
Bachelor Thesis

Herbstsemester 2018

Inhaltsübersicht
Muen on ARM

Version: 1.00, Datum: 21. Dezember 2018

Betreuer:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, Student

BSc Informatik

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Dokumentationsübersicht

A. Eigenständigkeitserklärung (deutsch)

B. Persönlicher Bericht (deutsch)

C. Aufgabenstellung (englisch)

D. Management Summary (englisch)

E. Bachelor Thesis (englisch)

F. Glossar und Abkürzungsverzeichnis (englisch)

G. Projektorganisation inklusive Zeiterfassung und Protokolle (deutsch)

H. Studienarbeit (englisch)

I. USB Stick mit sämtlichen Daten der während der Bachelor Thesis erstellten Dokumen-

te, dem gesamten Code Repository sowie der referenzierten Literatur (sofern in pdf

Form frei erhältlich)

Inhaltsuebersicht.pdf Version: 1.00 Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Eigenständigkeitserklärung

Erklärung

Ich erkläre hiermit,

• dass ich die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt habe, ausser

derjenigen, welche explizit in der Aufgabenstellung erwähnt ist oder mit dem Betreuer

schriftlich vereinbart wurde,

• dass ich sämtliche verwendeten Quellen erwähnt und gemäss gängigen wissenschaft-

lichen Zitierregeln korrekt angegeben habe,

• dass ich keine durch Copyright geschützten Materialien (z.B. Bilder) in dieser Arbeit in

unerlaubter Weise genutzt habe.

Tischinas Ruschein, 21. Dezember 2018

Unterschrift David Loosli

Inhaltsuebersicht.pdf Version: 1.00 Datum: 21. Dezember 2018

Bachelor Thesis

Herbstsemester 2018

Persönlicher Bericht
Muen on ARM

Version: 1.00, Datum: 21. Dezember 2018

Betreuer:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, Student

BSc Informatik

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Ausgangslage

Das Ziel der Bachelor Arbeit war die Implementation eines minimalen Separationskernels für die

ARMv8-A Architektur basierend auf den Erkenntnissen der Studienarbeit. Als Zielplattform wurde in

einem separaten Evaluationsprozess das NXP LS1012A FRDM Board festgelegt.

Projektorganisation

Den Erfahrungen bezüglich des administrativen Aufwandes aus der Studienarbeit entsprechend und

nach Rücksprache mit sämtlichen Beteiligten entschied ich mich dafür, die Anzahl der verwendeten

Projektadministrationstools von deren vier auf zwei zu reduzieren. Neben dem auf einer von der Hoch-

schule für Technik Rapperswil (HSR) zur Verfügung gestellten virtuellen Maschine installierten Softwa-

re Entwicklungstool Jira von Atlassian konnte über den Server der beiden Betreuer zusätzlich ein Git

Repository verwendet werden. Sowohl das Aufsetzen der virtuellen Maschine inklusive der Installation

der Jira Software als auch die Konfiguration des Git Repositorys verliefen ohne Probleme. Von beiden

Instanzen wurden zusätzlich lokal weitere BackUps erstellt.

Die Betreuung der Arbeit wurde wiederum von Adrian-Ken Rüeggsegger und von Reto Bürki übernom-

men. Mit dieser war ich auch während der gesamten Bachelor Arbeit äusserst zufrieden. So konnte

ich dank einem hervorragend präsentierten Code Walk Through durch den Muen SK Quellcode und

der jederzeit vorhandenen Unterstützung bei Schwierigkeiten auch fachlich enorm von diesem Projekt

profitieren. Die vollumfänglich protokollierten Besprechungen empfand ich wiederum sowohl auf fachli-

cher als auch persönlicher Ebene als sehr lehr- und hilfreich. Ich möchte mich deshalb an dieser Stelle

nochmals für die Unterstützung bedanken!

Ebenfalls noch ganz herzlich bedanken möchte ich mich bei Prof. Dr. Andreas Steffen. Ohne seine

fachliche und organisatorische Unterstützung wäre ein solches, mehrere im Rahmen des Bachelor

Studiengangs an der Hochschule für Technik Rapperswil (HSR) zu absolvierende Arbeiten umfassen-

des Projekt schlichtweg nicht möglich gewesen.

Bachelor Thesis

Im Gegensatz zum evaluativen Ansatz der Studienarbeit war die Bachelor Arbeit aufgrund der klaren

Vorgaben und Erkenntnisse aus der vorangegangenen Studie sehr viel zielgerichteter. Grundsätzlich

folgte die Implementation der einzelnen Komponenten dem Aufbau der Studienarbeit.

Obwohl mir seitens der Betreuer erneut viele Freiheiten bezüglich der Herangehensweise an die Pro-

blemstellung gewährt wurden, waren die Rahmenbedingungen und Ziele einiges enger gesteckt und

wurden auch eingehender überprüft als in der Studienarbeit. Allerdings fehlte es deshalb nicht an Her-

ausforderungen bei der Implementation der einzelnen Komponenten - insbesondere das Generieren

der Adresstabellen, bei denen schon die kleinsten Änderungen zu trotz vorhandenem Hardware De-

bugger kaum sinnvoll zu untersuchenden Fehlern führen können, stellte mich vor so einige Probleme.

PersoenlicherBericht.pdf Version: 1.00

2

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Mit dem Ergebnis meiner Bachelor Thesis bin ich persönlich sehr zufrieden. Besonders stolz bin ich

auf das Setup der Entwicklungsumgebung mit dem in die GPS IDE von AdaCore integrierten Debug

Möglichkeiten über den J-Link Debug Adapter, die angepasste Version der OpenOCD Anwendung

und den GDB Debugger Tools. Der einzige kleine Wermutstropfen findet sich darin, dass die Virtual-

sierungserweiterung des Generic Interrupt Controllers und damit einhergehenden der ARM Generic

Timer aus zeitlichen Gründen nicht mehr implementiert werden konnten. Dies insbesondere deshalb,

da ich davon überzeugt bin, dass auch diese Komponenten noch hätten realisiert werden können, wäre

ich nicht 1.5 Wochen gesundheitlich angeschlagen gewesen. Trotzdem bin ich davon überzeugt, dass

sich die rund 580 investierten Stunden in diese Bachelor Arbeit mehr als nur gelohnt haben.

Persönliche Erkenntnisse

Im Verlaufe des gesamten Projektes konnte ich erneut auf fachlicher Ebene in den verschiedensten

Bereiche enorme Fortschritte erzielen und mich bezüglich der administrativen Arbeiten vollumfänglich

auf meine bisherigen Erfahrungen aus den anwaltlichen Tätigkeiten verlassen. Ich bin immer noch

davon überzeugt, dass mir eine solche Arbeit im Gegensatz zu den üblichen Modulprüfungen ein

Vielfaches an konzeptionellem, breit anwendbarem Wissen vermitteln kann.

Während der Bachelor Arbeit konnte ich von den Erkenntnissen der Studienarbeit sehr profitieren. So

konnte ich mich dank der Einschränkung der administrativen Arbeiten zugunsten inhaltlicher Aspekte

verstärkt mit der eigentlichen Implementation auseinandersetzen. Ich bin der Ansicht, dass sich dies

sehr positiv auf die Qualität meines Quellcodes ausgewirkt hat.

Die aus der Studienarbeit gewonnene Erkenntnis bezüglich der Problematik der Einzelarbeit hat sich

auch während der Bachelor Thesis bestätigt. So wäre ich in den verschiedensten Situationen froh ge-

wesen, einen Diskussions- und Entscheidungspartner mit einem ähnlichen Wissensstand zu haben.

Andererseits könnte sich in Zukunft der Entscheid, eine Einzelarbeit einzureichen, doch noch als loh-

nenswert herausstellen.

Mitunter eine der wichtigsten Erkenntnisse der Studienarbeit waren die negativen Folgend meiner mit

einem zu grossen Aufwand und Perfektionismus verbundenen Herangehensweise. Ich habe diese Er-

kenntnis während des gesamten Projektes zu berücksichtigen versucht und einen etwas pragmatische-

ren Ansatz gewählt. Allerdings zeigte sich beispielsweise bei der Implementation des Generic Interrupt

Controller, dass mir dies nicht immer gelang und dass ich daran weiter arbeiten muss.

Zum Schluss möchte ich noch anmerken, dass ich das grosse Interesse an meiner Bachelor Arbeit

seitens von AdaCore und den Klienten der codelabs GmbH als äusserst motivierend empfand. Ich bin

sehr glücklich darüber, dass das Projekt nicht in einem Aktenschrank in Vergessenheit gerät, und freue

mich bereits heute auf den Antritt der offerierten Stelle zur Weiterentwicklung des Muen SK on ARM

Projektes!

PersoenlicherBericht.pdf Version: 1.00

3

Datum: 21. Dezember 2018

Bachelor Thesis

autumn semester 2018

Definition of Task
Muen on ARM

version: 0.00, date: December 21, 2018

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Introduction

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and protects critical security functions against unreliable software running on

the same physical system. The programming language SPARK 2014 is used to achieve a particularly

high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components.

Based on the findings of the former student research study „Muen On ARM - an Evaluation“ written

by the author of this Bachelor Thesis, the objective of this study is to develop a minimal Separation

Kernel prototype for the ARMv8-A architecture based on the Muen SK and leveraging the AArch64

Virtualization Extensions introduced with the latest ARM architecture. The target hardware platform for

this Bachelor Thesis is the NXP LS1012A Freedom Evaluation Board with an ARMv8 Cortex-A53 CPU

and the programming language is Ada/SPARK 2014.

Objectives

(i) Prototypical implementation of main Separation Kernel building blocks

• System initialization

• Exception & interrupt handling

• Definition and switching of AArch64 subject state

• Subject preemption mechanism

• Serial debug driver

(ii) Documentation

(iii) Optional:

• Scheduling of multiple subjects

• AArch64 pagetable generation tool

taskdefinition.pdf version: 0.00

2

date: December 21, 2018

Bachelor Thesis

autumn semester 2018

Management Summary
Muen on ARM

version: 1.00, date: December 21, 2018

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Introduction

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and protects critical security functions against unreliable software running on

the same physical system. The programming language SPARK 2014 is used to achieve a particularly

high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components.

Background

Based on the findings of the former Student Research Study „Muen On ARM - an Evaluation“ written

by the author of this bachelor thesis, the objective of this study was to develop a minimal separation

kernel prototype for the ARMv8-A architecture based on the Muen SK, written in Ada/SPARK and

leveraging the AArch64 Virtualization Extensions introduced with the latest ARM architecture. The

target hardware platform for this bachelor thesis is the NXP LS1012A FRDM Board with an ARMv8-A

Cortex-A53 single core CPU.

Results

Using a Segger J-Link hardware debug probe device, the on-chip debugger software OpenOCD and

the AdaCore toolchain including their integrated development environment, essential parts of a sepa-

ration kernel have been implemented in Ada in the course of the project. With this basic separation

kernel prototype and its two differently configured subjects, it could be demonstrated that all require-

ments with respect to the porting of the Muen SK to the ARMv8-A architecture can be met applying the

already during the Student Research Study examined ARMv8-A architecture design principles.

Prospects

Due to the enormous economic interest in porting the Muen SK to the ARMv8-A architecture and the

current success of the Muen SK project, the author of this study is going to continue to develop the

Muen on ARM project full time starting in March 2018.

managementsummary.pdf version: 1.00

2

date: December 21, 2018

Bachelor Thesis

autumn semester 2018

Bachelor Thesis
Muen on ARM

version: 1.0, date: December 21, 2018

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Change History

date version change author

Dec 10, 2018 0.1 prepared template, setup basic version, glos-

sary, bibliography and introduction

David Loosli

Dec 13, 2018 0.2 bibliography, glossary, abstract and introduc-

tion up to scope

David Loosli

Dec 14, 2018 0.3 introduction up to first part theoretical back-

ground

David Loosli

Dec 15, 2018 0.3 second part theoretical background David Loosli

Dec 16, 2018 0.4 first part practical part David Loosli

Dec 17, 2018 0.4 second part practical background David Loosli

Dec 18, 2018 0.4 third part practical part David Loosli

Dec 19, 2018 0.5 last part practical part up to epilogue David Loosli

Dec 20, 2018 0.6 change history David Loosli

Dec 21, 2018 1.0 final check before hand in David Loosli

bachelorthesis.pdf version: 1.0

2

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Abstract

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and separates security critical functions against unreliable software running

on the same physical system. The programming language SPARK 2014 is used to achieve a partic-

ularly high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64

architecture and uses the Intel VT-x and VT-d technology to separate the components.

This bachelor thesis implements the main building blocks of a separation kernel for the ARMv8-A archi-

tecture, leveraging in particular the recently introduced AArch64 Virtualization Extensions. This prac-

tical study builds on the findings of the Student Research Study „Muen on ARM - an Evaluation“also

written by the author of this paper that investigated the theoretical and practical aspects of porting the

Muen SK to the ARMv8-A architecture. The target hardware platform chosen for this study is the NXP

LS1012A FRDM Board.

bachelorthesis.pdf version: 1.0

3

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Contents

Change History 2

Abstract 3

1 Introduction 6

1.1 Structure of the Thesis . 7

1.2 Scope . 7

1.3 Related Documents . 8

1.4 Literature . 8

2 Theoretical Background 10

2.1 Muen Separation Kernel . 10

2.1.1 Functional Principle . 10

2.1.2 Components . 11

2.2 ARM Overview . 12

2.2.1 ARMv8-A Architecture . 13

2.2.2 ARM Cortex-A53 Implementation . 15

2.2.3 ARM Peripheral Components . 16

2.3 NXP LS1012A Evaluation Board . 16

2.3.1 Overview . 17

2.3.2 Documentation . 19

2.3.3 Board Setup . 19

3 Practical Part 22

3.1 Development Environment . 22

3.1.1 Toolchain . 22

3.1.2 Integrated Development Environment . 23

3.1.3 Debugger Setup . 24

3.1.4 Deployment . 29

3.2 Software Architecture . 30

3.2.1 MuenSK Projects . 31

3.2.2 Code Structure . 32

3.2.3 Code Style . 33

3.2.4 License . 34

3.3 Implementation Details . 35

3.3.1 Startup Code . 35

3.3.2 Registers . 36

3.3.3 Subjects . 38

3.3.4 Subject Context Switch . 40

bachelorthesis.pdf version: 1.0

4

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.3.5 Memory Management . 43

3.3.6 Exception Handling . 46

4 Conclusion 47

4.1 Status of Development . 47

4.2 Integration of the Muen SK . 47

4.3 Further Development . 48

5 Epilogue 49

Appendix 51

A Project Task Description . 51

B List of Related Documents . 53

C U-Boot Environment Setup . 54

D GDB Initialisation Script . 55

E Codelabs Contributors Agreement . 57

Bibliography 59

List of Figures 61

List of Tables 62

bachelorthesis.pdf version: 1.0

5

date: December 21, 2018

Bachelor Thesis

Muen on ARM

1 Introduction

The tremendous progression in the last years in the world of information technology not only led to

an enormous increase of mobile devices and into network integrated components, but also to a raised

awareness and alertness with respect to network security among companies and people. In particular,

the latest political developments not only in Europe 1 but throughout the world show an increased need

for security and protection of one’s own personality throughout the internet.

Reto Buerki and Adrian-Ken Rueegsegger recognised this need for high-assurance security very early

on and designed the Muen Separation Kernel (SK) as their Master Thesis at the University of Applied

Sciences Rapperswil (HSR) in the year 20132. The Muen SK basically leverages three principles. The

first principle is a mathematically provable secure approach to control the access to sensitive data and

was invented with the theory of the Separation Kernel published by John Rushby in a paper presented

at the 8th ACM Symposium on Operating System Principles in December 19813. In order to be able to

implement such a separation kernel, the programming language SPARK as a second component was

chosen, which allows to formally prove the correctness of code. Thanks to developments in the field of

processor architecture, the Muen SK was able to be built on the Intel Virtualization Extension as a third

component, thereby improving performance and reducing the size of the code.

In the last years, ARM Limited has expanded its primarily on low energy embedded devices focused

business strategy to general purpose central processing unit (CPU) architectures with great success.

Many small devices, especially mobile devices, currently use an ARM CPU or an ARM based system

on chip (SoC). With the latest ARM architecture, the so called ARMv8 architecture 4, ARM Limited

finally introduced a Virtualization Extension composed of several components that opened the market

for small devices also to the Muen SK.

After the successful exploration of the ARMv8-A architecture during the Student Research Study and

the confirmation that a porting of the Muen SK should be possible, this bachelor thesis as the final

paper of the Bachelor of Science in Computer Science program at the University of Applied Sciences

Rapperswil (HSR) now realizes the main components of a separation kernel for the ARMv8-A archi-

tecture in software. Even though the target platform for this project is the the NXP LS1012A Freedom

evaluation board, the implementation attempts - whenever possible - to keep in mind the diversity of

the existing ARM based system on chip (SoC).

1
Exemplarily, the Datenschutz Grundverordnung (DSGVO) established by the European European Union (EU) and put into

force since May 2018 can be mentioned with its effects for the entire continent, https://www.nzz.ch/wirtschaft/folgen-der-

neuen-datenschutz-grundverordnung-eu... (dt.), December 21, 2018.
2
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013.

3
[22] Rushby. “Design and Verification of Secure Systems”. 1981.

4
https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A, December 21, 2018

bachelorthesis.pdf version: 1.0

6

date: December 21, 2018

https://www.nzz.ch/wirtschaft/folgen-der-neuen-datenschutz-grundverordnung-eu-datenschutzverordnung-tangiert-auch-die-schweiz-ld.1306009
https://www.nzz.ch/wirtschaft/folgen-der-neuen-datenschutz-grundverordnung-eu-datenschutzverordnung-tangiert-auch-die-schweiz-ld.1306009
https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A

Bachelor Thesis

Muen on ARM

1.1 Structure of the Thesis

This paper is divided into three main parts preceded by this introduction and followed by an epilogue

containing a summary of the project. In the first main part (chapter 2) an overview of the theoretical

background related with the topic of porting the Muen SK to the ARMv8-A architecture is given. This

includes an overview of the ARM architecture, a description of the chosen hardware platform as well

as a short analysis of the Muen SK. The next chapter 3 describes the development and deployment

process as well as the software architecture and design decisions that had to be taken during the

construction phase of this project. The explanations of this passages of the document correspond -

with regard to the content - to the software architecture document (SAD) as an important part of the

software development process. The third main part of this thesis (chapter 4) is dedicated to an analysis

and discussion of the current implementation and suggests some approaches for further development

and the integration of the ARMv8-A project into the Muen SK.

1.2 Scope

As already mentioned, the main objective of this study is to develop a minimal separation kernel pro-

totype for the ARMv8-A architecture based on the Muen SK and leveraging the AArch64 Virtualization

Extensions introduced with the latest ARM architecture. The official task description document can be

found in the appendix A. In order to be able to achieve the corresponding objectives in the time avail-

able, the following topics - even though important with respect to the porting of the Muen SK - have to

be considered out of scope:

(i) ARM TrustZone: The ARM TrustZone provides a hardware mechanism to isolate trusted soft-

ware. With this separation, an ARMv8-A processor supports a secure (Secure World) and a

non-secure (Normal World) state and allows an operating system to run in parallel with a so

called trusted operating system 5. Since the ARMv8-A boot process requires the code in the

TrustZone to be executed before entering the Normal World over the secure monitor and since

the Muen SK as a hypervisor has to be executed at exception level 2 in the non-secure state, the

ARM TrustZone is considered to be out of scope for this study. In future, it must be ensured that

the ARM TrustZone does not execute any code or at least does not have access to the Normal

World.

(ii) System Initialization: At the beginning of the project it was determined that the firmware and

bootloader should in particular configure and initialize the DDR RAM component and hand over

execution to the hypervisor code at exception level 2. However, in the course of the project it

soon became apparent that the hypervisor has to make additional configurations with regard to

the physical interrupt handling 6 and the Generic Interrupt Controller (GIC) 7 at exception level 3.

5
Further details can be found in in chapter 3, section 3.2 in the Student Research Study [4] and on the ARM homepage

under https://developer.arm.com/technologies/trustzone, December 21, 2018.
6
cf. chapter 3, section 3.3.1

7
cf. chapter 3, section 3.3.6

bachelorthesis.pdf version: 1.0

7

date: December 21, 2018

https://developer.arm.com/technologies/trustzone

Bachelor Thesis

Muen on ARM

Therefore, it is now assumed that the according evaluation board (a) configures and initializes

the existing random access memory (RAM) components, (b) establishes an identity mapping

as well as configures and enables the Memory Management Unit (MMU) if necessary for the

use of the RAM, and (c) hands over the execution to the separation kernel code at exception

level 3 (i.e. secure monitor mode). Since this requirements are derived from the currently used

NXP LS1012A FRDM evaluation board, this assumptions will have to be extended and adjusted

or as well taken to a higher level of abstraction with the integration of further target hardware

platforms.

(iii) ARMv8-A AArch32: As described in the following chapter 2.2, the ARMv8-A architecture retains

full compatibility with the ARMv7-A AArch32 execution state. Therefore, there actually exist

two sets of registers related with either the AArch64 or the AArch32 execution state. Since the

extension of the kernel to the execution of 32-bit applications does not provide any additional

conceptual insights, this implementation of a separation kernel only considers the ARMv8-A

AArch64 execution state.

(iv) Multicore Environment: This study only considers aspects of a single core system and therefore

sets all eventually existing cores apart from the main processor into a waiting state.

1.3 Related Documents

As this bachelor thesis is based on the feasibility study of porting the Muen SK to the ARMv8-A archi-

tecture, the Student Research Study written by the author of this paper is declared as an integral part

of this document. In the following it is therefore assumed that the reader is familiar with the basics of

hardware related concepts and software development explained in the student research project. A list

of all the related documents can be found in the appendix B.

1.4 Literature

First of all, it has to be mentioned that a detailed list of referenced literature can be found in the

bibliography at the end of this document (cf. Bibliography). Due to the structure and the requirements of

this bachelor thesis, the principal literature used for writing this document as well as the implementation

source code can be divided into four different main topics:

(i) ARM: The theoretical part is mainly based on the Student Research Study8 but also incorporates

the book Profession Embedded ARM Development by James A Langbridge9. For the practical

part with respect to the ARM related literature, both the generic architecture documents with the

8
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017.

9
[3] Langbridge. Professional Embedded ARM Development. 2014.

bachelorthesis.pdf version: 1.0

8

date: December 21, 2018

Bachelor Thesis

Muen on ARM

ARMv8-A Programmer’s Guide10 and the ARMv8-A Architecture Reference Manual11 as well

as the documents specifying the implementation of the processor, i.e. the ARM Cortex-A53

MP Core Technical Reference Manual12, specific application notes on in-depth topics such as

the Virtualization Extension13 and Generic Interrupt Controller related manuals1415, have to be

considered.

(ii) Evaluation Board: For all by the ARM documentation as „implementation defined“ declared

issues and for all driver related topics, the NXP LS1012A processor specific (i.e. the Data

Sheet16, the Processor Reference Manual17 and the Security Reference Manual18) and the

NXP LS1012A FRDM board specific documents (i.e. Getting Started Guide19 and the Board

Reference Manual20) have to be consulted.

(iii) Muen SK: Although the book Programming in Ada 201221 could not be worked through com-

pletely due to the time constraints of this bachelor thesis, it has nevertheless to be mentioned at

this point as a reference book together with the online available Ada Reference Manual 22. The

implementation also follows the SPARK principles explained in the Muen documentation23 and

the Muen SK design and implementation principles24.

(iv) Development and Tools: As the development environment and the corresponding tools form the

basis of the entire project, a separate section is dedicated to them. The principal literature used

for this topic includes the OpenOCD User’s25 and Developer’s26 Guides, the Segger J-Link doc-

umentation27, the ARM Cortex JTAG interface documentation28 and the NXP PBL Configuration

Application Note29.

10
[7] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015.

11
[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2018.

12
[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2018.

13
[5] n.a. AArch64 Virtualization. 2017.

14
[9] n.a. ARM Generic Interrupt Controller, Architecture Specification. 2013.

15
[11] n.a. CoreLink GIC-400 Generic Interrupt, Technical Reference Manual. 2012.

16
[16] n.a. QorIQ LS1012A Data Sheet. 2018.

17
[18] n.a. QorIQ LS1012A Reference Manual. 2018.

18
[19] n.a. QorIQ LS1012A Security (SEC) Reference Manual. 2017.

19
[17] n.a. QorIQ LS1012A Getting Started Guide. 2016.

20
[15] n.a. QorIQ LS1012A Board Reference Manual. 2016.

21
[1] Barnes. Programming in Ada2012. 2018.

22
Official Ada 2012 Reference Manual, https://developer.arm.com/technologies/trustzone, December 21, 2018

23
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, SPARK, chapter 2, section

2.1, page 3 f.
24

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Design, chapter 3, page 19

ff., and Implementation, chapter 4, page 31 ff.
25

[21] Oliver et al. Open On-Chip Debugger: OpenOCD User’s Guide. 2017.
26

[20] Oliver et al. Open On-Chip Debugger: OpenOCD Developers’s Guide. 2017.
27

[13] n.a. J-Link / J-Trace User Guide. 2018.
28

[12] n.a. CoreSight Components, Technical Reference Manual. 2009.
29

[14] n.a. QorIQ LS1012A Application Note, PBL Configuration using QCVS. 2016.

bachelorthesis.pdf version: 1.0

9

date: December 21, 2018

https://developer.arm.com/technologies/trustzone

Bachelor Thesis

Muen on ARM

2 Theoretical Background

This chapter is intended to give a brief overview of the topics already developed in the Student Re-

search Study by summarising the individual chapters of the documentation and highlighting the most

important topics once again.

2.1 Muen Separation Kernel

As already mentioned, the design and implementation of the Muen SK is premised on three basic

concepts. First of all, it is based on the Separation Kernel principle introduced by John Rushby1 that

basically adapts the principles of a distributed system with respect to physical isolation, communication

and shared ressources to a single processor and can be verified with a Proof of Separability. Secondly,

the theory of the Separation Kernel principle requires that an actual implementation of this principle

has to use a programming language that is amenable to formal verification. Therefore, the Muen SK is

written in SPARK, a formally analysable subset of the programming language Ada 2. Finally, to achieve

the requirement of a sufficiently small code base, the Muen SK relies on the hardware virtualization

support of the Intel x86/64 architecture3 .

2.1.1 Functional Principle

As defined by the separation kernel principle, the system or security policy is at the heart of the Muen

SK implementation. This policy describes basically a system-wide, static allocation of resources in

a way such that the guest systems are strictly isolated from each other and their communication is

exclusively governed by the Muen SK type I hypervisor according to a policy. In practice, this means

that supported by the Muen SK Tools an IRQ routing specification for the system’s I/O APIC4, a vector

routing specification to determine the destination subject of interrupt vectors5, a memory map defining

the kernel stack, the page tables and the per-CPU storage memory addresses, the static scheduling

plans for all CPU cores including a barrier as synchronization mechanism to avoid any interprocessor

drift in the context of scheduling plans and hence to eliminate timing side channels6 as well as the

subject specifications are generated. Finally, all object binaries created by the build process (i.e. the

Muen SK kernel and all subjects) are packed into a bootable OS image7.

1
[22] Rushby. “Design and Verification of Secure Systems”. 1981.

2
cf. https://www.adacore.com/sparkpro, December 21, 2018

3
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Intel Virtualization Technol-

ogy (VT), chapter 2, section 2.3.1, page 12 ff.
4
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.3, page 18 ff.

5
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, External Interrupts, chapter

4, section 4.4.6, page 50 f.
6
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.2, page 17 f.

7
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Image Packaging, chapter

4, section 4.5.3, page 57 f.

bachelorthesis.pdf version: 1.0

10

date: December 21, 2018

https://www.adacore.com/sparkpro

Bachelor Thesis

Muen on ARM

2.1.2 Components

The Muen SK makes use of several (hardware) components and principles to guarantee the separation

of the guest systems. In this section, the most important components especially with respect to this

bachelor thesis are mentioned again. Detailed descriptions of these components and principles can

be found in the Student Research Study in chapter 2.

To be able to implement a small code based type I hypervisor, the target processor architecture needs

to provide hardware assisted virtualisation support. The Muen SK relies on the Intel Virtualization

Technology (VT) that introduces a new hypervisor execution level with an additional protection ring

and simplifies the switching between a hypervisor running in VMX root operation and a guest subject

executing in VMX non-root8.

With respect to memory and storage, it is crucial to remember the different technologies within their

hierarchy as well as the varying aspects of accessing this components9. While the secondary (i.e.

disk storage) and tertiary (i.e. input storage) are treated as a pure I/O device by the Muen SK10,

all memory resources of a system running the Muen SK are allocated statically and are explicitly

specified in the so called system policy11. This, for example, not only implies that there is no such

mechanism implemented for loading missing page contents from a storage device after a page fault or

page miss, as most of the common operating system kernels would do, but also leads to the concept of

generating the page tables statically during the compilation and build phase of the Muen SK. A detailed

overview of the functionality, use and resulting requirements with respect to memory, caches, memory

management, advanced memory virtualization and even memory in multicore environments can be

found in chapter 2, section 2.2, of the Student Research Study.

The third aspect that has to be concerned in the context of separating guest systems is the interrupt

handling. The Muen SK uses the Intel’s Advanced Programmable Interrupt Controller (APIC) that is

composed of two components - the Local APIC as a part of every physical CPU and the I/O-APIC as a

part of the chipset. This combination of a local and system-wide part provides the possibility not only to

forward external interrupts to specific cores but also to create a mechanism that is used for inter-subject

signalization. The Muen SK implementation distinguishes between Exceptions, Software Generated

Interrupts, Traps and Events. These types of interrupts are then handled differently according to the

VMX mode and the subject class. As an example, VM subjects running in VMX non-root mode must

implement their own exception handling and hence exceptions and software generated interrupts must

not result in a subject exit, whereas an exception occuring during the regular execution of the Muen

SK in VMX root mode would indicate a serious problem in the kernel code and hence halt the whole

system. Further details, especially related to the handling of the different interrupt types, can, again,

be found in the Student Research Study in chapter 2, section 2.3, page 18 and following pages.

8
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.1, page 10 ff.

9
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.2, page 11 ff.

10
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.5, page 24 ff.

11
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Memory, chapter 3, section

3.4.2.1, page 24.

bachelorthesis.pdf version: 1.0

11

date: December 21, 2018

Bachelor Thesis

Muen on ARM

As for every software written for an integrated circuit, the Muen SK also needs a timer to first of all

schedule the different subjects but also to be able to implement a system-wide synchronization barrier

to avoid any interprocessor drifts12. Therefore, the most important timer used by the Muen SK is the

VMX preemption timer provided by Intel’s virtualization extension that allows the kernel to hand over

execution to a subject for a beforehand specified time slice and to return to the hypervisor after the

timer has expired in a preemptive way, i.e. regardless of what operations a subject was performing13.

However, a timer usable for the implementation of the Muen SK must also provide valid accessibility

across all cores in order to be able to implement the required system-wide synchronization barrier.

The last important component of the Muen SK implementation is the programming language SPARK,

a specialized well-defined subset of the Ada general-purpose language designed for high integrity

software. This programming language was chosen by the founder of the Muen SK project due to the

ability of SPARK to formally prove the correctness of the software with respect to a variety of program

properties before the program is executed. An overview to the possibilities of SPARK can be found the

Student Research Study14 and the book Programming in Ada 201215.

2.2 ARM Overview

The Advanced RISC Machines ARM architecture denotes a Reduced Instruction Set Computing RISC

microprocessor design by ARM Limited. Due to the focus of the processor architects at ARM Limited on

a low number of transistors and hence a low power consumption and heat generation, ARM processors

were in the past mainly used in the embedded area. With the ARMv8-A architecture introduced in

2011, ARM Limited has presented its first 64-bit architecture with a virtualization extension not only

applicable for embedded systems but also interesting for personal computers and server systems as

an alternative to Intel and AMD processors16.

To be able to understand the structure of all the reference manuals and technical documents needed

to develop software for a specific ARM system, one has to bear in mind that ARM Limited - in contrast

to the popular Intel processors - does not manufacture the processors itself, but grants design licenses

to semiconductor manufacturing companies. Due to this licensing strategy of ARM Limited, there

exists a large number of different so called ARM-based System on Chip (SoC) that correspond to

a combination of an ARM specified processor as CPU together with other peripheral devices and

coprocessors. Therefore, the following document structure and development hierarchy have to be

considered for developing software for a specific SoC17:

12
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Scheduling, chapter 3,

section 3.4.7, page 29 f.
13

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.4, page 23 f.
14

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.4, page 23 f.
15

[1] Barnes. Programming in Ada2012. 2018, chapter 27, section 27.6, page 839 ff.
16

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, page 29.
17

[3] Langbridge. Professional Embedded ARM Development. 2014, chapter 1, page 10 ff.

bachelorthesis.pdf version: 1.0

12

date: December 21, 2018

Bachelor Thesis

Muen on ARM

(i) ARM Architecture: The highest level of abstraction in the specification of an ARM-based SoC

is called the processor architecture. The according Architecture Reference Manual defines all

the features common to a family of processor’s core designs including the assembly instruction

set, the supported processor modes and memory management components. The architecture

does not specify the actual core architecture conclusively, but delegates some of properties as

„implementation defined“ to the ARM core implementation specification. An ARM architecture

specification can typically be recognized by the letter „v“ in the naming - for example, ARMv7

denotes an architecture, while ARM7 stands for an (older) core design specification.

(ii) ARM Core Implementation: The second highest level of abstraction is the specification of the

actual core design. The according Technical Reference Manual gives additional information on

the options left „implementation defined“ by the ARM architecture version but does not add or

explain architectural features in a more detailed way. The latest processor implementation spec-

ifications by ARM Limited normally contain the term „Cortex“ in their naming - as an example,

the name Cortex-A15 denotes a core design with an ARMv7 architecture.

