

Code Panorama

Term Project

Department of Computer Science

University of Applied Science Rapperswil

Fall Term 2018

Authors: Marc Etter, Patrick Bächli

Advisor: Prof. Dr. Farhad D. Mehta

Project Partner: IFS (Institute for Software, HSR)

Code Panorama

2018-12-19

Contents

Abstract .. i

Management Summary .. ii

1 Introduction ... 1

1.1 Project Description ... 1

1.2 Goals ... 1

1.3 Motivation .. 1

2 Results ... 2

2.1 Evaluation ... 2

2.2 Architecture .. 3

2.3 Design Decisions ... 4

2.4 Deployment .. 5

2.5 Development .. 5

3 Conclusion .. 6

3.1 Lessons Learned ... 6

3.2 Outlook ... 6

3.3 Encountered Problems ... 7

Appendix A Project Plan .. 7

A.1 Phases / Iterations .. 7

A.2 Milestones .. 7

Appendix B Design Diagrams ... 9

B.1 Sequence diagram .. 9

Appendix C Manuals ... 10

C.1 Running your own instance of CodePanorama .. 10

C.2 Developer Guide ... 14

Appendix D Self-Reflection .. 15

D.1 Report by Marc Etter .. 15

D.2 Report by Patrick Bächli ... 15

Appendix E Meeting Minutes .. 16

Appendix F List of figures .. 17

Appendix G Glossary ... 18

Code Panorama Abstract

2018-12-19 i of ii

Abstract

Objective

CodePanorama is a tool for software developers and reviewers. Its goal is to assist in identifying points of

interest within a code-base to review. A software developer might join a new project and want to quickly

find the most interesting parts of the code to get started. A supervisor must review the results of a project

but does not have the time to look at the entire code-base. Instead, they look to CodePanorama to make

an educated guess as to where their effort should be focused.

Procedure / Result

In contrast to other code metric tools, CodePanorama is designed to provide the user with a non-

reductionist, "zoomed-out" overview of the entire code-base. It is up to the reviewer to find interesting

patterns and curious anomalies based solely on indentation, spacing and line lengths, instead of the usual

metrics.

After entering the URL to any git repository, CodePanorama will clone the repository in the background,

and generate the panorama view. The result is basically a collage of all files in the repository, glued

together.

Often, this new perspective on a code-base can find patterns such as duplicated code, excessive

indentation, or any other feature the human eye might recognize.

Once such a feature has been identified, CodePanorama offers the functionality to simply click on a

section of the panorama image. This allows the user to directly dive into the actual code at that location.

From there, they can review the code in place, or just take a peek before switching to their tool of choice.

Figure 1 - Example of a CodePanorama (36'000 lines of code displayed)

Code Panorama Management Summary

2018-12-19 ii of ii

Management Summary

Problem statement

Determining the quality of software code is hard. Several tools exist to assist in doing so, by providing

mathematical formulas and metrics. This is useful to get an overall idea of the quality of a project but

provides very limited help in getting a sense of exactly which parts of the code have problems.

CodePanorama implements a new approach utilizing the human ability of pattern recognition in images to

detect repetitions and anomalies inside code.

Target audience

CodePanorama is mainly targeted at two user groups:

• Software developers joining a new project, who would like to get a quick overview of the code.

• Project supervisors / examiners, who want to identify critical parts to review and grade in a time-

efficient manner, without having to read through the entire project’s code.

Approach

CodePanorama generates a panorama view of any project’s code, by “gluing” together all files into a

single large “poster”. By “zooming out” of the code to a distance where only the silhouette of each file

remains recognizable, new patterns start to emerge. With a bit of practice and programming experience,

a user can very quickly identify unexpected patterns or unusual amounts of repetitions. By clicking on the

parts in the panorama, the user can then dive into the code at that location to take a closer look.

