
 

Term Project
Department of Computer Science

University of Applied Science Rapperswil

Author(s): Remo Pfister, Keerthikan Thurairatnam
Advisor: Prof. Dr. Thomas Bocek

Improving the Bazo
Blockchain

Autumn Term 2018

Smart Contract in Bazo Blockchain Language Design

Abstract

The study work focuses on designing a smart contract language (named "Lazo") for the Bazo

blockchain. The Bazo blockchain is a research blockchain to test different mechanisms and

algorithms. In the current version, a Proof of Stake consensus algorithm and a virtual machine

to execute Bazo intermediate language (opcodes) are integrated. However, writing smart

contracts in Bazo opcodes is time consuming and error-prone. The goal of this study work is

to design a high-level language which is easier to read and write smart contracts.

Before designing Lazo, 24 existing smart contract languages are collected and roughly ana-

lyzed to identify the key characteristics of a language for the blockchain. Thereafter, three

popular and well elaborated languages, namely Solidity, Vyper and Scilla, were analyzed in

great detail. Their supported features, syntax and contract examples were also documented.

With the acquired knowledge about smart contracts, Lazo language was designed in an agile

manner.

As a result, Lazo is designed to be a statically typed, imperative and non-turing complete

programming language. All language features are documented with illustrative code snippets.

The Lazo grammar is also written in ANTLR and verified with Java. Furthermore, contract

examples from Solidity are translated to Lazo in order to prove that the real-world use cases

can be programmed with Lazo as well.

In a follow-up thesis, a compiler could be developed to compile Lazo programs into Bazo

virtual machine instructions.

Page 2 of 157

Smart Contract in Bazo Blockchain Language Design

Management Summary

Initial Situation The Bazo blockchain is a research blockchain to test different mecha-
nisms and algorithms. In the current version, a Proof-of-Stake consensus
algorithm and mechanisms to run the blockchain on mobile devices
are integrated. Furthermore, there is also a virtual machine available
to interpret and execute intermediate language (opcodes) on the Bazo
blockchain. However, writing smart contracts in Bazo opcodes is time
consuming and error-prone. The goal of this study work is to specify a
smart contract language for the Bazo blockchain, so that it is easier to
read and write smart contracts.

Procedure The language design project consisted of four sub goals, namely rough
analysis, detailed analysis, language specification and verification. In
the rough analysis, 24 existing smart contract languages were roughly
analyzed and typical characteristics of a smart language were identified.
In the detailed analysis, Solidity, Vyper and Scilla were thoroughly ana-
lyzed and their features and syntax were also documented. Furthermore,
famous or frequent attacks on Solidity were analyzed and countermea-
sures were taken into consideration in the Lazo language. During the
language specification phase, all language features were specified in
close consultation with our supervisor. Finally, the language syntax was
verified with 117 test cases.

Result The Lazo language is designed with the aim of achieving better readabil-
ity and high robustness. As a result, Lazo is a statically typed, imperative
and non-turing complete programming language. Even though Lazo
is inspired by Solidity, many unnecessary features are removed and es-
sential features are simplified when needed, thus making the contracts
easier to understand. Security concerns are also taken into account and
countermeasures are built-in at language level, where possible.

Outlook According to the language specification, a compiler could be developed
to compile Lazo programs into Bazo virtual machine instructions (op-
codes). If there are no opcodes available for certain new features, the
Bazo VM needs to be extended.

Page 3 of 157

Smart Contract in Bazo Blockchain Language Design

Acknowledgments

At this point, we would like to thank everyone involved in the Lazo project.

Obviously, our special thanks goes to our supervisor Prof. Dr. Thomas Bocek, who was very

supportive throughout the whole project. He had a great deal of experience with blockchain

and contract programming and gave us many valuable inputs to improve the language.

Designing a new smart contract programming language in close consultation with him also

gave us a great insight into how blockchain and smart contracts work.

We would also like to thank other students from University Zurich and HSR for their work on

the Bazo blockchain. We are very grateful for having this opportunity and being able to make

some contribution to the open source Bazo research blockchain technology.

Page 4 of 157

Contents

I Context 10

1 Introduction 11

1.1 Motivation . 11

1.2 Description of Work . 11

2 Background and Related Work 13

2.1 Background . 13

2.1.1 Blockchain . 13

2.1.2 Smart Contracts . 13

2.1.3 Transactions . 14

2.1.4 Virtual Machine . 14

2.1.5 The Bazo Blockchain . 14

2.2 Related Work . 15

2.2.1 Previous Work . 15

2.2.2 Existing Solutions . 15

II Language Design 17

3 Language Characteristics 18

3.1 Programming Paradigms . 18

3.2 Type System . 18

3.3 Turing Completeness . 19

3.4 Character Set and Encoding . 19

3.5 Major Omissions . 20

4 Program 21

4.1 A Simple Program . 21

5

Smart Contract in Bazo Blockchain Language Design

4.1.1 Version . 21

4.2 Identifiers . 22

4.3 Reserved Keywords . 23

4.4 Declaration . 24

4.4.1 Contract . 24

4.4.2 Variable . 24

4.4.3 Constant . 24

4.4.4 Scope . 25

4.5 Statement Separation . 26

4.6 Indentation . 26

4.7 Comments . 26

4.7.1 Single-line Comments . 26

4.7.2 Multi-line Comments . 26

4.7.2.1 Example . 27

4.8 Global Variables . 27

4.8.1 msg . 27

4.8.2 block . 28

4.8.3 tx . 28

4.9 Units . 28

4.9.1 Time Units . 29

5 Types 30

5.1 Value Types . 30

5.1.1 Integer . 30

5.1.2 Boolean . 31

5.1.3 Character . 32

5.1.4 Address . 32

5.1.5 Enum . 33

5.2 Reference Types . 33

5.2.1 String . 33

5.2.2 Array . 34

5.2.3 Map . 35

5.2.4 Struct . 36

5.2.5 Error . 37

6 Functions 38

Page 6 of 157

Smart Contract in Bazo Blockchain Language Design

6.1 Visibility . 38

6.2 Return Values . 39

6.3 Default & Named Parameters . 40

6.4 Constructor . 41

6.5 Self-destruct . 41

6.6 Annotations . 41

6.6.1 Preconditions and Postconditions . 43

6.6.2 Payable . 43

6.6.3 Owner . 44

6.6.4 ReadOnly . 44

6.7 Global Built-in Functions . 44

6.8 Events . 45

6.9 Recursion . 46

6.10 Cyclic Contract Calls . 47

6.11 Lambda . 47

6.12 Fallback Function . 47

7 Control Structures 49

7.1 If Statement . 49

7.1.1 Ternary Operator . 50

7.2 For Statement . 50

7.2.1 Break . 51

7.2.2 Continue . 51

7.3 Foreach Statement . 51

7.3.1 Iterate over an array . 51

7.3.2 Iterate over a map . 52

8 Expressions 53

8.1 Order of Evaluation . 53

9 Error Handling 56

9.1 Error Declaration and Usage . 57

9.2 Built-in Errors . 57

10 Polymorphism 59

10.1 Contracts . 59

10.1.1 new-Keyword . 59

Page 7 of 157

Smart Contract in Bazo Blockchain Language Design

10.2 Interfaces . 59

10.2.1 Adapt to Templates . 60

10.2.2 Simplify Calling Methods on Other Contracts 60

10.3 Payable Interface . 61

10.3.1 Send coins to an Externally Owned Account (EOA) 62

10.3.2 Send coins to a Contract Account . 62

11 Proposals 63

11.1 Account Abstraction . 63

11.2 Account Reference . 63

III Implementation 64

12 Lazo Grammar in ANTLR 65

12.1 Lexer Rules . 65

12.2 Parser Rules . 69

13 Syntax Verification 75

13.1 Test Summary . 76

IV Evaluation 77

14 Results 78

14.1 Achievements . 78

14.1.1 Rough Analysis . 78

14.1.2 Domain Analysis . 78

14.1.3 Language Design . 79

14.2 Not Achieved Goals . 80

14.2.1 Syntax verification with Go . 80

14.2.2 Checker Rules . 81

15 Conclusion 82

Glossary 84

Acronyms 85

Page 8 of 157

Smart Contract in Bazo Blockchain Language Design

V Appendices 87

A Rough Analysis 88

B Domain Analysis 97

C Generated EBNF 152

D GitHub Repository 157

Page 9 of 157

Part I

Context

10

Chapter 1

Introduction

The Bazo Blockchain is a Blockchain Research Project started at the University of Zurich in

2017. Currently, writing smart contracts for the Bazo Blockchain is possible but rather hard

as no high-level programming language exists. In this document we are going to cover all the

stages required to design a high-level contract language for the Bazo Blockchain.

1.1 MOTIVATION

In the bachelor thesis ’Integrating Smart Contracts into the Bazo Blockchain’, Ennio Meier and

Marco Steiner created a virtual machine for the bazo blockchain to be able to interpret smart

contracts for the bazo blockchain. To test it, they created a low-level smart contract language

based on Operation codes (Opcodes) which is rather very hard to understand. To make

writing smart contracts for the bazo blockchain user friendly, a new language is required.

It should be easy to read and write but at the same time should be also powerful enough

to handle all the use cases. With a good smart contract language based on well known and

established paradigms and syntax, users will be able to write contracts without the need to

invest a lot of time to learn the language in advance.

1.2 DESCRIPTION OF WORK

The goal of this work is to design a contract language for the Bazo Blockchain based on

already existing solutions. We are focusing on Solidity, a very well established smart contract

11

Smart Contract in Bazo Blockchain Language Design

language for the Ethereum Blockchain. To gain as much knowledge about contract languages

as possible, it is necessary to analyze other existing languages in detail. To be able to do so,

we first need to get an overview of which languages exist and what their characteristics are.

After that we will choose three of those languages, analyze them in detail and from there we

are going to design our own language. The new language should be lightweight and easy to

read and write. As a result a grammar will be created and verified using ANother Tool for

Language Recognition (ANTLR) and Java.

Page 12 of 157

Chapter 2

Background and Related Work

In the section ’Background’, the technologies used for the Bazo Blockchain are described.

The section ’Related Work’ lists theses of other students who worked on it as well as similar

independent projects.

2.1 BACKGROUND

2.1.1 Blockchain

A Blockchain basically consists of blocks of transactions which are chained one after the other.

It is a distributed, transactional database. Everyone in the network can read entries from

this database. Entries in the database are immutable. The database can only be extended by

creating new transactions. To make the transactions non-repudiable, digital signatures are

used. Transactions are validated by miners. To verify a transaction, the miner validates the

signature and checks if the assets being transmitted actually belong to the sender.

2.1.2 Smart Contracts

Smart contracts can be understood as real world contracts or agreements written in computer

code. Those contracts are stored on the blockchain. A user can interact with the contract by

creating new transactions and sending them to the contract address. Those contracts are

executed by a virtual machine.

13

Smart Contract in Bazo Blockchain Language Design

2.1.3 Transactions

The following definition can be applied to blockchain: "In the context of data base man-

agement systems a transaction is a unit of work performed within the system."[1] There are

multiple types of transactions but we will not go into further detail in this work. Please refer

to the bachelor thesis "Integrating Smart Contracts into the Bazo Blockchain" for further

information.

2.1.4 Virtual Machine

A virtual machine is basically an abstraction of hardware. Instead of writing code directly for

the underlying hardware, users can write code for the virtual machine, which is a lot easier

and less error prone.

2.1.5 The Bazo Blockchain

In 2017 the Bazo Blockchain was started as a research project at the University of Zurich.

Currently, it consists of the following components:

Miner Is used to run a full bazo blockchain node. The Miner validates new transactions and

records them in the global ledger.

Client A command line interface to interact with the Bazo blockchain.

Wallet A web-based wallet for the bazo cryptocurrency.

Block Explorer The block explorer is a web-based graphical user interface to gain insights

into the blockchain by making the blocks and the transactions visibe.

Virtual Machine The virtual machine interpretes smart contracts written for the bazo blockchain

and executes them on the miner.

Note: The information above have been taken from the official Bazo Blockchain Github Repo

[2]

For further detail about the Bazo Blockchain consult either the official Bazo Blockchain Github

Repository [2] or the ’Integrating Smart Contracts into the Bazo Blockchain’ documentation

[1].

Page 14 of 157

Smart Contract in Bazo Blockchain Language Design

2.2 RELATED WORK

2.2.1 Previous Work

As already mentionned, the bazo blockchain was started in 2017. Since then, several people

have further developed the project.

Bazo - A Cryptocurrency from Scratch August 2017 (UZH), Livio Sgier

A Progressive Web App (PWA)-based Mobile Wallet for Bazo January 2018 (UZH), Jan von

der Assen

A Blockchain Explorer for Bazo January 2018 (UZH), Luc Boillat

Proof of Stake for Bazo January 2018 (UZH), Simon Bachmann

Design and Prototypical Implementation of a Mobile Light Client for the Bazo Blockchain

January/March 2018 (UZH), Marc-Alain Chételat

Cryptographic Sortition for Proof of Stake in Bazo May 2018, Roman Blum

A pruneable approach for Bazo August 2018 (HSR), Stefano Fontana

Integrating Smart Contracts into the Bazo Blockchain Spring Term 2018 Ennio Meier, Marco

Steiner

2.2.2 Existing Solutions

NEO "NEO is a blockchain project «that utilizes blockchain technology and digital identity

to digitize assets, to automate the management of digital assets using smart contracts,

and to realize a smart economy with a distributed network.» NEO utilizes a consensus

mechanism called the Delegated Byzantine Fault Tolerance. NEO is implemented in

C#." [1]

Ethereum "The goal of Ethereum is to create a platform for the development of decentralized

apps in order to create a «more globally accessible, more free, and more trustworthy

Internet, an internet 3.0». There are several implementations of the client such as

go-ethereum (written in Go), cpp-ethereum (written in C++) and others. Ethereum’s

Page 15 of 157

Smart Contract in Bazo Blockchain Language Design

consensus mechanism is Proof of Work but a Proof of Stake algorithm is already being

developed and likely to go live in 2018." [1]

Bitcoin Bitcoin is a digital currency based on blockchain technologies. It was the first real

implementation of the blockchain technology and gained a lot of attention. Proof of

Work is used as the consensus mechanism and mining a block takes about 10 minutes.

Page 16 of 157

Part II

Language Design

17

Chapter 3

Language Characteristics

Lazo is a compiled and contract-oriented programming language for the Bazo Blockchain.

The goals of the language are to be simple, expressive and secure in writing reliable and solid

smart contracts. Lazo is similar to Solidity. It borrows and adapts good concepts from Solidity

while avoiding features that have led to complexity and unreliable code.

Lazo source code will be compiled to Bazo Intermediate Language (IL). Bazo IL consists of

Opcodes that run on the stack-based Bazo Virtual Machine (VM).

3.1 PROGRAMMING PARADIGMS

Lazo is a multi-paradigm programming language.

• Imperative programming: Instructions are explicit. Computation takes place step by

step and change the program state.

• Contract-oriented programming: Data fields (states) and methods are encapsulated

into contract objects. These objects can communicate with each other using the public

interfaces.

3.2 TYPE SYSTEM

Lazo is a statically typed language, i.e. verifies the type safety of the program during the com-

pilation time. Therefore, contracts are less prone to type errors than in dynamic languages at

18

Smart Contract in Bazo Blockchain Language Design

run-time.

Lazo uses the nominal typing system. Two variables are type-compatible, if and only they

have the same type, like in Java.

Lazo has no type inferences, meaning there is no automatic type detection at compile time.

Programmers should declare the types explicitly. Furthermore, Lazo does not support im-

plicit type conversions either. In order to concatenate a string and a number, the number

should be explicitly converted to a string first.

Category Lazo
Static vs Dynamic Static

Nominal vs Structural Nominal
Manifest vs Inference Manifest

Table 3.1: Overview of Type System

3.3 TURING COMPLETENESS

Bazo VM is turing-complete and allows to create endless loop [1]. For Lazo to become turing-

complete as well, it should support endless loop in at least one of the following forms:

• Indefinite control flow statement (e.g. while-loop over a variable)

• Recursion

• Cyclic contract calls

Lazo, however, is not turing-complete because it does not support any of the above features

at the language level (See sections 6.9, 6.10 and 7). The reason for that is we want to prove

that programs will stop at a certain point. Also gas limit attacks can be avoided, but it does

not protect from poorly written code or not providing enough gas at all.

Nevertheless, Lazo does allow a simple limited for-loop, the range of which is pre-determined.

3.4 CHARACTER SET AND ENCODING

Lazo source files are encoded in American Standard Code for Information Interchange (ASCII)

format, therefore only valid English characters are allowed in character or string literals.

Page 19 of 157

Smart Contract in Bazo Blockchain Language Design

3.5 MAJOR OMISSIONS

Lazo deliberately omits the following language features in the first version.

• Inheritance

• Abstract contracts

• Generics

• Libraries

• Currency Units

• ABI Encoding Functions

• Function Modifiers

• Function Overloading

• Recursion

• Inline Assembly

• Self-destruct

Page 20 of 157

Chapter 4

Program

A Lazo program must contain exactly one contract in a single file. However, it can contain

one or more interfaces. Furthermore, the program does not support importing any other files

or libraries. Therefore, everything should be programmed within the same file.

4.1 A SIMPLE PROGRAM

1 version 1.0
2

3 contract SimpleContract{
4 Map<address, int> payments
5

6 [Payable]
7 [Pre: msg.coins > 0]
8 function void pay() {
9 payments[msg.sender] += msg.coins

10 }
11 }

4.1.1 Version

Lazo supports versioning in the following form:

21

Smart Contract in Bazo Blockchain Language Design

1 version 1.0 // <major>.<minor>

In Lazo, all minor versions are backward compatible with the defined major version. Symbols

like caret ˆ or tilde ∼, as known from solidity, are not supported.

Versioning allows us to extend or modify the language (e.g. add/remove features) while

still supporting contracts with old syntax. The developer decides for which version of the

compiler their contracts are written for.

Examples:

• Version 1.1 is compatible with the compiler version 1.7

• Version 1.7 is not guaranteed to be compatible with the compiler version 1.1

• Version 1.7 is not guaranteed to be compatible with the compiler version 2.1

4.2 IDENTIFIERS

Identifiers start with a letter (a-zA-Z) or an underscore (_) followed by any arbitrary number

of alphanumeric letters (a-zA-Z0-9) or underscores (_).

We recommend to write variable and function names in camel case (e.g. myName, getName)

and all other identifiers in pascal case (e.g. MyContract) for readability. However, this is not

enforced by the compiler.

1 int one = 1
2 int numberOfUsers = 5
3 String firstName = "Peter"
4

5 function void getFirstName() {
6 // Do something
7 }

Page 22 of 157

Smart Contract in Bazo Blockchain Language Design

4.3 RESERVED KEYWORDS

Reserved keywords cannot be used as identifiers.

version contract is internal function
if/else foreach for emit readonly
continue break event return constructor
to by throw interface

Table 4.1: Program Keywords

int char bool
enum String Map
struct void error

Table 4.2: Type Keywords

true false

Table 4.3: Constant keywords

Built-in function names are not allowed for keywords as well. Please refer to the correspond-

ing section (6.7) for more information about built-in functions.

The following keywords are prohibited as they can be misleading or might be supported by

the language in the future:

while goto abstract implements external
private ref out static extends
override virtual as const var
null public switch case try
catch finally do

Table 4.4: Prohibited keywords

null is removed from the language, as otherwise developers need to perform null checks.

Other languages (e.g. Solidity) do not support null either to simplify the language.

Page 23 of 157

Smart Contract in Bazo Blockchain Language Design

4.4 DECLARATION

4.4.1 Contract

A contract consists of fields, functions, events, struct and enum declarations. Contracts

cannot be nested (no inner contracts). In a program file, there is only one contract declaration

allowed.

