
SA - HS2018 - Documentation

Safe C++ Guidelines

University of Applied Sciences Rapperswil

September - December 2018

Author: Viktor Puselja, Gabriel Vlasek
Supervisor: Peter Sommerlad
Technical Adviser: Hansruedi Patzen

1. Abstract

The AUTOSAR guidelines are a set of rules to help developers in the automobile
industry write safe C++ code. In a previous project, the Eclipse plug-in Code-
Analysator was created. It offers an infrastructure to implement different guidelines
by different corporations and organizations like AUTOSAR. Before we started
the project, only a few rules were implemented as a proof of concept. Using this
foundation, we created checkers for multiple rules from the AUTOSAR guidelines.
These checkers perform static code analysis to mark C++ code that violates one
of those rules. By analyzing C++ code, studying examples and standards we eval-
uated all possible cases that are relevant to the respective rule. We also examined
the Abstract Syntax Tree to see how such problems can be identified. Some of the
problems can be solved automatically through refactorings. For those problems we
created quick fixes. These quick fixes offer the user to automatically manipulate
the AST in order to turn a violating piece of code into a compliant one. Over the
course of this project we created checkers for 25 rules, 12 of which we offer at least
one quick fix for.

i

2. Management Summary

Introduction The CodeAnalysator plug-in supports C++ developers that work
with Cevelop. It was created in another thesis at the University of Applied Sciences
Rapperswil. Many different corporations and organizations define their own rules on
how to write safe and robust C++ code. The CodeAnalysator plug-in provides an
infrastructure, where many different guidelines can be implemented. Implementing
in this case means the following: If a developer writes code that violates a rule in a
guideline, the corresponding parts of the code are highlighted. The developer is
then informed that they violated a rule. Sometimes such violations can be resolved
directly by using a quick fix. A quick fix allows the developer to automatically
transform the problematic code into compliant code. In the above mentioned thesis,
the predecessor group created the CodeAnalysator plug-in and infrastructure but
with only a few rule implementations. The topic of this thesis is to implement
many additional rules in order to support C++ programmers.

Approach The main work consisted of implementing checkers and quick fixes for
rules. In this project we focused on AUTOSAR rules. The AUTOSAR guidelines
are a set of rules used to write safe C++ code in critical and safety-related projects.
It is used by the automobile industry. The AUTOSAR guidelines [AUTOSAR 2018
] is not a public document. As for implementing the rules, the approach was the
same for each one. First, we analyzed the rule by looking at the description and
examples and studying the language specification. We then wrote tests to find
out all the different cases in which they apply. After we knew what cases there
were, we started to analyze the C++ code and wrote the corresponding checker. If
there was a way to solve the problem without changing the meaning of the code,
we wrote a quick fix for the corresponding rule. To find out how such a quick fix
should work, we first defined how the code should look after running our quick fix.
Based on our findings from the earlier analysis we wrote our quick fix in a way that
it would transform all of the bad examples into conforming code.

Results At the end of this project we had implemented twenty-five rules including
corresponding tests, with the rules ranging from trivial to complex. For twelve
of these rules we additionally implemented quick fixes to resolve the problems
automatically. With these checkers and quick fixes we will hopefully help developers

ii

write safer and more robust C++ code in the future.
To give an idea of how this works, here is an example of how these checkers and
quick fixes operate.

Figure 2.1.: C++ code that is correct but violates a rule. The underline shows
that something is amiss.

The code above is correct and compiles. It will not give an error. But our checker
recognized that the usage of typedef is not best practice. It notifies the user about
this by underlining the offending code.

Figure 2.2.: When hovering over the bad code, the violated rule is displayed. Be-
neath, some solutions are proposed.

iii

The user hovers over the notification and sees which rule he has violated. He is
also shown a few possibilities on how to solve this problem. He can now click on
the first one to apply the quick fix.

Figure 2.3.: The code after the quick fix has been applied.

This is what the code looks like after the quick fix has been applied. Now no more
notifications are shown and the code has become more safe and robust.

Outlook As of now there are about 30 implemented rules in the CodeAnalysator
plug-in, including the ones that were already implemented before we started our
project. [AUTOSAR 2018]. But AUTOSAR still has many more rules to implement.
And there are other guidelines that can be implemented. There are definitely a
lot of rules left that will provide work in the future. Also, the architecture can be
refactored and maybe even improved.

iv

Contents

1. Abstract i

2. Management Summary ii

3. Introduction 1
3.1. Initial Situation . 1
3.2. Problem Description . 1
3.3. On checkers, visitors and quick fixes 2

4. Planning 3
4.1. Elaboration . 3
4.2. Documentation . 3
4.3. Project Management . 4
4.4. Construction . 4

4.4.1. Definition of done for checker and quick fixes 4
4.5. Milestones . 5

4.5.1. End of Elaboration . 5
4.5.2. Mid Construction . 5
4.5.3. End of Construction . 6
4.5.4. End of Project . 6

5. Requirements 7
5.1. Scope . 7
5.2. Minimal scope . 8
5.3. Desired scope . 10
5.4. Optional scope . 10

6. Architecture 11
6.1. Eclipse and OSGi . 11
6.2. Packages . 12
6.3. Relevant classes and files . 13

6.3.1. fragment.xml . 13
6.3.2. AutosarIdHelper . 13
6.3.3. AutosarChecker . 14

v

6.3.4. CoreIdHelper . 14
6.3.5. AutosarGuidelineMapper . 14
6.3.6. CheckerTest . 14
6.3.7. QuickFixTest . 14
6.3.8. PluginUITestSuiteAll . 14

7. Implementation 15
7.1. Implementation of the checkers and quick fixes 15

7.1.1. A5-0-2: Condition of if/while/for shall be bool 15
7.1.2. A5-1-1: No magic numbers 17
7.1.3. A5-1-2: Do not implicitly capture variables in lambda ex-

pressions . 18
7.1.4. A5-1-3: Parameter list shall be included in lambda 18
7.1.5. A5-1-4: Lambda expressions shall not outlive reference cap-

tured objects . 18
7.1.6. A5-1-6: Explicit lambda return type 19
7.1.7. A5-1-8: Do not nest lambda expressions 19
7.1.8. A5-16-1: Do not use the ternary conditional operator as

sub-expression . 19
7.1.9. A6-4-1: Switch shall have at least two cases 20
7.1.10. A7-1-4: The register keyword shall not be used 21
7.1.11. A7-1-5: The auto specifier shall not be used 21
7.1.12. A7-1-6: The typedef specifier shall not be used 22
7.1.13. A7-2-2: Enumeration underlying base type shall be explicitly

defined . 22
7.1.14. A7-2-3: Declare enumerations as scoped enum classes 22
7.1.15. A7-2-4: Initialize none, the first or all enumerators 23
7.1.16. A7-4-1: The asm declaration shall not be used 23
7.1.17. A8-5-2: Braced-initialization {}, without equals sign, shall

be used for variable initialization 23
7.1.18. A8-5-3: A variable of type auto shall not be initialized using

{} or ={} braced-initialization 24
7.1.19. A9-5-1: Unions shall not be used 25
7.1.20. A10-1-1: Class shall not be derived from more than one base

class which is not an interface class. 25
7.1.21. A10-2-1: Do not redefine non-virtual member functions . . . 25
7.1.22. A10-3-1: Virtual function declarations shall have exactly one

of the specifiers virtual, override or final 26
7.1.23. A10-3-2: Each overriding virtual function shall be declared

with the override or final specifier. 27

vi

7.1.24. A10-3-3: Do not introduce virtual member functions in a
final class . 27

7.1.25. A10-3-5: User defined assignment operators shall not be virtual 28
7.2. Example using A5-1-6 . 29

7.2.1. Checker . 29
7.2.2. Quick fix . 30

8. Quality measures 34

9. Results 35
9.1. Work planned / completed comparison 35
9.2. Time Management . 36

9.2.1. Estimation and time spent of major areas 36
9.2.2. Estimation and time spent of checkers and quick fixes 36

10.Conclusion 41
10.1. Retrospective . 41
10.2. Considerations for future projects 42

Glossary 46

A. Developer Guide 49
A.1. Overview . 49
A.2. Checker . 50

A.2.1. Visitor . 50
A.2.2. Testing . 55

A.3. Quick fix . 57
A.3.1. Quick fix . 57
A.3.2. Testing . 60

B. Acknowledgement 62

C. Eigenständingkeitserklärung

vii

3. Introduction

In this chapter we will give a short introduction to our project. We will describe
the situation at the beginning of our project, followed by the description of the
problem to solve in this project, with an explanation of the core concepts at the
end.

3.1. Initial Situation

This project has a predecessor project. Before it, another group created the Eclipse
plug-in CodeAnalysator. The goal of this plug-in is to provide an infrastructure
to implement checkers and visitors for different guidelines. Refer to chapter 6 for
further detail on how the CodeAnalysator plug-in is structured. They already
implemented a small number of checkers and quick fixes in a proof of concept
way. The plug-in uses the CDT, the C/C++ Development Tools. The CDT is a
development environment to create plug-ins for C and C++ programming in Eclipse.
It offers functionality to analyze C++ code such as examining and manipulating
the abstract syntax tree.

3.2. Problem Description

As stated before, the plug-in as of the beginning of the project offers the infrastruc-
ture to implement checkers and quick fixes but does not yet implement many such
elements. This means that there is not a lot of architecture work to do. Instead, we
need to analyze many different rules and decide how the code needs to be checked
to find these problems in order to write checkers. Another part is to evaluate
whether a feasible quick fix for the given problem exists. We are implementing
rules for the AUTOSAR guidelines. The AUTOSAR guidelines are a set of rules
that are used in the automobile industry. The guideline is not public. This means
that some specific sections in this document will be removed for the public release.

1

3.3. On checkers, visitors and quick fixes

Any reader of this document will come across the words checker, visitor and quick fix
many times. To minimize confusion, here an explanation what these terms mean
in the context of this project. Checkers are a part of Codan, a static analysis
framework in CDT. The purpose of a checker is to perform code analysis and
report found problems and defects. The CodeAnalysator plug-in implements a
single checker per guideline which runs multiple visitors, one for each rule. Visitors
implement the visitor pattern for traversing the AST in CDT. The rule visitors
in the CodeAnalysator check the AST for violations of their respective rule and
report the offending node. When a node is reported, a problem marker highlighting
the node is created to signal the problem to the user. Then, if available, marker
resolutions are presented to the user to resolve the problem by automatically
manipulating the AST. The marker resolutions for rule violations are called quick
fixes in the CodeAnalysator plug-in. They are provided in case there is a sensible,
idiomatic and automatable solution or fix for a rule violation. In short, checkers run
rule visitors for a guideline, which check the AST for violations of their respective
rules and report them. Quick fixes resolve rule violations, by manipulating the
AST.