(iii) SoC Specific Components: At the lowest level of abstraction, the SoC manufacturers provide

another Reference Manual that contains not only details on the core implementation but also

specifies all additional components (i.e. GPU, interrupt controller, etc.) and their usage (i.e.

memory mapping of peripheral devices, controller enabling etc.) included in the same integrated

circuit, as the accessibility of the processor to the peripherals and its control is not predetermined

by ARM. In practice, the SoC manufacturers also often provide fully functional evaluation boards

for the software development. Their architecture and implementation details are then usually

explained again in a separate Board Reference Manual 18.

2.2.1 ARMv8-A Architecture

This section basically summarises the ARMv8 fundamentals19 of the Student Research Study and

recapitulates the most important topics in connection with the porting of the Muen SK to the ARM

architecture. As already mentioned, ARM Limited not only presented its first 64-bit processor with the

introduction of the ARMv8-A architecture, but also added a Virtualization Extension to the processor’s

architecture. However, the naming is somewhat misleading - the Virtualization Extension is not a

single component, but consists of several additional structures on top of already existing components

and design principles of the architecture itself. This allows on the one hand to maintain the backward

compatibility to the ARMv7-A architecture and on the other hand to support a simplified development

of type I and II hypervisors20.

18
There are a variety of different SoC and board architectures with different accessibility strategies: from processor controlled

(Odroid C2 with amlogic S905 SoC, cf. https://www.hardkernel.com/shop/odroid-c2, December 21, 2018) to CoProces-

sor controlled (Raspberry Pi 3 with Broadcom 2837, cf. https://www.raspberrypi.org/products/raspberry-pi-3-model-b,

December 21, 2018).
19

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.2, page 34 ff.
20

5, cf. for AArch64 Virtualization.

bachelorthesis.pdf version: 1.0

13

date: December 21, 2018

https://www.hardkernel.com/shop/odroid-c2
https://www.raspberrypi.org/products/raspberry-pi-3-model-b

Bachelor Thesis

Muen on ARM

The first and most important aspect of the Virtualization Extension is the additional hypervisor layer with

respect to the ARM exception level concept provided at the exception level 2. It is important to note,

that, unlike on Intel x86/64 architecture, code execution at a higher Exception Level (i. e. an Exception

Level ELn with a larger value for n) has more privileges than code execution at a lower one21. In

addition to a separated privilege level, the Virtualization Extension provides some hypervisor specific

registers for a simplified software development as well as an additional Hypervisor Call instruction

HVC as an extension to the ARM64 and ARM32 instruction sets. The additional registers allow, for

example, to trap register access and instruction execution in the guest systems to the hypervisor on

a per subject base. Further details on the exception level principle and the execution states of the

ARMv8-A architecture can be found in the Student Research Study22.

Figure 2.1: ARMv8-A Exception Levels in AArch64 with Hypervisor Level

In addition to the in the ARM A architecture standard memory components, i.e. the Memory Manage-

ment Unit (MMU) as well as the various caches and cache maintenance functions, the Virtualization

Extension provides specific virtualisation-related cache maintenance instructions and a second level

address translation mechanism (i.e. so-called Stage 2 translation). This allows a type I hypervisor to

implement an additional, for a guest system transparent address translation and to create a separate

memory mapping for each subject running at the exception levels 1 and 0. For details with respect

to the standard and advanced virtualisation memory mechanisms including multicore-related explana-

tions for the ARMv8-A architecture, it is referred to section 3.4 of the Student Research Study.

In the ARM terminology, all interrupts (i.e. external and internal interrupts, system errors, aborts and

software generated interrupts) are denoted as exceptions. While at this point a detailed description of

the exception handling is omitted and the corresponding sections in the Student Research Study ref-

21
[7] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-1.

22
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.2.1, page 34 ff., and chapter

3, section 3.2.2, page 37 ff.

bachelorthesis.pdf version: 1.0

14

date: December 21, 2018

Bachelor Thesis

Muen on ARM

erenced23, the two different possibilities regarding the virtualisation of interrupts have to be mentioned

again. Along with the additional Hypervisor Control Register, the ARMv8-A Virtualization Extension

provides a simple solution for the virtualisation of exceptions. Due to the design principles used for

the Muen SK with its local and system-wide separation of the interrupt handling, this mechanism, how-

ever, is not sufficient for the porting of the Muen SK to the ARM architecture. As shown in the course

of the Student Research Project, the exception handling has to rely on an additional component also

specified by ARM Limited, i.e. the Generic Interrupt Controller starting at version 2 (GICv2) 24. Since

already many of the existing SoC implement an interrupt controller meeting the GICv2 specification,

this only slightly restricts the usage of the Muen SK on different ARM-based SoC. Details on the GIC

specified by ARM Limited can, again, be found in the Student Research Study25.

The last important aspect of porting the Muen SK to the ARMv8-A architecture is the ARMv8-A Generic

Timer. Due to the scope of this thesis, the following explanations are restricted to the AArch64 exe-

cution state26, although the basic timer mechanism are still the same for the AArch32 execution state

except for the differently mapped and named registers. Every core design that fulfills the ARMv8-A

architecture specification, has to provide at least one SoC-wide system timer, which provides a uni-

form view of the overall system time. Also mandatory are a memory mapped system counter and a

memory mapped virtual timer per core with at least one comparator each, to configure the timers to

generate an interrupt when the count is greater or equal to the programmed comparator value (i.e.

preemption mechanism). As explained in the Student Research Study27, this three timer and counter

components already fulfill the Muen SK requirements. But usually, the core specification includes some

optional timers and counters for a variety of combinations of secure state, execution state and excep-

tion level. The corresponding Technical Reference Manuals (cf. section 2.2.2) give further details on

their accessibility. In addition, the SoC manufacturer is free to implement even more timer and counter

components (e.g. NXP Flex Timer Modul for the NXP LS1012A FRDM Board).

2.2.2 ARM Cortex-A53 Implementation

As already mentioned and described in the following chapter, the target platform of this bachelor thesis

is the NXP LS1012A with an ARMv8-A Cortex-A53 core. Therefore, this section only briefly discusses

the Technical Reference Manual for the corresponding core design28. Since a comprehensive or even

final explanation of the details of the core design compared to the architecture specification is neither

possible nor useful, a simple example will be given to provide some insights into the interaction between

architecture and core design specification.

23
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.5, page 47 ff.

24
cf. section 2.2.3

25
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.5.6, page 51 ff.

26
[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2018, chapter D10, section D10.1,

page D10-2645 ff.
27

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.6, page 52 ff.
28

[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2018.

bachelorthesis.pdf version: 1.0

15

date: December 21, 2018

Bachelor Thesis

Muen on ARM

When accessing a memory address, the Memory Management Unit checks (among other things),

whether the corresponding process has the required access permissions. These access rights can be

defined per page level by using the Memory Attribute Indirection Register (MAIR_Eln). Since this means

that only eight different access definitions per exception level can be created by the developer, the ar-

chitecture specification offers the option of implementing additional access permission definitions with

the Auxiliary Memory Attribute Indirection Registers (AMAIR_Eln). The interpretation and accessibility of

these registers are declared as „implementation defined“ by the ARMv8-A architecture and therefore

left to be specified by the respective core designs29. While other core designs implement and specify

these registers to be used for additional memory access rights, the ARMv8-A Cortex-A53 now declares

this registers as „not implemented“ and hence „reserved zero“30.

2.2.3 ARM Peripheral Components

ARM Limited not only grants architecture and design licenses for processors, but also specifies further

(peripheral) components that can be integrated into a System on Chip. Typically, these specifications

have exactly the same structure as the documentation of the processors - i.e. at the highest level of ab-

straction there is an ARM architecture specification, followed by a design specification also developed

by ARM Limited and at the lowest level of abstraction the manufacturer of the SoC provides further

details on the implementation of the component.

For this study, only two of these peripheral component specifications have to be considered. First,

the Generic Interrupt Controller Architecture Specification31 with the CoreLink GIC-400 Technical Ref-

erence Manuel32 for the exception handling 33 and, second, the CoreSight Components Technical

Reference Manual34 as design specification for the official IEEE-Standard JTAG debug interface 35 to

be able to use the hardware debugger 36.

2.3 NXP LS1012A Evaluation Board

In the course of the Student Research Study, it could be showed that the Raspberry Pi 3 is not suitable

as a development platform for porting the Muen SK37. Therefore prior to this bachelor thesis, several

evaluation boards were examined with respect to various requirement criteria, whereby only boards

were considered that come with an ARMv8-A processor and could be qualified as „processor con-

29
[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2018, chapter D12, section

D12.2.11, page D12-2705 f.
30

[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2018, chapter 4, section 4.3.54, page 4-90.
31

[9] n.a. ARM Generic Interrupt Controller, Architecture Specification. 2013.
32

[11] n.a. CoreLink GIC-400 Generic Interrupt, Technical Reference Manual. 2012.
33

cf. section 3.3.6
34

[12] n.a. CoreSight Components, Technical Reference Manual. 2009.
35

https://de.wikipedia.org/wiki/Joint_Test_Action_Group, December 21, 2018
36

cf. section 3.1
37

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 4, page 56 ff.

bachelorthesis.pdf version: 1.0

16

date: December 21, 2018

https://de.wikipedia.org/wiki/Joint_Test_Action_Group

Bachelor Thesis

Muen on ARM

trolled“38. After this evaluation the NXP LS1012A FRDM Board was finally chosen as target platform,

although it does not - like all other examined development boards - meet all the technical criteria. The

following table 2.3 shows a summary of the results of this evaluation:

Board Cortex-A53 64-bit TrustZone GIC SMMU Ada Support
39

DevTools
40

Price
41

AA
42

Pine64 Rock64 4 4 8 4 ~ 8 7 34.95 HDR Media

Pine A64(+) 4 4 8 4 8 8 5 29.00 low cost pc

Odroid C2 4 4 8 4 ~ 8 5 46.00 allrounder

NXP LS1012A FRDM 4 4 8 4 ~ 8 8 53.40 allrounder

Espressobin 4 4 8 4 8 8 4 79.00 network

Macchiatobin 8 4 8 4 4 8 6 269.00 network

Jetson TX1 8 4 4 4 4 ~ 9 582.90 VC, KI

Table 2.1: board evaluation process, final result matrix

2.3.1 Overview

Figure 2.2: NXP LS1012A FRDM evaluation board

The QorlQ LS1012A freedom evaluation board is a low cost development platform for the NXP LS1012A

processor series. It is based on a 800 MHz LS1012A ARM Cortex-A53 single processor with 512 mb

DDR3L DRAM, a dual 1000Base-T ethernet interface with RJ-45 connectors, USB 2.0 and 3.0 OTG

38
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, page 29, and chapter 4, section 4.1,

page 56 f., esp. Figure 4.2: Raspberry Pi 3 schematic.
39

i.e. additional community edition support and bb-runtime examples
40

i.e. other development tool independent of the programming language including debugging, example code, documentation

etc. with grades between 1 (abysmal) to 10 (brilliant)
41

i.e. price in US Dollar with 2 GB RAM
42

i.e. the application area, the board was designed for

bachelorthesis.pdf version: 1.0

17

date: December 21, 2018

Bachelor Thesis

Muen on ARM

with Micro A/B connectors, a PCIe 2.0 and SATA3 controller, various peripheral interfaces and GPIO

connectivity as well as additional debug support via the ARM Cortex 10-pin CoreSight JTAG connector

or the CMSIS DAP through a K20 Cortex-M microcontroller. Even though the LS1012A SoC does

not feature a System Memory Management Unit (SMMU), the evaluation board was chosen due to the

NXP announcements of different i.MX 8 64-bit multi-core SoC with an integrated, the ARM specification

fulfilling SMMU 43. Further details on the features of this evaluation board can be found in the according

data sheet44 as well as online 45.

In contrast to the Raspberry Pi 3 board examined in the Student Research Study, the NXP LS1012A

FRDM board is a processor controlled evaluation board46. This means that the ARMv8-A Cortex-A53

on the NXP evaluation board is the organising part of the SoC and has therefore full control over the

initialisation of each component. Figure 3.6 shows a schematic overview for the architecture of the

target platform for this study.

Figure 2.3: NXP LS1012A FRDM schematic

43
cf. NXP LS1021A i.MX 8 series https://www.nxp.com/products/.../i.mx-8-processors:IMX8-SERIES, December 21, 2018

44
[16] n.a. QorIQ LS1012A Data Sheet. 2018.

45
cf. for the board specifications https://www.nxp.com/.../qoriq-frdm-ls1012a-board:FRDM-LS1012A, and the SoC details

https://www.nxp.com/.../qoriq-layerscape-1012a-low-power-communication-processor:LS1012A, December 21, 2018
46

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 4, section 4.1, page 56 f.

bachelorthesis.pdf version: 1.0

18

date: December 21, 2018

https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/i.mx-applications-processors/i.mx-8-processors:IMX8-SERIES
https://www.nxp.com/support/developer-resources/software-development-tools/qoriq-developer-resources/qoriq-frdm-ls1012a-board:FRDM-LS1012A
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-1012a-low-power-communication-processor:LS1012A

Bachelor Thesis

Muen on ARM

2.3.2 Documentation

Another reason, why the NXP LS1012A board was chosen as the target platform for this bachelor

thesis, is the detailed and comprehensive documentation as well as the support and development

tools provided by NXP. It has to be mentioned that all NXP documents and tools are only accessible by

creating a free NXP developer account. Apart from the literature already mentioned in section 1.4, the

following tools and support options are then available via the NXP account:

• CodeWarrior IDE: With the as a 30 days test version available CodeWarrior package, NXP not

only provides an IDE but also includes some (bare metal) code examples written in assembly

and the C programming language 47. This code examples were used to get a basic understand-

ing of the boot process of the NXP LS1012A Board.

• QorlQ Linux SDK: The Linux Software Development Kit (SDK) for QorIQ Processors offers a

full-featured development environment consisting of the Linux kernel and device drivers source

code, a Yocto Embedded Linux development environment, GNU tools (compilers, linkers, etc.),

the adapted U-Boot bootloader source code as well as boot-related firmware, libraries and mid-

dleware 48. This SDK is needed to be able to build a slightly customised U-Boot bootloader that

exits at exception level 3 (cf. the following section).

• Community Forum: The developer account also grants access to the NXP community forum that

is administrated by an NXP support team. In the course of this project, the author also had to

rely on this support option 49.

2.3.3 Board Setup

Like almost every development board with an ARM-based SoC, the NXP LS1012A FRDM too has quite

an unexpected boot process. As soon as the board is turned on, the firmware initialises all components

to their default values, executes the ARM TrustZone Secure Boot bootloader and exits on exception

level 3 into the secure monitor. The only boot option available after the firmware initialisation is the

QSPI flash memory device50. The development boards are delivered with the factory settings for the

QSPI Flash as shown in table 2.3.3 and hence start with the pre-boot loader (PBL) composed of the

Reset Configuration Word (RCW) and the pre-boot initialisation (PBI) commands. This pre-boot loader

not only configures all peripheral devices (e.g. the UART GPIO Pin Mux) but also initialises the DDR3

RAM component on the NXP LS1012A Board51. After the pre-boot loader, the U-Boot bootloader is

called and initialises the DUART serial communication peripheral to be able load and execute custom

ARMv8-A binaries from within the U-Boot console.

47
cf. https://www.nxp.com/.../codewarrior-development-tools:CW_HOME, December 21, 2018

48
cf. https://www.nxp.com/.../linux-sdk-for-qoriq-processors:SDKLINUX, December 21, 2018

49
cf. https://community.nxp.com/thread/487093, December 21, 2018

50
[17] n.a. QorIQ LS1012A Getting Started Guide. 2016, chapter 11, page 11.

51
[14] n.a. QorIQ LS1012A Application Note, PBL Configuration using QCVS. 2016, for more details.

bachelorthesis.pdf version: 1.0

19

date: December 21, 2018

https://www.nxp.com/support/developer-resources/software-development-tools/codewarrior-development-tools:CW_HOME
https://www.nxp.com/support/developer-resources/run-time-software/linux-software-and-development-tools/linux-sdk-for-qoriq-processors:SDKLINUX
https://community.nxp.com/thread/487093

Bachelor Thesis

Muen on ARM

Start Address End Address Image Maximum Size

0x4000_0000 0x400F_FFFF RCW and PBI 1 MB

0x4010_0000 0x400F_FFFF U-boot boot loader and PFE binary 1 MB

0x4020_0000 0x401F_FFFF U-boot environment 1 MB

0x4050_0000 0x409F_FFFF PPA FIT 2 MB

0x40A0_0000 0x43FF_FFFF Kernel ITB 59 MB

Table 2.2: NXP LS1012A QSPI Flash Layout

As already mentioned in the section 1.2, it soon became apparent in the course of the project that the

hypervisor has to make additional configurations with regard to the physical interrupt handling 52 and

the Generic Interrupt Controller (GIC) 53 at exception level 3. Therefore, the NXP LS1012A Board with

its factory settings can not be directly used for running the code developed during this bachelor thesis.

Due to the absence of a QSPI Flash driver support in the OpenOCD software, the simplest way to

update the evaluation board with a suitable bootloader is as follows 54:

(1) Pre-boot loader and U-Boot Binaries: First, the latest Linux SDK for QorIQ Processors has to

be downloaded from the NXP software page and installed according to the package installation

instructions. Following the build instructions also provided within the package, the latest PBL

and U-Boot binaries can then be built. Since the entire build process is relatively complex, the

two binaries to be used can be found in the scripts folder of the muensk project in the directory

u-boot. Due to the uncertain license situation, it is important to note that the binaries should only

be used in the context of this bachelor thesis (i.e. educational use only).

(2) TFTP Server Setup: In a second step, a TFTP server in a local network has to be set up.

For this study, a Raspberry Pi 3 running the official TFTP software (i.e. tftpd−hpa) provided

by the Debian-based Raspbian operating system was used. An installation and configuration

guide can be found at https://www.cyberciti.biz/faq/install-configure-tftp-server-ubuntu-debian-

howto. To be able to load the binaries directly from the development environment on the desktop

computer to the TFTP server, an additional FTP server was configured on the Raspberry Pi 3

according to the setup guide published at http://raspberry-projects.com/.../vsftpd-ftp-server. The

support scripts for the whole process can also be found in the scripts folder of the muensk

project. The final setup for this project was the following:

52
cf. chapter 3, section 3.3.1

53
cf. chapter 3, section 3.3.6

54
Attention - even though this is the easiest way to update the bootloader, it is still possible to brick the NXP evaluation

board by not exactly following the NXP Getting Started Guide or messing up the RCW or PBI binaries. If something went

wrong with the update of the code in the flash memory the only option to unbrick the board is to use a JTAG hardware

debugger tool with appropriate QSPI flash support.

bachelorthesis.pdf version: 1.0

20

date: December 21, 2018

https://www.cyberciti.biz/faq/install-configure-tftp-server-ubuntu-debian-howto/
https://www.cyberciti.biz/faq/install-configure-tftp-server-ubuntu-debian-howto/
http://raspberry-projects.com/pi/software_utilities/web-servers/vsftpd-ftp-server

Bachelor Thesis

Muen on ARM

Figure 2.4: TFTP Server Setup

(3) QSPI Flash Update: Finally, the pre-boot loader and U-Boot binaries have to be uploaded to

the TFTP server and written to the QSPI flash memory of the NXP LS1012A FRDM Board.

This can be achieved (a) by connecting the evaluation board with the Micro USB to USB cable

to the development computer and starting the CoolTerm serial console with the script from the

repository, (b) by resetting the board, stopping the autoboot and entering the U-Boot prompt, (c)

by setting the U-Boot environment variables with the correct IP addresses for the NXP LS1012A

FRDM Board and the TFTP server and resetting the board again; (d) and, last, by executing the

following update commands:

Environment Setup

=> printenv bootdelay

=> setenv ipaddr <board_ip >

=> setenv serverip <server_ip >

=> saveenv

=> reset

..

PBL Update

=> tftp 0x80000000 PBL_0x33_0x05_800_250_1000_default.bin;

=> sf probe 0:0; sf erase 0 40000; sf write 0x80000000 0x0

40000;

U-Boot Update

=> tftp 0x80000000 u-boot.bin;

=> sf probe 0:0; sf erase 0x100000 80000; sf write 0x80000000

0x100000 80000;

Linux Kernel Erase

=> sf probe 0:0; sf erase $kernel_start $kernel_size;

After the QSPI flash memory is updated, the custom ARMv8-A binaries start execution at ex-

ception level 3. However, to be able to deploy the code of this project, the U-Boot environment

variables have to be set according to the configuration file in the appendix C.

bachelorthesis.pdf version: 1.0

21

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3 Practical Part

This chapter describes those aspects of the bachelor thesis that are closely related to the development

of the code written in assembly and Ada/SPARK. In the first part, a detailed explanation of the devel-

opment environment is given, while as the second part is dedicated to the current project and code

structure elaborated during this study.

3.1 Development Environment

identifier description link

Method Dual Boot Desktop PC -

Operating System Debian 64-bit 9.2 64-bit Debian Download

Native Toolchain AdaCore GNAT Community Edition AdaCore Download

Cross Toolchain AdaCore GNAT AArch64 Pro Edition -

IDE AdaCore GPS Community Edition AdaCore Download

Debugger Code AdaCore GDB AArch64 Pro Edition -

Debugger Probe Segger J-Link Edu J-Link Probe

Debugger Driver Segger J-Link Driver Package J-Link Download

Debugger Connect OpenOCD 0.10.0 (customised) OpenOCD

Table 3.1: Development Environment Overview

As the development environment has been most important for the success of this bachelor thesis, this

whole section is dedicated to its setup. An overview of all the required tools is given in table 3.1. Due

to the requirements of the above mentioned software, the environment setup is based on a Debian

9 operating system with a Gnome desktop. However, the installation of the base system will not be

discussed further as there are enough installation guides and configuration options to be found in

literature and online.

3.1.1 Toolchain

To be able to build all the source code developed during this study, a native Ada/SPARK toolchain for the

test project and a Ada/SPARK ARMv8-A AArch64 cross toolchain for the main source code are needed.

While the native toolchain provided by the AdaCore Community Project is freely available for almost all

operating systems 1, the GNAT Pro AArch64 ELF cross toolchain currently used for the development is

1
cf. https://www.adacore.com/download, December 21, 2018

bachelorthesis.pdf version: 1.0

22

date: December 21, 2018

https://www.debian.org/CD/http-ftp/
https://www.adacore.com/download
https://www.adacore.com/download
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu
https://www.segger.com/downloads/jlink/
http://openocd.org/
https://www.adacore.com/download

Bachelor Thesis

Muen on ARM

part of the AdaCore GNAT Pro Edition 2 and therefore a valid license is needed. Owing to the request

of the Muen SK developers, i.e. Adrian-Ken Rüegsegger and Reto Bürki, AdaCore provided a free

license for this bachelor thesis. The according installation package is provided with the source code,

but it is important to note that this toolchain should only be used in the context of this bachelor thesis

(i.e. educational use only). The installation of both the native and the cross toolchain can be done

without problems on any Linux derivative with the installation script included in the AdaCore packages.

An alternative way to build a GNAT ARMv8 AArch64 toolchain with the open source GCC GNU Com-

piler Collection and the software tool crosstool-ng can be found in the evaluation case documentation

of the Student Research Study 3, although this option could not be tested for the current source code

during this bachelor thesis.

3.1.2 Integrated Development Environment

Due to the integration possibilities for the GNAT toolchain, the OpenOCD client and the GNU Debugger

(GDB) software, the GPS Integrated Development Environment (IDE) developed by AdaCore was used

during the entire project. The IDE is part of the AdaCore toolchain packages and is automatically

installed during the AdaCore toolchain installation process.

Apart from the standard tools offered by a full-featured IDE, the GPS IDE also provides a test suite for

native unit tests. This suite is used by the Muen SK test project that can be found in the root directory

of the code repository.

Figure 3.1: GPS IDE overview

2
cf. https://www.adacore.com/gnatpro/, December 21, 2018

3
Problem Description Toolchain - Ada toolchain ARMv8 AArch64, chapter 2, page 3 ff.

bachelorthesis.pdf version: 1.0

23

date: December 21, 2018

https://www.adacore.com/gnatpro/

Bachelor Thesis

Muen on ARM

3.1.3 Debugger Setup

Even though the development of bare metal software does not necessarily require a hardware debug-

ger 45, the usage of the J-Link Debug Probe in connection with the GNU Debugger and OpenOCD has

been of key importance to accomplish the objectives within the time constraints of this bachelor thesis.

However, the main problem in this context is that there are hardly any open source or free software

products that support the latest ARMv8-A architecture. Therefore, a working combination of hardware

and software tools had to be assembled that could provide the desired debugger functionality with as

few adjustments as possible.

J-Link Debug Probe

For this project, the Segger’s J-Link Edu Version 10.1 6 debug probe was chosen as the in-circuit

debugger after a thorough examination of various devices and possibilities during the Student Re-

search Study7, even though the J-Link software provided with this device does not support the ARMv8-

A Cortex-A53 processor yet 8. The debug probe is used to connect the JTAG header on the NXP

LS1012A board to the developer’s desktop computer.

Although, this setup uses the OpenOCD software to guarantee a working communication between

the J-Link Edu debug probe and the GDB server provided with the GPS IDE, the official drivers from

the Segger download page may have to be installed too, depending on the operating system of the

development setup. The J-Link Software bundle as well as the documentation can be downloaded

from here. As an example, the installation commands for the Debian 9 distribution would be:

$ cd /path/to/JLink_Linux_V640_x86_64.deb

$ su

enter your root password

$ dpkg -i JLink_Linux_V640_x86_64.deb

and follow the installation instructions

Finally, the NXP LS1012A FRDM Board has to be wired correctly to the Segger J-Link Edu debug

probe. Because the NXP evaluation board implements the official JTAG 10-pin interface specified by

ARM Limited, the according pinout description can be found in the CoreSight Components Technical

4
Alternatives to a hardware debugger would be an according configured UART communication or a simulator, although

every consulted literature, that covers this topic, recommends using a hardware debugger especially when writing boot

code (cf. chapter 9, page 159 ff., [3]
5
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.1, page 30 ff.

6
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/, December 21, 2018

7
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.1.2, page 31 f.

8
At the end of the second quarter of 2018, Segger released a beta version of the J-Link software package with ARMv8-A

support (cf. https://www.segger.com/news/j-link-64-bit-support, December 21, 2018). However, this package is currently

only supported by the J-Link Ultra+ debug probe (cf. https://forum.segger.com/.../5234-SOLVED-armv8-iMX8M-Support

and https://www.segger.com/.../model-overview, December 21, 2018).

bachelorthesis.pdf version: 1.0

24

date: December 21, 2018

https://www.segger.com/downloads/jlink#J-LinkSoftwareAndDocumentationPack
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/
https://www.segger.com/news/j-link-64-bit-support/
https://forum.segger.com/index.php/Thread/5234-SOLVED-armv8-iMX8M-Support/
https://www.segger.com/products/debug-probes/j-link/models/model-overview/

Bachelor Thesis

Muen on ARM

Reference Manual9. The pinout description for the Segger J-Link Edu debug probe is explained in the

Segger J-Link documentation10. The final setup is shown in figure 3.2.

Figure 3.2: J-Link Debug Probe setup including ARM JTAG pinout

OpenOCD

For the communication between the J-Link debug probe and the GDB server, the Open On-Chip De-

bugger (OpenOCD) software created by Dominic Rath as part of a diploma thesis at the University of

Applied Sciences Augsburg was chosen 11. As the ARMv8-A support is still under development, the

latest source code from the master branch of the sourceforge repository 12 has to be adapted with two

patches provided with the source code for this bachelor thesis 13. After applying the patches to the

downloaded source code of the OpenOCD software, the project has to be built and installed according

to the instructions that can be found in the root directory of the OpenOCD master branch.

To be able to integrate the OpenOCD software into development process with the GPS IDE, an

OpenOCD configuration file (i.e. muenproj.cfg) had to be developed to start the OpenOCD server cor-

rectly from within the IDE. The configuration file can be found in the bachelor thesis’ code repository in

the directory 01_muensk → scripts → jtag. After copying the configuration file into the GPS project folder,

the GPS project settings have to be adjusted according to figure 3.3. Before starting the GDB-based

debugger from within the GPS IDE, the OpenOCD server must be initialized via the menu entry Build

→ Bareboard → openocd as shown in figure 3.4.

9
[12] n.a. CoreSight Components, Technical Reference Manual. 2009, appendix C, section C.2.2, page C-5 f.

10
[13] n.a. J-Link / J-Trace User Guide. 2018, chapter 15, section 15.1.1, page 337.

11
http://openocd.org, December 21, 2018

12
https://sourceforge.net/p/openocd/code/ci/master/tree/, December 21, 2018

13
At the beginning of the project, three patches were needed. But with one of the changes of the OpenOCD software in the

course of this study, one of the source code changes can now be omitted.

bachelorthesis.pdf version: 1.0

25

date: December 21, 2018

http://openocd.org/
https://sourceforge.net/p/openocd/code/ci/master/tree/

Bachelor Thesis

Muen on ARM

Figure 3.3: GPS IDE OpenOCD settings project

Figure 3.4: GPS IDE OpenOCD integration

GNU Debugger

The third component of the hardware debugger setup is the GNU Debugger (GDB) software 14 that

allows the developer to send debugging commands over the OpenOCD server to the JTAG interface

of the NXP LS1012A FRDM Board. The GBD software tools are provided with the AdaCore toolchain

bundles and automatically installed during the according installation process (cf. section 3.1.1).

14
https://www.gnu.org/software/gdb, December 21, 2018

bachelorthesis.pdf version: 1.0

26

date: December 21, 2018

https://www.gnu.org/software/gdb/

Bachelor Thesis

Muen on ARM

The standard initialisation of the GDB server by the GPS IDE is not sufficient for the Muen SK project.

Therefore, a specific GDB initialisation script has to be created in the root directory of the project that

not only configures the GDB server according to the setup but also adds project-specific load function

and post setup hooks. An example for a Muen SK GDB initialisation file can be found in the appendix

D as well as in the source code script folder delivered with this project documentation.

Per default, the GPS IDE is not allowed to load a project-specific GDB initialisation script from the

root folder of the GPS project. Therefore, a user defined . gdbinit file with a corresponding entry has to

be created in the user’s home directory. It is recommended to limit the access of the GBD autoload

function to the currently used project-specific GDB initialisation scripts with:

$ cd $HOME

$ nano .gdbinit

enter the following line and save the file

add -auto -load -safe -path /path/to/project /. gdbinit

Finally, the hardware debugging process can be initialised by starting the debugger from within the

GPS IDE without the usage of a main file 15 as shown in the following figure.

Figure 3.5: GPS IDE GDB integration

Final Debugging

By using the setup described in this section, it is now possible to compile, build, load and execute the

Muen SK binary directly from within the GPS IDE. After starting the OpenOCD server and initialising

15
Calling the debugger with the current main file would automatically set a breakpoint at the first instruction executed on the

NXP LS1012A FRDM Board, before the binary is loaded correctly into the DDR RAM.

bachelorthesis.pdf version: 1.0

27

date: December 21, 2018

Bachelor Thesis

Muen on ARM

the debugger without a main file, the GPS IDE switches to the debugger view. Owing the customised

GDB initialisation script, the binary can now be loaded into the DDR RAM of the NXP LS1012A Board

by executing the command load_with_subjects within the debugger console.

Figure 3.6: GPS IDE GDB load binary into DDR RAM

Due to the customised OpenOCD software, the debugger is now capable of giving the developer a

lot of information with respect to the hardware register states (1). After loading the binary into RAM

and setting some brakepoints and watchpoints in the debugger console with the appropriate GDB

commands, the program can finally be executed by either running the command continue (2) or pressing

the continue button from the GPS IDE (3).

Figure 3.7: GPS IDE GDB execute binary from DDR RAM

bachelorthesis.pdf version: 1.0

28

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.1.4 Deployment

In order to offer the supervisors the possibility to load and execute the master branch of the source

code during the whole project without the need of a hardware debugger setup, the code repository

contains two Kermit scripts for the deployment of the Muen SK binary via the serial interface. These

scripts can be found in the folder 01_muensk → scripts → serial . For NXP LS1012A FRDM Boards, that

are still equipped with the factory default bootloader versions, the Kermit script for running the binaries

at exception level 2 has to be executed. However, due to the implementation of the exception handling

based on the Generic Interrupt Controller (GIC), the latest source code has to be executed starting at

exception level 3 and therefore the deployment has to be done by using the according Kermit script for

EL3 binaries and an updated NXP evaluation board as described in section 2.3.3.

To be able to execute the scripts, the ckermit package has to be installed first 16. After making the scripts

executable with the well-known chmod +x <filename> command and building the Muen SK GPS project,

the binaries can be loaded and executed by running the command ./ serialcon_boot_el<n> in a terminal.

If everything has been set up correctly, the binary is first loaded over the serial connection onto the

evaluation board and then executed by the bootloader.

Figure 3.8: Kermit Script serial load process

16
With the setup described in the preceding sections, this can be achieved by using the official apt package from the Debian

repository

bachelorthesis.pdf version: 1.0

29

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Figure 3.9: Kermit Script kernel execution start

3.2 Software Architecture

The root directory of the project repository is divided into three parts - the administration, the doc-

umentation and the source code folder. The first two directories contain all the administration and

documentation files prescribed by the University of Applied Sciences Rapperswil (HSR) 17. While the

documents in the administration folder are written in German, the whole documentation is written in

English in accordance with the general conditions discussed during the kickoff meeting. Since these

documents should be self-explanatory, the following section only considers the third directory (i.e. the

souce code folder) and explains the most important design elements of the software architecture of the

separation kernel developed in the course of this bachelor thesis. The code directory consists of three

independent subprojects:

(1) Muens SK: The 01_muensk directory holds the source code for the zero footprint runtime, the

separation kernel and the two subjects. It can therefore be considered as the main source code

folder for this study and, hence, is described more detailed in the following sections.

(2) Muen SK Test: This part of the source code is dedicated to the unit test framework GNATtest

provided by the AdaCore toolchain bundle. As it is currently not possible to run tests directly on

the remote hardware, this subproject only contains algorithmic Unit Tests that can be executed

on the development platform with the native AdaCore toolchain. Further details on the GNATtest

unit test harness generator can be found at https://www.adacore.com/gnatpro/toolsuite/gnattest.

