
BA - FS2019 - Documentation

Safe C++ Guidelines for Cevelop
(AUTOSAR)

University of Applied Sciences Rapperswil

February - June 2019

Author: Viktor Puselja, Gabriel Vlasek
Supervisor: Peter Sommerlad
Technical Adviser: Toni Suter
Expert: Martin Botzler

1. Abstract

CodeAnalysator is an Eclipse plug-in for improving C++ code. Its static analysis
uses AST visitors for determining rule violations and notifies the users about them.
Often the plug-in even proposes quick fixes to solve a problem. The plug-in features
rules from many different C++ programming guidelines such as from AUTOSAR
or MISRA. The plug-in was initially developed by another team. After we added a
large set of rules in the previous term project, this thesis was all about improvement.
By applying refactorings and rewriting code, the complexity of the project was
greatly reduced and circular dependencies were removed. By introducing new
concepts and improving the naming, we increased understandability and readability
of the project. Using performance measuring we also improved the execution speed
and responsiveness significantly, reducing the run time on our test projects from
almost an hour to less than three minutes. Among many other smaller things, we
also incorporated a set of new rules from the AUTOSAR guideline.

ii

2. Management Summary

This chapter consists of a short introduction of this thesis, a description of our
approach and the results and findings of the project.

2.1. Introduction

The integrated development environment Cevelop is used to write C++ code.
To provide as much help as possible to the developer, Cevelop contains a large
number of plug-ins that make programs more safe and reliable. One of these
plug-ins is the CodeAnalysator. The plug-in features rules from many different
C++ programming guidelines such as from AUTOSAR or MISRA. These guidelines
define rules that improve the safety and robustness of C++ code and also reduce
ambiguity. The CodeAnalysator plug-in implements checkers for these rules that
will notify the developer by underlining the code where it violates such a rule.
While the foundation of the project was laid in an earlier project and some rules
were already implemented in another thesis, this project was all about improving
the existing plug-in.

Figure 2.1.: Cevelop and AUTOSAR.

iii

2.2. Approach

The main goal of this project was to make the CodeAnalysator plug-in viable for
real world usage, because the performance was unsatisfying initially. To achieve
this, we removed as many bugs and mistakes as we could. We did this by performing
functional tests on real C++ projects. Another part of the project was to improve
the overall structure and architecture of the plug-in. We analyzed the tool by
hand and using tools and identified many things that we could improve. But
functionality is not the only thing that needed improvement. The performance was
lackluster and was one of the main things that held the plug-in back. Using the
same test projects as in the functional tests, we identified performance bottlenecks.
Additionally we also increased the amount of supported rules. Such a rule works
by having a checker analyze the code and recognize patterns that can lead to an
unsafe program. Sometimes the problem can be solved by the plug-in directly. In
these cases, we offer a so called quick fix which is a short program to fix a given
issue.

Table 2.1.: Example of a checker and a quick fix

iv

2.3. Results

Looking at the plug-in before and after the project, one can notice many differences.
First of all, we increased the number of supported checkers and quick fixes. In total
we added eight new checkers and two quick fixes. In another part of the project,
we improved the readability of the source code by using more appropriate names
for the different classes so that a new developer can understand the plug-in better.
A few redundant parts of the program were removed and some complicated parts
were simplified. The performance tests led to great results as well. We managed to
reduce the execution time of the plug-in on our test projects from almost an hour
to less than three minutes. In the end, the CodeAnalysator plug-in is in a state
where new checkers and quick fixes can be added easily and where C++ developers
can benefit from it.

2.4. Outlook

There are still a great amount of rules that can be implemented from the already
supported AUTOSAR, MISRA and C++ Core Guidelines as well as from new
guidelines. Nonetheless the CodeAnalysator plug-in is in a good state.

v

Contents

1. Abstract ii

2. Management Summary iii
2.1. Introduction . iii
2.2. Approach . iv
2.3. Results . v
2.4. Outlook . v

3. Introduction 1
3.1. Safe C++ . 1
3.2. Workings of the CodeAnalysator . 2
3.3. Previous Work . 4
3.4. Project Goals . 4

4. Code Improvement 5
4.1. Overview . 5
4.2. Guideline Mapping and Priority Resolution 6
4.3. Rule Suppression . 12
4.4. CodeAnalysatorVisitor Type Parameter 17
4.5. CodeAnalysator Visitors . 18
4.6. Performance Measurement . 18
4.7. Rule Reporting . 18
4.8. Rule Enablement Checking . 19
4.9. CodeAnalysator Checkers . 19
4.10. BaseQuickFix . 19
4.11. AttributeSuppressQuickfix . 21

4.11.1. Remove Bug Workaround 21
4.11.2. Relation to BaseQuickFix 22

4.12. Package Structure . 22
4.13. Checker and Quick Fix Tests . 24
4.14. Refactor Old Tests . 27
4.15. Ordering of Rules . 28

vi

4.16. A6-4-1: A switch statement shall have at least two case-clauses,
distinct from the default label. 29
4.16.1. Switch statement with non-compound statement as direct child 30
4.16.2. Surrounding compound statement 30
4.16.3. Further errors . 31

4.17. A8-5-3: A variable of type auto shall not be initialized using {} or
= braced-initialization. 32

4.18. Conclusion . 32
4.18.1. Reflection . 33
4.18.2. Proposed Future Work . 33

5. Functional and performance testing 35
5.1. Finding Suitable Test Projects . 35

5.1.1. Possible Projects . 36
5.1.2. Decision . 36

5.2. Functional Tests . 38
5.2.1. Sample Test Cases: jucipp 39
5.2.2. Functional Reports Tests: jucipp 48
5.2.3. Functional Sample Test Cases: LevelDB 52
5.2.4. Functional Reports Test: Leveldb 59
5.2.5. Changes Based on Functional Tests 61
5.2.6. Conclusion of Functional Tests 69

5.3. Performance Tests . 71
5.3.1. Test Results . 71
5.3.2. Changes Based on Performance Tests 72
5.3.3. Test Results after Changes 80

5.4. Conclusion . 80

6. Quick Assists 81
6.1. Getting Started . 81
6.2. Overrider . 84
6.3. Struct/Class Switcher . 85

7. Per-Project Guideline Configuration 88

8. Implementation of checkers and quick fixes for further rules 92
8.1. Analysis . 92

8.1.1. Possible Rules to implement 93
8.2. New rules . 96

8.2.1. A02-13-05: Hexadecimal constants should be upper case. . . 96

vii

8.2.2. A5-0-3: The declaration of objects shall contain no more
than two levels of pointer indirection. 98

8.2.3. A05-02-01: Dynamic cast should not be used 99
8.2.4. A05-02-06: The operands of a logical && or ‖ shall be

parenthesized if the operands contain binary operators. . . . 100
8.2.5. A5-10-1: A pointer to member virtual function shall only be

tested for equality with null-pointer-constant. 103
8.2.6. A7-5-1: A function shall not return a reference or a pointer

to a parameter that is passed by reference to const. 104
8.2.7. A13-05-02: All user-defined conversion operators shall be

defined explicit . 105
8.2.8. A15-03-05: A class type exception shall be caught by refer-

ence or const reference . 107
8.3. Existing rules . 108

8.3.1. A5-0-2: Condition of if/while/for shall be bool 108
8.3.2. A5-1-1: No magic numbers 109
8.3.3. A5-1-2: Do not implicitly capture variables in lambda ex-

pressions . 110
8.3.4. A5-1-3: Parameter list shall be included in lambda 110
8.3.5. A5-1-4: Lambda expressions shall not outlive reference cap-

tured objects . 111
8.3.6. A5-1-6: Explicit lambda return type 111
8.3.7. A5-1-8: Do not nest lambda expressions 112
8.3.8. A5-16-1: Do not use the ternary conditional operator as

sub-expression . 112
8.3.9. A6-4-1: Switch shall have at least two cases 112
8.3.10. A7-1-4: The register keyword shall not be used 113
8.3.11. The auto specifier shall not be used 113
8.3.12. A7-1-6: The typedef specifier shall not be used 114
8.3.13. A7-2-2: Enumeration underlying base type shall be explicitly

defined . 114
8.3.14. A7-2-3: Declare enumerations as scoped enum classes 115
8.3.15. A7-2-4: Initialize none, the first or all enumerators 115
8.3.16. A7-4-1: The asm declaration shall not be used 115
8.3.17. A8-5-2: Braced-initialization {}, without equals sign, shall

be used for variable initialization 116
8.3.18. A8-5-3: A variable of type auto shall not be initialized using

{} or ={} braced-initialization 116
8.3.19. A9-5-1: Unions shall not be used 117

viii

8.3.20. A10-1-1: Class shall not be derived from more than one base
class which is not an interface class. 117

8.3.21. A10-2-1: Do not redefine non-virtual member functions . . . 117
8.3.22. A10-3-1: Virtual function declarations shall have exactly one

of the specifiers virtual, override or final 118
8.3.23. A10-3-2: Each overriding virtual function shall be declared

with the override or final specifier. 119
8.3.24. A10-3-3: Do not introduce virtual member functions in a

final class . 119
8.3.25. A10-3-5: User defined assignment operators shall not be virtual120

8.4. Conclusion . 120

9. Quality Measures 121

10.Conclusion 122
10.1. Retrospective . 122
10.2. Considerations for future projects 123

Glossary 129

A. Developer Guide 131
A.1. Checker . 132

A.1.1. Visitor . 132
A.1.2. Testing . 136

A.2. Quick Fix . 138
A.2.1. Quick Fix . 138
A.2.2. Testing . 139

ix

List of Listings

1. A compiling code snippet . 2

2. Member variable declarations of the class Rule 8
3. Example of a suppression attribute for the rule ”A7-1-6: The typedef

specifier shall not be used” . 12
4. CodeAnalysatorVisitor declaration with type parameter 18
5. Switch with neither a compound, case nor default statement as child 30

6. A lamdba returning a nullptr . 62
7. A lamdba returning a nullptr, fixed incorrectly 62
8. A lamdba returning a nullptr, fixed correctly 62
9. Example for a binary expression with a non-expression second operand 63
10. Example of a wrongly inserted semicolon for control declarations . . 63
11. Example of a ranged for loop . 64
12. The visitor marked the constructor on line 9 wrongly 64
13. Resolving this marker failed before our fix 65
14. The A05-01-01 marker did not recognize this exception 65
15. B.doSomething() is virtual even though there is neither a virtual

keyword or an override specifier. Because of this, C.doSomething()
does not shadow but override. 66

16. Example of a method that can be made final 67
17. Example made final without violating A10-03-01 67
18. Example of a method that can be made final with virtual keyword . 67
19. Example made final but violating A10-03-01 67
20. A ternary conditional operator used in an assignement 68
21. The AvoidLossyConversionVisitor before our refactoring. 75
22. The AvoidLossyConversionVisitor after our refactoring. 76
23. The Quick Fix for A07-01-06 is not always appliccable. 77
24. Checker generating and passing a contextFlagsString 78
25. Quick Fix computing isApplicable by contextFlagsString 79
26. ContextFlagsHelper containing contextFlagsString indices and

flags . 79

27. A02-13-05 checker example . 97

x

28. An example of the quick fix for A02-13-05 98
29. Examples of declarations violating rule A5-0-3 99
30. Usage of dynamic cast. Taken from [AUTOSAR 2018] 100
31. Example of a binary expression . 101
32. 102
33. The complicated example resolved 102
34. Example of comparison violating rule A5-10-1 104
35. Example of comparison violating rule A7-5-1 105
36. The difference between an explicit and a non explicit conversion

operator . 106
37. Examples of catching a reference by value and by reference 107

38. AutosarIdHelper . 132
39. AutosarIdHelper . 133
40. fragment.xml . 134
41. fragment.xml . 135
42. AutosarChecker.java . 136
43. Adding the test class to the test suite 136
44. Adding the test class to the test suite 137
45. An example rts file . 137
46. An example quick fix . 138
47. Registering your quick fix . 139
48. A new quick fix test class . 140
49. Adding the test class to the test suite 140
50. An example quick fix rts file . 141

xi

List of Figures

2.1. Cevelop and AUTOSAR. iii

3.1. Our checker marks the rule. By hovering over it, the developer gets
a list of possible solutions. 3

3.2. The code after the quick fix was applied 3

4.1. Guideline before refactoring . 10
4.2. Guideline after refactoring . 11
4.3. The AttributeSuppressionStrategy 13
4.4. Suppression attributes and quick fixes before refactoring 14
4.5. Suppression attributes and quick fixes after refactoring 15
4.6. Marker resolution generation before refactoring 16
4.7. Marker resolution generation after refactoring 17
4.8. BaseQuickFix and derived RuleQuickFix before refactoring 20
4.9. BaseQuickFix and derived RuleQuickFix after refactoring 21
4.10. The code to the left is rewritten with the code to the right 22
4.11. The package structure before the refactoring 23
4.12. The package structure after refactoring 24
4.13. Checker tests before refactoring . 25
4.14. Quick fix tests before refactoring 25
4.15. Checker tests after refactoring . 26
4.16. Quick fix tests after refactoring . 27
4.17. The C++ Code Analysis preferences page before renaming the rules 28
4.18. The C++ Code Analysis preferences page after renaming the rules . 29

5.1. The results of the performance test 71
5.2. The results of the performance test while scrolling 72
5.3. The results of the final performance tests 80

6.1. The general structure of a quick assist 82
6.2. Diagram of the completed Overrider quick assist and refactoring . . 83

7.1. The existing guideline preferences page for the workspace 89
7.2. The guideline preferences page now for projects 91

xii

8.1. A part of the AST for the example in Listing 31 101
8.2. Example for A5-0-2 [AUTOSAR 2018] 108
8.3. Unclear example [AUTOSAR 2018] 109
8.4. Different ways of initializing an auto variable[Initialization - cppref-

erence.com 2018] . 116
8.5. B.F() shadows A.F() . 118

xiii

List of Tables

2.1. Example of a checker and a quick fix iv

4.1. Example of the quick fix adding a surrounding compound statement 31

5.1. Test protocol for A08-05-02 . 39
5.2. Test protocol for A05-01-01 . 40
5.3. Test protocol 2 for A08-05-02 . 40
5.4. Test protocol for A08-05-00 . 41
5.5. Test protocol for A07-02-02 . 41
5.6. Test protocol for A07-02-03 . 42
5.7. Test protocol for A05-01-02 . 43
5.8. Test protocol for A07-01-06 . 44
5.9. Test protocol for A05-01-03 . 45
5.10. Test protocol for A07-02-02 . 46
5.11. Test protocol for A10-01-01 . 46
5.12. Test protocol for A05-01-08 . 47
5.13. Test protocol for jucipp checked rule violation reports 48
5.13. Test protocol for jucipp checked rule violation reports 49
5.13. Test protocol for jucipp checked rule violation reports 50
5.13. Test protocol for jucipp checked rule violation reports 51
5.14. Test protocol for A05-01-01 and A08-05-02 test 52
5.15. Test protocol for A05-00-02 test . 52
5.16. Test protocol for A05-01-03 . 53
5.17. Test protocol for A05-16-01 . 53
5.18. Test protocol for A07-01-05 . 53
5.19. Test protocol for A07-01-06 . 54
5.20. Test protocol for A07-02-02 . 54
5.21. Test protocol for A07-02-03 . 54
5.22. Test protocol for A08-05-00 . 55
5.23. Test protocol for A07-02-03 . 56
5.24. Test protocol for A10-03-03 . 57
5.25. Test protocol for A12-00-01 test . 58
5.26. Test protocol for leveldb checked rule violation reports 59
5.26. Test protocol for leveldb checked rule violation reports 60

xiv

5.27. How the tests for AvoidLossyConversions where changed 74

6.1. Examples of the Overrider . 84
6.2. Struct to class switch cases . 85
6.3. Class to struct switch cases . 85
6.4. Examples of switching from struct to class 86
6.5. Examples of switching from class to struct 87

8.1. Estimated hours per task . 92
8.2. List of possible rules . 96
8.3. Assignment of clauses to if-, else- and following-parts 113

xv

3. Introduction

The C++ programming language is used in many different situations in a lot of
different branches of the industry. Good code quality is always important, but in
some situations lives might even depend on it. One of the branches where a lot of
such situations occur is the automobile industry. It is of uttermost importance that
a car does not fail because of a preventable programming error. Unfortunately, there
are many mistakes one can make when working with C++ in safety critical systems.
This is where the CodeAnalysator plugin comes in and provides support for writing
safe C++ code by marking code that might be problematic and proposing solutions
to these problems.

3.1. Safe C++

The foreword of [MISRA C ++ : 2008 Guidelines for the use of the C ++ language
in critical systems 2018] begins with the following citation of Bjarne Stroustrup:
”C makes it easy to shoot yourself in the foot; C++ makes it harder, but when
you do it blows your whole leg off”. This sums up what working with C++ is
like. It is a very powerful language but it is also more difficult to get right than
some other languages. The main danger in C++ programs is undefined behaviour.
As the term suggests, undefined behaviour can not be reliably predicted. Effects
of this can lead to program crashes, faulty program results or even software or
hardware corruption. This is obviously unwanted in critical systems (or any other
system). Luckily C++ is a very mature and tried language and a lot of common
situations where programming errors lead to undefined behaviour are known. Many
different guidelines suggest coding standards that, among other things, prevent
such behaviour. For this project the two guidelines AUTOSAR [AUTOSAR 2018]
and MISRA [MISRA C ++ : 2008 Guidelines for the use of the C ++ language
in critical systems 2018] from the automobile industry are relevant. These two
address not only undefined behaviour, but also topics like readability or clarity. Of
course, no guideline can guarantee completely fault-free programs, but they can at
least help mitigate common mistakes.