4.4.2 Variable

Variables are declared as follows:

1 // Declaration with initialization
2 int one = 1
3 // Declaration without initialization
4 int numberOfUsers // default initialized with 0

The visibility of variable is always internal which means that the variables cannot be accessed

from outside of the contract. This protects them from direct manipulation and helps the

developer to avoid unintended behaviour by forcing him to create functions that modify the

state.

If a declared variable is not used in the program, the compiler will throw an error. The reason

for that is unused variables cost gas unnecessarily. This check might help the developers to

save on some costs.

4.4.3 Constant

The keyword readonly can be used to declare constant variables. Those variables can only

be initialized during the declaration or contract construction. They cannot be changed

afterwards.

1 readonly int x = 0
2 readonly Person p = new Person("Peter")

Page 24 of 157

Smart Contract in Bazo Blockchain Language Design

For value types, readonly means that the value cannot change. For reference type, readonly

means that the reference to the data location cannot change, but the underlying data can

(e.g. name of a Person struct).

4.4.4 Scope

Lazo supports block scoping. This means that variables and functions are only accessible

inside the enclosing block.

1 contract ScopeContract{
2 int x = 3 // defined in the contract scope
3

4 function int getResult(int a) {
5 int x = 1 // creates a new variable x in the function scope
6 return x // returns the x defined within the function scope
7 }
8

9 function int getResultWithX() {
10 int x = 1 // creates a new variable x in the function scope
11 int y = this.x // accesses the x in the contract scope
12 return x + y
13 }
14

15 function int getX() {
16 return x // returns the x defined in the contract scope
17 }
18 }

Hoisting is not supported by Lazo. This means that the following is not allowed:

1 function int getResult() {
2 int y = x + 2 // x is used here but not yet declared
3 int x = 5 // x is declared here
4 return y
5 }

Page 25 of 157

Smart Contract in Bazo Blockchain Language Design

4.5 STATEMENT SEPARATION

Statements are separated by a newline "\n".

1 function int getResult(int a) {
2 int b = 6
3 int res = a + b
4 return res
5 }

4.6 INDENTATION

Lazo does not validate indentation. However it is recommended to use 4 spaces as indenta-

tion.

4.7 COMMENTS

Lazo supports both single-line and multi-line comments. Comments are used to enrich the

source code with explanations such as why a certain design decision has been made. They

should not be used too often, as they can make the code less readable.

4.7.1 Single-line Comments

Single-line comments are used to create comments that do not span more than one line. Ev-

erything before the comment is not interpreted as a comment. Everything after the comment-

symbol ’//’ on the same line is interpreted as a part of the comment.

4.7.2 Multi-line Comments

Multi-line or block comments are used when a whole block should be interpreted as comment.

Block comments are enclosed between ’/*’ (start of block comment) and ’*/’ (end of block

comment).

Page 26 of 157

Smart Contract in Bazo Blockchain Language Design

4.7.2.1 Example

1 // This is a single-line comment!
2

3 /* This is a multi-line comment!
4 Everything between the start and the end symbol is interpreted as comment!
5 */

4.8 GLOBAL VARIABLES

Global variables are stored as states in blockchain and are available throughout the whole pro-

gram. They are read only and set by the program beforehand for the usage. Any assignments

to the global variables will throw a compiler error.

We removed some global variables from Solidity when we could not find any useful use cases.

The removed variables are also documented in the corresponding section.

4.8.1 msg

The transaction message is stored in the variable msg. It is important to note that the values

of the msg fields can change, when an external function call is executed. The supported

member fields are shown below:

• address sender: returns the address of the message sender. It is important that this

value changes from call to call. To find out the initial sender, use tx.origin (see 4.8.3).

• int coins: returns the number of Bazo coins sent with the message. It is equivalent to

msg.value in Solidity.

• int sig: returns the first four bytes of the hash from function signature, which is com-

posed of visibility, return types, function identifier and arguments.

• int gas: returns the total gas allocated for the call.

Lazo does not support the data field from Solidity, which stores the complete raw call data. If

any specific value from data is needed, it should be defined as fields with a suitable name for

better usability.

Page 27 of 157

Smart Contract in Bazo Blockchain Language Design

4.8.2 block

The block variable stores the following information about the current block.

• int number: returns current block number

• int timestamp: returns the unix timestamp of the current block in seconds

The following field from Solidity are not supported.

• address coinbase: the address of the current block miner

• int difficulty: difficulty level

• int gaslimit: returns the total gas limit for the current block

4.8.3 tx

The initial transaction information is stored in tx. Even if several external function calls are

performed, the information remains unchanged.

• int gas: return the total gas allocated for the transaction

• int gasprice: returns the total gas price of the transaction

• address origin: returns the initial sender of the transaction.

4.9 UNITS

Units are merely a shorthand version of writing another bigger integer number. They are

quite convenient and give a meaning to a number. Units can be specified by adding suffixes

to the literal numbers. Currently, Lazo supports only time units. Currency units are omitted

for the first version.

1 int twoHours = 2_h // equals to 7200 (seconds)
2 int duration = 5 * 3 * 1_min // equals to 15 minutes or 900

Since it is an alias to an integer value, all integer operators(see 5.1) are allowed to be used.

Page 28 of 157

Smart Contract in Bazo Blockchain Language Design

4.9.1 Time Units

Unit Name Unit Suffix Equivalent Unit Equivalent Integer Value

Second(s) 1_s - 1

Minute(s) 1_min 60_s 60

Hour(s) 1_h 60_min 3’600

Day(s) 1_d 24_h 86’400

Week(s) 1_w 7_d 604’800

Table 4.5: Time Units

Note: The unit suffix 1_m is not used for minute, because m symbol is assigned to metre in

Internation System of Units (SI). Apart from that, year unit is not supported because it is not

always equal to 365 days because of the leap year.

Page 29 of 157

Chapter 5

Types

Lazo is a statically typed language, i.e. the type of a variable should be declared explicitly. The

types are divided into two categories: value types and reference types. A value type holds the

actual data. When passing a value type, the data is copied. The reference type, on the other

hand, stores the location of the real data. When passing a reference type, only the location of

the data is copied, but not the data itself.

5.1 VALUE TYPES

5.1.1 Integer

Lazo only supports one integer size, namely big integer. The keyword int represents big

integer and holds positive and negative integers. Default value is 0. Overflow checks are not

required as the VM uses big integers for all the arithmetic operations.

1 int x = 5 // decimal value
2 int y = 0x5 // hexadecimal value

Integer Literal

In Lazo, integer literal is limited to 256 bits (32 bytes), However, it is possible to do calculations

beyond this limit because they are stored in big integer type.

30

Smart Contract in Bazo Blockchain Language Design

Operators

Operation Operator Signs Result Type
Equality comparison ==, != Boolean
Arithmetic comparison <=, <, >=, > Boolean
Bitwise operators &, |, ˆ(exclusive OR), ∼(negation) Integer
Shift operators «(left shift), »(right shift) Integer
Unary operators +, - Integer
Pre- and postfix operators ++, -- Integer
Binary arithmetic operators +, -, *, /, %, **(exponentiation) Integer

Table 5.1: Integer Operators

5.1.2 Boolean

A value type bool (boolean) has only two possible values, true and false. Default value is false.

1 bool b = true

Operators

Operation Operator Signs Result Type
Equality comparison ==, != Boolean
Binary logical operators &&, ||, ! Boolean

Table 5.2: Boolean Operators

The logical conjunction (&&) and the logical disjunction (||) have short-circuit behavior. If the

left operand already reveals the answer, the right operand is not evaluated.

1 // The second comparison (5>4) will not be evaluated
2 2 > 3 && 5 > 4
3

4 // The second comparison (5<4) will not be evaluated
5 2 < 3 || 5 < 4

Page 31 of 157

Smart Contract in Bazo Blockchain Language Design

5.1.3 Character

All ASCII characters are possible values. A character is enclosed in single quotes. Default

value is ’\0’ (NULL).

1 char c = 'a'

Within a single-quoted character literal, the following escape codes can be used.

\0 ASCII null
\n new line
\’ single quote
\\ backslash

Backspace, carriage return, form feed, tab, vertical tab and Unicode code points (e.g. \u006A)

are deliberately not supported.

Operators

Operation Operator Signs Result Type
Equality comparison ==, != Boolean
Relational comparison <=, <, >=, > Boolean

Table 5.3: Character Operators

5.1.4 Address

An address type holds a Bazo address of 256 bits (=32 byte). In the background it is nothing

else than an alias for an integer represented in hexadecimal form.

1 address x = 0x2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

There are no member fields or functions for the address type, such as balance, send etc.

In Lazo, they are defined as built-in functions. Please refer to section 6.7 for the built-in

functions.

Operators

Address types support equality operators (==, !=) only.

Page 32 of 157

Smart Contract in Bazo Blockchain Language Design

5.1.5 Enum

In Lazo, enums store user-defined named constants and assigns them an integer value

starting at 0. An enum type requires at least one member. An enum variable is default

initialized with the first member.

1 // Enum declaration
2 enum Direction {
3 NORTH, // 0
4 EAST, // 1
5 WEST, // 2
6 SOUTH // 3
7 }
8

9 // usage
10 Direction d = Direction.NORTH

Operators

Operation Operator Signs Result Type
Equality comparison ==, != Boolean
Relational comparison <=, <, >=, > Boolean

Table 5.4: Enum Operators

5.2 REFERENCE TYPES

Reference types are initialized with their corresponding default values. By doing so, there is

no special handling required for the null pointer exceptions.

5.2.1 String

A String is an immutable sequence of characters. Strings are enclosed in double quotes and

may contain arbitrary length of ASCII characters. Default value is "".

Page 33 of 157

Smart Contract in Bazo Blockchain Language Design

1 String text = "This is a string"

Within a double-quoted string literal, the following escape characters can be used.

\n newline
\" double quote
\\ backslash

Backspace, carriage return, form feed, tab, vertical tab and Unicode code points (e.g. \u006A)

are deliberately not supported.

Operators

Operation Operator Signs Result Type
Equality comparison ==, != Boolean
Concatenation + String

Table 5.5: String Operators

Note that the concatenation works only with strings. Integer or boolean values should be

explicitly converted to string in order to concatenate.

1 String s = "Number " + (String) 5 // "Number 5"
2 String s2 = "Boolean " + (String) true // "Boolean true"

Member Functions

Function Signature Description
int length () Returns the total number of characters in the

string
char at (int index) Returns the character at the given index
String substr (int start, int? length) Extracts parts of the string. Length is optional. If

omitted, it extracts the rest of the string.

Table 5.6: String Member Functions

5.2.2 Array

An array is a fixed-length sequence of the same type. By default, the elements are set to their

default values when initialized. If not initialized, the default value is an empty array. Array

Page 34 of 157

Smart Contract in Bazo Blockchain Language Design

literal can be used to initialize an array with custom values, as shown below.

1 int[] nums = new int[4] // initialized with default values
2 int[] nums2 = new int[]{0, 1, 2, 3} // initialized with an array literal
3 int[] nums3 // empty array <=> new int[0]

Individual array elements can be accessed with square brackets. Array index usually starts at

zero and ends with one less than the array length. Lazo also supports negative indexes which

starts at -1 (last element) and goes backwards.

1 nums[0] = 1 // set a value
2 int x = nums[0] // get the first value --> 1
3 int y = nums[-1] // get the last value --> 0
4

5 int z = nums[13] // ERROR: index 13 is out of bound

Operators

Array deliberately does not support any operators, not even equality operators (==, !=),

because comparing the array’s references do not make any sense in contracts.

Member Fields

• int length: returns the total array length

Iteration

Please refer to section 7.3.1 for how to iterate over an array.

Multi-dimensional Arrays

Lazo does not support multi-dimensional arrays.

5.2.3 Map

A map is an unordered collection of key-value pairs. The values can be accessed using the

associated unique key. The default is an empty map without any keys. When accessing an

undefined key, it will return the default value to avoid unnecessary exceptions. If needed, the

contains() member function can be used to check the existence of the key in the map.

Page 35 of 157

Smart Contract in Bazo Blockchain Language Design

1 Map<String, int> map
2 map["one"] = 1
3

4 int x = map["one"] // returns 1
5 int y = map["two"] // returns 0 as default
6 delete map["one"] // remove the entry with the key "one"

Unlike Solidity, a map entry can be deleted by the corresponding key in Lazo. Furthermore,

Maps in Lazo are iterable, both the key and the value for each pair in the map are then

returned. Please refer to section 7.3.2 about how iteration over a map works.

Member Functions

Function Signature Description
bool contains (K key) Checks if the key is in the map or not.

Table 5.7: Map Member Functions

5.2.4 Struct

Struct is an aggregate type which groups named variables into a single entity. Struct is

normally a value type in languages such as C, C++, Java, C# etc. However, Struct in Lazo is a

reference type just like in Solidity in order to save up storage / gas. By default, struct variables

are initialized with the corresponding default values of the field. It is also possible to set

custom values for specific fields using the named initialization.

1 // declaration
2 struct Person {
3 address addr
4 int balance
5 bool available
6 }
7

8 Person p // default initialization
9 Person p2 = new Person(0x123, 3, true) // custom initialization

10 Person p3 = new Person(balance=3, address=0x123) // named initialization
11

Page 36 of 157

Smart Contract in Bazo Blockchain Language Design

12 p.addr = 0x123 // set value
13 int x = p.balance // get value

5.2.5 Error

Error type is similar to struct. Please refer to section 9.1 in chapter "Error Handling" for more

information.

Page 37 of 157

Chapter 6

Functions

Beside variables, functions are the most important concept in smart contract languages. But

while solidity supports a whole range of function types, Lazo removes some of those to again

simplify the language and make it more light-weight.

In this chapter, we will cover how Lazo supports functions and why certain functionality has

been removed.

6.1 VISIBILITY

Solidity supports four different kinds of visibilities: external, internal, public and private.

Since we removed the inheritance from our language, Lazo only requires the following two

visibilities:

• Public functions can be called from the current contract itself, but also from other

contracts.

• Internal function can only be called from the current contract. They cannot be accessed

by other contracts. However, because the contract is stored in the blockchain, those

functions can be viewed by everyone.

The default visibility for functions is public (no keyword required). This can be changed by

adding the internal keyword to the function declaration.

38

Smart Contract in Bazo Blockchain Language Design

1 contract SimpleContract{
2 // public function
3 function String getName() {
4 return "SimpleContract"
5 }
6

7 // internal function
8 internal function String getInternalName() {
9 return "InternalSimpleContract"

10 }
11 }

6.2 RETURN VALUES

Functions can return values by specifying their return types in the function header. If a

function does not return anything, void keyword is used. Lazo also supports multiple return

values, as shown below.

1 contract SimpleContract{
2 String name
3 String version = "1.1"
4

5 // No return value
6 function void setName(String name) {
7 this.name = name
8 }
9

10 // Single return value
11 function String getName() {
12 return name
13 }
14

15 // Multiple return values
16 function (String, String) getContractInfos() {
17 return name, version
18 }
19 }

Page 39 of 157

Smart Contract in Bazo Blockchain Language Design

As too many return values make the code less readable, we limit the maximum amount of

return values to three. Developers still have the possibility to wrap the return values using a

struct.

In Solidity, there are two ways to return values: either with the return keyword followed by a

comma-separated list of return values or with output parameters, which are specified in the

function header by assigning a name to a return type as follows:

1 // Solidity >=0.4.16 <0.6.0
2 function arithmetic(uint _a, uint _b) public returns (uint o_sum, uint o_product)
3 {
4 o_sum = _a + _b;
5 o_product = _a * _b;
6 }

As this can be confusing and adds unnecessary complexity to the language, we decided to

omit output parameters in Lazo.

6.3 DEFAULT & NAMED PARAMETERS

Default parameters allow the function parameters to be initialized with default values when

no value is passed. Thus, there is no function overloading required. Furthermore, Lazo also

supports named parameters to initialize only certain default parameters as Python does.

1 function String greet(String greet, String name = "stranger", String title = "Mr.") {
2 return greet + " " + title + " " + name
3 }
4

5 greet("Hello") // "Hello Mr. stranger"
6 greet("Welcome", title="Miss") // "Welcome Miss stranger"

Page 40 of 157

Smart Contract in Bazo Blockchain Language Design

6.4 CONSTRUCTOR

As in Solidity, the constructor is executed only once during the contract creation. It cannot

be invoked afterwards. The constructor function is used to initialize the contract. It can

take parameters but cannot return any values. Therefore it does not support return types.

Constructor is optional. There can be at most one constructor per contract.

1 version 1.0
2

3 contract SimpleContract{
4 readonly int totalTokens
5 Map<address, int> tokenHolders
6

7 // constructor declaration
8 constructor(int tokens) {
9 totalTokens = tokens

10 tokenHolders[msg.sender] = totalTokens
11 }
12 }

6.5 SELF-DESTRUCT

In the initial version of Lazo, there is no selfdestruct(address recipient) function available.

In Solidity, this function is used to remove the contract code and storage from Ethereum

blockchain. Furthermore, the remaining Ether will be sent to the designated recipient address.

Users can implement their own destruction mechanism using annotations for example.

6.6 ANNOTATIONS

Instead of supporting function modifiers as Solidity does, we decided to use annotations to

add additional behaviour to the functions. This makes the code more readable.

Annotations are enclosed between the opening square bracket symbol "[" and the closing

square bracket symbol "]".

Page 41 of 157

Smart Contract in Bazo Blockchain Language Design

Table 6.1 shows all the supported annotations.

Annotation Description
Pre Precondition
Post Postcondition
Payable Allows the function to receive Bazo coins
Owner Checks if the owner calls the function
ReadOnly Function does not mutate the state of the contract
MaxCalls Number of allowed calls within the same transaction (See 6.10)

Table 6.1: Function Annotations

1 contract SimpleContract{
2 Map<address, int> balances
3

4 [Payable]
5 constructor() {
6 balances[msg.sender] = msg.coins
7 }
8

9 // helper method
10 internal function bool checkBalance(address account, int amount) {
11 return balances[account] >= amount
12 }
13

14 // Annotation that checks amount and balances
15 [Pre: amount > 0 && checkBalance(msg.sender, amount)]
16 [Post: checkBalance(to, amount)]
17 function void transfer(address to, int amount) {
18 balances[msg.sender] -= amount
19 balances[to] += amount
20 }
21

22 // Annotation that checks if the caller is the owner
23 [Owner]
24 function void changeOwner(address newOwner) {
25 owner = newOwner
26 }
27 }

Page 42 of 157

Smart Contract in Bazo Blockchain Language Design

6.6.1 Preconditions and Postconditions

Preconditions and postconditions are used to check certain conditions before and after

executing a function. For example, developers can use it to verify if a user is allowed to

execute this function or to check that the total is >= 0 after the function execution.

1 int total = 0
2

3 [Pre: number > 0]
4 [Post: total >= number]
5 function void countIfPositive(int number) {
6 total += number
7 }

It is recommended to use an internal function if a condition is long or applied several times

in the same contract.

Parameters specified in the function header can be passed to the annotations as well. As it

may harm the reading flow, we initially considered placing these annotations between the

function header and body. In the end, we decided to leave them where they are, as this would

have a greater negative impact on the readability and would be an exception. Function-wide

defined variables are available in the postcondition.

6.6.2 Payable

The Payable annotation is used to allow a function to receive Bazo coins sent with the

transaction message. If the function is not marked so, it will reject the transaction message

containing value.

1 [Payable]
2 function void deposit() {
3 balances[msg.sender] += msg.coins
4 }

Page 43 of 157

Smart Contract in Bazo Blockchain Language Design

6.6.3 Owner

The Owner annotation is a shortcut for checking that the caller is the actual owner of the

contract. When a contract is created, the owner field is automatically set to the contract

creator (msg.sender). To change the owner, the function should be annotated with [Owner]

as well, otherwise it throws a compile error.