17
cf. Anleitung: Dokumentation Studien- und Bachelorarbeiten, HSR intern

bachelorthesis.pdf version: 1.0

30

date: December 21, 2018

https://www.adacore.com/gnatpro/toolsuite/gnattest

Bachelor Thesis

Muen on ARM

(3) OpenOCD: At first, this folder contained the fork of the master branch of the whole OpenOCD

source code. In the course of the project, however, it was decided to provide only the patches

needed for the latest source code from the sourceforge OpenOCD repository. Details on the

installation and configuration can be found in the section 3.1 of this paper.

3.2.1 MuenSK Projects

The Muen SK project folder contains four different GPS subprojects, that in contrast to the code repos-

itory projects depend highly on each other:

(1) muenrts: The Muen SK uses a Zero Footprint Runtime18. This runtime was borrowed from the

Muen SK project without any substantial adjustments.

(2) muensk: This GPS project implements the basic components of the separation kernel, builds all

the necessary binaries (i.e. kernel, runtime and subject binaries) and makes use of the mkimage

tool to create a multi binary U-Boot FIT image according to the . its configuration file in the root

directory of the muensk project. This multi binary U-Boot FIT image can be loaded and executed

over the serial connection (cf. section 3.1.4).

(3) muensubjects: This folder contains two GPS projects of two differently configured native sub-

jects. The source code of the two subjects can be built independently of the hypervisor in use.

For all GPS projects of this study, the project settings have to select the MuenRTS object folder as their

runtime. This can be achieved in the toolchain menu entry in the project settings:

Figure 3.10: GPS IDE runtime settings project

18
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.7, page 26.

bachelorthesis.pdf version: 1.0

31

date: December 21, 2018

Bachelor Thesis

Muen on ARM

All GPS projects have to be configured as makefile projects with the Makefile located in the root directory

of the according projects folder:

Figure 3.11: GPS IDE makefile settings project

3.2.2 Code Structure

According to the author’s experiences in the field of embedded systems and following different hyper-

visor implementations 19, the source code for the implementation of the separation kernel as well as

for both subjects is structured into two parts. The first two subdirectories (color-coded blue) contain:

• arm: This subfolder is structured according to the ARMv8-A architecture and core design speci-

fication. While the root directory consists of all the execution state independent ARMv8-A source

code, the aarch64 folder relates to code that has to be qualified as AArch64 execution state only.

In addition, all ARM components, that are described in a separate specification document, are

also architecturally separated (i.e. currently the Generic Interrupt Controller GIC only).

• board: This source code folder holds board specific code, e.g. all driver implementations, the

board initialisation related code and the board’s startup assembly file. For every new target

platform, a separate directory should be created.

The second type of subdirectories (color-coded orange) contains the project-specific source code files.

In the example of the separation kernel shown in Figure 3.12, the files are separated into the debug

specific, the kernel specific, and the subject initialisation files.

19
e.g. Xen Hypervisor https://xenbits.xen.org/gitweb/?p=xen.git;a=summary and HASPOC Hypervisor https://haspoc.sics.se

/source.html, December 21, 2018

bachelorthesis.pdf version: 1.0

32

date: December 21, 2018

https://xenbits.xen.org/gitweb/?p=xen.git;a=summary
https://haspoc.sics.se/source.html
https://haspoc.sics.se/source.html

Bachelor Thesis

Muen on ARM

Figure 3.12: Muen SK separation kernel code structure

3.2.3 Code Style

The source code was written in accordance with the Muen Coding Guidelines 20. In addition, all

implemented procedures, functions and initialised registers are provided with a header that consists of

the according name, the type, the visibility, a brief description, a detailed description and, if needed,

other information like the accessibility or the parameter specifications.

20
The corresponding guidelines can be found in the literature folder on the enclosed USB data carrier.

bachelorthesis.pdf version: 1.0

33

date: December 21, 2018

Bachelor Thesis

Muen on ARM

−−

−− @name <name> −−

−− @type <procedure | f u n c t i o n | r e g i s t e r > −−

−− @ v i s i b i l i t y < p r i va te > −−

−− −−

−− @brief < b r i e f _ d e s c r i p t i o n > −−

−− −−

−− < long_desc r ip t i on > −−

−− −−

−− @param <param> −−

−− −−

−− @access ib i l i t y <RW|WO|RO> −−

−− −−

−−

3.2.4 License

As stated in every source code file, the whole project is basically licensed according to the GNU Gen-

eral Public License version 3 (GPLv3). In addition, the author also signed the Codelabs Contributors

Agreement. Its content can be found in the appendix E of this document.

−−

−− −−

−− Copyr ight (C) 2018 , David L o o s l i <d loos l i@hsr . ch > , −−

−− U n i v e r s i t y o f Appl ied Sciences HSR, Rapperswi l −−

−− p . p . Reto Buerk i <reet@codelabs . ch> −−

−− and −−

−− p . p . Adrian−Ken Rueegsegger <ken@codelabs . ch> −−

−− −−

−− This program i s f ree sof tware : you can r e d i s t r i b u t e i t and / or modify −−

−− i t under the terms of the GNU General Pub l i c License as publ ished by −−

−− the Free Software Foundation , e i t h e r vers ion 3 of the License , or −−

−− (a t your op t ion) any l a t e r vers ion . −−

−− −−

−− This program i s d i s t r i b u t e d i n the hope t h a t i t w i l l be usefu l , −−

−− but WITHOUT ANY WARRANTY; w i thou t even the imp l ied warranty o f −−

−− MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the −−

−− GNU General Pub l i c License f o r more d e t a i l s . −−

−− −−

−− You should have rece ived a copy of the GNU General Pub l i c License −−

−− along wi th t h i s program . I f not , see < h t t p : / / www. gnu . org / l i censes / > . −−

−− −−

−− −−

−− @fi le <f i lename > < desc r i p t i on > −−

−− −−

−− @project MuenOnARM −−

−− @target < ta rge t > −−

−− @reference <reference > −−

−− −−

−−

bachelorthesis.pdf version: 1.0

34

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.3 Implementation Details

The last section of the practical part highlights some of the most important implementation details. For

a deeper insight into the implementation itself, it is referred to the source code of this bachelor thesis.

3.3.1 Startup Code

Due to the licensing strategy of ARM Limited and hence the various SoC designs, the first special case

concerns the startup code. In ARM-based systems, the startup code for different SoC and evaluation

boards usually slightly differs. In the source code, it is taken account of this differences by

(i) separating the various board and SoC related source code;

(ii) moving the startup code file to the according SoC or board root directory (cf. figure 3.12);

(iii) implementing the code in assembly and only using the ARMv8-A ARM64 instruction set 21.

To simplify the integration of further ARM-based systems, an abstract specification of the hardware

state before entering the actual separation kernel is required. As already mentioned in the section 1.2,

it is therefore currently assumed that the according evaluation board

(i) configures and initializes the existing random access memory (RAM) components, as the sep-

aration kernel source code does not provide any firmware capabilities apart from the UART

communication driver;

(ii) establishes an identity mapping as well as configures and enables the Memory Management

Unit (MMU) if necessary for the use of the RAM component;

(iii) hands over the execution to the separation kernel code at exception level 3 (i.e. secure monitor

mode) in a legal hardware state.

Despite the above-mentioned measures, there still can be observed differences between the various

SoC. For example, the common start handler would not be necessary for the current implementation,

because the NXP LS1012A FRDM board is already a single core system. In contrast, the Odroid C2

development board is based on Amlogic ARMv8-A Cortex-A53 quad core SoC and hence the slave

cores would have to be put into a waiting state, since the current implementation only supports single

core systems.

21
Due to the backward compatibility of the ARMv8-A architecture with respect to the ARMv7 specification, the A32 and

Thumb32 instruction sets are supported too (cf. appendix B, page 203, [3]), but must not be used in the case of porting a

SoC or an evaluation board to the Muen SK project.

bachelorthesis.pdf version: 1.0

35

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.3.2 Registers

Due to the strong typing principle of the Ada/SPARK programming language, the implementation of

the registers could imitate exactly the ARMv8-A architecture and Cortex-A53 design specifications.

This could be achieved by first implementing the register type as a volatile record in the according

Ada/SPARK specification file.

−−

−− @name Translat ion_Table_Base_Register_Type (TTBRn) −−

−− @type type −−

−− −−

−− @brief type d e f i n i t i o n f o r the 64−b i t ARMv8 AArch64 −−

−− t r a n s l a t i o n tab l e base r e g i s t e r (see ARM A r c h i t e c t u r e −−

−− Reference Manual ARMv8, sec t ion D7.2 .100 , p . D7−2521) −−

−−

type Translat ion_Table_Base_Register_Type i s record

Common_Not_Private : Common_Not_Private_Flag := 2#0#;

Base_Address : Base_Address_Type := 16#0000_0000_0000 #;

Address_Space_ID : ARMv8. Halfword := 16#0000#;

end record

wi th V o l a t i l e , Size => 64 ,

Bi t_Order => System . Low_Order_First ;

f o r Translat ion_Table_Base_Register_Type use record

Common_Not_Private a t 0 range 0 . . 0 ;

Base_Address a t 0 range 1 . . 47;

Address_Space_ID at 0 range 48 . . 63;

end record ;

In a second step, the functions to access and set the actual register are declared according to the ARM

specifications from the corresponding reference manual applying the following rules: (a) If according

to the ARM specification the AArch64 register can be mapped to the AArch32 execution state or is

accessible from different exception level in AArch64 execution state, a generic function to access and a

generic procedure to set the according register has to be implemented; (b) for every AArch64 execution

state a function to access and a procedure to set the according register with the prefix _ELn has to

be implemented; (c) currently the AArch32 registers have neither to be declared nor implemented.

As an example, the Translation Table Base Register (TTBR0) is accessible from all exception levels

except for EL0 and can be mapped to an AArch32 TTBR register - therefore, the generic function

Translation_Table_Base_Register_0 to access the TTBR0 register and the corresponding Set_0 procedure as

well as all according functionality for the three exception levels have to be declared and implemented

as shown in the following code snippet. In contrast, the Hypervisor Control Register (HCR) is only

available at exception level 2, but can be mapped to an AArch32 register - hence, the declaration of

a generic access function and a set procedure is required, but only the functions and procedures for

exception level 2 are need to be implemented.

bachelorthesis.pdf version: 1.0

36

date: December 21, 2018

Bachelor Thesis

Muen on ARM

−−

−− Procedures and Funct ions Dec la ra t ion −−

−−

f u n c t i o n Translat ion_Table_Base_Register_0

r e t u r n Translat ion_Table_Base_Register_Type ;

f u n c t i o n Translat ion_Table_Base_Register_0_EL3

r e t u r n Translat ion_Table_Base_Register_Type ;

f u n c t i o n Translat ion_Table_Base_Register_0_EL2

r e t u r n Translat ion_Table_Base_Register_Type ;

f u n c t i o n Translat ion_Table_Base_Register_0_EL1

r e t u r n Translat ion_Table_Base_Register_Type ;

procedure Set_0 (Register_Value : Translat ion_Table_Base_Register_Type) ;

procedure Set_0_EL3 (Register_Value : Translat ion_Table_Base_Register_Type) ;

procedure Set_0_EL2 (Register_Value : Translat ion_Table_Base_Register_Type) ;

procedure Set_0_EL1 (Register_Value : Translat ion_Table_Base_Register_Type) ;

−−−

−− Procedures and Funct ions Implementat ion −−

−−−

−−

−− @name Translat ion_Table_Base_Register −−

−− @type f u n c t i o n −−

−− −−

−− @brief re tu rns the t r a n s l a t i o n tab l e base r e g i s t e r −−

−− −−

−− This f u n c t i o n re tu rns the cu r ren t value o f the t rans− −−

−− l a t i o n tab l e base r e g i s t e r 0 a t the cu r ren t except ion −−

−− l e v e l (except f o r EL0 [not access ib le]) −−

−−

f u n c t i o n Translat ion_Table_Base_Register_0

r e t u r n Translat ion_Table_Base_Register_Type

i s

TTBR0 : Translat ion_Table_Base_Register_Type ;

begin

i f ARMv8. Current_EL = ARMv8. EL3 then

r e t u r n Translat ion_Table_Base_Register_0_EL3 ;

e l s i f ARMv8. Current_EL = ARMv8. EL2 then

r e t u r n Translat ion_Table_Base_Register_0_EL2 ;

e l s i f ARMv8. Current_EL = ARMv8. EL1 then

r e t u r n Translat ion_Table_Base_Register_0_EL1 ;

e lse

r e t u r n TTBR0;

end i f ;

end Translat ion_Table_Base_Register_0 ;

bachelorthesis.pdf version: 1.0

37

date: December 21, 2018

Bachelor Thesis

Muen on ARM

−−

−− @name Translat ion_Table_Base_Register_0_EL3 −−

−− @type f u n c t i o n −−

−− −−

−− @brief re tu rns the vec to r base addr r e g i s t e r TTBR0_EL3 −−

−− −−

−− This f u n c t i o n re tu rns the cu r ren t value o f the t rans− −−

−− l a t i o n tab l e base r e g i s t e r TTBR0 at except ion l e v e l 3 −−

−−

f u n c t i o n Translat ion_Table_Base_Register_0_EL3

r e t u r n Translat ion_Table_Base_Register_Type

i s

TTBR0 : Translat ion_Table_Base_Register_Type ;

begin

i f ARMv8. Current_EL = ARMv8. EL3 then

System . Machine_Code .Asm (Template =>

" mrs x0 , TTBR0_EL3"

& Standard . A s c i i . LF & Standard . A s c i i .HT &

" s t r x0 , %0" ,

Outputs =>

Translat ion_Table_Base_Register_Type ’

Asm_Output ("=m" , TTBR0) ,

V o l a t i l e => True ,

Clobber => " x0 ") ;

end i f ;

r e t u r n TTBR0;

end Translat ion_Table_Base_Register_0_EL3 ;

. . .

3.3.3 Subjects

The current version of the separation kernel supports two differently configured subjects:

• Subject One: This subject is running with a direct page table configuration that shows the pos-

sibility of mapping a native subject without second level address translation. It makes use of a

hypervisor control mechanism that ensures that changes to page tables are trapped to the hy-

pervisor (i.e. HCR_EL2 TVM bit 26 and TRVM bit 30). The page tables are not directly accessible

to the subject because they are stored outside its address space and are therefore only visible

for the MMU. Subject One has the following memory mapping 22:

22
Attention - sizes of the figure do not match the sizes of the memory address spaces!

bachelorthesis.pdf version: 1.0

38

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Figure 3.13: Subject One memory map

• Subject Two: The second subject is running with the Second Level Address Translation enabled

(cf. section 3.3.5). It uses the following page table configuration from the Virtual Address (VA)

to the Intermediate Physical Address (IPA) defined by TTBR0 and TTBR1 and, finally, from the

Intermediate Physical Address (IPA) to the Physical Address (PA) defined by the hypervisors’

VTTBR page table 23:

Figure 3.14: Subject Two memory map

23
Attention - sizes of the figure do not match the sizes of the memory address spaces!

bachelorthesis.pdf version: 1.0

39

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.3.4 Subject Context Switch

One of the most important components of the separation kernel is the context switch. In contrast to

Intel Virtualization Technology (VT), the ARMv8-A Virtualization Extension does not support an auto-

matic save and restore functionality of the corresponding registers24. Therfore, this section provides

some information about the registers that have to be stored when switching the context (i.e. exception

level 2 to 1 and back with VM entry and VM exit). The following list does not (and currently can not)

guarantee completeness but should give an overview of the registers that are needed to be stored by

the hypervisor 25:

• Subject Related Registers:

(1) Common Purpose Registers:

(i) GPR: the general purpose register from x0 to x30.

(ii) SPR: Special Purpose Register, i.e. especially the Stack Pointer Register SP, the

Floating Point Register FP and the Program Counter PC - the processor state is

handled as a part of the exception related registers.

(2) CPU Related Registers:

(i) CPU Info: depends on the implementation and could be a composed record of the

MPIDR, MIDR and other registers.

(ii) VM Info: should describe a Virtual CPU Info with information that the hypervisor

would like to provide to a subject, e.g. the VMPIDR register and the virtual machine id

related registers for a simplified Translation Lookaside Buffer (TLB) handling.

(iii) SCTLR and ACTLR: the System and Auxiliary Control Registers used by the subject.

(iv) SPSel: Stack Pointer Select that the subject uses at exception level 1.

(v) CONTEXTIDR: the Context ID Register could be useful too.

24
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.3, page 39 f.

25
This list is actually a compilation of the findings during the Student Research Study, the ARM reference manuals and

application notes as well as some hypervisor examples like HASPOC and Xen. Furthermore, it was decided that the

implementation and the list of registers will be extended and specified continuously during the project. Due to the scope

limitations for this bachelor thesis, the statements to the registers only apply to subjects that use the AArch64 execution

state.

bachelorthesis.pdf version: 1.0

40

date: December 21, 2018

Bachelor Thesis

Muen on ARM

(3) Exception Related Registers:

(i) SPSR: the Saved Program Status Register for the current subject, that is automati-

cally saved by the ARMv8-A exception handling process.

(ii) ELR: the Exception Link Register that stores the return address of the subject if an

exception has been taken.

(iii) ESR: the Exception Syndrome Register with the description and error code of the

exception used by the hypervisor to specify the state of the subject and to decide the

next step in the scheduling process 26.

(iv) VBAR: the Exception Vector Table used by the subject.

(4) MMU Related Registers:

(i) TTBR0 and TTBR1: the address specification for the page tables used by the sub-

jects on both upper exception levels (i.e. exception level 1 and 0).

(ii) TCR: the Translation Control Register used for the corresponding subject.

(iii) MAIR and AMAIR: the Auxiliary and Memory Attribute Indirection Registers used for

a specific subject. It is „implementation defined“ if the current core implementation

supports the auxiliary register.

(5) GIC Related Registers:

(i) GIC Context Data: depending on the current GIC version and the implementation the

corresponding GIC context data registers have to be handled in the subject state.

(ii) IRQ Pending List: as most GIC implementation only support a limited number of list

entries in the hardware IRQ pending list, the hypervisor has to implement its own

interrupt handling for all subjects running in the configuration.

(iii) ICH and ICC: the Interrupt Control Registers for the subject.

(6) Timer Related Registers:

(i) Physical and Virtual Timer Context: these context registers are closely related to the

GIC implementation and therefore depend on the current GIC version.

26
Even though this register is handled by the hypervisor during the scheduling process at the time of the occurance of the

exception, most other hypervisor implementation like Xen and HASPOC store it in the subject’s context.

bachelorthesis.pdf version: 1.0

41

date: December 21, 2018

Bachelor Thesis

Muen on ARM

(ii) CNTKCTL: independent of the chosen configuration, the Counter Timer Kernel Con-

trol Register has to be stored for each subject.

(7) FPU Related Registers:

(i) FP Context State: contains the state of the Floating Point Unit (FPU) that has to be

handled for all subject that use the FPU.

(ii) FPSR: the Floating Point Status Register (cf. the SPSR register).

(iii) FPCR: the Floating Point Control Register has to be stored if the hypervisor uses

different FPU configurations for different subjects.

• Hypvervisor Related Registers:

(i) HCR: the hypervisor has to store the Hypervisor Control Register in the current subject’s

state because the Muen SK uses different trapping configurations for different subjects.

(ii) VMPIDR: the Virtual Machine Processor ID Regsiter contains some informations about a

multi-core system that only has to be handled by the hypervisor if the CPU info part ex-

plained above does not cover the functionality provided with this „implementation defined“

register.

(iii) CNTHCTL: the Timer Control Register has also to be stored by the hypervisor, as the

Muen SK uses different timing configurations for the various subjects.

(iv) VTTBR: the Virtual TTBR specifies the base address of the virtual page table used for the

subject dependent Second Level Address Translation SLAT configurations.

(v) VTCR: the Virtualization Table Control Register controls the behaviour of the SLAT config-

urations specified for each subject.

(vi) VMID: the Virtual Machine ID concept is used to tag a translation as belonging to a partic-

ular virtual machine. For guest accesses, the Translation Lookaside Buffers (TLB) within

the processor MMU can store a complete VA to IPA to PA translation in one entry. The

VMID ensures that only the correct virtual machine can hit on a TLB entry and therefore

removes the need to invalidate TLB entries when a context switch between guest operating

systems is performed.

bachelorthesis.pdf version: 1.0

42

date: December 21, 2018

Bachelor Thesis

Muen on ARM

To maintain formal verification, the Muen SK implementation limits the exit and entry points of a subject

to one point each in the source code. Even though, this principle has also been taken into account

for the actual porting of the separation kernel to ARMv8-A architecture, the current implementation

handles the subject entry and exit slightly different. While the current separation kernel first stores the

subject’s context and then calls the scheduler as shown in figure 3.15, the Muen SK directly exits into

the scheduler and stores the subject context from within (cf. figure 3.16). To handle the subject exit

and entry consistently, the current implementation has to be modified according to the Muen SK source

code 27

Figure 3.15: Muen SK current context switch

Figure 3.16: Muen SK correct context switch

3.3.5 Memory Management

Although the concept of the memory management unit and the corresponding page tables is relatively

easy to understand28, it is probably the component where implementation errors occur most frequently.

The ARMv8-A architecture in the AArch64 execution state supports a multi-level address translation

with page granule sizes down to 4KB.

The form of the page table and the number of page table levels is basically defined by three factors, i.e.

the input address size (Virtual Address Size), the output address size (Intermediate Physical Address

or Physical Address) and the final page granule size. An overview for all possible combinations and the

27
This could not yet be done during the project due to the time constraints of the bachelor thesis.

28
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 2, section 2.2.2, page 13 ff., and chapter

3, section 3.4.2, page 43 ff.

bachelorthesis.pdf version: 1.0

43

date: December 21, 2018

Bachelor Thesis

Muen on ARM

corresponding effects on the translation process can be found in the ARMv8-A Programmer’s Guide29.

For a deeper insight into memory management configuration possibilities, it is referred to the theoretical

part30 and the examples31 in the ARMv8-A Architecture Reference Manual.

Figure 3.17: ARMv8-A address translation table entries

The number of entries in a single page table also depends on the current configuration. For the address

translation configuration with 4KB page sizes according to the Muen SK requirements and 40-bit virtual

and physical addresses used in this project, there are 512 entries per page table. As shown in figure

3.17, each page table entry for the AArch64 execution state can be assigned to one of the following

three types:

• Table Descriptor: holds the address of a next level table, in which case memory can be further

subdivided into smaller blocks.

• Block Entry: contains the address of a variable sized block of memory depending on the page

table level of the entry.

• Invalid Entry: denote entries that are marked as fault or invalid and cause an according MMU

exception.

As already mentioned, the ARMv8-A Virtualization Extension supports a Second Level Address Trans-

lation mechanism32. Although the principle of address translation is identical for both stages, it is

important to note that the attributes for Stage One and Stage Two are NOT identical. While Stage One

Translation sets the memory access attributes with the Memory Attribute Indirection Register (i.e. MAIR

and AMAIR), Stage Two translations store the attribute values directly into the page tables according

to a bit mask specification. Although the specifications for the two attribute values for Stage One and

Stage Two look very similar, there are important differences to be considered (e.g. bit configurations

are even reversed).

29
[7] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.4.2, page 12-15 f.

30
[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2018, chapter D-5, page D5-2383

ff.
31

[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2018, Appendix K-7, page K7-

7283 ff.
32

[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.4.3, page 45 f.

bachelorthesis.pdf version: 1.0

44

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Probably the best way to explain the address translation mechanism defined by ARMv8-A architecture

is the following example 3.18. It shows the address segmentation with the different level offsets for

a 4KB page table granule size configuration with 48-bit virtual addresses mapped to 40-bit physical

addresses. The example corresponds to the Subject One configuration, which can be found in the

subjects folder of the MuenSK GPS project.

Figure 3.18: ARMv8-A address translation example with 4KB granule size, start level 0, 48 bit virtual,

40 bit physical address sizes (cf. direct mapping page tables subject one)

bachelorthesis.pdf version: 1.0

45

date: December 21, 2018

Bachelor Thesis

Muen on ARM

3.3.6 Exception Handling

Another important component in the context of the porting of the Muen SK to the ARMv8-A architecture

is the Generic Interrupt Controller (GIC), which had to be qualified as a hardware requirement in the

course of the Student Research Study33. The NXP LS1012A SoC implements the GICv2 architecture,

which basically consists of four components, i.e. the Distributor, the CPU Interface, the Virtual Control

(corresponds to a virtualised distributor) and the Virtual CPU Interface. In order to route an exception

correctly, (a) the according board interrupt mechanism has to be enabled, (b) the physical interrupt

must then be handled by the distributor and forwarded to the correct CPU interface and (c) finally the

hypervisor has to query the interrupt from the correctly configured CPU interface and process a virtual

exception to the correct subject via the virtualization extension.

While the GIC interrupt mechanism without considering the virtualization extensions is very similar to

the principles used in the embedded system area, the hypervisor has to implement all tasks related to

the virtualization of exceptions itself. This especially means that (a) the Virtual Control Register has to

be configured correctly for the respective subject, (b) the exceptions must be processed accordingly

(e.g. software defined IRQ pending list) and (c) the hypervisor code has to ensure that the subject’s

page table map the CPU Interface Register correctly to the Virtual CPU Interface Register.

The current implementation of the separation kernel strictly follows the ARM GIC specifications as

shown in figure 3.19. However, this design principle should not be used in the production code - the

implementation rather shows the functionality of an appropriate tool for generating interrupt handling

related code for different ARM GIC architectures, ARM GIC designs and SoC implementations.

Figure 3.19: GIC implementation for NXP LS1012A FRDM Board

Due to the time constraints of this bachelor thesis, the virtualization extension of the GIC and thus also

the ARM Generic Timer34 could not be implemented. However, the current implementation demon-

strates by an interrupt handling test with a software generated exception that both the configuration of

the distributor and the CPU interface are currently working.

33
[4] Loosli. Student Research Study, Muen on ARM - an Evaluation. 2017, chapter 3, section 3.5.1, page 49.

34
[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2018, chapter 10, page 10-1 ff.

bachelorthesis.pdf version: 1.0

46

date: December 21, 2018

Bachelor Thesis

Muen on ARM

4 Conclusion

The aim of this bachelor thesis was to implement the main building blocks of a separation kernel

for the ARMv8-A architecture, leveraging in particular the recently introduced AArch64 Virtualization

Extensions. This chapter is dedicated to a summarising conclusion with respect to the status of the

development, the further development of the project as well as the integration of the Intel based Muen

SK implementation.

4.1 Status of Development

First of all, it has to be mentioned that the findings from the Student Research Study could completely

be confirmed with the experiences gained during this study. It could also be demonstrated that the

porting of the Muen SK to the ARMv8-A architecture is - only restricted by a few requirements for the

target platform - absolutely possible. The interest in the project shown by AdaCore and the clients of the

codelabs GmbH even in the course of this bachelor thesis has been really motivating to demonstrate

this capability.

With the exception of the ARM Generic Interrupt Controller Virtualization Extension and therefore also

the ARM Generic Timer, the current source code of the separation kernel implements all the mecha-

nisms required by the Student Research Study for the separation of currently two differently configured

subjects. With one of this subjects running as guest system on the hypervisor, even an alternative,

previously unknown to the author way to isolate a native subject without the usage of the Second Level

Address Translation could be demonstrated.

4.2 Integration of the Muen SK

One of the next steps of porting the Muen SK to the ARMv8-A architecture is to integrate the hardware

independent components of the Muen SK implementation into the source code of the current separation

kernel. This raises a number of questions about how this can be done and what changes are involved.

The two most important questions are discussed in this section.

The first of the two most fundamental questions from the author’s point of view is closely related to

the different processor architectures of Intel and ARM. Looking at the scheduler code of the Muen SK

implementation, it can, for example, be observed that the hypervisor processes a subject exit in the

procedure Handle_Vmx_Exit according to a Basic_Exit_Reason depending on the interrupt type. Due to the

insights into the Intel interrupt handling mechanism gained during the Code Walk Through presented by

Adrian-Ken Rüegsegger and Reto Bürki, the impression came up that the Intel architecture provides

very different configuration possibilities and interrupt types compared to the ARMv8-A architecture.

Therefore, it has to be thoroughly examined if a sensible common layer of abstraction can be found

bachelorthesis.pdf version: 1.0

47

date: December 21, 2018

Bachelor Thesis

Muen on ARM

and - if this can be confirmed - weather the corresponding changes with respect to time and financial

constraints can be qualified as appropriate.

The second fundamental question, that arises from the discussion of the first one, is whether the two

architectures should be united in a common repository or not. If one chooses the solution of a common

level of abstraction, it might also make sense to combine the currently separated repositories in a

common project. However, it should be considered that with regard to the formal verification and the

complexity of the code it might also make sense to continue the two projects separately even if some

of the tools share a common level of abstraction.

4.3 Further Development

The following list provides a chronologically ordered overview of the possible steps for the further

development of the project:

(1) ARM GIC Virtualization Extension: In a first step, the GIC Virtualization Extension should be

configured and tested according to the requirements of the Muen SK. As the virtualisation related

registers are already implemented in the current separation kernel source code, the focus has

to be on the configuration and the exception handling by the hypervisor.

(2) ARM Generic Timer: After a successful implementation of the GIC Virtualization Extension, a

preemptive timer has to be added to the source code. With this last component required by the

Muen SK, the final separation kernel can serve as the base for the integration of the hardware

independent Muen SK source code.

(3) Muen SK Integration: As discussed in section 4.2, there have to be taken several decisions with

respect to a common layer of abstraction and the integration of the ARMv8-A related code into

the current Muen SK repository. This step demands a particularly thorough examination and

consideration.

(4) Muen SK Tools: Especially for the generation of the page tables needed by the MMU and the

interrupt handling related code, it should be considered to implement additional tools analogous

to the already existent tools for the Intel based Muen SK implementation.

(5) Muen SK Subjects: The Muen SK provides several native subjects and adjusted VM binaries as

guest systems. Hence, the ARMv8-A implementation should follow this principle as well.

bachelorthesis.pdf version: 1.0

48

date: December 21, 2018

Bachelor Thesis

Muen on ARM

5 Epilogue

Using a Segger J-Link hardware debug probe device, the on-chip debugger software OpenOCD and

the AdaCore toolchain including their integrated development environment, essential parts of a sepa-

ration kernel have been implemented in Ada in the course of the project. With this basic separation

kernel prototype and its two differently configured subjects, it could be demonstrated that all require-

ments with respect to the porting of the Muen SK to the ARMv8-A architecture can be met applying the

already during the Student Research Study examined ARMv8-A architecture design principles.

Finally, I would like to thank Professor Dr. Andreas Steffen and the two supervisors Adrian-Ken

Rüegsegger and Reto Bürki for their great support. This project, that covered several studies of the

Bachelor of Science in Computer Science program at the University of Applied Sciences Rapperswil

(HSR), would not have been possible without their technical and organisational help. I am really looking

forward to the further development and porting of the Muen SK to the ARMv8-A architecture as part of

the offered employment!

bachelorthesis.pdf version: 1.0

49

date: December 21, 2018

Bachelor Thesis

Muen on ARM

bachelorthesis.pdf version: 1.0

50

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Appendix

A Project Task Description

Bachelor Thesis

autumn semester 2018

Definition of Task
Muen on ARM

version: 0.00, date: December 21, 2018

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

bachelorthesis.pdf version: 1.0

51

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Bachelor Thesis

Muen on ARM

Introduction

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and protects critical security functions against unreliable software running on

the same physical system. The programming language SPARK 2014 is used to achieve a particularly

high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components.

Based on the findings of the former student research study „Muen On ARM - an Evaluation“ written

by the author of this Bachelor Thesis, the objective of this study is to develop a minimal Separation

Kernel prototype for the ARMv8-A architecture based on the Muen SK and leveraging the AArch64

Virtualization Extensions introduced with the latest ARM architecture. The target hardware platform for

this Bachelor Thesis is the NXP LS1012A Freedom Evaluation Board with an ARMv8 Cortex-A53 CPU

and the programming language is Ada/SPARK 2014.

Objectives

(i) Prototypical implementation of main Separation Kernel building blocks

• System initialization

• Exception & interrupt handling

• Definition and switching of AArch64 subject state

• Subject preemption mechanism

• Serial debug driver

(ii) Documentation

(iii) Optional:

• Scheduling of multiple subjects

• AArch64 pagetable generation tool

taskdefinition.pdf version: 0.00

2

date: December 21, 2018

bachelorthesis.pdf version: 1.0

52

date: December 21, 2018

Bachelor Thesis

Muen on ARM

B List of Related Documents

• Glossary

• Management Summary

• Student Research Study

bachelorthesis.pdf version: 1.0

53

date: December 21, 2018

Bachelor Thesis

Muen on ARM

C U-Boot Environment Setup

autoload=no

baudrate =115200

bootargs=console=ttyS0 ,115200 root=/dev/ram0 earlycon=uart8250 ,mmio ,0

x21c0500

bootcmd=pfe stop; sf probe 0:0; sf read $kernel_load $kernel_start

$kernel_size && bootm $kernel_load

bootdelay=-1

bootmuen=tftpboot 0x96000000 muensk.uImage; bootm 0x96000000

console=ttyAMA0 ,38400 n8

eth1addr =00:04:9f:05:31:89

ethact=pfe_eth0

ethaddr =00:04:9f:05:31:88

fdt_high =0 xffffffffffffffff

fdtcontroladdr =9 fc85170

hwconfig=fsl_ddr:bank_intlv=auto

initrd_high =0 xffffffffffffffff

ipaddr =192.168.12.12

kernel_addr =0 x100000

kernel_load =0 x96000000

kernel_size =0 x2800000

kernel_start =0 xa00000

loadaddr =0 x80100000

ramdisk_addr =0 x800000

ramdisk_size =0 x2000000

serverip =192.168.12.1

stderr=serial

stdin=serial

stdout=serial

verify=no

bachelorthesis.pdf version: 1.0

54

date: December 21, 2018

Bachelor Thesis

Muen on ARM

D GDB Initialisation Script

##

@file .gdbinit GDB configuration file

#

@project MuenOnARM

@interface OpenOCD GDB Server

@target NXP FRDM -LS1012A

#

@usage First , this file has to be placed in the root directory

of the project or the directory , from which the GDB

Debugger is started. Then , a .gdbinit file has to be

created in the home directory of the current user with

the following line of code (alternatives can be found

in the official GDB User Guide of the toolchain):

#

add -auto -load -safe -path /path/to/project /. gdbinit

#

##

##

@setup connect to OpenOCD

##

target remote localhost :3333

##

@setup reset target

##

monitor reset

##

@setup wait for target external RAM to be initialized

##

shell sleep 1

##

@setup halt remote target

##

monitor halt

##

@setup report breakpoints and watchpoints to gdb

##

set remote hardware -breakpoint -limit 6

set remote hardware -watchpoint -limit 4

##

@load if the executable file is loaded manually the following defined

procedures can be typed in a started gdb session.