1

3.2. Workings of the CodeAnalysator

The guidelines mentioned in Section 3.1 are rather long documents. They define
a wide range of rules on how to write safe C++ code. It takes a lot of time and
effort to learn all these rules. This is why the CodeAnalysator plugin is needed. It
uses checkers to statically analyze the code and recognize when rules are violated.
It will then underline the corresponding code to signal this to the developer. This
direct feedback is what makes the CodeAnalysator special. In many cases it is
possible to automatically transform the code into a compliant state and fix the
issue. These solutions are called quick fixes. When the user hovers over a marked
piece of code, all available quick fixes are proposed. If he/she wants, the developer
can activate one by clicking on it. This will resolve the problem without changing
the semantics of the code.

1 #include <cstdint>

2 void Fn() noexcept

3 {

4 auto lambda = []() {

5 std::uint8_t ret = 0U;

6 return ret;

7 };

8 }

Listing 1: A compiling code snippet

For example the code snippet in Listing 1 violates AUTOSAR rule A5-1-6 [AU-
TOSAR 2018] but will compile and is valid code. Rule A5-1-6 states that a lambda
return type shall be explicitly specified as opposed to implicitly as it is done in
the snippet above. The CodeAnalysator plugin will underline the corresponding
part of the code. In this case it is the entire lambda expression. This will not go
unnoticed. See Figure 3.1.

2

Figure 3.1.: Our checker marks the rule. By hovering over it, the developer gets a
list of possible solutions.

If the developer chooses the quick fix ”A5-1-6: Make lambda return type explicit”,
the abstract syntax tree is analyzed and the lambda rewritten. This time with
the deduced type explicitly specified as the trailing return type. See Figure 3.2 for
what the corrected code looks like. Note that most IDEs will mark this lambda
even after applying the quick fix because the variable lambda is unused.

Figure 3.2.: The code after the quick fix was applied

In summary, this means that the CodeAnalysator plugin helps C++ developers
apply the guideline and as a result improves the quality of the written code.

3

3.3. Previous Work

This project builds on the already existing CodeAnalysator plugin. This is an
Eclipse plugin for the C++ development environment Cevelop. It was developed
over the course of two term projects by two different teams. In the first project
[Deicha and Bertschi 2018] the plugin was initially built. This means the main
focus was on the overall architecture and design of the plugin. There were also a
few checkers and quick fixes implemented, but in a proof-of-concept way. In the
second project [Puselja and Vlasek 2019] a large number of checkers and quick
fixes were implemented for the rules of the AUTOSAR guideline [AUTOSAR 2018
].

3.4. Project Goals

The team of this project is the same as it was during the second term project
mentioned in 3.3. Since we worked closely with the CodeAnalysator plugin during
this project, we learned a lot about it. We noticed that there are some things that
could be improved. Because of this we will analyze the architecture of the plugin and
find out how we can improve it. We will also test the performance and functionality
of the checkers and quick fixes by running them on a real project. Hopefully, we
will gain a lot of insight and find many possibilities for improvements. We will also
add some new features and new checkers and quick fixes. In summary, this means
we will focus more on architectural topics as opposed to just implementing rules
like in the previous project. This also means that the amount of analysis required
will increase.

4

4. Code Improvement

As the first major task of our bachelor thesis we refactored the CodeAnalysator
plug-in. In the preceding term project we have implemented many checker and
quick fixes for the plug-in. [Puselja and Vlasek 2019] While doing so, we have
become very familiar with the CodeAnalysator plug-in, its architecture and its
shortcomings. Some examples were the complex and seemingly redundant registra-
tions in the IGuidelineMapper implementations, the many responsibilities of the
GuidelineConflictResolver or the large number of sub-classes related to rule
suppression containing only little configuration. While the issues were out of scope
for our term project, we took notes of our findings in order to address them over
the course of our bachelor thesis. During the refactorings some errors surfaced, in
which case we addressed them within the scope of this code improvement.
This chapter begins by giving a broad overview over the refactorings we performed.
Afterwards, we elaborate on each self-contained refactoring, giving an analysis of
the problem as well as our solution. Finally, we end the chapter with our conclusion,
where we reflect on what has been done and propose a list of possible future work,
which could not fit into our thesis.

4.1. Overview

We performed two major refactorings within this thesis. Firstly, the largest and most
important, the separation of the GuidelineConflictResolver into his distinct
responsibilities. This led to the creation of the various GuidelinePreferences,
GuidelinePriorityResolver, etc. classes, of which the introduction of the Rule

class is perhaps the most pervasive. It also led to a simplification of most of the
previous uses of the GuidelineConflictResolver.
Secondly, the comprehensive refactoring of rule suppression, which led to a stark
reduction in the number of classes and in complexity. On one hand this was done
by moving configuration into constructor or method arguments, on the other hand
by replacing the registry-based approach on suppression with a factory-based one.

Besides these two major refactorings we performed a number of smaller refac-
torings. These are mostly surrounding the visitor and quick fix base classes, the
package structure and tests. The refactorings surrounding the base classes were

5

mostly concerned with simplifying, removing unnecessary code and duplication.
We resolved the circular dependencies and inconsistencies in the package structure
and cleaned up the tests. In general, we cleaned up small things when we came
across them.
Lastly, we go into the refactorings of certain checker and quick fixes. We resolved
some errors and simplified the code for A6-4-1 and removed duplication for A8-5-3.
Further, we generally performed small refactorings and cleaned up some code not
worth explicitly mentioning.

4.2. Guideline Mapping and Priority Resolution

The class GuidelineConflictResolver had many responsibilities that, despite
its name, did not include resolving conflicts between guidelines. It was merely a
participant of this process. The various responsibilities were:

• Collecting all guidelines and mapping guideline IDs to guidelines

• Mapping problem ids to visitor ids

• Mapping problem ids to guidelines

• Mapping visitor ids to a list of guideline, problem id tuples, sorted by guideline
priority

Problem ids are reported to the Codan framework and identify the specific problem
to report. Visitor ids were private to the CodeAnalysator plug-in. Their purpose
was to be able to map problem ids of different guidelines to shared visitor ids in
order to avoid reporting the same problem multiple times for different guidelines.
Problem ids would map to the same visitor id if they were concerned with the same
problem. Instead of reporting the same problem multiple times, the CodeAnalysator
plug-in would only report it once, for the guideline with the highest priority. This
is the actual guideline conflict resolution (or as we later refer to it, the guideline
priority resolution), though the GuidelineConflictResolver only provides the
presorted priority list of problems for a visitor id and the bulk of the resolution is
done by the CodeAnalysatorChecker.
Further issues with the GuidelineConflictResolver were:

• Singleton-like static instance

• Unused instance change listener

• Initialization spread among three classes

• Full initialization on every preference change

The static instance of the GuidelineConflictResolver is initialized on start-up
and on every preference change. It is a serial singleton in that there is a single

6

global instance but that the instance might get replaced in time. There exists
an accompanying change listener, though it is not used by any part of the code.
We would generally like to avoid the use of singletons, but especially such a more
complicated serial singleton.
The initialization is spread among the classes GuidelineLoader,
GuidelineConflictResolverFactory and GuidelineConflictResolver itself,
which would better be contained in one place for each responsibility.
Lastly, there were also issues in general regarding the concept of visitor ids and the
mapping of problem ids to visitor ids. The issues were:

• Only a single rule reported by a visitor can be suppressed

• A rule reported by multiple visitors can only be suppressed for a single visitor

• Conflict resolution fails, when one of multiple visitors reporting a rule is
shared

The visitor base class CodeAnalysatorVisitor explicitly supported reporting
multiple problems, while the derived base class for shared visitors SharedVisitor
limited that to one. The GuidelineConflictResolver only supports visitors which
report a single problem and while conflict (or priority) resolution is only needed for
shared rules, mapping problem ids and visitor ids was needed for rule suppression.
As a result, only a single rule can be suppressed per visitor. This issue was mitigated
though, by there only being a single visitor, BoolExpressionOperandsVisitor,
reporting more than one rule. The second rule was also only an info problem.
It was an extension of the first rule, with the same rule number as the first one.
It might be argued whether it needs suppression, though it probably should be
suppressed together with the first rule.

The second issue is caused similarly like the first. The GuidelineConflict-

Resolver only supports problems reported by a single visitor. If multiple visitors
report the same problem, only the problems reported by a single visitor can be
suppressed. Registering suppression attributes for the same problem for more than
one visitor results in broken rule suppression. As there were no problems reported
by two visitors, this did not lead to any error.

In the third case even conflict resolution fails, in addition to rule suppression.
If, after mapping a shared visitor to a problem, another visitor is mapped to the
problem, then the final problem id to visitor id mapping will map to the second
visitor. When the shared visitor then reports a problem and conflict resolution
is performed, it will be wrongly performed for the second visitor, instead of the
actual visitor reporting the problem. Thus the problem might be reported even if
there is a higher priority active rule. Same as in the second issue, there were no

7

problems reported by two visitors, and therefore the error did not express. Though,
from the documentation of the term project of the preceding group this use case is
clearly meant to be supported. [Deicha and Bertschi 2018, p.25]
One of our main goals was to get rid of the mappings in the GuidelineConflict-
Resolver and the IGuidelineMapper implementations of the guidelines or at least
to refactor them into their own class. We began by introducing a new class called
Rule. The class holds various information regarding a rule. Among them a reference
to the guideline it belongs to, the quick fixes for the rule and a shared problem
id. The shared problem id replaces the earlier visitor id. This made three of the
mappings superfluous, but required a new one to map problem ids to rules.

1 public class Rule {

2

3 private String ruleNr;

4 private IGuideline guideline;

5 private String problemId;

6 private IMarkerResolution[] markerResolutions;

7 private boolean isShared = false;

8 private String sharedProblemId = null;

9

10 ...

11 }

Listing 2: Member variable declarations of the class Rule

As shown in Listing 2, a rule has two ids. One is the problem id, which as
the name suggests, refers to the corresponding problem. The other one is the
shared problem id, which is shared between all rules that are equivalent, i.e. use
the same visitor. It is used by the priority resolution to decide which marker
is going to be set. For example: the rules A4-7-1AvoidLossyConversion and
M5-0-6AvoidLossyConversion do not have the same problemId but share the
same sharedProblemId. If a rule has no sharedProblemId it means, that it is
only relevant for one guideline.
We then set out to divide the GuidelineConflictResolver and its helper classes
into their responsibilities. We refactored the code retrieving and parsing guideline
preferences out of the classes GuidelineLoader and GuidelineConflictResolver-

Factory into the class GuidelinePreferences. It provides methods to check
whether a guideline is enabled and which priority it has. Loading the guideline
extensions and storing the guidelines was moved into the class GuidelineRegistry.
We further moved the mapping of problem ids to rules into the class RuleRegistry.

8

With the conflict (or priority) resolution being the only thing left, we refac-
tored the priority resolution from the classes GuidelineConflictResolver and
CodeAnalysatorChecker into the new class GuidelinePriorityResolver and
removed the GuidelineConflictResolver and its various helper classes.
Now, with the singleton-like GuidelineConflictResolver gone, we needed some
way to access instances of the various replacement classes. While in Eclipse in
general dependency injection is used, it is not supported in CDT. The colloquial
solution in CDT is to have a central static instance of a class which then provides
access to the various services required. The instance is set when the plug-in is
started and disposed again when it is stopped. We therefore added our various
services to the Activator class of the CodeAnalysator plug-in and renamed it to
CodeAnalysatorRuntime.
Figure 4.1 shows the GuidelineConflictResolver and its surrounding classes
in the Guideline package. It helps to visualize with what we mean by the
GuidelineConflictResolver being a central class with no real defined purpose.

9

Figure 4.1.: Guideline before refactoring

Figure 4.2 shows the guideline package after removing the GuidelineConflict-

Resolver and reassigning the responsibilities. On first glance it might look like we
made it more complicated because there are more new classes than we removed.
But readability has been greatly improved because it is more clear what each class

10

does. We also reduced the amount of ”empty” classes that only held a little data
but did not have any functionality or reason to exist.

Figure 4.2.: Guideline after refactoring

11

4.3. Rule Suppression

Many rules in guidelines are not absolute and sometimes, there are good reasons
to disregard them. Further, some rules like “A5-1-4: Lambda expressions shall
not outlive reference captured objects” require complex analysis, which, due to
practical reasons, may return false positives. Due to both reasons, it is desired to
be able to suppress rule violations. Otherwise, one runs the risk of a significant rule
violation going unnoticed between disregarded ones. Or, given enough insignificant
reports, one may abandon the rule checking as a whole.
Suppression of rules in the CodeAnalysator plug-in is implemented using C++
attributes. The advantage of using attributes instead of comments is that there is
a syntactic relationship to the element on which the rule is suppressed. This makes
it always clear to what the suppression applies and does not potentially break
when the source code is reformatted [attribute specifier sequence(since C++11) -
cppreference.com 2019]. An example of a suppression attribute can be seen in
Listing 3.

1 [[autosar::suppress("A7-1-6")]] typedef int int_t;

Listing 3: Example of a suppression attribute for the rule ”A7-1-6: The typedef
specifier shall not be used”

The central class in the suppression mechanism is the AttributeSuppression-

Strategy, as shown in Figure 4.4. It acts as a registry for SuppressionAttributes,
mapping visitor ids to suppression attributes. There is one instance per guideline
mapper. For every rule a guideline specific suppression attribute needs to be created
and registered with the suppression strategy by visitor id. It is not clear, here,
why the visitor id is used instead of the problem id, as the suppression strategy
instances are unique to the guidelines and there is always a one-to-one mapping
between problem id and visitor id.

12

Figure 4.3.: The AttributeSuppressionStrategy

The purpose of the guideline specific suppression attribute is to supply the scope,
which consists of the attribute namespace and identifier for the suppression attribute.
In case of AUTOSAR this would be "autosar::suppress". The ignoreText

specifies the argument for the suppression attribute and is initialized with the rule
number in the guideline mapper.
Now to the issues with the current implementation. The suppression mechanism
requires a guideline to subclass many classes in order to use it. These subclasses
contain just a bit of configuration and hardly any behaviour. This results in many
nearly empty classes which do not do much. The suppression mechanism in general
is spread over many classes and packages, instead of being contained in one place.

13

Figure 4.4.: Suppression attributes and quick fixes before refactoring

Figure 4.4 shows the classes related to attribute suppression, the only implemented
suppression mechanism, before the refactoring. As you can see, for every guideline
the classes SuppressionAttribute and AttributeSuppressQuickfix are derived,
supplying guideline specific configurations but otherwise having no behaviour.
The AttributeSuppressionStrategy acts as a registry for suppression attributes
which are registered by visitor id.

14

Figure 4.5.: Suppression attributes and quick fixes after refactoring

In the refactoring, AttributeSuppressionStrategy was changed to generate sup-
pression attributes instead of storing them. To achieve this a scope argument
is passed to the strategy on construction, containing the guideline specific scope
previously contained in derivations of SuppressionAttribute. With the scope for
suppression of all guidelines being hard coded ("all"), this made derivations of
SuppressionAttribute superfluous. Further, this removes the need to create and
register suppression attributes for every visitor in guideline mappers.
Something similar was done for suppress quick fixes. The guideline name to
use in the label of the suppression quick fix is passed to the constructor of
AttributeSuppressionStrategy, which then uses the name to generate suppress
quick fixes. The label for the quick fix suppressing all guidelines is hard coded again
("all guidelines"). This change again makes derivations of AttributeSuppress-
Quickfix obsolete.
The result, as you can see in Figure 4.5, is a change in responsibility for the
AttributeSuppressionStrategy as well as a reduction in the number of classes.

15

Figure 4.6.: Marker resolution generation before refactoring

In Figure 4.6 you can see the classes related to implementing marker resolution gener-
ation using attribute suppression. Every guideline derives from AttributeMarker-

ResolutionGenerator, instantiating the respective suppression quick fix.

16

Figure 4.7.: Marker resolution generation after refactoring

Marker resolution generators specific to a guideline are not needed anymore because
the suppression quick fixes are now being generated by ISuppressionStrategy.
The compilation of quick fixes, consisting of actual and suppression quick fixes was
moved to the Rule class. This class was also newly created in a different refactoring,
with the CodeAnalysatorMarkerResolutionGenerator retrieving the quick fixes
and filtering them based on applicability.
As shown in Figure 4.7, this results in fewer classes while at the same time being
more general, as the marker resolution generation code is now independent of
the suppression method used, with all suppression specific code belonging to the
concrete suppression strategy.

4.4. CodeAnalysatorVisitor Type Parameter

The CodeAnalysatorVisitor was parameterized by a type parameter specifying
the type of the checker, see Listing 4. A visitor needed a reference to a checker
in order to report problems or to check whether a rule is suppressed. The type

17

parameter was likely meant to allow a visitor private to a guideline to use ad-
ditional functionality from that guidelines checker. But no such use existed in
the CodeAnalysator plug-in and so we replaced uses of the type parameter with
CodeAnalysatorCompositeChecker and removed the type parameter.

1 public abstract class CodeAnalysatorVisitor

2 <TChecker extends CodeAnalysatorChecker>

Listing 4: CodeAnalysatorVisitor declaration with type parameter

4.5. CodeAnalysator Visitors

The CodeAnalysator plug-in contained two visitor base classes, CodeAnalysator-
Visitor and SharedVisitor. The only distinction or purpose of the Shared-

Visitor was being a base class for visitors which report a single problem id. As
there was only a single visitor which reported more than one problem id, we
decided to split that visitor and have visitors always only report a single problem
id. This made the distinction between the two visitor base classes superfluous and
we therefore merged SharedVisitor into CodeAnalysatorVisitor.

4.6. Performance Measurement

The CodeAnalysator plug-in contained some code for performing performance
measurements. The measurement was not very accurate, did not make it easy
to measure the execution times under realistic conditions and we intended to
use a profiler for performance measuring. We therefore removed the performance
measuring code from CodeAnalysatorChecker and the class CheckerMeasurement.