1 [Owner]
2 function void changeOwner(address newOwner) {
3 owner = newOwner
4 }

6.6.4 ReadOnly

ReadOnly marks the function as not mutating the state of the contract. If it does change the

state, the compiler will throw an error. The following statements are considered as changing

the state.

1. Change the state variable

2. Emit an event

3. Create a contract

4. Self destruct the contract

5. Send Bazo coins via calls

6. Call functions which are not marked as ReadOnly

When a ReadOnly function is called externally while not part of a transaction, it does not

cost any gas since it does not change the state. However, it may cost gas if it is part of any

transaction.

6.7 GLOBAL BUILT-IN FUNCTIONS

bool assert(bool condition)

This method is used to verify the program logic. If the condition is not met, it will throw

an exception. Unlike Solidity, it will refund any remaining gas to the caller.

Page 44 of 157

Smart Contract in Bazo Blockchain Language Design

int balance (address account)

The balance method is used to query the balance of a specific address. This address

can be the address of an Externally Owned Account or a Contract Account.

bool checkSig(String hash, string pubKeySig)

Verifies the signature in hash using the public key. The Bazo VM uses the ecdsa.Verify[3]

function (Elliptic Curve Digital Signature Algorithm) of Go behind the scene.

int gasLeft()

Returns the gas that is left in the current function call.

void revert(string? message)

This method stops the actual execution and reverts back to the state that the contract

had before the execution of the method. The message parameter is optional.

String sha3(String value)

It computes the hash value for the given value using the Secure Hash Algorithm 3

(SHA-3).

6.8 EVENTS

Solidity supports events which are used for simple logging facilities in Ethereum Virtual

Machine (EVM). They can also be used to call JavaScript callback functions in Distributed

Applications (DApps). These DApps can then listen to those events and handle them.

Lazo supports events as well. The VM currently does not support logging but might support

it in the future.

1 version 1.0
2

3 contract ClientReceipt {
4 event Deposit(address _from, int _id, int _value)
5

6 [Payable]
7 function void deposit(int _id) {
8 emit Deposit(msg.sender, _id, msg.value)
9 }

10 }

Page 45 of 157

Smart Contract in Bazo Blockchain Language Design

When an event is called, its arguments are stored in the transaction’s log. The logs are stored

in the blockchain and are associated with the smart contracts address. Logs and events are

not accessible from contracts.

Solidity supports the keyword indexed, which is allowed for up to three arguments and can

be used to filter for specific values in the user interface of the DApp. Lazo omits this keyword

as logging is not supported.

Potentially smart contracts could also listen for events in other smart contracts, but this

would require Account Abstraction, which allows to store a certain amount of coins in the

contract itself and enables the contract to pay for transactions himself. Both, Solidity and

Lazo do not support this yet.

6.9 RECURSION

Lazo does not support direct and indirect recursions within the same contract. They can be

detected by the checker and will throw a compiler error.

Direct Recursion

1 function void directRecursion() {
2 directRecursion() // Compiler Error
3 }

Indirect Recursion

1 function void a() {
2 b()
3 }
4

5 function void b() {
6 a() // Compiler Error
7 }

Page 46 of 157

Smart Contract in Bazo Blockchain Language Design

6.10 CYCLIC CONTRACT CALLS

Cyclic contract calls are kind of indirect recursion but cannot be detected at compile-time.

To detect cyclic calls at run-time, the number allowed calls can be defined with the MaxCalls

annotation, as shown below. As default, it is set to one. Every time the function is called, the

counter will be decremented at run-time. If it reaches 0 and is called again, VM throws an

exception.

1 [MaxCalls = 5]
2 function void callOtherContract() {
3 MsgArgs m = new MsgArgs(70000)
4 bank.withdraw().send(m)
5 }
6

7 // MaxCalls is one by default. Throws error if called again
8 function void callOtherContractOnce() {
9 MsgArgs m = new MsgArgs(70000)

10 bank.withdraw().send(m)
11 }

6.11 LAMBDA

Lambda functions are not supported in the first version of Lazo as they might not help with

readability and we do not really see a great benefit from them as of now. Lambda support

might be added in the future.

6.12 FALLBACK FUNCTION

Lazo does not support fallback function.

In Solidity, the fallback function is executed if no other functions match to the given function

identifier and arguments. It is also executed whenever the contract receives Ether without

any function call.

Page 47 of 157

Smart Contract in Bazo Blockchain Language Design

By default, the fallback function calls revert and throws an exception. If you want the contract

to accept Ether, the fallback function should be implemented explicitly with the payable

modifier. In a contract, only one fallback function is allowed and it should not have any

arguments nor return values. Furthermore, it must be a public function.

1 // Solidity 0.4.25
2 function () payable { // no function name
3 // empty block
4 }

Lazo omits the fallback function, because it could be confusing and misleading. A function

should have one concrete goal. It should not be used for both receiving coins and executing

default behavior in the same block. Most of all, if there is no suitable function found, the

program should throw an error. It is wrong to handle the caller’s error in a fallback function.

To receive funds, however, the contract can implement the payable interface. Please refer to

section 10.3 Account Interface for an example.

Page 48 of 157

Chapter 7

Control Structures

Other than Solidity, Lazo is not turing complete. This adds some constraints to the control

structures as things like infinite loops are not supported. Due to this and for simplicity,

features like while, goto, switch-case and do-while are not supported. Also for-loop is limited

within a predefined range.

It is important to mention that the control structures in Lazo follow the same semantic rules

as Solidity does.

7.1 IF STATEMENT

An if-statement is a control structure which enables alternative program paths during the

run-time. An if-statement must have a conditional expression. The else if and else blocks are

optional. Braces "{ }" are mandatory, even if a block has only one statement.

1 if (x > 10) {
2 // do something
3 } else if (x > 5) {
4 // do something else if ...
5 } else {
6 // do something else finally
7 }

49

Smart Contract in Bazo Blockchain Language Design

7.1.1 Ternary Operator

Lazo supports the ternary operator as well. It is a shortcut for a simple if-else statement.

1 int absValue = (x < 0) ? -x : x

7.2 FOR STATEMENT

A for-loop statement executes the statements in the loop body for the defined range. The

range consists of start, stop and increment parameters. The loop is 0-index based. This

means that by default the start value is 0 and it will be incremented by one up to the stop

value, including this number.

Lazo allows only positive increment, i.e. the end and increment value must be positive

numbers. There is however no explicit limit.

1 // from 0 to 10 increment by 1
2 for (x : to 10) {
3 // x will be [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
4 }
5

6 // no index - from 0 to 10 increment by 1
7 for (_ : to 10) {
8 // index is not needed
9 }

10

11 // from 1 to 10 increment by 1
12 for (x : 1 to 10) {
13 // x will be [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
14 }
15

16 // from 1 to 10 increment by 2
17 for (x : 1 to 10 by 2) {
18 // x will be [1, 3, 5, 7, 9]
19 }

Page 50 of 157

Smart Contract in Bazo Blockchain Language Design

7.2.1 Break

The break keyword can be used to exit the loop completely before the end. In the following

example, the loop stops as soon as a prime number is found.

1 for (x : 101 to 200) {
2 if (isPrime(x)) {
3 break
4 }
5 // do something with non-prime number
6 }

7.2.2 Continue

The continue keyword can be used to skip the current iteration. In the following example, all

the even indexes are skipped.

1 for (x : to 10) {
2 if (x % 2 == 0) {
3 continue
4 }
5 // do something odd
6 }

7.3 FOREACH STATEMENT

The foreach statement iterates over each element of a collection, such as an array or a map. It

is important to note that modifying the collection during the iteration throws an exception.

The break and continue keywords are also possible in the foreach statements.

7.3.1 Iterate over an array

There are two ways to iterate over the array - with or without the index. The foreach statement

executes the block for each element in the array, as shown below.

Page 51 of 157

Smart Contract in Bazo Blockchain Language Design

1 char[] vowels = new char[]{'a', 'e', 'i', 'o', 'u'}
2

3 foreach (char elem : vowels) {
4 // do something with the element
5 }
6

7 // index is always int
8 foreach (index, char elem : vowels) {
9 // do something with the index and element

10 }

7.3.2 Iterate over a map

When iterating over a map in other common languages, the order of the iteration is not

specified and is not guaranteed to be the same as the insertion order.

In blockchain, however, the order should be guaranteed for deterministic result among all

miners. Because of this reason, Lazo guarantees a consistent iteration order over map. Never-

theless, which iteration order (e.g. alphabetic or insertion order) the language implements is

currently not defined. It will be decided at least when the Bazo VM is extended.

1 Map<address, int> balances
2 balances[0x2cf] = 50
3 // add more entries to the map
4

5 int total = 0
6 foreach (address account, int balance : balances) {
7 // Do something with the account and/or the balance
8 total += balance
9 }

Page 52 of 157

Chapter 8

Expressions

An expression represents a computation of a new value from given values, variables, operators,

and functions. The resulting new value can be a primitive data type (e.g. integer, boolean

etc.) or a complex/composite data type (e.g. array, struct etc.).

8.1 ORDER OF EVALUATION

When evaluating such an expression, the language should avoid ambiguity and produce a

unique parse tree. To resolve the ambiguities, Lazo use two additional rules:

• Precedence Order: Consider the expression 2+3*4. There are two possibilities: (2+3)*4

or 2+(3*4). When two operators share an operand, the operator with higher precedence

is resolved first. Since * has higher precedence than +, the expression is evaluated as

2+(3*4).

• Associativity: When an expression has operators with the same precedence, its asso-

ciativity rule is applied. For example, addition 1+2+3 is evaluated with left associativity

(1+2)+3. On the other hand, exponentiation 5**2**2 is evaluated with right associativity,

namely 5**(2**2).

The following table lists all the operators in Lazo with their precedence level and associativity
[6][8]. The table is order from highest precedence to lowest precedence.

53

Smart Contract in Bazo Blockchain Language Design

Precedence Operator Description Associativity

1

x++ postfix increment

left to right

x-- postfix decrement

<array>[index] array element access

<object>.<member> object member access

(<expression>) parentheses

<func>(<args>) function call

new <type> object creation

2

++x prefix increment

right to left

--x prefix decrement

+x unary plus

-x unary minus

!x logical NOT

∼x bitwise NOT

3 (type) x type casting right to left

4 5 ** 2 exponentiation right to left

5

2 * 3 multiplication

left to right10 / 2 division

5 % 2 modulo

6

3 + 4 addition

left to right4 - 3 substraction

"hello" + "world" string concatenation

7
2 « 3 bitwise left shift

left to right
2 » 3 bitwise right shift

8

2 < 3 less than

left to right
2 <= 3 less than or equal

3 > 2 greater than

3 >= 2 greater than or equal

9
x == 2 equality

left to right
x != 2 inequality

10 5 & 3 bitwise AND left to right

11 5 ˆ 3 bitwise XOR left to right

12 5 | 3 bitwise OR left to right

13 true && true logical AND left to right

Page 54 of 157

Smart Contract in Bazo Blockchain Language Design

14 true || false logical OR left to right

15 <cond.> ? <exp> : <exp> ternary operator right to left

16

x += 2

shorthand assignment right to left

x -= 2

x **= 2

x *= 2

x /= 2

x %= 2

x «= 2

x »= 2

x &= 2

x ˆ= 2

x |= 2

17 <exp> , <exp> comma, sequence left to right

Table 8.1: Operator Precedence and Associativity

It is important to note that in Solidity, the bitwise AND, OR and XOR operators have higher

precedence than the relational (<, <=, >, >=) and equality (==, !=) operators. But it is vice versa

in other common popular languages, such as Java, JavaScript, C# etc. Lazo also follows the

same precedence order of the other common languages to keep consistency.

Page 55 of 157

Chapter 9

Error Handling

Solidity’s error handling is quite limited. Solidity has three different functions - assert, require

and revert. Revert reverts the state. Assert is used to check for errors in the contract’s logic and

require is used for user input checks. In all three cases, solidity throws an exception which

bubbles up and notifies the caller about the error. Important: The state is always reverted!

Unfortunately, Solidity does not allow to catch and handle exceptions as a programmer

usually does in other programming languages. As we were not sure if this is the best approach

to follow, we analyzed different programming languages. While Vyper[7] and Scilla[5] both do

not support error handling, other common languages such as Golang, Rust or C use different

approaches:

• C: Returning specific error values as int

• Go: multiple return values and error types

• Rust: passing error structs into the function or monadic error handling.

During our analysis, we found that only two approaches are widely used in modern program-

ming languages[4], namely throw exceptions and return error values. Single integer return

value could be misleading, because the error code could be also a possible value. Therefore

we decided to focus on a solution using either throw-catch exceptions or multiple return

values with error types as Go does.

We recognized that Go returns nil if no error has occurred. However, our language does not

support null values due to simplicity. From our findings, we decided that we will continue

with the simple and straightforward approach of exceptions and add the possibility to catch

exceptions as well. But in contrast to other languages we will call them errors instead of

56

Smart Contract in Bazo Blockchain Language Design

exceptions as this is more precise.

9.1 ERROR DECLARATION AND USAGE

Custom error types can be declared with the error type keyword. The syntax is similar to

struct declaration.

1 // without any fields
2 error MyError { }
3

4 // with fields
5 error MyDetailedError {
6 int code
7 string message
8 }

When an error has occurred, the error can be thrown with an appropriate error type as follows.

1 throw MyError{}
2

3 throw MyDetailedError{100, "An error has occured"}

The occurred errors bubble up through the call stack and cannot be caught or handled. It

means the transaction will always be reverted if an error has occurred.

We considered catching an error and let the developers to define an alternative program logic

in the catch-block. However, we did not find any useful use cases for that. A transaction

should be atomic. It succeeds as whole or nothing occurs. Therefore, catching error is not

supported and the state will always be reverted. This might change in the future.

9.2 BUILT-IN ERRORS

ArgumentError {string message}

Provided argument is invalid

Page 57 of 157

Smart Contract in Bazo Blockchain Language Design

ArithmeticError {string message}

Arithmetic error has occurred, e.g. division by zero.

ArrayIndexOutOfBoundError {int index, int length}

Array index is out of range.

Error {string message}

A generic error type which can be used to throw any error.

NoSuchFunctionError

The required function is not available or does not match with the signature.

NotPayableError

The function or contract is not payable. For function, add the [Payable] annotation. For

contract, implement the Payable interface.

OutOfGasError

Allocated gas is used up. Not enough gas to complete the transaction.

Page 58 of 157

Chapter 10

Polymorphism

10.1 CONTRACTS

Inheritance is not supported in Lazo. The reason for this is that inheritance "hides" some

implementation in the super class. This can have a negative impact on the auditability.

10.1.1 new-Keyword

In contrast to Solidity, Lazo does not support instantiating new contracts within a contract.

Therefore the new-keyword is omitted for contracts. The reason for this is that this feature

is very rarely used in smart contracts and therefore leads to unnecessary complexity. As an

alternative, it is recommend to use interfaces.

10.2 INTERFACES

Interfaces are supported by Lazo as they are very useful for the following two use cases:

• Adapt to templates (e.g. ERC20 Tokens)

• Simplify calling methods on other contracts.

In addition to that, using interfaces helps creating more readable code.

59

Smart Contract in Bazo Blockchain Language Design

10.2.1 Adapt to Templates

Interface is like a template. It declares only the function signatures (name, arguments and

return types). The implementation is done in the contract. By using the is-keyword in the

contract declaration, the compiler checks whether the contract implements all the methods

defined in the interface. If not, a compiler error is thrown.

1 interface ERC20 {
2 // Definition of the interface
3 }
4

5 contract MyContract is ERC20 {
6 // Implementation of the interface and additional functionality
7 }

10.2.2 Simplify Calling Methods on Other Contracts

Calling functions on other contracts is not very simple. If you want to call a method on

another contract, you need to know the first four bytes of the hash of the function name,

which is very low-level and not human-friendly at all. To solve this problem, interfaces can

be used.

First, the developer creates an interface for the desired contract. Then, he can cast the

contract’s address to the interface and call the methods on it as usual.

Note that the external method call is not executed as long as the send() function has not been

called.

bool send (MsgArgs? args)

This method is used to send additional arguments with the transaction, such as gas,

coins etc. If none set, the method execution is limited to a default gas value.

struct MsgArgs{int gas; int coins}

This struct is used to send meta data (e.g. gas limit and coins) with the function call.

The data can be then accessed via the global variable (See 4.8.1).

Page 60 of 157

Smart Contract in Bazo Blockchain Language Design

1 interface Bank {
2 [Payable]
3 void deposit()
4

5 void withdraw(int amount)
6 }
7

8 contract MyContract {
9

10 // Cast the address of the other contract instance to the interface type
11 Bank bank = (Bank) 0x12345...
12

13 function void myDeposit() {
14 // Use the interface to call the deposit function in the other contract
15 MsgArgs args = new MsgArgs(coins=10, gas=21000)
16 bank.deposit().send(args)
17 }
18

19 function void myWithdraw(int amount) {
20 // Use the interface to call the withdraw function in the other contract
21 bank.withdraw(amount).send()
22 }
23 }

10.3 PAYABLE INTERFACE

Lazo provides a built-in Payable interfaces to send coins to externally owned accounts or

contract accounts. Figure 13.2 shows the available functions.

Figure 10.1: Payable Interface

Page 61 of 157

Smart Contract in Bazo Blockchain Language Design

10.3.1 Send coins to an Externally Owned Account

To send coins to an externally owned account, use the transfer() function, as shown below.

1 // Address of an externally owned account
2 Payable person = (Payable) 0x12345...
3

4 // Send coins to a EOA
5 MsgArgs args = new MsgArgs(coins=10)
6 person.transfer().send(args)

10.3.2 Send coins to a Contract Account

To send coins to a contract account, transfer() function can be used as well. However, it is

important that the contract should have implemented the Payable interface. Otherwise, it

throws a NotPayableErrror and the coins will be refunded.

1 // Payable implementation
2 // ----------------------
3 contract Bank is Payable {
4 Map<address, int> balances
5

6 // Not all variables/functions are shown here
7

8 [Payable]
9 function void transfer() {

10 balances[msg.sender] += msg.value
11 }
12 }
13

14 // Usage
15 // -----
16 // Address of a payable contract
17 Payable bank = (Payable) 0x12345...
18

19 // Send coins to a contract
20 MsgArgs args = new MsgArgs(coins=10, gas=30000)
21 bank.transfer().send(args)

Page 62 of 157

Chapter 11

Proposals

11.1 ACCOUNT ABSTRACTION

Account Abstraction is used to enable contracts to store coins and be able to pay for trans-

actions by themselves. Account Abstraction most likely requires a new kind of transaction

which must be added to the Bazo VM. This could be a helpful feature for the future and might

be designed and implemented in another project.

11.2 ACCOUNT REFERENCE

Account References could be used to associate tokens or coins with references instead of with

addresses within the contract. In the case of an exchange site, the contract would store the

reference to the customer instead of the address of the exchange site. The customer could

then also purchase further funds and associate them with the same reference.

While this could be a useful feature, especially for Initial Coin Offerings (ICOs), there are still

some security concerns. Therefore, Lazo does not provide any language features to support

it. Developers could implement it using the reference as a parameter and adding security

checks using the precondition annotations. We will not go into further detail since it is not

part of this study work.