2

4. Planning

The target work amount per person for the study project is 240 hours over a
span of 14 weeks. For our two men project this equals 480 hours total and 17
hours per week per person. The main working hours are Monday and Friday from
approximately 8AM to 5PM.
The project itself can be divided into the following major working areas: Project
Management, Elaboration, Construction and Documentation. The project time
will first be allocated to the major work areas. We plan on using the following
share of time on each area:

• 8%: Elaboration

• 16%: Documentation

• 10%: Project management

• 66%: Construction

4.1. Elaboration

Eight percent of the time will be spent on analysis and elaboration. In the earlier
phases of the project the amount will be higher than later on. Analysis consists of
the following tasks:

• Install development tools

• Clone the project and make it run locally

• Introduction to technologies like eclipse plug-in development

• Studying the AUTOSAR guideline

4.2. Documentation

This area consists simply of writing this document. Writing on anything besides
the implementation section is counted towards this working area. Writing on
implementation is counted towards construction. See section 4.4.1.

3

4.3. Project Management

Ten percent of the total time will be spent on Project Management. The following
activities are part of project management:

• Weekly meetings with supervisor

• Preparation and recap of meetings

• Wiki management

• Time management

4.4. Construction

Construction takes up approximately sixty-six percent of the total time which
accumulates to a total of 320 hours. We use time slots to talk about estimates.
One time slot equals 4 hours of work. This means there is a total of approximately
80 slots reserved for construction. At the end of elaboration, which is planned for
October 19th, we will have spent 20 slots. For the rest of the project we plan on
spending another 60.
The following table shows our estimation on how many time slots we need for a
given problem. The estimates are based on our experience in the elaboration phase.

Trivial Medium Complex
Checker 1 3 6
Quick Fix 1 2 4

Table 4.1.: Estimated time slots per task

4.4.1. Definition of done for checker and quick fixes

A checker or a quick fix is considered complete when the following checklist is
fulfilled:

• The checker or quick fix must be implemented and working.

• Tests must be implemented and passing.

• The changes must be committed and pushed to the CI server.

• The build and tests of the commit must pass.

• The implementation must be documented in the section implementation of
this document.

• Javadoc documentation for helper classes must be written.

4

4.5. Milestones

We defined the following milestones for our project.

Project Start 17. September 2018
End of Elaboration 19. October 2018
Mid Construction 16. November 2018
End of Construction 10. December 2018
End of Project 21. December 2018

Table 4.2.: Milestones timetable

4.5.1. End of Elaboration

End of Elaboration is our first milestone. By this point we have:

• Finished project planning

• Set up our development machines and processes (CI)

• Defined our scopes (minimal, desired, optional)

• Implemented the first checkers and quick fixes

• Chosen AUTOSAR rules for at least until mid construction

• Defined the quality measures

Output:

• Project plan

• Scopes

• First checkers and quick fixes

4.5.2. Mid Construction

For Mid Construction the following has to be accomplished:

• Requirements specification completed

• All AUTOSAR rules for this project chosen

• At least 2/3 of checkers and quick fixes implemented

– Must 2/3 of minimal scope

– Should 2/3 of desired scope

5

Output:

• Requirements specification

• Most checkers and quick fixes

4.5.3. End of Construction

The following need to be completed by the end of construction:

• Architecture and implementation documentation completed

• Developer guide completed

• All checkers and quick fixes implemented

– All checkers and quick fixes of the minimal scope must be completed.

– All checkers and quick fixes of the desired scope should be completed
but are not mandatory.

Output:

• Architecture documentation

• Implementation documentation

• Developer guide

• All checkers and quick fixes

4.5.4. End of Project

Our last milestone is the end of the project. Here we need to have completed the
following tasks:

• Finish documentation including the following chapters

– Abstract

– Management summary

– Introduction

– Results and Conclusion

– Glossary

• Create poster

• Delivery and upload of project

6

5. Requirements

In this chapter we will describe the requirements for the project. The requirements
are defined in term of scopes. Each larger scope contains the previous scope. Each
scope defines which rules to implement and whether to implement quick fixes for
those rules as well, including estimations of complexity and time effort required.

5.1. Scope

We define three scopes for this project. The minimal scope defines the minimum to
consider the project successful. The desired scope defines what would be expected
to be achieved. The optional scope defines what would go beyond expectations.
This section will focus on the construction part of the project. As introduced
in chapter 4.3 Construction, we will use time slots of four hours to talk about
estimates. The following table shows how many time slots we plan for each of the
scopes.

Elaboration Phase Construction Phase Total
Minimal Scope 20 time slots 51 time slots 71 time slots
Desired Scope 20 time slots 61 time slots 81 time slots
Optional Scope 20 time slots 68 time slots 88 time slots

Table 5.1.: Planned time slots for the different scopes

7

5.2. Minimal scope

Name Checker
complx.

Quick fix
complx.

Time
slots

A5-1-1: Literal values shall not be used apart from type
initialization, otherwise symbolic names shall be used
instead. [AUTOSAR 2018, p. 86]

Medium - 3

A5-1-2: Variables shall not be implicitly captured in a
lambda expression. [AUTOSAR 2018, p. 88]

Medium Simple 4

A5-1-3: Parameter list (possibly empty) shall be included
in every lambda expression. [AUTOSAR 2018, p. 89]

Simple Simple 2

A5-1-4: A lambda expression object shall not outlive
any of its reference-captured objects. [AUTOSAR 2018,
p. 90]

Complex - 6

A5-1-6: Return type of a non-void return type lambda
expression should be explicitly specified. [AUTOSAR
2018, p. 91]

Medium Complex 7

A5-1-8: Lambda expressions should not be defined inside
another lambda expression. [AUTOSAR 2018, p. 93]

Simple - 1

A5-16-1: The ternary conditional operator shall not be
used as a sub-expression. [AUTOSAR 2018, p. 111]

Simple - 1

A6-4-1: A switch statement shall have at least two case-
clauses, distinct from the default label. [AUTOSAR
2018, p. 117]

Medium Complex 7

A7-1-4: The register keyword shall not be used. [AU-
TOSAR 2018, p. 129]

Simple Simple 2

A7-1-5: The auto specifier shall not be used apart from
following cases:
(1) to declare that a variable has the same type as return
type of a function call,
(2) to declare that a variable has the same type as ini-
tializer of non-fundamental type,
(3) to declare parameters of a generic lambda expression,
(4) to declare a function template using trailing return
type syntax. [AUTOSAR 2018, p. 130]

Medium Simple 4

A7-1-6: The typedef specifier shall not be
used.[AUTOSAR 2018, p. 131]

Simple Medium 3

A7-2-2: Enumeration underlying base type shall be ex-
plicitly defined. [AUTOSAR 2018, p. 137]

Medium Simple 4

8

A7-2-3: Enumerations shall be declared as scoped enum
classes. [AUTOSAR 2018, p. 138]

Simple - 1

A7-4-1: The asm declaration shall not be used. [AU-
TOSAR 2018, p. 142]

Simple - 1

A8-5-3: A variable of type auto shall not be initialized
using {} or = {} braced-initialization. [AUTOSAR 2018,
p. 173]

Medium Medium 5

A9-5-1: Unions shall not be used. [AUTOSAR 2018,
p. 179]

Simple - 1

A10-1-1: Class shall not be derived from more than one
base class which is not an interface class. [AUTOSAR
2018, p. 183]

Medium - 3

A10-2-1: Non-virtual member functions shall not be
redefined in derived classes. [AUTOSAR 2018, p. 185]

Complex - 6

A10-3-1: Virtual function declaration shall contain ex-
actly one of the three specifiers: (1) virtual, (2) override,
(3) final. [AUTOSAR 2018, p. 186]

Simple Medium 3

A10-3-2: Each overriding virtual function shall be de-
clared with the override or final specifier. [AUTOSAR
2018, p. 188]

Medium Simple 4

A10-3-3: Virtual functions shall not be introduced in a
final class. [AUTOSAR 2018, p. 189]

Simple Simple 2

A10-3-5: A user-defined assignment operator shall not
be virtual. [AUTOSAR 2018, p. 190]

Simple - 1

Total 71

Table 5.2.: Minimal Scope

9

5.3. Desired scope

The desired scope includes the minimal scope and additionally the following rules:

Name Checker
complexity

Quick fix
complexity

Time
slots

Minimal scope - - 71
A5-0-2: The condition of an if-
statement and the condition of an it-
eration statement shall have type bool.
[AUTOSAR 2018, p. 80]

Medium Medium 5

A7-2-4: In an enumeration, either (1)
none, (2) the first or (3) all enumerators
shall be initialized. [AUTOSAR 2018,
p. 139]

Medium Medium 5

Total 81

Table 5.3.: Desired scope

5.4. Optional scope

The optional scope includes the desired scope and additionally the following rules:

Name Checker
complexity

Quick fix
complexity

Time
slots

Desired scope - - 81
A8-5-2: Braced-initialization {}, with-
out equals sign, shall be used for vari-
able initialization. [AUTOSAR 2018,
p. 170]

Complex Trivial 7

Total 88

Table 5.4.: Optional scope

10

6. Architecture

In this chapter we will give an overview over the architecture of the CodeAnalysator
plug-in where relevant to our project. We neither implemented nor designed
the architecture of the plug-in, as the focus of our student project was on the
implementation of checkers and quick fixes for AUTOSAR rules. [AUTOSAR 2018
] For further information please refer to the technical report of the predecessor
project. [Bertschi, Pascal 2018]

NOTE: When mentioned or talked about, checker for a rule (in the context of
the CodeAnalysator plug-in) refers to a visitor for that rule, instead of a Codan
checker. Checker, in that case, is meant in the sense of performing the action of
checking, as done by the rule visitors, as opposed to guideline checkers, which do
not perform any checking by themselves in the CodeAnalysator.

6.1. Eclipse and OSGi

Following is a short overview over OSGi as it is relevant for fully understanding
the structure of the CodeAnalysator plug-in. OSGi is a module system used by
Eclipse for plug-in management. An OSGi bundle, or as commonly referred to, a
plug-in, is a Java archive containing a manifest explicitly describing the packages
it requires (dependencies) as well as the packages it makes available to others. A
bundle can be extended by fragments. An OSGi fragment is similar to a bundle,
but specifies a fragment-host or host bundle to attach to in the manifest and cannot
be loaded on its own. Instead, when a bundle is loaded, all fragments attached to
it are loaded as well. Fragments provide a way to customize and extend bundles.
[OSGI overview 2018]

11

6.2. Packages

The CodeAnalysator plug-in is divided into a core package and guideline packages.
The core package contains the infrastructure code of the plug-in, including plug-in
ceremony, base classes and utility classes, as well as rule visitors and quick fixes
shared between multiple guidelines. The guideline packages contain guideline
specific configuration, as well as visitors and quick fixes for rules which are specific
to that guideline. The core package forms an OSGi bundle and the guideline
packages form OSGi fragments, with the core package acting as the host bundle.
This allows support for guidelines to be individually distributed.