4.7. Rule Reporting

Visitors initially contained a reference to CodeAnalysatorChecker in order to
report problems and check whether a rule is suppressed. This led to a circular
dependency between checkers and visitors. We refactored the code for reporting
rules into a RuleReporter class and replaced the reference with one of its base
class AbstractIndexAstChecker to break up the circular dependency.

18

4.8. Rule Enablement Checking

The check for which rules are enabled was not working i.e. Codan returned true even
for disabled problems (rules), which resulted in visitors being run unnecessarily for
disabled rules. The error was checking isEnabled on the problems retrieved directly
from the checker which always has the default value for a problem. Instead we
had to query the respective problem profile and check isEnabled on the problems
returned from the problem profile. A problem profile represents the problem settings
for a specific resource and therefore contains the actual values of isEnabled from
workspace and project settings.

4.9. CodeAnalysator Checkers

The classes CodeAnalysatorChecker and CodeAnalysatorCompositeChecker are
the base classes for the various checkers in the CodeAnalysator plug-in. With the pre-
ceding refactorings completed there was no behaviour left in the CodeAnalysator-

Checker. The only class deriving from CodeAnalysatorChecker was CodeAnaly-

satorCompositeChecker, from which every guideline specific checker derived. This
is why we replaced references to CodeAnalysatorChecker with AbstractIndexAst-

Checker and renamed the CodeAnalysatorCompositeChecker into CodeAnaly-

satorChecker. The purpose of the CodeAnalysatorChecker class now is to filter
the visitors created by its subclasses based on whether the rule they report is
enabled and to run those who are.

4.10. BaseQuickFix

The class BaseQuickFix is the abstract base class for implementing quick fixes
in the CodeAnalysator plug-in. It has been taken over from the GSLator plug-in.
This class was not designed to support resolving bindings in the isApplicable

method, requiring derived classes that need to do so, to acquire an index lock
themselves. Further, it contained some unused members. Also, the protected node
factory member variable was defined with the concrete type, requiring derived
classes to suppress restriction warnings in order to use it. Lastly, every quick fix
defined a label instance variable, initialized with a constructor parameter.

19

Figure 4.8.: BaseQuickFix and derived RuleQuickFix before refactoring

First, we introduced the abstract method canHandleMarkedNode for derived classes
to implement. It replaces isApplicable and is passed a node retrieved with locked
index, allowing bindings to be resolved. The index locking and retrieval is performed
in isApplicable in the BaseQuickFix which then calls canHandleMarkedNode.
Further, we removed unused or obsolete members (newHeaders, hasInclude,
getMarkedNode overload) and refactored instance variables away (populateAST-
RewriteStore, performChange and astRewriteStore). We also changed the type
of the node factory instance variable to IBetterFactory, made it static and refac-
tored the quick fixes to use it. Lastly, we changed the BaseQuickFix constructor
to take a String label and implemented the getLabel method in the base class,
removing it from derived classes.

20

Figure 4.9.: BaseQuickFix and derived RuleQuickFix after refactoring

4.11. AttributeSuppressQuickfix

The AttributeSuppressQuickFix is the quick fix used for suppression of a rule
using C++ attributes. See Section 4.3 for more information on rule suppression.

4.11.1. Remove Bug Workaround

As documented in [Deicha and Bertschi 2018, p.28], there was a bug in CDT
which prevented the rewrite from working correctly. Because of this bug it was not
possible to rewrite the node itself but instead the parent node had to be rewritten.
As can be seen in Figure 4.10, the whole code block around the statement that
should be suppressed has to be rewritten. While this yields the correct results, it
can be inefficient. Often, the parent of a statement is a compound statement with
many other children. They all have to be copied and then rewritten.

21

Figure 4.10.: The code to the left is rewritten with the code to the right

We tested whether it would still work if we removed the workaround and it did. So
we removed the unnecessary code. To ensure the correctness of the refactoring, we
tested it manually but also wrote automated tests for suppressing all rules and for
suppressing a single rule.

4.11.2. Relation to BaseQuickFix

The class AttributeSuppressQuickFix contained copy-pasted sections from Base-

QuickFix, presumably due to the workaround. A lot of functionality is similar to
other quick fixes. There is a class called SetAttributeQuickFix in the GSLator
which has a similar functionality to the AttributeSuppressQuickFix. In the Code-
Analysator plug-in the class extended directly AbstractAstRewriteQuickFix while
the version from GSLator extended BaseQuickFix. Since AttributeSuppress-

QuickFix shared a lot of functionality with BaseQuickFix, we assumed, that it
could be possible to have it extend BaseQuickFix instead. In summary, this
means the goal of this refacatoring was to find out whether it was possible to have
AttributeSuppressQuickFix extend BaseQuickFix and, if possible, refactor it.
As it turned out it was possible. We made the class AttributeSuppressQuickFix
extend BaseQuickFix instead of AbstractAstRewriteQuickFix and refactored
the rewrite logic from modifyAst() to handleMarkedNode(). Lastly, we removed
the parts copied from BaseQuickFix, which had now become obsolete.

4.12. Package Structure

The CodeAnalysator plug-in contained many interdependent util packages, leading
to two-way dependencies between packages. These needed to be reorganized. The
package structure also contained inconsistencies, including package names quickfix
and quickfixes and util and helper. To analyze the package structure we used
STAN [STAN - Structure Analysis for Java 2019].

22

Figure 4.11.: The package structure before the refactoring

The issues with cyclic dependencies are, among others, that they are more difficult
to understand, make the code less reusable and indicate that a certain concept has
not been understood or discovered yet. The following list shows all the problems we
approached in this task. Most of them can be derived from looking at Figure 4.11.
Some others are not visible there because there is not enough space to include a
fully expanded image.

• Two-way dependencies between misra.visitor and misra.checker

• Two-way dependencies between cppcore.visitor and cppcore.checker

• Two-way dependencies between core.visitor and core.checker

• Two-way dependencies between core.checker and core.guideline

• Two-way dependencies between core.quickfixes and core.util

• Inconsistency: Many different util packages with many different purposes

• Confusing naming: In codeanalysator.core there is a package quickfix

and one named quickfixes

In order to solve the aforementioned issues we performed the following refactorings.
To decouple the packages visitor and checker we introduced a RuleReporter

class, as described in Section 4.7.
We also moved the CodeAnalysatorMarkerResolutionGenerator class into its
own markerresolution package, as it was the only class in the quickfix package
depending on the packages core and guideline and did not have any dependencies
in common with the other classes in the package.

23

We further introduced a new package called suppression and moved the suppres-
sion logic there, which was previously spread between the packages core.checkers-
.util and core.visitor.util.
Then we moved the remaining classes in the various sub-util packages to the root
util packages of the bundles, as they were mostly interdependent.
Lastly, the core package contained visitors and quick fixes specific to AUTOSAR.
We had developed them within the preceding term project and had placed them
in the core for simplicity. Now, we moved them to their appropriate place, the
autosar package.
The resulting package structure can be seen in Figure 4.12. All cyclic dependencies
have been removed and the package structure has become simpler to understand.

Figure 4.12.: The package structure after refactoring

4.13. Checker and Quick Fix Tests

Checker and quick fix tests derive from guideline specific AbstractCheckerTest,
respectively AbstractQuickFixTest classes. The guideline specific classes are
in both cases duplicates of each other, except for the getPreferenceConstants

method which returns a different IdHelper class for each guideline. Figure 4.13 and
Figure 4.14 show the class hierarchies for the checker and quick fix tests respectively.
Note the similarities between the base classes.

24

Figure 4.13.: Checker tests before refactoring

Figure 4.14.: Quick fix tests before refactoring

In the refactoring we extracted the common code into the CodeAnalysatorChecker-
TestBase and CodeAnalysatorQuickFixTestBase classes, with the guideline spe-
cific base classes only retaining the getPreferenceConstants method. We further

25

refactored checker and quick fix tests to use the newly-created Rule class, simpli-
fying them and reducing duplication. The result can be seen in Figure 4.15 and
Figure 4.16.

Figure 4.15.: Checker tests after refactoring

26

Figure 4.16.: Quick fix tests after refactoring

4.14. Refactor Old Tests

Problem The old tests that were copied from the GSLator plug-in have the
problem of being badly named and written. The first problem is, that the names
are not written as sentences but as long camel cased words, which is marked by
Eclipse. This has a large usability impact, due to the files having many tests and
these markers for some reason being computationally expensive, resulting in lags.
The second problem is, that a lot of test cases are combined into single tests. This
makes it hard to read the tests and determine where a problem lies.

Solution We split camel cased test names into sentences. We also split too large
tests into smaller tests and named them with fitting descriptions. This improves
the performance, usability and in particular the readability.

27

4.15. Ordering of Rules

With the new guideline system introduced in Section 4.2, we noticed that the
rules are ordered differently in different files such as the checker, the guideline or
the fragment.xml. Similarly, rules were not displayed in the correct order in the
overview of the C++ Code Analysis page. Refer to Figure 4.17 to see that for
example the rules A10-XX appear before A5-XX.

Figure 4.17.: The C++ Code Analysis preferences page before renaming the rules

To bring some order and system into these files we ordered all listings of classes
alphabetically. This has also the advantage of not introducing a merge conflict
every time two people add a visitor or quick fix. We also changed the labels in the

28

preferences. We added padding zeros into the names to ensure correct ordering.
For example the rule A7-1-6 would now be renamed to A07-01-06. Figure 4.18
shows that the names are now ordered correctly in the preferences page.

Figure 4.18.: The C++ Code Analysis preferences page after renaming the rules

4.16. A6-4-1: A switch statement shall have at least
two case-clauses, distinct from the default
label.

We performed significant refactorings in order to improve the readability and
maintainability of the switch analysis code and the quick fix. During the refactoring,
in addition to improving the code, we also found and fixed some errors. These were
mostly due to not fully understanding the non-strictness of C++ Switch statements.
There was also a feature left-over from the term project, i.e. omitting to insert a
compound statement surrounding the replacement code when not needed.

29

4.16.1. Switch statement with non-compound statement as
direct child

Problem The switch analysis does not correctly handle the case, when a switch
statement contains a direct child statement which is neither a compound statement,
case statement nor default statement, See Listing 5. As a result of this, the quick
fix deletes the whole switch statement without a replacement, instead of declaring
itself not applicable.

1 switch (0)

2 break;

Listing 5: Switch with neither a compound, case nor default statement as child

Analysis CDT automatically inserts a compound statement into the AST for
switch statements containing a case statement or default statement as a direct
child. This allows us to treat all switch statements as containing a compound
statement. Except, if the direct child is not a case statement or default statement,
CDT adds the child as the direct child of the switch statement. CDT automatically
inserting a compound statement initially led us to believe we can always expect a
compound statement as the body of a switch statement when it is not empty. Until
we found out this is only the case for case or default statements. [switch statement
- cppreference.com 2018]

Solution Extended switch handling for switch statements without a compound
statement body. If a switch statement does not contain a compound statement in
the AST, the single direct child is treated as if it where contained in a compound
statement for the purpose of that analysis.

4.16.2. Surrounding compound statement

Problem The quick fix for this rule always adds a surrounding compound state-
ment around the replacement code for the switch, because of possible identifier
conflicts with identifiers introduced in switch scope. This is undesirable, because
the vast majority of time there is no such conflict (hiding a variable of an outer
scope is often even considered bad style) and the unnecessary compound statement
is intrusive. Table 4.1 shows an example of an unnecessary compound statement
being added.

30

Before Quick Fix After Quick Fix

1 switch (variable) {

2 case 0:

3 return 0;

4 default:

5 return 1;

6 }

1 {

2 if (variable == 0) {

3 return 0;

4 } else {

5 return 1;

6 }

7 }

Table 4.1.: Example of the quick fix adding a surrounding compound statement

Analysis In order to be able to omit the surrounding compound statement when
it is not needed, we need to know whether there would be an identifier conflict
in the surrounding scope without it. An identifier conflict would occur if a top-
level declaration in the replacement code would re-declare an identifier already
existing in the surrounding scope, thereby shadowing the existing identifier if it is
defined in a higher scope or lead to a compiler error if is defined in the surrounding
scope. The only allowed type of declaration in a block is a simple declaration.
As a switch statement can only occur inside a block, we only need to check for
simple declarations. A simple declaration can contain multiple declarators, each
declaring an identifier. [Declarations - cppreference.com 2019] [switch statement -
cppreference.com 2018] [Statements - cppreference.com 2019]

Solution The quick fix has been extended with a check whether the replacement
code re-declares identifiers in the top-level scope. A visitor is run on the replacement
code, visiting all declarators and collecting their identifiers (names), skipping child
compound statements, which introduce a child block scope. Then each collected
identifier is tried to be resolved in the surrounding scope, to check whether it exists.
If none of the identifiers exist in the surrounding scope, the surrounding compound
statement is omitted and the replacement code is inserted directly in place of the
switch statement. Otherwise, the switch statement is replaced by a compound
statement containing the replacement code.

4.16.3. Further errors

While fixing the issue above and implementing the new feature the following further
errors were found and fixed:

31

• Checker reporting switches with nested case-clauses: Extended to check
nested statements

• Quick Fix failing on switches with nested case-clauses: Made inapplicable

• Quick Fix failing on switches with nested break-statements: made inapplicable

• Quick Fix omitting last return-statement in clauses: Fixed clause parsing

4.17. A8-5-3: A variable of type auto shall not be
initialized using {} or = braced-initialization.

Problem The implementation of the quick fix for this rule has a large overlap in
functionality with the DeclarationGeneratorImpl. This redundancy results in
unnecessary maintenance effort and duplicated code.

Analysis Large parts of the quick fix overlap with the DeclarationGenerator-

Impl, but are not identical, as they are interleaved with code specific to the quick
fix. The implementation of DeclarationGeneratorImpl supports more cases of
types and has a more complete declaration generation, but the implementation of
the quick fix contains better support for template instances with non-type template
arguments. Replacing the implementation of declaration generation in the quick
fix with DeclarationGeneratorImpl would result in the tests depending on this
improved template support failing.

Solution As a temporary solution a local copy of the DeclarationGenerator

has been created, called TemplateExtendedDeclarationGeneratorImpl, with the
template support improvements added. This makes it possible to move the im-
provements upstream in the future. The quick fix has been refactored to use this
new local version for declaration generation.

4.18. Conclusion

Now, that we have completed our code improvement, we will come to our conclusion.
We have performed various refactorings on the CodeAnalysator plug-in and thereby
simplified it and made it easier to understand. But there are still some issues left.
In the first part of this section we will reflect on what we have done and the results.
In the second part we will propose a list of possible future work.

32

4.18.1. Reflection

During our preceding term project on the same plug-in we became aware of certain
issues and other things that could be improved. In this part of our bachelor thesis
we intended to address these issues and we believe we have been largely successful
at that. There are still issues or areas to improve on left, but those were simply
out of the scope of our code improvement for this thesis. Besides many smaller
refactorings there were two major refactorings, also the most significant. We broke
up the GuidelineConflictResolver and its related classes according to their
responsibilities. And we reorganized the suppression logic.
The GuidelineConflictResolver and its related classes divided the initialization
logic between them without a clear principle and the GuidelineConflictResolver
contained the majority of the core logic of the CodeAnalysator plug-in. We redivided
these classes along responsibilities, for example extracting a class Guideline-

Preferences for reading and parsing the preferences or RuleRegistry for mapping
problem ids to rules. While this increased the number of classes it also increased
the cohesion and made it clear what belongs to what.
The second major refactoring was concerned with the suppression logic. We removed
the need for many sub classes whose only purpose was to configure their base
classes and were successful in general in simplifying rule suppression. Among other
things, we removed the need to register SuppressionAttributes for each rule with
the AttributeSuppressionStrategy, instead generating everything when needed
based on the rule.
We believe that with these two major refactorings and the many smaller refactorings
we improved the architecture of the CodeAnalysator plug-in and contributed to
the understandability and therefore maintainability of the code.

4.18.2. Proposed Future Work

While we performed many refactorings and changes in the scope of our bachelor
thesis, there are things leftover we would have wanted to do or believe should be
done. In the following we will give a list of proposed future work. It contains areas
of possible improvement as well as some unresolved errors.

Mono Checker Currently, there is one checker per guideline. Each checker runs
all the visitors for the rules of its guideline. In case a rule is common to multiple
guidelines and the visitor is shared, the GuidelinePriorityResolver is used to
determine which rule should be reported. Regardless of this, the visitor is run for
each checker.
An alternative would be a single checker running all visitors for all guidelines and
part of the core of the CodeAnalysator plug-in. The visitors would report abstract

33

identifiers. Guidelines would specify mappings from these abstract identifiers to
concrete rules. A class similar to the GuidelinePriorityResolver would then
determine the highest active mapping and report that problem corresponding to
that rule.
The advantages would be a simpler priority resolution and a conceptually simpler
problem reporting. Mapping found issues to the highest active rules instead of
mapping concrete rules to abstract issues and then checking whether it is the highest
active one. There would also be a performance improvement as visitors are only run
once and only a single checker is run. On the downside, a new extension-point would
have to be defined to keep the problem definitions in the fragment.xmls, as the
Codan extension-point does not allow checkers to be extended. The CodeAnalysator
plug-in would then have to dynamically register those categories and problems to
the mono checker.

Double Suppress All The Suppress All quick fix is offered as a resolution to all
rules. It suppresses all rules of all guidelines for that node. Now, when two rules
are reported on the same node (or overlapping range) the Suppress All quick fix
is offered twice. This is a result of marker resolution working per marker (and
therefore rule) and then the resolutions of all markers as well as other quick assists
being merged and offered to the user together. This is part of CDT and it is not
clear how it should be amended. While it is annoying it has no other effects and
does not break the code.

