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Abstract

Problem

Recycling containers need to be emptied regularly using trucks. Live Track AG,
a new startup, wants to support the process of emptying these containers. To
achieve this, the recycling containers will be equipped with sensors, which will
transmit their current filling level to the cloud.

Goal

Based on the collected data the aim of this project is to assist the operator in
planning routes for the collection of containers by providing various optimized
routes. The routes should be optimized for the ratio between the amount loaded
and the kilometers driven.

Procedure

To achieve this a stateless HTTP API was implemented which returns four op-
timized routes based on four di↵erent selection strategies. Furthermore a React
app to demonstrate the power of the API was developed. Both applications were
developed using the programming language TypeScript and deployed into the
AWS Cloud. They also share a similar Continuous Integration and Continuous
Deployment setup.

Result

The result is a fully tested and robust API that is vertically and horizontally
scalable and allows to calculate optimized routes. It is documented with Swagger
and paired with a web app to demonstrate and test the API.
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Management Summary

Initial Situation

Live Track AG, a new startup, wants to support the process of emptying recy-
cling containers. Currently the containers need to be emptied regularly using
trucks. To accomplish a more e�cient process, the recycling containers will be
equipped with ultrasonic sensors or related technologies measuring the filling
state. This data will then be synced into the cloud.

The collected data opens up new possibilities: As of now, an operator has
to plan a route for the truck driver based on his experience. The goal of this
project is to help the operator by providing di↵erent, optimized routes using the
collected data. The route should be optimized for the ratio between the amount
loaded and the kilometers driven. In addition, the truck should not necessarily
be filled to the maximum.

Procedure, Technologies

Two applications were developed during this thesis:

• A HTTP API which calculates routes. The client sends the API a request,
including a truck, a collection of containers and the start and end point
of the route. Based on the data provided, the API returns multiple pos-
sible routes. The API was developed using TypeScript and deployed as a
stateless AWS Lambda function.

The process by which the routes are generated can be divided into three
steps:

1. The container cluster collection is first analyzed. For this analysis a
dynamic programming in-advance algorithm to solve our version of
the knapsack problem and a greedy algorithm using three di↵erent
prioritization strategies are used. Depending on the strategy, the
containers nearby, the containers with the highest filling level or the
containers with the most volume are prioritized. This results in four
di↵erent subsets of the original container cluster collection.

2. For each subset an API request is sent to the Google Directions API.
The Directions API solves the traveling salesman problem and re-
turns a route where the container clusters are visited in an order as
to minimize the travel time of the route.

3. For each received solution of the Directions API, six key figures are
calculated, such as load per kilometer, cost and duration of the jour-
ney. Based on the key figure m3/km the solutions are sorted and
returned, best first.

• A web app to demonstrate and test the API. A user can select container
clusters, a truck and a content type and send the request to the API (shown
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in Figure 1). After receiving the response, the di↵erent route candidates
are displayed with all of their key figures and a map showing the route as
seen in Figure 2. The web app was developed using TypeScript and the
frontend library React.

Result

The result is a production ready API that is vertically and horizontally scalable
and allows to calculate optimized routes. To meet our high quality requirements
we followed state of the art coding guidelines. The API is also flexible and works
for all regions of the world covered by the Directions API. It currently supports
glass and waste containers. In the future the variety of supported container
contents could be easily extended.

Figure 1: The form in which the user is able to select container clusters, a truck
and a content type and send the request to the API.
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Figure 2: The result view in which the di↵erent algorithms can be compared to
each other. In this result the knapsack algorithm performed best according to
our chosen metric m3/km.
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1 Analysis

1.1 Initial Situation and Goal

Recycling containers need to be regularly emptied using trucks. Live Track AG,
a new startup, wants to support the process of emptying these containers. To
achieve this, the recycling containers will be equipped with sensors, which will
transmit their current filling level to the cloud.

The collected data opens up new possibilities: As of now, an operator has
to plan a route for the truck driver based on his experience. The goal of this
project is to help the operator by providing di↵erent, optimized routes using the
collected data. The route should be optimized for the ratio between the amount
loaded and the kilometers driven. In addition, the truck should not necessarily
be filled to the maximum.

1.2 Use-Cases

A use case is a list of actions or event steps typically defining the interactions
between a role (human or other external system) and a system to achieve a goal.
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1.2.1 Actors

• Logistician
The logistician uses the API indirectly via a user interface. His interests
are to receive optimized routes.

• Truck Route Team
The Truck Route Team wants to demonstrate and test the API.