##

define load_exec

file bin/muensk

load

end

define load_with_subjects

file ../ muensubjects/muensubjectone/bin/muensubjectone

load

add -symbol -file ../ muensubjects/muensubjectone/bin/muensubjectone 0x86000000

bachelorthesis.pdf version: 1.0

55

date: December 21, 2018

Bachelor Thesis

Muen on ARM

file ../ muensubjects/muensubjecttwo/bin/muensubjecttwo

load

add -symbol -file ../ muensubjects/muensubjecttwo/bin/muensubjecttwo 0x8a000000

file bin/muensk

load

add -symbol -file bin/muensk 0x83800000

end

define load_debug_asm

file bin/muensk

load

break _start

continue

end

##

@post_setup to display different commands as graphs in GPS

##

define hook -quit

monitor reset

end

define hook -detach

monitor reset

end

define hook -disconnect

monitor reset

end

##

@ide to display different commands as graphs in GPS execute

the following commands inside the GPS debugger console

#

graph display ‘monitor aarch64 state_info ‘

graph display ‘monitor aarch64 current_el ‘

graph display ‘monitor reg ‘

#

##

EOF

bachelorthesis.pdf version: 1.0

56

date: December 21, 2018

Bachelor Thesis

Muen on ARM

E Codelabs Contributors Agreement

Codelabs Contributors Agreement

Please print this form, read it carefully, fill it out, sign it and then either

• scan and email it to legal@codelabs.ch

• send it by post to codelabs GmbH, Vadianstrasse 41, 9000 St. Gallen, Switzerland

Your contact details

Full name

Street address

Zip code, city and country

Email address

Terms and Conditions

You hereby grant codelabs GmbH, Vadianstrasse 41, 9000 St. Gallen, Switzerland, a
license to use your contributions to a project managed by codelabs, under the following
conditions.

The codelabs projects, as referred to in this agreement, means all software products that
codelabs GmbH has, at the date of signing, published or will publish in the future under
an open-source license, for example the GNU General Public License v3.0 (GPLv3). This
includes, but is not limited to, the Muen Separation Kernel. Contributions, as referred
to in this agreement, mean any past or future material such as source or binary code,
artwork of any media, documentation, correspondence in mail, or similar material as
usually found in relation to software. This agreement covers such contributions only as
far as they are related to codelabs projects.

You hereby give codelabs GmbH a world-wide, perpetual, irrevocable, royalty-free, yet
non-exclusive license to use your contributions to codelabs projects in any way that
codelabs GmbH may see fit, including for commercial purposes. This includes, but is not
limited to, the right to copy, translate, relicense, sublicense, modify, use, make available
or public, sell, offer to sell, rent, lease, lend or otherwise distribute your contributions
or modifications thereof, as well as any ideas contained therein that may be covered by
patents under applicable law.

You formally release codelabs GmbH from its obligation to name you as the author of
your contribution and otherwise respect your moral rights, as you are aware that there

1

bachelorthesis.pdf version: 1.0

57

date: December 21, 2018

Bachelor Thesis

Muen on ARM

are no such obligations in the GPL either and codelabs GmbH may possibly want to

redistribute your contributions under that license, and you permit codelabs GmbH to act

as the sole author and copyright holder of its product even with your contributions.

The codelabs GmbH will, however, make any reasonable effort to give you proper credit

for your contributions in the products’ documentation materials as well as websites.

The codelabs GmbH will duly examine your contributions, but you understand that

codelabs GmbH is under no obligation to make use of them as described above. You

certify and warrant that your contributions to codelabs GmbH’s products do not violate

the intellectual property rights of third parties and that you are legally entitled to grant

codelabs GmbH all of the rights listed above.

Place, Date . Signature .

2

bachelorthesis.pdf version: 1.0

58

date: December 21, 2018

Bibliography
Bachelor Thesis

Muen on ARM

Bibliography

[1] John Barnes. Programming in Ada2012. Cambridge (UK): Cambridge University Press, 2018.

ISBN: 978-1-107-42481-4.

[2] Reto Buerki and Adrian-Ken Rueegsegger. Muen - An x86/64 Separation Kernel for High Assur-

ance. Rapperswil (Switzerland): University of Applied Sciences Rapperswil (HSR), 2013. URL:

https://muen.codelabs.ch.

[3] James A. Langbridge. Professional Embedded ARM Development. Indianapolis, Indiana (USA):

John Wiley & Sons Inc., 2014. ISBN: 978-1-118-78894-3.

[4] David Loosli. Student Research Study, Muen on ARM - an Evaluation. Rapperswil (Switzerland):

University of Applied Sciences Rapperswil (HSR), 2017.

[5] n.a. AArch64 Virtualization. version 1.0. Cambridge (England): ARM Limited, 2017.

[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. version

D.a. Cambridge (England): ARM Limited, 2018. URL: http://www.arm.com.

[7] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. version 1.0. Cambridge (Eng-

land): ARM Limited, 2015. URL: http://www.arm.com.

[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. revision r0p4 J. Cam-

bridge (England): ARM Limited, 2018. URL: http://www.arm.com.

[9] n.a. ARM Generic Interrupt Controller, Architecture Specification. version 2.0, B.b. Cambridge

(England): ARM Limited, 2013.

[10] n.a. ARM System Memory Management Unit, Architecture Specification. version 3.0 and version

3.1. Cambridge (England): ARM Limited, 2017. URL: http://www.arm.com.

[11] n.a. CoreLink GIC-400 Generic Interrupt, Technical Reference Manual. revision r0p1, B. Cam-

bridge (England): ARM Limited, 2012.

[12] n.a. CoreSight Components, Technical Reference Manual. version H. Cambridge (England):

ARM Limited, 2009. URL: http://www.arm.com.

[13] n.a. J-Link / J-Trace User Guide. Revision 3, SW 6.34 UM08001. Hilden (Germany): SEGGER

Microcontroller GmbH, 2018. URL: https : / / www . segger . com / products / debug -

probes/j-link.

[14] n.a. QorIQ LS1012A Application Note, PBL Configuration using QCVS. Revision 1, 2/2016. Eind-

hoven (Netherlands): NXP Semiconductors, 2016.

[15] n.a. QorIQ LS1012A Board Reference Manual. Revision 3, 12/2016. Eindhoven (Netherlands):

NXP Semiconductors, 2016.

[16] n.a. QorIQ LS1012A Data Sheet. Revision 1, 01/2018. Eindhoven (Netherlands): NXP Semicon-

ductors, 2018.

bachelorthesis.pdf version: 1.0

59

date: December 21, 2018

https://muen.codelabs.ch
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
https://www.segger.com/products/debug-probes/j-link
https://www.segger.com/products/debug-probes/j-link

Bibliography
Bachelor Thesis

Muen on ARM

[17] n.a. QorIQ LS1012A Getting Started Guide. Revision 3, 12/2016. Eindhoven (Netherlands): NXP

Semiconductors, 2016.

[18] n.a. QorIQ LS1012A Reference Manual. Revision 1, 01/2018. Eindhoven (Netherlands): NXP

Semiconductors, 2018.

[19] n.a. QorIQ LS1012A Security (SEC) Reference Manual. Revision 1, 07/2017. Eindhoven (Nether-

lands): NXP Semiconductors, 2017.

[20] Spencer Oliver et al. Open On-Chip Debugger: OpenOCD Developers’s Guide. release 0.10.0.

Augsburg (Germany): The OpenOCD Project, University of Applied Sciences FH-Augsburg,

2017. URL: http://openocd.org/doc-release/doxygen/index.html.

[21] Spencer Oliver et al. Open On-Chip Debugger: OpenOCD User’s Guide. release 0.10.0. Augs-

burg (Germany): The OpenOCD Project, University of Applied Sciences FH-Augsburg, 2017.

[22] John Rushby. “Design and Verification of Secure Systems”. In: ACM Operating Systems Review

15.5 (1981), pp. 12–21.

bachelorthesis.pdf version: 1.0

60

date: December 21, 2018

http://openocd.org/doc-release/doxygen/index.html

Bibliography
Bachelor Thesis

Muen on ARM

List of Figures

2.1 ARMv8-A Exception Levels in AArch64 with Hypervisor Level 14

2.2 NXP LS1012A FRDM evaluation board . 17

2.3 NXP LS1012A FRDM schematic . 18

2.4 TFTP Server Setup . 21

3.1 GPS IDE overview . 23

3.2 J-Link Debug Probe setup including ARM JTAG pinout 25

3.3 GPS IDE OpenOCD settings project . 26

3.4 GPS IDE OpenOCD integration . 26

3.5 GPS IDE GDB integration . 27

3.6 GPS IDE GDB load binary into DDR RAM . 28

3.7 GPS IDE GDB execute binary from DDR RAM . 28

3.8 Kermit Script serial load process . 29

3.9 Kermit Script kernel execution start . 30

3.10 GPS IDE runtime settings project . 31

3.11 GPS IDE makefile settings project . 32

3.12 Muen SK separation kernel code structure . 33

3.13 Subject One memory map . 39

3.14 Subject Two memory map . 39

3.15 Muen SK current context switch . 43

3.16 Muen SK correct context switch . 43

3.17 ARMv8-A address translation table entries . 44

3.18 ARMv8-A address translation example with 4KB granule size, start level 0, 48 bit virtual,

40 bit physical address sizes (cf. direct mapping page tables subject one) 45

3.19 GIC implementation for NXP LS1012A FRDM Board 46

bachelorthesis.pdf version: 1.0

61

date: December 21, 2018

Bibliography
Bachelor Thesis

Muen on ARM

List of Tables

2.1 board evaluation process, final result matrix . 17

2.2 NXP LS1012A QSPI Flash Layout . 20

3.1 Development Environment Overview . 22

bachelorthesis.pdf version: 1.0

62

date: December 21, 2018

Bachelor Thesis

autumn semester 2018

Glossary
Muen on ARM

version: 1.0, date: December 21, 2018

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Change History

date version change author

Dec 10, 2018 0.1 prepared template, setup basic version David Loosli

Dec 16, 2010 0.2 added abbreviations, bibliography and glossary

entries

David Loosli

Dec 21, 2018 1.0 final changes before hand in David Loosli

glossary.pdf version: 1.0

2

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Acronyms

A

ACM Association for Computing Machinery

ALU Arithmetic Logic Unit

APIC Advanced Programmable Interrupt Controller

ARM Advanced RISC Machines

ASID Address Space Identifier

AVT Study Administration Tool (dt. Arbeitsverwaltungstool)

B

BCM Broadcom

BPC Branch Prediction Caches

C

cf. confer

CISC Complex Instruction Set Computing

CPU Central Processing Unit

CU Control Unit

D

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

glossary.pdf version: 1.0

3

date: December 21, 2018

Bachelor Thesis

Muen on ARM

DS Development Studio

E

e.g. for example (lat. exempli gratia)

ECTS European Credit Transfer and Accumulation System

EL Exception Level

EPT Extended Page Tables

F

FASMARM Flat Assembler ARM

FIQ Fast Interrupt Request

FPU Floating Point Unit

FVP Fixed Virtual Platform (an ARM simulation tool)

G

GB Gigabyte

GCC GNU Compiler Collection

GIC Generic Interrupt Controller

GNAT GNU NYU Ada Translator

GPIO General Purpose Input/Output

GPS GNAT Programming Studio

GPU Graphics Processing Unit

H

glossary.pdf version: 1.0

4

date: December 21, 2018

Bachelor Thesis

Muen on ARM

HDD Hard Disk Drives

HDMI High Definition Multimedia Interface

HSR University of Applied Sciences Rapperswil

I

i.e. that is (lat. id est)

I/O Input / Output

ID Identifier

IDE Integrated Development Environment

incl. including

IOMMU I/O Memory Management Unit

IPI Inter-processor Interrupt

IRQ Interrupt Request

ISR Interruption Service Routine

J

JTAG Joint Test Action Group (interface)

K

KB Kilobyte

L

LAPIC Local Advanced Programmable Interrupt Controller

LPAE Large Physical Address Extension

glossary.pdf version: 1.0

5

date: December 21, 2018

Bachelor Thesis

Muen on ARM

LPI Locality Specific Peripheral Interrupt

M

MB Megabyte

MCU Broadcom

MMU Memory Management Unit

N

NMI Non-maskable Interrupt

NYU New York University

O

OS Operating System

P

PIC Programmable Interrupt Controller

PIPT Physically Indexed Physically Tagged

PIT Programmable Interval Timer

R

RAM Random Access Memory

REQ Requirement

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RPi3 Raspberry Pi 3 (hardware)

glossary.pdf version: 1.0

6

date: December 21, 2018

Bachelor Thesis

Muen on ARM

RTS Runtime System

Rx Receive (line)

S

SD Card Secure Digital Memory Card

SError System Error

SIMD Single Instruction Multiple Data

SK Separation Kernel

SLAT Second Level Address Translation

SMMU System Memory Management Unit

SMT Simultaneous Multithreading

SoC System on Chip

SRAM Static Random Access Memory

SSD Solid State Disks

T

TBL Translation Lookaside Buffer

TTL Transistor Transistor Logic

Tx Transmit (line)

U

UART Universal Asynchronous Receiver Transmitter

USB Universal Serial Bus

glossary.pdf version: 1.0

7

date: December 21, 2018

Bachelor Thesis

Muen on ARM

V

VE ARM Virtualization Extension

VIPT Virtually Indexed Physically Tagged

VM Virtual Machine

VMCS Virtual Machine Control Structure (Intel register)

VMM Virtual Machine Monitor

VT Virtualization Technology

VT-d Intel Virtualization Technology for Directed I/O

VT-x Intel Virtualization Technology x86

W

WTFPL Do What The Fuck You Want To Public License

Z

ZFP Zero Footprint Runtime

glossary.pdf version: 1.0

8

date: December 21, 2018

Bachelor Thesis

Muen on ARM

Glossary

A

AArch32 AArch32 denotes the 32-bit execution state of the ARMv8-A architecture.

AArch64 AArch64 denotes the 64-bit execution state of the ARMv8-A architecture.

ARM On the one hand, this term is used as an abbreviation for the ARM Holdings company, a British

multinational semiconductor and software design company - on the other hand ARM denotes

a family of reduced instruction set computing (RISC) architectures for computer processors. In

all documents of this study, the term is used in the second sense, unless explicitly otherwise

specified.

ARMv8-A The Armv8-A architecture is the latest generation ARM RISC architecture targeted at the

applications ’A’ profile. It introduces the ability to use 64-bit and 32-bit execution states, known

as AArch64 and AArch32 respectively. The architecture ’A’ profile, compared against the profiles

’M’ and ’R’, targets high performance markets such as mobile and (industrial) enterprise. In this

study, the terms ARMv8 and ARMv8-A are used interchangeably.

B

Bamboo Bamboo is a continuous integration and continuous deployment server developed by Atlas-

sian. In this study, the software is only in use as a build server.

Bitbucket Bitbucket denotes proprietary, web-based integration software, developed by Atlassian. It

is used for source code and development projects that use either Mercurial or Git version control

systems.

C

Confluence Confluence is a team collaboration software, written in Java and mainly used in corporate

environments. It is also developed and marketed by Atlassian.

crt0 (file) crt0 (also known as c0) contains a set of execution startup routines and is linked into a C

program that performs any initialization work required before calling the program’s main func-

tion. It is often written in assembly language and automatically included by the linker into every

executable file it builds.

glossary.pdf version: 1.0

9

date: December 21, 2018

Bachelor Thesis

Muen on ARM

D

Do What The Fuck You Want To Public License (WTFPL) The WTFPL (Do What the Fuck You Want

To Public License) is a permissive license most commonly used as a free software license. It

allows redistribution and modification of the software under any terms.

F

Fixed Virtual Platforms (FVP) Fixed Virtual Platforms (FVP) is a simulation bundle for ARM proces-

sors that allows the development of software for ARM architectures without the need for actual

hardware, developed by the ARM company. The functional behaviour of a model is equivalent

to real hardware.

Flat Assembler ARM (FASMARM) Flat Assembler ARM (FASMARM) is a cross assembler for differ-

ent ARM architectures that runs on x86 host operating systems.

G

General Purpose Input/Output (GPIO) General-purpose input/output (GPIO) is a generic pin on an

integrated circuit or computer board whose behavior - including whether it is an input or output

pins controllable by the user at run time.

Git Git is a version control system for tracking changes in computer files and coordinating work on

those files among multiple people. It is primarily used for source code management in software

development, but it can be used to keep track of changes in any set of files.

J

JIRA Jira is a proprietary issue tracking product, developed by Atlassian. It provides bug tracking, is-

sue tracking, and project management functions. In this project, it is primarily used for providing

a communication platform between the author and the supervisors (state of affairs) as well as

for the mandatory time tracking.

Joint Test Action Group (JTAG) The Joint Test Action Group (JTAG) is an electronics industry as-

sociation formed and is often used as a synonym for their standardized debug interface. JTAG

specifies the use of a dedicated debug port implementing a serial communication interface. The

interface connects to an on-chip test access port (TAP) that implements a stateful protocol to

access a set of test registers that present chip logic levels and device capabilities of various

parts.

glossary.pdf version: 1.0

10

date: December 21, 2018

Bachelor Thesis

Muen on ARM

L

LaTeX LaTeX is a document preparation system, widely used in used in academia for the communi-

cation and publication of scientific documents.

R

Raspberry Pi 3 (RPi3) The Raspberry Pi 3 is the latest version of a series of small single-board com-

puters developed in the United Kingdom by the Raspberry Pi Foundation to promote the teaching

of basic computer science in schools and in developing countries.

S

System on Chip (SoC) A system on a chip (SoC) is an integrated circuit (IC) that integrates a mi-

crocontroller or microprocessor with advanced peripherals like graphics processing unit (GPU),

WiFi module or coprocessors. Typical applications can be found the area of embedded sys-

tems. Analogy: A SoC corresponds to a desktop motherboard (also known as mainboard) with

a separately bought and installed CPU.

U

Universal Asynchronous Receiver-Transmitter (UART) A universal asynchronous receiver-transmitter

(UART) is a computer hardware interface for asynchronous serial communication in which the

data format and transmission speeds are configurable. UART communicates over the two lines

Rx for Receive and Tx for Transmit.

V

VT-d VT-d represents Intel’s technology for I/O MMU virtualization on the x86 platform. An input/output

memory management unit (IOMMU) allows guest virtual machines to directly use peripheral

devices, such as Ethernet, accelerated graphics cards, and hard-drive controllers, through DMA

and interrupt remapping. This is sometimes called PCI passthrough.

VT-x VT-x represents Intel’s technology for virtualization on the x86 platform. In this context, the term

virtualization encompasses different concepts for allowing a hypervisor to use hardware func-

tionality to fulfil its tasks - i.e. entering and exiting a virtual execution mode, using virtual page

tables and many other concepts realised in hardware.

W

glossary.pdf version: 1.0

11

date: December 21, 2018

Bachelor Thesis

Muen on ARM

WorklogPRO WorklogPRO is a time tracking and reporting plugin for the JIRA issue tracking software.

Y

yEd yEd is a free general-purpose diagramming program with a multi-document interface. It is a

cross-platform application written in Java that runs on Windows, Linux, Mac OS, and other

platforms that support the Java Virtual Machine. yEd can be used to draw many different types

of diagrams, including flowcharts, network diagrams, UMLs, BPMN, mind maps, organization

charts, and entity-relationship diagrams.

glossary.pdf version: 1.0

12

date: December 21, 2018

Bibliography
Bachelor Thesis

Muen on ARM

Bibliography

[1] John Barnes. Programming in Ada2012. Cambridge (UK): Cambridge University Press, 2018.

ISBN: 978-1-107-42481-4.

[2] Reto Buerki and Adrian-Ken Rueegsegger. Muen - An x86/64 Separation Kernel for High Assur-

ance. Rapperswil (Switzerland): University of Applied Sciences Rapperswil (HSR), 2013. URL:

https://muen.codelabs.ch.

[3] James A. Langbridge. Professional Embedded ARM Development. Indianapolis, Indiana (USA):

John Wiley & Sons Inc., 2014. ISBN: 978-1-118-78894-3.

[4] David Loosli. Student Research Study, Muen on ARM - an Evaluation. Rapperswil (Switzerland):

University of Applied Sciences Rapperswil (HSR), 2017.

[5] n.a. AArch64 Virtualization. version 1.0. Cambridge (England): ARM Limited, 2017.

[6] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. version

D.a. Cambridge (England): ARM Limited, 2018. URL: http://www.arm.com.

[7] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. version 1.0. Cambridge (Eng-

land): ARM Limited, 2015. URL: http://www.arm.com.

[8] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. revision r0p4 J. Cam-

bridge (England): ARM Limited, 2018. URL: http://www.arm.com.

[9] n.a. ARM Generic Interrupt Controller, Architecture Specification. version 2.0, B.b. Cambridge

(England): ARM Limited, 2013.

[10] n.a. ARM System Memory Management Unit, Architecture Specification. version 3.0 and version

3.1. Cambridge (England): ARM Limited, 2017. URL: http://www.arm.com.

[11] n.a. CoreLink GIC-400 Generic Interrupt, Technical Reference Manual. revision r0p1, B. Cam-

bridge (England): ARM Limited, 2012.

[12] n.a. CoreSight Components, Technical Reference Manual. version H. Cambridge (England):

ARM Limited, 2009. URL: http://www.arm.com.

[13] n.a. J-Link / J-Trace User Guide. Revision 3, SW 6.34 UM08001. Hilden (Germany): SEGGER

Microcontroller GmbH, 2018. URL: https : / / www . segger . com / products / debug -

probes/j-link.

[14] n.a. QorIQ LS1012A Application Note, PBL Configuration using QCVS. Revision 1, 2/2016. Eind-

hoven (Netherlands): NXP Semiconductors, 2016.

[15] n.a. QorIQ LS1012A Board Reference Manual. Revision 3, 12/2016. Eindhoven (Netherlands):

NXP Semiconductors, 2016.

[16] n.a. QorIQ LS1012A Data Sheet. Revision 1, 01/2018. Eindhoven (Netherlands): NXP Semicon-

ductors, 2018.

glossary.pdf version: 1.0

13

date: December 21, 2018

https://muen.codelabs.ch
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
https://www.segger.com/products/debug-probes/j-link
https://www.segger.com/products/debug-probes/j-link

Bibliography
Bachelor Thesis

Muen on ARM

[17] n.a. QorIQ LS1012A Getting Started Guide. Revision 3, 12/2016. Eindhoven (Netherlands): NXP

Semiconductors, 2016.

[18] n.a. QorIQ LS1012A Reference Manual. Revision 1, 01/2018. Eindhoven (Netherlands): NXP

Semiconductors, 2018.

[19] n.a. QorIQ LS1012A Security (SEC) Reference Manual. Revision 1, 07/2017. Eindhoven (Nether-

lands): NXP Semiconductors, 2017.

[20] Spencer Oliver et al. Open On-Chip Debugger: OpenOCD Developers’s Guide. release 0.10.0.

Augsburg (Germany): The OpenOCD Project, University of Applied Sciences FH-Augsburg,

2017. URL: http://openocd.org/doc-release/doxygen/index.html.

[21] Spencer Oliver et al. Open On-Chip Debugger: OpenOCD User’s Guide. release 0.10.0. Augs-

burg (Germany): The OpenOCD Project, University of Applied Sciences FH-Augsburg, 2017.

[22] John Rushby. “Design and Verification of Secure Systems”. In: ACM Operating Systems Review

15.5 (1981), pp. 12–21.

glossary.pdf version: 1.0

14

date: December 21, 2018

http://openocd.org/doc-release/doxygen/index.html

Bachelor Thesis

Herbstsemester 2018

Projektorganisation
Muen on ARM

Version: 1.00, Datum: 21. Dezember 2018

Betreuer:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, Student

BSc Informatik

HSR Rapperswil

Bachelor Thesis

Muen on ARM

Änderungshistorie

Datum Version Bezeichnung Autor

18. Dezember 2018 0.1 Erstellen Vorlage und Struktur David Loosli

20. Dezember 2018 0.2 Erarbeiten Einleitung bis Anhang David Loosli

21. Dezember 2018 1.0 letzter Nachtrag vor Abgabe David Loosli

Projektorganisation.pdf Version: 1.00

2

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Inhaltsverzeichnis

Änderungshistorie 2

1 Einleitung 4

2 Organisation 5

2.1 Zeiterfassung . 5

2.2 Projektplanung . 6

2.3 Besprechungen . 6

3 Administrationstools 7

3.1 Jira . 7

3.2 Codelabs Git Repository . 9

3.3 Backup . 9

Anhang 10

A Wochenauszüge Worklog Pro (Jira) . 10

B Protokolle . 15

Projektorganisation.pdf Version: 1.00

3

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

1 Einleitung

Dieses Dokument soll einen Überblick über die während der Bachelor Arbeit berücksichtigten orga-

nisatorischen Richtlinien und die verwendeten Administrationstools verschaffen. Im Gegensatz zur

Studienarbeit wurden die Projektorganisationstools jedoch stark eingeschränkt, um den Administra-

tionsaufwand möglichst zugunsten der inhaltlichen Tätigkeiten zu verringern. Im ersten Teil in Kapitel 2

werden die im während des Projektes festgehaltenen organisatorischen und zeitlichen Zielsetzungen

dem tatsächlichen Verlauf des Projektes gegenübergestellt. Die für das Projekt verwendeten Admini-

strationstools werden in Kapitel 3 vorgestellt.

Projektorganisation.pdf Version: 1.00

4

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

2 Organisation

2.1 Zeiterfassung

Für das Projekt standen insgesamt 360 Arbeitsstunden zur Verfügung mit einem Budget von rund 26

Stunden pro Woche.

Auf die Bachelor Arbeit wurden während 14 Wochen 586.5 Stunden verbucht und somit die eigentliche

Kostenschätzung um rund zwei Drittel überschritten. Diese Mehrkosten entstanden einerseits aufgrund

des Umfangs des Projektes und andererseits aufgrund der Einreichung der Bachelor Thesis als Einzel-

arbeit. Die detaillierten Wochenauszüge des Jira Plugins Worklog Pro finden sich im Anhang A dieses

Dokumentes und ein kompletter CSV Export auf dem ebenfalls beiliegenden USB Datenträger.

Semesterwoche Referenz Geleistete Stunden in [h]

Vorbereitung Anhang A, Abbildung 3.4 13.25

Woche 1 Anhang A, Abbildung 3.5 33.00

Woche 2 Anhang A, Abbildung 3.6 61.25

Woche 3 Anhang A, Abbildung 3.7 38.25

Woche 4 Anhang A, Abbildung 3.8 46.50

Woche 5 Anhang A, Abbildung 3.9 58.75

Woche 6 Anhang A, Abbildung 3.10 27.75

Woche 7 Anhang A, Abbildung 3.11 40.25

Woche 8 Anhang A, Abbildung 3.12 40.25

Woche 9 Anhang A, Abbildung 3.13 54.00

Woche 10 Anhang A, Abbildung 3.14 45.75

Woche 11 Anhang A, Abbildung 3.15 29.25

Woche 12 Anhang A, Abbildung 3.16 17.75

Woche 13 Anhang A, Abbildung 3.17 33.50

Woche 14 Anhang A, Abbildung 3.18 47.00

Total 586.50

Tabelle 2.1: Übersicht geleistete Arbeitsstunden pro Semesterwoche

Projektorganisation.pdf Version: 1.00

5

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

2.2 Projektplanung

Den Erfahrungen aus der Studienarbeit entsprechend wurde die Planung nach Rücksprache mit allen

Beteiligten aufgrund der nur sehr schwer abschätzbaren Entwicklungszeiten zu den einzelnen Arbeit-

spaketen jeweils von Sprint zu Sprint angepasst. Ein Sprint dauerte jeweils zwei Wochen - der erste

diente der Evaluation und der Vorbereitung, die nächsten fünf Sprints können der Construction zuge-

ordnet werden und im letzten Sprint wurden die Dokumente zur Bachelor Thesis erarbeitet.

Während die Zeiten zu den Arbeitspaketen zu Beginn des Projektes relativ schlecht geschätzt wur-

den, so verbesserte sich dies bis zum Schluss augenscheinlich. Mit Blick auf die Organisation der

Arbeitspakete hat sich das Erstellen von sog. Epics wieder sehr gelohnt.

Abbildung 2.1: Jira Epic Auszug

2.3 Besprechungen

Die wöchentlichen Besprechungen zwischen dem Betreuer respektive den Betreuern und dem Autor

der Bachelor Thesis fanden bis auf die letzte Woche ordnungsgemäss statt und wurden entsprechend

der Projektvorgaben protokolliert. Sämtliche Protokolle finden sich im Anhang B oder können alternativ

auf dem USB Datenträger eingesehen werden.

Projektorganisation.pdf Version: 1.00

6

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

3 Administrationstools

Im Gegensatz zur Studienarbeit konnten die Administrationstools aus Infrastrukturgründen nicht auf

einem eigenen Server aufgesetzt und verwaltet werden. Neben dem auf einer von der Hochschule für

Technik Rapperswil (HSR) zur Verfügung gestellten virtuellen Maschine installierten Software Entwick-

lungstool Jira von Atlassian konnte über den codelabs Server der beiden Betreuer zusätzlich ein Git

Repository verwendet werden. Sowohl das Aufsetzen der virtuellen Maschine inklusive der Installation

der sich schon während der Studienarbeit bewährten Jira Software als auch die Konfiguration des Git

Repositorys verliefen ohne Probleme. Die Administrationstools sowie die für die Betreuung erstellten

Zugänge werden noch bis zu Beginn des kommenden Semesters aufgeschaltet bleiben.

3.1 Jira

Das Software Planungstool Jira mit dem Plugin Worklog Pro wurde einerseits zur Organisation der

einzelnen Arbeiten und andererseits zur Schätzung und Nachverfolgung der benötigten Arbeitszeit

verwendet. Entsprechend der Erfahrung wurde auch für die Bachelor Thesis ein erweitertes Dashboard

erstellt.

Abbildung 3.1: Jira Dashboard Bachelor Thesis

Den Projektplanungen entsprechend wurden jeweils zweiwöchige Sprints im Jira Softwareentwick-

lungstool definiert und die jeweiligen Arbeitspakete dazu vollständig erfasst und geschätzt. Der letzte

Sprint wurde mit heutigem Datum ein Tag vor der Abgabe der Bachelor Arbeit abgeschlossen.

Projektorganisation.pdf Version: 1.00

7

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Abbildung 3.2: Jira Sprint Ansicht zum Ende der Bachelor Arbeit

Der Backlog des Projektes konnte aus zeitlichen Gründen nicht vollständig abgearbeitet werden. Bei

den nicht erledigten Arbeiten handelt es sich um die beiden OpenOCD Treiber für den QSPI Flash des

NXP LS1012A FRDM Board. Die Implementation dieser beiden Komponenten würde das Beschreiben

des Flash Speichers ermöglichen, war für den Entwicklungsprozess dieses Projekts aufgrund des

direkten Ladens in den RAM Speicher des Evaluationsboards über den GDB Debugger nicht von

Bedeutung.

Abbildung 3.3: Jira Backlog zum Ende der Bachelor Arbeit

Projektorganisation.pdf Version: 1.00

8

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

3.2 Codelabs Git Repository

Im Gegensatz zur Studienarbeit wurde bei der Bachelor Arbeit auf einen graphischen Git Client verzich-

tet. Das entsprechende Repository wurde von codelabs zur Verfügung gestellt und über das Terminal

des jeweiligen Betriebssystemes genutzt.

3.3 Backup

Aufgrund der eingeschränkten Systembackup Möglichkeiten und des fehlenden Hardware Zuganges

zu den beiden verwendeten Servern wurden wöchentlich die jeweiligen Daten manuell exportiert und

auf einer externen Harddisk abgelegt. Auch wenn die Programminstallationen und -konfigurationen auf

diese Art nicht gesichert werden konnte, so minimierte sich die Wahrscheinlichkeit eines Verlustes der

erarbeiteten Dokumente zumindest in einem gewissen Umfang.

Projektorganisation.pdf Version: 1.00

9

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Appendix

A Wochenauszüge Worklog Pro (Jira)

Abbildung 3.4: Arbeitsaufwand Vorbereitungswochen

Abbildung 3.5: Arbeitsaufwand Woche 1

Abbildung 3.6: Arbeitsaufwand Woche 2

Projektorganisation.pdf Version: 1.00

10

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Abbildung 3.7: Arbeitsaufwand Woche 3

Abbildung 3.8: Arbeitsaufwand Woche 4

Abbildung 3.9: Arbeitsaufwand Woche 5

Projektorganisation.pdf Version: 1.00

11

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Abbildung 3.10: Arbeitsaufwand Woche 6

Abbildung 3.11: Arbeitsaufwand Woche 7

Abbildung 3.12: Arbeitsaufwand Woche 8

Projektorganisation.pdf Version: 1.00

12

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Abbildung 3.13: Arbeitsaufwand Woche 9

Abbildung 3.14: Arbeitsaufwand Woche 10

Abbildung 3.15: Arbeitsaufwand Woche 11

Projektorganisation.pdf Version: 1.00

13

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

Abbildung 3.16: Arbeitsaufwand Woche 12

Abbildung 3.17: Arbeitsaufwand Woche 13

Abbildung 3.18: Arbeitsaufwand Woche 14

Projektorganisation.pdf Version: 1.00

14

Datum: 21. Dezember 2018

Bachelor Thesis

Muen on ARM

B Protokolle

Es wurde darauf verzichtet, in der Druckversion sämtliche Protokolle der Besprechungen mit auszu-

drucken. Diese können jedoch entweder im pdf Format von der ebenfalls beiliegenden CD eingesehen

oder im Original vom Autor der Studie verlangt werden.