Figure 6.1.: Package structure of the CodeAnalysator plug-in

12

6.3. Relevant classes and files

This section shows the classes and files used to implement a single rule based on
the AUTOSAR guidelines.

Figure 6.2.: Classes and files that implement a single rule

6.3.1. fragment.xml

The fragment.xml file defines all problems (rule violations) for a specific guideline.
A problem definition includes name, description and a unique id.

6.3.2. AutosarIdHelper

This helper class defines constants for all ids used in a guideline, for use in Java.
This includes problem ids and visitor ids for guideline specific rule visitors. The
problem ids must match those from the fragment.xml file.

13

6.3.3. AutosarChecker

The guideline checker registers rule visitors for the problem ids. Visitors can be
guideline specific or shared, but problem ids are always specific to the guideline.

6.3.4. CoreIdHelper

The CoreIdHelper defines constants for guideline independent ids. The rule visitor
ids for shared visitors are defined here.

6.3.5. AutosarGuidelineMapper

The guideline maps specific and shared visitor ids to problem ids, adds suppression
attributes for visitor ids, registers quick fixes and defines the name and id for the
guideline.

6.3.6. CheckerTest

CheckerTest classes set the problem id to use for the test. The test cases themselves
are defined in the corresponding CheckerTest resource file. Usually there is one
CheckerTest per rule visitor.

6.3.7. QuickFixTest

QuickFixTest classes are analogues to the CheckerTest classes. The QuickFixTests
set the problem id to use and instantiate the quick fix to test. The test cases
themselves are again defined in the corresponding QuickFixTest resource file.

6.3.8. PluginUITestSuiteAll

This class is run by the build script and CI Server for testing. All test classes need
to be registered here.

14

7. Implementation

In this chapter we describe the implementation of the different rules. We will also
provide an example of how we worked when implementing a checker and a quick
fix for a rule.

7.1. Implementation of the checkers and quick fixes

In this section we will talk about the implementation of the AUTOSAR rules.
We decided not to include a separate chapter about analysis because it is tightly
coupled to the implementation of the checkers quick fixes. For non-trivial rules we
describe the analysis that went ahead of the implementation in the checker and
quick fix descriptions. Some rules offer work for further projects. Such possibilities
are also listed.

7.1.1. A5-0-2: Condition of if/while/for shall be bool

Checker: The checker tests all statements and continues if they are either an
if, while, do or for statement. If so, their corresponding condition is inspected. If
the condition is a not a boolean, the statement is marked. But there are a few
exceptions. If there is a type initialization sequence, it is not marked, even though
it might be something besides bool. Also, if a type has an explicit conversion to
bool, it is ok. If not, it is marked. This is because it is contextually converted
to bool in this case. See the example below. [AUTOSAR 2018, p. 80] [Implicit
conversions - cppreference.com 2018]

15

Figure 7.1.: Example for A5-0-2 [AUTOSAR 2018]

1 struct A {

2 explicit operator bool() const { return false; }

3 };

4

5 struct B {

6 operator bool() const { return false; }

7 };

8

9 void F(){

10 A a{};

11 B b{};

12 if(a){} // compliant

13 if(b){} // non-compliant

14 return false;

15 }

The rule is not completely clearly specified. For example, there is a snippet in
which the following code is non-compliant.

Figure 7.2.: Unclear example [AUTOSAR 2018]

1 std::uint8_t u = 8;

2 bool boolean1 = false;

3 bool boolean2 = true;

4 if (u && (boolean1 <= boolean2)); // non-compliant

We assume that the problem is the conversion from u, which is a numeral, to a
boolean. This happens because the logical AND-operator needs two bool values as
operands. This conversion is implicit, which is prohibited according to the rule.
But technically the conversion happens when executing the AND-operation as
opposed to when the condition is evaluated. According to the description, this
would be compliant. But for this project we assume that the condition must not
contain any implicit bool conversions. [AUTOSAR 2018, p. 80]

Quick fix: As stated in the requirements chapter, it was initially planned to
create a quick fix for this rule. Upon further research it became clear that it would

16

be very complicated to create a satisfying quick fix. The rule does not specify how
it should be resolved. A problem is that a quick fix might either make the code
less readable or do something that is technically correct but does not really make
sense. That is why we decided to not implement a quick fix for this rule.

Future possibilities: In the future a quick fix could be done but more time would
be needed to to analyze the rule than is available in this project.

7.1.2. A5-1-1: No magic numbers

Checker: Recognizing a literal value in the code is achieved by checking whether
an expression is a literal expression. The rule states that literal values are allowed
if they are in an initialization. By checking whether the parent of the literal
expression is an IASTInitializer, most exceptions are already found. There is one
special case though, which has to be checked separately. This special case is when
the initialization is part of a unary expression. For example, in a return or throw
statement:

throw std::logic_error("Logic Error");

There is also another exception which states that literal values are allowed when
used for logging. But since there is no reliable way to find out whether a literal
value was used for logging, we decided to leave it up to the user to suppress the
warning if needed. [AUTOSAR 2018, p. 86]

Quick fix: A possible fix for this problem would be to extract the literal value
into a constant or variable. This would require the user to enter a variable name.
But a quick fix is not intended to use user input. For cases like this, refactorings
should be used. Refactorings are not in the scope for this project, which is why
this is not possible. Another possibility is to generate a name from the code, but
this would lead to bad names that would have to be refactored again. That is the
reason why we decided it is best to just show the problem to the user and not
implement a quick fix.

Future possibilities: Working with this rule turned on can be tedious. In
the future it could be made configurable, which types of literal values are to be
marked and which are not. For example, true, false and nullptr are literal
expressions which most people probably don’t want to have marked every time.
This customization is realizable but lies out of the scope of this project. In a future
project, this could very well be done.

17

7.1.3. A5-1-2: Do not implicitly capture variables in lambda
expressions

Checker: The checker reports all lambda expressions with capture defaults. [AU-
TOSAR 2018, p. 88]

Quick fix: Removes all capture defaults from lambda expressions and adds explicit
captures for all previously implicitly captured variables. We studied the cppreference
page on lambda expressions for which variables are implicitly captured when a
capture default is present. [Lambda expressions (since C++11) - cppreference.com
2018] A variable is implicitly captured by a lambda expression, if the variable
is defined outside the scope of the lambda, is potentially evaluated, cannot be
used without a capture and is not explicitly captured. The quick fix computes
implicitly captured variables by visiting all variable uses inside the body of a
lambda expression and, if the above condition holds true, adds the variable to the
implicitly captured variables. [AUTOSAR 2018, p. 88] [Lambda expressions (since
C++11) - cppreference.com 2018]

7.1.4. A5-1-3: Parameter list shall be included in lambda

Checker: The checker for this rule is a simplified version of the checker for rule
A5-1-6. It tests whether the expression is a lambda and has a declarator. If not,
there is no parameter list and the lambda is reported. [AUTOSAR 2018, p. 89]

Quick fix: This quick fix adds an empty declarator to the lambda expression, which
results in an empty parameter list. An empty parameter list is always correct, as an
omitted parameter list means a lambda takes no parameters. [Lambda expressions
(since C++11) - cppreference.com 2018]

7.1.5. A5-1-4: Lambda expressions shall not outlive reference
captured objects

Checker: The checker visits all lambda expressions and reports statements or
expressions which allow the lambda expression to escape, meaning potentially
allowing the lambda expression to outlive its reference captured objects. Return
statements allow lambdas to escape. Except when the lambda expression is inside
another lambda expression and the reference captured objects are still valid outside
the lambda. Assignment expressions allow lambdas to escape if the assignment
target is a global variable, a field, a reference parameter, a local variable with static
storage duration or a local variable outside the scope of a reference captured object.

18

Additionally, the checker performs simple alias checking. In case the value of a
lambda expression is assigned to a variable, all uses, and aliases of that variable
are recursively checked as well. [AUTOSAR 2018, p. 90]
The checker for this rule was more elaborate than our highest estimation category.
There were no specific problems or unexpected difficulties, implementing the
different escape and alias checks was simply more time-consuming than expected.
It should have been estimated with a higher amount or a higher new complexity
category.

Quick fix: There is no feasible way to implement a quick fix for this rule, as
there is no general algorithm to rewrite reference captures into copy captures while
preserving the behaviour of the code.

7.1.6. A5-1-6: Explicit lambda return type

Checker: The checker visits all expressions and checks whether it is a lambda
expression. If so, it tests whether its return type is specified explicitly or implicitly.
The return type of a lambda expression is specified implicitly, if the trailing-return-
type is omitted or if the trailing-return-type is the auto or decltype(auto) specifier.
If the return type is implicit and not void, the lambda is reported. [AUTOSAR
2018, p. 91] [Lambda expressions (since C++11) - cppreference.com 2018]

Quick fix: The quick fix creates a new lambda declarator with the lambda return
type deduced by the CDT. It then either replaces the old declarator or simply
inserts the new one, depending on whether the lambda already had a declarator.

7.1.7. A5-1-8: Do not nest lambda expressions

Checker: The checker visits all lambda expressions and checks whether they are
enclosed by another lambda expression inside the same function. If so, the nested
lambda expression is reported. [AUTOSAR 2018, p. 93]

Quick fix: There is no sensible way to automatically refactor a lambda expression
away.

7.1.8. A5-16-1: Do not use the ternary conditional operator as
sub-expression

Checker: The checker visits all expressions and, in the case of a ternary conditional
operator, checks whether it is used as a sub-expression. If the conditional operator

19

is used as a sub-expression, the conditional operator is reported. If the super
expression is a parentheses unary expression, the check is instead performed for
the parentheses expression. [AUTOSAR 2018, p. 111]

Quick fix: There is no sensible way to automatically refactor a nested expression
out.