1.2.2 Use Cases Brief

• UC 01: Calculate Route
It returns multiple possible optimized routes based on the provided data.
The data contains a truck, a collection of containers including their loca-
tion and the start and recycling point of the route.

• UC 02: Select and View Filter Category
The data which should be sent to the API can be selected and filtered.

• UC 03: Get Route
The selected data is sent to the API.

• UC 04: View Route
The API result can be inspected and the possible solutions can be com-
pared.
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1.3 Domain Model
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1.3.1 Container Cluster

A container can be filled with recycled goods, e.g. glass or garbage.
Sometimes multiple containers of the same material are located at the same

location. For example there are three containers containing green glass at the
same location. In this case Truck Route does not need to consider each container
for itself, instead the three containers are clustered together as one, as seen in
Figure 3.

Figure 3: Multiple containers at the same location storing the same recycling
material are clustered together as one container cluster.

1.3.2 Content Type

Each container cluster is associated with a type, e.g. glass. This type also
contains information about the average weight of the recycled material in t/m3.

Content Type Conversion rate (t/m3)
Glass 1.2
Garbage 0.1

1.3.3 Recycling Point

When the truck should be emptied it is driven to a recycling point. One chal-
lenge is that some containers cannot simply be emptied everywhere and instead
are restricted to a certain recycling point defined by the owner of the containers.

1.3.4 Truck

Trucks are used to pick up containers. Each truck has a volume capacity (in
cubic meters) and a weight capacity (in kilograms). Trucks are only able to
empty containers using the right adapter for the head of the container. The
connection between truck and container type indicates the container type a
truck is able to empty with his current setup.
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1.3.5 Operation Center

The trucks are parked in the operation center after use. Often the location of
the operation center is the first starting point of the day and the last end point.

1.4 Functional Requirements

1.4.1 Container Selection

The selection of containers which should get emptied happens in multiple phases:

1. Multiple possible containers which can be emptied are selected.

2. A truck to pick up said containers is selected. The current location of the
truck is the starting point.

3. Truck Route calculates multiple subsets of the clusters.

All these steps are necessary in order to define which clusters should be
emptied. The containers used in the final route depend on:

• Selected starting point by operator.

• Selected clusters.

• Volume and weight capacity of selected truck.

• Truck Route subset finder algorithm.

• Metric used by Truck Route to calculate route e�ciency.

Truck Route will implement di↵erent extensible algorithms:

Preconditions The algorithms expect that a few prerequisites are fulfilled:

• All containers which are selected by the operator can be emptied at the
same recycling point.

• Material may not be mixed, the same material is expected to be in all
containers.

• The containers can be emptied by the selected truck. This means the
truck needs to have a compatible container adapter for all containers.

General conditions Requirements that all algorithms have to fulfill:

• Clusters must have a filling level of at least 70% before being considered
for emptying. (Valid only for the greedy algorithms.)

• Truck does not have to get completely filled, but may also not get filled
more than 100%.
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Algorithms

1. Greedy by Filling Level

• Clusters are selected based on there filling level.

• Clusters with a filling level of over 90% must be emptied.

2. Greedy by Filled Volume

• Clusters are selected based on there filled volume, cluster with the
highest volume gets selected first.

3. Greedy by Fullest Cluster Nearest Location

• Clusters are selected based on the the metric m3/km.

4. Knapsack

• Clusters are selected based on the the metric m3/km.

• Clusters must have a filling level of at least 50% before being consid-
ered for emptying.

• Clusters must have a score of at least 1 m3/km before being consid-
ered for emptying.

1.4.2 Route Creation

Once the container clusters that should be emptied have been selected, a third
party API will be used to generate a route. This route is then returned to the
client.

1.4.3 Cost Calculation

A excel sheet capable of calculating the costs based on usage will be created as
part of the thesis.

1.5 Non-Functional Requirements

1.5.1 Performance

The Truck Route API should return a value in less than or equal to 4 seconds.
As seen in Figure 4, requests from a client to the Truck Route API will always
include at least four network calls, two between client and Truck Route and two
between Truck Route and a third party API.

Since the client can call the Truck Route API from where-ever network
latency between the client and the Truck Route API can vary a lot, so network
latency from the client to the Truck Route API is ignored.
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Figure 4: A diagram showing where time is spent from the call of the client to
Truck Route until the client receives the response of Truck Route

1.5.2 Scalability

The application should be scalable. This is achieved by using stateless AWS
Lambda which can be replicated as many times as necessary as described in an
o�cial guide [1] by Amazon:

For Scalability, Think concurrent requests: Serverless appli-
cations take advantage of the concurrency model, and tradeo↵s at
the design level are evaluated based on concurrency.