Pushing Upstream The CodeAnalysator plug-in contains a local copy of the
DeclarationGeneratorImpl with our added modifications, which is undesirable.
(Initially named TemplateExtendedDeclarationGeneratorImpl though in test-
ing further extended and renamed CodeAnalysatorDeclarationGeneratorImpl).
Our modifications and fixes would most likely be useful in CDT as well and would
ideally be merged upstream to avoid having to maintain a local version.
Also, for the rule A6-4-1 we had to implement logically parsing a switch into its
case and default clauses. It works for trivial switches (not containing statements
between clauses or nested case clauses for example) and otherwise marks the
switch as non-trivial. There is a comment in the switch statement implementation
in CDT suggesting to perform logical grouping and our implementation in the
SwitchHelper might be considered as a starting point.

34

5. Functional and performance
testing

The second major part of this project consists of performing functional and perfor-
mance testing. The goal is to find problems in the plugin from a functional as well
as a performance perspective. In particular we have the following goals:

• Functional: We want to find out whether our checkers and quick fixes
work correctly. False positives and false negatives are very likely in multiple
checkers and quick fixes. There could also be some unexpected exceptions
which might make our checkers and quick fixes crash. With the functional
tests, we want to identify such problems and fix as many of them as possible.
Additionally, we want to find out whether there are tests that are not useful
in a real scenario, because they are annoying for example.

• Performance: By letting all of our checkers and quick fixes run on a large
project, we want to find out how the performance of the CodeAnalysator
plug-in is. Especially interesting are differences between execution times of
multiple checkers. In the case that such differences exist, we want to identify
the corresponding problems and improve the performance to a level where it
can be reasonably used by a developer.

Summarized we can say, that we want to make the CodeAnalysator plug-in more
viable to use in a real-life scenario.

5.1. Finding Suitable Test Projects

Before we can begin testing, we need at least one suitable test project to run the
tests on. There are countless C++ projects of varying quality on GitHub. Suitable
for us means on one hand that it is large enough to be non-trivial while making
sufficient use of the C++ language. On the other hand it should contain many
different applications of C++ constructs, while also being small enough for us to
review the reported violations of rules and parts of the code base. And lastly, it
must not be written by ourselves, because we might be biased by our understanding
of the rules and their edge cases. This will make for more realistic examples than
our test cases that were specifically designed for this purpose. We hope to find

35

cases that we did not think of during the implementation of the checkers and quick
fixes.

5.1.1. Possible Projects

This section covers the projects that we considered more closely to use for perfor-
mance and functional tests and our decision on which to use.

• Real Time C++ is a companion project for the book ”Real Time C++” by
by Christopher Kormanyos [GitHub - ckormanyos/real-time-cpp: Real-Time
C++ Companion Code 2019], [Kormanyos 2018]. It consists of code samples
and a reference app. In total there are about 30’000 lines of code.

• Doom 3 and the other Doom games are often used as test and reference
projects. It has around 500’000 lines of code. [id-Software/DOOM-3: Doom
3 GPL source release 2019]

• LevelDB is a key/value store by Google. It has a medium size and triggers
many different checkers and also has tests to verify that our quick fixes did
not break anything. The code base consists of about 21’000 lines of code
[GitHub - google/leveldb: LevelDB is a fast key-value storage library written
at Google that provides an ordered mapping from string keys to string values.
2019]

• Jucipp is an integrated C++ development environment. Its code triggers
many of our checkers and can be tested automatically. It amounts to about
38’000 lines of code. [cppit / jucipp · GitLab 2019]

5.1.2. Decision

To be able to get the most value out of these tests, we decided to use both LevelDB
and Jucipp. We decided against Real Time C++ because the code is too well
written. Even though it covers many aspects of C++, only a few checkers are
triggered. This results in a lack of test cases for our checkers and quick fixes,
which is not what we need. Doom, on the other hand, has the problem, that
it was released before C++ 11 and therefore uses a very different kind of C++
than is used today. It also is an extremely large project. LevelDB and Jucipp are
moderately modern and are large enough to trigger many checkers. A big plus is
also the presence of tests to verify that our quick fixes did not break anything. The
exact commits and fork dates are listed below for reproducibility reasons.

• Jucipp: We forked commit d56eb33385945b1ea757c23486700985239412c5
on April 12th, 2019.

36

• LevelDB: We forked commit 7b1174519044339f07a023dc445b0d36425bd6db
on April 13th, 2019

37

5.2. Functional Tests

This section contains the results of the functional tests. As can be seen in Sec-
tion 5.1.2, we decided to use the two projects LevelDB and Jucipp. There are two
kinds of tests for both projects.

• Sample Test Cases: This category of tests is primarily used to find false
negatives. The approach is to disable the checkers and then look for code
snippets that we think should trigger our checkers. To apply the tests, the
checkers are re-enabled. The result of a test is whether our predictions were
correct.

• Reports Test Cases: This category of tests is primarily used to find false
positives. To run these tests, we enable all checkers and work through the
reported markers. We verify that the corresponding piece of code is marked
correctly. To reproduce the results, set AUTOSAR as the first, CPPCore as
the second and MISRA as the last priority.

38

5.2.1. Sample Test Cases: jucipp

This section contains the sample test cases for Jucipp. An explanation, why Jucipp
was chosen can be found in Section 5.1.2. An explanation of how these tests work
and why they are performed can be found at the beginning of Section 5.2.

Rule A08-05-02
Braced-initialization {}, without equals sign, shall be used for variable initialization.
jucipp/src/source.cc:37

1 Glib::RefPtr<Gsv::Language> Source::guess_language(

2 const boost::filesystem::path &file_path) {

3 auto language_manager = LanguageManager::get_default();

4 bool result_uncertain = false; // <--- [A08-05-02]

5 auto content_type = Gio::content_type_guess(file_path.string(), nullptr,

6 0, result_uncertain);

7 if(result_uncertain)

8

9 ==

10

11 Glib::RefPtr<Gsv::Language> Source::guess_language(

12 const boost::filesystem::path &file_path) {

13 auto language_manager = LanguageManager::get_default();

14 bool result_uncertain { false }; // <--- quick fixed

15 auto content_type = Gio::content_type_guess(file_path.string(), nullptr,

16 0, result_uncertain);

17 if(result_uncertain)

Result: Pass

Table 5.1.: Test protocol for A08-05-02

39

Rule A05-01-01
Literal values shall not be used apart from type initialization, otherwise symbolic names
shall be used instead.
jucipp/src/source.cc:45

1 auto filename = file_path.filename().string();

2 if(filename == "CMakeLists.txt") // <--- [A05-01-01]

3 language = language_manager->get_language("cmake");

4 // ^--- [A05-01-01]

5 else if(filename == "meson.build") // <--- [A05-01-01]

Result: Pass

Table 5.2.: Test protocol for A05-01-01

Rule A08-05-02
Braced-initialization {}, without equals sign, shall be used for variable initialization.
jucipp/src/source.cc:88

1 std::string Source::FixIt::string(

2 const Glib::RefPtr<Gtk::TextBuffer> &buffer) {

3 auto iter = buffer->get_iter_at_line_index(offsets.first.line,

4 offsets.first.index);

5 unsigned first_line_offset = iter.get_line_offset() + 1;

6 // ^--- [A08-05-02]

7 iter = buffer->get_iter_at_line_index(offsets.second.line,

8 offsets.second.index);

9 unsigned second_line_offset = iter.get_line_offset() + 1;

10 // ^--- [A08-05-02]

Result: Pass

Table 5.3.: Test protocol 2 for A08-05-02

40

Rule A08-05-00
All memory shall be initialized before it is read.
jucipp/src/source.cc:94

1 std::string text; // <--- [A08-05-00]

2 if(type == Type::INSERT) {

Result: Pass

Table 5.4.: Test protocol for A08-05-00

Rule A07-02-02
Enumeration underlying base type shall be explicitly defined.
lib/libclangmm/src/token.h:14

1 public:

2 enum Kind {

3 Punctuation,

4 Keyword,

5 Identifier,

6 Literal,

7 Comment

8 }; // <--- [A07-02-02]

Result: Pass
Note: Double ’Suppress all guidelines for this statement’ entry

Table 5.5.: Test protocol for A07-02-02

41

Rule A07-02-03
Enumerations shall be declared as scoped enum classes.
lib/libclangmm/src/token.h:

1 public:

2 enum Kind {

3 Punctuation,

4 Keyword,

5 Identifier,

6 Literal,

7 Comment

8 }; // <--- [A07-02-03]

Result: Pass
Note: Double ’Suppress all guidelines for this statement’ entry

Table 5.6.: Test protocol for A07-02-03

42

Rule A05-01-02
Variables shall not be implicitly captured in a lambda expression.
tests/lldb test.cc:83

1 Debug::LLDB::get().on_exit.emplace_back(

2 [&](int exit_status_) { // <--- [A05-01-02]

3 exit_status = exit_status_;

4 exited = true;

5 });

6 Debug::LLDB::get().on_event.emplace_back(

7 [&](const lldb::SBEvent &event) { { <-- [A05-01-02]

8 std::unique_lock<std::mutex> lock(Debug::LLDB::get().mutex);

9 auto process = lldb::SBProcess::GetProcessFromEvent(event);

10 auto state = lldb::SBProcess::GetStateFromEvent(event);

11 if(state == lldb::StateType::eStateStopped) {

12 auto line_entry = process.GetSelectedThread()

13 .GetSelectedFrame().GetLineEntry();

14 if(line_entry.IsValid()) {

15 lldb::SBStream stream;

16 line_entry.GetFileSpec().GetDescription(stream);

17 line_nr = line_entry.GetLine();

18 }

19 }

20 });

21

22 ==

23

24 Debug::LLDB::get().on_exit.emplace_back(

25 [&exit_status, &exited](int exit_status_) { // <--- [A05-01-02]

26 exit_status = exit_status_;

27 exited = true;

28 });

29 Debug::LLDB::get().on_event.emplace_back(

30 [&line_nr](const lldb::SBEvent &event) { { // <--- [A05-01-02]

31 std::unique_lock<std::mutex> lock(Debug::LLDB::get().mutex);

32 auto process = lldb::SBProcess::GetProcessFromEvent(event);

33 auto state = lldb::SBProcess::GetStateFromEvent(event);

34 if(state == lldb::StateType::eStateStopped) {

35 auto line_entry = process.GetSelectedThread()

36 .GetSelectedFrame().GetLineEntry();

37 if(line_entry.IsValid()) {

38 lldb::SBStream stream;

39 line_entry.GetFileSpec().GetDescription(stream);

40 line_nr = line_entry.GetLine();

41 }

42 }

43 });

Result: Pass

Table 5.7.: Test protocol for A05-01-02

43

Rule A07-01-06
The typedef specifier shall not be used.
lib/tiny-procss-library/process.hpp:27

1 #else

2 typedef pid_t id_type; // <--- [A07-01-06]

3 typedef int fd_type; // <--- [A07-01-06]

4 typedef std::string string_type; // <--- [A07-01-06]

5 #endif

6 typedef std::unordered_map<string_type, string_type> environment_type;

7 // ^--- [A07-01-06]

8

9 ===

10

11 #else

12 using id_type = pid_t; // <--- quick fixed

13 using fd_type = int; // <--- quick fixed

14 using string_type = std::string; // <--- quick fixed

15 #endif

16 using environment_type = std::unordered_map<string_type, string_type>;

17 // ^--- quick fixed

Result: Pass

Table 5.8.: Test protocol for A07-01-06

44

Rule A05-01-03
Parameter list (possibly empty) shall be included in every lambda expression.
src/autocomplete.h:4

1 Autocomplete::Autocomplete(Gtk::TextView *view,

2 bool &interactive_completion, guint &last_keyval,

3 bool pass_buffer_and_strip_word)

4 : view(view), interactive_completion(interactive_completion),

5 pass_buffer_and_strip_word(pass_buffer_and_strip_word) {

6 view->get_buffer()->signal_changed().connect(

7 [this, &last_keyval] { // <--- [A05-01-03]

8 if(CompletionDialog::get() && CompletionDialog::get()->is_visible()) {

9 cancel_reparse();

10 return;

11

12 ==

13

14 Autocomplete::Autocomplete(Gtk::TextView *view,

15 bool &interactive_completion, guint &last_keyval,

16 bool pass_buffer_and_strip_word)

17 : view(view), interactive_completion(interactive_completion),

18 pass_buffer_and_strip_word(pass_buffer_and_strip_word) {

19 view->get_buffer()->signal_changed().connect(

20 [this, &last_keyval]() { // <--- quick fixed

21 if(CompletionDialog::get() && CompletionDialog::get()->is_visible()) {

22 cancel_reparse();

23 return;

Result: Pass

Table 5.9.: Test protocol for A05-01-03

45

Rule A07-02-02
Enumeration underlying base type shall be explicitly defined.
src/autocomplete.h:16

1 public:

2 enum class State { IDLE, STARTING, RESTARTING, CANCELED };

3 // ^--- [A07-02-02]

Result: Pass

Table 5.10.: Test protocol for A07-02-02

Rule A10-01-01
Class shall not be derived from more than one base class which is not an interface class.
src/source clang.h:107

1 class ClangView : public ClangViewAutocomplete, public ClangViewRefactor

2 { // <--- [A10-01-01]

3 public:

4 ClangView(const boost::filesystem::path &file_path,

5 const Glib::RefPtr<Gsv::Language> &language);

6

7 void full_reparse() override;

8 void async_delete();

Result: Pass

Table 5.11.: Test protocol for A10-01-01

46

Rule A05-01-08
Lambda expressions should not be defined inside another lambda expression.
src/directories.cc:781

1 if(it != directories.end() && it->second.repository) {

2 auto repository = it->second.repository;

3 std::thread git_status_thread(

4 [this, dir_path, repository, include_parent_paths] {

5 Git::Repository::Status status;

6 try {

7 status = repository->get_status();

8 }

9 catch(const std::exception &e) {

10 Terminal::get().async_print(std::string("Error (git): ") + e.what()

11 + '\n', true);

12 }

13

14 dispatcher.post([this, dir_path, include_parent_paths,

15 status = std::move(status)] { // <--- [A05-01-08]

16 auto it = directories.find(dir_path->string());

17 if(it == directories.end())

18 return;

Result: Pass

Table 5.12.: Test protocol for A05-01-08

47

5.2.2. Functional Reports Tests: jucipp

This section contains the reports test cases for Jucipp. An explanation, why Jucipp
was chosen can be found in Section 5.1.2. An explanation of how these tests work
and why they are performed can be found at the beginning of Section 5.2.

Table 5.13.: Test protocol for jucipp checked rule violation reports
RuleNr Location Result Comment

A05-00-02 src/autocomplete.cc:67 Notes marked, when index not fully build
A05-00-02 src/compile commands.cc:16 Fail std::string equality operator yields bool,

index error?
A05-00-02 src/compile commands.cc:49 Fail size t smaller than operator yields bool,

excessive marking
A05-00-02 src/debug lldb.cc:205 Research relational operator used with enum Sto-

pReason, error?
A05-00-02 src/filesytem.cc:23 Fail std::ifstream implements explicit cast to

bool
A05-01-01 src/autocomplete.cc:28 Notes true literal, return value, exception?
A05-01-01 src/autocomplete.cc:31 Notes nullptr literal, return value, exception?
A05-01-01 src/cmake.cc:21 Notes true literal, while condition, exception?
A05-01-01 src/cmake.cc:22 Pass file name literal
A05-01-01 src/cmake.cc:132 Notes zero index literal, exception?
A05-01-03 src/autocomplete.cc:45 Pass
A05-01-03 src/dispatcher.cc:5 Notes excessive marking
A05-01-03 src/selection dialog.cc:122 Pass
A05-01-03 src/terminal.cc:301 Notes excessive marking
A05-01-03 src/source language protocol.cc

:409
Notes excessive marking

A05-01-06 src/autocomplete.cc:29 Pass
A05-01-06 src/autocomplete.h:33 Fail syntax error: return type missing
A05-01-06 src/autocomplete.h:52 Notes quick fix works, but verbose fully speci-

fied string declaration
A05-01-06 lib/libclangmm/src/completion

string.cc:77
Pass

A05-01-06 src/directories.cc:17 Pass
A05-16-01 lib/tiny-process-

library/examples.cpp:17
Notes usefull case?

A05-16-01 src/source language protocol.cc
:121

Notes weird use case

A05-16-01 src/source language protocol.cc
:595

Pass difficult expression

48

Table 5.13.: Test protocol for jucipp checked rule violation reports
RuleNr Location Result Comment

A05-16-01 src/source language protocol.cc
:1032

Notes usefull case?

A05-16-01 src/terminal.cc:187 Pass difficult, magic expression
A07-01-05 src/cmake.cc:10 Fail lambda expression is of non-

fundamental type , quick fix just
removes auto, syntax error

A07-01-05 src/cmake.cc:11 Fail auto used as decl specifier in for-each,
quick fix inserts semicolon, syntax error

A07-01-05 src/cmake.cc:20 Pass
A07-01-05 src/cmake.cc:134 Pass
A07-01-05 src/completion string.cc:78 Notes auto assigned static cast
A07-01-06 lib/tiny-process-

library/process.hpp:28
Pass

A07-01-06 lib/tiny-process-
library/process.hpp:29

Pass

A07-01-06 lib/tiny-process-
library/process.hpp:30

Pass

A07-01-06 lib/tiny-process-
library/process.hpp:32

Pass

A07-01-06 src/source base.cc:74 Notes weird case, preprocessor makros used
A07-02-02 src/autocomplete.h:17 Pass
A07-02-02 src/git.h:57 Pass
A07-02-02 src/source.h:41 Pass
A07-02-02 src/source diff.h:14 Pass
A07-02-02 src/token.h:14 Pass
A07-02-03 lib/libclangmm/src/completion

string.h:9
Pass

A07-02-03 lib/libclangmm/src/token.h:14 Pass
A08-05-00 src/autocomplete.cc:63 Pass
A08-05-00 src/autocomplete.cc:105 Fail for-each declarator
A08-05-00 src/cmake.cc:13 Pass
A08-05-00 src/config.cc:29 Pass
A08-05-00 lib/libclangmm/src/cursor.cc:127 Pass
A08-05-02 src/autocomplete.h:24 Pass
A08-05-02 src/autocomplete.h:28 Pass
A08-05-02 src/cmake.cc:12 Pass
A08-05-02 src/cmake.cc:20 Pass
A08-05-02 src/compile commands.cc:89 Pass

49

Table 5.13.: Test protocol for jucipp checked rule violation reports
RuleNr Location Result Comment

A09-05-01 src/source base.cc:74 Notes error in makro expansion, wrong error
code A09-05-001

A09-05-01 src/source base.cc:75 Notes error in makro expansion, wrong error
code A09-05-001

A10-01-01 src/project.h:155 Pass
A10-01-01 src/source.h:52 Pass
A10-01-01 src/source clang.h Pass
A10-02-01 src/directories.h:27 Fail ctor of type with same name as base

class
A10-02-01 src/directories.h:50 Fail static class function not a member func-

tion
A10-02-01 src/entry box.h:48 Notes info on which method is hidden would

be nice
A10-02-01 src/source.h:61 Fail member function overrides base func-

tion, no hiding?, diamond problem?
A10-02-01 src/source generic.h:18 Notes info on which method is hidden would

be nice, class::method
A10-03-01 src/dialogs.cc:29 Research Should report when no virtual specifier?