7.1.9. A6-4-1: Switch shall have at least two cases

Checker: The checker visits all switch statements and counts the number of
case-clauses. If there are less than two case-clauses the switch statement is reported.
[AUTOSAR 2018, p. 117]

Quick fix: This quick fix turned out to have more edge cases than expected. After
a thorough study of the article on switch statements on cppreference, we came to
to the following solution. Switch statements with less than two case-clauses can be
replaced with a construct consisting of an optional init-part, an optional if-part,
an optional else-part and an optional unconditional following-part. The quick fix
is not applicable for switch statements containing statements outside of clauses.
The init-part contains a possible init-statement, a controller declaration or in the
case of no if-part, a controller expression. The if-, else- and following-parts contain
the statements of the clauses. The clauses are assigned to a part depending on
which clauses exist, whether they are fall-through and their order. In all cases the
construct is contained in a compound statement in order preserve the additional
scope of the switch statement. The following table shows how the clauses of the
switch statement are assigned to the if-, else- and following-parts. [switch statement
- cppreference.com 2018]

Case If-part Else-part Following-part
No clauses - - -
Only a default-clause - - default-clause
Only a case-clause case-clause - -
Case-clause and default-clause case-clause default-clause -
Fall-through from case to default case-clause - default-clause
Fall-through from default to case default-clause - case-clause

Table 7.1.: Assignment of clauses to if-, else- and following-parts

20

Future possibilities: In the future, in case the parent statement is a compound
statement, the init- and following-parts could be checked for possible name-collisions
with the parent scope and if there are none, the additional compound statement
might be omitted, and the parts directly inserted into the parent compound
statement.

7.1.10. A7-1-4: The register keyword shall not be used

Checker: It is deprecated, and some compilers even ignore it. The use of the
register keyword makes the code less portable because it doesn’t work in the same
way on every machine. Also, the functionality of it is just a suggestion to the
machine to store the value in a register. Even on machines that support the keyword,
it is not guaranteed that it has any effect. The checker marks all occurrences of the
keyword. [AUTOSAR 2018, p. 129] [C++ keywords: register - cppreference.com
2018]

Quick fix: The quick fix removes the register keyword.

7.1.11. A7-1-5: The auto specifier shall not be used

Checker: This checker visits all declarations. If a declaration is a simple declara-
tion, the checker tests whether the declaration is declared with the auto declaration
specifier and if the variables are not initialized with a function call or initializer of
non-fundamental type. If so, the declaration is reported. [AUTOSAR 2018, p. 129
] [auto specifier (since C++11) - cppreference.com 2018] [Fundamental types -
cppreference.com 2018]
Otherwise, if a declaration is a function definition, the checker tests whether
the function is defined with the auto declaration specifier and if the function is
not a template function using trailing return type syntax. If so, the function
definition is reported. [AUTOSAR 2018, p. 129] [auto specifier (since C++11) -
cppreference.com 2018]

Quick fix: In case of a variable declaration, the quick fix iterates through all
declarators in the declaration and inserts for each declarator a new declaration
with the deduced type and declarator, before removing the auto declaration. If
the declarator is an rvalue reference declarator and the deduced type is an lvalue
reference, the declarator is changed to an lvalue reference, according to auto specifier
deduction rules. [auto specifier (since C++11) - cppreference.com 2018]
In case of a function defined with the auto keyword, the quick fix removes an
eventual trailing return type and replaces the auto declaration specifier with a

21

specifier of the deduced type. [auto specifier (since C++11) - cppreference.com
2018]
NOTE: Due to limitations in Eclipse CDT, declaration specifiers cannot be correctly
constructed for template instances with std::char16 t, std::char32 t, reference
(&), pointer (*), pointer to member (T::*) and enumeration non-type template
parameters, because the argument used to instantiate the template is not available.
As a fallback the template instance is constructed using the types instead of the
values as arguments. This does not compile but should be sufficient as a hint to
which arguments are required.
This quick fix took significantly longer than estimated, mainly due to two reasons.
Unexpected changes aside from replacing the auto keyword with the deduced type
(const- and volatile-qualifiers, auto&& reference being an rvalue or lvalue reference
depending on assigned value) and non-existing functionality to generate an AST
type specifier from a semantic type, requiring its implementation for this quick fix.

7.1.12. A7-1-6: The typedef specifier shall not be used

Checker: Implementation of this rule was trivial. We copied the visitor that
simply checks declarations for the keyword typedef and marks every occurrence.
[AUTOSAR 2018, p. 131]

Quick fix: The quick fix replaces the typedef with one or multiple using statements.

7.1.13. A7-2-2: Enumeration underlying base type shall be
explicitly defined

Checker: This checker visits all enumeration specifiers and reports them, if they do
not have an explicitly specified base type. [AUTOSAR 2018, p. 137] [Enumeration
declaration - cppreference.com 2018]

Quick fix: The quick fix has only been partially implemented, due to missing
support in CDT to insert enum base types.

Future possibilities: In the future, with added support in CDT to insert the base
type between name and enumerators, the quick fix could be completed.

7.1.14. A7-2-3: Declare enumerations as scoped enum classes

Checker: The checker visits all enumeration specifiers and reports enums which are
not scoped. [AUTOSAR 2018, p. 138] [Enumeration declaration - cppreference.com

22

2018]

Quick fix: A quick fix changing the enum to an enumeration class would have to
additionally change all implicit conversions from the enum to numeric values to
explicit casts and qualify all unqualified references to the enumeration values. There-
fore no quick fix has implemented. [Enumeration declaration - cppreference.com
2018]

7.1.15. A7-2-4: Initialize none, the first or all enumerators

Checker: This checker visits all enumeration specifiers and reports them, if a
single enumerator is initialized and it is not the first or if more than one enumerator
is initialized but not all. [AUTOSAR 2018, p. 139] [Enumeration declaration -
cppreference.com 2018]

Quick fix: The quick fix has only been partially implemented, due to missing
support in CDT to rewrite enumerators.

Future possibilities: In the future, with added support in CDT to rewrite enu-
merators, the quick fix could be completed.

7.1.16. A7-4-1: The asm declaration shall not be used

Checker: Using the asm keyword, it is possible to run assembler code in C++.
But this makes the code very machine dependent and is discouraged. The checker
marks every occurrence of the asm keyword. [AUTOSAR 2018, p. 142] [asm
declaration - cppreference.com 2018]

Quick fix: Since writing a parser that translates the assembler code into C++
would greatly exceed our time budget, we decided to not implement a quick fix for
this rule.

7.1.17. A8-5-2: Braced-initialization {}, without equals sign,
shall be used for variable initialization

Checker: This checker visits all simple declarations (variable declarations). The
checker reports non-braced-initializers in declarations unless non-braced-initialization
is required. Parentheses initialization is required when calling a constructor which
would be overshadowed by an initializer-list constructor with braces initialization.
An exception is made for auto declarations, as braced-initialization of auto variables

23

would violate the following rule A8-5-3. [AUTOSAR 2018, p. 170] [list initialization
(since C++11) - cppreference.com 2018] [direct initialization - cppreference.com
2018]
NOTE: The checker has not been implemented for temporary object, object with
dynamic storage duration (new-expression) and constructor member initialization,
due to time constraints and a possible constructor resolution bug in CDT.

Quick fix: The quick fix replaces constructor initializer (parentheses) with initial-
izer lists (braces) when parentheses initialization is not required. [list initialization
(since C++11) - cppreference.com 2018] [direct initialization - cppreference.com
2018]

7.1.18. A8-5-3: A variable of type auto shall not be initialized
using {} or ={} braced-initialization

Checker: There are multiple ways to initialize a variable in C++ using auto;

Figure 7.3.: Different ways of initializing an auto variable[Initialization - cpprefer-
ence.com 2018]

1 auto x1 (10); // constructor initializer

2 auto x2 = 10; // equals initializer

3 auto x3 = int{}; // typed initializer list

4 auto x4 {10}; // initializer list

5 auto x5 = {10}; // equals initializer list

C++ performs type deduction when initializing a variable with auto. In the first
three cases of the example the expected type will be deduced. But if an initializer
list is used, the deduced type will be initializer list. This can be confusing so if it
is used, it will be flagged. [AUTOSAR 2018, p. 173] [auto specifier (since C++11)
- cppreference.com 2018]

Quick fix: The same quick fix as for rule A7-1-5 is used. See section 7.1.11 for
more information.

24

7.1.19. A9-5-1: Unions shall not be used

Checker: This rule has a special exception that allows to use tagged unions before
the introduction of std::variant. It would have been very difficult to check whether
a union was used in such a way. std::variant was introduced in C++ 17, so starting
from there, it is not allowed anymore. That is why we decided not to check for this
exception. Because of this decision, the visitor was quite simple to implement. The
visitor simply searches for the keyword union and marks it if found. [AUTOSAR
2018, p. 179] [std::variant - cppreference.com 2018]

Quick fix: There is no fix for this, that will be correct in all cases. We decided
not to implement a quick fix for this rule.

7.1.20. A10-1-1: Class shall not be derived from more than
one base class which is not an interface class.

Checker: The glossary of the AUTOSAR document defines an interface class as
follows: A class is an interface class if there are only public pure virtual methods
and public static constexpr data members. Additionally there can be a virtual
destructor. The visitor looks at all the base classes and counts how many of
them are not interfaces. If that number is larger than one, the class is flagged.
[AUTOSAR 2018, p. 183]

Quick fix: There is no way to decide which classes should be removed, so we
decided to not add a quick fix.

7.1.21. A10-2-1: Do not redefine non-virtual member functions

Checker: If a non-virtual method is redefined in a derived class, the initial
function is hidden. To detect this, the base-classes of the derived class need to be
checked. This also includes classes that are multiple levels higher in the inheritance
tree or that are in another file. Every non-virtual member function of each base-
class is compared to the redefined function. If they are equal, the base method
is shadowed. This needs to be marked. To perform this check, there is some
additional functionality needed such as finding all base classes, finding out whether
methods override or not and so forth. This functionality is in a separate helper
class called VirtualHelper. This class is used for some other checkers as well. The
functionality of it was heavily inspired by the class OverrideIndicatorManager from
the CDT. [AUTOSAR 2018, p. 185] [OverrideIndicatorManager 2018]

25

Figure 7.4.: B.F() shadows A.F()

1 struct A

2 {

3 public:

4 void F() noexcept {}

5 };

6 struct B : public A

7 {

8 public:

9 void F() noexcept { } // hides F() from A

10 };

Quick fix: There is no fix for this, that will be correct in all cases. We decided
not to implement a quick fix for this rule.

7.1.22. A10-3-1: Virtual function declarations shall have
exactly one of the specifiers virtual, override or final

Checker: This rule can be violated in two ways. Either there are too many
specifiers, or there is none when there should be one. The visitor counts how many
VirtualSpecifiers are present on the declarator. Since the virtual keyword is not
contained in the VirtualSpecifiers, this needs to be checked separately by looking at
the method through the binding. If the total amount is larger than 1, the declarator
is marked. If the total amount is 0, but the function is virtual, it is marked as
well. To find out whether it is virtual, the VirtualHelper is used. [AUTOSAR 2018,
p. 186]

Quick fix: As stated in the checker section, there are multiple ways in which this
rule can be violated. Here are the different cases. The rule specifies that virtual
should only be used to declare new virtual methods.