1.5.3 Data Format

To transfer data between the di↵erent computers, JSON is used. JSON is the
recommended output format of Google Directions API [2].

1.5.4 On Demand

For some application it makes sense to trigger execution automatically, for ex-
ample:
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• on a predicate (if the containers have a fill level of more than 90%)

• on a time interval (every two hours)

The decision for Truck Route was that, at least at the beginning, executing
the service would be a manual task. Triggering the service automatically is
possible, but not part of this thesis.

1.6 UX / UI Requirements

A mockup, shown in Figure 5, was created containing all use cases to discuss
and validate a possible outcome of this work. From a discussion about the
mockup several important decisions originated: the layout should be similar
and container clusters should be marked on the map.

Figure 5: A mockup of our frontend demo showcasing all the use cases.
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Further important key figures for a route were discussed and the following
were selected for implementation and visualizations:

Name Unit Example
Cost per kilometer currency 5
Total distance kilometers 33.36
Total duration minutes 43.78
Total volume m3 12.5
Total weight t 5
Volume by distance m3/kilometers 1.21

1.7 Evaluation of Routing Service

For every evaluated routing service a prototype was developed to validate the
requirements.

1.7.1 Requirements

Important requirements in the selection process for the routing service are:

• The ability to generate a route specifically for a truck. As the Bing Maps
Truck Routing API states on its front page[3]:

The Bing Maps Truck Routing API provides travel routes which
take truck attributes such as size, weight and type of cargo. This
is important as not all trucks can travel the same routes as other
vehicles. Here are some examples:

– Bridges have heights and weight limits.

– Tunnels often have restrictions on flammable or hazardous
materials.

– Longer trucks have di�culty making tight turns.

– Highways often have a separate speed limit for trucks.

– Certain trucks may want to avoid roads that have steep
gradients.

• The power to solve the traveling salesman problem for given unsorted
collection points.

• An appealing design and a user-friendly interface of the map component.

1.7.2 Google Directions API

Technical limitations

• Up to 27 waypoints (including start & end).

• Not able to generate routes for trucks specifically.
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• No possibility to influence route by providing zones to avoid.[4] That
means that even if we knew that a truck would not be allowed, for exam-
ple, to cross a bridge, we would not be able to provide the API with this
information.

Prototype This prototype using Google Directions API shows an optimized
route.

Pricing Transparent pricing is a strength of Google Direction API.
Because we need to solve the travelling salesman problem, which Google

calls ”waypoints optimization”, we would use the Directions Advanced SKU
Therefore the following prices apply:

Monthly Volume Range Price per Query
0–100,000 0.01 USD per each(10.00 USD per 1000)
100,001–500,000 0.008 USD per each(8.00 USD per 1000)
500,000+ Volume pricing with sales

Table 1: Google Directions API Advanced Pricing [5]

UI / UX Google Directions API has the big advantage that their map com-
ponent is the well known and popular Google Maps. At of now, Google Maps
sets the bar for navigation systems.
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1.7.3 Bing Maps Truck Routing API

Technical limitations

• Up to 25 waypoints (including start & end)

• Generates routes for trucks

Prototype This prototype uses Bing Maps Truck Routing API.

Pricing Fasten your seatbelts, it is about to get complicated.
The Bing Maps API works with billable transactions. One call to this spe-

cific API will result in three billable transactions.[6] The licensing options[7]
state:

Application using up to 125,000 billable transactions per calendar
year qualifies for a limited website and consumer app use. Applica-
tions that qualify for a limited website and consumer app use, which
will be free of charge as defined in the SDKs per calendar year, can
be licensed under the Terms of Use.

125’000 transactions would amount to almost 42’000 calls to the Truck Route
API. If the app is used every day in a year it would allow for about 115 API
calls per day free of charge.

For apps using more than 125’000 transactions a year, Microsft refers to a
Bing Maps representative.[7]
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Application using more than 125,000 billable transactions per cal-
endar year will need a user or transaction based Bing Maps license.

Fill out the Request for Quote form to have a Bing Maps represen-
tative assist you with your licensing options.

UI / UX Bing does not have own card material. Instead it uses a version of
the Here MAP.

1.7.4 HERE Fleet Telematics Waypoints Sequence API

Technical limitations

• The maximum number of waypoints including the start point and end
point is 120 without tra�c and 50 with tra�c.

Prototype This prototype uses the HERE Fleet Telematics Waypoints Se-
quence API to display an optimized route.

Pricing 1 million transaction for 449 Euros. After using this quota the sales
team should be contacted.