(redundant with A10-03-02)
A10-03-02 src/dialogs.cc:29 Research override in header declaration, marked

in implementation?
A10-03-02 src/source generic.h:11 Pass dtor of type
A12-00-01 src/config.h:10 Fail rule of zero followed
A12-00-01 src/cursor.h:11 Pass only copy ctor implemented
A12-00-01 src/project.h:40 Pass move ctor and dtor only
A12-00-01 src/terminal.h:11 Fail rule of zero followed, maybe due to base

class?
A12-00-01 src/translation unit.h:15 Pass dtor only
A13-05-03 src/ctags.h:17 Pass
A13-05-03 src/git.h:21 Pass
A13-05-03 src/source.h:31 Pass
ES.026 src/cmake.cc:281 Pass
ES.026 src/menu.cc:518 Pass
ES.026 src/notebook.cc:215 Pass
M03-04-01 lib/libclangmm/src/completion

string.cc:85
Notes loop variable used afterwords

M03-04-01 src/directories.cc:82 Notes loop variable used before
M03-04-01 src/filesystem.cc:133 Pass

50

Table 5.13.: Test protocol for jucipp checked rule violation reports
RuleNr Location Result Comment

M04-05-01 src/cmake.cc:205 Fail assignment operator
M04-05-01 src/config.cc:82 Notes belongs to assignment or logical opera-

tors?

51

5.2.3. Functional Sample Test Cases: LevelDB

This section contains the sample test cases for LevelDB. An explanation, why
LevelDB was chosen can be found in Section 5.1.2. An explanation of how these
tests work and why they are performed can be found at the beginning of Section 5.2.

Rule A05-01-01 (required, implementation, partially automated) Literal values shall not
be used apart from type initialization, otherwise symbolic names shall be used instead.
Rule A08-05-02 (required, implementation, automated) Braced-initialization , without
equals sign, shall be used for variable initialization.
db/autocompact test.cc:52ff

1 static const int kValueSize = 200 * 1024;

2 // ^--- 2x [A05-01-01], [A08-05-02]

Result: Pass

Table 5.14.: Test protocol for A05-01-01 and A08-05-02 test

Rule A05-00-02 (required, implementation, automated) The condition of an if-statement
and the condition of an iteration statement shall have type bool.
db/db impl.cc:91

1 if (static_cast<V>(*ptr) > maxvalue) ... // <--- [A05-00-02]

Result: Pass

Table 5.15.: Test protocol for A05-00-02 test

52

Rule A05-01-03 (required, implementation, automated) Parameter list (possibly empty)
shall be included in every lambda expression.
env windows.cc:689

1 bgsignal_.wait(lk, [this] { return !queue_.empty(); });

2 // ^--- [A05-01-03]

==

1 bgsignal_.wait(lk, [this](){ return !queue_.empty(); });

2 //^--- quick fixed

Result: Pass

Table 5.16.: Test protocol for A05-01-03

Rule A05-16-01 (required, implementation, automated) The ternary conditional operator
shall not be used as a sub-expression.
test c.cc:39ff

1 fprintf(stderr, "\%s: expected '\%s', got '\%s'\n",

2 phase,

3 (expected ? expected : "(null)"), // <--- [A05-16-01]

Result: Pass

Table 5.17.: Test protocol for A05-16-01

Rule A07-01-05 (required, implementation, automated) The auto specifier shall not be
used apart from following cases: (1) to declare that a variable has the same type as return
type of a function call, (2) to declare that a variable has the same type as initializer of
non-fundamental type, (3) to declare parameters of a generic lambda expression, (4) to
declare a function template using trailing return type syntax.
envposix.cc:795

1 auto background_work_function =

2 background_work_queue_.front().function; // <--- [A07-01-05]

Result: Pass

Table 5.18.: Test protocol for A07-01-05

53

Rule A07-01-06 (required, implementation, automated) The typedef specifier shall not
be used.
db/db test:2033

1 typedef std::map<std::string, std::string> KVMap; // <--- [A07-01-06]

==

1 using KVMap = std::map<std::string, std::string>; // <--- quick fixed

Result: Pass

Table 5.19.: Test protocol for A07-01-06

Rule A07-02-02 (required, implementation, automated) Enumeration underlying base
type shall be explicitly defined.
include/leveldb/c.h:192ff

1 enum { // <---[A07-02-02]

2 leveldb_no_compression = 0,

3 leveldb_snappy_compression = 1

4 };

Result: Pass
Note: A07-02-03 is also reported

Table 5.20.: Test protocol for A07-02-02

Rule A07-02-03 (required, implementation, automated) Enumerations shall be declared
as scoped enum classes.
db/db iter.cc:203

1 enum Direction { // <--- [A07-02-03]

2 kForward,

3 kReverse

4 };

Result: Pass
Note: A07-02-02 is also reported

Table 5.21.: Test protocol for A07-02-03

54

Rule A08-05-00 (required, implementation, automated) All memory shall be initialized
before it is read.
db/c.cc:203

1 std::string tmp; // <--- [A08-05-00]

Result: Pass

Table 5.22.: Test protocol for A08-05-00

55

Rule A10-03-02 (required, implementation, automated) Each overriding virtual function
shall be declared with the override or final specifier.
include/leveldb/iterator.h 24ff

1 class LEVELDB_EXPORT Iterator {

2 ...

3 public:

4 ...

5 virtual void SeekToFirst() = 0;

6 virtual void SeekToLast() = 0;

7 virtual void Seek(const Slice& target) = 0;

8 virtual void Next() = 0;

9 virtual void Prev() = 0;

10 ...

11 };

db/db iter.cc 82ff

1 class DBIter: public Iterator {

2 ...

3 public:

4 ...

5 virtual void Next(); // <--- [A10-03-02]

6 virtual void Prev(); // <--- [A10-03-02]

7 virtual void Seek(const Slice& target); // <--- [A10-03-02]

8 virtual void SeekToFirst(); // <--- [A10-03-02]

9 virtual void SeekToLast(); // <--- [A10-03-02]

10 ...

11 };

Result: Pass

Table 5.23.: Test protocol for A07-02-03

56

Rule A10-03-03 (required, implementation, automated) Virtual functions shall not be
introduced in a final class
util/env posix.cc:104ff

1 class PosixSequentialFile final : public SequentialFile {

2 ...

3 Status Read(size_t n, Slice* result, char* scratch)

4 override {...} // <--- [A10-03-03]

5 ...

6 }

==

1 class PosixSequentialFile final : public SequentialFile {

2 ...

3 Status Read(size_t n, Slice* result, char* scratch) final {...}

4 ... // quick fixed ---^

5 }

Result: FAIL. Rule is reported but quick fix fails.

Table 5.24.: Test protocol for A10-03-03

57

Rule A12-00-01 (required, implementation, automated) If a class declares a copy or
move operation, or a destructor, either via“=default”, “=delete”, or via a user-provided
declaration, then all others of these five special member functions shall be declared as well.
util/arena.h:16ff

1 class Arena { // <---[A12-00-01]

2 public:

3 Arena();

4 ~Arena();

5

6 char* Allocate(size_t bytes);

7

8 char* AllocateAligned(size_t bytes);

9

10 size_t MemoryUsage() const {

11 return memory_usage_.load(std::memory_order_relaxed);

12 }

13

14 private:

15 char* AllocateFallback(size_t bytes);

16 char* AllocateNewBlock(size_t block_bytes);

17

18 char* alloc_ptr_;

19 size_t alloc_bytes_remaining_;

20

21 std::vector<char*> blocks_;

22

23 std::atomic<size_t> memory_usage_;

24

25 Arena(const Arena&);

26 void operator=(const Arena&);

27 };

Result: Pass

Table 5.25.: Test protocol for A12-00-01 test

58

5.2.4. Functional Reports Test: Leveldb

This section contains the reports test cases for LevelDB. An explanation, why
LevelDB was chosen can be found in Section 5.1.2. An explanation of how these tests
work and why they are performed can be found at the beginning of Section 5.2.

Table 5.26.: Test protocol for leveldb checked rule violation reports
RuleNr Location Result Comment

A04-07-01 db/log writer.cc 17 Pass
A05-00-02 util/coding.cc 10 Fail is static bool, should not be reported
A05-00-02 util/coding.cc 21 Fail is static bool, should not be reported
A05-00-02 util/coding.cc 145 Pass bitwise and leads to implicit conversion
A05-00-02 util/crc32c.cc 328 Fail macro
A05-01-01 util/arena.cc 12 Pass But does it really make sense to mark

nullptr?
A05-01-01 util/arena.cc 32 Pass
A05-01-01 util/arena.cc 41 Pass
A05-01-01 table/block builder.cc 44 Pass
A05-01-01 include/leveldb/c.h 193 Pass But does it really make sense to mark

in enum declaration?
A05-01-01 util/crc32c.cc 65 Pass But does it make sense to mark array

inidces?
A05-01-01 db/db bench.cc 62 Fail Initialization
A05-01-01 util/env posix.cc 89 Pass Method call
A05-16-01 util/arena test.cc 29 Pass
A05-16-01 util/bloom test.cc 64 Pass Does it make sense to mark this though?
A05-16-01 db/c.cc 273 Pass
A05-16-01 db/db impl.cc 100 Fail Used for initialization, technically sub-

expression but not very usefull
A07-01-05 util/env posix.cc 797 Pass
A07-01-06 include/leveldb/c.h 54 Pass Quick fix fails, typedef struct
A07-01-06 helpers/menenv/memenv.cc 399 Pass
A07-01-06 db/skiplist test.cc 20 Pass
A07-01-06 table/two level iterator.cc 16 Pass
A07-02-02 include/leveldb/c.h 192 Pass
A07-02-02 db/version edit.cc 14 Pass
A07-02-02 db/fault injection test.cc 369 Pass
A07-02-03 include/leveldb/c.h 192 Pass
A07-02-03 db/version edit.cc 14 Pass
A07-02-03 db/fault injection test.cc 369 Pass

59

Table 5.26.: Test protocol for leveldb checked rule violation reports
RuleNr Location Result Comment

A07-02-03 doc/bench/db bench tree db.cc
282

Pass

A08-05-00 util/arena.cc 46 Pass
A08-05-00 util/arena test.cc 20 Pass
A08-05-00 table/block.cc 173 Pass
A08-05-02 util/arena.cc 9 Pass
A08-05-02 util/arena.cc 17 Pass
A08-05-02 util/arena.cc 43 Pass
A10-02-01 db/db impl.h 186 Pass
A10-02-01 db/db iter.cc 127 Pass
A10-02-01 db/fault injection test.cc 138 Fail Overridden method is virtual. Over-

rides, but no shadowing
A10-03-01 db/c.cc 514 Pass
A10-03-01 db/db test.cc 154 Pass
A10-03-02 db/db test.cc 2045 Pass
A10-03-02 table/block.cc 139 Pass
A10-03-03 util/env posix.cc 129 Pass
A10-03-03 util/env posix.cc 301 Pass
A10-03-03 util/windows logger.cc 34 Pass
A12-00-01 util/cache.cc 361 Pass
A12-00-01 include/leveldb/db.h 30 Pass
A12-00-01 db/db test.cc 2044 Pass
C.020 include/db/db.h 38 Pass
C.020 db/db test.cc 2044 Pass
ES.074 db/db impl.cc 1300 Pass
ES.074 db/fault injection test.cc 352 Pass
ES.074 db/log test.cc 230 Pass
M03-04-01 util/logging.cc 63 Pass
M05-00-06 db/log writer.cc 17 Pass
M05-00-06 util/arena test.cc 27 Pass
M05-00-06 db/db bench.cc 146 Pass

60

5.2.5. Changes Based on Functional Tests

This section covers all the changes that we performed on the code based on the
functional tests.

Binary Expression Handling with Non-Expression Second Operand

While conducting the functional tests we noticed a NullPointerException be-
ing thrown in the BoolExpressionOperandsWarningVisitor. This was caused
by the IASTBinaryExpression returning null for getOperand2(). This is a bit
counterintuitive, since one would expect a binary expression to always have two
operands. The reason for this is that with an assignment operator the second
operand may be a list-initializer, which is an initializer clause but not an expression
(getOperand2() returns an expression). In every case, as every expression is an
initializer clause, the second operand can be accessed using getInitOperand2().
After fixing the BoolExpressionOperandsWarningVisitor to check for null, we
checked all uses of getOperand2() in the CodeAnalysator for a possible error.
BoolExpressionOperandsInfoVisitor and ConditionMustBeBoolVisitor did
use the method but were not affected as the operator in their case is never the assign-
ment operator and therefore getOperand2() never returns null. In contrast, we
were able to induce similar errors for DontUseVariableForTwoUnrelatedPurposes-
Visitor and DeclareLoopVariableInTheInitializerQuickFix, which we fixed
by replacing the call with getInitOperand2().

Assignment Operator with Bool Operand Reported

An assignment operator with a bool operand was reported as violating rule M4-5-1.
This rule forbids the use of a boolean as an operand to built in operators except
for a few cases. One of these cases is the use of bool operands in assignment
operators[MISRA C ++ : 2008 Guidelines for the use of the C ++ language in
critical systems 2018]. BoolExpressionOperandsVisitor was fixed by adding a
check for the assignment operator and not marking it if it is one.

Implicit Lambda Expression Returning a nullptr

Our quick fix for the rule A5-1-6, which advises against implicit lambda return
types, failed to correctly fix a lambda expression returning a nullptr. It inserted
just the arrow of the trailing return type without specifying any actual type leading
to a syntax error. See Figure 6 for the initial situation and Figure 7 for the faulty
fix.

61

1 auto lambda = []() {

2 return nullptr;

3 };

Listing 6: A lamdba returning a nullptr

1 auto lambda = []() -> {

2 return nullptr;

3 };

Listing 7: A lamdba returning a nullptr, fixed incorrectly

Upon investigation we discovered the error in the DeclarationGeneratorImpl of
the CDT. The issue was that while the type of a nullptr is represented using a basic
type, it cannot be declared using a simple declaration specifier. It requires a named
type declaration specifier instead. Since we cannot modify the CDT code directly
and we had already created our own modified version of the declaration generator
with improved ability to generate template declarations, we decided to implement
our fix there. We renamed the TemplateExtendedDeclarationGeneratorImpl to
CodeAnalysatorDeclarationGeneratorImpl, fixed the generator to construct a
named type specifier in the case of a basic type of the kind nullptr and changed the
quick fix to use this generator instead. See Figure 8 for the correctly fixed lambda.

1 auto lambda = []() -> std::nullptr_t {

2 return nullptr;

3 };

Listing 8: A lamdba returning a nullptr, fixed correctly

Ideally, these changes will be included into the CDT in the future, therefore we
have kept the changes to the class to a minimum. Now the quick fix correctly
inserts std::nullptr t as the return type.

Auto Declared Variable Initialized with Lambda Expression

Rule A07-01-05 prohibits the use of auto except for a few certain cases. Refer to the
AUTOSAR document for a detailed explanation [AUTOSAR 2018]. Declarations
that are initialized using lambda expressions and are using the auto specifier, were

62

reported by the visitor for this rule. But one of the exceptions is that the auto
specifier is allowed, if a non-fundamental type is used. A lambda expression is
considered to be of a non-fundamental type and therefore should not be reported by
this rule. We fixed the UseAutoSparinglyVisitor by adding a check for lambda
expressions.

1 int i {};

2 i = { 1 }; // idExpression(i), operator(assignment),

3 // initializerClause({ 1 })

Listing 9: Example for a binary expression with a non-expression second operand

A07-01-05 Quick Fix Inserts Semicolon after Declaration in Ranged-for

One application of the Quick Fix for A07-01-05 is to replace auto in a declaration
of a range based for. It replaces the auto specifier with the deduced type, but
inserts a semicolon after the declaration and before the double colon, leading to a
syntax error. See Listing 10. Upon debugging the error was found to be due to the
ASTWriterVisitor calling the DeclarationWriter.writeDeclaration overload
which unconditionally inserts a semicolon when replacing an IASTDeclaration.
Regardless of whether the for loop is ranged or not. We further tested and verified
that the same error occurs also for replacing declarations in if-conditions, loop-
conditions and the controller declaration in the switch statement. The bug might
be fixed by adding a check, either in the visit method of the ASTWriterVisitor

or in the DeclarationWriter. It would need to test whether the declaration is a
control declaration, i.e. whether the parent is a if-, loop- or switch-statement, and
in that case omit the semicolon. As a workaround we have changed the quick fix
to be not applicable in the case of a control declaration.