Results

CodePanorama is publicly accessible1 for anyone to analyze their project of choice. For more sensitive

environments, we provide instructions on how to run CodePanorama on your own infrastructure for

internal usage.

Currently, CodePanorama includes a small amount of filter options for which file-types should be included

in the panorama view. Additionally, the size of the generated panorama can be configured, as well. Diving

into a section of a panorama is fully functional.

Outlook

We are looking forward to using CodePanorama in business environments and receive user feedback. We

are planning to extend the filter options, for users to include exactly the part of a project in their

panorama they want. Furthermore, we intend to add color options to CodePanorama. With these color

options, a user can highlight parts of the panorama according to various criteria, such as which code

sections are changed the most. Finally, we would like to add a user management system. There, users

could see all projects they previously analyzed in a user-specific dashboard view.

1 https://codepanorama.io

https://codepanorama.io/

Code Panorama 1 Introduction

2018-12-19 1 of 18

1 Introduction2

1.1 Project Description
Several software quality metrics (lines of code per class/method, Cyclometric complexity, etc.) exist to

estimate the quality and volume of large code bases. All metrics are reductionistic: They compute a

number, or a set of numbers from a much larger volume of code. Although such metrics offer a quick

overview of some aspects of the code, a more thorough code review is often needed in order to arrive at

a more accurate estimation of code quality. For large code bases, such a code review can only be done on

(often random) samples of the code.

The following idea is to be explored as part of this study project: In case it was possible to visualize the

entire (or a large part of the) code-base on one large surface (screen, poster, etc.), it could be possible to

identify patters or areas of the code as candidates for further inspection. In case version control is used,

such a visualization could also provide historical and programmer-based information that could be

relevant to such a further inspection.

1.2 Goals
The main aim of this project is to design and develop a software tool that visualizes the code contained in

a Git repository for a developer to review it more effectively. The application must:

1. Be able to filter or highlight code based on file type, user, number of changes, age, or other

yet to be discovered quality relevant properties.

2. Be easy and intuitive to use for a software developer or reviewer.

3. Have an attractive user interface.

4. If possible, require no prior installation (e.g. deployment as a single-page web-application).

5. If possible, require no application server.

6. Be maintainable and easily extensible (e.g. new types of filters or highlighting, etc.).

7. Use a CI / CD pipeline for development and deployment.

8. Use a Haskell-based toolchain as far as possible.

9. Be able to be effectively used for reviewing project code at the HSR.

1.3 Motivation
The original inspiration for this project came from a talk held at an ETH workshop on 13.10.2017. There a

partial “panorama” of the Vampire Theorem Prover was shown. While the image already looked quite

good, the process to generate it was rather tedious. It involved splitting the source-code into chunks small

enough to not crash the LaTeX-compiler, which could only handle 180 pages at a time. Subsequently all

the generated PDFs had to be merged together into a single page with yet another script.3

This project aims to automate these steps as much as possible and provide an easy-to-use application

everyone can run to generate panoramas of their code-base(s).

2 Topic presentation for term projects HS18 and personal communication with F. Mehta on 17.09.2018
3 F. Mehta (personal communication, 26.09.2018)

Code Panorama 2 Results

2018-12-19 2 of 18

2 Results

2.1 Evaluation
The sections below summarize our technical evaluations and decisions. A more detailed document can be

found on the following page:
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/documentation/design-decisions

2.1.1 Server Technology

As required by the original project description (see 1.1), the server is implemented with Haskell. The main

challenges here were how to operate with git-repositories and how to generate the resulting panorama

image.

For git, we decided to use the simplest, functional library we could find (aptly named “Git”). As this library

only provides limited functionality, we use direct command line commands for missing features, such as

cloning a repository.

At first, we used the image drawing library Gloss but later decided we wanted to generate our panoramas

using the SVG format. The SVG format allows us to easily define sections and add metadata to the image.

Additionally, this lets the client add their own styling through CSS on top of what the server already

generates.