Projektorganisation.pdf Version: 1.00

15

Datum: 21. Dezember 2018

Student Research Project

autumn semester 2017

Student Research Study
Muen on ARM - an Evaluation

version: 1.0, date: December 21, 2017

supervisors:

Prof. Dr. Andreas Steffen

MSc Adrian-Ken Rüegsegger

MSc Reto Bürki

HSR, Rapperswil

David Loosli, student

BSc in Computer Science

HSR Rapperswil

Student Research Project

Muen on ARM - an Evaluation

Change History

date version change author

Oct 15, 2017 0.1 prepared template, setup basic version David Loosli

Nov 5, 2017 0.1 bibliography; changed structure according to

previous findings

David Loosli

Nov 11, 2017 0.2 introduction incl. bibliography and glossary David Loosli

Nov 12, 2017 0.2 first part of chapter 2 (overview, SPARK re-

quirements)

David Loosli

Nov 14, 2017 0.2 second part of chapter 2 (SPARK require-

ments, virtualization basics)

David Loosli

Nov 14, 2017 0.2 third part of chapter 2 (memory) David Loosli

Nov 17, 2017 0.2 third part of chapter 2 (memory) David Loosli

Nov 18, 2017 0.2 fourth part of chapter 2 (interruptions) David Loosli

Nov 23, 2017 0.2 fourth part of chapter 2 (interruptions) David Loosli

Nov 24, 2017 0.2 fourth part of chapter 2 (interruptions) David Loosli

Nov 25, 2017 0.2 fourth and fifth part of chapter 2 (interruptions,

device handling)

David Loosli

Nov 26, 2017 0.3 fifth part (interruptions) and summary / last

check of chapter 2

David Loosli

Nov 28, 2017 0.3 structure chapter 3 (incl. introduction) David Loosli

Dec 2, 2017 0.3 corrections of chapter 2 according to meeting David Loosli

Dec 3, 2017 0.4 first part of chapter 3 (overview, coding) David Loosli

Dec 4, 2017 0.4 first part of chapter 3 (coding, startup) David Loosli

Dec 5, 2017 0.4 second part of chapter 3 (fundamentals) David Loosli

Dec 7, 2017 0.4 second part of chapter 3 (fundamentals, virtu-

alization basics)

David Loosli

Dec 8, 2017 0.4 third part of chapter 3 (virtualization basics,

caching)

David Loosli

Dec 9, 2017 0.4 third part of chapter 3 (caching, memory) David Loosli

Dec 10, 2017 0.4 third part of chapter 3 (memory) David Loosli

Dec 12, 2017 0.4 fourth part of chapter 3 (exception handling,

timer)

David Loosli

studentresearchstudy.pdf version: 1.0

2

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

date version change author

Dec 13, 2017 0.4 fifth part of chapter 3 (spark and requirement

comparison)

David Loosli

Dec 15, 2017 0.5 corrections up to chapter 2 (incl. rewriting) David Loosli

Dec 16, 2017 0.5 corrections of chapter 3 (incl. rewriting) David Loosli

Dec 17, 2017 0.5 first part of chapter 4 (overview, and boot pro-

cess)

David Loosli

Dec 19, 2017 0.5 second part of chapter 4 (exception and device

handling)

David Loosli

Dec 19, 2017 0.6 chapter 5 and abstract David Loosli

Dec 21, 2017 1.0 corrections of chapter 4 and 5 as well as final

review

David Loosli

studentresearchstudy.pdf version: 1.0

3

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

Abstract

The Muen Separation Kernel (SK) is a specialised microkernel developed as a platform for high-security

systems at the University of Applied Sciences Rapperswil (HSR). Muen ensures a strict and reliable

isolation of components and protects critical security functions against unreliable software running on

the same physical system. The programming language SPARK 2014 is used to achieve a particularly

high degree of trustworthiness. The Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components.

This feasibility study investigates the ARMv8-A architecture and in particular the AArch64 Virtualiza-

tion Extensions introduced with the latest ARM architecture and evaluates how this technology could

be used for porting the Muen SK to ARM. In order to be able to achieve this, the mechanisms used by

Muen SK are first examined in detail. Based on this investigation, the requirements for a target proces-

sor architecture are derived and compared with the features provided by the ARMv8-A architecture.

Since the target hardware platform for this study is the Raspberry Pi 3, the requirements declared as

„implementation defined“ by the ARM documentation are finally assessed with respect to this System

on Chip designed by the Raspberry Pi Foundation.

studentresearchstudy.pdf version: 1.0

4

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

Contents

Change History 2

Abstract 4

1 Introduction 7

1.1 Structure of the Study . 8

1.2 Related Documents . 8

1.3 Literature . 8

2 Muen Separation Kernel 9

2.1 Virtualization Basics . 10

2.2 Memory . 11

2.2.1 Caches . 13

2.2.2 Memory Management . 13

2.2.3 Advanced Memory Virtualization . 16

2.2.4 Multicore Environment . 17

2.3 Interruption Handling . 18

2.3.1 Programmable Interrupt Controller . 20

2.3.2 Interrupts . 21

2.3.3 Exceptions and Software Generated Interrupts 21

2.3.4 Traps . 22

2.3.5 Events . 23

2.4 Timers . 23

2.5 Device Handling . 24

2.6 Floating Point . 25

2.7 SPARK . 25

2.8 Derived Requirements . 26

3 ARMv8 Architecture 29

3.1 Code Examples . 30

3.1.1 Code Compilation . 30

3.1.2 Code Execution and Debugging . 31

3.2 Fundamentals . 34

3.2.1 Exception Levels . 34

3.2.2 Execution States . 37

3.2.3 Startup and Reset . 38

3.3 Virtualization Basics . 39

3.4 Memory . 41

3.4.1 Caches . 41

studentresearchstudy.pdf version: 1.0

5

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.4.2 Memory Management . 43

3.4.3 Advanced Memory Virtualization . 45

3.4.4 Multicore Environment . 46

3.5 Exception Handling . 47

3.5.1 Interrupts . 49

3.5.2 SErrors . 49

3.5.3 Aborts . 49

3.5.4 Exception Generating Instructions . 50

3.5.5 Resets . 51

3.5.6 Generic Interrupt Controller . 51

3.6 Timers . 52

3.7 Device Handling . 53

3.8 SPARK . 53

3.9 Requirement Comparison . 55

4 Raspberry Pi 3 56

4.1 Overview . 56

4.1.1 Documentation . 57

4.1.2 Bare Metal Development . 59

4.2 Boot Process . 60

4.3 Exception Handling . 61

4.4 Device Handling . 62

4.5 SPARK . 62

5 Conclusion 63

5.1 ARMv8 Architecture . 63

5.2 Raspberry Pi 3 . 63

5.3 Further Investigations . 64

Appendix 66

A List of Related Documents . 66

B Project Assignment AVT (german) . 67

Bibliography 68

studentresearchstudy.pdf version: 1.0

6

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

1 Introduction

The evolution within the last years in the world of information technology not only led to a tremendous

increase of mobile devices and networking, but also let the world economy dream of a new tech-

nological era, the Industry 4.01. This fourth industrial revolution is characterized in particular by the

interconnection of objects and people within a so called information network. In this context, the most

frequently mentioned keywords are Internet-of-Things, Cloud Computing and Bioengineering.

One of the consequences of the integration of autonomously communicating devices into our daily

life is that a lot of sensitive data is collected and stored that needs best possible access control. A

mathematically provable secure approach to control the access to sensitive data is the theory of the

Separation Kernel published by John Rushby in a paper presented at the 8th ACM Symposium on

Operating System Principles in December 19812. Based on this theoretical foundations and the Intel

hardware virtualization extension, Reto Buerki and Adrian-Ken Rueegsegger designed the Muen Sepa-

ration Kernel (SK) as their Master Thesis at the University of Applied Sciences Rapperswil (HSR)3. The

Muen SK ensures a strict and reliable isolation of components and protects critical security functions

against unreliable software running on the same physical system.

A second consequence of the fourth industrial revolution is the need for small devices with low energy

consumption and low production costs that still meet the state of the art with respect to processor

architecture and peripheral device integration. Since many of these small devices, especially mobile

devices, use an ARM central processing unit (CPU) or an ARM based system on chip (SoC) one

could also determine enormous improvements up to the latest ARM architecture, the so called ARMv8

architecture 4.

This Student Research Study, which is part of the Bachelor of Science in Computer Science program

at the University of Applied Sciences Rapperswil (HSR), investigates the possibility of porting the Muen

SK to the ARMv8 architecture. As the Muen SK was developed specifically for the Intel x86/64 architec-

ture and uses the Intel VT-x and VT-d technology to separate the components, the aim of this feasibility

study is to take a closer look at the ARMv8 architecture and in particular the AArch64 Virtualization

Extension (VE) introduced with the latest ARM processors. The target hardware for this study is the

Raspberry Pi 3 5.

1
[3] Devezas, Leitão, and Sarygulov. Industry 4.0 - Entrepreneurship and Structural Change in the New Digital Landscape.

2017, Chapter 1, page 2 f.
2
[17] Rushby. “Design and Verification of Secure Systems”. 1981.

3
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013.

4
https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A, December 21, 2017

5
cf. https://www.raspberrypi.org/, December 21, 2017

studentresearchstudy.pdf version: 1.0

7

date: December 21, 2017

https://en.wikipedia.org/wiki/ARM_architecture#ARMv8-A
https://www.raspberrypi.org/

Student Research Project

Muen on ARM - an Evaluation

1.1 Structure of the Study

The study is divided into three main parts followed by a summarizing conclusion including a risk as-

sessment for the planned Bachelor Thesis to port the Muen SK to the ARMv8 architecture. In the first

part (chapter 2), an overview of the Muen SK is given and the most important hardware dependent

features are described, from which the general hardware requirements are derived. In the next chapter

3, an introduction to the ARMv8 architecture is presented with focus on the AArch64 architecture and

the Virtualization Extension (VE) followed by a qualification of these features with respect to the derived

hardware requirements from the first part. As the target hardware for this study is the Raspberry Pi

3, the third part of this document (chapter 4) is dedicated to a detailed description of this single board

computer considering hardware related features used by the Muen SK.

1.2 Related Documents

As the focus of this study lies on the feasibility of porting the Muen SK to the ARMv8 architecture, many

related documents apart from this document were elaborated. As examples, there can be mentioned

the Raspberry Pi 3 Beginner’s Guide and all the Evaluation Cases illustrated with small coding exam-

ples. All this documents are an integral part of the Student Research Project. A list can be found in the

appendix of this document.

1.3 Literature

Due to the task description of the Student Research Project 6, the Muen Report7 with the related

documents and the official ARM documentation, i.e. the ARMv8 Architecture Reference Manual8 and

the ARM Cortex-A Series Programmer’s Guide9, were used as the principal literature. A detailed list of

referenced literature can be found in the bibliography at the end of this document (cf. Bibliography).

Because a detailed and with respect to the AArch64 architecture complete Raspberry Pi 3 hardware

reference manual did not exist at the time of writing, chapter 4 of this study had to be based on the

VideoCore Reference Manual10 and the BCM2835 ARM Peripherals documentation11 for the Rasp-

berry Pi 1 as well as different online sources mentioned in the corresponding section 4.1.1 of this

document.

6
cf. assignment from the AVT platform, Appendix B

7
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013.

8
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017.

9
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015.

10
[13] n.a. VideoCore IV 3D Architecture Reference Guide. 2013.

11
[11] n.a. BCM2835 ARM Peripherals. 2012.

studentresearchstudy.pdf version: 1.0

8

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

2 Muen Separation Kernel

The design and implementation of the Muen SK is premised on three basic concepts: first of all the

Separation Kernel principle, formal verification and hardware supported virtualization.

The concept of a Separation Kernel was introduced by John Rushby in a paper presented at the 8th

ACM Symposium on Operating System Principles in December 1981 as a solution to the problem with

the development and verification of large, complex security kernels1. His proposition was to basically

adapt the principles of a distributed system to a single processor to avoid the aforementioned problem.

As a consequence, such a system has to physically isolate all the subjects that are part of the security

policy. The communication and the access to shared resources of all these subjects must be handled

only through likewise isolated, so called trusted components that can be verified2. Finally, Rushby

verified the outlined proposition with a Proof of Separability3.

As the verification is a compulsory consequence of the Separation Kernel principle, an implementation

of a Separation Kernel has to use a programming language that is amenable to formal verification.

Therefore, the SPARK programming language was chosen to write the Muen SK. SPARK is a formally

analysable subset of the programming language Ada and used for implementing high integrity systems
4. A introduction to the programming language SPARK and the related derived requirements can be

found in section 2.7.

Another deducible consequence of the Separation Kernel principle is the requirement of a sufficiently

small code base for the implementation of such a kernel5. To achieve this, the Muen SK relies on the

hardware virtualization support of the Intel x86 architecture6. To get the full virtualization support for

a desktop environment, the Intel IA-32e/64-bit architecture was chosen as the target platform of the

Muen SK7. Therefore, a first basic requirement for a processor architecture, to be able to run the Muen

SK on, can be derived as:

REQ-0: The processor architecture has to support 64 bit datapath widths, integer size

and memory address widths as well as to be able to execute 32 bit applications.

1
[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 1, page 3 f.

2
[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 2 f., page 5 ff.

3
[17] Rushby. “Design and Verification of Secure Systems”. 1981, Section 4, page 11 ff.

4
cf. https://www.adacore.com/sparkpro, December 21, 2017

5
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 2.4, page 14.

6
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 2.3, page 11 ff.

7
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 3.2, page 20.

studentresearchstudy.pdf version: 1.0

9

date: December 21, 2017

https://www.adacore.com/sparkpro

Student Research Project

Muen on ARM - an Evaluation

2.1 Virtualization Basics

A hypervisor or virtual machine monitor (VMM) 8 is special software that emulates computer hardware.

In general, two different types of hypervisors are classified9: Type I native or bare-metal hypervisors

and Type II hosted hypervisors. A Type I hypervisor directly runs on the target hardware to control

and manage the guest operating system, whereas a Type II hypervisor makes use of a conventional

operating system. As a Type I hypervisor has comprehensive control over the processor(s) and other

platform hardware as well as over the guest software (e.g. memory access, communication etc.), it can

also be used as a mechanism for separation purpose10. Therefore, the Muen SK can be classified as

a Type I hypervisor.

A hypervisor multiplexes the hardware by the usage of different virtualization techniques to provide a

virtual environment to the guest software in a way that lets the guest software gain the impression of

running directly on the hardware. One approach to achieve this, is to add another privilege level or

protection ring to a processor architecture. A protection ring is one of two or more hierarchical layers of

privilege within the architecture of a computer system. Normally, the processor architecture enforces

this layering by providing different execution modes on hardware level. As an example - in standard

protected mode on an Intel x86 architecture there exist four privilege levels or protection rings with ring

0 as the most privileged one whereas ring 3 having the least privileges 11.

Figure 2.1: Intel x86 protection mode, protection rings hierarchy

As already mentioned, the Muen SK makes use of the Intel Virtualization Technology (VT) to fulfil the

requirement of a small code base. One of the basic features of the Intel VT is the so called Intel VT-x.

8
Because the ARMv8 architecture uses the terms secure monitor and monitor mode for a separate exception level, the

expression hypervisor is used instead of VMM throughout this document.
9
[16] Popek and Goldberg. “Formal Requirements for Virtualizable Third Generation Architectures”. 1974, the first classifi-

cation approach.
10

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3, page 11.
11

It is absolutely important to note that ring 0 has the most privileges - because the ARM Exception Lev-

els define the privileges exactly the other way round by giving the Exception Level 0 the least privileges; cf.

https://en.wikipedia.org/wiki/Protection_ring, December 21, 2017

studentresearchstudy.pdf version: 1.0

10

date: December 21, 2017

https://en.wikipedia.org/wiki/Protection_ring

Student Research Project

Muen on ARM - an Evaluation

This feature introduces a new hypervisor execution level with an additional protection ring „-1“ as well

as some new VMX instructions that simplify the switching between a hypervisor running in VMX root

operation and guest software executing in VMX non-root operation 12. Hence, to be able to execute the

Muen SK in hypervisor mode, a target processor architecture has to meet the following requirement:

REQ-1: The target processor architecture must provide a virtualization extension that is

capable of running a Type I hypervisor. This requirement includes the hardware assisted

support for an additional privilege level and instructions for a simplified switch between

this additional and other privilege level.

Another important feature of the VT-x virtualization technology is that VM exits and entries are handled

automatically while the exact behaviour still stays configurable13. To do so, a logical processor uses

virtual machine control data structures (VMCS) to manage transitions into and out of the VMX non-root

operation as well as the processor behaviour in VMX non-root operation14. An illustrating example is

a VM exit that automatically stores the guest processor state into the guest state area of the VMCS.

But one has to be aware that registers, which can be saved and loaded by the hypervisor itself (e.g.

general purpose registers), are not stored automatically15. Therefore:

REQ-2: The target processor architecture must provide a virtualization extension that

supports an automatic handling of guest exits (i.e. traps) and entries. At least, the target

processor architecture must provide a support mechanism to completely save and load

all the relevant guest state structures.

2.2 Memory

In modern computer systems, usually different memory and storage technologies are used as an at-

tempt to find the best possible compromise between access time, cost and persistence properties.

The first two criteria are interrelated by the fact that the shorter the access times of a specific type of

memory is, the more expensive they are. The third criterion not only considers the persistence in the

proper sense, i.e. volatile or persistent, but also other properties like the degree of hardware supported

manageability. Therefore, memory and storage are normally organized in a so called memory hier-

archy to use the advantages of the various components while, at the same time, circumventing their

disadvantages 16. A standard modern memory hierarchy is composed of17 18:

12
more details can be found in [2], section 2.3.1, and [12], volume 3C, chapter 23 f., page 1083 ff.

13
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3, page 12.

14
[12] n.a. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3. 2017, volume 3C, section 24.4, page

1090 ff.
15

[14] Neiger et al. “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtualization”. 2006, page

170.
16

cf. https://de.wikipedia.org/wiki/Speicherverwaltung, December 21, 2017
17

[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.1.3, page 393 f.
18

https://en.wikipedia.org/wiki/Memory_hierarchy, December 21, 2017

studentresearchstudy.pdf version: 1.0

11

date: December 21, 2017

https://de.wikipedia.org/wiki/Speicherverwaltung
https://en.wikipedia.org/wiki/Memory_hierarchy

Student Research Project

Muen on ARM - an Evaluation

• CPU Registers: The fastest (typically one clock cycle) and most expensive type of memory that

locates in the processor itself.

• Caches: A state of the art processor has numerous internal and shared caches (Static Random

Access Memory SRAM), organized in up to four levels with increasing access times from a few

tens of clock cycles down to a few hundreds, and additional hardware caching structures, e.g.

Translation Lookaside Buffers (TBL) and Branch Prediction Caches (BPC).

• Primary Storage (main memory): This type of memory is also referred to as Dynamic Random

Access Memory (DRAM). Its speed is moderate with up to 10 GB per second but still relatively

affordable. With respect to primary storage, two different applications are distinguished - physi-

cal RAM and Virtual Memory (cf. Memory Management Unit 2.2.2).

• Secondary Storage (disk storage): On Secondary Storage, data can be permanently stored. It

is much cheaper than primary storage but about 10’000 times slower. The most known repre-

sentatives are Hard Disk Drives (HDD) or Solid State Disks (SSD).

• Tertiary Storage (input storage): This category includes various types of removable media de-

vices such as USB devices or SD cards as well as remote storage and peripherals. It is the

slowest and cheapest kind of storage.

Figure 2.2: example of a memory hierarchy

At this point, one has to remember the strict distinction between memory and storage. While the

CPU has direct access to the memory - whether through the processor’s hardware structures or over

the memory bus - storage is only available as an I/O device. Pointing out this difference is important

because all memory resources of a system running the Muen SK are static and explicitly specified in

the so called system policy19. This, for example, implies that there is no such mechanism implemented

for loading missing page contents from a storage device after a page fault or page miss, as most of

the common operating system kernels would do, and that no considerations about side and covert

19
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.2.1, page 24.

studentresearchstudy.pdf version: 1.0

12

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

channels with respect to disk caches or other storage structures have to be made. Since a subject 20

cannot change its own address space, also the page tables are static and therefore can be generated

in advance according to the relevant information in the system policy. As for the storage, it is treated

by the Muen SK as a pure I/O device (cf. Device Handling 2.5) .

2.2.1 Caches

As already mentioned, only cache and caching structures, that are directly accessible to the CPU,

have to be considered with respect to the fundamental requirement of the Muen SK to completely

separate the subjects and thus to eliminate side and covert channels. The main problem with caches

is that they are shared and can normally only be controlled to a limited degree21. Due to performance

aspects, the Muen SK has to enable the caches and caching structures. But as the Muen SK uses

the Intel Virtualization Extension at least the Translation Lookaside Buffer (cf. section 2.2.2) is cleared

automatically. Therefore, a processor architecture has to fulfil the following requirement:

REQ-3: The target processor architecture shall provide a minimal set of cache manage-

ment features and an automatic cache clearing feature in the context of virtualization.

At least, the target processor architecture must provide a support mechanism to clear

caches manually.

Even though out of scope for this study, the cache colouring mechanism has to be mentioned here.

This technique first divides the cache into disjoint units and assigns a „color “ to each of these partitions.

Every process then is assigned a certain color to. A cache area of certain color can only be accessed by

processes with the corresponding color. This technique is not only used for performance optimizations

but can also serve as a mechanism to prevent processor caches from being used as high-bandwidth

side channels22. The developers of the Muen SK mentioned this mechanism as one of possible future

enhancements23.

2.2.2 Memory Management

In modern computer systems, the management of the main memory is taken over by a hardware

component called Memory Management Unit (MMU) that is usually integrated into the processor. The

MMU handles all the access of the CPU to the main memory. In general, it has two main functions:

on the one hand it allows the implementation of virtual memory and on the other hand it can manage

memory protection and cache control 24.

20
In the context of the Muen SK, a subject is defined as one of multiple, isolated and through well-defined interfaces interact-

ing components. More informations can be found in section 3.3 and 4.3 in [2]
21

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.1.2, page 7.
22

[1] Braun, Jana, and Boneh. “Robust and Efficient Elimination of Cache and Timing Side Channels”. 2015, section 4, page

3, with references to other literature.
23

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 6.2.1.1, page 76.
24

https://en.wikipedia.org/wiki/Memory_management_unit, December 21, 2017

studentresearchstudy.pdf version: 1.0

13

date: December 21, 2017

https://en.wikipedia.org/wiki/Memory_management_unit

Student Research Project

Muen on ARM - an Evaluation

Virtual Memory is a technique that abstracts the available memory and storage resources on a com-

puter system in such a way that a process is given the illusion of running alone on that system and

having unrestricted access to the systems main memory 25. To be able to provide a linear 26 but virtual

logical address space to a process, a modern MMU uses a mechanism called paging. With paging the

physical as well as the virtual address space are divided into units with a fixed size. In the context of

physical memory, these units are called page frames whereas in the context of virtual memory they are

denoted as pages. The mapping between a physical page frame and a virtual page is done by a so

called page table that uses the two-part virtual address to calculate the physical address of the page

frame.

Figure 2.3: example of a one level paging with partitioning

As shown in figure 2.4, a virtual address is divided into two parts - a page number and an address

offset. The page number serves as an index into the page table to read out the content at this specified

address, namely the page frame number. Then the page frame number is multiplied by the predefined

page size to get the base address of the corresponding page frame in the physical memory. The

physical address for the requested virtual address can then be obtained by adding the offset of the

virtual address to this base address27.

To prevent illegal accesses, the page table must be initialized completely and undefined page table

entries have to be invalidated by at least setting an invalidation bit. In combination with a multiprocessor

environment, this requirement can lead to large page tables. One way to address this problem, is

to implement so called multi-level page tables. As an example, a two level page table hierarchy is

presented: In such a case, the virtual address is divided into three parts. The first part contains the

25
https://en.wikipedia.org/wiki/Virtual_memory, December 21, 2017

26
https://en.wikipedia.org/wiki/Flat_memory_model, December 21, 2017

27
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, paragraph Seiten-

basierte Adressumsetzung, page 450 ff.

studentresearchstudy.pdf version: 1.0

14

date: December 21, 2017

https://en.wikipedia.org/wiki/Virtual_memory
https://en.wikipedia.org/wiki/Flat_memory_model

Student Research Project

Muen on ARM - an Evaluation

directory index to the first page table. The entry in this first page table does not directly return the

page frame number, but contains the address of a second page table. The second part of the virtual

address is now used as an index into this second page table. The entry at the corresponding index then

contains the page frame number, which serves as the basis for the actual address resolution according

to the principle described above28.

Figure 2.4: example of a one level address translation

To improve the performance of the MMU’s address translation, modern processor architectures rely

on the implementation of an associative cache structure, the Translation Lookaside Buffer (TLB) . The

address translation principle described above remains the same, but instead of a direct lookup of the

first part of the virtual address (i.e. the page number) in a page table the MMU first takes a look at the

TLB. If the corresponding page entry can be found in the TLB it loads the physical base address directly

from there - else the corresponding page descriptor gets first loaded into the TLB from the according

page table before returning it to the address translation process29. In the context of the Muen SK, the

separation concerns described in the section Caches 2.2.1 have to be considered accordingly (i.e. side

and convert channels).

28
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, paragraph Seiten-

basierte Adressumsetzung, page 455 ff.
29

[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 7.5.1, page 446 f.

studentresearchstudy.pdf version: 1.0

15

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

The Muen Separation Kernel uses the virtualization functions of the Intel IA-32e mode on the one

hand for the implementation of the Type I hypervisor and on the other hand for the partitioning and the

separation of the different subjects. Since the 80286 processor, the Intel x86 processor architecture

provides an integrated MMU, that is capable of handling the paging mechanism for address virtualiza-

tion. The corresponding page tables can be defined and used on a per process basis and also serve

to define properties and permissions (i.e. memory protection). In addition, the MMU provided by Intel

validates and enforces compliance with these additional memory protection features. A hierarchical

arrangement of the page tables also enables multi-level paging - the Intel IA-32e mode supports up to

4 such levels and allows page sizes of 4 KB, 2 MB and 1 GB30. Therefore, the target architecture has

to support the following features:

REQ-4: The target processor architecture has to provide a Memory Management Unit

that supports:

(i) memory virtualization on a per subject basis (one page table per subject),

(ii) definition of properties and permissions per page table (read/write access, execute

disable, caching behaviour),

(iii) checking and enforcement of defined properties and permissions,

(iv) different page sizes (i.e. large page support 31), but at least a 4 KB page size 32.

2.2.3 Advanced Memory Virtualization

When using a hypervisor with different guest operating systems (i.e. virtual machines), the address

virtualization technologie described above has to be extended with a second layer. The hypervisor

assigns a first layer virtual memory area to the guest system, which is interpreted by the guest system

as its own physical memory. If the guest system is running a modern operating system, it will use the

address translation mechanism again for its applications, creating a complete second address transla-

tion layer. In order to be able to cope with the associated performance issues as well as the complexity

of the hypervisor implementation, Intel’s x86 virtualization technology „Extended Page Tables (EPT)“

provides a hardware assisted Second Level Address Translation (SLAT, also known as nested paging)

mechanism.

30
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.2, page 8 f.

31
Most current CPU architectures support bigger pages, but name it differently: huge pages, super pages or large pages are

only the most often used terms.
32

At the time of writing, the Muen SK only relies on 4KB pages. But as discussed in the meeting of November 20, 2017, the

question about large page support by the ARM architecture should be answered in this study too.

studentresearchstudy.pdf version: 1.0

16

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

The Muen architecture supports native subjects as well as complex Virtual Machines (VM) running their

own operating system33. To be able to run such complex VM’s without having an enormous adaptation

effort, the Muen SK makes use of the Intel’s x86 SLAT virtualization technology EPT34. Therefore, the

following must apply:

REQ-5: The target processor architecture must support hardware assisted second level

address translation (SLAT).

2.2.4 Multicore Environment

Even though out of scope for this study, the multicore environment topic has to be mentioned here. A

processor architecture that implements more than one core is called a multicore processor 35. Another

feature often implemented by modern processor architectures is the hardware assisted multithreading

ability. A processor architecture, that is capable of multithreading, subdivides a central processing

unit (CPU) or a single core in a multicore processor into logical cores to execute multiple processes

or threads concurrently 36. While in a multicore environment the CPU itself as well as core specific

resources (e.g. MMU, TLB and Caches) are multiplied, logical cores have to share these resources.

First of all, the Muen SK does not concern itself with memory management. All the page table struc-

tures needed in a computing system are created by the Muen policy tools and statically initialized at the

system startup by the initialization code. In an initialized multicore or multithreading environment, all

logical cores execute exactly the same (i.e. binary identical) Muen kernel code. Although each kernel

has its own stack page and a page to store per core data, this is fully transparent to the kernels due

to the usage of different page table structures per kernel37. In the current version of the Muen SK, the

multithreading features of the Intel x86 architecture are switched off 38. Therefore, to be able to port

the Muen SK to another multicore or multithreading processor architecture, a target architecture has to

provide the following feature:

REQ-6: A multicore target processor architecture has to provide a mechanism to switch

off the multithreading mechanism on a per core basis, if multithreading is supported.

The Muen SK uses a barrier as synchronization mechanism to avoid any interprocessor drift in the

context of scheduling plans and hence to eliminate timing side channels. This barrier guarantees that

all logical cores have arrived at a specific execution point, i.c. on major frame transition, and are

synchronized by waiting for the release. A sense-reversing barrier implemented in SPARK is used as

33
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4, page 22 f.

34
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.1.2, page 13,

and section 3.3.3, page 22.
35

https://en.wikipedia.org/wiki/Multi-core_processor, December 21, 2017
36

https://en.wikipedia.org/wiki/Multithreading_(computer_architecture), December 21, 2017
37

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.6, page 28, and

section 4.4.2, page 46.
38

cf. Besprechungsnotiz November 27, 2017 - section 2, page 2

studentresearchstudy.pdf version: 1.0

17

date: December 21, 2017

https://en.wikipedia.org/wiki/Multi-core_processor
https://en.wikipedia.org/wiki/Multithreading_(computer_architecture)

Student Research Project

Muen on ARM - an Evaluation

the barrier mechanism 39. On assembly level, the barrier is realized with a spinlock using the atomic

XCHG processor swapping instruction40.

REQ-7: A multicore target processor architecture shall provide a barrier synchronization

mechanism. At least it must offer an atomic swapping instruction to support the according

spinlock implementation.

2.3 Interruption Handling

The various processor architectures and the corresponding literature use different terms (e.g. excep-

tion, interrupt, signal, event) for the temporary interruption of a running process by an interruption

cause. For this study, the term interruption is used as a generic term for all types of temporary inter-

ruptions. The terms for the different types of interruptions are then described in detail according to the

usage and the definitions in the respective topic. For example, in this chapter the interruption types are

defined as used in the Muen report.

In the literature one can find various criteria to distinguish between interruptions and hence quite a few

different categorisations of interruptions4142. For this study only the following criteria are relevant:

• internal vs. external: An interruption caused by a device outside the processor is referred to

as external while interruptions caused by the processor itself are considered as internal. For

example, a keyboard device signalling an input has to be qualified as external - in contrast,

interruptions, that occur in response to a processing error, such as referencing an invalid address

in memory, division by zero or similar error condition, have to be looked upon as internal.

• hardware vs. software: While a hardware interruption is routed to the processor via a channel

that is effectively implemented in hardware, the software interruption originates from a program

command. In the case of software interruptions, a distinction can also be made between in-

tentional and defective interruptions. Applying these criteria, a keyboard interruption reflects

a hardware interruption, a divison by zero would be a defective software interruption and the

execution of a trapping instruction could be qualified as intentional software interruption.

Nearly every processor architecture uses a different naming and separation of the components that

are involved in an interruption processing. Therefore, the following explanation of a typical device

interruption process is simplified with respect to the components (esp. the CPU) as well as to the

architecture.

39
This type of barrier is described in the book The Art of Multiprocessor Programming by Maurice Herlihy and Nir Shavit

40
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 3.4.6, page 28, and

section 4.4.2.2, page 47.
41

[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 300 ff.
42

[18] Tanenbaum and Bos. Moderne Betriebssysteme. 2016, section 5.1.5, page 427 ff.

studentresearchstudy.pdf version: 1.0

18

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

Figure 2.5: simplified interruption process

(1) The starting situation is illustrated in the figure 2.5 - a process A running on top of an operating

system, both loaded into RAM, is executed by the CPU.

(2) As soon as an interruption (i.c. caused by a keyboard) occurs, the Interruption Controller informs

the Control Unit (CU) about it. The CU then stops the execution of the process A.

(3) To be able to restore the state of process A, the CU saves (on some processor architectures

automatically) the programm counter and other registers used by process A.

(4) Then, the CU checks the cause number of the interruption and retrieves the base address for

the according Interruption Service Routine (ISR) defined in the operation systems code.

(5) After that, the CU loads the instructions of the ISR

(6) and executes its code until the end of the ISR.

(7) When the execution of the ISR is finished, the CU informs the Interrupt Controller with an ac-

knowledgement about the processed interruption.

(8) Last, the CU restores the registers of the process A and continues executing the corresponding

instructions. Process A does not even realise the interruption.

studentresearchstudy.pdf version: 1.0

19

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

2.3.1 Programmable Interrupt Controller

Even modern processor architectures often implement only a few input lines for interruption signals and

only support a simple interruption logic. In such cases, an external device, the Programmable Interrupt

Controller (PIC), can be attached to the associated processor line(s) to first of all combine different

interrupt sources onto one CPU interruption line, but also to allow the assignment of priorities to differ-

ent kind or groups of interruption causes or to mask different types of interruptions43. A Programmable

Interrupt Controller normally features the following registers: (a) an Interruption Request Register (IRR)

that specifies the pending interruptions, b an In Service Register (ISR) that records the acknowledged

but still waiting for an End of Interrupt (EOI) interruptions and (c) an Interrupt Mask Register (IMR) that

defines which interrupts are to be ignored and not acknowledged.