1. If there is a final specifier, we assume, that it is supposed to be final. In that
case all the other specifiers are removed.

2. If there is an override and virtual specifier, and the method does override a
method in the base class, the virtual specifier is removed.

3. If a keyword is missing, but there is supposed to be one because it overrides
a method in its base class, the override keyword is added.

26

7.1.23. A10-3-2: Each overriding virtual function shall be
declared with the override or final specifier.

Checker: The checker checks every function that overrides another function in a
base class, whether it has one of the two virtual specifiers override and final. If it
does not have one, the declarator is flagged. A special case are destructors. If a
base class has a virtual destructor, the destructor of the derived class overrides the
base destructor, even though they have a different signature. Hence, it must have
an override keyword as well and is marked if it does not. [AUTOSAR 2018, p. 188]

Quick fix: There are two solutions for this problem. The user must choose which
one they prefer. That is why there are two quick fixes. One that adds the final
keyword and one that adds the override keyword.

7.1.24. A10-3-3: Do not introduce virtual member functions in
a final class

Checker: Since deriving from a final class is not possible, defining a method
virtual in it is inconsistent and should therefore not be done. There are two ways a
method can be virtual. [AUTOSAR 2018, p. 189]

1. The first one is straight forward when the method has the virtual keyword.
In that case the declaration is always marked when it appears inside of a final
class. The problem is, that C++ allows a few special cases. For example, it
is possible to introduce a pure-virtual final method. This member cannot be
derived from, but it is still virtual.

2. The second possibility is, when a member overrides a virtual base class
member. This cannot be recognized by traversing the AST. Instead the
helper class VirtualHelper is used again. Note that this case is already caught
by the rule A10-3-1 most of the times but it still needs to be checked, because
a user might disable the other rule.

Quick fix: The quick fix is only applicable if the member is not pure-virtual.
Otherwise if it is virtual because of the virtual keyword, the keyword is removed.
If it is virtual because it is overriding a virtual function, the override keyword is
replaced with the final keyword. For declarations it must be handled differently.
For example, if the function is virtual, you cannot remove the virtual keyword and
add the final keyword. That would cause a compile error, so it is not applicable.

27

7.1.25. A10-3-5: User defined assignment operators shall not
be virtual

Checker: It is possible to override an assignment operator of a base class A in a
derived class B. This allows to call the operator on B with an argument of type
B. This can lead to undefined behaviour. It is possible to identify a method as an
operator if the name is an instance of ICPPOperatorName. But this class does
not offer any functionality to find out what kind of operator it is. Internally the
operator is created by appending the operator (i.e. *=, = or —=) to the word
operator. That is how we check now as well. There is a list of operator names and
if it is contained in there, the operator is flagged. [AUTOSAR 2018, p. 190]

Quick fix: There is no fix for this, that will be correct in all cases. We decided to
not implement a quick fix for this rule.

28

7.2. Example using A5-1-6

In this section we describe the implementation of the rule A5-1-6 with a checker
and a quick fix.

7.2.1. Checker

The first thing we did was look at the AUTOSAR description and the provided
examples. The description says that omitting the return type of a lambda can
lead to confusion. It also warns, that there might be implicit conversion from the
returned element in the lambda and the specified return type. The code examples
show two cases. The first one is a compliant lambda expression with explicitily
defined return type. The other one is a non-compliant example without a return
type. These are our first two test cases. Of course there are other cases that
we need to find. One test case is to test the suppresion by adding a suppression
attribute to an non-compliant example. We also need to check what happens, when
the return type is void i.e. there is no return statement.
The next step is to look at the AST of the two examples.

Figure 7.5.: AST that shows a lambda with (left) and without (right) explicit
return type.

This is how we found out that the lambda needs a parameter list to have a return
type. So another test is, what happens, when there is no parameter list. We

29

test this with implicit and void return type. There are a few special cases. For
example what happens when the return type is decltype(auto). We looked at the
cppreference page for lambda expressions [Lambda expressions (since C++11) -
cppreference.com 2018]. Here we found out, that auto and decltype(auto) also
result in an implicit return type. This gives us another test case. We added test
cases again for void and implicit return type because if it is void, it is compliant.
[AUTOSAR 2018] Since we had decltype(auto) we also needed to test decltype
of some type, so we added a test for decltype(std::uint8 t) and decltype(void).
At this point we were quite sure, that we had covered all the cases and started
programming the visitor. To cover all the tests, we visit all the expressions and
then check whether they are lambda expressions. If so, it is checked whether they
have an explicit return type and are not of type void. From the AST we saw, that
it cannot have an explicit return type without a parameter list so we check this
first. After this, we make sure that the lambda expression has a trailing return
type. If so, we ensure that it is not decltype(auto). If the expression fails this test
and also has not a void return type, we mark it. This implementation covers all
the found test cases.

7.2.2. Quick fix

We start developing the quick fix by studying the relevant cppreference pages
[Lambda expressions (since C++11) - cppreference.com 2018] again, in order to
get a good grasp of how the return type is deduced and how it is specified. Then
we need to define test cases. Generally, we start with the tests of the corresponding
checker. Many of the test cases containing marker lines can be converted into
suitable quick fix tests by adding a second snippet with the fixed, confirming code
and removing the marker lines declaration, as shown in figures 7.6 and 7.7. Tests
without marker lines can sometimes be used as fixed code snippets for above tests,
otherwise they are ignored. Depending on the quick fix we may need further tests,
based on our study of the relevant language definitions.

30

Figure 7.6.: Checker test with marker lines

31

Figure 7.7.: Quick fix test based on the checker test

Now, having the quick fix tests with the offending and corresponding fixed code
snippets, we can inspect and compare both offending and fixed code with the
ASTView and NodeView views of the PASTA plug-in for Eclipse. Based on this we
can start implementing the quick fix. For the first case we can reuse the comparison
between a lambda with and without explicit return type in figure 7.5 above. There
we can see, that we need to set a type id on the function declarator, the trailing
return type, in order to explicitly specify a return type.
As the return type is semantic information, we take a look at the interfaces
implemented by the binding, that the lambda call operator name resolves to. As it
turns out, it implements the IFunction interface [Interface IFunction 2018] which
has a method getType which returns a IFunctionType interface.[IFunctionType
2018] The IFunctionType interface then, has a method getReturnType which
returns our wanted return type. Checking the return value using debugging we
can verify that the method indeed returns the deduced return type of the lambda
expression.
The next step is constructing the type id corresponding to the type. The helper

32

class DeclarationGenerator already implements methods, createDeclSpecFromType
and createDeclaratorFromType, for generating an abstract declarator from a type,
from which we can construct a type id using the node factory. Having the type id
constructed, all that is left is setting the type id as the trailing return type of the
function declarator. To do this, we first have to copy the function declarator. We
need to copy nodes before modifying, as they are frozen after being added to the
AST and can only be modified by the creator. After copying we can set the return
type on the new copied function declarator. Finally we have to call a method on
the ASTRewriter to insert the node into the AST, usually either insertBefore or
replace, depending on whether it is a new node or a replacement for an existing
one, in this case replace, to replace the existing function declarator with the new
one. Having done this, we have implemented the first test case.
Now, we need to implement the remaining test cases. A further test case would be
a lambda expression with omitted parameter list, as there is no function declarator
in this case. We would have to differentiate and, in case of a missing function
declarator, create a new function declarator instead of copying and set the type.
Then use the insertBefore method of the ASTRewriter to insert node into the AST.
When all test cases have been implemented and we are confident, that the test
suite is comprehensible, the quick fix is complete.

33

8. Quality measures

In this section, the measures taken to assure good quality are listed. There are tests
for both checkers and quick fixes, that are run locally before each commit. The
checker and quick fix tests are integration tests and are executed inside an Eclipse
instance. While large numbers of tests do require some time to execute, testing the
checkers and quick fixes in isolation would not be very useful and require a lot of
effort, as they heavily depend on CDT and Eclipse.
The checker tests make sure that the correct code parts are marked at the correct
time. There are also some tests that check for false-positives. If there are any
exceptions or variations of the rule, they are checked here as well. The test cases
themselves are defined in ”.rts”-text files, which specify code snippets to check and
on which lines problems should be reported.
Tests for the quick fixes run the quick fix on offending code snippets and compare
the result with the expected code snippets. The tests are specified in ”.rts”-files
as well, this time without line numbers, but with an additional confirming code
snippet per test.
After committing and pushing the code to the repository, the tests are rerun by a
CI-Server to ensure that everything is correct. The CI-Server already existed prior
to this project.

34

9. Results

In this chapter we will present the results of our project, with a comparison of
completed and not completed checkers and quick fixes, followed by an evaluation
of our planning, estimations and output.

9.1. Work planned / completed comparison

In chapter 5 we initially defined three scopes, minimum, desired and optional.
In these scopes we defined which checkers and quick fixes were planned to be
implemented. As we were able to fulfil all three scopes, with the exception of a few
quick fixes, in the course of the project, we will contrast the completed with the
not completed checkers and quick fixes.

Checker Quick Fixes

Completed

A5-0-2 A5-1-1 A5-1-2
A5-1-3 A5-1-4 A5-1-6
A5-1-8 A5-16-1 A6-4-1
A7-1-4 A7-1-5 A7-1-6
A7-2-2 A7-2-3 A7-2-4
A7-4-1 A8-5-2 A8-5-3
A9-5-1 A10-1-1 A10-2-1
A10-3-1 A10-3-2 A10-3-3
A10-3-5

A5-1-2 A5-1-3 A5-1-6
A6-4-1 A7-1-4 A7-1-5
A7-1-6 A8-5-2 A8-5-3
A10-3-1 A10-3-2 A10-3-3

Not Completed A7-2-2 A7-2-4 A5-0-2

Table 9.2.: Comparison of planned and implemented checkers and quick fixes

As can be seen in the table above, we were able to complete all the 25 planned
checkers. A few of them have some limitations. Refer to chapter 7 to view the
details of the respective rule.

35

Twelve planned quick fixes were completed and three were not implemented. A7-2-2
and A7-2-4 cannot be feasibly implemented without changes to the CDT. The
problem is, that the ChangeGenerator in the CDT does not visit enumerations.
With an update to the CDT these two can be implemented. The A5-0-2 quick
fix was not implemented because it was started at the end of the project and
would have needed more time to evaluate. The rule did not specify clearly how a
well-formed example should look like. With more time on hand, this rule could be
implemented.

9.2. Time Management

In this section we will compare our estimations with the actual time spent. First
we will compare the time estimations for the major working areas, followed by
comparisons of the estimates for individual checkers and quick fixes.