1 for (int &i;: list) {}

Listing 10: Example of a wrongly inserted semicolon for control declarations

A08-05-00: Range-declaration Reported for Not Initializing Object

The AlwaysInitializeAnObjectVisitor reported range-declarations in ranged-
for statements as violating A08-05-00: Always initialize an object. That is because
a range-declaration does not have an initializer, but is initialized by the ranged-for
loop on every iteration. We added an additional check, whether the parent is a

63

ranged-for statement, next to the check whether the parent is a catch handler and
do not report the declaration in that case.

1 for(int i: list){

2 //^--- No initialization here, but in every iteration

3 }

Listing 11: Example of a ranged for loop

A10-2-1: Constructor of Class with Equal Name As Base Class Reported

The DoNotHideMemberFunctionsVisitor wrongly reported constructors of classes,
with a name equal to one of its base classes, as hiding a member function. We
added a check whether the method is a constructor and, in that case, skip testing
for member function hiding. See Figure 12 for an example.

1 namespace a_namespace {

2 struct someStruct {

3 someStruct() {

4 }

5 };

6 }

7 namespace another_namespace {

8 struct someStruct: a_namespace::someStruct {

9 someStruct() {

10 }

11 };

12 }

Listing 12: The visitor marked the constructor on line 9 wrongly

A10-03-03 Quick Fix Is Not Working with NamedDeclSpecifiers

A10-03-03 is the rule that every overriding function is supposed to be written with
either the override or final keyword. This did not work if the DeclSpecifier was a
class or struct as opposed to a primitive. We fixed this and added tests accordingly.
See Figure 13 for an example of such a case.

64

1 struct X{};

2 struct A {

3 virtual X doSomething(){}

4 };

5

6 struct B : A{

7 X doSomething(){} <--- A10-03-03 marker

8 };

Listing 13: Resolving this marker failed before our fix

Note: The Overrider quick assist can also be used for this scenario. This quick
assist was also developed during this project. More information about the Overrider
and quick assists in general can be found in Chapter 6.

A05-01-01 Checker Is Not Working Properly with Exception

According to rule A05-01-01, literal values should be avoided. An exception thereof
is a literal value in an initialization. This did not work properly before, since the
checker did not recognize when the literal value occurred in an initializer list. See
Figure 14 for an example. This has now been changed, which also slightly reduced
the amount of times the rule was reported.

1 int main(){

2 int i {5};

3 }

Listing 14: The A05-01-01 marker did not recognize this exception

A10-02-01 Checker Does Not Check for Virtuality Because of Overriding

A10-02-01 defines that non-virtual functions shall not be overridden because it
results in shadowing [AUTOSAR 2018]. This means that the checker must find
out, whether a method has any method in a base class, which it overrides but
which is not virtual. Up until now, the checker used the method isVirtual() of
the class ICPPMethod. Unfortunately this function does not take into consideration,
that a method might be virtual because it overrides another method. This resulted
in false positives.

65

1 struct A {

2 virtual void doSomething() {

3 }

4 };

5

6 struct B: A {

7 void doSomething() {

8 }

9 };

10

11 struct C: B {

12 void doSomething() {

13 }

14 };

Listing 15: B.doSomething() is virtual even though there is neither a virtual
keyword or an override specifier. Because of this, C.doSomething() does not shadow
but override.

To solve this problem, we introduced a check, that also accounts for this type of
virtual. A final method is theoretically also virtual. But overriding a final method
poses other threats, which is not in scope of this rule.

Note: While the example in Figure 15 compiles and is correct code, it still
violates another AUTOSAR rule. Rule A10-03-02 defines that every overriding
method should be marked with either the override or final keyword [AUTOSAR
2018].

A10-03-02 Quick Fix Resulted in Code That Violates A10-03-01

A10-03-02 wants the developer to mark every overriding method with either the
override or final keyword. Currently this rule offers two quick fixes. One to make
it final and one to make it overriding. This is simply a matter of adding one of
the two keywords. The problem is now, that while this approach is correct, the
resulting code sometimes violates A10-03-01 which wants only one virtual keyword
per method. For example the following method in Listing 16 would turn into
Listing 17, which is good.

66

1 S doSomething();

Listing 16: Example of a method that can be made final

1 S doSomething() final;

Listing 17: Example made final without violating A10-03-01

But if the original code looked like in Listing 18, the resulting code would look like
the example in Listing 19. This would violate Rule A10-03-01.

1 virtual S doSomething();

Listing 18: Example of a method that can be made final with virtual keyword

1 virtual S doSomething() final;

Listing 19: Example made final but violating A10-03-01

We fixed this by extracting some code from the A10-03-01 quick fix and used it in
the A10-03-02 quick fix. That way the code complies with both rules.

A05-01-01 Marks This Pointer

There was a small bug in the checker for no magic numbers A05-01-01. The this

pointer in C++ is considered a literal expression which means, every occurrence
of it was marked by the A05-01-01 checker. This is obviously not intended. We
added an exception for the this pointer to be excluded from the rule.

Adding Exceptions of A05-01-01

According to the AUTOSAR rule for A05-01-01, every literal value that is not in
either an initialization or a log statement shall be reported by the checker. But
this leads to a huge amount of markers. Even though correct, there is no way it
would be practicable to use the checker as it was. So we added a few exceptions to
the checker. These exceptions are the literal values for true and false, nullptr
and the numbers 1 and 0. Right now, these exceptions are hard coded. This could
be made configurable in a future project.

67

Change Missing Special Member Functions Checking to Rule of Five

The MissingSpecialMemberFuntionsVisitor is shared between AUTOSAR rule
A12-00-01 and C++ Core rule C.21, but while A12-00-01 advocates the rule of
zero and rule of five, C.21 advocates the rule of zero and rule of six, i.e. counts the
default constructor as well. After a discussion in a meeting it was decided to chose
the rule of five for both cases as more rational. We therefore changed the visitor to
ignore the default constructor.

A05-16-01: Ternary Conditional Operator Reported in Assignment
Expression

Rule A05-16-01 specifies that the ternary conditional operator shall not be used
as a sub-expression. The operator is therefore also reported when used in an
assignment expression. We discussed this special case in a meeting and decided
to make an exception. We changed the visitor to allow use of the operator in
assignment expressions. See Listing 20 on line 3 for an example of this exception.

1 int foo(bool condition){

2 int i = 10;

3 i = condition ? 1 : 0;

4 }

Listing 20: A ternary conditional operator used in an assignement

A07-01-06: Make not Applicable for Typedef Struct

The use of typedef struct can be useful in C and the quick fix to the rule that
forbids typedefs can not correctly fix this. The CodeAnalysator is intended to be
used with modern C++. This is why we decided to simply make the quick fix not
applicable for typedef structs. In a future project, the visitor could check whether
the code is in a extern C environment.

A05-00-02: Bool or Contextually-Convertible to Bool Expressions Wrongly
Reported as Not Boolean

The ConditionMustBeBoolVisitor reported boolean expressions or expressions
contextually-convertible to bool as not being boolean, which is obviously wrong.
This was due to multiple errors. The simplest were caused by semantic problems,
which we changed to be ignored. Another error was caused by a bug due to which
only the first explicit member of a class was being tested for a conversion to bool

68

operator. The last type of error was caused by a non-general mechanism for testing
whether a member is a conversion to bool operator, which for example did not
work for operators of template specializations. As there does not exist a general,
semantic mechanism for obtaining that information from a binding we resorted
to textually comparing the name of the members to "operator bool". Lastly,
during the checking it occurred to us that to much of the code was being marked,
i.e. the whole statement containing the condition instead of the offending condition
expression itself and we adapted the visitor accordingly.

5.2.6. Conclusion of Functional Tests

Most of our checkers and quick fixes work correctly, though we managed to find
some that could be improved and some that needed fixing. Most of these were some
edge cases that were not considered when initially writing them. Some others were
technically correct but proved to be unusable in a real live scenario. Of course we
do not claim to have found every problem, but we are confident to have improved
the quality of most checkers and quick fixes by a great amount.

There were both false positives and false negatives. It is easy to find false
positives. We looked at the reported markers and checked, whether they were
rightfully reported. If we found one that was not supposed to be reported, we knew
that it was wrong and could start fixing it. To find false negatives on the other
hand was a bit more difficult. We approached it by looking at the code without
markers and choosing places where a marker should appear in our opinion. We
then ran the analysis and verified our expectations. We found false negatives as
well as false positives, but we eliminated the false positives to a greater extent than
the false negatives.

There are some checkers that do not do well in a real life scenario. As we
expected, the rule no magic numbers can be annoying because it marks every
single occurrence. An exception for that rule is, that it is OK to use literal values
in log statements. But with our checker, a user would have to suppress the rule
every time he/she logs something with a literal value because the checker can
not differentiate the cases. Another rule that can be annoying especially in older
projects is Always initialize an object. Some time ago it was common practice to
declare every variable at the beginning of a function but not necessarily initialize
it. This makes the checker trigger countless times in large old objects. There is
not really something that can be done about this from a program side. A possible
solution would be to have these checkers disabled by default.

69

In conclusion, we can say that it was a good idea to run the functional tests.
We were able to implement many fixes and improvements to our plug-in. The
overall robustness was improved and the amount of bugs decreased, which leaves
the project in a better state than before.

70

5.3. Performance Tests

We have measured the run time for each checker and quick fix as well as the
aggregated run time of the CodeAnalysator plug-in. The goal was to find relevant
execution duration differences and bottlenecks. All our results were collected using
the software JProfiler [Java Profiler - JProfiler 2019].

5.3.1. Test Results

We ran Code Analysis on the complete code of Jucipp and LevelDB. Since the
results were almost equal, there is only a screenshot for Jucipp. We performed two
kinds of tests. First we ran all the checkers to measure their performance. We also
noticed, that scrolling in large files was slow and froze often. Because of this, we
also measured the performance for simply scrolling through the files.

Running the checkers

As can be seen in Figure 5.1, there is indeed a performance bottleneck. Apparently
the method getAST uses up a majority of computation time. The measurement
below was stopped after about five and a half minutes. Further tests showed, that
it would run for about an hour, which is of course unacceptable performance. Refer
to Section 5.3.2 for our actions taken to solve this problem and to Section 5.3.3 for
another test run after we applied the changes.

Figure 5.1.: The results of the performance test

Scrolling

Measuring the performance while scrolling led to the results shown in Figure 5.2.
The performance problem is apparent on first glance. Same as before, the problem
lies in the method getAST(). This time it is called from the isApplicable() part

71

of our quick fixes. Refer to Section 5.3.2 for our actions taken to solve this problem
and to Section 5.3.3 for another test run after we applied the changes.

Figure 5.2.: The results of the performance test while scrolling

5.3.2. Changes Based on Performance Tests

This section covers all the changes we performed to solve the performance problems
found in Section 5.3.1.

Updating the ASTHelper

As can be read in Section 5.3.1, the biggest performance bottleneck was the method
getAstTranslationUnit() in the ASTHelper. Unfortunately we did not write
this file ourselves. It is a very large helper class that contains a variety of support
methods for AST traversal. This class was initially written by the team that
created the GSLator. The first project team that worked on the CodeAnalysator
plug-in simply copied it, because they needed it for a few visitors. The problem
was, that the AvoidLossyConversionsVisitor, among other things, checks every
method call for a lossy conversion. To find the original method declaration, the
ASTTranslationUnit must be resolved, which happens in the getAST() method
mentioned above. As a first step we updated the CodeAnalysator version with
the newer version from the GSLator, which was subject to a few updates in the
meantime. By debugging, we found out, that some sections of the code are never
accessed and thus were basically dead code. We removed this dead code. This
and the update improved the performance very slightly, but not by a significant
amount.

72

Updating the AvoidLossyConversionsVisitor

To further improve the performance, we also updated the AvoidLossyConversions-
Visitor with its newer version from the GSLator. AvoidLossyConversionsVisitor
is the class that calls the bottleneck function the most. We managed to reduce the
number of calls to it slightly.

Do not run a checker if its rule will not be reported

As we noticed, shared visitors are run for each guideline that has a corresponding
rule. This means that sometimes the same visitor is run three times on the same
code. To prevent this, we introduced a check, that only runs a visitor when its rule
has the highest priority. Because otherwise it would not be reported anyway, so
it does not make sense to have the visitor run. This improved the performance
significantly, because the problematic visitor AvoidLossyConversionsVisitor has
a corresponding rule in AUTOSAR [AUTOSAR 2018], MISRA [MISRA C ++ :
2008 Guidelines for the use of the C ++ language in critical systems 2018] and
C++ CORE Guideline [C++ Core Guidelines 2019].

Updating the AvoidLossyConversion tests

There are a lot of tests for the problematic visitor AvoidLossyConversionsVisitor.
Over the course of the refactoring of this visitor, we noticed, that the visitor
apparently did not work correctly before. Many tests had no marker lines even
though they should. And now that we fixed the visitor, all these tests obviously
failed. So we added the marker lines. Another issue with these tests, was that
there usually were a lot of markers for one single tests. This made it hard to find
the problem, when a test failed. Because of this we split the tests into singular test
cases, which took a lot of effort, but made the tests and test results in particular
way better readable. Refer to Table 5.27 for an example of how the tests look like
before and after our changes.

73

Before After

1 //!FloatToIntConversionInitializer

2 //@.config

3 setPreferencesEval=

4 (GUIDELINE_SETTING_ID|

5 AUTOSAR_GUIDELINE_ID)

6 //@main.h

7 int main() {

8 long double ld = 345.5;

9 double d = 123.6;

10 float f = 7.9;

11 long long ll = -12345;

12 unsigned long long ull = 12345;

13 long l = -213;

14 unsigned long ul = 213;

15 int i = -42;

16 unsigned u = 42;

17 short s = -4;

18 unsigned short us = 4;

19

20 long long ll_1 = ld;

21 unsigned long long ull_1 = ld;

22 long l_1 = ld;

23 unsigned long ul_1 = ld;

24 int i_1 = ld;

25 unsigned u_1 = ld;

26 short s_1 = ld;

27 // Many more test cases

28 }

1 //!ld to ll initializer

2 //@.config

3 setPreferencesEval=

4 (GUIDELINE_SETTING_ID|

5 AUTOSAR_GUIDELINE_ID)

6 markerLines=3

7 //@main.h

8 int main() {

9 long double ld = 345.5;

10 long long ll_1 = ld;

11 }

12

13 //!ld to ull initializer

14 //@.config

15 setPreferencesEval=

16 (GUIDELINE_SETTING_ID|

17 AUTOSAR_GUIDELINE_ID)

18 markerLines=3

19 //@main.h

20 int main() {

21 long double ld = 345.5;

22 unsigned long long ull_1 = ld;

23 }

24

25 // Many more test cases

Table 5.27.: How the tests for AvoidLossyConversions where changed

Stop using the ASTHelper

After many failed attempts to improve the ASTHelper we decided to try and stop
using it in the cases where possible. Unfortunately it took us very long to figure this
out, because we were confused by the ASTHelper. A lot of code is executed when

74

its methods are called from the AvoidLossyConversionsVisitor. We wasted a
lot of time trying to fix the ASTHelper, when we could have just changed the
visitor itself. It boiled down to only a few lines of code, to improve the performance
to the same level as the other visitors. Refer to Section 5.3.3 to see a report of
how the performance improved. Listing 21 shows the corresponding section of the
AvoidLossyConversionsVisitor before our changes and Listing 22 shows what
it looks like afterwards.

1 IASTFunctionDeclarator functionDeclarator =

2 ASTHelper.getFunctionDeclaratorFromName(name, astCache);

3 if (functionDeclarator != null) {

4 IASTInitializerClause[] params = functionCall.getArguments();

5 Map<Integer, IType> paramsspec =

6 ASTHelper.getFunctionArguments(functionDeclarator, true);

7 int i = 0;

8 for (IASTInitializerClause iastInitializerClause : params) {

9 List<String> intermediateTypes = new ArrayList<String>();

10 String from = getTypeStringFromExpressionElement(iastInitializerClause,

11 intermediateTypes);

12 String to = "";

13 if (paramsspec.get(i) != null) to = paramsspec.get(i).toString();

14 analyseLossy(from, to, iastInitializerClause, true, intermediateTypes);

15 i++;

16 }

17 }

Listing 21: The AvoidLossyConversionVisitor before our refactoring.

75

1 IBinding binding = name.resolveBinding();

2 if (binding instanceof IFunction) {

3 IFunction function = (IFunction) binding;

4 IType[] parameterTypes = function.getType().getParameterTypes();

5 IASTInitializerClause[] arguments = functionCall.getArguments();

6 for (int i = 0; i < parameterTypes.length && i < arguments.length; i++) {

7 String from = getTypeStringFromExpressionElement(arguments[i]);

8 String to = parameterTypes[i].toString();

9 analyseLossy(from, to, expression);

10 }

11 }

Listing 22: The AvoidLossyConversionVisitor after our refactoring.

Quick Fix Applicability Checking Optimization

The quick fixes in the CodeAnalysator plug-in implement applicability checking to
avoid showing quick fixes to the user when they are not applicable. The applicability
checking also serves the purpose to verify the reported rule violation, in case the
quick fix got out-of-sync with the checker that reported it. Now, the issue is that
in order to perform these checks a traversal of the AST is required. Also, the
CodeAnalysatorMarkerResolutionGenerator is only passed a marker from the
Eclipse environment, which requires the file to be parsed every time resolutions
for markers are retrieved. These parsing operations are relatively computationally
expensive. Eclipse requests those resolutions not only when a menu is invoked, but
as soon as the respective marker comes in to view. This results in a large number
of file parses while scrolling a file with many markers in it, leading to noticeable
lags of up to multiple seconds while scrolling.