One transaction is counted for each individual service feature included in
a request. Broken down for a request to optimize 20 waypoints it would cost
0.009 Euro.

UI / UX The Here Map looks a bit dusty and outdated. But still able to do
the work well.
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1.7.5 Comparison

Google Bing Here
Truck support N Y1 Y
Waypoint Limit 25+2 23+2 120 / 502

Price during development 0-100 $ 0 450 Euro
Price during production Custom deals
Core business N N Y
UI / UX 1 3 2
API documentation 2 3 1
API customizability 1 1 1

Table 2: Comparison between the routing services
1 Bing o↵ers only routing without waypoint optimization for trucks.
2 50 with tra�c; 120 without tra�c.

1.7.6 Conclusion

Based on the comparison, the HERE Fleet Telematics Waypoints Sequence API
clearly wins the evaluation. It is their core business and they provide the most
features. The biggest downside are the costs which incur during development.

1.7.7 Decision

After carefully examining each result and discussing the results with our student
advisor and industry partner we came to the result that the Google Directions
API should be used based on the development costs.
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2 Architecture

2.1 Deployment View

The system contains three parts: A frontend, Truck Route Demo, for demon-
stration, a backend, Truck Route API and the Google Directions API. In the
following chapters they are explained in detail.

Figure 6: Overview over the entire cloud infrastructure.

2.1.1 Backend

The backend has two deployed instances one for developing and one for pro-
duction. The backend itself is built with 3 AWS components as seen in Figure
6.

API Gateway The API Gateway acts as a “front door” for our business
logic, handling the routing, monitoring and authorization of the API. The au-
thorization is done via API key which can be configured per client. It also it
handles the parsing of HTTP request and building of HTTP responses. For
every request it triggers a lambda function with an event as parameter.
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Lambda The AWS Lambda is a serverless computing platform where our
business logic is running. It gets invoked by the API Gateway and calculates
the routes. For a detailed view on the internal procedures see chapter 3.

CloudWatch CloudWatch is used by the API gateway and the lambda for
performance monitoring and logging. Based on this data CloudWatch provides
important insights which can be used to improve the quality of our infrastructure
and software.

Google Directions API As described in chapter 1.7, the Google Directions
API is used to calculate the routes based on our optimized clusters. Like our
AWS infrastructure it is cloud-based. To be able to communicate with the
Google Directions API an API key needs to be supplied as environment variable
in the lambda function.

2.1.2 Frontend

The frontend infrastructure includes a storage (S3) of the React application
and a corresponding distribution (CloudFront). Since the frontend is used for
demonstration, only one instance is deployed.

CloudFront CloudFront is a content delivery network (CDN) that delivers
the frontend with low latency and high transfer speeds form all over the world.
Our CloudFront distribution origin is the frontend S3 bucket. It also allows us
to use our own domains with SSL certificates, which were created with the AWS
Certificate Manager.

S3 Simple Storage Service is an object storage service where the frontend gets
deployed to. For every deployment the S3 frontend bucket gets overwritten and
the new version is live.

2.2 Class Diagram

The class diagram is strongly influenced by the domain model. For this reason,
the domain model can be used to help with naming ambiguities. Regarding the
type information, these are the common TypeScript types used. The biggest
di↵erences are listed below:

• The material conversion, an utility class for the content type including
mapping for type to conversion rate or attribute is added.

• The request which contains all the other classes is added.

• There is no recycling point or operation center, they are replaced by just
their location.
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Figure 7: Typescript class diagram
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Request object A request object looks like the following (class names are
written out):

2.3 Solution Strategy

2.3.1 Evaluation of Backend Technology

AWS Lambda Live Track AG already uses AWS infrastructure. Further-
more, an AWS Lambda function has the following benefits:

• no provisioning or managing servers

• includes code monitoring and logging

• code only runs when needed

• stateless (easy to scale and test)

• scales automatically

TypeScript TypeScript is a strict syntactical superset of JavaScript, and adds
optional static typing to the language. To run, it is first compiled to JavaScript.
During the compilation the compiler type checks the program.

• In connection with the programming language on the server

• considering past experience

• we have decided to use TypeScript

• and against the use of any other language

• to be able to start and develop quickly

• for this we accept as consequence to miss a chance to learn a new pro-
gramming language
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Node.js Node.js enables us to run the generated JavaScript on a server. It
is built on top of the V8 JavaScript engine, which is used to run JavaScript in
Chrome. It is open-source and we both have already gained some experience
with it.