63

Part III

Implementation

64

Chapter 12

Lazo Grammar in ANTLR

12.1 LEXER RULES

1 // Reserved Keywords (Hint: Order by asc)
2 // -----------------
3 BREAK: 'break' ;
4 BY: 'by' ;
5 CONSTRUCTOR: 'constructor' ;
6 CONTINUE: 'continue' ;
7 CONTRACT: 'contract' ;
8 ELSE: 'else' ;
9 EMIT: 'emit' ;

10 ENUM: 'enum' ;
11 EVENT: 'event' ;
12 FOR: 'for' ;
13 FOREACH: 'foreach' ;
14 FUNCTION: 'function' ;
15 INTERFACE: 'interface' ;
16 INTERNAL: 'internal' ;
17 IF: 'if' ;
18 IS: 'is' ;
19 MAP: 'Map' ;
20 READONLY: 'readonly' ;
21 RETURN: 'return' ;
22 STRUCT: 'struct' ;
23 THROW: 'throw';

65

Smart Contract in Bazo Blockchain Language Design

24 TO: 'to' ;
25 VERSION: 'version' ;
26

27 BOOL
28 : 'true'
29 | 'false'
30 ;
31

32 // Reserved Keywords which are not used in the language (prohibited) - Hint: Order by asc
33 // ----------------
34 ABSTRACT: 'abstract' ;
35 AS: 'as' ;
36 CASE: 'case' ;
37 CATCH: 'catch' ;
38 CONST: 'const' ;
39 EXTENDS: 'extends' ;
40 EXTERNAL: 'external' ;
41 FINALLY: 'finally' ;
42 GOTO: 'goto' ;
43 IMPLEMENTS: 'implements' ;
44 NULL: 'null';
45 OUT: 'out' ;
46 OVERRIDE: 'override' ;
47 PRIVATE: 'private' ;
48 PUBLIC: 'public' ;
49 REF: 'ref' ;
50 STATIC: 'static' ;
51 SWITCH: 'switch' ;
52 TRY: 'try' ;
53 VAR: 'var' ;
54 VIRTUAL: 'virtual' ;
55 WHILE: 'while' ;
56 // ----------------
57

58 // Punctuation marks
59 // ----------------
60 LPAREN: '(' ;
61 RPAREN: ')' ;
62 LBRACE: '{' ;
63 RBRACE: '}' ;
64 LBRACK: '[' ;
65 RBRACK: ']' ;

Page 66 of 157

Smart Contract in Bazo Blockchain Language Design

66 SEMI: ';';
67 COMMA: ',';
68 DOT: '.';
69 // -----
70

71 // Arithmatics
72 // -----------
73 PLUS: '+';
74 MIN: '-';
75 MUL: '*';
76 DIV: '/';
77 MOD: '%';
78 EXP: '**';
79 LSHIFT: '<<';
80 RSHIFT: '>>';
81

82 // Logical Operators
83 AND: '&&';
84 OR: '||';
85 NOT: '!';
86 BITWISE_AND: '&';
87 BITWISE_OR: '|';
88 CARET: '^';
89 TILDE: [\u007e];
90

91 // Comparison
92 // ---------
93 EQ: '==';
94 NEQ: '!=';
95 GT: '>';
96 GT_EQ: '>=';
97 LT: '<';
98 LT_EQ: '<=';
99 // ---------

100

101 IDENTIFIER
102 : ('_' | ALPHA_LETTER) ('_' | ALPHA_LETTER | DEC_DIGIT)* ;
103

104 fragment ALPHA_LETTER
105 : [a-zA-Z] ;
106

107 INTEGER

Page 67 of 157

Smart Contract in Bazo Blockchain Language Design

108 : DEC_DIGIT_LIT
109 | HEX_DIGIT_LIT ;
110

111 HEX_DIGIT_LIT
112 : '0x' HEX_DIGIT+ ;
113

114 fragment HEX_DIGIT
115 : [0-9a-fA-F] ;
116

117 DEC_DIGIT_LIT
118 : DEC_DIGIT+ ;
119

120 fragment DEC_DIGIT
121 : [0-9] ;
122

123 STRING
124 : '"' UNICODE_CHAR* '"' ;
125

126 CHARACTER
127 : '\'' (ESCAPED_CHAR | UNICODE_CHAR) '\'' ;
128

129 fragment ESCAPED_CHAR
130 : '\\' ('0' | 'n' | '\\' | '\'' | '"') ;
131

132 fragment UNICODE_CHAR
133 : ~[\r\n] // any Unicode code point except carrige return & new line
134 ;
135

136 NLS
137 : NL+;
138

139 fragment NL
140 : [\n]
141 | [\r\n]
142 ;
143

144 // Skip Rules
145 // --------
146 WHITE_SPACE
147 : [\t\f\r]+ -> skip // skip spaces, tabs, form feed and carrige return
148 ;
149

Page 68 of 157

Smart Contract in Bazo Blockchain Language Design

150 LINE_COMMENT
151 : '//' ~[\r\n]* -> skip ;
152

153 BLOCK_COMMENT
154 : '/*' .*? '*/' -> skip ;

12.2 PARSER RULES

1 program
2 : NLS* versionDirective interfaceDeclaration* contractDeclaration EOF ;
3

4 versionDirective
5 : 'version' INTEGER '.' INTEGER NLS ;
6

7 interfaceDeclaration
8 : 'interface' IDENTIFIER '{' NLS* interfacePart* '}' NLS ;
9

10 interfacePart
11 : functionSignature NLS ;
12

13 functionSignature
14 : annotation* (type | '(' type (',' type)* ')') IDENTIFIER '(' paramList? ')' ;
15

16 contractDeclaration
17 : 'contract' IDENTIFIER ('is' IDENTIFIER (',' IDENTIFIER)*)?
18 '{' (NLS | contractPart)* '}' NLS? ;
19

20 contractPart
21 : variableDeclaration
22 | structDeclaration
23 | errorDeclaration
24 | enumDeclaration
25 | eventDeclaration
26 | constructorDeclaration
27 | functionDeclaration
28 ;
29

30 // Declarations

Page 69 of 157

Smart Contract in Bazo Blockchain Language Design

31 // ------------
32

33 variableDeclaration
34 : 'readonly'? type IDENTIFIER assignment? NLS;
35

36 structDeclaration
37 : 'struct' IDENTIFIER '{' NLS* structField* '}' NLS ;
38

39 errorDeclaration
40 : 'error' IDENTIFIER '{' NLS* structField* '}' NLS ;
41

42 structField
43 : type IDENTIFIER NLS;
44

45 eventDeclaration
46 : 'event' IDENTIFIER '(' paramList? ')' NLS;
47

48 enumDeclaration
49 : 'enum' IDENTIFIER '{' NLS* IDENTIFIER (',' NLS* IDENTIFIER)* NLS*'}' NLS ;
50

51 constructorDeclaration
52 : annotation* 'constructor' '(' paramList? ')' statementBlock ;
53

54 functionDeclaration
55 : annotation* functionHead statementBlock ;
56

57 functionHead
58 : 'internal'? 'function' (type | '(' type (',' type)*')') IDENTIFIER '(' paramList? ')' ;
59

60 annotation
61 : '[' IDENTIFIER (':' expression)? ']' NLS ;
62

63 paramList
64 : parameter (',' parameter)* (',' defaultParameter)* ; // todo allow optional newline
65

66 parameter
67 : type IDENTIFIER ;
68

69 defaultParameter
70 : parameter assignment ;
71

72 // Types

Page 70 of 157

Smart Contract in Bazo Blockchain Language Design

73 // -----
74

75 type
76 : arrayType
77 | mapType
78 | IDENTIFIER ;
79

80 arrayType
81 : IDENTIFIER '[' ']' ;
82

83 mapType
84 : 'Map' '<' type ',' type '>' ;
85

86 // Statements
87 // ----------
88

89 statementBlock
90 : '{' (NLS | statement)* '}';
91

92 statement
93 : assignmentStatement
94 | returnStatement
95 | expressionStatement
96 | sendStatement
97 | emitStatement
98 | variableDeclaration
99 | ifStatement

100 | forEachStatement
101 | forStatement
102 | mapForEachStatement
103 | breakStatement
104 | continueStatement
105 | throwStatement
106 ;
107

108 emitStatement
109 : 'emit' expression NLS ;
110

111 deleteStatement
112 : 'delete' expression NLS ;
113

114 ifStatement

Page 71 of 157

Smart Contract in Bazo Blockchain Language Design

115 : 'if' '(' expression ')' statementBlock
116 ('else if' '(' expression ')' statementBlock)?
117 ('else' statementBlock)? ;
118

119 forStatement
120 : 'for' '(' IDENTIFIER ':' rangeStatement ')' statementBlock ;
121

122 forEachStatement
123 : 'foreach' '(' (IDENTIFIER ',')? type IDENTIFIER ':' expression ')' statementBlock ;
124

125 mapForEachStatement
126 : 'foreach' '(' type IDENTIFIER ',' type IDENTIFIER ':' expression ')' statementBlock ;
127

128 breakStatement
129 : 'break' NLS ;
130

131 continueStatement
132 : 'continue' NLS ;
133

134 rangeStatement
135 : expression? 'to' expression ('by' expression)? ;
136

137 expressionStatement
138 : expression NLS ;
139

140 sendStatement
141 : expression '.' 'send' '(' expression? ')' NLS ;
142

143 argumentList
144 : expression (',' expression)* (',' namedArgument)*
145 | namedArgument (',' namedArgument)*
146 ;
147

148 namedArgument
149 : IDENTIFIER '=' expression ;
150

151 assignmentStatement
152 : expression assignment NLS ;
153

154 assignment
155 : '=' expression ;
156

Page 72 of 157

Smart Contract in Bazo Blockchain Language Design

157 designator
158 : IDENTIFIER ;
159

160 throwStatement
161 : 'throw' IDENTIFIER '{' argumentList? '}' NLS ;
162

163 returnStatement
164 : 'return' (expression (',' expression)*)? NLS ;
165

166 // Expressions
167 // -----------
168 expression
169 : expression ('++' | '--')
170 | expression '[' expression ']' // index access
171 | expression '.' IDENTIFIER // member access
172 | expression '(' argumentList? ')' // call
173 | newCreation
174 | '(' expression ')'
175 // --- End of Level 1 ----
176 | <assoc=right> ('++' | '--' | '+' | '-' | '!' | TILDE) expression

177 | <assoc=right> '(' type ')' expression // cast

178 | <assoc=right> expression '**' expression
179 | expression ('*' | '/' | '%') expression
180 | expression ('+' | '-') expression
181 | expression ('<<' | '>>') expression
182 | expression ('<' | '>' | '<=' | '>=') expression
183 | expression ('==' | '!=') expression
184 | expression '&' expression
185 | expression '^' expression
186 | expression '|' expression
187 | expression '&&' expression
188 | expression '||' expression
189 | <assoc=right> expression '?' expression ':' expression

190 | <assoc=right> expression ('+' | '-' | '**' | '*' | '/' | '%'
191 | '<<' | '>>' | '&' | '^' | '|') '=' expression
192 | operand
193 ;
194

195 newCreation
196 : structCreation
197 | arrayCreation

Page 73 of 157

Smart Contract in Bazo Blockchain Language Design

198 | mapCreation
199 ;
200

201 structCreation
202 : 'new' IDENTIFIER '(' argumentList? ')' ;
203

204 arrayCreation
205 : 'new' IDENTIFIER ('[' expression ']' ('{' '}')?
206 | '[' ']' '{' expression (',' expression)* '}') ;
207

208 mapCreation
209 : 'new' mapType '(' ')';
210

211 operand
212 : literal
213 | designator
214 ;
215

216 literal
217 : INTEGER
218 | CHARACTER
219 | STRING
220 | BOOL
221 ;

Page 74 of 157

Chapter 13

Syntax Verification

The syntax of the Lazo language is extensively tested with ANTLR and Java. Depending on

the language feature, different testing methods have been applied, as follows:

• Lexer

1. Lexemes: A stream of characters was read in and tokenized (e.g. integer, string

etc.). The produced tokens were checked whether their type and their content

were correct.

2. Features: Language features (e.g. struct, function etc.) were tokenized and veri-

fied whether a long stream of characters were splitted into tokens correctly.

• Parser

1. Nodes: A stream of characters was tokenized and parsed into an abstract syntax

tree with nodes, such as Program, Contract, Function, Expression etc. The nodes

were checked whether they had correct tokens without any errors.

2. Contracts: Complete valid contract examples (e.g. Purchase, OpenAuction, Blin-

dAuction etc.) were parsed and verified that no errors had occurred.

In general, all the defined features in the specification are verified with little code snippets

and full complete contract examples.

75

Smart Contract in Bazo Blockchain Language Design

13.1 TEST SUMMARY

Figure 13.1: Test Summary

Figure 13.2: Test Details

Page 76 of 157

Part IV

Evaluation

77

Chapter 14

Results

14.1 ACHIEVEMENTS

14.1.1 Rough Analysis

In the rough analysis, 24 existing smart contract languages are collected and roughly analyzed

to identify the key characteristics of a language for the blockchain. See Comparison of Smart

Contract Languages for complete overview of the analysis.

As a result, it seems to be that smart contract languages are predominantly imperative and

statically typed, as they are more straightforward and easier to understand. By enforcing

static types, many programming errors could be detected at compile-time before deploying

the contracts to the blockchain. Furthermore, some languages support object orientation,

however inheritance is not encouraged. It is important to mention that turing-completeness

is a major topic of debate among smart contract languages. A little more than half of the ana-

lyzed languages are not turing-complete because programming a endless loop in a contract

is not desired.

14.1.2 Domain Analysis

In the detailed analysis, the following well elaborated smart contract languages were analyzed

in great detail:

78

https://docs.google.com/spreadsheets/d/1JoHZazJo2LJcQtmOyX_fNIIq4u-1xABxGHtVkaLqJSc/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JoHZazJo2LJcQtmOyX_fNIIq4u-1xABxGHtVkaLqJSc/edit?usp=sharing

Smart Contract in Bazo Blockchain Language Design

• Solidity is the most popular and widely used smart contract language for Ethereum

blockchain. Since it is a turing-complete language, basically any computer program

could be written in Solidity. Yet, Solidity is overloaded with too many features and is

therefore quite complex.

• Vyper is also for Ethereum blockchain, however it removes the complexity of Solidity

and makes the language easier to understand. It also addresses the problems Solidity

has and provides alternative solutions. By analyzing Vyper, those problems could be

eliminated in Lazo as well.

• Scilla is a functional programming language for Zilliqa blockchain. In comparison to

other languages, Scilla follows different approaches for programming contracts. For

instance, it uses the continuation-passing style and clearly separates the in-contract

computation and communication between contracts at language level. Even though

it is an interesting approach, it adds more complexity to the language. After some

analysis and discussions, the approaches of Scilla were not considered in Lazo.

During the analysis, their features, syntax and contract examples were documented. Fur-

thermore, famous or frequent attacks on Solidity were also analyzed (e.g. re-entrancy attack,

integer overflow and underflow, gas limit and loops etc.). See the domain analysis document

for complete results.

14.1.3 Language Design

With the acquired knowledge about smart contracts, Lazo language was specified in an agile

manner. As a result, Lazo is designed to be a statically typed, imperative and non-turing

complete programming language. Thus, Lazo is easier to understand and more robust against

errors. Even though Lazo is inspired by Solidity, many unnecessary features are removed and

essential features are simplified when needed. By doing so, Lazo has become much more

simple.

All language features are documented with illustrative code snippets. The Lazo grammar is

also written in ANTLR and thoroughly verified with Java. Before writing the ANTLR grammar,

a first version of Extended Backus-Naur Form (EBNF) was created. Unfortunately, there were

no tools to verify the EBNF grammar. However, there was a tool to generate EBNF from the

ANTLR grammar. Since the ANTLR grammar could be verified for correctness, we omitted

improving the first version of EBNF. Once the ANTLR grammar was completed, EBNF was

Page 79 of 157

Smart Contract in Bazo Blockchain Language Design

automatically generated from it.

Initially, Lazo was designed with semicolons ";" as statement separators. Later on it was

redesigned with newlines to make the language more readable. However, the parser rules

have become more complex because of that. Every newline in the source code is part of the

abstract syntax tree now and each parser rule should handle it. In some cases, a rule requires

at least one newline but in most cases newlines could be ignored.

Security concerns are also taken into account and countermeasures are built-in at language

level, where possible.

• Re-entrancy attack: Cyclic external contract calls are prevented using the function

annotation MaxCalls, which limits the number of function calls in the same call stack.

• Gas limit and loops: Lazo does not allow loops over a variable. Therefore, there is no

endless loop possible. The point of termination and the cost of gas could be calculated

precisely.

• Integer overflow and underflow: Lazo supports only big integer, which indeed takes

care about the overflow and underflow problem.

• Contract ownership: Lazo supports Owner function annotation, which guarantees

that only the contract owner can call certain functions. When changing the ownership,

Lazo also checks that only the owner can do so.

Furthermore, contract examples from Solidity are translated to Lazo in order to prove that

the real-world use cases can be programmed with Lazo as well.

14.2 NOT ACHIEVED GOALS

14.2.1 Syntax verification with Go

Initially, it was planned to test the ANTLR grammar with Go. However, the ANTLR tool to

generate Go files had some bugs during this study work (See the StackOverflow question

53100633). Since the project has limited time period, the lexer and parser for the ANTLR

grammar were generated in Java and tested with JUnit library.

Page 80 of 157

https://stackoverflow.com/questions/53100633/antlr4-in-go-invalid-type-assertion-listener

Smart Contract in Bazo Blockchain Language Design

14.2.2 Checker Rules

At the start of the project, two weeks were allocated to specify the checker rules within this

study work. However, in the middle of the project we had to redesign our language syntax

with newlines. It took a considerable amount of time to modify the already written ANTLR

grammar, verify the syntax and to update all the code snippets in the document. Apart from

that, we also received a new task to present our language at the Bazo workshop towards

the end of the project. Because of these reasons, the specification of the checker rules is

postponed to our bachelor thesis.

Page 81 of 157

Chapter 15

Conclusion

Summary The goal of this study work was to specify a smart contract language for

the Bazo blockchain. Nevertheless, exact requirements for that language

were not known at the beginning. With the acquired knowledge from

the analysis phases and the consultation of our supervisor, the Lazo

language could be designed. It took many iterations and discussions

to get the language syntax right. Eventually, Lazo has got its shape and

made possible to read and write smart contracts easier at the high-level

language.

Unique Features Even though Lazo is inspired by Solidity, Lazo has many unique fea-

tures and outstands other smart contract languages, such as statement

separation by a newline, function annotations for checking conditions,

foreach-loop with access to the current index, comprehensible inter-

faces to send coins and call external functions etc. Most importantly,

there will be no null pointer exceptions because in Lazo all variables are

default initialized. Due to that, a lot of null checks could be spared. In

conclusion, Lazo is a new kind of approach for creating smart contracts

on the blockchain.

82

Smart Contract in Bazo Blockchain Language Design

Suggestion for

improvements

We did not have a lot of experience with blockchain and contract pro-

gramming. When designing a feature, the underlying processes of the

Bazo blockchain were sometimes not clear to us. Therefore, we consid-

ered Bazo blockchain as a black box and designed the language on top of

that. If we had had more clear internal view, we would have been able to

design even a better language. Apart from that, lack of contract program-

ming raised numerous questions like: "do we really need this feature,

is there a real-world use case for this feature or is it the recommended

best practice to program?". It eventually cost us more time. With prior

knowledge, we could have worked efficiently without redesigning certain

features several times (e.g. error handling, transferring coins etc.).

Future Work According to the language specification, a compiler could be developed

to compile Lazo programs into Bazo virtual machine instructions (op-

codes). If there are no opcodes available for certain new features, the

Bazo VM needs to be extended. In addition to that, an IDE extension for

syntax highlighting and code completion would be also very convenient

for writing contracts in Lazo.

Page 83 of 157

Glossary

abstract syntax tree is a tree representation of the abstract syntactic structure of source code

written in a programming language.. 75

call stack A stack data structure which stores data about the active subroutines of a program.

80

Externally Owned Account is controlled by private keys and has no associated code. 8, 45,

62

Hoisting Hoisting is JavaScript’s default behavior of moving declarations to the top.. 25

Lazo Lazo is the name of our programming language. 18–22, 25–28, 30, 32, 33, 35, 36, 38–41,

45–50, 52, 53, 55, 59, 61, 63

84

Acronyms

ANTLR ANother Tool for Language Recognition. 12, 75, 79

ASCII American Standard Code for Information Interchange. 19, 32, 33

DApp Distributed Application. 45, 46

EBNF Extended Backus-Naur Form. 79

EVM Ethereum Virtual Machine. 45

ICO Initial Coin Offering. 63

IL Intermediate Language. 18

Opcodes Operation codes. 11, 18

SI Internation System of Units. 29

VM Virtual Machine. 18, 30

85

Bibliography

[1] Marco Steiner Ennio Meier. Bachelor Thesis - Integrating Smart Contracts into the Bazo

Blockchain. 2018.