The Muen SK makes use of Intel’s Advanced Programmable Interrupt Controller (APIC) that is com-

posed of two components - the Local APIC as a part of every physical CPU and the I/O-APIC as a part

of the chipset44. The most important features of this interruption architecture are 45:

• local interruption management on a per CPU basis and therefore better performance

• support for inter-processor interrupts (IPI) between Local APICs

• Local APICs provide a high-resolution timer for interval and one-off mode usage

• flexible interruption configuration on a per interruption type basis

• support for Message Signaled Interrupts (MSI) 46

• priority definition on a per interruption type basis

• interrupt and NMI window exiting feature associated with virtualization47

• I/O APIC support multiple interruption input lines

• I/O APIC redirection table to route interruptions to one or more Local APIC(s)

The exact determination of the APIC features required by the Muen SK and the therefore resulting

requisites for a target architecture are elaborated in the following sections. But in this context, it can

already be stated that:

REQ-8: A target processor architecture has to provide a mechanism to programmatically

handle interruptions.

43
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 306 ff.

44
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.2.4, page 9 f.

45
https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller, December 21, 2017

46
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts, December 21, 2017

47
[14] Neiger et al. “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtualization”. 2006, page 171

ff.

studentresearchstudy.pdf version: 1.0

20

date: December 21, 2017

https://en.wikipedia.org/wiki/Advanced_Programmable_Interrupt_Controller
https://en.wikipedia.org/wiki/Message_Signaled_Interrupts

Student Research Project

Muen on ARM - an Evaluation

2.3.2 Interrupts

In the context of the Muen SK, interrupts are defined as external hardware interruptions. As an exam-

ple, the Muen report mentions a network card that generates an interrupt whenever a data packet is

received48.

The Muen SK uses the Intel VT-x technology to inform a subject about an external interrupt. An external

interrupt request (IRQ) is routed to the in the system policy statically defined subject through the Muen

SK that provides a per subject array with up to 32 pending interrupts for delivery. To achieve this

routing mechanism, the Muen SK has to enable the I/O APIC and rely on the LAPIC feature to be

able to specify not only the physical CPU, that the subject is allocated to, but also the subject itself49.

To improve the interrupt delivery with respect to performance, the Muen SK also makes use of Intel’s

virtualization mechanism called interrupt window exiting50. Therefore, a target processor architecture

has to meet the following requirements:

REQ-9: A target processor architecture has to provide an interruption handling that guar-

antees the exclusive treatment of interrupts by the separation kernel.

Another important aspect of Intel’s x86 architecture is that it allows to enable or disable interrupts for

the VMX root mode. This is done by not setting the IF interrupt flag in the host’s FLAGS register. The

Muen SK uses this mechanism to simplify the the kernel code and to assure that the Muen SK is not

disrupted by external interrupts51. Therefore, a target processor architecture has to manifest a similar

feature:

REQ-10: A target processor architecture has to provide an enabling and disabling mech-

anism for (external) interrupts, at least for the execution of the hypervisor code.

2.3.3 Exceptions and Software Generated Interrupts

In the context of the Muen SK, exceptions are defined as defected software interruptions. This means,

that an exception is an interruption generated by the processor itself detecting an error condition dur-

ing the execution of an instruction. As an example, the division by zero is given. While exceptions

denote defected software interruptions, software generated interrupts have to be qualified as inten-

tional software interruptions52. As both interruption types are treated similarly, they are subsumed in

this section.

48
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.3, page 9.

49
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.6, page 50 f.

50
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.4, page 49.

51
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.6, page 51.

52
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.3, page 9, section

3.4.4, page 27 f., and section 4.4.7, page 51 f.

studentresearchstudy.pdf version: 1.0

21

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

First of all, the Muen report distinguishes between exceptions and software generated interrupts that

occur in VMX non-root mode (i.e. while executing a subject) and in VMX root mode (i.e. while the Muen

SK is executed). As a basic requirement for the Muen SK, the ability to prove the absence of runtime

errors is stated. Hence, if an exception (or even less likely a software generated interruption as well

as a non maskable interrupt) occurs during the regular execution of the Muen SK in VMX root mode, it

would indicate a serious problem in the kernel code and therefore the whole system would be halted.

In VMX non-root mode, there has to be differentiated between native and VM subjects. While VM

subjects must implement their own exception handling and hence exceptions and software generated

interrupts must not result in a subject exit, native subjects do not react on exceptions but handover the

execution to the kernel53 (cf. trap in section 2.3.4).

REQ-11: A target processor architecture must support a mechanism to enable and dis-

able exceptions and software generated interrupts resulting in an exit of the guest subject.

In the context of exceptions and software generated interrupts, also system management exceptions

(e.g. non maskable interrupts) have to be mentioned. The Muen SK makes sure that this type of

interrupts are not handled by the subject itself but result in a subject exit by all means. Therefore:

REQ-12: A target processor architecture shall provide a mechanism to force system

management exceptions to lead to an exit of a guest subject.

2.3.4 Traps

The term trap, as used by the Muen report, subsumes different kind of interruptions and virtualization

techniques that lead to a VM exit. As examples for VM exits, the documentation mentions the execution

of a privileged operation or a constrained instruction. The Muen SK uses the VT-x technology to provide

the possibility of specifying a per subject trap table in the system policy, whereby all of the VMX basic

exit reasons defined by Intel can be configured according to the subjects needs except the following,

by the Muen SK internally reserved traps54:

• external interrupt (cf. section 2.3.2)

• interrupt window (cf. section 2.3.2)

• VMCALL (cf. section 2.3.5)

• VMX preemption timer expired (cf. section 2.4)

53
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.7, page 51 f.

54
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.5, page 49 f.

studentresearchstudy.pdf version: 1.0

22

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

Therefore, a virtualization extension or interrupt handling mechanism for a target processor architecture

has to meet the following requirement:

REQ-13: A target processor architecture must be able to differentiate between exit rea-

sons of a guest system and to handle them as specified per subject.

2.3.5 Events

The Muen SK implements an event mechanism that is used for inter-subject signalization. This means,

that a subject is allowed to send an event to another subject as long as this has been granted by an

entry in the subject’s policy event table.

The implementation of this event mechanism is based on the VMCALL VMX instruction. Hence, when

a subject sends an event to a destination subject, it results in a trap into the Muen SK that handles

the event according to the system policy. Additionally, an optional inter-processor interrupt (IPI) can be

emitted to speed up the inter-core interrupt delivery. If this option is enabled for an interrupt event, an

inter-processor interrupt is delivered to the CPU of the destination subject. Finally, this results in the

preemption 55 of the subject, that is executed at the moment on the destination CPU, and therefore

the immediate delivery of the event. A target architecture should therefore have the ability to provide a

similar mechanism:

REQ-14: A target processor architecture should provide a technique to fast process in-

terruptions between cores.

2.4 Timers

In the context of timers, the clock generator has to be mentioned first. In a system, the clock generator

is responsible for producing a constant timing signal. This so called clock signal normally corresponds

to a frequency generated by a quarz piezo-electric oscillator 56. This signal is then used by all com-

ponents of the system to synchronize a circuit’s operation, including the timer components. In this

documentation, the term „clock“ refers only to this initial output signal. All other periodic signals, that

depend on this initial signal and that are mentioned in the context of synchronization, are termed „timer“

(even though in most literature this terms are used interchangeably).

A timer is an integrated circuit that normally signals an interruption after a configurable amount of „time“

(Programmable Interval Timer PIT 57) or after an overflow of a counter register. There exist many differ-

ent types of and definitions for timers realized in hardware according to their usage, e.g. pause function

timers, one-shot timers, periodic timers, time-slicing timers and watchdog timers. For this study, only

55
https://en.wikipedia.org/wiki/Preemption_(computing), December 21, 2017

56
https://en.wikipedia.org/wiki/Clock_generator, December 21, 2017

57
https://en.wikipedia.org/wiki/Programmable_interval_timer, December 21, 2017

studentresearchstudy.pdf version: 1.0

23

date: December 21, 2017

https://en.wikipedia.org/wiki/Preemption_(computing)
https://en.wikipedia.org/wiki/Clock_generator
https://en.wikipedia.org/wiki/Programmable_interval_timer

Student Research Project

Muen on ARM - an Evaluation

the system timers are important: A system timer is a timer integrated into a hardware component that

is responsible for producing a periodic signal used by the whole component. Regardless of the desig-

nation and application of a timer, its functionality can be described as a device that uses a high-speed

clock input to provide a series of time or count-related interruption signals. As a single counter can

only generate short time intervals due to the high-speed frequency of the clock, a technique called

cascading can be used with some additional programmable scaling registers to multiply this short time

intervals and thereby generating longer time intervals58. An alternative to programmable scaling reg-

isters is the cascading of multiple timer components. A simple unscaled programmable timer can be

described as follows:

Figure 2.6: timer component

The most important timer used by the Muen SK is the VMX preemption timer in the context of the

statically defined scheduling mechanism for subjects running on the same core59. This timer provided

by Intel’s virtualization extension can be set to a specific value according to the time slice definition for

the corresponding subject. The subject is then automatically preempted by the processor when the

time slice defined in the scheduling plan is over. After that, the Muen SK hands over the execution to

the next subject according to the scheduling plan.

REQ-15: A target processor architecture shall provide a preemptive mechanism on a per

subject basis. At least it must provide a timer per core.

2.5 Device Handling

Basically, there are three possibilities to handle devices60. The first possibility (and least reasonable

one) is the code or software based device handling. It makes use of a polling mechanism by continu-

ously checking the status register of the desired device. The second possibility is an interrupt based

approach explained in the previous sections. The third one is called Direct Memory Access (DMA).

58
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.2, page 309.

59
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 4.4.3, page 47 f.

60
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2, page 300.

studentresearchstudy.pdf version: 1.0

24

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

This last technique allows attached peripheral devices to directly interact with the main memory over

a usually external hardware controller (i.e. DMA controller). The CPU only has to configure the DMA

controller at initialization time - after that the controller acts without the usage of the CPU61.

At the time of its writing, the Muen report declared the device virtualization out of scope62. But in

the past years the implementation of the Muen SK has been extended and now uses Intel’s VT-d

Virtualization Technology for Directed I/O to virtualize I/O devices through an IOMMU. The virtualization

extension VT-d simplifies the direct assignment of devices to virtual machines in two ways - first, by

providing secure direct memory access (DMA) and second, by extending device interrupt remapping

functionality. Even though a further evaluation of this topic is out of scope for this study, at least the

following requirement can be stated:

REQ-16: A target processor architecture must provide a mechanism to virtualize I/O de-

vices by completely isolating the access to devices and providing support for associated

interruption and memory features.

2.6 Floating Point

Modern processor architectures usually implement a so called Floating Point Unit (FPU), a specialized

integrated circuit used for floating point calculations. As these floating point calculations often make

use of the single instruction multiple data 63 technique, the SIMD engine has to be mentioned in this

context too. Since the Muen SK does not use either component 64, there can’t be derived any further

requirements in this topic area.

2.7 SPARK

While Ada is a general-purpose language supporting the usual features of modern programming lan-

guages including built-in support for the design-by-contract paradigm, SPARK is a specialized well-

defined subset of Ada designed for the development of high integrity software. Due to these restric-

tions of the Ada programming language, SPARK has the ability to simplify the application of formal

mathematical methods, so that the correctness of the software or other program properties can be

guaranteed with mathematics-based assurance.

At the beginning of the Muen project, the development of SPARK 2014 was still ongoing, so that the

Muen SK was initially written in SPARK 200565. Within the last years, the Muen developers have

61
[4] Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2010, section 6.2.3, page 309 ff.

62
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, section 2.3.1.3, page 14.

63
https://en.wikipedia.org/wiki/SIMD, December 21, 2017

64
cf. Besprechungsnotiz October 23, 2017, and [2] page 41

65
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, chapter 2, section 2.1.3,

page 5.

studentresearchstudy.pdf version: 1.0

25

date: December 21, 2017

https://en.wikipedia.org/wiki/SIMD

Student Research Project

Muen on ARM - an Evaluation

changed the underlying programming language and are now using SPARK 2014 66. Since SPARK

is a true subset of Ada and compilers ignore the SPARK inherent annotations, every correct SPARK

program is a valid Ada program and can therefore be compiled with an existing Ada compiler such as

GNAT (part of the GNU compiler collection GCC). Hence, to be able to build the Muen SK, the following

requirement has to be fulfilled:

REQ-17: There must exist a native or cross compiler for the SPARK 2014 programming

language and the targeted processor architecture. At least, it must be possible to build

such a native or cross compiler with freely available software.

To fulfil the requirement of a small code base, the Muen SK uses the Ada Zero Footprint Runtime67.

A Zero Footprint Runtime (ZFP) is a downscaled runtime system (RTS) where only a minimum of

supporting code is required. As no unnecessary libraries are introduced into the system, this setup

is ideal for critical low level programming. Therefore, to be able to run the Muen SK on an processor

architecture other than Intel x86, a ZFP for the targeted architecture has to be available.

REQ-18: There must exist a Zero Footprint Runtime for the SPARK 2014 programming

language and the targeted processor architecture. At least, it must be possible to build

such a Zero Footprint Runtime with freely available software.

2.8 Derived Requirements

The following table summarizes the above derived requirements for a target architecture to be able to

run the Muen SK:

number requirement topic

REQ-0 The processor architecture has to support 64 bit data-

path widths, integer size and memory address widths

as well as to be able to execute 32 bit applications.

basics

REQ-1 The target processor architecture must provide a vir-

tualization extension that is capable of running a Type

I hypervisor. This requirement includes the hardware

assisted support for an additional privilege level and

instructions for a simplified switch between this addi-

tional and other privilege level.

basics

Table 2.1: requirement summary part one

66
cf. section kernel, first statement in https://muen.codelabs.ch/#kernel, December 21, 2017

67
[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, Section 4.2, page 41.

studentresearchstudy.pdf version: 1.0

26

date: December 21, 2017

https://muen.codelabs.ch/#kernel

Student Research Project

Muen on ARM - an Evaluation

number requirement topic

REQ-2 The target processor architecture must provide a vir-

tualization extension that supports an automatic han-

dling of guest exits (i.e. traps) and entries. At least,

the target processor architecture must provide a sup-

port mechanism to completely save and load all the

relevant guest state structures.

basics

REQ-3 The target processor architecture shall provide a min-

imal set of cache management features and an auto-

matic cache clearing feature in the context of virtualiza-

tion. At least, the target processor architecture must

provide a support mechanism to clear caches manu-

ally.

memory

REQ-4 The target processor architecture has to provide a

Memory Management Unit that supports: (i) memory

virtualization on a per subject basis (one page table

per subject), (ii) definition of properties and permis-

sions per page table (read/write access, execute dis-

able, caching behaviour), (iii) checking and enforce-

ment of defined properties and permissions, (iv) dif-

ferent page sizes (i.e. large page support), but at least

a 4 KB page size.

memory

REQ-5 The target processor architecture must support hard-

ware assisted second level address translation (SLAT).

memory

REQ-6 A multicore target processor architecture has to pro-

vide a mechanism to switch off the multithreading

mechanism on a per core basis, if multithreading is

supported.

memory

REQ-7 A multicore target processor architecture shall provide

a barrier synchronization mechanism. At least it must

offer an atomic swapping instruction to support the ac-

cording spinlock implementation.

memory

REQ-8 A target processor architecture has to provide a mech-

anism to programmatically handle interruptions.

interruption handling

REQ-9 A target processor architecture has to provide an inter-

ruption handling that guarantees the exclusive treat-

ment of interrupts by the separation kernel.

interruption handling

Table 2.2: requirement summary part two

studentresearchstudy.pdf version: 1.0

27

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

number requirement topic

REQ-10 A target processor architecture has to provide an en-

abling and disabling mechanism for (external) inter-

rupts, at least for the execution of the hypervisor code.

interruption handling

REQ-11 A target processor architecture must support a mech-

anism to enable and disable exceptions and software

generated interrupts resulting in an exit of the guest

subject.

interruption handling

REQ-12 A target processor architecture shall provide a mecha-

nism to force system management exceptions to lead

to an exit of a guest subject.

interruption handling

REQ-13 A target processor architecture must be able to differ-

entiate between exit reasons of a guest system and to

handle them as specified per subject.

interruption handling

REQ-14 A target processor architecture should provide a tech-

nique to fast process interruptions between cores.

interruption handling

REQ-15 A target processor architecture shall provide a preemp-

tive mechanism on a per subject basis. At least it must

provide a timer per core.

timer

REQ-16 A target processor architecture must provide a mech-

anism to virtualize I/O devices by completely isolating

the access to devices and providing support for asso-

ciated interruption and memory features.

device handling

REQ-17 There must exist a native or cross compiler for the

SPARK 2014 programming language and the targeted

processor architecture. At least, it must be possible to

build such a native or cross compiler with freely avail-

able software.

SPARK

REQ-18 There must exist a Zero Footprint Runtime for the

SPARK 2014 programming language and the targeted

processor architecture. At least, it must be possible to

build such a Zero Footprint Runtime with freely avail-

able software.

SPARK

Table 2.3: requirement summary part three

studentresearchstudy.pdf version: 1.0

28

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3 ARMv8 Architecture

The Advanced RISC Machines ARM architecture denotes a Reduced Instruction Set Computing RISC
1 microprocessor design from ARM Limited. Unlike the popular Intel processors, ARM Limited does not

manufacture the processors itself, but grants design licenses to semiconductor manufacturing compa-

nies. Compared to Complex Instruction Set Computing CISC 2 architectures, the ARM architecture is

characterized by a lower number of transistors and as a result lower costs, improved power consump-

tion and less heat generation. Due to the large number of manufacturers and the advantages of this

architecture, ARM processors are the most widely used processors in the embedded area. Almost all

smartphones, tablets and industrial controllers today use licensed ARM processors 3.

The success of ARM-based processors has led to a steady development of the architecture. With

the ARMv8-A architecture introduced in 2011, ARM Limited has presented the first 64-bit architecture

with a virtualization extension applicable for embedded systems. In the following years, the ARMv8-

A architecture was continuously improved with the versions ARMv8.1-A, ARMv8.2-A and ARMv8.3-A
4. These enhancements to the ARM architecture now allow software developers to port the latest

applications implemented for Intel and AMD processors to the ARM architecture as well as to meet the

requirements in the progress of the Industry 4.0 context by developing more secure software.

Due to the application field of ARM processors and the licensing strategy of ARM Limited, a large num-

ber of so called ARM-based System on Chip (SoC) was developed. An ARM-based SoC corresponds

to the combination of an ARM processor as CPU together with the GPU and other peripheral devices

on a single chip 5. The distinction between the processor and the other devices on such a chip is

essential for software development - while the architecture of the processor is defined and very well

documented by the ARM company, the accessibility of the processor to the peripherals and its control

is not predetermined by ARM. Hence, there are a variety of different SoC architectures with different

accessibility strategies: from processor controlled (Odroid C2 with amlogic S905 SoC 6) to VideoCore

controlled (Raspberry Pi 3 with Broadcom 2837 7).

This feasibility study follows a general approach to evaluate the portability of the Muen SK to the ARM

architecture. Therefore, this chapter only covers the ARM processor architecture and its capabilities.

However, some of the derived requirements from the last chapter are SoC specific and can therefore

in this context only be qualified as IMPLEMENTATION DEFINED. In the next chapter 4, the Raspberry

Pi 3 as the target hardware platform of this study is examined in more detail.

1
cf. https://en.wikipedia.org/wiki/Reduced_instruction_set_computer, December 21, 2017

2
cf. https://en.wikipedia.org/wiki/Complex_instruction_set_computer, December 21, 2017

3
cf. https://www.arm.com and https://en.wikipedia.org/wiki/ARM_architecture, December 21, 2017

4
cf. https://developer.arm.com/products/architecture/a-profile, December 21, 2017

5
cf. https://en.wikipedia.org/wiki/System_on_a_chip, December 21, 2017

6
http://www.hardkernel.com/main/products, December 21, 2017

7
https://www.raspberrypi.org/products/raspberry-pi-3-model-b, December 21, 2017

studentresearchstudy.pdf version: 1.0

29

date: December 21, 2017

https://en.wikipedia.org/wiki/Reduced_instruction_set_computer
https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://www.arm.com/
https://en.wikipedia.org/wiki/ARM_architecture
https://developer.arm.com/products/architecture/a-profile
https://en.wikipedia.org/wiki/System_on_a_chip
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438&tab_idx=2
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Student Research Project

Muen on ARM - an Evaluation

3.1 Code Examples

After a thorough review of all the available options to run and verify ARMv8 assembly, it was decided

to use the following configuration to test the code snippets mentioned in this chapter:

identifier description link

Method installation as Virtual Machine VM Ware

Host Operating System Debian 64-bit 9.2 Debian Download

Toolchain (Cross) Linaro aarch64-elf cross compiler Linaro Release

IDE DS-5 Community Edition Linux64 28rel0 DS-5 IDE

Debugger DS-5 Community Edition Debugger (inte-

grated into the DS-5 IDE)

DS-5 Debugger

Simulation ARMv8-A Foundation Model (integrated

into DS-5 IDE)

Fast Models

Details on the installation and configuration of the corresponding tools can be found in the respective

evaluation case documentation. However, it should be noted that the version of the DS-5 IDE has

changed during this project - therefore, the installation process slightly changed compared to this doc-

uments. Due to the limitations of the Community Edition of the DS-5 IDE, the code snippets were tested

in a minimal environment derived from the official startup example code and only on one processor.

3.1.1 Code Compilation

Principally, three useful compilers are available for compiling assembly code, i.e. the FASMARM As-

sembler 8, the ARM Compiler 6 9 and the assembler of the GCC GNU Compiler Collection 10.

The FASMARM v1.42 assembler is a free and Open Source cross assembler add-on for the FASM flat

assembler. At the beginning of this project, this assembler was used exclusively because it is easy

to install, to configure and to use. However, the main disadvantage of the assembler is that it does

not support the 64-bit ELF DWARF debugging format 11 and therefore the assembled code cannot be

executed on the Fast Model Simulation Debugger provided by the ARM DS-5 Community Edition.

The ARM Compiler 6 is the latest C/C++ Compiler toolchain provided by ARM Limited. It can be

used as a standalone tool but it also supports the integration of the Compiler toolchain into the DS-5

Development Studio Professional and Ultimate Edition. As this compiler is not freely available, it was

not tested during this project.

8
cf. https://arm.flatassembler.net, December 21, 2017

9
cf. https://developer.arm.com/products/software-development-tools/compilers/arm-compiler, December 21, 2017

10
cf. https://gcc.gnu.org, December 21, 2017

11
ReadMe section 5, first paragraph - „... For 64-bit code only the binary format is currently supported. ELF64 and PE64

formats have not yet been updated.“; cf. https://arm.flatassembler.net/ReadMe.txt, December 21, 2017

studentresearchstudy.pdf version: 1.0

30

date: December 21, 2017

https://www.vmware.com/products/fusion.html
https://www.debian.org/CD/http-ftp/
https://releases.linaro.org/components/toolchain/binaries/latest/aarch64-elf/
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/editions/community-edition
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/ds-5-debugger
https://developer.arm.com/products/system-design/fast-models
https://arm.flatassembler.net/
https://developer.arm.com/products/software-development-tools/compilers/arm-compiler
https://gcc.gnu.org
https://arm.flatassembler.net/ReadMe.txt

Student Research Project

Muen on ARM - an Evaluation

The third compiler tested for compiling assembly code is the compiler of the GCC Gnu Compiler Collec-

tion. The Gnu Compiler Collection is a freely available compiler suit for the programming languages C,

C++, Objective-C, Fortran, Ada and Go published under the Gnu Public License GPL. As part of the C

compiler suite, an assembler for the ARMv8 AArch64 architecture is delivered too. The advantages and

therefore the decisive reason to work with this compiler are the supported languages (including the Ada

GNAT toolchain), the excellent documentation, the ability to generate ARM ADS AXD 64-bit compatible

formats for code simulation on the ARM Fast Model and the large number of existing cross compiler

binaries. The preferred cross compiler for this project is the Linaro AArch64 ELF cross compiler 12.

3.1.2 Code Execution and Debugging

There are basically two possibilities available for an informative debugging: on the one hand, one can

debug the code over the JTAG interface directly on the target hardware and, on the other hand, the

debugger integrated in the DS-5 IDE on a simulated ARMv8 hardware model, the so called Foundation

Model, can be used.

To be able to debug the code under consideration directly on the target platform, a JTAG hardware

adapter is needed. The JTAG setup was tested with a Segger J-Link Edu Version 10.1 adapter 13 and

the Raspberry Pi 3. Detailed instructions for such a setup can be found in the corresponding Develop-

ment Environment Setup evaluation case for the programming language C/C++. The disadvantages of

a JTAG debugging in the context of this chapter are the complicated and time consuming wiring as well

as the exclusive view of the processor as one always has to test the peculiarities of the hardware too.

Figure 3.1: JTAG adapter with Raspberry Pi 3

12
https://www.linaro.org, December 21, 2017

13
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu, December 21, 2017

studentresearchstudy.pdf version: 1.0

31

date: December 21, 2017

https://www.linaro.org/
https://www.segger.com/products/debug-probes/j-link/models/j-link-edu/

Student Research Project

Muen on ARM - an Evaluation

The second alternative using the debugger integrated into the DS-5 IDE was really persuasive. Not

only the good documentation provided by ARM but also the clear, informative presentation in the IDE

as well as the easy handling of the tools convinced to choose this setup. The only disadvantages are

the limitations for the freely available community edition - the code can only be debugged on one core,

the implementation defined aspects of a SoC cannot be emulated and some restrictions for peripheral

devices have to be accepted 14.

Figure 3.2: DS-5 Community Edition restrictions

A first good insight into the ARM developer tools can be gained in the videos published on Youtube 15.

In addition to the standard project view (cf. figure 3.3), the debugger view (cf. figure 3.4) is automatically

presented during debugging. In the upper left-hand window one can find the debug controls, that show

the limitation to only one core. The command window in the middle of the upper half shows the current

exception levels and executed commands including line numbers. The most interesting tab „Registers“

in the upper right window shows the general purpose and other registers whereby the currently used

registers are shaded in yellow. In addition to the executed code in the lower left corner, the window on

the right-hand side contains information about the memory and the stack(s), if defined.

An important note in this context: In order to be able to execute self-written code in the DS-5 debugger,

the compiler command line option

aarch64 -elf -gcc --specs=aem -ve.specs ...

has to be added to load the specification file for the AArch64 baremetal newlib and libgloss appropriate

for the foundation model. A good tutorial can be found on the ARM developer page for the DS-5

Community Edition on the tab page „Resources“ 16.

14
https://developer.arm.com/products/software-development-tools/ds-5-development-studio, December 21, 2017

15
https://www.youtube.com/watch?v=_tXWrHD8shs, December 21, 2017

16
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/getting-

started-with-ds-5-ce-and-armv8-foundation-platform, December 21, 2017

studentresearchstudy.pdf version: 1.0

32

date: December 21, 2017

https://developer.arm.com/products/software-development-tools/ds-5-development-studio
https://www.youtube.com/watch?v=_tXWrHD8shs
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/getting-started-with-ds-5-ce-and-armv8-foundation-platform
https://developer.arm.com/products/software-development-tools/ds-5-development-studio/resources/tutorials/getting-started-with-ds-5-ce-and-armv8-foundation-platform

Student Research Project

Muen on ARM - an Evaluation

Figure 3.3: DS-5 Community Edition project view

Figure 3.4: DS-5 Community Edition debug view

Last but not least, ARM Limited provides a fully functional code example for a single-core AArch64

Startup sequence with basic vectors, MMU, caches and GICv3 (cf. section 3.5.1) initialization based on

the GCC C/C++ Compiler suite including all the necessary page tables and memory layout definitions.

This code example is provided with the installation of the DS-5 Community Edition 17.

17
https://developer.arm.com/products/.../community-edition, December 21, 2017

studentresearchstudy.pdf version: 1.0

33

date: December 21, 2017

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/editions/community-edition

Student Research Project

Muen on ARM - an Evaluation

3.2 Fundamentals

3.2.1 Exception Levels

Instead of rings used by the Intel architecture (cf. section 2.1), the ARMv8-A architecture refers to

privilege levels as Exception Levels. It is important to note, that, unlike on Intel x86 architecture, code

execution at a higher Exception Level (i. e. an Exception Level ELn with a larger value for n) has more

privileges than code execution at a lower one18. With these Exception Levels, the ARMv8 architecture

provides a logical separation for software execution privileges. Typically, the Exception Levels can be

assigned to the following software examples:

• EL0 - normal user applications

• EL1 - operating system kernel (usually described as privileged level execution)

• EL2 - hypervisor software

• EL3 - low-level firmware and secure monitor 19

In addition to the horizontal subdivision into Exception Levels, the ARMv8-A architecture also physi-

cally partitions the upper three Exception Levels into the Normal World and the Secure World. With this

separation, an ARMv8-A processor supports a secure and a non-secure state and allows an operating

system to run in parallel with a so called trusted operating system 20. A trusted OS denotes the oper-

ating system running in the Secure World and is responsible to provide secure services to the Normal

World. Further details on the TrustedZone technology can be found on the official ARM homepage 21.

The following diagram shows the subdivisions as well as the partitions for the AArch64 execution state:

Figure 3.5: ARMv8-A Exception Levels in AArch64

18
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-1.

19
ARM Trusted Firmware that takes care of the switching between the non-secure and the secure worlds. The code is

available as open source on Github, cf. https://github.com/ARM-software/arm-trusted-firmware, December 21, 2017
20

The interaction (e.g. access rights) between the secure and non-secure world can be defined using the system monitor

and corresponding registers (e.g. for physical address spaces in chapter 12, section 12.9 in [8])
21

https://www.deepl.com/translator, December 21, 2017

studentresearchstudy.pdf version: 1.0

34

date: December 21, 2017

https://github.com/ARM-software/arm-trusted-firmware
https://www.deepl.com/translator

Student Research Project

Muen on ARM - an Evaluation

The only differences between the Exception Levels in AArch64 and the AArch32 execution state are,

that in the AArch32 execution state there does not exist an Exception Level 2 in the Secure World

and that the privilege levels defined for the ARMv7 architecture are mapped to the Exception Levels

accordingly. But as the Muen SK needs to be executed in a 64-bit environment, the details of the

Exception Level organisation in AArch32 execution state can be omitted.

Even though, the details for changing the Exception Level depend on the execution state of the pro-

cessor, it can be generally stated that such a change can only take place during the occurrence of an

exception (cf. section 3.5), the returning from an exception (i.e. the ERET instruction), a supervisor call

or hypervisor call. While changing the Exception Level in AArch32 execution state remains the same

as with the ARMv7 architecture22, for the AArch64 execution state the following rules apply2324:

(i) Rule 1: An exception causes a change of program flow by executing an exception handler

function from a predefined vector. Exceptions flow from lower Exception Level to higher ones.

That means, that an exception cannot be taken to a lower Exception Level (e.g. EL2 to EL1).

(ii) Rule 2: Exception Handling at EL0 is not possible, i.e. exceptions must be handled at a higher

Exception Level than EL0.

(iii) Rule 3: To end an exception handling and return to the previous Exception Level is performed

by executing the ERET.

(iv) Rule 4: Returning from an exception handler cannot move to higher Exception Levels. There-

fore, returning from an exception can stay at the same Exception Level or enter a lower one.

(v) Rule 5: The security state changes according to the rules in the section D1.4 of the ARM

Architecture Reference Manual [7].

As a practical example, the procedure for changing Exception Level from EL3 to EL1 by using the ERET

instruction (returning from an exception) is described in this paragraph 25. According to the rules men-

tioned above, the only possibility to switch to a lower Exception Level is to execute the ERET instruction.

When performing such an exception return (for this example at EL3), the processor restores the state

using the system registers ELR_EL3 (i.e. the address to return to) and SPSR_EL3 (i.e. the state to be

restored including the targeted Exception Level). These two registers are writeable, thus allowing the

desired entry point and state (the Exception Level EL1 for this practical example) to be programmed

manually.

22
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-5 ff.

23
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-7 f.

24
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.1,

page D1-1776.
25

Another example for changing the Exception Level from EL3 to EL2 hypervisor mode can be found on the ARM developer

pages in this discussion, December 21, 2017

studentresearchstudy.pdf version: 1.0

35

date: December 21, 2017

https://community.arm.com/processors/f/discussions/6970/confusion-about-exception-level-of-armv8

Student Research Project

Muen on ARM - an Evaluation

(i) Step 1: In this first step, the entry point, i.e. the start address of the code to be executed at EL1,

has to be loaded into a general purpose register.

(ii) Step 2: The address from step (i) is then stored in the Exception Link Register ELR_ELn of the

current Exception Level (i.c. EL3).

(iii) Step 3: After that, the Program Status Register at EL3 SPSR_EL3 has to be set accordingly26. In

the context of the ARMv8 startup code example it has to be noticed, that only a dummy return

state for EL1 is loaded. Note, that usually the SPSR_ELn register holds the value of the Programm

State PSTATE before taking the exception27.

(iv) Step 4: Finally, the Exception Return instruction ERET has to be executed, using the two registers

set in the previous steps for the current Exception Level. When executed, the processor core

restores the PSTATE from the SPSR_EL3 register (in this case the Execution Level is set to EL1) and

branches to the address held in the ELR_EL3 register28.

The example can be reproduced with the official startup code of ARM Limited (line 261 to 270) with

the debugger included in the DS-5 Community Edition. The result in the debugger view can be found

in figure 3.6.

Figure 3.6: ARMv8-A Exception Level Switch debugger view

26
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C5.2.20,

page C5-385.
27

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.7,

page D1-1791.
28

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C6.2.71,

page C6-622.

studentresearchstudy.pdf version: 1.0

36

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.2.2 Execution States

The ARMv8 architecture defines two Execution States, i.e. the AArch64 Execution State using 64-

bit wide and the AArch32 Execution State using 32-bit wide general purpose registers. While the

instruction set and the privilege level mapping in the AArch32 Execution State stays the same as in

the ARMv7 architecture, the AArch64 Execution State is organised as shown in figure 3.5 and has a

different instruction set A64.