• In connection with the server runtime

• considering few alternatives

• we made a decision for Node.js

• and against less established runtimes like deno[8]

• to be future-proof

• because of this we accept as consequence the need of compiling TypeScript
to JavaScript

2.3.2 Evaluation of Frontend Technology

React React is a JavaScript frontend library for building user interfaces.

• In connection with the implementation of the frontend

• considering the interactive UI

• we made a decision for React

• and against Vue.js and Angular

• to use a lightweight and industry established library

• because of this we accept as consequence that the frontend will not be
compatible with the prototype of Live Track AG, which is built using
Angular

2.3.3 Continuous Integration

Continuous integration (CI) and continuous deployment (CD) are set up. For
both the frontend and the backend Travis[9], a continuous integration SaaS, is
used. Both application share a similar continuous integration flow, based on the
same technology.

Prerequisite Our build setup has some prerequisites which have to be in-
stalled on the CI. The required software is listed below, including the minimum
version required.

• nvm[10] (Node.js version manager) 0.31

• Yarn[11] (package manager) 1.10

• Git[12] (version control system) 2.12

Additionally required software is installed automatically using Yarn.
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Procedure backend The API has a straight forward procedure, broken down
into single logical steps. (Multiple steps can occur on the same infrastructure.)

1. We developers commit our code into the version control system provider
GitHub.

2. For every commit a web-hook is triggered which starts the CI on Travis.

3. On Travis the tests are executed and the code is linted.

4. If the checks have been successfully and the branch has a server, the
deployment is started.

5. For the API we first build the application and the deploy it via serverless
framework into the AWS ecosystem. The serverless framework uses the
AWS CloudFormation under the hood.

6. Once deployed the application runs as a AWS Lambda function.

Figure 8: Procedure of the CI for the API.

Procedure frontend The frontend shares the first steps with the backend,
just the deployment is di↵erent. Instead of deploying via serverless, the Amazon
SDK is used directly and upload the deployment to an S3 bucket.

2.3.4 Testing

To ensure the fulfilling of the functional and non functional requirements we
wrote unit and End-to-End (E2E) tests using Jest[13], an open source testing
framework by Facebook.

Test execution The tests are platform independent and currently the exe-
cution is guaranteed on macOS, Ubuntu and Windows. If the E2E test should
be executed, the API key for the Google Directions API has to be provided via
environment variable.
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Test coverage Our tests are covering 100% of the application code. Even if
a high coverage does not ensure a bug free software, we know that all the code
and code paths have been executed at least once during tests.
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Manual tests Manual Tests were done via Swagger and the frontend. All use
cases were tested, including corner cases:

Nr Name Satisfied
1 Non authorized request Yes
2 Non parsable request Yes
3 Empty request Yes
4 Invalid data request (partial missing data) Yes
5 Invalid data request (wrong data type) Yes
6 Invalid data request (not enough clusters) Yes
7 Invalid logical data request (clusters in China and Australia) Yes
8 Valid request Yes
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2.3.5 API Documentation - Swagger

The API is documented with Swagger following the OpenAPI[14] specification
3. Based on the Swagger file it is possible to simulate API requests and validate
request and response against the development API of Truck Route as seen in
Figure 9. The swagger.json file is located in our git repository.

Figure 9: Screenshot of the Swagger interface based on the documentation.
When the API key is specified, it is possible to send the request with the ”Try
it out” option.
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3 Building Block View

3.1 Whitebox Overall System

Demo User Someone using the frontend.

Frontend A user can use the frontend. The frontend requests and receives a
route from the backend.

Other clients Other clients can also request a route, this is how Truck Route
will be used in the future.

Backend The backend server returns optimized routes based on the data re-
ceived. For the route generation itself, Google Directions API is used. For
a more exhaustive explanation of the process on the server refer to section
4.1.

Google Directions API Google Directions API is used to generate a route
based on waypoints.
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3.2 Building Blocks – Level 1

3.2.1 Backend

lambda.ts The lambda (named after the AWS Lambda compute service) is one
function which coordinates:

1. The parsing of the request

2. The validating of the request

3. The processing of the request (calculation of routes)

4. The building and returning of a response with the result or an error
message

requestParser.ts The request parser is used to parse and validate if the re-
quest is parsable.

routingApi.ts The routing API is responsible for the communication with the
Google Directions API. It also builds solutions from the routes which are
returned by the Google Directions API. The solutions contains the request,
the response and key figures

responseBuilder.ts The response builder returns an object which is processes
able by the AWS API Gateway, based on a body object and a status code.

3.2.2 Frontend
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App.tsx This is the main React component. It receives input from the user
and displays the selector and, if there are any, routes.

api.ts When the user triggers a request to the backend it is handled with the
api.ts. api.ts extracts the request parameters from the selected data and
fetches the results from the backend. Afterwards it parses and returns the
parsed results.