As a temporary measure we removed the defensive applicability checking, running
the defensive checks only when applying the quick fix. Also performing applica-
bility checks only for partially applicable quick fixes. This greatly improved UI
responsiveness in files with many CodeAnalysator markers, but is still an issue for
markers with partially applicable quick fixes and still introduces lag when such
a marker is encountered. Partially applicable means, that the quick fix is only
applicable in certain cases. The code in Listing 23 shows such an example of a
marker that can be applicable or not. The rule A07-01-06 forbids the use of typedef,
but the quick fix cannot be used for typed struct. This means that the quick fix
should only be proposed in the first case as shown below.

76

1 /* A07-01-06 Quick Fix applicable */

2 typedef int someType;

3

4 /*A07-01-06 Quick Fix not applicable*/

5 typedef struct someOtherType someOtherType;

Listing 23: The Quick Fix for A07-01-06 is not always appliccable.

Any solution must remove the need for AST traversal in the applicability checking.
The AST traversal and hence the check, must be moved to somewhere where the
AST is already available, therefore the checker. Then, that information must
somehow be passed to the quick fix. We came to two possible solutions, yet both
with drawbacks.

1. The simplest solution would be to define separate problems for the applicable
and non-applicable cases, but this would result in redundant entries for the
rule, likely resulting in user confusion and error.

2. The second solution would be to pass the information over the marker using
attributes, but, in the current implementation of the Codan base classes, the
marker created when reporting a problem is not directly accessible to the
checker.

3. While researching other possible solutions we came across a discussion on
a bug report about the exact same issue: how to avoid parsing source code
in the isApplicable check in quick fixes. [Bug 309760 - [checker][quick fix]
Provide checker for name resolution problems found by indexer 2019] Among
the members of the discussion were people who developed the initial Codan
API or extended it. The solution chosen at the end was to perform the
necessary checks in the checker and to pass the information to the quick fix
by string problem arguments. The problem arguments are used as argument
for placeholders in problem messages but superfluous ones are ignored by
the formatter. The quick fix then implements the isApplicable check by
retrieving those arguments from the marker.

While this last solution is not fully semantic and seems a bit like a hack, it avoids
the above issues and is not too complex. We have therefore chosen the third
solution.

77

1 @Override

2 public int visit(IASTDeclarator decl) {

3 if (violatesRule(decl)) {

4 reportRuleForNode(decl, createContextFlagsString(decl));

5 }

6 return super.visit(decl);

7 }

8 // ...

9 private String createContextFlagsString(IASTDeclarator decl) {

10 StringBuffer contextFlagsBuffer = new StringBuffer();

11 Optional<ICPPMethod> declaredMethod = getDeclaredMethod(decl);

12 declaredMethod.ifPresent(method -> {

13 if (method.isPureVirtual()) {

14 contextFlagsBuffer.append(ContextFlagsHelper.Virtual

15 FunctionShallHaveExactlyOneSpecifierContextFlagPureVirtual);

16 }

17 if (!VirtualHelper.overridesVirtualMethod(method)

18 && method.isFinal()) {

19 contextFlagsBuffer.append(ContextFlagsHelper.Virtual

20 FunctionShallHaveExactlyOneSpecifierContextFlagIntroducingFinal);

21 }

22 });

23 return contextFlagsBuffer.toString();

24 }

Listing 24: Checker generating and passing a contextFlagsString

Most of the solution is rather straightforward. When we determine that we need
to report a node for a rule violation which has partially applicable quick fixes
we generate a string called contextFlagsString and pass it as an args to the
reportRuleForNode function, see Listing 24. The quick fix then retrieves the
contextFlagsString from the marker arguments and computes whether it is
applicable, see Listing 25. The index of the contextFlagsString and the various
context flags are defined as constants in the new class ContextFlagsHelper, see
Listing 26.

78

1 @Override

2 public boolean isApplicable(IMarker marker) {

3 if (!super.isApplicable(marker)) return false;

4

5 String contextFlagsString = getProblemArgument(marker,

6 ContextFlagsHelper.VirtualFunctionShallHaveExactlyOne

7 SpecifierContextFlagsStringIndex);

8 return !contextFlagsString.contains(ContextFlagsHelper.Virtual

9 FunctionShallHaveExactlyOneSpecifierContextFlagPureVirtual)

10 && !contextFlagsString.contains(ContextFlagsHelper.

11 VirtualFunctionShallHaveExactlyOneSpecifierContextFlagIntroducing

12 Final);

13 }

Listing 25: Quick Fix computing isApplicable by contextFlagsString

1 public class ContextFlagsHelper {

2

3 public static final int DoNotIntroduceVirtualFunctionInFinal

4 ClassContextFlagsStringIndex = 0;

5 public static final String DoNotIntroduceVirtualFunctionInFinal

6 ClassContextFlagPureVirtual = ":purevirtual";

7 public static final String DoNotIntroduceVirtualFunctionInFinal

8 ClassContextFlagIntroducingVirtual = ":introducingvirtual";

9 public static final int VirtualFunctionShallHaveExactlyOne

10 SpecifierContextFlagsStringIndex = 0;

11 public static final String VirtualFunctionShallHaveExactlyOne

12 SpecifierContextFlagPureVirtual = ":purevirtual";

13 public static final String VirtualFunctionShallHaveExactlyOne

14 SpecifierContextFlagIntroducingFinal = ":introducingfinal";

15 public static final int SwitchMustHaveAtLeastTwoCasesContext

16 FlagsStringIndex = 0;

17 public static final String SwitchMustHaveAtLeastTwoCasesContext

18 FlagTrivial = ":trivial";

19 }

Listing 26: ContextFlagsHelper containing contextFlagsString indices and
flags

79

5.3.3. Test Results after Changes

As can be read above in Section 5.3.1, the CodeAnalysator plug-in had two big
problems with performance. The first problem was that, some of the checkers used
methods that were very slow. The other problem was, that the isApplicable

checking was performed unnecessarily often. Please refer to the Section mentioned
above for details. As can be seen in Figure 5.3 the test results of the performance
measuring look a lot better than before we implemented the changes documented
in Section 5.3.2.

Conclusion of performance tests

It was definitely a good idea to run performance tests. We found out, that most of
our checkers run very fast. We were also able to fix those that did not. Look at
the screenshot in Figure 5.3 for the results of the performance tests after applying
changes. The execution time was reduced to less than one minute.

Figure 5.3.: The results of the final performance tests

In conclusion we can say that the performance of the CodeAnalysator plug-in was
measurably improved. The execution time of the code analysis was reduced by a
great amount and the scrolling no longer stutters and freezes. We consider these
tests and the resulting changes made to the plug-in a success.

5.4. Conclusion

Both the functional and performance tests led to satisfying results. Both tests
yielded a lot of opportunities to improve the plug-in. We do not claim to have
found every problem and there are probably still some mistakes and edge-cases,
that we did not consider. But our goal of making the plug-in more viable in a
real-life project was definitely achieved. Together with the other parts of this thesis,
such as the code improvement, the overall quality has been improved.

80

6. Quick Assists

During discussions of guideline rules there came up multiple ideas for quick assists
in order to quickly refactor between different versions of code fragments, based on
coding preferences. A quick assist, as opposed to the in this project more commonly
used quick fix, does not resolve a checker. Instead it can be applied without being
related to a rule. This major task consists of becoming acquainted with Eclipse
quick assists and their respective API and designing and implementing those quick
assists. The two planned quick assists for this projects are an Overrider and a
Struct/Class-Switcher. The former is supposed to be able to switch between the
virtual qualifiers (virtual, override, final). The other one is to transform a class
into a struct in one click and vice versa.

6.1. Getting Started

Since the CDT documentation is a bit lacking in this regard, we tried to find out
about quick assist from existing examples. Unfortunately though, there are not that
many existing quick assists we could draw inspiration from. In the plugins project,
there are only two such occurrences. The first is the MacroExpansionQuickAssist
in the Macronator. The other is the NamespectorQuickAssist in the Namespactor
project. Even though they both work a bit different from each other, we found out
the base structure that such a quick assist has.

81

Figure 6.1.: The general structure of a quick assist

Figure 6.1 shows a general layout of a quick assist. The central class is the quick
assist itself. Its ID field is the same that gets registered in the plugin.xml to
identify the endpoint. The method getAssits() is called when the quick assists
are loaded, for example when a user uses ctrl + 1 somewhere in a code. In this
method, a new runnable is generated. This runnable then finds the node matching
the selection and checks which proposals are applicable for the found node. The
quick assist then returns a list of proposals, which then get displayed to the user.
If the user decides to apply one of the assists, the corresponding apply function is
called. Unfortunately, this function only takes a IDocument parameter as opposed
to an ASTRewrite, which means we can only replace text instead of whole
nodes.

Solving the problem with IDocument As concluded in the previous paragraph,
with the quick assist as is, we can only replace a section in the code with a String.
This means we would have to build a String of the code we want to insert. For
the Overrider this would be doable but even there can be things like additional
spacing that could mess up the result. And for the Struct/Class-Switcher, the
problem would, of course, be even worse. After discussing it in a meeting we
decided to use refactorings. With a refactoring, we can manipulate the AST in
the same way as with a quick assist. Figure 6.2 displays the class structure of the
OverriderQuickAssist with its refactoring. The class structure for the struct/class
switcher looks the same, just with different names. Note that the refactoring can
now be called from both the quick assist menu (Ctrl + 1) but also via context
menu and refactoring menu.

82

Figure 6.2.: Diagram of the completed Overrider quick assist and refactoring

For simplicity reasons, the diagram in Figure 6.2 omits a few helper classes and in-
terfaces, that do not contribute directly to the concept of the refactoring or quick as-
sist. More specifically, the classes OverriderQickAssist, AddOverrideProposoal,
OverriderRefactoringHandler, RefactoringBase and CodeAnalysatorWizard

implement an interface from the CDT.

83

6.2. Overrider

The goal of the Overrider is to fix the virtual specifiers of a function definition.
The rules for what fixed means, is based on a discussion with Prof. Sommerlad. In
general the idea is to have only one keyword for overriding functions which should
in most cases be override. This means, if a method has more than one virtual
specifier, all of them except override are removed and override is added, if it was
not there. It can also add the override specifier to a function definition, if there was
only the virtual keyword or no keyword at all. Of course this is not supposed to
work on non-overriding functions. The Overrider first checks, whether a function
overrides another or not. Please refer to Table 6.1 for a few examples.

Before After

1 // The base class

2 class A {

3 public:

4 virtual void F() {}

5 virtual void G() {}

6 virtual void H() {}

7 virtual void I() {}

8 };

9

10 class B: public A {

11 public:

12 // No virtual keyword

13 void F{}

14 // Final keyword

15 void G final{}

16 // Virtual keyword

17 virtual void H{}

18 // Virtual and Final

19 virtual void final I(){}

20 };

1 // The base class

2 class A {

3 public:

4 virtual void F() {}

5 virtual void G() {}

6 virtual void H() {}

7 virtual void I() {}

8 };

9

10 class B: public A {

11 public:

12 // No virtual keyword

13 void F override{}

14 // Final keyword

15 void G override{}

16 // Virtual keyword

17 void H override{}

18 // Virtual and Final

19 void I override (){}

20 };

Table 6.1.: Examples of the Overrider

84

6.3. Struct/Class Switcher

The Struct/Class-Switcher enables one to switch from struct to class and the
reverse, depending on which is preferred. The only difference between a struct
and a class is in the default visibility (of inheritance and declarations). Therefore
all that has to be changed, aside from the keyword, is the visibility of the base
classes and a possible visibility label immediately at the beginning in the body.
The different cases for the switches from struct to class and the reverse are listed
in Table 6.2, respectively Table 6.3. Examples for the code before and after the
switch can be seen in Table 6.4 and Table 6.5.

Switch From/To struct class
Default Visibility public private
Base Class Specifier none (default) public

public public
protected protected
private none (default)

Immediate Visibility Label none (default) public:
public: public:
protected: protected:
private: none (default)

Table 6.2.: Struct to class switch cases

Switch From/To class struct
Default Visibility private public
Base Class Specifier none (default) private

public none (default)
protected protected
private private

Immediate Visibility Label none (default) private:
public: none (default)
protected: protected:
private: private:

Table 6.3.: Class to struct switch cases

85

From struct To class

1 struct A {

2

3 };

4

5 struct B: A {

6

7 };

8

9 struct C: public A {

10 public:

11 };

12

13 struct D: protected A {

14 protected:

15 };

16

17 struct E: private A {

18 private:

19 };

20

21 struct F: private A,

22 protected B,

23 C,

24 public D {

25 private:

26 };

1 class A {

2 public:

3 };

4

5 class B: public A {

6 public:

7 };

8

9 class C: public A {

10 public:

11 };

12

13 class D: protected A {

14 protected:

15 };

16

17 class E: A {

18

19 };

20

21 class F: A,

22 protected B,

23 public C,

24 public D {

25

26 };

Table 6.4.: Examples of switching from struct to class

86

From class To struct

1 class A {

2

3 };

4

5 class B: public A {

6 public:

7 };

8

9 class C: protected A {

10 protected:

11 };

12

13 class D: private A {

14 private:

15 };

16

17 class E: A {

18

19 };

20

21 class F: public A,

22 protected B,

23 C,

24 private D {

25 public:

26 };

1 struct A {

2 private:

3 };

4

5 struct B: A {

6

7 };

8

9 struct C: protected A {

10 protected:

11 };

12

13 struct D: private A {

14 private:

15 };

16

17 struct E: private A {

18 private:

19 };

20

21 struct F: A,

22 protected B,

23 private C,

24 private D {

25

26 };

Table 6.5.: Examples of switching from class to struct

87

7. Per-Project Guideline
Configuration

Currently, the guidelines can only be configured for the whole Eclipse workspace.
In the guideline configuration guidelines can be enabled and disabled as well as
ordered by priority. In case a rule is shared between multiple guidelines it is only
reported for the highest priority guideline. See Figure 7.1 for a screenshot of the
current guideline preferences page for the workspace.
Guidelines only being configurable on the workspace has multiple drawbacks. The
configuration page is less discoverable, as it cannot be found in the project settings.
It can also confuse users as the project and workspace settings are not consistent.
Last, but not least, it limits users to a single configuration for the whole workspace
and does not allow different priorities or even different sets of guidelines for different
projects in the same workspace.
The goal of this task is to implement per-project configuration of guidelines. For
every project it should be possible to choose whether to use workspace or project
settings. When choosing project settings it should allow the same options as in the
workspace settings.
The task consists first of getting acquainted with the current implementation of the
guideline configuration, the relevant Eclipse configuration APIs and the existing
preference pages support in ILTIS, and last devising and implementing a solution.

88

Figure 7.1.: The existing guideline preferences page for the workspace

Analysis ILTIS provides support for creating preference and property pages with
CFieldEditorPropertyAndPreferencePage. It makes it possible to create a single
page to be used for preferences and project properties. Further, it already provides
linking between preference and property page, which only needs to be configured.
Lastly, it provides a base class PropertyAndPreferenceHelper which implements
accessing the active preferences values (i.e. project preferences if use project settings
is enabled for the project, workspace preferences otherwise).
The guideline preferences page GuidelinePreferencePage already derives from
CFieldEditorPropertyAndPrefererencePage and uses PropAndPrefHelper de-

89

riving from PropertyAndPreferenceHelper. Therefore we only need to properly
register and configure the guideline preferences page as a property page to implement
the per-project configuration dialog on the user-side.
For the per-project configuration to take effect we will have to adapt the Guideline-
Preferences class to use the PropAndPrefHelper instead of using a IPreference-

Store directly. We will also need to adapt GuidelinePriorityResolver to com-
pute priority orderings for every project separately.

Solution We extended GuidelinePreferences and GuidelinePriorityResol-

ver for project preferences and registered the GuidelinePreferencesPage as
a property page for projects with the C nature. The result can be seen in
Figure 7.2. The preference query methods of GuidelinePreferences received
a new overload taking an additional IProject parameter. The interface for
GuidelinePriorityResolver did not even need to change. The main difficulty
in this task laid in maintaining state in GuidelinePreferences and Guideline-

PriorityResolver and keeping it consistent with the guideline preferences. For
example, re-computing the guideline priorities when the preference on whether to
use workspace or project settings of a project changes.
During refactoring of the solution we extracted an inner class in Guideline-

Preferences and GuidelinePriorityResolver each. The inner class is respon-
sible for managing the preferences, respectively the priorities for a single project.
GuidelinePreferences and GuidelinePriorityResolver mainly delegate calls
to the appropriate instance of the inner classes. We did so to avoid too deep
generics nesting as a result of indexing the preferences and priority orderings by
project.

90

Figure 7.2.: The guideline preferences page now for projects

Conclusion Guideline preferences can now be specified for both workspace and
projects. Each project can choose whether to use workspace settings or its own.
The ILTIS CFieldEditorPropertyAndPrefererencePage base class provides links
to navigate between the guideline preferences of the workspace and those of the
projects. Guideline preferences configuration is now more consistent and easier to
discover for the user.

91

8. Implementation of checkers and
quick fixes for further rules

Towards the end of the project we went back to our core discipline from the previous
study project, which is implementing checkers and quick fixes. Some of the checkers
and quick fixes planned for the study project have not been implemented. These
will form the base of the list of rules for this task. The rest are new AUTOSAR
rules, that we did not plan for a previous project yet[AUTOSAR 2018] [Puselja
and Vlasek 2019].

8.1. Analysis

The first thing to do in this task is to decide which checkers and quick fixes should
be implemented. Based on our experience in the previous study project, we will
divide the rules and checkers into three different difficulty degrees as displayed in
Table 8.1

Trivial Medium Complex
Checker 4 h 12 h 24 h
Quick Fix 4 h 8 h 16 h

Table 8.1.: Estimated hours per task

92

8.1.1. Possible Rules to implement

This section contains a list of all the rules that we considered for the implementation.
During analysis we created a list of all the AUTOSAR rules including those we
already implemented and those we do not consider to be feasibly implementable
in the scope of this project. Table 8.2 shows a list of all the rules we considered
possible for us to implement. However it was not the plan to implement all of them,
since there are far too many. This list can be taken as an inspiration as to which
rules would make sense to implement in the future. The last column shows whether
we implemented them or not. A detailed explanation of our implementation can
be found in Section 8.2.