2.1.2 Web-Client Technology

After evaluating several frameworks and libraries providing functionality to build a web-client in a

functional style, we decided on using Elm. Out of the compared possibilities it had the shortest setup time

while also providing simple examples that worked out-of-the-box.

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/documentation/design-decisions

Code Panorama 2 Results

2018-12-19 3 of 18

2.2 Architecture

Figure 2 - Architecture of Code Panorama4

2.2.1 Layers

The application is divided into two layers. One being the presentation-layer and the other a combination

of an application- and business-layer. So far, only trivial persistence was necessary, which we

implemented with plain JSON files. Therefore, there is currently no “real” data-layer, rather the

persistence is embedded into the business-layer. Communication between the presentation and

application layers is based on the HTTP-protocol.

2.2.2 Modules

The application consists of multiple modules which are spread across the layers and are briefly described

in the following sections.

2.2.2.1 Client

The client module contains all the code for the web-based user interface. It communicates with the server

through a REST-API. Parts of the client-code are generated by the Swagger-CodeGen-module, based on

the API specifications. The client is written in Elm5, HTML, JavaScript, and LESS.

4 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/tree/master#architecture, 11.12.2018
5 https://elm-lang.org, 11.12.2018

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/tree/master%23architecture
https://elm-lang.org/

Code Panorama 2 Results

2018-12-19 4 of 18

2.2.2.2 Swagger-CodeGen

Reads an API-description file as defined by the OpenAPI specification6 and generates the necessary data-

types and request-functions as Elm-code. The generation is based on the official Swagger CodeGen7-

process with minor modifications to accommodate for missing features in the default templates.

2.2.2.3 Swagger

Generates an API-description file as defined by the OpenAPI specification based on endpoint- and data-

type-descriptions from the Server-module. Can also be used to run an instance of Swagger-UI8 based on

the API-description file.

2.2.2.4 Server

Defines and implements the API, and thus handles all the requests made by the client (or through

Swagger-UI) and passes them on to the Core-module for further processing. It has built-in asynchronous

functionality and can serve multiple clients at the same time.

2.2.2.5 Standalone

Originally used to test various libraries and their viability for the project. Could still be used as a CLI-tool

for very simple tests but has none of the functionality provided by the client.

2.2.2.6 Core

The actual backend which does all the “heavy-lifting”. Contains sub-modules to collect repository-data

and generate panoramas.

2.3 Design Decisions

2.3.1 Client-Server Architecture

As outlined in chapters 2.1 and 2.2 we decided on a client-server-architecture. This decision was taken

contrary to goals 4 and 5 of the project goals (see chapter 1.2) after consultation with our advisor. It is

rooted in the fact that it would be disproportionally difficult and complex to implement a web-client in

Haskell compared to other, more UI-specific functional languages (see the subsequent chapter for our

final decision).

Since this meant that we had to work with two different technologies, we had to find a way to share type-

definitions between those two. The solution came in form of Swagger. We found a way to generate a valid

OpenAPI-specification from our Haskell-API-definitions. Thus, we were able to use the official code-

generator provided by Swagger to generate the client-code necessary to work with the API.

2.3.2 Persistent Storage

As a pragmatic decision based on priority and time remaining, we decided to implement persistent

storage in the cheapest way possible: We simply write information into JSON-files which are stored in the

server’s file system workspace. This does not support any sort of optimized querying like a database

would. Furthermore, we are aware that this solution makes very weak concurrency guarantees. Since we

currently do not store any critical information, we accept some amount of data loss in exchange for the

6 https://swagger.io/specification, 11.12.2018
7 https://swagger.io/tools/swagger-codegen, 11.12.2018
8 https://swagger.io/tools/swagger-ui, 11.12.2018

https://swagger.io/specification
https://swagger.io/tools/swagger-codegen
https://swagger.io/tools/swagger-ui

Code Panorama 2 Results

2018-12-19 5 of 18

quicker development time. If we later need to store data which we must not lose, we can still switch to a

more robust solution.