Changing between Execution States on the same level is not possible. That means, the system has to

first switch to the higher exception level as shown in the previous section, then perform the requested

change of the upper exception level and switch back to the original exception level. Of course, such

a change between the Execution States has to meet some rules - the most important one is, that

changing to AArch64 Execution State requires switching from a lower exception level to a higher one.

The following figure 3.7 summarises this rules stated in the ARM Programmer’s Guide29:

Figure 3.7: ARMv8-A Execution States rules

An example of a correct Execution State change would be an application running in a 32-bit Execution

State at EL0 on a 64-bit Operating System executing at EL1 and a second application, that needs

to be executed in a 64-bit execution state at EL0, on the same Operating System. In such a case,

the 32-bit application can change to the OS exception level in AArch64 execution state by calling the

Supervisor Call instruction or by receiving an interrupt. Then the OS can change the execution state of

the exception level EL0 to AArch64 and switch back to EL0.

The two most important limitations in the context of Execution States are that it is not possible to check

the execution state of the actual code running on a specific exception level but only for higher exception

levels 30 and that code running at EL3 cannot take an exception to a higher exception level. Therefore,

code executing at EL3 cannot change its execution state, except by going through a reset31.

29
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-8 f.

30
cf. http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16146.html, December 21, 2017

31
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 3, page 3-9.

studentresearchstudy.pdf version: 1.0

37

date: December 21, 2017

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16146.html

Student Research Project

Muen on ARM - an Evaluation

3.2.3 Startup and Reset

The ARM documentation refers to the startup, i.e. powering on the CPU, as cold reset32. A processor

based on the ARMv8 architecture always starts execution at the highest exception level, provided that

the SoC manufacturer does not apply any additional firmware code to the boot process. In contrast, the

Execution State, in which a processor is running immediately after powering it up, is IMPLEMENTATION

DEFINED 33. This means that the SoC manufacturer defines this explicitly with a hardware based signal

being either logic zero or logic one as an input to the corresponding AA64nAA32 pin of the processor .

As already mentioned, code executing at EL3 can only change its execution state by going through

a so called warm reset34. Every core has its own reset input and executes the according exception

immediately after their reset. In addition, this exception cannot be masked35. While the execution state

after a warm reset is software defined by setting the AA64 bit in the RMR_EL3 register, the reset vector for

the highest Exception Level (i.e. the location of the instruction that the ARM processor jumps to when

an exception is raised) is again IMPLEMENTATION DEFINED36.

Further details on resetting an ARMv8 processor can be found in the ARM Architecture Reference

Manual37 as well as in the processors Technical Reference Manuals38.

The first requirement (cf. REQ-0 in section 2) for porting the Muen SK is that the target processor

architecture supports a 64-bit execution state. According to the previously explained mechanism, the

following qualification can be stated:

REQ-0 - IMPLEMENTATION DEFINED: The ARMv8 architecture principally supports a

64-bit execution mode. But as the initial execution state as well as the reset vector are

defined by the manufacturer of the specific SoC, the fulfilment of this requirement can

only be qualified on the basis of the target hardware.

32
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9,

page D1-1795.
33

https://community.arm.com/processors/f/discussions/2874/aarch32-in-armv8 and

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16239.html, December 21, 2017
34

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9,

page D1-1795.
35

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, page 10-2.
36

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D7.2.85,

page D1-2448.
37

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.9.2,

page D1-1797 f., provides for example a code sequence to request a warm reset, followed by a pseudocode description

in section D1.9.3.
38

[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 2, section 2.3.3, page 2-14, and

chapter 4, section 4.3.76, page 4-114 as well as appendix A.3.

studentresearchstudy.pdf version: 1.0

38

date: December 21, 2017

https://community.arm.com/processors/f/discussions/2874/aarch32-in-armv8
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka16239.html

Student Research Project

Muen on ARM - an Evaluation

3.3 Virtualization Basics

Unlike Intel’s VT technology, the ARMv8-A Virtualization Extension consists of a number of additional

extensions to existing ARM architecture technologies. Accordingly, only one of the ARM documents

mentioned above contains a short section dedicated to virtualization39. However, the ARM Developer

Community provides a summarising document on virtualization40.

Two of the main features of the ARMv8-A Virtualization Extension are a dedicated Exception Level

EL2 for the hypervisor code (cf. section 3.2.1), support for trapping exceptions that change the core

context or state and an additional exception type generated by the Hypervisor Call instruction HVC with

a 16-bit payload targeting the exception level EL241. These features are explicitly intended for the

implementation of a type I hypervisor42.

REQ-1 - FULFILLED: The ARMv8-A architecture explicitly provides the demanded mech-

anisms to run a type I hypervisor.

With respect to the second requirement of the Muen SK in the area of virtualization (cf. section 2.1),

it can in advance be stated that the ARM virtualization technology does not support any automatic

storing or loading of the guest’s state. On the contrary, the hypervisor code has to load both its and

the guest’s context completely into memory or from memory respectively when performing a context

switch. At least, the ARMv8 architecture supports a performance optimized possibility for handling the

corresponding registers with the Store and Load Pair instructions43. Depending on the guest system,

the hypervisor and the specific processor type (e.g. ARMv8 Cortex-A53) as well as the current exe-

cution state and the exception level, the following registers could belong to the context and have to be

treated accordingly:

• System Registers: This category of registers includes different counter, physical timer, MMU,

second level address translation and cache registers as well as the Saved Program Status Reg-

ister SPSR_ELn. An overview can be found in the ARM Programmer’s Guide44.

• Special Purpose Registers: The two most important registers of this category are the Stack

Pointer Register SP_ELn and the special exception return registers. A list of any registers to be

stored can be found in the ARM Architecture Reference Manuel45.

39
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.5,

page D1-1782.
40

[6] n.a. AArch64 Virtualization. 2017.
41

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, page 10-2.
42

[6] n.a. AArch64 Virtualization. 2017, chapter 1, page 4.
43

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C3.2.2

f., page C3-161 ff.
44

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.3, page 4-7 ff.
45

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter C, section C5.2,

page C5-336 ff.

studentresearchstudy.pdf version: 1.0

39

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

• General Purpose Registers: Even though there exist some guidelines for the usage of the gen-

eral purpose registers, the hypervisor has to store and load all these register to ensure a com-

plete handling of the guest’s context. As the Muen SK also supports Virtual Machines executing

in a 32-bit environment, it is important to store and load the banked registers too. Banked regis-

ters are special purpose registers for exceptions in the AArch32 execution state that are stored

in the upper general purpose registers to reduce latency for exception handling46.

• Floating Point and NEON Registers: If enabled, the SIMD and floating point registers have to be

stored and loaded as well47.

• General Interrupt Registers: If supported by the SoC and enabled by the hypervisor, the ac-

cording GICD registers have to be considered. Therefore, all pending and active states of private

interrupts on the core have to be handled too.

• Generic and Virtual Timer Registers: In the case of guests using virtual timers, the timer reg-

isters must be saved and restored so that they generate interrupts at the expected intervals.

The physical memory, that is assigned to a guest, does not have to be handled. By using more than

one stage of memory translation, the physical memory that the guest uses stays private and distinct

from any others.

To get an impression of how the storing and loading of general purpose registers and system registers

could look like, the following code snippet presents two examples:

; s t o r i n g and load ing the two general purpose r e g i s t e r s x0 and x1 i n AArch64 execut ion s ta te

s tp x0 , x1 , [memory_address]

. . .

ldp x0 , x1 , [memory_address]

; s t o r i n g and load ing system r e g i s t e r s f o r except ion Level 1

mrs x2 , ESR_EL1

mrs x3 , ELR_EL1

stp x2 , x3 , [memory_address]

. . .

ldp x02 x3 , [memory_address]

msr ESR_EL1, x2

msr ELR_EL1 , x3

Taking the above explanations into account, the following can be stated with respect to the requirement

demanded by Muen SK:

REQ-2 - FULFILLED: Even though a context switch has to be implemented manually in

the hypervisor code, it is possible to save and restore all the required registers of a guests

context. Therefore, this requirement is qualified as fulfilled by the ARMv8-A architecture.

46
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.5.1, page 4-13 ff.

47
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 4, section 4.6, page 4-17.

studentresearchstudy.pdf version: 1.0

40

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.4 Memory

Normally, processors implementing the ARMv8-A architecture have two or more levels of cache. These

are usually organized in such a way that one Level 1 cache per core with different areas for instructions

and data is available, one unified level 2 cache is shared by two or more cores and an external level 3

cache is used by the entire cluster. The Main Memory can be accessed over the internal bus48.

Figure 3.8: ARMv8-A standard memory organisation

3.4.1 Caches

The concrete implementation of the caching structures is not defined in more detail by the ARMv8-A

architecture. The only requirement in this context is that the level 1 cache must always be designed as

a set of associative caches. This type of cache divides the corresponding memory area into a certain

number of equally-sized pieces, called ways. The number of such ways depends on the specific pro-

cessor architecture - e.g. the ARMv8 Cortex-A53 uses a 2-way set associative instruction cache. Also

not defined for the Level 1 cache is the cache addressing mode, i. e. whether a virtual address is first

converted into a physical address and then a cash lookup is performed (Physically Indexed Physically

Tagged PIPT) or whether the virtual address and the cache lookup are performed in parallel and finally

the correctness of the found cache entry is checked against the physical address (Virtually Indexed

Physically Tagged VIPT) 49. To continue the example of the last paragraph, the Cortex-A53 MPCore

instruction cache (level 1) uses Virtually Indexed Physically Tagged (VIPT) addressing mode50.

48
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 11, page 11-1 ff.

49
https://www.youtube.com/watch?v=3sX5obQCHNA, December 21, 2017

50
[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 2, section 2.1.1, page 2-2.

studentresearchstudy.pdf version: 1.0

41

date: December 21, 2017

https://www.youtube.com/watch?v=3sX5obQCHNA

Student Research Project

Muen on ARM - an Evaluation

The organisation and structure of the remaining cache levels is left to the manufacturers of the re-

spective SoC. However, the ARMv8-A architecture establishes some rules in the form of policies and

specifies a minimum set of cache maintenance functions for the level 1 cache:

• Cache Policies: There exist two categories of policies for caching structures, the allocation

and the update policies. The allocation policies are Write Allocation (WA), i.e. a cache line is

allocated on a write miss, and Read Allocation (RA), i.e. a cache line is allocated on a read

miss. The update policies consist of the Write Back (WB), i.e. a write updates the cache only

and marks the cache line as dirty, and the Write Trough (WT), i.e. a write updates both the

cache and the external memory system. Additionally, the ARMv8-A architecture provides some

preload hint instruction. If a cache structure supports one of this features is IMPLEMENTATION

DEFINED by the manufacturer. But in contrast to other implementation defined aspects of the

caches, the support of this features must be set in the Cache Size ID Register of the processor51.

• Cache Maintenance: The ARMv8-A architecture demands three different ways to clean or inval-

idate the level 1 cache - (a) invalidation of a cache or cache line, i.e. to clear it of data by clearing

the valid bit; (b) cleaning a cache or cache line, i.e. writing the contents of cache lines, that are

marked as dirty, out to the next level of cache or to main memory and clearing the dirty bits in

the cache line; (c) zeroing, i.e. zero a block of memory within the cache (only for data cache). All

three operations must either be applicable to the entire cache (mandatory for instruction cache

only) or can be applied based on a virtual address, a set index or a way number. In addition

to a list of all operations, the ARM Programmer’s Guide also contains some code examples for

cache handling52. It should be noted that after the corresponding cache operations, a data or

instruction synchronisation barrier always has to be called to apply the cache operations that

are otherwise executed in any relative order.

According to the explanations above and compared to Intel’s x86 cache management, the following

qualification can be stated:

REQ-3 - FULFILLED: Since the cache maintenance of the Intel architecture seems to be

quite similar to the one of the ARMv8-A architecture and in particular a cache invalidation

can explicitly be performed, this requirement has to be seen as fulfilled by the ARMv8-A

architecture.

51
[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 4, section 4.3.22, page 4-42 f.

52
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 11, section 11.5, page 11-13 ff.

studentresearchstudy.pdf version: 1.0

42

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.4.2 Memory Management

The ARMv8-A architecture provides one Memory Management Unit (MMU) per core. In addition to

the transparent translation of virtual addresses, the MMU also controls and enforces memory access

permissions, memory ordering and cache policies for each memory region. Every Exception Level EL3

to EL1 has its own virtual address space53.

The official startup code of ARM Limited also provides some code for setting up the MMU and the

translation tables. In the DS-5 debugger, the code can either be traced step by step or the MMU setup

result can be viewed directly in the debugger’s MMU view. For the second alternative, the debugger

settings must first be adjusted in order to be able to start debugging directly in the main method. To do

so, the debugger must be switched to debug from symbol main in the Debug Configurations. As soon

as the debugger stops at the corresponding breakpoint, the MMU view can be opened with Windows

→ Show View → MMU. This view contains a top-level view of the virtual memory layout (cf. figure 3.9)

as well as the associated translation tables (cf. figure 3.10).

Figure 3.9: DS-5 Debugger MMU memory map

As already mentioned, the support for cache policies is implementation defined. If a SoC provides this

feature the according attributes can be set in the translation table entries as defined in the Memory

Attribute Indirection Register MAIR. In contrast to caching, the access permissions controlled through

the translation table entries are enforced by the MMU. The access permissions can therefore be set

separately on a per exception level basis. The ARMv8-A architecture defines three different types

of access permissions - readable, writeable and executable. All possible combinations for a specific

53
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, page 12-1.

studentresearchstudy.pdf version: 1.0

43

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

exception level are listed in the ARMv8 Programmer’s Guide54 and the details on the registers, that

have to be set accordingly, can be found in the ARMv8 Architecture Reference Manual55.

Figure 3.10: DS-5 Debugger MMU translation tables

The ARMv8-A architecture supports two different translation table formats for the AArch32 execution

state, i.e. a long descriptor format with Large Physical Address Extension (LPAE) and a short descriptor

format. In the AArch64 execution state, however, only the long descriptor format is available, that

allows addressing with up to 48-bits. The remaining bits 63:48 of the 64-bit virtual address are used

for selecting one of two registers containing the base address of the translation table and optionally

the upper 8-bits can be used for tagging the virtual address 56. The ARMv8-A architecture supports

up to three levels of translation tables with granule sizes of 4KB, 16KB and 64KB. It is implementation

defined, which of the three sizes actually are supported by a processor. However, processors of the

Cortex-A53 series must support all three formats. The addressable memory areas and sizes resulting

from the different combinations of page size and translation level can be found in the list provided by

the ARMv8 Programmer’s Guide57.

The Translation Lookaside Buffer (TLB) is used as a cache of recently accessed page translations

(cf. section 2.2.2). However, a ARMv8-A TLB can not only store and look up physical and virtual

addresses, but is also able to handle attributes such as memory types, cache policies and access

54
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.7, page 12-23 f.

55
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, e.g. executable regions at

EL0 and EL1 in chapter D, section D7.2.88, page D7-2456 ff.
56

The ARMv8-A architecture does not specify or mandate a specific use case for tagged addressing. A use case example

can be found in chapter 12, section 12.5.1, page 12-18, of the ARMv8-A Programmer’s Guide [8]
57

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.4, page 12-14 ff.

studentresearchstudy.pdf version: 1.0

44

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

rights. In addition and in the context of virtualization, the TLB also stores the Address Space ID (ASID)

and the Virtual Machine ID (VMID). Enabling and disabling as well as a minimal TLB maintenance are

also supported. This means that TLB entries can be invalidated using the VMID, the virtual address or

a specific exception level. The ARMv8 Programmer’s Guide provides some code examples for the TLB

maintenance58 and details for the ARMv8-A processor in the Technical Reference Manual59.

According to the above explanations, the requirements in the context of memory management stated

by the Muen SK can be judged as follows:

REQ-4 - FULFILLED: The ARMv8 architecture provides a Memory Management Unit per

core with the following features:

(i) With the possibilities of setting up translation tables on a per exception level ba-

sis and defining the according base addresses in different registers, the ARMv8

architecture meets this requirement.

(ii) As the ARMv8 architecture provides access permissions controlled through the

translation table entries, this requirement can also be rated as fulfilled.

(iii) The MMU provided with the ARMv8 architecture has to enforce the access permis-

sions and hence must also be able to check them. This requirement can therefore

be qualified as fulfilled.

(iv) Even though the supported page sizes are implementation defined by the processor

specification, all of the ARMv8-A processor series support at least the 4KB sizes.

Therefore, this requirement is met too.

3.4.3 Advanced Memory Virtualization

To be able to run complex virtual machines, the Muen SK relies on the Second Level address translation

provided by Intel’s EPT technology. The ARMv8-A Virtualization Extension explicitly provides a similar

mechanism for nested page tables to isolate the guest operating systems60.

Using the ARMv8 Virtualization Extension, the hypervisor is responsible for both its own memory

management and that of the guest OS. In a first step, the MMU of the exception level EL2 with the

corresponding hypervisor vector tables has to be configured to translate the virtual addresses of the

hypervisor correctly. In a second step, the hypervisor must set up and manage the second level ad-

dress translation mechanism for each virtual machine by enabling the ARMv8-A SLAT mechanism and

setting up the corresponding translation tables61. A correctly applied SLAT then translates the interme-

58
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.1, page 12-5.

59
9, e.g. chapter 4, section 4.2.6, page 4-7 f.

60
[6] n.a. AArch64 Virtualization. 2017, chapter 1, page 5.

61
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 12, section 12.6, page 12-20.

studentresearchstudy.pdf version: 1.0

45

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

diate physical memory addresses of the VM to physical memory addresses. The exception handling of

aborts during SLAT address translations has to be done by the hypervisor on exception level EL2.

Figure 3.11: ARMv8-A Second Level Address Translation

Code examples for enabling the ARMv8 Second Level Address Translation can be found in the AArch64

Virtualization documentation provided by ARM Limited62. Additionally, two practical examples of the

usage of nested page tables in the context of a separation kernel can be found in the Phidias hypervisor

code 63 written by Jan Nordholz64 and the HASPOC source code 65 by Vinnova 66. Therefore, the

following can be stated:

REQ-5 - FULFILLED: The ARMv8-A architecture provides a Second Level Address Trans-

lation mechanism and hence meets this requirement.

3.4.4 Multicore Environment

Neither the ARMv8 Cortex-A57 nor Cortex-A53 are Simultaneous Multithreading (SMT) microarchitec-

tures, so at any time there is only one thread executing on one core. As there is not any multithreading

support for all currently used processors of the ARMv8-A architecture, the following requirement is

always fulfilled.

REQ-6 - FULFILLED: fulfilled per definition

To synchronise the execution in multicore environment, the Muen SK implements a barrier realized with

a spinlock using the atomic XCHG processor swapping instruction. The ARMv8-A architecture provides

62
[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.1, page 7 f.

63
http://phidias-hypervisor.de/repos/core.git, December 21, 2017

64
[15] Nordholz. Design and Provability of a Statically Configurable Hypervisor. 2017, chapter 4, section 4.5, page 30.

65
https://haspoc.sics.se/source.html, December 21, 2017

66
https://www.vinnova.se/en, December 21, 2017

studentresearchstudy.pdf version: 1.0

46

date: December 21, 2017

http://phidias-hypervisor.de/repos/core.git
https://haspoc.sics.se/source.html
https://www.vinnova.se/en/

Student Research Project

Muen on ARM - an Evaluation

some synchronisation primitives that can be used to implement such a barrier67. As an example, the

Phidias hypervisor implements a spinlock in its assembler file lock.S
68.

REQ-7 - FULFILLED: The ARMv8 architecture provides different synchronisation primi-

tives to fulfil this requirement.

3.5 Exception Handling

As already mentioned in the last chapter 2, the various processor architectures and the corresponding

literature use different terms (e. g. exception, interrupt, signal, event) for the temporary interruption of

a running process by an interruption cause. In the ARM terminology, such an interruption is referred

to as an exception. The ARM documentation defines an exception as a condition or system event

that requires some action by privileged software (i.e. an exception handler) to ensure the continuous

functioning of the system and differentiates between the following four types of exceptions - interrupts,

aborts, resets and exception generating instructions.

The exception handling is about the same for all types of exceptions. As soon as an event occurs that

causes an exception, the processor hardware automatically performs the following actions:

(i) Update Processor State: The processor automatically stores the processor state PSTATE into the

System Processor State Register SPSR_ELn of the exception level where the exception is taken.

That means - if an exception occurs at EL0 it is taken to EL1 (as long as there is not any

hypervisor at EL2 and the exception handling is set to be done by the next higher exception

level) and therefore the processor state would be stored to SPSR_EL1.

(ii) Store Return Address: In a second step, the processor stores the return address to be used

at the end of the exception into the register ELR_ELn of the exception level (again) where the

exception is taken.

(iii) Exception Syndrome: After storing the return address, the processor writes all the information

needed to allow the exception handler to determine the reason for the exception to the so called

Exception Syndrome Register ESR_ELn. Note, that this register is updated only for synchronous

and SError exceptions - status informations on (external) interrupts (i.e. IRQ or FIQ, cf. section

3.5.1) have to be generated and handled by an external interrupt controller (preferable a GIC, cf.

section 3.5.6).

(iv) Exception Handler: The next action, that the processor performs, is branching to a vector table

that contains entries for each exception type. Each exception level has its own exception vector

table containing up to 16 instructions in AArch64 execution level to handle and eventually branch

67
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter B, section B2.9,

page B2-121.
68

http://phidias-hypervisor.de/repos/core.git, December 21, 2017

studentresearchstudy.pdf version: 1.0

47

date: December 21, 2017

http://phidias-hypervisor.de/repos/core.git

Student Research Project

Muen on ARM - an Evaluation

to a more sophisticated exception handler. A detailed description of such an exception table

used in AArch64 execution state can be found in the ARMv8 Programmer’s Guide69. Warning:

even though the described registers are automatically updated, they are not automatically stored

to memory when the exception level is changed within the exception handler. A change of the

exception level has to be implemented manually, as described in section 3.3.

(v) Returning and Restoring: As soon as the exception handler is done and calls the ERET instruc-

tion, the processor restores the processor state of the application, in which the exception oc-

curred, according to the state values stored in the SPSR_ELn register. After completion, the appli-

cation continues its normal program flow at the location stored in ELR_ELn.

The following section describes the registers used to handle exceptions. In addition, the ARMv8-A

Virtualization Extension provides a separate register HCR_EL2 that allows a hypervisor to handle all ex-

ceptions by routing or trapping them all to the exception level EL2. A detailed view of this register with

explanations to the settable bit positions can be found in the ARM AArch64 Virtualization documenta-

tion70 as well as in the ARM Technical Reference Manual71.

Another feature in the context of virtualization provided by the ARMv8-A architecture are virtual ex-

ceptions. If the hypervisor is given full responsibility for handling exceptions, it can forward virtual

exceptions to its guest systems. The ARMv8-A architecture supports the three exception types: Vir-

tual SError, Virtual IRQ and Virtual FIQ. Further information can be found in the AArch64 Virtualzation

documentation72.

Taking into account the explanation on exception handling and, in particular, the features of the ARM

Virtualization Extension, it can be stated:

REQ-9 - FULFILLED: The ARMv8-A Virtualization Extension explicitly provides interrup-

tion handling that guarantees the exclusive treatment of interrupts by the hypervisor.

Therefore, this requirement is fulfilled.

In this context, it is also worth mentioning that the ARMv8-A architecture automatically masks all exter-

nal interrupts after an exception is taken to an upper exception level. However, the exception handler

can explicitly allow nested exceptions. The ARM Programmer’s Guide contains some more details

including a code example73.

69
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.4, page 10-12.

70
[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.4, page 9 f.

71
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D7.2.34,

page D7-2302.
72

[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.6, page 10 f.
73

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.5, page 10-14.

studentresearchstudy.pdf version: 1.0

48

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.5.1 Interrupts

The ARMv8 architecture refers to external, asynchronous interruptions as interrupts and defines two

different types - the interrupt request IRQ and the fast interrupt request FIQ. An FIQ is just a higher

priority interrupt request that is handled „faster“ by disabling IRQ and other FIQ handlers during its

exception handling 74. Both interrupt types are physical signals to the core that are usually connected to

an external interrupt controller. Since all asynchronous exceptions can principally be masked, also IRQ

and FIQ can be handled accordingly by setting the DAIF exception mask bits in the SPSR_ELn register75.

However, a General Interrupt Controller GIC is required for further control of interrupts (cf. section

3.5.6).

As the ARMv8-A architecture provides an exception handling register on a per exception level basis

(including EL2 for running the hypervisor), the according requirement can be qualified as follows:

REQ-10 - FULFILLED: The ARMv8-A architecture provides an enabling and disabling

mechanism for asynchronous, external interrupts for every exception level and therefore

fulfils this requirement.

3.5.2 SErrors

Another asynchronous exception type is the System Error (SError). This type of exception can have

a number of possible causes depending on the SoC and the processor implementation, because in

all of the Cortex-A5x processor series there is a separate physical signal to the core specified for the

SError. The most common cause for an SError are asynchronous data aborts76. An example would

be a mistake in a translation table that marks a ROM as read/write. If the corresponding memory is

also marked as write-back cacheable, an attempt to write to the address region would initially go into

the cache. At some point later the cache line(s) will get evicted, trigger a write-back of the dirty data

and the memory system returns a fault (write to read-only slave), which is classed as an asynchronous

SError. As already mentioned, all asynchronous exceptions can be masked and the same applies for

the SError (cf. section 3.5.1).

3.5.3 Aborts

In the ARMv8 terminology, an abort is a synchronous exception generated either on a failed instruction

fetch (instruction aborts) or a failed data access (data aborts). As synchronous exceptions cannot be

masked, they have to be handled as described above. Further information on synchronous exception

handling can be found in the ARM Technical Reference Manual77.

74
In AArch32 execution state, the FIQ has its own set of banked registers, cf. also 3.3)

75
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.14.2,

page D1-1836 ff.
76

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.2, page 10-7.
77

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.13,

page D1-1826.

studentresearchstudy.pdf version: 1.0

49

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.5.4 Exception Generating Instructions

The execution of certain instructions can generate exceptions. On the one hand, this includes all re-

quests for software running at a higher exception level, i.e. the Supervisor Call SVC, Hypervisor Call HVC

and Secure Monitor Call SMC. On the other hand, the exception handling can also be configured in such

a way that various other instructions are disabled or cause a trap exception. As an example, cache

maintenance instructions can be trapped to EL1 from EL0 by setting the according bit SCTLR_EL1.UCI in

the System Control Register at EL1. The ARM Technical Reference Manual provides a complete sec-

tion on all possible modifications and adjustments of the exception handling with respect to exception

generating instructions78.

As already mentioned, all exceptions can be trapped or routed to a hypervisor running at exception

level EL2 by selecting the according bits in the Hypervisor Control Register. In addition, the ARM Vir-

tualization Extension also provides a mechanism for trapping certain instructions that are often used in

the context of virtualization, i.e. access to virtual memory control registers, certain system instructions

(mostly maintenance instructions for caches), access to the Auxiliary Control register etc.79. When

an instruction has trapped, the hypervisor code can read the Exception Syndrome Register ESR_EL2 to

obtain the necessary information about the trapped instruction.

Due to the combination of the ARM Virtualization Extension and the handling of exception generating

instructions, the following requirements of the Muen SK can be considered fulfilled:

REQ-11 - FULFILLED: The ARMv8-A architecture supports the configuration of excep-

tion generating instructions resulting in an exit of the guest subject and therefore fulfils

this requirement.

REQ-13 - FULFILLED: This requirement only demands that a target architecture can dis-

tinguish between the four exit reasons used by the Muen SK80. This means in particular

that the Muen SK does not require detailed status information regarding external inter-

rupts in the context of a guest exit. Therefore, even though the exact state of an external

interrupt can only be determined using a General Interrupt Controller GIC, the ARMv8-A

architecture fulfils this requirement as a hypervisor can read the demanded four different

reasons of a guest exit from the Exception Syndrome Register ESR_EL2.

78
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D.1.15,

page D1-1842.
79

[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.5, page 10.
80

[2] Buerki and Rueegsegger. Muen - An x86/64 Separation Kernel for High Assurance. 2013, chapter 4, section 4.4.5,

page 49 f.

studentresearchstudy.pdf version: 1.0

50

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

3.5.5 Resets

The ARMv8-A architecture does not support non-maskable interrupts81. As already described in sec-

tion 3.2.3, reset exceptions cannot be masked and hence are the only non maskable exceptions. Since

every reset exception is guaranteed to be executed by the core receiving it, it can be stated that:

REQ-12 - FULFILLED: The only non maskable interrupt (NMI) not only leads to an exit

of a guest subject but also to a restart of the core from EL3. Therefore, this requirement

can be qualified as fulfilled.

3.5.6 Generic Interrupt Controller

The Muen SK relies on the I/O APIC and LAPIC mechanism provided by the Intel x86 architecture

(cf. chapter Muen, section 2.3.2). The ARMv8-A architecture implements a similar technology, called

Generic Interrupt Controller (GIC), based on an internal GIC CPU Interface (corresponds conceptually

to the LAPIC) and an external GIC Distributor (corresponds conceptually to the I/O APIC). This mecha-

nism not only supports routing of software generated, private and shared peripheral interrupts between

cores in a multicore environment but also the routing of external interrupts to (an) individual core(s).

Furthermore, it enables software to mask, enable and disable interrupts, to prioritise individual sources

and to generate software interrupts82. Additionally, the GIC technology simplifies the virtualization of

exceptions for hypervisor implementations in a multicore environment83.

The first major function block of the Generic Interrupt Controller technology is the GIC CPU Interface,

through which the core receives an interrupt. Every core in a multicore environment has its own CPU

Interface that hosts registers to identify, mask and control the states of interrupts forwarded to that core.

The second main function block of the Generic Interrupt Controller technology is the Distributor. This

external component has to be implemented by the SoC manufacturer. It controls all the properties of

a specific interrupt by according registers, especially the routing information and the enable status for

the attached CPU Interfaces.

The details of the configuration, the initialisation and the exception handling as well as the available

features are determined by the version of the implemented GIC architecture on the one hand by the

respective processor according to the internal GIC CPU Interface and on the other hand by the SoC

manufacturer with regard to the external GIC Distributor. For example, Locality Specific Peripheral

Interrupts (LPI), i.e. message-based interrupts, are not supported with GICv1 and GICv2, whereas this

mechanism can be used in all higher versions84. The ARMv8 Cortex-A53 processor supports all GIC

81
[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. 2017, chapter D, section D1.14.2,

page D1-1836.
82

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, cf. chapter 10, section 10.6, page 10-17.
83

[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.4 f., page 9 ff.
84

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 10, section 10.6, page 10-17.

studentresearchstudy.pdf version: 1.0

51

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

architectures up to version 485. A good example for the initialisation and configuration of a Generic

Interrupt Controller GICv3 running on the ARMv8 Foundation Model can be found in the ARM Limited

startup code example delivered with the DS-5 Community Edition.

Accordingly, the two requirements 8 and 14 of the Muen SK can be evaluated as follows:

REQ-8 - IMPLEMENTATION DEFINED: The ARMv8 architecture principally supports the

programmatical handling of interruptions. However, since the possibilities and the extent

of this handling depend on the implementation of a GIC distributor by the SoC manufac-

turer, this requirement is qualified as implementation defined.

REQ-14 - IMPLEMENTATION DEFINED: The ARMv8 architecture only provides hard-

ware assisted routing of interruptions to individual cores through the implementation of

a GIC by the SoC manufacturer. Therefore, this requirement has to be judged as imple-

mentation defined.

3.6 Timers

The ARMv8 architecture prescribes the implementation of a system timer for processors of the Cortex-

A series (cf. section 2.4). This system timer provides up to four timer channels per core - a secure

and a non-secure physical timer as well as two timers for virtualization purposes. Each of these timer

channels has at least one comparator, to configure the timers to generate an interrupt when the count

is greater or equal to the programmed comparator value86. The concrete implementation of the timer is

determined by the respective processor type. An example would be the Generic Timer of the ARMv8

Cortex-A53 processor series described in the ARM Cortex-A53 Technical Reference Manual87. The

following steps are usually necessary to configure the timer:

(i) Comparator Value: In a first step, the comparator value for the timer has to be written to the

CNTP_CVAL_ELn according to the exception level, the timer should be used for.

(ii) Enabling Counter: Then, the counter and the interrupt generation have to be enabled in the

register CNTP_CTL_ELn.

(iii) Reporting: In the last step, the code can poll the CTP_CTL_ELn register to report the status of the

according exception level timer interrupt.

85
[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 9, section 9.1, page 9-2.

86
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 14, section 14.1.3, page 14-5 f.

87
[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. 2016, chapter 10, page 10-1 ff.

studentresearchstudy.pdf version: 1.0

52

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

The virtual timers and counters provided by the ARMv8-A architecture are explicitly designed for the

scheduling of guest systems. Even though written in the programming language C, one can find a

valuable example of the usage of the timer mechanism supported by the ARMv8-A architecture in the

source code of the xvisor hypervisor 88. Therefore, the following can be stated:

REQ-15 - FULFILLED: The ARMv8-A architecture explicitly supports at least a timer and

a counter per core that can be configured to generate an interrupt. Even though the

context switch has to be implemented manually (cf. section 3.3), this mechanism can be

qualified as preemptive in the sense that it triggers an appropriate exception handling.

3.7 Device Handling

Even though out of scope for this study, it has to be mentioned that the ARMv8-A supports device em-

ulation as well as device assignment through the already described features of the ARM Virtualization

Extension, i.e. the second level address translation and the (virtual) exception handling89.

However, in order to get full device handling support, a SoC manufacturer also has to implement

and provide an SMMU (corresponding to Intel’s IOMMU) that meets the ARMv8 SMMU architecture

specifications for the SMMU interface90. Therefore, the corresponding requirement can be qualified as

follows:

REQ-16 - IMPLEMENTATION DEFINED: The ARMv8 architecture only provides a fully

featured device handling through the implementation of a SMMU by the SoC.