[2] Bazo Blockchain Github Repo. URL: https://github.com/bazo-blockchain. (ac-

cessed: 7.12.2018).

[3] Golang Docs. Package ecdsa. URL: https : / / golang . org / pkg / crypto / ecdsa /

#Verify. (accessed: 28.10.2018).

[4] Danny van Heumen. Error handling in modern languages. URL: http://dannyvanheumen.

nl/post/error-handling-in-modern-languages/. (accessed: 24.10.2018).

[5] Scilla. Scilla Lang. URL: https://scilla-lang.org/. (accessed: 30.09.2018).

[6] Solidity Docs v0.5.0. Order of Precedence of Operators. URL: https://solidity.readthedocs.

io/en/latest/miscellaneous.html#order. (accessed: 28.10.2018).

[7] Vyper. Vyper 0.1.0-beta3 documentation. URL: https://vyper.readthedocs.io/en/

latest/index.html. (accessed: 26.09.2018).

[8] Robert Sedgewick & Kevin Wayne. A Operator Precedence in Java. URL: https : / /

introcs.cs.princeton.edu/java/11precedence/. (accessed: 22.10.2018).

86

https://github.com/bazo-blockchain
https://golang.org/pkg/crypto/ecdsa/#Verify
https://golang.org/pkg/crypto/ecdsa/#Verify
http://dannyvanheumen.nl/post/error-handling-in-modern-languages/
http://dannyvanheumen.nl/post/error-handling-in-modern-languages/
https://scilla-lang.org/
https://solidity.readthedocs.io/en/latest/miscellaneous.html#order
https://solidity.readthedocs.io/en/latest/miscellaneous.html#order
https://vyper.readthedocs.io/en/latest/index.html
https://vyper.readthedocs.io/en/latest/index.html
https://introcs.cs.princeton.edu/java/11precedence/
https://introcs.cs.princeton.edu/java/11precedence/

Part V

Appendices

87

Appendix A

Rough Analysis

Google Sheet: Comparison of smart contract languages

88

https://docs.google.com/spreadsheets/d/1JoHZazJo2LJcQtmOyX_fNIIq4u-1xABxGHtVkaLqJSc/edit?usp=sharing

Language Blockchain

Quality of Sources
(1 non-reliable ,
10 very reliable)

Popularity in GitHub
(1 unpopular
10 very popular > 3000)

Quality of Lang Specs
(1 = not at all,
10 = in great detail) Imperative Functional Object-oriented Inheritance

Ivy Bitcoin 7 5 4 X X
Simplicity Bitcoin 5 1 5 X
Balzac Bitcoin 3 1 3 X
Solidity Ethereum 10 10 10 X X X
Vyper Ethereum 8 8 8 X X
Bamboo Ethereum 3 4 2 X X
Flint Ethereum 9 3 8 X X X
Idris Ethereum 8 8 9 X modular
L4 Ethereum 1 1 1 ?? ?? ?? ??
Babbage Ethereum 2 N/A 1
Lolisa Ethereum 3 N/A 2 X X X
Serpent Ethereum 3 3 5 X X X
eWASM (WebAssembly)Ethereum 3 3 2 X
Mutan Ethereum 3 1 1 X
LLL Ethereum 4 N/A 1 X X
Sophia Eternity 4 2 4 X X X
Varna Eternity 2 N/A 2 X X
Scilla Zilliqa 9 2 6 X
Michelson Tezos 2 N/A 3 X
Liquidity Tezos 4 2 3 X
Pact Kadena 4 3 3 X modular
Plutus Cardano 7 2 7 X data types (haskell) X
Marlowe Cardano 2 1 1 ?? ?? ?? ??
RIDE Waves 4 2 8 X X
F* Zen 5 5 6 X X X
Rholang RChain 5 2 4 X X
Lisk Ethereum 8 8 1 ?? ?? ?? ??

Modifiers Procedural Static types Dynamic types Turing Complete Intermediate Language Active
X X
X ??
X X

X X X X
X X
X 4m ago

X X X
X X X X
?? ?? ?? ?? ?? ?? ??

?? ??
X X X ??

X X X Deprecated
X X X X

X X Deprecated
X X X ??

X X X X
X X ??

X X X
X X

X X
X X X
X X X X

?? ?? ?? ?? ?? ?? ??
X X
X Prooves termination X
X X

?? ?? ?? ?? ?? ?? ??

Bemerkung Link
compiles to Bitcoin Script, so not turing-complete and very limited https://github.com/ivy-lang/ivy-bitcoin

simplicity smart c…
Abstract language/Sieht nicht wirklich nach smart contracts aus, sehr sehr basic und kompliziert

https://github.com/ethereum/solidity
Experimental language. Syntax similar to Python3, but not all Python3 functionalities are availablehttps://github.com/ethereum/vyper

https://github.com/pirapira/bamboohttps://medium.com/@pirapira/implementing-a-vault-in-bamboo-9c08241b6755
Inspired by Swift, still in alpha development https://github.com/flintlang/flint
general-purpose functional programming language with dependent types, haskell likehttps://github.com/idris-lang/Idris-dev
No information available
Visual/Mechanical langauge
Largely subset of Solidity, programs written in Solidity can be translated into Lolisa, and vice versa, with a line-by-line correspondence without rebuilding or abstracting, which are operations that can negatively impact consistency.https://arxiv.org/abs/1803.09885
Python-like
Ethereum flavored WebAssembly, still under development

Lisp-like
ML (MetaLanguage) family

Translated to Michelson

Prototype
DSL: Finance

Process oriented, fully asynchronous
Do not have a Smart Contract Language https://github.com/LiskHQ

Smart Contract in Bazo Blockchain Language Design

Sources for the languages are listed in the following document.

Page 92 of 157

12.12.18, 11'47Milestone 1: Grobanalyse · bazo-blockchain/lazo-specification Wiki

Page 1 of 4https://github.com/bazo-blockchain/lazo-specification/wiki/Milestone-1:-Grobanalyse

Milestone 1: Grobanalyse
rpfister102 edited this page a minute from now · 6 revisions

Analyse

Liste der bereits existierenden
Smart Contract
Programmiersprachen:

We selected the languages according to the following
criteria.

Wide-spread popular language
(recommendations, blogs)

Good documentation

Popularity in GitHub (stars, watchers)

Bitcoin

Ivy, https://github.com/ivy-lang/ivy-bitcoin - 255
Stars / 24 Watchers / 24 Forks

https://docs.ivy-lang.org/bitcoin/

Discussion Channel for any question regards
to Ivy:
https://discordapp.com/channels/396801556
147732490/396801738813997056

Simplicity, https://blockstream.com/simplicity.pdf

Balzac, https://blockchain.unica.it/balzac/docs/

Ethereum

 Pages 6

Home

Meeting Minutes

Milestone 1: Grobanalyse

Milestone 2: Genaue Analyse

Milestone 3: Language
Design

Milestone 4: ANTLR

 Add a custom sidebar

Clone this wiki locally

bazo-blockchain / lazo-specification

Edit New Page

Find a Page…

https://github.com/bazo-blockchain/lazo-specification.wiki.git

12.12.18, 11'47Milestone 1: Grobanalyse · bazo-blockchain/lazo-specification Wiki

Page 2 of 4https://github.com/bazo-blockchain/lazo-specification/wiki/Milestone-1:-Grobanalyse

Solidity,
https://solidity.readthedocs.io/en/develop/ - 5982
Stars / 504 Watchers / 1594 Forks

Vyper, https://github.com/ethereum/vyper - 2007
Stars / 165 Watchers / 207 Forks

https://vyper.readthedocs.io/en/latest/installi
ng-vyper.html

Bamboo, https://github.com/pirapira/bamboo -
280 Stars / 35 Watchers / 35 Forks

Flint, https://github.com/flintlang/flint - 170 Stars
https://docs.flintlang.org/

https://www.imperial.ac.uk/media/imperial-
college/faculty-of-
engineering/computing/public/ug-prizes-
201718/Franklin-Schrans-A-new-
programming-language-for-safer-smart-
contracts.pdf

Idris
https://publications.lib.chalmers.se/records/f
ulltext/234939/234939.pdf

https://www.idris-lang.org/documentation/

L4, https://ethereumfoundation.org/devcon2/?
session=designs-for-the-l4-contract-
programming-language-based-on-deontic-
modal-logic

Babbage,
https://medium.com/@chriseth/babbage-a-
mechanical-smart-contract-language-
5c8329ec5a0e

Lolisa, https://arxiv.org/abs/1803.09885

Serpent,
https://www.cs.cmu.edu/~music/serpent/doc/serp
ent.htm

eWASM, https://github.com/ewasm

Mutan (deprecated,
https://forum.ethereum.org/discussion/922/mutan

12.12.18, 11'47Milestone 1: Grobanalyse · bazo-blockchain/lazo-specification Wiki

Page 3 of 4https://github.com/bazo-blockchain/lazo-specification/wiki/Milestone-1:-Grobanalyse

-faq)

LLL, https://lll-
docs.readthedocs.io/en/latest/lll_reference.html
(supports core but hardly used)

Eternity

Sophia,
https://github.com/aeternity/protocol/blob/master/
contracts/sophia.md

Varna, https://cryptovarna.com

Other Blockchain

Scilla (Zilliqa), https://github.com/Zilliqa/scilla - 58
Stars / 18 Watchers / 5 Forks

https://scilla-lang.org/

https://arxiv.org/pdf/1801.00687.pdf

Michelson (Tezos), https://www.michelson-
lang.com

Liquidity (Tezos), http://www.liquidity-
lang.org/doc/tutorial/tutorial.html - 89 Stars / 19
Watchers / 16 Forks

Pact (Kadena), https://github.com/kadena-io/pact
- 215 Stars / 22 Watchers / 24 Forks

https://github.com/kadena-io/pact

Plutus, https://github.com/input-output-
hk/plutus-prototype

Marlowe,
https://twitter.com/IOHK_Charles/status/9638377
66957137921

RIDE,
ttps://wavesplatform.com/files/docs/white_paper_
waves_smart_contracts.pdf

F*, https://www.fstar-lang.org

Rholang, https://github.com/rchain/Rholang

12.12.18, 11'47Milestone 1: Grobanalyse · bazo-blockchain/lazo-specification Wiki

Page 4 of 4https://github.com/bazo-blockchain/lazo-specification/wiki/Milestone-1:-Grobanalyse

https://developer.rchain.coop/tutorial/

Lisk, https://lisk.io

Manche Blockchains nutzen auch normale
Programmiersprachen: C, C++, C#, JS, Java, Kotlin,
Rust, GoLang usw.

Quellen:

https://github.com/s-tikhomirov/smart-contract-
languages

https://hackernoon.com/contractpedia-an-
encyclopedia-of-40-smart-contract-platforms-
4867f66da1e5

https://blog.comae.io/smart-contract-languages-
development-to-follow-992e30774b39

https://hackernoon.com/comparison-of-smart-
contract-platforms-2796e34673b7

https://github.com/Overtorment/awesome-smart-
contracts

Hilfreiche Links
https://en.wikipedia.org/wiki/Programming_paradi
gm

 Add a custom footer

Appendix B

Domain Analysis

97

DOMAIN ANALYSIS - STUDY WORK

SMART CONTRACTS IN BAZO BLOCKCHAIN

December 12, 2018

Keerthikan Thurairatnam & Remo Pfister

HSR - Hochschule für Technik Rapperswil

Department of Computer Science

Smart Contract in Bazo Blockchain Domain Analysis

Document History

Date Vers. Change(s) Author

26.09.2018 1.0 Dokument erstellt Remo

27.09.2018 1.1 Analysis Solidity Remo

28.09.2018 1.2 Analysis Vyper Keerthikan

04.10.2018 1.3 Analysis Scilla Remo

07.10.2018 1.4 Analysis Scilla Keerthikan

10.12.2018 1.5 Spell Check and Corrections Remo

Page 1 of 53

Contents

1 Introduction . 5

1.1 Purpose . 5

1.2 Validity Period . 5

2 Blockchain Basics . 6

2.1 Transactions . 6

2.2 Blocks . 6

2.3 Mining . 7

2.4 Smart Contracts . 7

3 Solidity . 8

3.1 Sources . 8

3.2 Restrictions . 8

3.3 Introduction & Background . 8

3.4 Analysis . 9

3.4.1 Versioning and Backward Compatibility 9

3.4.2 Contracts . 9

3.4.3 Types . 11

3.4.4 Data location: . 12

3.4.5 Variables . 13

3.4.6 Functions . 15

3.4.7 Events . 17

3.4.8 Type Deduction . 17

3.4.9 Error Handling . 18

3.4.10 Integrated functions . 18

3.4.11 Inline Assembly . 18

3.5 Limitations . 18

4 Analyze Vyper . 19

4.1 Sources . 19

2

Smart Contract in Bazo Blockchain Domain Analysis

4.2 Restrictions . 19

4.3 Introduction & Background . 19

4.4 Analysis . 19

4.4.1 Types . 19

4.4.2 Visibilities . 20

4.4.3 Variables . 20

4.4.4 Built-in Global Variables . 20

4.4.5 Functions . 21

4.4.6 Events . 22

4.4.7 Control Structures . 23

4.4.8 Special features . 23

4.4.9 Unsupported Features - Address the Problems with Solidity . . 24

5 Scilla . 26

5.1 Sources . 26

5.2 Restrictions . 26

5.3 Introduction & Background . 26

5.4 Analysis . 27

5.4.1 Design Principles . 27

5.4.2 Types . 27

5.4.3 Standard Libraries . 28

5.4.4 State Variables . 28

5.4.5 Expressions . 29

5.4.6 Statements . 29

5.4.7 Transitions / Functions . 29

5.4.8 Communication . 30

5.4.9 Continuation . 30

5.4.10 Events . 31

5.4.11 Advantages & Disadvantages . 31

6 Security Issues/Consideration . 32

6.1 Re-entrancy attack . 32

6.2 Gas Limit and Loops . 33

6.3 Integer overflow and underflow . 33

6.4 Miscellaneous . 34

7 Examples . 35

7.1 Solidity Examples . 35

Page 3 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7.1.1 Voting . 35

7.1.2 Simple Open Auction . 39

7.1.3 Blind Auction . 42

7.2 Vyper Examples . 46

7.2.1 Simple Open Auction . 46

7.2.2 Safe Remote Purchases . 47

7.2.3 CrowdFund . 48

7.3 Scilla Examples . 51

7.3.1 Hello World . 51

Page 4 of 53

Smart Contract in Bazo Blockchain Domain Analysis

1 INTRODUCTION

1.1 Purpose

This document contains the domain analysis for our study. Three different smart contract

languages are analyzed: Solidity, Vyper and Scilla.

1.2 Validity Period

The document is valid during the period of the "Studienarbeit HS 2018". Changes are recorded

in the document history.

Page 5 of 53

Smart Contract in Bazo Blockchain Domain Analysis

2 BLOCKCHAIN BASICS

A Blockchain basically consists of blocks of transactions which are chained one after the other.

It is a distributed, transactional database. Everyone in the network can read entries from

this database. Entries in the database are immutable. The database can only be extended by

creating new transactions.

Figure 1: Blockchain

2.1 Transactions

As already mentioned, you need to create a transaction, which has to be accepted by all other

participants of the network, to add new data in the database. The transaction is atomic, which

means it is either processed completely or not at all. During the processing of a transaction,

no other transaction can alter the database.

To verify the creator, each transaction is cryptographically signed, so authorization checks

can be performed very easily.

2.2 Blocks

Transactions are bundled into a block. So a block is a collection of transactions and some

meta information such as a timestamp, a nonce etc. New blocks will be mined and distributed

Page 6 of 53

Smart Contract in Bazo Blockchain Domain Analysis

among all nodes in the network in a rather regular intervals - in Bitcoin, it is about 10 minutes,

while in Ethereum it is between 10 to 19 seconds.

If two transactions contradict each other (e.g. double spending), the one that is processed

first will become part of the block. The other one will be rejected.

2.3 Mining

Mining is the "order selection mechanism", which decides which block is added to the chain

next. Due to this mechanism, it may happen that blocks are reverted from time to time to

prevent branching. This only happens at the end of the chain. The more blocks that are

added to the end, the less likely they are to be reverted.

2.4 Smart Contracts

Smart Contracts are self-executing contracts with the terms of the agreement between mini-

mum two parties [2]. They are written in lines of code and are distributed among the decen-

tralized blockchain network as transactions.

General requirements that have to be met for smart contracts:

• Receive and send coins

• Execute program logic when certain conditions are fulfilled

• Should be able to call other contracts (including themselves)

• Should be secure

Page 7 of 53

Smart Contract in Bazo Blockchain Domain Analysis

3 SOLIDITY

3.1 Sources

This analysis is based on the solidity v0.4.25 documentation [6]. Note that we only picked the

important parts from the documentation and left out details which are not important for our

analysis in our opinion. More information can be found in the official documentation. Most

of the examples used in this analysis are copied or rewritten from the examples given within

the solidity documentation.

3.2 Restrictions

At the time of writing, the latest version of Solidity is v0.4.25. Therefore we focus on this

version during our analysis. There is also a documentation for v0.5.0 available, but as this

version is not released, we do not know if this documentation is complete or not, which can

lead to misconception. We did not analyze this version.

3.3 Introduction & Background

"Solidity is a contract-oriented, high-level language for implementing smart contracts. It

was influenced by C++, Python and JavaScript and is designed to target the Ethereum Virtual

Machine (EVM).

Solidity is statically typed, supports inheritance, libraries and complex user-defined types

among other features.

A contract in the sense of Solidity is a collection of code (its functions) and data (its state) that

resides at a specific address on the Ethereum blockchain."[6]

Page 8 of 53

Smart Contract in Bazo Blockchain Domain Analysis

3.4 Analysis

3.4.1 Versioning and Backward Compatibility

Solidity uses pragmas (instructions for the compiler) to ensure that a contract runs correctly

and does not behave differently with different compiler versions.

3.4.2 Contracts

In Solidity, contracts are similar to classes in other languages such as Java or C#. Contracts

can contain State Variables, Functions, Modifiers, Structs and Enums. Also inheritance is

supported.

Inheritance The inheritance system is very similar to Python’s, it also supports multi-inheritance,

which not only brings benefits, but also comes with drawbacks such as the diamond problem.

As in other languages like C# that support inheritance, function calls are virtual, which

means that (in general) the most derived function is called. This can be bypassed, by giving

the contract name explicitly.

When inheritance is used, only a single contract is created on the blockchain. Code from the

base contracts is copied into the new contract.

We will not go into any further details, so please consult the official documentation for

more information about the diamond problem or the inheritance mechanism.

Abstract Contracts

Abstract contracts are used to make the interface of a contract known to the compiler.

1 contract Contact {
2 function getName() public returns (string name); // abstract function
3 }

Interfaces

Interfaces are also supported and have the same restrictions as in other languages:

Page 9 of 53

Smart Contract in Bazo Blockchain Domain Analysis

• Can only contain function declarations, no implementations

• Cannot inherit

• Cannot define Array, Structs, Enums or Variables

1 interface Token {
2 function transfer(address recipient, uint amount) public;
3 }

Contract implement interfaces the same way as they inherit other contracts, with the is

keyword.

The new keyword

By using the new keyword with a contract, a contract can create a new contract during execu-

tion.

The this keyword

By using the this keyword the current contract can be accessed.

The selfdestruct(address recipient) function

This function can be used to destroy the current contract and send its funds to the given

address.

