};‘,
});

3.2. Run tests

Tests can either be run with jake or with gulp.

• With jake:
– Run all tests: jake runtests-parallel

– Run selected tests: jake runtests tests=<regex>

• With gulp:
– Run all tests: gulp runtests-parallel

– Run selected tests: gulp runtests --tests=<regex>

– It is much faster without linting: gulp runtests --tests=<regex> --lint=false

• Debugging test (to our knowledge, breakpoints do not work in production
code, only in test code):
1. To add a breakpoint, put “debugger;” in code.
2. Run test as gulp runtests --tests=<regex> --inspect

3. Open Chrome and open the location “chrome://inspect”

97

4. Handling certain TSLint messages

• Message: “Tag argument with parameter name”:

– Before: createBlock([returnStatement], true);

– Fix: createBlock([returnStatement], /*multiLine */true);

• Message: “’foo’ is declared but its value is never read.”

To ignore an unused parameter, prepend an underscore:

– Before: values.map((foo, item) => item.ToUpperCase());

– Fix: values.map((_foo, item) => item.ToUpperCase());

98

	Introduction
	VS Code
	TypeScript
	Code Actions
	Refactoring
	Quick-Fix

	Analysis
	Architecture
	Overview
	Language support
	Patterns
	Communication between VS Code and TypeScript language server

	Language Server Protocol (LSP)
	What is the Language Server Protocol?
	How does it work?
	Specification

	Tsserver
	Key differences between lsp and tsserver interface
	Implementing code actions

	TypeScript
	Compiler overview
	Compiler api

	Quick-Fix: Interface stubbing for object literal
	Interface
	Object literal
	Intersection types
	Union types
	Type checking
	Conclusion of considerations
	Cases

	Refactoring: Lambda to function
	General considerations
	Case by case considerations

	Refactoring: Inline variable
	Simple case
	More than one usage
	Member access
	Assigned more than once
	Declaration not initialized
	Special keywords
	Operator precedence
	Unary operators

	Refactoring: Inline function
	General
	Special keywords
	Operator precedence
	Closure
	Parameters
	Multiple return statements
	Name conflict
	Throws
	Overloading
	Inline method

	Refactoring: String concatenation to template literals
	Template literals
	Cases

	Design
	Quick-Fix: Interface stubbing for object literal
	General procedure
	Basic types
	Objects
	Methods
	Intersection and Union Types
	Tuples
	Type Alias
	Generics

	Refactoring: Lambda to function
	To named function
	To anonymous function
	To arrow function

	Refactoring: Inline variable
	General behavior
	Restrictions on refactoring

	Refactoring: Inline function
	General behavior
	Multiple return statements
	Name conflict
	Restrictions on refactoring

	Refactoring: String concatenation to template literals
	Template expression structure
	General procedure
	Remove parentheses
	Arithmetic expression
	New line
	Escape backtick and dollar
	Escape sequences
	Add parentheses
	Nested
	Tagged templates

	Implementation
	Quick-Fix: Interface stubbing for object literal
	General
	Corner cases

	Refactoring: lambda to function
	To anonymous function
	To named function
	To arrow function

	Refactoring: Inline variable
	Refactoring: Inline function
	Inlining across multiple files
	Overloading

	Refactoring: String concatenation to template literals
	Transforming tree to array
	Transforming array to tree
	Creating template literal
	Decoding raw string

	Conclusion
	Outlook

	Time evaluation
	Project Plan
	Guides
	Setup development environment
	Running development VS Code
	Override tsserver path in VS Code
	Open tsserver log
	Installing additional softwares

	Building tsserver
	Testing
	Write tests
	Run tests

	Handling certain TSLint messages