3.3 Building Blocks – Level 2

3.3.1 Backend / Routing API

As a whole, the routing API class is responsible to encapsulate the Google
Directions API. This allows for a complete replacement of the Google Directions
API by another routing service.

constructor The constructor generates the cluster filters.

ClusterFilter Cluster filters are used to get a subset of clusters, basically
deciding which container clusters should be emptied.

result() The result function uses the subsets of clusters created by the cluster
filters and calls the Google Directions API for each of them. It then builds
solution objects using buildSolution() and returns them.

callRoutingApi() This helper function uses theGoogle Maps node.js client[15]
via another function which handles the authorization, to fetch a route from
the Google Directions API.
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buildSolution() The buildSolution function calculates key figures from the
request objects and the response of Google Directions API. It returns an
object containing request, response and key figures.

3.3.2 Frontend / App.tsx

Selector.tsx This React component enables the user to select:

• Container clusters, from which Truck Route may select a subset from.

• A truck, which defines the starting point of the route and how much
volume and how many kilograms can be carried.

• A content type, at the moment either glass or garbage. Based on the
content type, a recycling station is selected.

App.tsx internals The main component has a handler onCalculateRoute(...).
This handler is executed by the selector when the button Calculate Route
is clicked. The handler then calls the backend over api.ts and stores the
result in its state. For each result it renders a RoutingResult component.

RoutingResult.tsx This component renders a routing result the user wanted
to calculate. The user can switch between multiple algorithms/stategies
and compare the algorithm results.

26



4 Runtime View

4.1 Scenario: Get Route and Display It in the Frontend

This is the main scenario which was implemented as part of this thesis. There
are three actors: The frontend, the backend on AWS and Google Directions
API. The diagram shows the communication and internal calls of the frontend
and backend. For simplicity and better understanding some calls have been
renamed.
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4.2 Scenario: Visualize Received Route in Google Maps

While trying to visualize the routes we received from the backend we hit an
unexpected roadblock. Even though the route was passed to the React Google
Maps Component[16], it was not displayed.

To understand why, a comparison with the Google Directions API prototype
was made. We discovered that the browser SDK and the Node.js SDK for Google
Maps are not compatible. This was confirmed in the response to a GitHub issue.
Statement of the core developer Stephen McDonald[17]:

The front-end and back-end services aren’t intended to work together
in the way you’re trying to do.

At a guess you might be able to manually patch the back-end route
data with the missing attributes that the front-end API expects.

Based on his guess that we might be able to patch it manually we reverse
engineered the frontend API. For a better understanding, the flow used in the
reverse engineering part is shown in the following scenario:

To request and display a route with Google Directions API the Google Maps
JavaScript API client library [18] was used. The code of this client library is
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heavily obfuscated, which means it is generally hard to understand what it
does. Nevertheless we made some discoveries through debugging and reverse-
engineering. We found out that new properties are added to the result object
before displaying it. To fix the visualization of the route, we transformed the
result object of our API to fit the expectations of the client library. The code
to transform the result can be found in the Figure 10.

1 import ⇤ as googleMaps from ’ @ g o o g l e / m a p s ’ ;

2
3 export default function getDirect ionRoute (

4 d i r e c t i onRe su l t : googleMaps . Direct ionsResponse

5 ) : goog le . maps . D i r e c t i on sResu l t & { r eques t : { travelMode : string } } {
6 return {
7 . . . d i r e c t i onResu l t ,

8 route s : d i r e c t i onRe su l t . route s .map( ( route : any) => ({
9 . . . route ,

10 bounds : new goog le . maps . LatLngBounds (

11 route . bounds . southwest ,

12 route . bounds . northeast

13 ) ,

14 overview path : goog le . maps . geometry . encoding . decodePath (

15 route . ov e rv i ew po l y l i n e . po int s

16 ) ,

17 l e g s : transformLegs ( route )

18 }) ) ,

19 r eques t : { travelMode : ’ D R I V I N G ’ }
20 } ;

21 }
22
23 function transformLegs ( route : any) {
24 return route . l e g s .map( ( l e g : any) => {
25 l e g . s t a r t l o c a t i o n = new goog le . maps . LatLng (

26 l e g . s t a r t l o c a t i o n . lat ,

27 l e g . s t a r t l o c a t i o n . lng

28 ) ;

29 l e g . end l o ca t i on = new goog le . maps . LatLng (

30 l e g . end l o ca t i on . lat ,

31 l e g . end l o ca t i on . lng

32 ) ;