3.8 SPARK

As already mentioned in section 2.7, the Muen SK is written in SPARK. Since SPARK is a true subset of

the Ada programming language and compilers ignore the SPARK inherent annotations, every correct

SPARK program is also a correct Ada program and can therefore be compiled with an existing Ada

compiler such as GNAT (part of the GNU compiler collection GCC).

To be able to qualify the requirement that there has to exist an Ada Cross Compiler for the ARMv8-A

AArch64 execution state, a separate evaluation case has been written (cf. Development Environment

Setup Ada Toolchain, appendix A). This document shows that it is possible to compile a custom Ada

Cross Compiler for the ARMv8-A architecture based on the GNAT Ada Compiler toolchain of the GNU

Compiler Collection GCC.

88
cf. A general overview over the xvisor hypervisor can be found here. The source code is published under the GPL-2.0

license on github (https://github.com/xvisor/xvisor) and the mentioned generic timer code for ARMv8 AArch64 can be

found in the file generic_timer.c in the directory arm64 commen, basic, timer. December 21, 2017
89

[6] n.a. AArch64 Virtualization. 2017, chapter 2, section 2.2 f., page 8 f.
90

[10] n.a. ARM System Memory Management Unit, Architecture Specification. 2017.

studentresearchstudy.pdf version: 1.0

53

date: December 21, 2017

http://xhypervisor.org/
https://github.com/xvisor/xvisor

Student Research Project

Muen on ARM - an Evaluation

Thus applies:

REQ-17 - FULFILLED: An Ada Cross Compiler for the ARMv8-A AArch64 architecture

can be compiled based on the GNAT Ada Compiler toolchain.

The Muen SK relies on a Zero Footprint Runtime for the SPARK 2014 programming language that is

provided with the source code of the Muen SK 91. According to the last meeting with the developers

of the Muen SK, the runtime should be independent of the target platform but was written for the Intel

x86/64 architecture. As expected, a first test with the custom Ada Cross Compiler for the ARMv8-A

AArch64 architecture showed that the Muen SK Zero Footprint Runtime has to be rewritten as it uses

Intel IA-32e specific assembly instructions.

Figure 3.12: gprbuild Muen SK ZFP output

Although ARM provides official guidelines for porting code from ARM A32 to ARM A64 assembly92 as

well as from IA-32 to ARM A32 93 and many freely available tutorials can be found online, the runtime

could not be translated during this study due to time constraints. Therefore, it is not possible to make a

final judgement regarding the corresponding requirement:

REQ-18 - TESTING REQUIRED: Even though it should be possible to build a Muen Zero

Footprint Runtime for the SPARK 2014 programming language and the ARMv8 AArch64

execution state with freely available software, the fulfilment of this requirement has to be

tested in a further study.

91
https://git.codelabs.ch/?p=muen.git, December 21, 2017

92
[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. 2015, chapter 8, page 8-1 ff.

93
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0274b/index.html, December 21, 2017

studentresearchstudy.pdf version: 1.0

54

date: December 21, 2017

https://git.codelabs.ch/?p=muen.git
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dai0274b/index.html

Student Research Project

Muen on ARM - an Evaluation

3.9 Requirement Comparison

It has be shown that more than two thirds of the requirements of the Muen SK are directly supported

by the ARMv8-A architecture. None of the prerequisites had to be qualified as unsupported. The

fulfillment of the remaining requirements only depends on the target hardware and therefore on the

implementation of the ARMv8 architecture by the respective SoC manufacturer. The following require-

ments had to be judged as IMPLEMENTATION DEFINED and thus have to be qualified based on the

target hardware platform, i.e. the Raspberry Pi 3:

number requirement topic

REQ-0 The processor architecture has to support 64 bit data-

path widths, integer size and memory address widths

as well as to be able to execute 32 bit applications.

basics

REQ-8 A target processor architecture has to provide a mech-

anism to programmatically handle interruptions.

interruption handling

REQ-14 A target processor architecture should optionally pro-

vide a technique to fast process interruptions between

cores.

interruption handling

REQ-16 A target processor architecture must provide a mecha-

nism to virtualize I/O devices by completely isolating

the access to devices and providing support for ac-

cording interruption and memory features.

device handling

Table 3.1: IMPLEMENTATION DEFINED requirement summary

studentresearchstudy.pdf version: 1.0

55

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

4 Raspberry Pi 3

The Raspberry Pi 3 is the third generation of the Raspberry Pi series and the target platform for this

study. The first part of this chapter provides a general overview of the Raspberry Pi 3. In the following

sections, the hardware platform is discussed with respect to the requirements qualified as IMPLEMEN-

TATION DEFINED in the previous chapter 3.

4.1 Overview

The Raspberry Pi 3 Model B is the latest single board computer developed and released in February

2016 by the Raspberry Pi Foundation. The main component of this small computer is the BCM2837

System on Chip (SoC), which implements an ARMv8 Cortex-A53 processor with four cores. Also

worth mentioning in the context of this study are the 1GB RAM, the Micro SD port and the 40-pin GPIO

provided by the platform. Further details on the specifications can be found on the homepage of the

Raspberry Pi Foundation 1.

The Raspberry Pi 3 Model B was chosen as target platform for this study because it is the first Rasp-

berry Pi generation that is capable of running software written for the 64-bit execution state. In addition,

the Raspberry Pi single board computers are explicitly intended for experimentation and are therefore

almost not „brickable“ as well as inexpensive.

Figure 4.1: Raspberry Pi 3 Model B, c� by the Raspberry Pi Foundation

1
cf. https://www.raspberrypi.org/products/raspberry-pi-3-model-b, December 21, 2017

studentresearchstudy.pdf version: 1.0

56

date: December 21, 2017

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/

Student Research Project

Muen on ARM - an Evaluation

The architecture of the Raspberry Pi 3 does not quite come up to one’s expectations. In contrast to

most other ARM based SoC, not the ARMv8 Cortex-A53 processor but the Broadcom VideoCore is the

organising part and has full control over the initialisation of each component. In addition, the VideoCore

also contains and controls essential system architecture components such as the memory controller

or the level 2 cache. The latter is used almost exclusively by the VideoCore and is usually bypassed

when accessing the CPU2. The ARM processor is only attached to the organising VideoCore and

can be addressed via a corresponding CPU interface. Figure 4.2 shows a schematic overview for the

architecture of the Raspberry Pi 3 3.

Figure 4.2: Raspberry Pi 3 schematic

4.1.1 Documentation

First of all, it has to be stated that there exists neither a complete official documentation on the Rasp-

berry Pi 3 nor any official documentation on the changes with respect to the AArch64 mode of the

Raspberry Pi 3. On the website of the Raspberry Pi Foundation, it is only mentioned that nothing has

changed compared to the Raspberry Pi 2 SoC except for the ARMv8-A processor 4. The documenta-

tion for the Raspberry Pi 2 consists of two datasheets for the Raspberry Pi 1 5 and a supplementary

2
[11] n.a. BCM2835 ARM Peripherals. 2012, chapter 1, section 1.2.3, page 6.

3
https://www.heise.de/ct/ausgabe/2016-8-Wie-es-mit-dem-Raspberry-Pi-weitergeht-3150082.html, December 21, 2017

4
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md, December 21, 2017

5
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md, December 21, 2017

studentresearchstudy.pdf version: 1.0

57

date: December 21, 2017

https://www.heise.de/ct/ausgabe/2016-8-Wie-es-mit-dem-Raspberry-Pi-weitergeht-3150082.html
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md

Student Research Project

Muen on ARM - an Evaluation

document for the changes compared to the Raspberry Pi 1 6. Even though there obviously exist differ-

ences between the 64-bit and the 32-bit mode of the Raspberry Pi 7, most of the following statements

should apply to both execution states 8. Therefore this chapter is primarily based on the following

literature:

• VideoCore: The official VideoCore IV 3D Architecture Reference Guide9 for the Raspberry Pi 1

serves as the main source for boot related questions.

• Broadcom SoC: As the primary sources for ARM Peripheral related topics, the two official

BCM2836 ARM Peripherals10 and BCM2835 ARM Peripherals11 documents are used.

• Raspberry Pi Bare Metal Forum: A lot of explanations and findings in the context of the AArch64

development can be found on the official Raspberry Pi Bare Metal Forum 12.

• Raspberry Pi Repositories: The Raspberry Pi Foundation maintains several Github repositories.

In particular, the documentation repository was used for this chapter 13.

• Bare Metal Repositories: The most important Raspberry Pi Bare Metal repositories for this study

are the two Github repositories maintained by David Welch 14 and by Peter Lemon 15.

Because a detailed and with respect to the AArch64 architecture complete Raspberry Pi 3 hardware

reference manual as well as a comprehensive guide for Bare Metal Programming on the Raspberry Pi

3 did not exist at the time of writing, a separate Raspberry Pi 3 Beginner’s Guide has been started as a

collection of all the existing, but widespread sources on this topic. This guide is going to be continued

and developed by the author even after this Student Research Project and is going to be published

under an open source license.

6
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md, December 21, 2017

7
David Welch and Peter Lemon could show with their code that not only the base address for the kernel image but also

some alternative modes for the peripherals change. A personal assumption in this regard is that these changes are

caused by the firmware of the VideoCore initialising the ARM processor in the AArch64 execution state.
8
Of course, this would have to be proven in a continuing study (cf. section 5.3)

9
[13] n.a. VideoCore IV 3D Architecture Reference Guide. 2013.

10
[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014.

11
[11] n.a. BCM2835 ARM Peripherals. 2012.

12
https://www.raspberrypi.org/forums/viewforum.php?f=72, December 21, 2017

13
https://github.com/raspberrypi, December 21, 2017

14
https://github.com/dwelch67/raspberrypi, December 21, 2017

15
https://github.com/PeterLemon/RaspberryPi, December 21, 2017

studentresearchstudy.pdf version: 1.0

58

date: December 21, 2017

https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2836/README.md
https://www.raspberrypi.org/forums/viewforum.php?f=72
https://github.com/raspberrypi
https://github.com/dwelch67/raspberrypi
https://github.com/PeterLemon/RaspberryPi

Student Research Project

Muen on ARM - an Evaluation

4.1.2 Bare Metal Development

The development of bare metal programs differs greatly from software development on higher abstrac-

tion levels. The variety of development tools (compiler, IDE etc.) is relatively wide, but not all available

tools are suitable for a specific task. The setups for the Raspberry Pi 3 used in this study are therefore

briefly explained in this section.

The first inconvenience in bare metal development is loading newly built or rebuilt kernel images from

the IDE to the Raspberry Pi. Actually, there are four possibilities for this task:

(i) SD Card: For the AArch64 development, this option consists in formatting an SD Card to FAT32,

copying the corresponding kernel image kernel8.img together with the boot files bootcode.bin, start.elf

as well as config.txt to the card, inserting the card into the card slot of the Raspberry Pi and

restarting it. Further information and two code examples are recorded in the two evaluation

cases Hello Muen! on HDMI written in assembly and Hello Muen! on UART written in C (cf.

appendix A).

(ii) Bootloader: David Welch provides a bootloader that is capable of loading a kernel image to the

Raspberry Pi 3 over a serial connection. Both the bootloader and instructions for its usage can

be found on David Welch’s Github repository 16.

(iii) JTAG: The Joint Test Action Group JTAG interface can not only be used to load a kernel image

to the Raspberry Pi 3 but also allows to run a debugger like the freely available Open On-Chip

Debugger (OpenOCD). Therefore, this option has been chosen for this study. A complete guide

for setting up the hardware as well as the OpenOCD debugger in combination with the Eclipse

IDE is contained in the evaluation cases Development Environment Setup (cf. appendix A).

(iv) Netboot: Since the JTAG option seemed to be the most suitable one for this study, the Netboot

was not tested during this project. However, a guide for this option can be found on the official

Raspberry Pi Foundation homepage 17.

Of course, the compiler toolchain as well as the IDE depend on the programming language used in a

specific project. Nevertheless, the GNU MCU Eclipse IDE from Liviu Ionescu 18 has to be mentioned

here, because it has been used as a development environment in almost all experiments of this study

and can be adapted to different languages. The GNAT Programming Studio (GPS) 19 of the Community

Edition 20 provided by AdaCore was used for the development of code examples written in Ada.

16
https://github.com/dwelch67/raspberrypi, December 21, 2017

17
https://www.raspberrypi.org/blog/pi-3-booting-part-ii-ethernet-all-the-awesome, December 21, 2017

18
https://github.com/gnu-mcu-eclipse/org.eclipse.epp.packages/releases, December 21, 2017

19
https://www.adacore.com/gnatpro/toolsuite/gps, December 21, 2017

20
https://www.adacore.com/community, December 21, 2017

studentresearchstudy.pdf version: 1.0

59

date: December 21, 2017

https://github.com/dwelch67/raspberrypi
https://www.raspberrypi.org/blog/pi-3-booting-part-ii-ethernet-all-the-awesome/
https://github.com/gnu-mcu-eclipse/org.eclipse.epp.packages/releases/
https://www.adacore.com/gnatpro/toolsuite/gps
https://www.adacore.com/community

Student Research Project

Muen on ARM - an Evaluation

4.2 Boot Process

Due to the special architecture of the Raspberry Pi 3 (cf. section 4.1), the boot process also does not

correspond to the one of most other ARM development boards. As soon as the Raspberry Pi is turned

on, the VideoCore assumes control over the boot process while the ARMv8 Cortex-A53 processor is

still off and uninitialised 21. The VideoCore then takes the following actions 22:

(i) First Stage Bootloader: The VideoCore starts the boot process by executing the first stage

bootloader stored in ROM on the Raspberry Pi SoC. This bootloader initialises and reads the

SD card and loads the second stage bootloader from the SD card into the level 2 cache.

(ii) Second Stage Bootloader (bootcode.bin): This bootloader enables and initialises the SDRAM.

While for earlier versions of the Raspberry Pi it loads the third stage bootloader loader.bin from

the SD card into RAM, the second stage bootloader for the Raspberry Pi 3 supports loading

ELF files and therefore directly loads the GPU firmware from the SD card into RAM .

(iii) GPU firmware (start.elf): The start.elf first initialises the GPU, second loads, reads and executes

the CPU configuration file config.txt and finally loads the kernel image into RAM.

The above described boot process already suggests that there are basically two possibilities for con-

figuring the ARMv8 processor. The first option is to modify the configuration file accordingly 23. For all

non hardware dependent configurations, the processor can also be initialised manually.

As already explained in section 3.2.3, the initialisation of the ARMv8 processor into the AArch64 exe-

cution state depends on a hardware signal to a pin of the processor. Since the VideoCore starts the

ARMv8 processor by default in the AArch32 execution state and since a warm reset depends on a

hardware defined reset register with an unknown address in AArch64 execution state, the only way to

initialise the ARMv8 processor in 64-bit mode is to add the following lines to the config.txt file:

arm_control =0x200

kernel_old =1

Even though it seems that there exists only this option to start the ARMv8 Cortex-A53 processor on

the Raspberry Pi 3 in the AArch64 execution state, the corresponding requirement can be qualified as

fulfilled:

REQ-0 - FULFILLED: The Raspberry Pi 3 supports the initialisation of the ARMv8 pro-

cessor in a 64-bit execution state and hence fulfils this requirement.

21
cf. boot process explained by David Welch on https://github.com/dwelch67/raspberrypi, December 21, 2017

22
https://www.raspberrypi.org/documentation/.../bootflow.md, December 21, 2017

23
Details to the configuration possibilities can be found on https://www.raspberrypi.org/documentation/configuration/config-txt

as well as on the Raspberry Pi Foundation Github repositories, December 21, 2017

studentresearchstudy.pdf version: 1.0

60

date: December 21, 2017

https://github.com/dwelch67/raspberrypi
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/bootflow.md
https://www.raspberrypi.org/documentation/configuration/config-txt/

Student Research Project

Muen on ARM - an Evaluation

4.3 Exception Handling

First of all, it has to be stated that the interrupt controller provided by the Raspberry Pi 3 SoC is neither

programmable nor does it implement the Generic Interrupt Controller (GIC) interface specified by the

ARMv8 architecture.

The exception handling on the Raspberry Pi 3 is also special. The documentation distinguishes be-

tween two different types of interrupts, i.e. core related and core un-related interrupts. The category

of the core related interrupts includes the four timer interrupts, a performance monitor interrupt and

the four Mailbox interrupts for each core. The only thing that can be determined programmatically with

respect to core related interrupts is whether to send an interrupt to either the IRQ pin or the FIQ pin

as well as to disable the interrupt handling at all24. An example of a Mailbox interrupt handling can be

found in the evaluation case Hello Muen! on HDMI. All other interrupts and exceptions (GPU interrupts,

local timer interrupts, AXI error and Peripheral interrupts) are assigned to the core un-related interrupts

category25. These interrupts have to be enabled, configured and handled completely in code by setting

the according bits of an interrupt register of the corresponding interrupt type as well as by setting up

the processor correctly 26. An example for an UART interrupt handling can be found in the evaluation

case Hello Muen! on UART.

The question now arises as to whether the described exception handling meets the requirements of

the Muen SK. In order to be able to assess this question, one has to take a closer look at two practical

examples. Both the Xen hypervisor 27 and the Kernel Virtual Machine KVM 28 explicitly state that they

rely on an implementation of the GIC interface specified by ARM Limited. While the Xen hypervisor

therefore does not support the Raspberry Pi 3, KVM circumvents this problem by implementing the

GIC specification in a virtual GICv2 interface. The second option would also allow the Muen SK to

run on the Raspberry Pi 3. However, since the Muen SK requires a smallest possible code base and

the Raspberry Pi 3 does not implement the GIC interface, the corresponding requirements derived in

chapter 2 have to be qualified as not fulfilled.

REQ-8 - NOT FULFILLED: The Raspberry Pi 3 does neither support a fully programmable

interrupt controller nor the GIC interface specified by the ARMv8-A architecture. There-

fore, this requirement has to be judged as not fulfilled.

REQ-14 - NOT FULFILLED: Even though the Raspberry Pi 3 provides a mechanism to

enable fast interrupt requests FIQ, it does support an inter-core communication due to the

missing implementation of the GIC interface. Hence, this requirement has to be qualified

as not met by the target platform.

24
[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014, chapter 3, section 3.2.1, page 5.

25
[5] Loo. BCM2836 ARM Peripherals (documentary supplement). 2014, chapter 3, section 3.2.2, page 5 f.

26
cf. https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=38076, December 21, 2017

27
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper, December 21, 2017

28
https://lwn.net/Articles/557132/, December 21, 2017

studentresearchstudy.pdf version: 1.0

61

date: December 21, 2017

https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=38076
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions_whitepaper
https://lwn.net/Articles/557132/

Student Research Project

Muen on ARM - an Evaluation

4.4 Device Handling

Since this topic is out of scope for this study, the device handling on the Raspberry Pi 3 is not discussed

in detail. However, it can be stated that even though the Raspberry Pi 3 has a separate MMU for device

handling it does not implement the SMMU interface specified by ARM Limited29 30. Therefore, the

corresponding requirement derived in the second chapter is not met:

REQ-16 - NOT FULFILLED: The Raspberry Pi 3 does not support the SMMU interface

specified by the ARMv8-A architecture.

4.5 SPARK

In the context of this study, it was also tried to build the official AdaCore Zero Footprint Runtime for the

ARMv8-A AArch64 execution state with hardware specific adaptations for the Raspberry Pi 3 from the

AdaCore Github Repository 31. However, this attempt also failed. A detailed description can be found

in the evaluation case Problem Description Toolchain.

29
[11] n.a. BCM2835 ARM Peripherals. 2012, chapter 1, section 1.2, page 4 ff., and chapter 10, section 10.6.3, page 158 f.

30
https://www.reddit.com/r/raspberry_pi/comments/4aonbh/why_are_there_two_mmus_on_the_bcm2835 and

https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=138108&p=920301, December 21, 2017
31

https://github.com/AdaCore/bb-runtimes/tree/gpl-2017/aarch64/rpi3, December 21, 2017

studentresearchstudy.pdf version: 1.0

62

date: December 21, 2017

https://www.reddit.com/r/raspberry_pi/comments/4aonbh/why_are_there_two_mmus_on_the_bcm2835/
https://www.raspberrypi.org/forums/viewtopic.php?f=72&t=138108&p=920301
https://github.com/AdaCore/bb-runtimes/tree/gpl-2017/aarch64/rpi3

Student Research Project

Muen on ARM - an Evaluation

5 Conclusion

The aim of this feasibility study was to evaluate the ARMv8 Virtualization Extension for the porting of

the Muen SK to the ARMv8 architecture as well as to carry out a risk assessment on its portability to

the target platform Raspberry Pi 3 with regard to a possible bachelor thesis. This chapter is dedicated

to this two aspects of the study.

5.1 ARMv8 Architecture

Principally, the ARMv8 architecture and the ARMv8 Virtualization Extension can be considered suitable

for porting the Muen SK. Nevertheless, there are some risks involved that have to be addressed.

The first point and at the same time the one with the highest risk for the bachelor thesis is the context

handling. In contrast to Intel’s VT-x technology, the ARM Virtualization Extension does not provide

any automatic handling of a context switch (cf. section 3.3). In addition, the registers, that have to

be stored, depend to a certain degree on the respective guest system and the current execution state

of the subject. Therefore, the context switch has to be implemented completely by the hypervisor

developer.

As on the Intel x86/64 architecture, the caching structures of the ARMv8 architecture too have to be

considered as potential sources of side channels. Since the ARMv8 architecture does not specify the

implementation of the level 2 and an optional level 3 cache, it is also important to investigate the actual

implementation of the caching structures by the manufacturer of a target SoC.

The two specifications of the Generic Interrupt Controller and the System Memory Management Unit

by ARM Limited also pose a certain risk. Due to the large number of different versions and sometimes

only partial implementations of the interfaces by the manufacturers of a SoC, these two components

have to be examined particularly thoroughly when choosing a target platform.

5.2 Raspberry Pi 3

First of all, the missing documentation for the AArch64 mode of the Raspberry Pi 3 has to be considered

as problematic, since a precisely described and defined operation mode is essential, especially for

high-security applications.

The first problem could be mitigated by an open source firmware. Although Broadcom has published

the documentation for the Raspberry Pi 1, a large part of the firmware is still only available in a binary

format. Since the VideoCore also has complete control over the initialisation of the hardware, many

details can only be estimated (e.g. memory allocation VideoCore vs. CPU). This also has to be

qualified as a major risk for porting the Muen SK to the Raspberry Pi 3.

studentresearchstudy.pdf version: 1.0

63

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

The last two risks are related to the implementation of the GIC and the SMMU interfaces specified by

the ARMv8 architecture. Even though the two interfaces can be implemented in software, this involves

on the one hand a high risk with regard to the bachelor thesis and on the other hand it is fundamentally

contradictory to the requirement of a smallest possible code basis stated by the Muen SK.

Therefore the risk for choosing the Raspberry Pi 3 as the target platform is too high, especially without

any further investigations. As a conclusion, it cannot be qualified as suitable for porting the Muen SK

to the ARMv8-A architecture with respect to a possible bachelor thesis.

5.3 Further Investigations

In this final section of the study, an approach for further investigations is presented. In a first step, one

of the following reference kernels could be used as a starting point for the porting of the Muen SK to

the ARMv8-A architecture:

• HASPOC hypervisor: The HASPOC hypervisor is a high assurance security kernel for the

ARMv8 architecture that is available as open source software under the terms and conditions of

the Apache License 2.0. The documentation and the source code can be found on the HASPOC

homepage 1.

• seL4 microkernel: According to the official seL4 homepage 2, the seL4 microkernel is the most

advanced member of the L4 microkernel family. The source code is published under the GPLv2

and the BSD2 license on Github 3.

• Xvisor hypervisor: The Xvisor hypervisor is an open source type I hypervisor that supports full

virtualization also for the ARMv8-A architecture 4. The source code can be found on the Xvisor

Github repository 5.

• Phidias: As already mentioned, the Phidias hypervisor developed by Jan Nordholz follows the

same principle as the Muen SK but seems to support the ARMv8-A AArch64 architecture6. The

source code is published on the Phidias Repository 7.

1
https://bitbucket.org/account/user/sicssec/projects/HASPOC, December 21, 2017

2
https://sel4.systems, December 21, 2017

3
https://github.com/seL4/seL4, December 21, 2017

4
http://xhypervisor.org/, December 21, 2017

5
https://github.com/xvisor/xvisor/tree/v0.2.10, December 21, 2017

6
[15] Nordholz. Design and Provability of a Statically Configurable Hypervisor. 2017.

7
http://phidias-hypervisor.de/repos/core.git, December 21, 2017

studentresearchstudy.pdf version: 1.0

64

date: December 21, 2017

https://bitbucket.org/account/user/sicssec/projects/HASPOC
https://sel4.systems/
https://github.com/seL4/seL4
http://xhypervisor.org/
https://github.com/xvisor/xvisor/tree/v0.2.10
http://phidias-hypervisor.de/repos/core.git

Student Research Project

Muen on ARM - an Evaluation

In a second step, further classifications of the actual features used by the Muen SK in the context of

the Programmable Interrupt Controller and the System Memory Management Unit would have to be

carried out. In addition, the implementation of the interfaces in software has to be balanced against the

requirement of a smallest possible code base stated by the Muen SK.

Depending on the findings of the first two steps, an alternative ARMv8 platform may have to be consid-

ered. It is recommended to investigate the Hardkernel Odroid C2 based on an AMLOGIC S905 SoC

as the first alternative platform. This target platform seems to be documented in detail and to have

hardware support for the GICv2 as well as the SMMU interface.

As the last part of the investigation before porting the Muen SK to the ARMv8-A architecture, additional

clarifications of the registers, that have to be saved during a context switch, could be helpful.

studentresearchstudy.pdf version: 1.0

65

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

Appendix

A List of Related Documents

• Glossary

• Hello Muen! on HDMI - bare metal assembly code for Raspberry Pi 3

• Hello Muen! on UART - bare metal C code on Raspberry Pi

• Development Environment Setup - Assembly and C/C++ toolchain, JTAG debugger and IDE for

ARMv8 AArch64

• Development Environment Setup - Ada toolchain, JTAG debugger and IDE for ARMv8 AArch64

• Problem Description Toolchain - Ada toolchain ARMv8 AArch64

• Raspberry Pi 3 AArch64 - An Unofficial Bare Metal Beginner’s Guide (to be continued)

studentresearchstudy.pdf version: 1.0

66

date: December 21, 2017

Student Research Project

Muen on ARM - an Evaluation

B Project Assignment AVT (german)

Untersuchung der Portierung des Muen Separation Kernel auf

ARM

Studiengang: Informatik (I)

Semester: HS 2017/2018 (18.09.2017-18.02.2018)

Durchführung: Studienarbeit

Fachrichtung: Sicherheit

Institut: ITA: Internet-Techn. und Anwend.

Gruppengrösse: 1 Studierende(r)

Status: zugewiesen

Verantwortlicher: Steffen, Andreas

Betreuer: Rüegsegger, Adrian-Ken

Gegenleser: [Nicht definiert]

Experte: [Nicht definiert]

Industriepartner: [Nicht definiert]

Ausschreibung: Der Muen Separation Kernel (SK) ist ein spezialisierter Microkernel der als Plattform

für Hochsicherheitssysteme am INS entwickelt wird. Muen gewährleistet eine strikte

und zuverlässige Isolierung von Komponenten und schützt sicherheitskritische

Funktionen vor fehlerhafter Software, die auf dem gleichen physischen System läuft.

Um eine besonders hohe Vertrauenswürdigkeit zu erreichen, wird die

Programmiersprache SPARK 2014 ingesetzt.

Der SK wurde speziell für die Intel x86_64 Architektur entwickelt und verwendet Intel

VT-x und VT-d für die Separierung der Komponenten.

Diese Arbeit hat zum Ziel, die ARMv8/AArch64 Virtualisierungserweiterungen zu

untersuchen und zu evaluieren, wie die Technologie zur Portierung des Muen SK auf

ARM eingesetzt werden kann.

Als Zielhardware ist das Raspberry Pi 3 vorgesehen.

Voraussetzungen: Gute Linux-Kenntnisse

Interesse an systemnaher Entwicklung

Bewerbungen: Gruppe: Loosli

Einschreibung: Studienarbeit

Status: Arbeit zugewiesen (Priorität Student: 1)

Studierende: Loosli, David

Kommentar: Zur Sicherheit bewerbe ich mich hiermit noch offiziell - ich bin

mir nach einem Gespräch mit einem Mitstudenten nicht mehr

ganz sicher, ob die Arbeit bereits mir zugeteilt ist.

Fenster schliessen

studentresearchstudy.pdf version: 1.0

67

date: December 21, 2017

Bibliography
Student Research Project

Muen on ARM - an Evaluation

Bibliography

[1] Benjamin A. Braun, Suman Jana, and Dan Boneh. “Robust and Efficient Elimination of Cache

and Timing Side Channels”. In: CoRR abs/1506.00189 (2015), p. 15. URL: http://arxiv.

org/abs/1506.00189.

[2] Reto Buerki and Adrian-Ken Rueegsegger. Muen - An x86/64 Separation Kernel for High Assur-

ance. Rapperswil (Switzerland): University of Applied Sciences Rapperswil (HSR), 2013. URL:

https://muen.codelabs.ch.

[3] Tessaleno Devezas, João Leitão, and Askar Sarygulov. Industry 4.0 - Entrepreneurship and

Structural Change in the New Digital Landscape. Covilhã (Portugal) and Saint Petersburg (Rus-

sia): Springer International Publishing AG, 2017. ISBN: 978-3-319-49603-0.

[4] Eduard Glatz. Betriebssysteme - Grundlagen, Konzepte, Systemprogrammierung. 2nd ed. Ur-

dorf (Switzerland): dpunkt.verlag GmbH, Heidelberg, 2010.

[5] Gert van Loo. BCM2836 ARM Peripherals (documentary supplement). revision 3.4. Cambridge

(England), 2014.

[6] n.a. AArch64 Virtualization. version 1.0. Cambridge (England): ARM Limited, 2017.

[7] n.a. ARM Architecture Reference Manual - ARMv8, for ARMv8-A architecture profile. version

B.a. Cambridge (England): ARM Limited, 2017. URL: http://www.arm.com.

[8] n.a. ARM Cortex-A Series, Programmer’s Guide for ARMv8-A. version 1.0. Cambridge (Eng-

land): ARM Limited, 2015. URL: http://www.arm.com.

[9] n.a. ARM Cortex-A53 MPCore Processor, Technical Reference Manual. revision r0p4. Cam-

bridge (England): ARM Limited, 2016. URL: http://www.arm.com.

[10] n.a. ARM System Memory Management Unit, Architecture Specification. version 3.0 and version

3.1. Cambridge (England): ARM Limited, 2017. URL: http://www.arm.com.

[11] n.a. BCM2835 ARM Peripherals. version 1.0. Cambridge (England): Broadcom Europe Ltd.,

2012.

[12] n.a. Intel 64 and IA-32 Architectures Software Developer’s Manual - Volume 3. Santa Clara

(USA): Intel Corporation, 2017. URL: https://software.intel.com/en-us/articles/

intel-sdm.

[13] n.a. VideoCore IV 3D Architecture Reference Guide. version 1.0. Irvine CA (USA): Broadcom

Ltd., 2013.

[14] Gil Neiger et al. “Intel Virtualization Technology: Hardware Support for Efficient Processor Virtu-

alization”. In: Intel Technology Journal 10.3 (2006), pp. 167–177.

[15] Jan Nordholz. Design and Provability of a Statically Configurable Hypervisor. Berlin (Germany):

Technische Universität Berlin, 2017.

studentresearchstudy.pdf version: 1.0

68

date: December 21, 2017

http://arxiv.org/abs/1506.00189
http://arxiv.org/abs/1506.00189
https://muen.codelabs.ch
http://www.arm.com
http://www.arm.com
http://www.arm.com
http://www.arm.com
https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

Bibliography
Student Research Project

Muen on ARM - an Evaluation

[16] Gerald J. Popek and Robert P. Goldberg. “Formal Requirements for Virtualizable Third Genera-

tion Architectures”. In: ACM Operating Systems Review 17.7 (1974), pp. 412–421.

[17] John Rushby. “Design and Verification of Secure Systems”. In: ACM Operating Systems Review

15.5 (1981), pp. 12–21.

[18] Andrew S. Tanenbaum and Herbert Bos. Moderne Betriebssysteme. 4th ed. München (Ger-

many): Pearson Studium, Hallbergmoos, 2016.

studentresearchstudy.pdf version: 1.0

69

date: December 21, 2017

Bibliography
Student Research Project

Muen on ARM - an Evaluation

List of Figures

2.1 Intel x86 protection mode, protection rings hierarchy 10

2.2 example of a memory hierarchy . 12

2.3 example of a one level paging with partitioning . 14

2.4 example of a one level address translation . 15

2.5 simplified interruption process . 19

2.6 timer component . 24

3.1 JTAG adapter with Raspberry Pi 3 . 31

3.2 DS-5 Community Edition restrictions . 32

3.3 DS-5 Community Edition project view . 33

3.4 DS-5 Community Edition debug view . 33

3.5 ARMv8-A Exception Levels in AArch64 . 34

3.6 ARMv8-A Exception Level Switch debugger view . 36

3.7 ARMv8-A Execution States rules . 37

3.8 ARMv8-A standard memory organisation . 41

3.9 DS-5 Debugger MMU memory map . 43

3.10 DS-5 Debugger MMU translation tables . 44

3.11 ARMv8-A Second Level Address Translation . 46

3.12 gprbuild Muen SK ZFP output . 54

4.1 Raspberry Pi 3 Model B, c� by the Raspberry Pi Foundation 56

4.2 Raspberry Pi 3 schematic . 57

studentresearchstudy.pdf version: 1.0

70

date: December 21, 2017

Bibliography
Student Research Project

Muen on ARM - an Evaluation

List of Tables

2.1 requirement summary part one . 26

2.2 requirement summary part two . 27

2.3 requirement summary part three . 28

3.1 IMPLEMENTATION DEFINED requirement summary 55

studentresearchstudy.pdf version: 1.0

71

date: December 21, 2017