Libraries

Libraries are contracts that are only deployed once at a specific address. Other contracts

can call them using a special call feature provided by the EVM, which allows their code to

be executed in the context of the calling contract. This way the library can access the calling

contract and its storage. State variables can only be accessed if explicitly passed by the calling

contract. Direct calls to library functions are only possible, if they do not modify the state.

For more details, please consult the official solidity documentation.

Using For

Using A for B: attaches the library functions from A to any type B. The attached functions will

receive the object they are called on as the first parameter. This is similar to the self variable

in Python. There is also an option to attach library functions to any type in the contract using

Page 10 of 53

Smart Contract in Bazo Blockchain Domain Analysis

a *-symbol instead of type B.

3.4.3 Types

Solidity is a statically and strong typed language. Supported types are shown below.

Table 1: Value Types

Type Keyword
Boolean bool

Signed Integer int1

Unsigned Integer uint1

Fixed Point Numbers fixedMxN2

Unsigned Fixed Point Numbers ufixedMxN2

Address (160 Bit) address
Fixed-Size byte array bytes3

Dynamically-Size byte array bytes or string
Enum enum

Table 2: Reference Types

Type Remarks
Arrays Array of any type
Structs Define new types

Mappings cf. hash tables

1: Default length is 256 bit. Integer size can be specified by using int8 to int256 for signed

integers or uint8 to uint256 for unsigned integers. Both types can be increased in steps of 8.
2: M stands for the number of bits taken by the type and N for how many decimal points are

available. M can be any value from 8 to 256 in steps of 8. fixed and ufixed are aliases for

fixed128x18 and ufixed128x18. Fixed Point Numbers are not fully supported by Solidity.

They can be declared but you can not assign to or from them.
3: Options are bytes1, bytes2, bytes3, ..., bytes32 and bytes. bytes is an alias

for bytes1.

Fixed Point Numbers vs Floating Points:

"The main difference between floating point (...) and fixed point numbers is that the number

of bits used for the integer and the fractional part (the part after the decimal dot) is flexible

in the former, while it is strictly defined in the latter. Generally, in floating point almost the

entire space is used to represent the number, while only a small number of bits define where

the decimal point is."[6]

Addresses

Addresses are used to store the address of contracts or key value pairs (e.g. Wallets). They

Page 11 of 53

Smart Contract in Bazo Blockchain Domain Analysis

disallow arithmetic operations. From version 0.5.0 contracts do not derive from the address

type any longer, but they can still be converted. An address has several members such as

balance, to get the balance of an address, or transfer to transfer Ether. There are further

members, for more details, please refer to the solidity v0.4.25 documentation.

Mappings

Mappings are virtually initialized with every possible key (value equals zero). When querying

a map for a key which is not inside the map, Solidity returns the zero value and does not

throw an exception. This means loops over all values of a mapping are not possible and keys

need to be remembered somehow.

3.4.4 Data location:

There are three different spaces, where data can be stored: Storage, Memory and CallData

(Non-Modifiable and Non-Persistent)

The data location changes how assignments in smart contracts behave.

1 pragma solidity ^0.4.0;
2

3 contract C {
4 uint[] x; // the data location of x is storage
5

6 // the data location of memoryArray is memory
7 function f(uint[] memoryArray) public {
8 x = memoryArray; // works, copies the whole array to storage
9 var y = x; // works, assigns a pointer, data location of y is storage

10 y[7]; // fine, returns the 8th element
11 y.length = 2; // fine, modifies x through y
12 delete x; // fine, clears the array, also modifies y
13 // The following does not work; it would need to create a new temporary /
14 // unnamed array in storage, but storage is "statically" allocated:
15 // y = memoryArray;
16 // This does not work either, since it would "reset" the pointer, but there
17 // is no sensible location it could point to.
18 // delete y;
19 g(x); // calls g, handing over a reference to x
20 h(x); // calls h and creates an independent, temporary copy in memory
21 }

Page 12 of 53

Smart Contract in Bazo Blockchain Domain Analysis

22

23 function g(uint[] storage storageArray) internal {}
24 function h(uint[] memoryArray) public {}
25 }

3.4.5 Variables

Variables are initialized with a default value when being declared without an explicit value

assignment. The default value represents the zero state of the type (e.g. false for boolean, 0

for integers).

Mutable and Immutable Variables

Solidity provides both, mutable and immutable (constant) state variables. To define a im-

mutable state variable, use the constant keyword. Constants have to be assigned from an

expression which can be evaluated at compile time.

Variables in Functions

Variables declared in functions belong to the functions scope. The following code snippet is

invalid code:

1 pragma solidity ^0.4.16;
2

3 contract ScopingErrors {
4 function scoping() public {
5 uint i = 0;
6

7 while (i++ < 1) {
8 uint same1 = 0;
9 }

10

11 while (i++ < 2) {
12 uint same1 = 0;// Illegal, second declaration of same1
13 }
14 }

Page 13 of 53

Smart Contract in Bazo Blockchain Domain Analysis

Additionally, variables are initialized at the beginning of a function to their default value, so

code like this is legal although it is not very readable:

1 pragma solidity ^0.4.0;
2

3 contract C {
4 function foo() public pure returns (uint) {
5 // baz is implicitly initialized as 0
6 uint bar = 5;
7 if (true) {
8 bar += baz;
9 } else {

10 uint baz = 10;// never executes
11 }
12 return bar;// returns 5
13 }
14 }

Solidity will change this in version 0.5.0 and use block scoping instead.

Global Variables

Global variables are used to access the blockchain.

msg The message which called the contract.

tx The current transaction.

block The current block.

Note: "The values of all members of msg, including msg.sender and msg.value, can change for

every external function call. This includes calls to library functions."[6]

Units

Solidity supports two types of units: Ether Units and Time Units. The first are used to con-

vert between ether, wei, finney and szabo. The latter are used to work with time. Seconds,

minutes, hours, days, weeks and years are supported.

ABI Encoding Functions

Contracts can use ABI encoding functions which are used to encode given arguments for the

Page 14 of 53

Smart Contract in Bazo Blockchain Domain Analysis

ABI. Those functions are used for function calls without actually calling the function directly.

For further detail, please consult the official solidity documentation.

3.4.6 Functions

Visibility

public Part of the Contract Interface. Can be called internally and externally.

private Not part of the Contract Interface. Are only visible in the contract they are defined

in, not in derived contracts. Can only be called internally.

external Part of the Contract Interface. Can only be called externally.

interal Not Part of the Contract Interface. Are visible to contract and derived contracts. Can

only be called internally.

Scoping

Variables declared in functions belong to the functions scope as already mentioned. So

declaring a variable twice within a function body is not possible, even if it is done in separate

blocks. This will change in v0.5.0 of Solidity.

Constructor

The constructor is only called once during the creation of the contract. It cannot be called

afterwards.

Only one constructor is allowed, i.e. constructor overloading is not supported. If no construc-

tor is defined, the default constructor will automatically be generated.

Getter Functions

Getter functions are automatically generated for public state variables. They have external

visibility. If variables are called internally, the state variable are accessed directly.

Returning

Functions in Solidity can return multiple values. The return types have to be declared within

the function header.

Overloading

Page 15 of 53

Smart Contract in Bazo Blockchain Domain Analysis

Function overloading is supported.

Overriding

Due to inheritance, overriding is supported. To overwrite a function of the base class, a

function with the same name and number/types of parameters need to be defined. The

output parameters must be the same, otherwise an error is caused.

Lambdas

Lambdas are currently not supported.

Views, Pure

Functions declared view promise that they do not change the state of the contract (Provable).

Functions declared pure promise not to access (read or change) the state.

Fallback function

There can be one unnamed function without arguments or return value in a contract which

serves as a fallback function. This function is called if no other function in the contract

matches the given function identifier.

Function Types

1 function (<parameter types>)
2 {internal|external}
3 [pure|constant|view|payable]
4 [returns (<return types>)]

Function Modifiers

Modifiers can be used to extend the behaviour of functions. Often, they are used for checking

preconditions and postconditions of a function. A modifier is defined using the modifier key-

word within a contract and can be applied to a function within the function header. Multiple

modifiers can be applied at the same time. When the _-symbol in a modifier is reached, the

actual function is executed. After the return statement in the function, the execution jumps

back into the modifier after the _-symbol. Modifiers are inheritable properties.

Page 16 of 53

Smart Contract in Bazo Blockchain Domain Analysis

1 pragma solidity ^0.4.22;
2

3 contract BankAccount {
4 function withdraw() public isOwner {...}
5

6 modifier isOwner {
7 require(
8 msg.sender == owner,
9 "You must be the owner to call this function."

10);
11 _;
12 }
13 }

Payable

The payable keyword marks a function to allow to receive Ether with a call. Otherwise the

Ethers are rejected.

3.4.7 Events

Events are declared within the contract. They specify an event name and its parameters. An

Event is triggered within a function by using the emit keyword. User interfaces and server

applications can listen to such an event and register handlers for them. Other contracts

cannot. As soon as the event is emitted, the watchers are triggered and receive the arguments

specified in the event.

3.4.8 Type Deduction

It is not required to explicitly specify the type of a variable. The compiler can infer it from the

type of the first expression assigned to this variable.

Implicit Conversion

Is executed if an operator is applied to different types. The compiler tries to convert one of

the operands to the type of the other.

Explicit Conversion

Page 17 of 53

Smart Contract in Bazo Blockchain Domain Analysis

Explicit conversion can be done by wrapping the assigned value with the explicit type. This

can lead to unexpected behaviour. If a type is casted to a smaller type the higher-order bits

are cut off.

3.4.9 Error Handling

There are two types of exceptions: assert-style exceptions and require-style exceptions.

Internally, revert operations are performed in both cases. There is no way to continue the

execution safely. Code execution can be aborted and state can be reverted by explicitly calling

the revert function.

3.4.10 Integrated functions

Solidity supports several mathematical and cryptographic functions such as sha256, ripemd160

and addmod.

3.4.11 Inline Assembly

Solidity supports inline assembly in order to support legacy code.

3.5 Limitations

• Keywords are restricted to ASCII character set.

• String values can contain UTF-8 encoded data.

• Functions and state variables are in the same namespace.

• Max. recursion depth: 1024

Page 18 of 53

Smart Contract in Bazo Blockchain Domain Analysis

4 ANALYZE VYPER

4.1 Sources

This analysis is based on the Vyper v0.1.0-beta3 documentation [7]. Note that we only picked

the important parts from the documentation and left out details which are not important for

our analysis in our opinion. More information can be found in the official documentation.

Most of the examples used in this analysis are copied or rewritten from the examples given

within the vyper documentation.

4.2 Restrictions

At the time of writing, Vyper is in beta development (v0.1.0-beta3)[7]. Therefore, the language

specification may vary in the final release.

4.3 Introduction & Background

Vyper is a contract-oriented and python-like programming language for the Ethereum Virtual

Machine (EVM). The project was started in late 2016 and is still under development.

The main principles and goals of creating a new language are the following:

• Security: Provide built-in checks to create more secure "smart" contracts.

• Language and compiler simplicity: Remove unnecessary features and keep the lan-

guage simple.

• Auditability: The language should be human-readable and avoid misconception.

4.4 Analysis

4.4.1 Types

Vyper is a statically and strong typed language. Supported types are shown below.

Page 19 of 53

Smart Contract in Bazo Blockchain Domain Analysis

Table 3: Value Types

Type Keyword
Boolean bool

Signed Integer int128
Unsigned Integer uint256

Decimal decimal
Address (160bit) address

Units units{}
32-bit-wide Byte Array bytes32
Fixed-size Byte Array bytes[Length]

Table 4: Reference Types

Type Remarks
Fixed-size Lists Array of any type

Structs Group several variables
Mapping cf. hash tables

4.4.2 Visibilities

Vyper supports only two visibilities (aka. access control modifiers), namely public and

private.

4.4.3 Variables

A variables is declared with an identifier, a data type and optionally a visibility (default:

private). Note that the public visibility means that the variable is readable by an external

caller, but not writable.

1 value: public(wei_value)
2 seller: public(address)
3 total_paid: int128

4.4.4 Built-in Global Variables

block provides information about the block at the time of calling

msg provides information on the method caller

Warning: If a method is called from outside, the msg.sender is set to the actual caller for

the first time. However, if that method calls another method within the same contract,

msg.sender will be set to the contract itself.

Page 20 of 53

Smart Contract in Bazo Blockchain Domain Analysis

4.4.5 Functions

The syntax of a function is similar to Python. Apart from that, the functions in Vyper must be

annotated with a visibility, either @public or @private.

1 @public
2 @payable
3 def bid():
4 // ...

By using the @payable annotation, it indicates that the bid-function is only executed when

the message calling the contract is sent with Ether. Furthermore, @constant decorator can

also be used to declare that the method only reads the contract state or return a simple calcu-

lation without changing the state. Note that reading the blockchain state is free, modifying

costs gas. Thus, adding @constant annotation provides additional certainty of saving gas

fees.

Constructor & Destructor

There are two special type of functions.

__init__() Constructor initializes a new contract for use. Arguments can be defined, if

needed.

selfdestruct(address) Refunds the receiver at the defined address and destroys the contract.

Default function

When a contract is called with an undefined function identifier, the default function will be

executed. Default function is the same as Solidity’s fallback function 3.4.6.

1 @public
2 @payable
3 def __default__():
4 // ...

The default function’s identifier should be always named "__default__" and annotated with

@public. It cannot have parameters and cannot return anything. Additionally, if the function

is annotated as @payable, it will be executed whenever the contract is sent Ether. It is

Page 21 of 53

Smart Contract in Bazo Blockchain Domain Analysis

important to mention that Ethereum does not differentiate between sending Ether to a user’s

address or to a contract.

If no default function is defined, Vyper generates a default function, just as in Solidity, and

calls REVERT opcode. It produces an exception, so the funds will not be transferred to the

receiver.

Best Practice - Structure of Functions

It is recommended to structure the function into three phases:

1. Checking conditions

2. Performing actions (potentially changing conditions)

3. Interacting with other contracts

An example code snippet is shown below.

1 @public
2 @payable
3 def end_auction():
4 # 1. Conditions
5 assert block.timestamp >= self.auction_end
6 assert not self.ended
7

8 # 2. Effects - change state variable
9 self.ended = True

10

11 # 3. Interaction
12 send(self.beneficiary, self.highest_bid)

4.4.6 Events

Events are used to notify the subscribers when something of interest occurs. Events must be

declared before global declarations and function definitions as shown below.

1 Payment: event({amount: int128, from: indexed(address)})
2

3 total_paid: int128
4

Page 22 of 53

Smart Contract in Bazo Blockchain Domain Analysis

5 @public
6 @payable
7 def pay():
8 self.total_paid += msg.value
9 log.Payment(msg.value, msg.sender) # emit event

Events do not take storage, so they do not cost gas either. The drawback is that contracts

cannot listen to the events. They are available only to clients.

4.4.7 Control Structures

Vyper supports only the following control structures.

• If-Else

• for-Loop

• continue, break

• return

1 for i range(start, end, incr):
2 if i >= self.nextFunderIndex:
3 // ...
4 else:
5 // ...

Vyper does not support while-loop. Looping over a variable may cause infinite-loop and

make gas limit attacks possible. Therefore, Vyper supports only a simple ranged for-loop. As

a consequence, Vyper is not a turing-complete language.

4.4.8 Special features

Bounds checks Check if the array access lies within the range

Under/overflow checks Check the over and underflow on the arithmetic operations

Page 23 of 53

Smart Contract in Bazo Blockchain Domain Analysis

4.4.9 Unsupported Features - Address the Problems with Solidity

The following features are not supported to avoid misleading or difficult to understand code.

Function modifiers In Solidity, function modifiers can be used to check preconditions and

postconditions, as shown below. They can be misleading and harm auditability. In

Vyper, it is recommended to use inline assert checks.

1 modifier onlyOwner {
2 require(msg.sender == owner, "Only owner can call this function.");
3 _; // Mandatory!! The function body is inserted here.
4 }
5

6 function close() public onlyOwner {
7 selfdestruct(owner);
8 }

Class Inheritance Some implementation is "hidden" in the superclass. It can negatively

impact auditability.

Inline assembly Solidity lets you write "inline assembly" inside Solidity source code. Assem-

bly codes are hard to read and debug. Refactoring the code later is tedious.

1 function at(address _addr) public view returns (bytes o_code) {
2 assembly {
3 let size := extcodesize(_addr)
4 o_code := mload(0x40)
5 mstore(0x40, add(o_code, and(add(add(size, 0x20), 0x1f), not(0x1f))))
6 mstore(o_code, size)
7 extcodecopy(_addr, add(o_code, 0x20), 0, size)
8 }
9 }

Function overloading It is easier to write misleading code. One function log("hello") just logs

a message but the other function log("hello", "world") could execute harmful operations

(e.g. steal money).

Operator overloading enables redefining popular operators (e.g. +, - etc.) and give rise

to misconception. For instance, one could override the "+" arithmetic operator and

Page 24 of 53

Smart Contract in Bazo Blockchain Domain Analysis

execute harmful operations behind the scene.

Recursive calling makes it impossible to set an upper bound on gas limits which may lead

to gas limit attacks.

Infinite-length loops Similar to recursive calling. Therefore, Vyper supports only limited

for-loop, the range of which is pre-determined.

Binary fixed point Decimal fixed point is better because it has an exact representation. On

the other hand, binary fixed point often requires approximation:

(0.2)10 = (0.001100110011...)2

Approximation could lead to unexpected results, e.g.

0.3+0.3+0.3+0.1 6= 1

.

Page 25 of 53

Smart Contract in Bazo Blockchain Domain Analysis

5 SCILLA

5.1 Sources

This analysis is based on the Scilla v0.0.1 documentation [4] and the corresponding whitepa-

per [1]. Note that we only picked the, from our point of view, important parts and left out

irrelevant details. More information about Scilla can be found in the official documentation

or the whitepaper. Most of the code examples are copies or rewrites of the scilla documenta-

tion.[5]

5.2 Restrictions

This analysis focuses on the version 0.0.1 of scilla-lang. Knowledge of Haskell, Functional

Languages and the lambda calculus are required as we will not explain any of these languages

or concepts in this analysis.

5.3 Introduction & Background

"Scilla, short for Smart Contract Intermediate-Level Language, is an intermediate-level smart

contract language being developed for Zilliqa. Scilla has been designed as a principled lan-

guage with smart contract safety in mind.

Scilla imposes a structure on smart contracts that will make applications less vulnerable to

attacks by eliminating certain known vulnerabilities directly at the language-level. Further-

more, the principled structure of Scilla will make applications inherently more secure and

amenable to formal verification.

The language is being developed hand-in-hand with formalization of its semantics and

its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs

about properties of programs."[5]

Page 26 of 53

Smart Contract in Bazo Blockchain Domain Analysis

5.4 Analysis

5.4.1 Design Principles

Seperation between Computation and Communication

"Contracts in Scilla are structured as communicating automata: every in-contract compu-

tation (e.g., changing its balance or computing a value of a function) is implemented as

a standalone, atomic transition, i.e., without involving any other parties. Whenever such

involvement is required (e.g., for transferring control to another party), a transition would

end, with an explicit communication, by means of sending and receiving messages. The

automata-based structure makes it possible to disentangle the contract-specific effects (i.e.,

transitions) from blockchain-wide interactions (i.e., sending/receiving funds and messages),

thus providing a clean reasoning mechanism about contract composition and invariants."[4]

Seperation between Effectful and Pure Computations

"Any in-contract computation happening within a transition has to terminate, and have a

predictable effect on the state of the contract and the execution. In order to achieve this,

Scilla draws inspiration from functional programming with effects, drawing a distinction

between pure expressions (e.g., expressions with primitive data types and maps), impure

local state manipulations (i.e., reading/writing into contract fields) and blockchain reflection

(e.g., reading current block number). By carefully designing semantics of interaction be-

tween pure and impure language aspects, Scilla ensures a number of foundational properties

about contract transitions, such as progress and type preservation, while also making them

amenable to interactive and/or automatic verification with standalone tools."[4]

Seperation between Invocation and Continuation

"Structuring contracts as communicating automata provides a computational model, which

only allows tail-calls, i.e., every call to an external function (i.e., another contract) has to be

done as the absolutely last instruction."[4]

5.4.2 Types

Lists

There are two structural recursion primitives as known from other languages like Haskell:

list_foldl and list_foldr.