2.3.3 Authentication

In order to properly support private repositories, we implemented a basic authentication method.

Whenever a user requests a private (i.e. password-protected) repository, the server stores the user’s

credentials together with the repository URL and branch-name in a metadata file. Passwords are stored

using the industrial standard algorithm BCrypt9.

Figure 3 - Authentication decision tree

Due to an open issue10, user credentials are also stored in cleartext inside the clone’s .git/config file.

Although this is unfortunate in comparison to our efforts to properly encrypt credentials, it is a known

issue, with a researched solution. Additionally, the user interface warns the user of this issue and

recommends running a local instance instead.

After the user has been granted access to a repository, the rest of the API relies solely on UUIDs to

identify access to repositories. We plan to extend this with proper session management as part of the

extended user and repository management.

2.4 Deployment

2.4.1 Docker11

For instructions on how to run your own instance of CodePanorama with docker, please refer to the

docker part of the manual in chapter C.1.

2.4.2 Developers12

For instructions on how to run your own instance of CodePanorama without docker, please refer to the

local part of the manual in chapter C.1.

2.5 Development
For instructions on starting development on CodePanorama, please refer to the manual in chapter C.2.

9 https://en.wikipedia.org/wiki/Bcrypt 18.12.2018
10 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/issues/70 18.12.2018
11 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md#docker, 13.12.2018
12 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md#local, 13.12.2018

https://en.wikipedia.org/wiki/Bcrypt
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/issues/70
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md#docker
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md%23local

Code Panorama 3 Conclusion

2018-12-19 6 of 18

3 Conclusion

3.1 Lessons Learned

3.1.1 Haskell

At first, the change in ecosystem from “main-stream” languages like Java was challenging. Tooling is

drastically worse, well maintained libraries are rare, and documentation is either hard to read or non-

existent. However, over time we grew accustomed to the mindset of the Haskell (and Elm) world.

We discovered that established practices for CI / CD using pipelines and docker can be used just as well

with Haskell/Elm as with other languages. In a similar fashion, we would have known how to solve many

problems in an OOP context. Transferring the solution to a functional programming language seemed

hard at first. As it turned out, there is usually a known idiom that solves the problem elegantly.

3.1.2 Elm

Our initial decision to stay with Elm 0.18 instead of the recently released 0.19 has proven its worth. Many

guides we consulted still referenced Elm 0.18. Furthermore, several libraries and tools we used were not

even updated for Elm 0.19 yet.

3.1.3 Type system

Although it was not always easy to satisfy the compiler, we developed a strong confidence in the strict

type system of these languages. Usually, we would be very certain that if the code compiles it will run

correctly.

In order to understand more complex type signatures, it turned out to be helpful to just write down all

types on a sheet of paper and do the type-operations by hand. This heightened our understanding of the

type system in general and led to many “aha moments”.

3.2 Outlook

3.2.1 Continuation

We have already discussed with our advisor that we would like to continue work on CodePanorama. We

have tentatively agreed upon continuing work as a bachelor thesis during the fall semester 2019.

3.2.2 Upcoming features

Two features that have not yet been implemented or are only available in a very crude version, are

options and filters. Options allow the user to highlight parts of a panorama by certain criteria (e.g. change-

frequency of a file, number of committers of a file, etc.). Filters allow the customization of what is

included in the panorama at generation-time. As of now, the only possible filter is by file-type.

Another requested feature is a user management system. This would allow a user to see all their analyzed

projects in a user-specific dashboard. There, the user would be able to delete previous analyses and

download the generated images.

3.2.3 Bug fixing and optimization

During development a lot of bugs have been fixed and optimizations have been made. There are still some

known quirks and issues that should be fixed in the future but have not been high enough of a priority.