33 l e g . s t eps = l eg . s t eps .map( ( s tep : any) => {
34 s tep . path = goog le . maps . geometry . encoding . decodePath (

35 s tep . p o l y l i n e . po int s

36 ) ;

37 s tep . s t a r t l o c a t i o n = new goog le . maps . LatLng (

38 s tep . s t a r t l o c a t i o n . lat ,

39 s tep . s t a r t l o c a t i o n . lng

40 ) ;

41 s tep . end l o ca t i on = new goog le . maps . LatLng (

42 s tep . end l o ca t i on . lat ,

43 s tep . end l o ca t i on . lng

44 ) ;

45 return s tep ;

46 }) ;

47 return l e g ;

48 }) ;

49 }

Figure 10: We see in the code the decoding of a polyline[19] encoded string and
the creation of location objects to satisfy the Google Maps JavaScript client
library.
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5 Project Management

5.1 Milestones

Because we were working agile, we mostly did without milestones, expect a few
which were set by the school.

Number Description Date planned Date is
1 Kicko↵ 17.09.2018 18.09.2018
2 Abstract delivery 18.12.2018 18.12.2018
3 Project delivery 21.12.2018 21.12.2018

5.2 Time Evaluation

30



5.3 Quality Measures

This chapter defines the measures and instruments used to ensure the quality
of the project.

5.3.1 Documentation

The individual documents are stored in a shared OneDrive folder “SA”. The
benefits are that OneDrive has a document modification history to ensure that
no documents are lost. Furthermore the main documentation file of this project
is written in an online Latex editor called Overleaf [20]. OverLeaf has also a
modification history. Writing the documentation in Latex ensures a high quality
and a consistent layout.

5.3.2 Project Management Workflow

We use scrum to manage the project and as project management software we
use Zube[21]. A lightweight and flexible software which is provided as a service.
We established our own workflow as seen in Figure 11.

Figure 11: Our Project Management Workflow.

5.3.3 Development

The source code is hosted on GitHub:

• Demo: https://github.com/cyrilkyburz/truck-route-frontend

• API: https://github.com/cyrilkyburz/truck-route

Workflow We use our own version of GitFlow [22] which is a subset of it.
Namely we use the Feature Branch Workflow. We do not have hotfixes since
the project is not in production and we use the release system integrated in
GitHub combined with semantic versioning[23].
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5.3.4 Definition of Done (DoD)

We use our own DoD to reach our desired quality. The DoD is a common
understanding, when something is done.

The following points have to be fulfilled:

• Our code is managed in a git repository. For features code reviews are
done when the code wants to join the develop or master branch.

• 4 eyes principle for critical code and infrastructure.

• Dependencies and libraries are evaluated to be stable and future-proof.

• 100% test Coverage for the API

• Our code is linted and we have the same style of writing the code.

• We use TypeScript the proper way and try not to use any or generic types.

• Our git repositories have working build pipeline for macOS, Windows and
Ubuntu.

• Our Continuous Integration is always green for develop and master branch.
This means the project builds, tests, lintings and deployments are working.

• Our git repositories have meaningful “ReadMe” files explaining the local
setup and the build pipeline.
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6 Results

The result of this thesis are two applications both live and released. The Truck
Route Demo features a powerful user interface for showcasing our Truck Route
API. The API is production ready and able to handle up to 4000 requests per
second. For every request multiple optimized routes are calculated and the
requester can decide which one fits his needs the best. The outcome of both
applications combined can be seen below.

6.1 Implementation of Functional Requirements

All use cases were implemented:

• UC 01: Calculate route

• UC 02: Select and view filter category

• UC 03: Get route

• UC 04: View Route

6.2 Implementation of Non-Functional Requirements

All non-functional requirements are fulfilled. Special attention went to perfor-
mance and scalability.
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6.2.1 Performance

The API speed we measured varies in a range between 200ms and 800ms as seen
in the Figure 12. The average time is 250ms. The goal was to achieve an API
speed of less than 4s, and we succeeded, as our measurements clearly show.

Figure 12: Performance measures from the AWS CloudWatch. The yellow line
shows the average time and the green line the worst case.

6.2.2 Scalability

The AWS Lambda function allows us to handle up to 1000 concurrent API
requests. Based on the average time used by our API we should be able to
handle 4000 request per second if needed.

6.3 Cloud Pricing Calculator

To calculate how the costs of running the application would be influenced by
the amount of requests we made a custom excel sheet. As seen in Figure 13,
the user can input multiple values and gets displayed a bill.