Page 27 of 53

Smart Contract in Bazo Blockchain Domain Analysis

Table 5: Primitive Data Types

Type Keyword
Signed Integer Int32, Int64, Int128

Unsigned Integer Uint32, Uint64, Uint128
Strings String
Hashes ByStr32

Address (160bit) ByStr20
Block Numbers BNum

Maps Map

Table 6: Algebraic Data Types

Type Keyword Remarks
Boolean Bool Value is True or False
Option Some Checks for Presence
Option None Checks for Absence

List Nil Creates empty list
List Cons Adds elements to existing list
Pair Pair Creates a pair
Nat Zero or Succ Nat Work with natural numbers

5.4.3 Standard Libraries

Scilla comes with four standard libraries which can be used to write smart contracts, such as

BoolUtils, ListUtils, NatUtil and PairUtils.

5.4.4 State Variables

Scilla supports mutable and immutable state variables. Both are initialized in the construction

phase. The difference is, that mutable state variables can be modified by transitions/continu-

ations, while immutables cannot be modified at all.

1 (* Immutable fields declaration *)
2

3 (vname_1 : vtype_1,
4 vname_2 : vtype_2)
5

6 (* Mutable fields declaration *)
7

Page 28 of 53

Smart Contract in Bazo Blockchain Domain Analysis

8 field vname_1 : vtype_1 = init_val_1
9 field vname_2 : vtype_2 = init_val_2

5.4.5 Expressions

Expressions handle pure operations. There are 9 different types of expressions:

• Global binding of a variable to another expression

• Local binding of a variable to another expression

• Messages

• Functions

• Type Functions

• Variable Instantiation

• Application

• Application of Built-in functions

• Patterns (Match Expressions)

5.4.6 Statements

Statements are operations which access or modify the state (impure).

Reading from Blockchain State

In Scilla, you can read from the blockchain state. This state consists of blocks (keys) associated

with their values such as the block number.

Accepting/Rejecting incoming payments

Incoming payments have to be accepted by using the accept statement. Without invoking

this statement, the transition does not accept the payment and rejects it.

5.4.7 Transitions / Functions

Transitions in Scilla are similar to functions/methods in other languages. They are used to

change the state of a contract.

Page 29 of 53

Smart Contract in Bazo Blockchain Domain Analysis

1 // Mutable state
2 field welcome_msg : String = ""
3

4 transition setHello (msg : String)
5 welcome_msg := msg;
6 end

5.4.8 Communication

Contracts can communicate with each other through the send statement. Such calls to

external contracts must be done as absolutely last instruction, as shown below.

1 transition getHello ()
2 r <- welcome_msg;
3 msg = {_tag : Main; _recipient : _sender; _amount : 0; msg : r};
4 msgs = one_msg msg;
5 send msgs
6 end

5.4.9 Continuation

It is quite common that a contract calls a function from another contract for computation.

Once completed, it will use the result of the call in the rest of the execution. However, Scillas’

contract model prevent this as there are no instructions allowed after the send statement

at the end a transition. To solve this problem, Scilla uses an approach called Continuation-

passing style (CPS), as shown below.

1 (* Specifying a continuation in a Caller contract *)
2 continuation UseResult (res: uint)
3 send(<to -> owner, amount -> 0, tag -> "main", msg ->res>, MT)
4

5 (* Using a continuation in a transition of Caller *)
6 transition ClientTransition
7 (sender : address, value : uint, tag : string)
8 (* code of the transition *)
9 send (<to -> sender, amount -> 0, tag → "main", msg -> res>, UseResult)

10 (* Returning a result in a callee contract *)

Page 30 of 53

Smart Contract in Bazo Blockchain Domain Analysis

11 end
12

13 transition ServerTransition
14 (sender : address, value : uint, tag : string)
15 return value
16 end

The main difference between continuation and transition is that continuations are "passive",

i.e. they are invoked only after the result is returned from the callee’s contract. On the other

hand, transitions are "active" and could be invoked by sending a message.

5.4.10 Events

The contract can also communicate with the clients (off-chain) using the event statement.

1 e = { _eventname : "eventName"; <entry>_2 ; <entry>_3 };
2 event e;

5.4.11 Advantages & Disadvantages

Advantages

• Provides clear separation between the communication aspect and its programming

concept

• Prevents Re-Entrancy Attack by using CPS pattern (continuation-passing style)

• Provides formal verification tool to prove safety and liveness properties of the contract

• Since it is an intermediate language, high-level languages (e.g. Solidity) can also be

translated to Scilla to perform program analysis and verification

Page 31 of 53

Smart Contract in Bazo Blockchain Domain Analysis

6 SECURITY ISSUES/CONSIDERATION

Most of the problems described in this section only apply to Solidity, as the other two lan-

guages already solve those problems. Nevertheless those issues and attacks have to be

considered when writing a new language.

6.1 Re-entrancy attack

Note: The code examples here are taken from the Zilliqa Blog post "Scilla Design Story Piece by

Piece: Part 1" by Amrit Kumar. [3]

1 contract UnsafeContract1{
2 mapping(address => uint) shares;
3

4 function withdraw() public {
5 if (msg.sender.call.value(shares[msg.sender])())
6 shares[msg.sender] = 0; // update state after the external invokation
7 }
8 }

"In the UnsafeContract1 example, the contract sends out a message to transfer the share to

the sender (via msg.sender.call.value()) and then sets the share to 0 by updating shares in the

next line.

If the callee address is a contract, it can invoke withdraw() method back again. Notice that

in withdraw(), the caller’s entry in shares is updated to 0, only after the external call has

terminated. When the malicious contract calls back withdraw(), the shares of the sender will

not be updated. This allows the malicious contract to withdraw its share multiple times until

the provided gas is consumed.

If the recipient of the message had been a user (not a contract), then it would not have

been possible to call back into the contract and hence the execution would have ended as

expected."[3]

A possible fix for the re-entrance-attack is shown below.

Page 32 of 53

Smart Contract in Bazo Blockchain Domain Analysis

1 contract FixedContract1{
2 // Mapping of address and amount
3 mapping(address => uint) shares;
4 // Withdraw a share
5 function withdraw() public {
6 uint share = shares[msg.sender];
7 shares[msg.sender] = 0;
8 msg.sender.transfer(share);
9 }

10 }

6.2 Gas Limit and Loops

In the following example, the while-loop does not have a fix number of iterations. If they run

too long, it might require more gas than available in the block. In this case, the whole block

execution will always fail and the contract gets stuck completely.

1 while (voters[to].delegate != address(0)) {
2 to = voters[to].delegate;
3

4 // We found a loop in the delegation, not allowed.
5 require(to != msg.sender, "Found loop in delegation.");
6 }

See 7.1.1 Voting example for the full source code.

6.3 Integer overflow and underflow

Once the maximum of uint type is reached, it starts back from 0. Due to this, a recipient

can lose a considerable amount of money. It is recommended to do overflow and underflow

checks before doing any arithmetic operations.

1 mapping (address => uint256) public balanceOf;
2

3 // INSECURE
4 function transfer(address _to, uint256 _value) {

Page 33 of 53

Smart Contract in Bazo Blockchain Domain Analysis

5 /* Check if sender has balance */
6 require(balanceOf[msg.sender] >= _value);
7

8 balanceOf[msg.sender] -= _value;
9 balanceOf[_to] += _value; // balance of recipient is not checked

10 }

6.4 Miscellaneous

• tx.origin should not be used for authorization, use msg.sender instead.

• Callstack Depth (Fixed: all gas would be consumed well before reaching the 1024 call

depth limit).

• Sending and receiving Ether using send(), transfer(), and call.value()().

Page 34 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7 EXAMPLES

7.1 Solidity Examples

All the examples below are taken from the official Solidity documentation.[6]

7.1.1 Voting

The following example shows a Ballot voting contract[6]. The creator of the contract gives

the right to vote each address individually. The voters can either vote themselves or another

person they trust. At the end of the voting time, the winning proposal will be returned.

1 pragma solidity >=0.4.22 <0.6.0;
2

3 /// @title Voting with delegation.
4 contract Ballot {
5 // This declares a new complex type which will
6 // be used for variables later.
7 // It will represent a single voter.
8 struct Voter {
9 uint weight; // weight is accumulated by delegation

10 bool voted; // if true, that person already voted
11 address delegate; // person delegated to
12 uint vote; // index of the voted proposal
13 }
14

15 // This is a type for a single proposal.
16 struct Proposal {
17 bytes32 name; // short name (up to 32 bytes)
18 uint voteCount; // number of accumulated votes
19 }
20

21 address public chairperson;
22

23 // This declares a state variable that
24 // stores a `Voter` struct for each possible address.
25 mapping(address => Voter) public voters;
26

27 // A dynamically-sized array of `Proposal` structs.

Page 35 of 53

Smart Contract in Bazo Blockchain Domain Analysis

28 Proposal[] public proposals;
29

30 /// Create a new ballot to choose one of `proposalNames`.
31 constructor(bytes32[] memory proposalNames) public {
32 chairperson = msg.sender;
33 voters[chairperson].weight = 1;
34

35 // For each of the provided proposal names,
36 // create a new proposal object and add it
37 // to the end of the array.
38 for (uint i = 0; i < proposalNames.length; i++) {
39 // `Proposal({...})` creates a temporary
40 // Proposal object and `proposals.push(...)`
41 // appends it to the end of `proposals`.
42 proposals.push(Proposal({
43 name: proposalNames[i],
44 voteCount: 0
45 }));
46 }
47 }
48

49 // Give `voter` the right to vote on this ballot.
50 // May only be called by `chairperson`.
51 function giveRightToVote(address voter) public {
52 // If the first argument of `require` evaluates
53 // to `false`, execution terminates and all
54 // changes to the state and to Ether balances
55 // are reverted.
56 // This used to consume all gas in old EVM versions, but
57 // not anymore.
58 // It is often a good idea to use `require` to check if
59 // functions are called correctly.
60 // As a second argument, you can also provide an
61 // explanation about what went wrong.
62 require(
63 msg.sender == chairperson,
64 "Only chairperson can give right to vote."
65);
66 require(
67 !voters[voter].voted,
68 "The voter already voted."
69);

Page 36 of 53

Smart Contract in Bazo Blockchain Domain Analysis

70 require(voters[voter].weight == 0);
71 voters[voter].weight = 1;
72 }
73

74 /// Delegate your vote to the voter `to`.
75 function delegate(address to) public {
76 // assigns reference
77 Voter storage sender = voters[msg.sender];
78 require(!sender.voted, "You already voted.");
79

80 require(to != msg.sender, "Self-delegation is disallowed.");
81

82 // Forward the delegation as long as
83 // `to` also delegated.
84 // In general, such loops are very dangerous,
85 // because if they run too long, they might
86 // need more gas than is available in a block.
87 // In this case, the delegation will not be executed,
88 // but in other situations, such loops might
89 // cause a contract to get "stuck" completely.
90 while (voters[to].delegate != address(0)) {
91 to = voters[to].delegate;
92

93 // We found a loop in the delegation, not allowed.
94 require(to != msg.sender, "Found loop in delegation.");
95 }
96

97 // Since `sender` is a reference, this
98 // modifies `voters[msg.sender].voted`
99 sender.voted = true;

100 sender.delegate = to;
101 Voter storage delegate_ = voters[to];
102 if (delegate_.voted) {
103 // If the delegate already voted,
104 // directly add to the number of votes
105 proposals[delegate_.vote].voteCount += sender.weight;
106 } else {
107 // If the delegate did not vote yet,
108 // add to her weight.
109 delegate_.weight += sender.weight;
110 }
111 }

Page 37 of 53

Smart Contract in Bazo Blockchain Domain Analysis

112

113 /// Give your vote (including votes delegated to you)
114 /// to proposal `proposals[proposal].name`.
115 function vote(uint proposal) public {
116 Voter storage sender = voters[msg.sender];
117 require(!sender.voted, "Already voted.");
118 sender.voted = true;
119 sender.vote = proposal;
120

121 // If `proposal` is out of the range of the array,
122 // this will throw automatically and revert all
123 // changes.
124 proposals[proposal].voteCount += sender.weight;
125 }
126

127 /// @dev Computes the winning proposal taking all
128 /// previous votes into account.
129 function winningProposal() public view
130 returns (uint winningProposal_)
131 {
132 uint winningVoteCount = 0;
133 for (uint p = 0; p < proposals.length; p++) {
134 if (proposals[p].voteCount > winningVoteCount) {
135 winningVoteCount = proposals[p].voteCount;
136 winningProposal_ = p;
137 }
138 }
139 }
140

141 // Calls winningProposal() function to get the index
142 // of the winner contained in the proposals array and then
143 // returns the name of the winner
144 function winnerName() public view
145 returns (bytes32 winnerName_)
146 {
147 winnerName_ = proposals[winningProposal()].name;
148 }
149 }

Page 38 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7.1.2 Simple Open Auction

1 pragma solidity >=0.4.22 <0.6.0;
2

3 contract SimpleAuction {
4 // Parameters of the auction. Times are either
5 // absolute unix timestamps (seconds since 1970-01-01)
6 // or time periods in seconds.
7 address payable public beneficiary;
8 uint public auctionEndTime;
9

10 // Current state of the auction.
11 address public highestBidder;
12 uint public highestBid;
13

14 // Allowed withdrawals of previous bids
15 mapping(address => uint) pendingReturns;
16

17 // Set to true at the end, disallows any change.
18 // By default initialized to `false`.
19 bool ended;
20

21 // Events that will be emitted on changes.
22 event HighestBidIncreased(address bidder, uint amount);
23 event AuctionEnded(address winner, uint amount);
24

25 // The following is a so-called natspec comment,
26 // recognizable by the three slashes.
27 // It will be shown when the user is asked to
28 // confirm a transaction.
29

30 /// Create a simple auction with `_biddingTime`
31 /// seconds bidding time on behalf of the
32 /// beneficiary address `_beneficiary`.
33 constructor(
34 uint _biddingTime,
35 address payable _beneficiary
36) public {
37 beneficiary = _beneficiary;
38 auctionEndTime = now + _biddingTime;
39 }

Page 39 of 53

Smart Contract in Bazo Blockchain Domain Analysis

40

41 /// Bid on the auction with the value sent together with this transaction.
42 /// The value will only be refunded if the auction is not won.
43 function bid() public payable {
44 // No arguments are necessary, all
45 // information is already part of
46 // the transaction. The keyword payable
47 // is required for the function to
48 // be able to receive Ether.
49

50 // Revert the call if the bidding
51 // period is over.
52 require(
53 now <= auctionEndTime,
54 "Auction already ended."
55);
56

57 // If the bid is not higher, send the money back.
58 require(
59 msg.value > highestBid,
60 "There already is a higher bid."
61);
62

63 if (highestBid != 0) {
64 // Sending back the money by simply using
65 // highestBidder.send(highestBid) is a security risk
66 // because it could execute an untrusted contract.
67 // It is always safer to let the recipients
68 // withdraw their money themselves.
69 pendingReturns[highestBidder] += highestBid;
70 }
71 highestBidder = msg.sender;
72 highestBid = msg.value;
73 emit HighestBidIncreased(msg.sender, msg.value);
74 }
75

76 /// Withdraw a bid that was overbid.
77 function withdraw() public returns (bool) {
78 uint amount = pendingReturns[msg.sender];
79 if (amount > 0) {
80 // It is important to set this to zero because the recipient
81 // can call this function again as part of the receiving call

Page 40 of 53

Smart Contract in Bazo Blockchain Domain Analysis

82 // before `send` returns.
83 pendingReturns[msg.sender] = 0;
84

85 if (!msg.sender.send(amount)) {
86 // No need to call throw here, just reset the amount owing
87 pendingReturns[msg.sender] = amount;
88 return false;
89 }
90 }
91 return true;
92 }
93

94 /// End the auction and send the highest bid
95 /// to the beneficiary.
96 function auctionEnd() public {
97 // It is a good guideline to structure functions that interact
98 // with other contracts (i.e. they call functions or send Ether)
99 // into three phases:

100 // 1. checking conditions
101 // 2. performing actions (potentially changing conditions)
102 // 3. interacting with other contracts
103 // If these phases are mixed up, the other contract could call
104 // back into the current contract and modify the state or cause
105 // effects (ether payout) to be performed multiple times.
106 // If functions called internally include interaction with external
107 // contracts, they also have to be considered interaction with
108 // external contracts.
109

110 // 1. Conditions
111 require(now >= auctionEndTime, "Auction not yet ended.");
112 require(!ended, "auctionEnd has already been called.");
113

114 // 2. Effects
115 ended = true;
116 emit AuctionEnded(highestBidder, highestBid);
117

118 // 3. Interaction
119 beneficiary.transfer(highestBid);
120 }
121 }

Page 41 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7.1.3 Blind Auction

1 pragma solidity >0.4.23 <0.5.0;
2

3 contract BlindAuction {
4 struct Bid {
5 bytes32 blindedBid;
6 uint deposit;
7 }
8

9 address payable public beneficiary;
10 uint public biddingEnd;
11 uint public revealEnd;
12 bool public ended;
13

14 mapping(address => Bid[]) public bids;
15

16 address public highestBidder;
17 uint public highestBid;
18

19 // Allowed withdrawals of previous bids
20 mapping(address => uint) pendingReturns;
21

22 event AuctionEnded(address winner, uint highestBid);
23

24 /// Modifiers are a convenient way to validate inputs to
25 /// functions. `onlyBefore` is applied to `bid` below:
26 /// The new function body is the modifier's body where
27 /// `_` is replaced by the old function body.
28 modifier onlyBefore(uint _time) { require(now < _time); _; }
29 modifier onlyAfter(uint _time) { require(now > _time); _; }
30

31 constructor(
32 uint _biddingTime,
33 uint _revealTime,
34 address payable _beneficiary
35) public {
36 beneficiary = _beneficiary;
37 biddingEnd = now + _biddingTime;
38 revealEnd = biddingEnd + _revealTime;
39 }

Page 42 of 53

Smart Contract in Bazo Blockchain Domain Analysis

40

41 /// Place a blinded bid with `_blindedBid` =
42 /// keccak256(abi.encodePacked(value, fake, secret)).
43 /// The sent ether is only refunded if the bid is correctly
44 /// revealed in the revealing phase. The bid is valid if the
45 /// ether sent together with the bid is at least "value" and
46 /// "fake" is not true. Setting "fake" to true and sending
47 /// not the exact amount are ways to hide the real bid but
48 /// still make the required deposit. The same address can
49 /// place multiple bids.
50 function bid(bytes32 _blindedBid)
51 public
52 payable
53 onlyBefore(biddingEnd)
54 {
55 bids[msg.sender].push(Bid({
56 blindedBid: _blindedBid,
57 deposit: msg.value
58 }));
59 }
60

61 /// Reveal your blinded bids. You will get a refund for all
62 /// correctly blinded invalid bids and for all bids except for
63 /// the totally highest.
64 function reveal(
65 uint[] memory _values,
66 bool[] memory _fake,
67 bytes32[] memory _secret
68)
69 public
70 onlyAfter(biddingEnd)
71 onlyBefore(revealEnd)
72 {
73 uint length = bids[msg.sender].length;
74 require(_values.length == length);
75 require(_fake.length == length);
76 require(_secret.length == length);
77

78 uint refund;
79 for (uint i = 0; i < length; i++) {
80 Bid storage bidToCheck = bids[msg.sender][i];
81 (uint value, bool fake, bytes32 secret) =

Page 43 of 53

Smart Contract in Bazo Blockchain Domain Analysis

82 (_values[i], _fake[i], _secret[i]);
83 if (bidToCheck.blindedBid != keccak256(abi.encodePacked(value, fake, secret))) {
84 // Bid was not actually revealed.
85 // Do not refund deposit.
86 continue;
87 }
88 refund += bidToCheck.deposit;
89 if (!fake && bidToCheck.deposit >= value) {
90 if (placeBid(msg.sender, value))
91 refund -= value;
92 }
93 // Make it impossible for the sender to re-claim
94 // the same deposit.
95 bidToCheck.blindedBid = bytes32(0);
96 }
97 msg.sender.transfer(refund);
98 }
99

100 // This is an "internal" function which means that it
101 // can only be called from the contract itself (or from
102 // derived contracts).
103 function placeBid(address bidder, uint value) internal
104 returns (bool success)
105 {
106 if (value <= highestBid) {
107 return false;
108 }
109 if (highestBidder != address(0)) {
110 // Refund the previously highest bidder.
111 pendingReturns[highestBidder] += highestBid;
112 }
113 highestBid = value;
114 highestBidder = bidder;
115 return true;
116 }
117

118 /// Withdraw a bid that was overbid.
119 function withdraw() public {
120 uint amount = pendingReturns[msg.sender];
121 if (amount > 0) {
122 // It is important to set this to zero because the recipient
123 // can call this function again as part of the receiving call

Page 44 of 53

Smart Contract in Bazo Blockchain Domain Analysis

124 // before `transfer` returns (see the remark above about
125 // conditions -> effects -> interaction).
126 pendingReturns[msg.sender] = 0;
127

128 msg.sender.transfer(amount);
129 }
130 }
131

132 /// End the auction and send the highest bid
133 /// to the beneficiary.
134 function auctionEnd()
135 public
136 onlyAfter(revealEnd)
137 {
138 require(!ended);
139 emit AuctionEnded(highestBidder, highestBid);
140 ended = true;
141 beneficiary.transfer(highestBid);
142 }
143 }

Page 45 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7.2 Vyper Examples

The examples are from the official Vyper documentation[7].