Code Panorama 3 Conclusion

2018-12-19 7 of 18

3.3 Encountered Problems

3.3.1 GitLab

While GitLab is very good at most of the things it does, there are still some minor flaws we discovered,

which caused some frustration over the course of the project. For a possible continuation of the project

we want to evaluate other tools, which do the things in a way we would expect. Or at least a tool that

allows for adjustments of existing workflows to suit our specific needs.

3.3.2 Time tracking and reporting

Without using third-party tools, it is not possible to generate reports based on tracked time. But still,

those tools do not include data that would help to come up with fine-grained and detailed reports. From

our experience during our respective engineering project, we know that better options exist.

Appendix A Project Plan

A.1 Phases / Iterations
Phase Timespan

1 Inception 15.06.2018 – 25.09.2018

 Brainstorming and definition of problem statement

2 Elaboration 26.09.2018 – 09-10.2018

 Creation of project plan, mock-ups, tech-stack evaluation, tech prototype, and simple
documentation

3 Construction 10.10.2018 – 02.12.2018

 Implementation of features and commence user-tests.

4 Transition 03.12.2018 – 21.12.2018

 Completion of started features. Clean-up of source, code, UI and documentation. User-tests.
Creation of final report.

Table 1 - Phases / Iteration of project plan

A.2 Milestones

A.2.1 M0 – Problem statement

Problem statement is defined and accepted by all parties.

Planned: Beginning of semester; already completed before creation of this document.

A.2.2 M1 – Project Plan / End of Elaboration

Initial version of this document is completed. Basic UI mock-ups are drawn. Tech-stack is fixed, and

relevant decisions are documented. Working prototype demonstrating bare technical essentials.

Planned: Completed by October 9.

Actual: Completed by October 9.

A.2.3 M2 – Standalone Application

Application is implemented as a standalone, locally executed program. Application displays meta-

information about the selected git repository (e.g. Lines of Code, number of committers, etc.). The

panorama view is generated, but without any highlighting or drill-down functionality.

Code Panorama Appendix A

2018-12-19 8 of 18

Planned: Completed by October 21.

Actual: Completed by October 24.

A.2.4 M3 – Web-Client and Drill-down

All information is served via REST-API to the web-client; the UI resembles the mockups. User can “drill-

down” into specific sections/files by clicking on the panorama view.

Planned: Completed by November 18.

Actual: Completed by November 22.

A.2.5 M4 – Customization

User is provided with various filters and options to customize the displayed panorama or file.

Planned: Completed by December 2.

Actual: Completed by December 6. Scope reduced to only include one basic filter and no options. Scope

additionally included improved error handling, writing manuals, and handling private (password-

protected) repositories.

A.2.6 M5 – Hand-in

Project is finished, and all necessary documents are handed-in. Potential further development as part of a

bachelor thesis might be considered / out-lined.

Planned: Completed by December 21.

Code Panorama Appendix B

2018-12-19 9 of 18

Appendix B Design Diagrams

B.1 Sequence diagram
The following diagram gives a quick overview of how the different pages in the client communicate with

the server and in which situations redirects between the pages happen.

Figure 4 - Sequence Diagram13

The GET repo-job and GET panorama-job requests are sent periodically. The server responds to each

request with the current status of the job running in the background. Once the server is done processing

the original POST request, it will return a link to the produced result.

13 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/documentation/design-decisions#sequence-
diagram, 13.12.2018

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/documentation/design-decisions#sequence-diagram
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/documentation/design-decisions#sequence-diagram

Code Panorama Appendix C

2018-12-19 10 of 18

Appendix C Manuals

C.1 Running your own instance of CodePanorama14

14 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md, 13.12.2018

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/run-own-instance.md

Code Panorama Appendix C

2018-12-19 11 of 18

Code Panorama Appendix C

2018-12-19 12 of 18

Code Panorama Appendix C

2018-12-19 13 of 18

Code Panorama Appendix C

2018-12-19 14 of 18

C.2 Developer Guide15

15 https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/dev-guide.md, 13.12.2018

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/blob/master/dev-guide.md

Code Panorama Appendix D

2018-12-19 15 of 18

Appendix D Self-Reflection

D.1 Report by Marc Etter
For a while now, I have been intrigued by the ideas of functional programming. Since I predominantly use

object-oriented languages at work, I only had the chance to dabble in functional languages on the side.