9.2.1. Estimation and time spent of major areas

In chapter 4 we divided the project into major working areas and allocated the
available time. Our estimations for the major working areas turned out to be rather
accurate. We were below the allocated time in most areas. Documentation took
longer than estimated, while elaboration, project management and implementation
(construction) took slightly less than estimated.

Name Est. [h] Est. [%] Spent [h] Spent [%]
Elaboration 38h 24m 8% 32h 40m 6.7%
Project management 48h 10% 37h 35m 7.7%
Documentation 76h 49 16% 112h 53m 23.2%
Implementation 316h 48m 66% 302h 40m 62.3%
Total 480h 100% 485h 45m 100%

Table 9.3.: Time shares of major areas

9.2.2. Estimation and time spent of checkers and quick fixes

In chapter 5 we introduced the scopes and how many time slots we estimated we
would need to complete them. Refer to section 4.4 to see how time slots translate
to time. In this chapter the estimated time is compared to the actual spent time.

36

Comparison chart On the following pages is a list of all the issues with the
respective estimate and time. After that follows a chart that shows this difference
as well. Due to a lack of space only the issue numbers are listed next to the chart.
Only the construction issues are included in the chart. Construction issues are those
that are either implementing a quick fix or a checker. This is because there are a
few that we did not set any estimate for, such as the issue ”Create Documentation”
or ”Meetings”. In the table below the issues not contained in the chart are listed
as well.

Nr Description Est. Spent Author
5 Implement checker for rule A7-1-6: Do not

use typedef [AUTOSAR 2018, p. 131]
- 2d 40m Both

10 Implement checker for rule A5-1-6: Lambda
return type should be explicitly specified [AU-
TOSAR 2018, p. 91]

- 1d 4h
50m

Both

11 Implement quickfix replace typedef with using
[A7-1-6] [AUTOSAR 2018, p. 131]

- 3h 55m Both

12 Implement quickfix make lambda return type
explicit [A5-1-6] [AUTOSAR 2018, p. 91]

- 1d 4h
10m

Both

14 Implement checker must use lambda parame-
ter list [A5-1-3] [AUTOSAR 2018, p. 89]

- 1h 15m Both

15 Implement checker switch must have at least
two cases [A6-4-1] [AUTOSAR 2018, p. 117]

- 1h 40m Viktor

16 Implement checker do not use union [A9-5-1]
[AUTOSAR 2018, p. 179]

- 2h 30m Gabriel

17 Implement quickfix add lambda parameter
list [A5-1-3] [AUTOSAR 2018, p. 89]

- 1h Both

18 Implement quickfix replace switch with if-else
[A6-4-1] [AUTOSAR 2018, p. 117]

- 3d 1h Viktor

25 Implement checker do not use literal val-
ues outside initialization [A5-1-1][AUTOSAR
2018, p. 86]

1d 4h 1d 2h
25m

Gabriel

26 Implement checker do not outlive reference
captured objects [A5-1-4] [AUTOSAR 2018,
p. 90]

3d 4d 25m Viktor

27 Implement checker do not hide base class
member functions [A10-2-1] [AUTOSAR
2018, p. 185]

3d 1d 5h
30m

Gabriel

29 Implement checker do not use register A7-1-4
[AUTOSAR 2018, p. 129]

4h 1h 20m Gabriel

37

30 Implement checker do not implicitly capture
variables A5-1-2 [AUTOSAR 2018, p. 88]

1d 4h 1d 6h Viktor

31 Implement checker do not introduce virtual
functions in final class A10-3-3 [AUTOSAR
2018, p. 189]

2d 1d 15m Gabriel

34 Implement checker do not nest lambda ex-
pressions A5-1-8 [AUTOSAR 2018, p. 93]

4h 2h 15m Viktor

35 Implement checker do not use ternary oper-
ator as sub-expression A5-16-1 [AUTOSAR
2018, p. 111]

4h 2h 30m Viktor

36 Implement quick fix remove register keyword
A7-1-4 [AUTOSAR 2018, p. 129]

4h 1h 15m Gabriel

37 Implement quick fix for virtual functions in
final class A10-3-3 [AUTOSAR 2018, p. 189]

4h 4h 30m Gabriel

38 Implement checker virtual functions shall ei-
ther be virtual override or final A10-3-1 [AU-
TOSAR 2018, p. 186]

4h 2h 15m Gabriel

39 Implement quick fix use virtual override or
final for virtual function A10-3-1 [AUTOSAR
2018, p. 186]

1d 1d 3h Gabriel

40 Implement checker use auto sparingly A7-1-5
[AUTOSAR 2018, p. 130]

1d 4h 4h 40m Viktor

41 Implement checker for only one base class
A10-1-1 [AUTOSAR 2018, p. 183]

1d 4h 1d 1h Gabriel

42 Implement checker for no virtual operators
A10-3-5 [AUTOSAR 2018, p. 190]

4h 2h 30m Gabriel

44 Implement quick fix make implicit captures
explicit A5-1-2 [AUTOSAR 2018, p. 88]

4h 4h 45m Viktor

45 Implement quick fix use auto sparingly A7-1-5
[AUTOSAR 2018, p. 130]

4h 3d 3h
55m

Viktor

46 Implement checker use scoped enum classes
A7-2-3 [AUTOSAR 2018, p. 138]

4h 45m Viktor

47 Implement checker do not use asm A7-4-1
[AUTOSAR 2018, p. 142]

4h 1h Gabriel

48 Implement checker use override or final when
overriding A10-3-2 [AUTOSAR 2018, p. 188]

1d 4h 7h 30m Gabriel

49 Implement quick fix use override or final when
overriding A10-3-2 [AUTOSAR 2018, p. 188]

4h 5h Gabriel

38

50 Implement checker explicit underlying enum
base type A7-2-2 [AUTOSAR 2018, p. 137]

1d 4h 50m Viktor

51 Implement quick fix make underlying enum
base type explicit A7-2-2 (not completed)
[AUTOSAR 2018, p. 137]

4h 2h 35m Gabriel

52 Implement checker do not initialize auto using
initializer list A8-5-3 [AUTOSAR 2018, p. 173
]

1d 4h 7h 50m Viktor

53 Implement quick fix use constrcutor/equals
initialization for auto variable A8-5-3 [AU-
TOSAR 2018, p. 173]

1d 1h Viktor

55 Implement checker Conditions must be bool
A5-0-2 [AUTOSAR 2018, p. 80]

1d 4h 2d 5h
35m

Gabriel

56 Implement quickfix Conditions must be bool
A5-0-2 (not completed) [AUTOSAR 2018,
p. 80]

1d 3h 45m Gabriel

57 Implement checker all one or none shall be
initialized in enum A7-2-4 [AUTOSAR 2018,
p. 139]

1d 4h 1h 20m Viktor

58 Implement quick fix all one or none shall be
initialized in enum A7-2-4 (not completed)
[AUTOSAR 2018, p. 139]

1d 1h 45m Viktor

59 Implement checker braced-initialization A8-5-
2 [AUTOSAR 2018, p. 170]

3d 1d 3h
25m

Viktor

61 Implement quick fix use braced initialization
A8-5-2 [AUTOSAR 2018, p. 170]

4h 3h 10m Viktor

Table 9.4.: List of issues

39

Figure 9.1.: Estimate / Actual comparison

0 5 10 15 20 25 30 35

61

59

57

55

53

52

50

49

48

47

46

45

44

42

41

40

39

38

37

36

35

34

31

30

29

27

26

25

Time (hours)

Is
su

e
N

r.

spent
estimate

40

10. Conclusion

In this chapter we will sum up the project and decide whether we are satisfied
with what we achieved. We will also write about what we learned as a team.
Additionally we will give an outlook on what is to come in the future.

10.1. Retrospective

Here are a few interesting numbers about this project:

• 138 commits

• 25 implemented checkers

• 12 quick fixes

• 3 not implemented quick fixes

• 445 tests

• more than 95% Coverage

When we began the project, the CodeAnalysator plug-in already had a working
architecture and the first checkers as a proof of concept. We did not change
anything significant in the architecture. Instead we implemented many checkers
and quick fixes. In the beginning of the project we set three different scopes. A
minimal, a desired and an optional scope. We defined which checkers and quick fixes
need to be completed to fulfil each scope. By only looking at the failed quick fixes
it looks like we did not fulfil any scope because in each one there is a quick fix that
we did not implement. But two of these were because of limitations in the CDT,
so we do not consider them failed. This leaves us with only one unimplemented
quick fix, which is one that turned out to be far more complicated than it first
appeared. In conclusion, this means we have 25 checkers and 12 quick fixes that
we estimated roughly accurate, even though there are a few that took longer or
shorter to complete. Additionally, there are 2 quick fixes, that were not possible to
implement and one that we completely underestimated. Taking these numbers into
account, we consider the project to be a success. We learned to work together as a
team and how to effectively communicate with each other. We both benefited from
this and will hopefully be able to use this ability in the following bachelor thesis.

41

10.2. Considerations for future projects

The existing architecture as well as the checkers and quick fixes implemented by
us work as they are. But there are some that can be improved or expanded as
we already stated in the chapter 7. Additionally, a future project could consist
of analyzing the current project thoroughly and refactor where appropriate and
improve where possible. With an increasing number of visitors, the performance
of the plug-in might decrease. Performance tests and improvements would be a
possible activity as well.

42

Bibliography

Cevelop Plug-in Development. Stauber, Tobias (2016).

Guidelines for the use of the C++14 language in critical and safety-
related systems. AUTOSAR (2018).

Safe C++ Guidelines Checkers und Quick Fixes. Bertschi, Pascal, Deicha,
Andreas (2018).

asm declaration - cppreference.com. asm declaration - cppreference.com
(2018). url: https://en.cppreference.com/w/cpp/language/asm (visited on
12/17/2018).

Help - Eclipse Platform. Help - Eclipse Platform (2016). url: https://
www . mendeley. com / reference - management / web - importer % 5C #id % 5C _

2 % 20http : / / help . eclipse . org / neon / index . jsp ? topic = %5C % 2Forg .

eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%

2Faccessmain.htm (visited on 10/05/2018).

auto specifier (since C++11) - cppreference.com. auto specifier (since
C++11) - cppreference.com (2018). url: https://en.cppreference.com/w/
cpp/language/auto (visited on 12/17/2018).

direct initialization - cppreference.com. direct initialization - cpprefer-
ence.com (2018). url: https://en.cppreference.com/w/cpp/language/
direct%5C_initialization (visited on 12/17/2018).

Enumeration declaration - cppreference.com. Enumeration declaration
- cppreference.com (2018). url: https://en.cppreference.com/w/cpp/

language/enum (visited on 12/17/2018).

Fundamental types - cppreference.com. Fundamental types - cpprefer-
ence.com (2018). url: https://en.cppreference.com/w/cpp/language/
types (visited on 12/17/2018).