7.2.1 Simple Open Auction

In the Simple Open Auction example, participants can submit bids during a limited time

period. When the auction period ends, a predetermined beneficiary will receive the amount

of the highest bid.

1 # Open Auction
2 beneficiary: public(address)
3 auction_start: public(timestamp)
4 auction_end: public(timestamp)
5

6 # Current state of auction
7 highest_bidder: public(address)
8 highest_bid: public(wei_value)
9

10 # Set to true at the end, disallows any change
11 ended: public(bool)
12

13 @public
14 def __init__(_beneficiary: address, _bidding_time: timedelta):
15 self.beneficiary = _beneficiary
16 self.auction_start = block.timestamp
17 self.auction_end = self.auction_start + _bidding_time
18

19 @public
20 @payable
21 def bid():
22 # Check if bidding period is over.
23 assert block.timestamp < self.auction_end
24 # Check if bid is high enough
25 assert msg.value > self.highest_bid
26 if not self.highest_bid == 0:
27 # Sends money back to the previous highest bidder
28 send(self.highest_bidder, self.highest_bid)
29 self.highest_bidder = msg.sender
30 self.highest_bid = msg.value

Page 46 of 53

Smart Contract in Bazo Blockchain Domain Analysis

31

32

33 @public
34 def end_auction():
35 # 1. Conditions
36 # Check if auction endtime has been reached
37 assert block.timestamp >= self.auction_end
38 # Check if this function has already been called
39 assert not self.ended
40

41 # 2. Effects
42 self.ended = True
43

44 # 3. Interaction
45 send(self.beneficiary, self.highest_bid)

7.2.2 Safe Remote Purchases

The following example shows an escrow contract where a buyer and a seller can make

transactions without a middleman (trusted 3rd party).

1 value: public(wei_value) #Value of the item
2 seller: public(address)
3 buyer: public(address)
4 unlocked: public(bool)
5 #@constant
6 #def unlocked() -> bool: #Is a refund possible for the seller?
7 # return (self.balance == self.value*2)
8

9 @public
10 @payable
11 def __init__():
12 assert (msg.value % 2) == 0
13 self.value = msg.value / 2 #The seller initializes the contract by
14 #posting a safety deposit of 2*value of the item up for sale.
15 self.seller = msg.sender
16 self.unlocked = True
17

18 @public
19 def abort():

Page 47 of 53

Smart Contract in Bazo Blockchain Domain Analysis

20 assert self.unlocked #Is the contract still refundable?
21 assert msg.sender == self.seller #Only the seller can refund
22 # his deposit before any buyer purchases the item.
23 selfdestruct(self.seller) #Refunds the seller and deletes the contract.
24

25 @public
26 @payable
27 def purchase():
28 assert self.unlocked #Is the contract still open (is the item still up for sale)?
29 assert msg.value == (2 * self.value) #Is the deposit the correct value?
30 self.buyer = msg.sender
31 self.unlocked = False
32

33 @public
34 def received():
35 assert not self.unlocked #Is the item already purchased and pending confirmation
36 # from the buyer?
37 assert msg.sender == self.buyer
38 send(self.buyer, self.value) #Return the buyer's deposit (=value) to the buyer.
39 selfdestruct(self.seller) #Return the seller's deposit (=2*value)
40 # and the purchase price (=value) to the seller.

7.2.3 CrowdFund

In the CrowdFund contract, participants can contribute to a campaign. If predetermined

funding goal is reached, the funds will be sent to the beneficiary. Otherwise, participants will

be refunded.

1 # Setup private variables (only callable from within the contract)
2 funders: {sender: address, value: wei_value}[int128]
3 nextFunderIndex: int128
4 beneficiary: address
5 deadline: timestamp
6 goal: wei_value
7 refundIndex: int128
8 timelimit: timedelta
9

10

11

Page 48 of 53

Smart Contract in Bazo Blockchain Domain Analysis

12 @public
13 def __init__(_beneficiary: address, _goal: wei_value, _timelimit: timedelta):
14 self.beneficiary = _beneficiary
15 self.deadline = block.timestamp + _timelimit
16 self.timelimit = _timelimit
17 self.goal = _goal
18

19

20 # Participate in this crowdfunding campaign
21 @public
22 @payable
23 def participate():
24 assert block.timestamp < self.deadline
25

26 nfi: int128 = self.nextFunderIndex
27

28 self.funders[nfi] = {sender: msg.sender, value: msg.value}
29 self.nextFunderIndex = nfi + 1
30

31

32 # Enough money was raised! Send funds to the beneficiary
33 @public
34 def finalize():
35 assert block.timestamp >= self.deadline and self.balance >= self.goal
36

37 selfdestruct(self.beneficiary)
38

39

40 # Not enough money was raised! Refund everyone (max 30 people at a time
41 # to avoid gas limit issues)
42 @public
43 def refund():
44 assert block.timestamp >= self.deadline and self.balance < self.goal
45

46 ind: int128 = self.refundIndex
47

48 for i in range(ind, ind + 30):
49 if i >= self.nextFunderIndex:
50 self.refundIndex = self.nextFunderIndex
51 return
52

53 send(self.funders[i].sender, self.funders[i].value)

Page 49 of 53

Smart Contract in Bazo Blockchain Domain Analysis

54 self.funders[i] = None
55

56 self.refundIndex = ind + 30

Page 50 of 53

Smart Contract in Bazo Blockchain Domain Analysis

7.3 Scilla Examples

The example below is taken from the Scilla documentation. [4]

7.3.1 Hello World

1 (* HelloWorld contract *)
2

3

4 (***)
5 (* Associated library *)
6 (***)
7 library HelloWorld
8

9 let one_msg =
10 fun (msg : Message) =>
11 let nil_msg = Nil {Message} in
12 Cons {Message} msg nil_msg
13

14 let not_owner_code = Int32 1
15 let set_hello_code = Int32 2
16

17 (***)
18 (* The contract definition *)
19 (***)
20

21 contract HelloWorld
22 (owner: ByStr20)
23

24 field welcome_msg : String = ""
25

26 transition setHello (msg : String)
27 is_owner = builtin eq owner _sender;
28 match is_owner with
29 | False =>
30 msg = {_tag : "Main"; _recipient : _sender; _amount : 0; code : not_owner_code};
31 msgs = one_msg msg;
32 send msgs
33 | True =>
34 welcome_msg := msg;

Page 51 of 53

Smart Contract in Bazo Blockchain Domain Analysis

35 msg = {_tag : "Main"; _recipient : _sender; _amount : 0; code : set_hello_code};
36 msgs = one_msg msg;
37 send msgs
38 end
39 end
40

41 transition getHello ()
42 r <- welcome_msg;
43 msg = {_tag : Main; _recipient : _sender; _amount : 0; msg : r};
44 msgs = one_msg msg;
45 send msgs
46 end

Page 52 of 53

Bibliography

[1] Amrit Kumar Ilya Sergey and Aquinas Hobor. Scilla Whitepaper. URL: https://arxiv.

org/pdf/1801.00687.pdf. (accessed: 30.09.2018).

[2] Investopedia. Smart Contracts Definition. URL: https://www.investopedia.com/

terms/s/smart-contracts.asp. (accessed: 27.11.2018).

[3] Amrit Kumar. Scilla Whitepaper. URL: https://blog.zilliqa.com/scilla-design-

story-piece-by-piece-part-1-why-do-we-need-a-new-language-27d5f14ae661.

(accessed: 30.09.2018).

[4] Zilliqa Research. Scilla Readthedocs. URL: https://scilla.readthedocs.io/en/

latest/index.html. (accessed: 04.09.2018).

[5] Scilla. Scilla Lang. URL: https://scilla-lang.org/. (accessed: 30.09.2018).

[6] Solidity. Solidity 0.4.25 documentation. URL: https://solidity.readthedocs.io/

en/v0.4.25/. (accessed: 26.09.2018).

[7] Vyper. Vyper 0.1.0-beta3 documentation. URL: https://vyper.readthedocs.io/en/

latest/index.html. (accessed: 26.09.2018).

53

Appendix C

Generated EBNF

The following EBNF grammar is generated from the ANTLR grammar using the online tool

http://bottlecaps.de/convert/ on 5.12.2018.

1 /* converted on Wed Dec 5, 2018, 14:59 (UTC+01) by antlr_4-to-w3c v0.45
2 which is Copyright (c) 2011-2018 by Gunther Rademacher <grd@gmx.net> */
3

4 program ::= NLS* versionDirective interfaceDeclaration* contractDeclaration EOF
5 versionDirective
6 ::= 'version' INTEGER '.' INTEGER NLS
7 interfaceDeclaration
8 ::= 'interface' IDENTIFIER '{' NLS* interfacePart* '}' NLS
9 interfacePart

10 ::= functionSignature NLS
11 functionSignature
12 ::= annotation* (type | '(' type (',' type)* ')')
13 IDENTIFIER '(' paramList? ')'
14 contractDeclaration
15 ::= 'contract' IDENTIFIER ('is' IDENTIFIER (',' IDENTIFIER)*)?
16 '{' (NLS | contractPart)* '}' NLS?
17 contractPart
18 ::= variableDeclaration
19 | structDeclaration
20 | errorDeclaration
21 | enumDeclaration
22 | eventDeclaration
23 | constructorDeclaration
24 | functionDeclaration

152

Smart Contract in Bazo Blockchain Language Design

25 variableDeclaration
26 ::= 'readonly'? type IDENTIFIER assignment? NLS
27 structDeclaration
28 ::= 'struct' IDENTIFIER '{' NLS* structField* '}' NLS
29 errorDeclaration
30 ::= 'error' IDENTIFIER '{' NLS* structField* '}' NLS
31 structField
32 ::= type IDENTIFIER NLS
33 eventDeclaration
34 ::= 'event' IDENTIFIER '(' paramList? ')' NLS
35 enumDeclaration
36 ::= 'enum' IDENTIFIER '{' NLS* IDENTIFIER
37 (',' NLS* IDENTIFIER)* NLS* '}' NLS
38 constructorDeclaration
39 ::= annotation* 'constructor' '(' paramList? ')' statementBlock
40 functionDeclaration
41 ::= annotation* functionHead statementBlock
42 functionHead
43 ::= 'internal'? 'function' (type | '(' type (',' type)* ')')
44 IDENTIFIER '(' paramList? ')'
45 annotation
46 ::= '[' IDENTIFIER (':' expression)? ']' NLS
47 paramList
48 ::= parameter (',' parameter)* (',' defaultParameter)*
49 parameter
50 ::= type IDENTIFIER
51 defaultParameter
52 ::= parameter assignment
53 type ::= arrayType
54 | mapType
55 | IDENTIFIER
56 arrayType
57 ::= IDENTIFIER '[' ']'
58 mapType ::= 'Map' '<' type ',' type '>'
59 statementBlock
60 ::= '{' (NLS | statement)* '}'
61 statement
62 ::= assignmentStatement
63 | returnStatement
64 | expressionStatement
65 | sendStatement
66 | emitStatement

Page 153 of 157

Smart Contract in Bazo Blockchain Language Design

67 | variableDeclaration
68 | ifStatement
69 | forEachStatement
70 | forStatement
71 | mapForEachStatement
72 | breakStatement
73 | continueStatement
74 | throwStatement
75 emitStatement
76 ::= 'emit' expression NLS
77 deleteStatement
78 ::= 'delete' expression NLS
79 ifStatement
80 ::= 'if' '(' expression ')' statementBlock

81 ('else if' '(' expression ')' statementBlock)?

82 ('else' statementBlock)?
83 forStatement
84 ::= 'for' '(' IDENTIFIER ':' rangeStatement ')' statementBlock
85 forEachStatement
86 ::= 'foreach' '(' (IDENTIFIER ',')?
87 type IDENTIFIER ':' expression ')' statementBlock
88 mapForEachStatement
89 ::= 'foreach' '(' type IDENTIFIER ','
90 type IDENTIFIER ':' expression ')' statementBlock
91 breakStatement
92 ::= 'break' NLS
93 continueStatement
94 ::= 'continue' NLS
95 rangeStatement
96 ::= expression? 'to' expression ('by' expression)?
97 expressionStatement
98 ::= expression NLS
99 sendStatement

100 ::= expression '.' 'send' '(' expression? ')' NLS
101 argumentList
102 ::= (expression (',' expression)* | namedArgument)
103 (',' namedArgument)*
104 namedArgument
105 ::= IDENTIFIER '=' expression
106 assignmentStatement
107 ::= expression assignment NLS
108 assignment

Page 154 of 157

Smart Contract in Bazo Blockchain Language Design

109 ::= '=' expression
110 designator
111 ::= IDENTIFIER
112 throwStatement
113 ::= 'throw' IDENTIFIER '{' argumentList? '}' NLS
114 returnStatement
115 ::= 'return' (expression (',' expression)*)? NLS
116 expression
117 ::= expression ('++' | '--' | '[' expression ']'
118 | '.' IDENTIFIER | '(' argumentList? ')'
119 | (('+' | '-' | '**' | '*' | '/' | '\%' | '<<' | '>>' | '&' | '^'

120 | '|') '='? | '<' | '>' | '<=' | '>=' | '==' | '!=' | '&&' | '||'
121 | '?' expression ':') expression)
122 | newCreation
123 | '(' (expression ')' | type ')' expression)
124 | ('++' | '--' | '+' | '-' | '!' | TILDE) expression
125 | operand
126 newCreation
127 ::= structCreation
128 | arrayCreation
129 | mapCreation
130 structCreation
131 ::= 'new' IDENTIFIER '(' argumentList? ')'
132 arrayCreation
133 ::= 'new' IDENTIFIER '[' (expression ']' ('{' '}')? | ']'
134 '{' expression (',' expression)* '}')
135 mapCreation
136 ::= 'new' mapType '(' ')'
137 operand ::= literal
138 | designator
139 literal ::= INTEGER
140 | CHARACTER
141 | STRING
142 | BOOL
143 _ ::= WHITE_SPACE
144 | LINE_COMMENT
145 | BLOCK_COMMENT
146 /* ws: definition */
147

148 <?TOKENS?>
149

150 BOOL ::= 'true'

Page 155 of 157

Smart Contract in Bazo Blockchain Language Design

151 | 'false'

152 TILDE ::= #x007e
153 IDENTIFIER
154 ::= ('_' | ALPHA_LETTER) ('_' | ALPHA_LETTER | DEC_DIGIT)*
155 ALPHA_LETTER
156 ::= [a-zA-Z]
157 INTEGER ::= DEC_DIGIT_LIT
158 | HEX_DIGIT_LIT
159 HEX_DIGIT_LIT
160 ::= '0x' HEX_DIGIT+
161 HEX_DIGIT
162 ::= [0-9a-fA-F]
163 DEC_DIGIT_LIT
164 ::= DEC_DIGIT+
165 DEC_DIGIT
166 ::= [0-9]
167 STRING ::= '"' UNICODE_CHAR* '"'
168 CHARACTER
169 ::= "'" (ESCAPED_CHAR | UNICODE_CHAR) "'"
170 ESCAPED_CHAR
171 ::= '\' ('0' | 'n' | '\' | "'" | '"')
172 UNICODE_CHAR
173 ::= [^#xd#xa]
174 NLS ::= NL+
175 NL ::= [#xa#xd]
176 WHITE_SPACE
177 ::= [#x9#xc#xd]+
178 LINE_COMMENT
179 ::= '//' [^#xd#xa]*
180 BLOCK_COMMENT?
181 ::= '/*' .* '*/ '

182 EOF ::= $

Page 156 of 157

Appendix D

GitHub Repository

Lazo Specification Git Repository

157

https://github.com/bazo-blockchain/lazo-specification

	I Context
	Introduction
	Motivation
	Description of Work

	Background and Related Work
	Background
	Blockchain
	Smart Contracts
	Transactions
	Virtual Machine
	The Bazo Blockchain

	Related Work
	Previous Work
	Existing Solutions

	II Language Design
	Language Characteristics
	Programming Paradigms
	Type System
	Turing Completeness
	Character Set and Encoding
	Major Omissions

	Program
	A Simple Program
	Version

	Identifiers
	Reserved Keywords
	Declaration
	Contract
	Variable
	Constant
	Scope

	Statement Separation
	Indentation
	Comments
	Single-line Comments
	Multi-line Comments
	Example

	Global Variables
	msg
	block
	tx

	Units
	Time Units

	Types
	Value Types
	Integer
	Boolean
	Character
	Address
	Enum

	Reference Types
	String
	Array
	Map
	Struct
	Error

	Functions
	Visibility
	Return Values
	Default & Named Parameters
	Constructor
	Self-destruct
	Annotations
	Preconditions and Postconditions
	Payable
	Owner
	ReadOnly

	Global Built-in Functions
	Events
	Recursion
	Cyclic Contract Calls
	Lambda
	Fallback Function

	Control Structures
	If Statement
	Ternary Operator

	For Statement
	Break
	Continue

	Foreach Statement
	Iterate over an array
	Iterate over a map

	Expressions
	Order of Evaluation

	Error Handling
	Error Declaration and Usage
	Built-in Errors

	Polymorphism
	Contracts
	new-Keyword

	Interfaces
	Adapt to Templates
	Simplify Calling Methods on Other Contracts

	Payable Interface
	Send coins to an eoa
	Send coins to a Contract Account

	Proposals
	Account Abstraction
	Account Reference

	III Implementation
	Lazo Grammar in ANTLR
	Lexer Rules
	Parser Rules

	Syntax Verification
	Test Summary

	IV Evaluation
	Results
	Achievements
	Rough Analysis
	Domain Analysis
	Language Design

	Not Achieved Goals
	Syntax verification with Go
	Checker Rules

	Conclusion
	Glossary
	Acronyms

	V Appendices
	Rough Analysis
	Domain Analysis
	Generated EBNF
	GitHub Repository