Additionally, I am a big fan of measures, tools, and metrics to analyze code and provide feedback on

issues and quality. Combining both fields together in this term project therefore was an easy pick for me.

Although I struggled at first, I quickly came to appreciate all the new paradigms and mindsets proponed

by the Haskell language and community.

Working on the term project felt much more relaxed than on the Engineering Project last semester. Partly

because the regulations for formal documentation and regular hand-ins are more relaxed. While I often

found myself in the mentor role during the Engineering Project, it felt more comfortable to be working

with someone who was learning the language and eco-system from scratch with me. We had many laughs

about quirks and absurdities deemed regular in this community and faced the same challenges.

I had two personal goals coming into this term project: Learning and using a functional language in a real

project; and, obviously, implementing a useful tool for generating CodePanoramas. Although the true

usefulness of the tool in its current state might be debatable, it fulfills the basic requirements we set for

ourselves. As to whether I achieved my goal of learning a functional language, I feel like the following

quote best summarizes my experience, as to why I think it was worth learning:

«A language that doesn't affect the way you think about programming, is not

worth knowing.» - Alan Perlis, 1982

D.2 Report by Patrick Bächli
Just like every other software project I have worked on so far, this one had its pitfalls and challenges. But

this one was a bit different from the beginning, since one of the requirements was to use a functional

programming language. Most of my experience stems from working on business applications used in the

service sector, which so far is not a place where that paradigm has gained a considerable foothold. So, I

saw – and still see – this as a very good opportunity to gather some first-hand experience in it.

After a rather bumpy start, I eventually managed to leave enough of the imperative mindset behind and

became more and more comfortable using my limited functional knowledge and expand on it. This

certainly would not have been as easy or possible at all without the help and patience of Marc. To me it

almost seemed like he was “playing a home match” at times, but he never hesitated to pause and explain

a piece of code or a consideration he had been making.

Looking back upon the weeks since the start of this semester, I had a really interesting and educational

time. From the beginning, I had to leave my paradigm-comfort zone and get accustomed with something

mostly new and unfamiliar. But despite of all the difficulties that this has brought with it, I pulled through

and tried to learn as much as I can. The first fruitful successes are already emerging, as I have started my

first private project based on the functional paradigm during this semester.

Code Panorama Appendix E

2018-12-19 16 of 18

Appendix E Meeting Minutes
Please refer to the following page: https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/meeting-

protocols/index.

https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/meeting-protocols/index
https://gitlab.dev.ifs.hsr.ch/fmehta/CodePanorama/wikis/meeting-protocols/index

Code Panorama Appendix F

2018-12-19 17 of 18

Appendix F List of figures
Figure 1 - Example of a CodePanorama (36'000 lines of code displayed) ... i

Figure 2 - Architecture of Code Panorama .. 3

Figure 3 - Authentication decision tree ... 5

Figure 4 - Sequence Diagram .. 9

Code Panorama Appendix G

2018-12-19 18 of 18

Appendix G Glossary
A

API ... Application Programming Interface

C

CI / CD ... Continous Integration / Continous Delivery

CLI .. Command-line Interface

CSS ... Cascading Style Sheets

H

HTML ... Hypertext Markup Language

HTTP .. Hypertext Transfer Protocol

J

JSON .. JavaScript Object Notation

L

LESS ...Leaner Style Sheets

O

OOP ... Object Oriented Programming

R

REST .. Representational State Transfer

S

SVG ... Scalable Vector Graphics

U

UI .. User Interface

URL ... Uniform Resource Locator

UUID ... Universally Unique Identifier