43

https://en.cppreference.com/w/cpp/language/asm
https://www.mendeley.com/reference-management/web-importer%5C#id%5C_2%20http://help.eclipse.org/neon/index.jsp?topic=%5C%2Forg.eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%2Faccessmain.htm
https://www.mendeley.com/reference-management/web-importer%5C#id%5C_2%20http://help.eclipse.org/neon/index.jsp?topic=%5C%2Forg.eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%2Faccessmain.htm
https://www.mendeley.com/reference-management/web-importer%5C#id%5C_2%20http://help.eclipse.org/neon/index.jsp?topic=%5C%2Forg.eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%2Faccessmain.htm
https://www.mendeley.com/reference-management/web-importer%5C#id%5C_2%20http://help.eclipse.org/neon/index.jsp?topic=%5C%2Forg.eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%2Faccessmain.htm
https://www.mendeley.com/reference-management/web-importer%5C#id%5C_2%20http://help.eclipse.org/neon/index.jsp?topic=%5C%2Forg.eclipse.platform.doc.user%5C%2Fconcepts%5C%2Faccessibility%5C%2Faccessmain.htm
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/direct%5C_initialization
https://en.cppreference.com/w/cpp/language/direct%5C_initialization
https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/types

OSGI overview. OSGI overview (2018). url: https://www.ibm.com/support/
knowledgecenter/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/cosgi.

html (visited on 12/14/2018).

Interface IFunction. Interface IFunction (2018). url: https://help.eclipse.
org / luna / index . jsp ? topic = %5C % 2Forg . eclipse . cdt . doc . isv % 5C %

2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%

5C%2Fdom%5C%2Fast%5C%2Fcpp%5C%2FICPPASTLambdaExpression.html (vis-
ited on 12/17/2018).

IFunctionType. IFunctionType (2018). url: https://help.eclipse.org/
luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%

5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%

2Fast%5C%2FIFunctionType.html (visited on 12/17/2018).

Implicit conversions - cppreference.com. Implicit conversions - cpprefer-
ence.com (2018). url: https://en.cppreference.com/w/cpp/language/
implicit%7B%5C_%7Dconversion (visited on 12/17/2018).

Initialization - cppreference.com. Initialization - cppreference.com (2018).
url: https://en.cppreference.com/w/cpp/language/initialization

(visited on 12/17/2018).

Lambda expressions (since C++11) - cppreference.com. Lambda expres-
sions (since C++11) - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/lambda (visited on 12/17/2018).

list initialization (since C++11) - cppreference.com. list initialization
(since C++11) - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/list%5C_initialization (visited on 12/17/2018).

OverrideIndicatorManager. OverrideIndicatorManager (2018). url: http:
//git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.

cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.

java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf (visited on 11/05/2018).

C++ keywords: register - cppreference.com. C++ keywords: register - cp-
preference.com (2018). url: https://en.cppreference.com/w/cpp/keyword/
register (visited on 12/17/2018).

44

https://www.ibm.com/support/knowledgecenter/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/cosgi.html
https://www.ibm.com/support/knowledgecenter/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/cosgi.html
https://www.ibm.com/support/knowledgecenter/en/SSHR6W/com.ibm.websphere.wdt.doc/topics/cosgi.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2Fcpp%5C%2FICPPASTLambdaExpression.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2Fcpp%5C%2FICPPASTLambdaExpression.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2Fcpp%5C%2FICPPASTLambdaExpression.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2Fcpp%5C%2FICPPASTLambdaExpression.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2FIFunctionType.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2FIFunctionType.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2FIFunctionType.html
https://help.eclipse.org/luna/index.jsp?topic=%5C%2Forg.eclipse.cdt.doc.isv%5C%2Freference%5C%2Fapi%5C%2Forg%5C%2Feclipse%5C%2Fcdt%5C%2Fcore%5C%2Fdom%5C%2Fast%5C%2FIFunctionType.html
https://en.cppreference.com/w/cpp/language/implicit%7B%5C_%7Dconversion
https://en.cppreference.com/w/cpp/language/implicit%7B%5C_%7Dconversion
https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/list%5C_initialization
https://en.cppreference.com/w/cpp/language/list%5C_initialization
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
https://en.cppreference.com/w/cpp/keyword/register
https://en.cppreference.com/w/cpp/keyword/register

std::variant - cppreference.com. std::variant - cppreference.com (2018). url:
https : / / en . cppreference . com / w / cpp / utility / variant (visited on
12/17/2018).

switch statement - cppreference.com. switch statement - cppreference.com
(2018). url: https://en.cppreference.com/w/cpp/language/switch (visited
on 12/17/2018).

45

https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/language/switch

Glossary

AST An abstract-syntax-tree.. 2, 29

AUTOSAR C++ guidelines for use in critical and safety-related systems AU-
TOSAR 2018 . i, ii, 1, 5, 13, 15, 49–51, 53

bundle A Java archive explicitly specifying its imports and exports according to
the OSGi standard.. 11, 12

CDT CDT & Eclipse C/C++ development tools. Package for creating Eclipse
plug-ins for C/C++ development.. 1, 2, 22–25, 36

checker Checks C++ code for a given rule.. i, ii, 1, 2, 4–6, 8, 10, 11, 14, 15, 17–28,
34, 35, 37, 41, 42, 49, 50, 52, 53, 57

CI Continuous Integration. 4, 5, 34

Codan A static analysis framework in Eclipse CDT.. 2, 11

CodeAnalysator Eclipse static code analysis plug-in.. i, ii, iv, 1, 2, 11, 12, 41, 49,
50

Eclipse Eclipse is an integrated development environment.. 1, 11, 49

fragment A Java archive extending an OSGi bundle according to the OSGi stan-
dard.. 11

ILTIS Infrastructure-Layer plug-in, providing Tooling, Id-ioms, and Services Stauber
2016. 49

MISRA Programming Standard used in the automobile industry. 49

OSGi Standard for a modular system and a service platform for the Java program-
ming language.. 11, 12

quick fix Quick fixes resolve rule violations, by manipulating the AST. i, ii, 1, 2,
4–6, 8, 11, 12, 14, 16–28, 35–37, 41, 42, 49, 57, 59–61

46

visitor Applies the visitor pattern to the AST. 1, 2, 11–14, 30, 42, 49, 50, 52–57,
59, 60

47

Appendix

A. Developer Guide

The goal of this chapter is to provide information and guidance on how to implement
a new rule in the CodeAnalysator plug-in. It is intended to be read by developers.
Any reader should be familiar with terms like checker, visitor, marker and quick fix.
For detailed information on Eclipse plug-in development, please refer to the ILTIS
documentation. [Stauber 2016]
For a guide on how to use and configure the CodeAnalysator plug-in, please refer
to chapter A: User manual in the technical report ”Safe c++ guidelines checkers
und quick fixes” by Pascal Bertschi and Andreas Deicha. [Bertschi, Pascal 2018]

A.1. Overview

This guide will focus on implementing AUTOSAR rules. Implementing rules for
C++ Core Guidelines or MISRA works very similarly, so this guide can be still be
useful. Some of the folders have to be chosen differently in such a case.
Implementing a rule can be roughly divided into the three tasks checker, quick fix
and testing. These tasks are covered in the following subsections. It is not necessary
to tackle these tasks in any given order, but there are some limitations i.e. a quick
fix is not testable without a corresponding visitor.

Important for test driven development It is strongly advised to apply test
driven development because writing out the tests gives a good hint on which special
cases the visitor or quick fix will have to work. It is also very convenient to write
tests first, because there are no references in the code. But keep in mind, that it
is advised to add all the files before testing. If not, the tests will not fail because
they are not implemented, but because there is no visitor at all for the problem to
be tested.

49

A.2. Checker

This section explains how to create a checker for a given rule. In the CodeAnalysator
plug-in, there are not multiple checkers. Instead there is one checker with many
different visitors.

A.2.1. Visitor

This section covers the creation of a visitor.

Step 1: Register your problemId in AutosarIdHelper The problemId is used in
several places to refer to the rule. It consists of the default qualifier plus ”.problem.”
plus a name of your choosing. The name should make it easy to link to the
corresponding AUTOSAR rule. Check the snippet below for an example.

Figure A.1.: AutosarIdHelper

1 package com.cevelop.codeanalysator.autosar.util;

2

3 public class AutosarIdHelper {

4 public static final String DEFAULT_QUALIFIER =

5 "com.cevelop.codeanalysator.autosar";

6 ...

7 public static final String ExampleProblemId =

8 DEFAULT_QUALIFIER + ".problem.example";

9 // Your new problemid

10 }

50

Step 2: Register your rule in the fragment.xml To make a rule appear in the
settings panel in eclipse, you need to register the rule in the file fragment.xml which
can be found in the root folder of the AUTOSAR bundle. You need to add your
rule to the codan.core.checkers extension point. You need to provide a category, a
severity a description, a message pattern a name and a marker type. Additionally,
you need to specify whether the rule is enabled by default. There is also an id
which refers to the problem id created in the last section. Check the code snippet
below to see how to format.

Figure A.2.: fragment.xml

1 <extension point="org.eclipse.cdt.codan.core.checkers">

2 <checker>

3 <problem

4 category="com.cevelop.codeanalysator.core.autosar"

5 defaultSeverity="Warning"

6 defaultEnabled="true"

7 description="AX-X-X: Example description"

8 id="com.cevelop.codeanalysator.autosar.problem.

9 exampleproblemid"

10 messagePattern="AX-X-X: Example Message"

11 name="AX-X-X: Example name"

12 markerType="com.cevelop.codeanalysator.core.autosar.

13 marker">

14 </problem>

15 <problem>

16 <!-- your new problem -->

17 </problem>

18 </checker>

19 </extension>

51

Step 3: Add a visitor In the package com.cevelop.codeanalysator.core.visitor.shared,
add a new class named <yourRule>Visitor.java. The new class must extend Shared-
Visitor. Implement the unimplemented methods. In setShouldVisit(), set which
parts of the code the visitor should visit. For an overview of the possibilities, check
out the class ASTVisitor. [Help - Eclipse Platform 2016] ASTVisitor is a class
higher up in the hierarchy. This class also contains a large number of visit(...)
methods. You can override these methods in the cases that are relevant to your
respective rule. I.e. if you want to visit the declarations, you override the method
visit(IASTDeclaration declaration) and set shouldVisitDeclarations to
true. In these methods you can check for violations of your rule. If any are found
you can use the checker to report them. This will mark them in the code. Your
new visitor should look something like this:

Figure A.3.: A newly added visitor

1 public class ExampleVisitor extends SharedVisitor {

2

3 public ExampleVisitor(CodeAnalysatorChecker checker, String problemId) {

4 super(checker, problemId);

5 }

6

7 @Override

8 protected void setShouldVisit() {

9 shouldVisitDeclarations = true;

10 }

11

12 @Override

13 public int visit(IASTDeclaration declaration) {

14 /*

15 * Your code

16 */

17

18 // report a problem

19 checker.reportProblem(getProblemId(), declaration);

20

21 return super.visit(declaration);

22 }

23 }

52

Step 4: Add your visitor to the checker The class AutosarChecker.java is
in the package com.cevelop.codeanalysator.autosar.checker. In this class all the
AUTOSAR visitors are listed. In the method initVisitor, add your newly created
visitor.