We found out that most costs occur using the Google Directions API.

6.4 Outlook

Live Track AG is currently developing a prototype, part of which is going to be
the Truck Route API. Based on the feedback to the prototype Live Track AG
will then decide further actions.

If the decisions falls to move forward using Truck Route, there are several
features that could be needed. An easy to implement feature would be the sup-
port for all types of recycling containers such as aluminum. A more challenging
feature would be to calculate multiple routes for an entire day.

6.5 Acknowledgments

We would like to thank our supervisor, Mirko Stocker, for his continued support
throughout the thesis. The weekly meetings with him were invaluable in keeping
us on track.

We also thank our industry partner, Bernhard Zindel, who trusted us to
experiment with new solutions and was always there for questions.

34



Figure 13: The cloud calculation sheet. The user can input the values in the
cells with an orange background. The values with the grey background and the
bill get updated according to the input.
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7 Attachments

We have included the following documents as attachments:

Personal Reports Personal reports of the thesis authors

Glossary Common vocabulary of this thesis

Task Definition The task definition we got at the start of the thesis

Decisions The decisions document which we updated with new decisions dur-
ing the entire thesis

Copyright and Usage Agreement The agreement to give our industry part-
ner the right to use our code

36



7.1 Personal Reports

7.1.1 Cyril Kyburz

For my student research project thesis, it was particularly important to me that:

• it was a challenge

• it had an industrial partner

• it is needed in the professional world

The cooperation with our industrial partner Bernhard Zindel and our su-
pervisor Mirko Stocker harmonized from the very beginning. The discussion of
ideas and solutions in the weekly meetings were the basis for a challenging and
at the same time enjoyable thesis.

We had the free choice of technology and were able to use our preferred pro-
gramming language and framework to get the work done. Namely TypeScript
and React. It quickly became clear that Sandro would be responsible for the
frontend and I for the backend. But with an improvement compared to our en-
gineering project, where we completely split the work. We took care that either
of us developed for both applications and stayed up to date. That allowed me
to learn the most from both worlds. Resulting in learning new libraries (for
example: Google Maps SDK ) and improving existing skills with new techniques
like advanced TypeScript syntax and React features.

With the chosen technologies we were able to implement a, in my opinion,
good solution which is able to optimize routes. In particular, the architecture
with the stateless AWS Lambda function appeals to me. The clear flow makes
it is easy to understand and test. I would definitely choose this architecture
again.

In summary I can say that this thesis is a full success and that I am happy
to be on the team with Sandro. I am for sure taking a lot of good memories
with me.

7.1.2 Sandro Scheiwiller

For me personally, it is very important that my projects are useful and that I
can develop my skills. This project has delivered both: Whether Live Track AG
directly uses the project or not, they have gained a lot of valuable information.
And I personally learned a lot, both technology related and project related.

From the beginning I felt very confident in how the project was going to turn
out. The meetings were productive and our advisor and our industry partner
gave us clear goals we could work to meet. These goals were very stable, which
saved us from having to throw away unused work. Because of this I later realized
the value of having an extensive analysis phase.

I usually do put my focus on the result, not on the technologies used, but
it can make an real di↵erence regarding developer experience. In a (mean-
while faraway) past I used to discount the value of adding a typing system to
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JavaScript, but meanwhile I would certainly miss it, even in smaller projects.
The integrated development experience is just so much better. So I was very
happy using TypeScript. A welcome surprise was the addition of TypeScript
support from the Facebook team to the React app base kit, which made adding
TypeScript support to the frontend much easier than before.

Here I also want to thank Cyril for setting up continuous integration, testing,
deployments and everything else that enabled us to put our focus on coding.

Overall I am very happy with the final result. Cyril and I have accomplished
a lot and, as far as I am concerned, avoided both over-engineering (too much
generalization) and writing spaghetti code (not enough generalization).
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7.2 Glossary

API or Backend If not special mentioned, API stands for our developed back-
end application

AWS Amazons cloud

(AWS) API Gateway An AWS service that enables the maintaining, moni-
toring and securing of the backend

(AWS) CloudFront Content delivery network (CDN)

(AWS) CloudWatch Service for performance monitoring and logging

(AWS) Lambda The AWS Lambda is a serverless computing platform where
ourbusiness logic is running

(AWS) S3 Simple Storage Service is an object storage servic

Container Cluster Multiple containers combined

Container Cluster Subset Selected clusters ready for the Google Directions
API

Frontend If not special mentioned, frontend stands for our developed frontend
application

Google Directions API Routing service from Google solving the traveling
salesman problem

UI User Interface

UX User Experience
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