Figure A.4.: AutosarChecker.java

1 @Override

2 protected void initVisitor(VisitorComposite visitor) {

3 visitor.add(new ExampleVisitor(this,

4 AutosarIdHelper.ExampleProblemId));

5 }

Step 5: Register the new visitor in CoreIdHelper To be able to map your
visitor, you first need to create a constant in the file CoreIdHelper.

Figure A.5.: CoreIdHelper

1 public class CoreIdHelper {

2 ...

3 public static final String ExampleVisitorId = "Example";

4 // Your new visitorId

5 }

53

Steps 6 and 7: Map the new visitor and add a suppression strategy To link
the visitor and the problem, the visitor needs to be mapped to the problem id.
To achieve this there is the class AutosarGuidelineMapper.java in the package
com.cevelop.codeanalysator.autosar.guideline. First the visitorid and
the problemid must be mapped. In the same file you can add a suppression
attribute. This will allow the user to suppress the given rule for his code. View the
code below to see how this is done.

Figure A.6.: AutosarGuidelineMapper.java

1 public AutosarGuidelineMapper() {

2 //...

3 mappings.put(CoreIdHelper.ExampleVisitorId,

4 AutosarIdHelper.ExampleProblemId);

5

6 suppressionStrategy.addSuppression(CoreIdHelper.ExampleVisitorId,

7 new AutosarSuppressionAttribute("AXX-X-X"));

8 //...

9 }

54

A.2.2. Testing

Step 1: Add a new test class Add a class that extends AbstractCheckerTest
to the package com.cevelop.codeanalysator.autosar.tests.checker. This
class does not contain the actual tests, which makes the file very short. Look at
the code below to see an example test class.

Figure A.7.: A new test class

1 public class ExampleCheckerTest extends AbstractCheckerTest {

2

3 protected IProblemId getProblemId() {

4 return IProblemId.wrap(AutosarIdHelper.ExampleProblemId);

5 }

6 }

Step 2: Register the test There is a class PluginUITestSuiteAll.java in the
package package com.cevelop.codeanalysator.autosar.tests. To add your
tests to the testsuite of the plug-in, the visitor must be added to the list of test
classes in this file.

Figure A.8.: Adding the test class to the test suite

1 @SuiteClasses({

2 // ...

3 ExampleCheckerTest.class,

4 // ...

5 })

55

Step 3: Add a new test rts file In the tests package, there is a folder named
resources. In the subfolder visitors, add a file with the same name as your new test
class. But instead of .java use the ending .rts. In this rts files, the actual tests
are located. They have the following structure. To begin a new test, add a line
with two slashes and an exclamation mark. Text on the same line is the title of the
test. Below this you can add different files. It is advised to add a .config file where
you can configure your settings. After that you can add a main.cpp where you can
put your C++ code. In the .config section, you can use the markerLines attribute
to say where you expect your marker to report a problem. If the reported lines and
the expected lines are the same, the test passes. You can omit the markerLines
attribute, if you want to the check a case where nothing is reported.

Figure A.9.: An example rts file

1 //! Example test

2 //@.config

3 setPreferencesEval=(GUIDELINE_SETTING_ID|AUTOSAR_GUIDELINE_ID)

4 markerLines=2

5 //@main.cpp

6 /*

7 Your C++ code here

8 */

56

A.3. Quick fix

This section explains how to add a quick fix to the plug-in. A quick fix is associated
to a visitor, but there can be multiple quick fixes per visitor. In this section it is
assumed that a corresponding checker already exists.

A.3.1. Quick fix

This section covers the creation of a quick fix.

Step 1: Add the new quick fix Add a new quick fix class that extends BaseQuickFix
to the package com.cevelop.codeanalysator.core.quickfixes.shared. This
new quick fix needs a constructor that takes a String as its label. The method
handleMarkedNode is used to handle the node reported by the checker. The method
isApplicable is not mandatory but it is advised to use it. It is used to test whether
the problem can be solved by the quick fix.

57

Figure A.10.: An example quick fix

1 public class ExampleQuickFix extends BaseQuickFix {

2

3 String label;

4

5 public ExampleQuickFix(String label) { this.label = label; }

6

7 @Override

8 public String getLabel() {

9 return label;

10 }

11

12 @Override

13 public boolean isApplicable(IMarker marker) {

14 // check wether the quickfix is appliccable

15 return super.isApplicable(marker);

16 }

17

18 @Override

19 protected void handleMarkedNode(IASTNode markedNode,

20 ASTRewrite hRewrite) {

21 // Replace or change parts of the ast to solve the problem

22 }

23 }

58

Step 2: Register the quick fix in the AutosarGuidelineMapper In the same
class where you already mapped the visitor, AutosarGuidelineMapper.java, reg-
ister your new quick fix.

Figure A.11.: Registering your quick fix

1 public AutosarGuidelineMapper() {

2 // ...

3 quickfixes.put(AutosarIdHelper.ExampleProblemId,

4 new IMarkerResolution[] {

5 new ExampleQuickFix("AXX-X-X: Example resolution")

6 }

7);

8 // ...

9 }

59

A.3.2. Testing

Step 1: Add a new test class Add a class that extends AbstractQuickFixTest
to the package com.cevelop.codeanalysator.autosar.tests.quickfix. To
make it work, the methods getProblemId, getQuickfix and getSuppressionText

need to be overridden. The new test class should look like this:

Figure A.12.: A new quick fix test class

1 public class ExampleQuickFixTest extends AbstractQuickFixTest {

2

3 @Override

4 protected IProblemId getProblemId() {

5 return IProblemId.wrap(AutosarIdHelper.ExampleProblemId);

6 }

7

8 @Override

9 protected IMarkerResolution getQuickfix() {

10 return new ExampleQuickFix("");

11 }

12

13 @Override

14 protected String getSuppressionText() { return "AXX-X-X"; }

15 }

Step 2: Register the test class in the test suite The quick fix test class needs
to be registered in the test suite in the same way as the visitor test before.

Figure A.13.: Adding the test class to the test suite

1 @SuiteClasses({

2 // ...

3 ExampleQuickFixTest.class,

4 // ...

5 })

60

Step 3: Add a new rts file Quick fixes use rts files to test as well. This time the
markerLines attribute can be omitted. Instead you can add a new section with the
header =. Here you can write what the code should look like after the quick fix
has been applied. The test passes, if the quick fix applied to the code in main.h
results in the code in the =-section. See the example below.

Figure A.14.: An example quick fix rts file

1 //! Example quick fix test

2 //@.config

3 setPreferencesEval=(GUIDELINE_SETTING_ID|AUTOSAR_GUIDELINE_ID)

4 //@main.h

5 /*

6 * C++ code before applying the quick fix

7 */

8 //=

9 /*

10 * C++ code after applying the quick fix

11 */

61

B. Acknowledgement

We would like to thank Hansruedi Patzen for his great support for this project. As
Peter Sommerlad was ill for most of the project duration, Hansruedi acted as an
adviser and attended the meetings instead. He was also very helpful as a technical
adviser and in setting up our development environments.
We would also like to thank Tobias Stauber, who helped us a lot with his knowledge
of the CDT and Latex.
Additionally, we would like to thank AnneMarie O’Neill for her help regarding
English in our documentation.
At last, we would also like to thank Thomas Corbat, who advised us on our
documentation and acted on behalf of Peter Sommerlad in some cases.

62

	Abstract
	Management Summary
	Introduction
	Initial Situation
	Problem Description
	On checkers, visitors and quick fixes

	Planning
	Elaboration
	Documentation
	Project Management
	Construction
	Definition of done for checker and quick fixes

	Milestones
	End of Elaboration
	Mid Construction
	End of Construction
	End of Project

	Requirements
	Scope
	Minimal scope
	Desired scope
	Optional scope

	Architecture
	Eclipse and OSGi
	Packages
	Relevant classes and files
	fragment.xml
	AutosarIdHelper
	AutosarChecker
	CoreIdHelper
	AutosarGuidelineMapper
	CheckerTest
	QuickFixTest
	PluginUITestSuiteAll

	Implementation
	Implementation of the checkers and quick fixes
	A5-0-2: Condition of if/while/for shall be bool
	A5-1-1: No magic numbers
	A5-1-2: Do not implicitly capture variables in lambda expressions
	A5-1-3: Parameter list shall be included in lambda
	A5-1-4: Lambda expressions shall not outlive reference captured objects
	A5-1-6: Explicit lambda return type
	A5-1-8: Do not nest lambda expressions
	A5-16-1: Do not use the ternary conditional operator as sub-expression
	A6-4-1: Switch shall have at least two cases
	A7-1-4: The register keyword shall not be used
	A7-1-5: The auto specifier shall not be used
	A7-1-6: The typedef specifier shall not be used
	A7-2-2: Enumeration underlying base type shall be explicitly defined
	A7-2-3: Declare enumerations as scoped enum classes
	A7-2-4: Initialize none, the first or all enumerators
	A7-4-1: The asm declaration shall not be used
	A8-5-2: Braced-initialization {}, without equals sign, shall be used for variable initialization
	A8-5-3: A variable of type auto shall not be initialized using {} or ={} braced-initialization
	A9-5-1: Unions shall not be used
	A10-1-1: Class shall not be derived from more than one base class which is not an interface class.
	A10-2-1: Do not redefine non-virtual member functions
	A10-3-1: Virtual function declarations shall have exactly one of the specifiers virtual, override or final
	A10-3-2: Each overriding virtual function shall be declared with the override or final specifier.
	A10-3-3: Do not introduce virtual member functions in a final class
	A10-3-5: User defined assignment operators shall not be virtual

	Example using A5-1-6
	Checker
	Quick fix

	Quality measures
	Results
	Work planned / completed comparison
	Time Management
	Estimation and time spent of major areas
	Estimation and time spent of checkers and quick fixes

	Conclusion
	Retrospective
	Considerations for future projects

	Glossary
	Developer Guide
	Overview
	Checker
	Visitor
	Testing

	Quick fix
	Quick fix
	Testing

	Acknowledgement