Nr Rule Checker QuickFix Implemen-
ted

A0-1-2 The value returned by a function having
a non-void return type that is not an
overloaded operator shall be used.

Medium Trivial No

A2-7-1 The character shall not occur as a last
character of a C++ comment.

Medium No

A2-10-1 An identifier declared in an inner scope
shall not hide an identifier declared in
an outer scope.

Medium No

A2-11-1 Volatile keyword shall not be used. Trivial No
A2-13-1 Only those escape sequences that are

defined in ISO/IEC 14882:2014 shall be
used.

Medium No

A2-13-5 Hexadecimal constants should be upper
case.

Medium Trivial Yes

A2-13-3 Type wchar t shall not be used. Trivial No
A3-3-2 Static and thread-local objects shall be

constant-initialized.
No

A5-0-4 Pointer arithmetic shall not be used
with pointers to non-final classes.

Medium - No

A5-0-3 The declaration of objects shall contain
no more than two levels of pointer indi-
rection.

Medium - Yes

A5-1-7 A lambda shall not be an operand to
decltype or typeid.

Trivial - No

A5-2-1 dynamic cast should not be used. Trivial - Yes

93

A5-2-6 The operands of a logical&& or \\shall
be parenthesized if the operands contain
binary operators.

Medium Medium Yes

A5-10-1 A pointer to member virtual function
shall only be tested for equality withnull-
pointer-constant.

Medium - Yes

A6-2-2 Expression statements shall not be ex-
plicit calls to constructors of temporary
objects only.

Trivial - No

A6-4-1 A switch statement shall have at least
two case-clauses, distinct from the de-
fault label.

No

A6-5-2 A for loop shall contain a single loop-
counter which shall not have floating-
point type.

Medium - No

A6-5-4 For-init-statement and expression
should not perform actions other
than loop-counter initialization and
modification.

Complex - No

A7-1-9 A class, structure, or enumeration shall
not be declared in the definition of its
type.

Trivial Complex No

A7-6-1 Functions declared with the [[noreturn]]
attribute shall not return.

Complex - No

A8-4-4 Multiple output values from a function
should be returned as a struct or tuple.

Medium - No

A8-5-4 If a class has a user-declared construc-
tor that takes a parameter of type-
std::initializer list, then it shall be the
only constructor apart from specialmem-
ber function constructors

Medium - No

A11-3-1 Friend declarations shall not be used. Medium - No
A12-0-1 If a class declares a copy or move

operation, or a destructor, either
via“=default”, “=delete”, or via a user-
provided declaration, then all others
ofthese five special member functions
shall be declared as well.

Medium Medium No

94

A12-1-2 Both NSDMI and a non-static member
initializer in a constructor shall not be
used in the same type.

Complex Complex No

A12-1-4 All constructors that are callable with
a single argument of fundamental type
shall be declared explicit.

Medium - No

A12-1-6 Derived classes that do not need further
explicit initialization and require all the
constructors from the base class shall
use inheriting constructors.

Medium Medium No

A12-4-1 Destructor of a base class shall be public
virtual, public override or protected non-
virtual.

Trivial No

A12-8-7 Assignment operators should be de-
clared with the ref-qualifier &.

Medium No

A13-1-2 User defined suffixes of the user defined
literal operators shall start with under-
score followed by one or more letters.

Medium No

A13-2-1 An assignment operator shall return a
reference to “this”.

Medium No

A13-2-2 A binary arithmetic operator and a bit-
wise operator shall return a “prvalue”.

Medium No

A13-2-3 A relational operator shall return a
boolean value.

Medium No

A13-5-1 If “operator[]” is to be overloaded with
a non-const version, const version shall
also be implemented.

Medium No

A13-5-2 All user-defined conversion operators
shall be defined explicit.

Medium Yes

A13-5-5 Comparison operators shall be non-
member functions with identical param-
eter types and noexcept.

Medium No

A13-6-1 Digit sequences separators ’ shall only
be used as follows: (1) for decimal,every
3 digits, (2) for hexadecimal, every 2
digits, (3) for binary, every 4digits.

Medium No

A14-8-2 Explicit specializations of function tem-
plates shall not be used.

Medium No

95

A15-1-1 Only instances of types derived from
std::exception should be thrown.

Medium No

A15-1-2 An exception object shall not be a
pointer.

Medium No

A15-3-5 A class type exception shall be caught
by reference or const reference.

Medium Yes

A15-4-1 Dynamic exception-specification shall
not be used.

No

A18-1-1 C-style arrays shall not be used. Trivial Medium No
A18-1-2 The std::vector<bool>specialization

shall not be used.
Trivial No

A18-5-1 Functions malloc, calloc, realloc and
free shall not be used.

Medium No

A18-9-1 The std::bind shall not be used. No
A18-9-3 The std::move shall not be used on ob-

jects declared const or const&.
Medium No

A23-0-1 An iterator shall not be implicitly con-
verted to const iterator.

Medium No

A26-5-1 Pseudorandom numbers shall not be
generated using std::rand().

Trivial No

Table 8.2.: List of possible rules

8.2. New rules

The checkers and quick fixes for the rules in this section were added during this
project.

8.2.1. A02-13-05: Hexadecimal constants should be upper
case.

Rule This rule wants the developer to write hexadecimal constants in uppercase.
This leads to better readability and consistency [AUTOSAR 2018].

Analysis To implement this checker, an understanding of literal expressions is
needed. Literal expressions in C++ can be various different things such as numbers
or strings but also ’true’ and ’false’ or the this pointer[User-defined literals (since
C++11) - cppreference.com 2019]. Additionally, some literals like integers and
floating point numbers can have a prefix and a suffix. Suffixes are used to indicate

96

the type of the literal. For example a ’u’ or ’U’ at the end of a literal makes it
unsigned. For this rule the prefixes are more of interest. The prefixes indicate the
base of the literal. For example a leading zero indicates an octal literal. For this
rule a the hex prefix is more interesting though. The prefix for hex literals is 0x or
capitalized 0X [Integer literal in C/C++ (Prefixes and Suffixes) - GeeksforGeeks
2019].

Checker Implementing the checker was not very complex but some parts of the
code are done a bit inelegant. The visitor for this rule visits all expressions and only
continues if the expression is a literal expression. The next thing that needs to be
done is to decide, whether the literal is of a type that can have a hex prefix. This
sorts out a lot of cases. This is done by checking the kind of the literal. If it is either
lk integer constant or lk float constant, it might possibly be a hex literal.
After it is clear that the literal can be a hex constant, the visitor needs to verify
whether such a prefix exists. Unfortunately, the class CPPASTLiteralExpression

does not offer any functionality to find this out. Because of this, the visitor looks
at the value of the literal and checks whether the first two characters represent this
prefix. If so it is simply a matter of verifying whether the rest of the literal has
lower case letters, excluding the suffix of course. If so, the node is reported. Please
refer to Listing 27 for an example.

1 int a = 0xF20b; <--- Not OK

2 float b = 0xF20B; <--- OK

3 std::string c = "0xF20B"; <--- OK

Listing 27: A02-13-05 checker example

Quick Fix The quick fix is a lot simpler than the checker. What it needs to do
is simply take the reported literal and replace it with its uppercase version. It
does need to take into account though that the ’x’ in the prefix can be upper or
lowercase and should not change with the quick fix. Additionally, there might be a
suffix as well, which should not be capitalized. The quick fix removes the prefix
and suffix from the literal, makes the value uppercase and reattaches the prefix
and suffix. Refer to Listing 28 for a few examples.

97

1 // Before applying the quick fix.

2 float a = 0Xf20f;

3 int b = 0xF20f;

4 double c = 0xf20ful;

5

6 // After applying the quick fix

7 float a = 0XF20F;

8 int b = 0xF20F; // Kept lowercase x

9 double c = 0xF20Ful; // Kept lowercase x and suffix

Listing 28: An example of the quick fix for A02-13-05

8.2.2. A5-0-3: The declaration of objects shall contain no
more than two levels of pointer indirection.

Rule The rationale of the rule is that more than two levels of pointer indirection
may seriously impair the understandability of the code and should be avoided. The
rule applies to direct as well as indirect indirections through typedefs. Arrays are
also considered one level of pointer indirection in case they are used as function
parameters because they are converted to a pointer to the initial element of the
array. The rule generally applies to any declaration of objects. [AUTOSAR 2018,
p.85]

Analysis As we are interested in declarations of objects only, we only have to
concern ourselves with simple declarations (IASTSimpleDeclaration) and param-
eter declarations (IASTParameterDeclaration). Each object in a declaration is
introduced by a declarator (IASTDeclarator). The type of the object can be
modified by operators (IASTPointerOperator). Relevant for us are pointer op-
erators (IASTPointer) and, in the case of function parameters, array declarators
(IASTArrayDeclarator). The pointer operators are part of the declarator and
can be applied recursively. The array of operator is represented using a distinct
declarator. The base type of the objects is specified by the declaration specifier
(IASTDeclSpecifier) as part of the declaration. Types introduced through type
aliases or typedefs may consist of pointer indirection. Type alias or typedef types are
specified using named type specifiers (IASTNamedTypeSpecifier). [Declarations -
cppreference.com 2019]

Checker For this checker we visit each simple declaration and function definition.
In case of a simple declaration we iterate through each declarator and count the

98

number of pointer operators and, in the case of function parameters, the array of
operator as well, each. In case of a function definition or a function declarator in a
simple declaration we iterate through each parameter declaration and do the same.
Additionally, we test whether the declaration specifier is a named type specifier.
If so, we resolve any type aliases, then count the number of nested pointer types
(IPointerType). This count is added to each declarator count of the declaration.
If the total number of indirection for any declaration is larger than two we report
the declarator. See Listing 29 for examples violating the rule.

1 std::uint8_t ***pointer { }; // [A5-0-3]

2 using uint8_ptr = std::uint8_t *;

3 uint8_ptr **pointer2 { }; // [A5-0-3]

4 void (*func)(std::uint8_t ***pointer) { }; // [A5-0-3]

5 void (*func2)(std::uint8_t **pointer[]) { }; // [A5-0-3]

Listing 29: Examples of declarations violating rule A5-0-3

8.2.3. A05-02-01: Dynamic cast should not be used

Rule Dynamic casts are used to safely cast objects along the inheritance tree.
Unfortunately, dynamic casts are relatively slow and therefore not suitable for envi-
ronments where high performance and low memory usage are required [AUTOSAR
2018]. Refer to Listing 30 for an example of the usage of a dynamic cast.

99

1 class A {

2 public:

3 virtual void F();

4 };

5 class B: public A {

6 public:

7 void F() override {

8 }

9 };

10 void Fn(A* a) {

11 B* b { dynamic_cast<B*>(a) };

12 if (b != nullptr) {

13 // Use B class interface

14 } else {

15 // Use A class interface

16 }

17 }

Listing 30: Usage of dynamic cast. Taken from [AUTOSAR 2018]

Analysis Besides the reasons given by the rule, the usage of dynamic cast is
very often a design smell. For example would extending the hierarchy tree require
changes in places where dynamic cast was used. Usually the same behaviour can
be achieved with virtual methods. This is of course not fixable by a quick fix.
This is why we decided to implement a checker, but no quick fix for this rule
[dynamic cast conversion - cppreference.com 2019] [Gibbs and Stroustrup 2006].

Checker Every dynamic cast is represented in the AST with a ICPPASTCast-

Expression and is therefore an expression. Also this class has a method getOperator

which returns the kind of cast this is. With these tools it is possible to look at
every expression and if it is a ICPPASTCastExpression with kind dynamic cast

report it.

8.2.4. A05-02-06: The operands of a logical && or ‖ shall be
parenthesized if the operands contain binary operators.

Rule This rule helps with clarity. The order of evaluation in complicated logical
expressions is solved implicitly in C++. This can lead to confusion as it might not
be clear on first glance. This is why this rule makes the developer add parentheses

100

if the operands contain binary expressions.

Checker The checker visits all expressions and filters for binary expression that
have either the operator && or ‖ Most cases of this rule can then be covered with
the same check. A binary expression has two operands. These operands can be
different things like among others variable or another expression. Relevant for this
rule is when one or both of the operands are again binary expressions. In most
cases, this already violates the rule. That is because if there were parenthesis, the
binary expression would be wrapped in a unary expression.

1 void doSomething(int value){

2 if((value > 0) && value <3){}

3 }

Listing 31: Example of a binary expression

To visualize this, look at the code in Listing 31 and corresponding display of the
abstract syntax tree in Figure 8.1. As can be seen, the right operand of the main
binary expression has directly another binary expression as a child, while on the
left side there is a unary expresson first.

Figure 8.1.: A part of the AST for the example in Listing 31

101

Quick Fix Marked unnested binary expressions can be resolved by replacing
the corresponding subexpressions with unary expressions that in turn contain
the subexpression. It is a bit more difficult for nested subexpressions. Nested
in this context means that there are binary expressions with unbracketed binary
expressions as operands, which in turn are also binary expressions with unbracketed
binary expressions as operands. And so on. A complicated example is shown in
Listing 32.

1 void doSomething(int value){}

2 while ((value > 17 || 0 || value && 3 < value || true &&

3 value > 1000) && value > 0) {}

4 }

Listing 32:

The first problem with such cases is, that there are multiple checkers for the same
rule on the same line. For each of them, there is also a proposed quick fix. There
are now two possibilities to solve this.

1. Do not do anything special and let the user activate the quick fix for every
occurrence.

2. Traverse the AST and find the root binary expression no matter which of the
quick fixes was chosen. From there recursively parenthesize every occurrence.

Both of these approaches have advantages and disadvantages. But we think it
makes more sense to resolve all the markers, even though it means, there might
be a lot changing at once which might make it a bit harder to comprehend. Our
opinion is that it s better do to everything at once because it will also keep the
semantics of the program consistent. Look at the example in Listing 33 to see how
the example in Listing 32 was resolved.

1 void doSomething(int value){}

2 while (((((value > 17) || 0) || (value && (3 < value))) ||

3 (true && (value > 1000))) && (value > 0)) {}

4 }

Listing 33: The complicated example resolved

102

8.2.5. A5-10-1: A pointer to member virtual function shall
only be tested for equality with null-pointer-constant.

Rule The rule specifies that pointer to virtual member functions should only be
equality compared to the null-pointer constant. In general, pointer-to-members
can only be compared for equality. The rationale given for this rule is that equality
comparison of a pointer to a virtual member function with anything other than
a null-pointer constant is unspecified. [AUTOSAR 2018, p.111] [Comparison
operators - cppreference.com 2019]

Analysis Whether a pointer-to-member points to a virtual member function is not
part of its type. We will therefore have to perform some kind of data-flow analysis for
the checker to be useful. The DoNotOutliveReferenceCapturedObjectsVisitor

already does something similar and its data-flow analysis could potentially be reused.
Pointer-to-members can be initialized with the expression &C::m and we can start
the analysis from there. The type of the expression would be pointer-to-member
(ICPPPointerToMemberType and the member pointed to being of type function
(IFunction). We will then have to check if that member function is virtual. We can
resolve the name of the member in order to get a method binding (ICPPMethod).
Checking whether a method is overriding another method is already implemented in
the VirtualHelper. Relevant for this rule are comparisons of pointer-to-members.
Comparisons are binary expressions (IASTBinaryExpression). There are two
equality comparison operators: [Pointer declaration - cppreference.com 2019]
[Comparison operators - cppreference.com 2019]

• a == b: equal to (IASTBinaryExpression.op equals)

• a != b: not equal to (IASTBinaryExpression.op notequals)

Checker The checker visits all expressions and tests whether they are an pointer-
to-member initialization expression (&C::m) and that member is a virtual function.
We call such expressions an address of virtual member function expression. On
finding such an expression the checker tests if the expression is used in a comparison.
If so, and the expression is compared with something other than a null-pointer
constant, the comparison is reported. Otherwise, if the expression is used in an
assignment or initialization and the variable is of type pointer-to-member, the
variable is considered an alias. Then the above check is recursively repeated for
every expression in the translation unit where the alias is used. The alias checking
is performed with the help of the AliasHelper which was refactored and extracted
from the DoNotOutliveReferenceCapturedObjectsVisitor. See Listing 34 for
an example violating the rule.

103

1 struct A {

2 void non_virtual_func() { }

3 virtual void virtual_func() { }

4 };

5 bool Fn() noexcept

6 {

7 void (A::* virtual_func_pointer)() { &A::virtual_func };

8 return virtual_func_pointer == &A::non_virtual_func;

9 // ^-- [A5-10-1]

10 }

Listing 34: Example of comparison violating rule A5-10-1

8.2.6. A7-5-1: A function shall not return a reference or a
pointer to a parameter that is passed by reference to
const.

Rule According to this rule functions should return neither references nor pointers
to its parameters which are passed by reference to const. The reason given is that
reference to const bind to both lvalues and rvalues. Therefore the argument passed
to the function as reference to const may be a temporary object, which is destroyed
when the function ends. The reference or pointer returned by the function would
then point to an invalid object and accessing it would lead to undefined behavior.
[AUTOSAR 2018, p.147,148]

Analysis For this rule we are interested in function definitions (IASTFunction-
Definition). The return type (IType) and parameters (IParameter) of the
function may be obtained from the function binding (IFunction). References
are represented as a wrapping reference type (ICPPReferenceType). Constness is
represented as a wrapping qualifier type (IQualifierType). Pointers are repre-
sented as a pointer type (IPointerType), which also specifies constness. To track
potential references and pointers, we can use the AliasHelper, which implements
basic data-flow analysis.

Checker The checker visits all function definitions and resolves their binding. It
tests whether a function returns either a reference or a pointer. If so, it checks
each parameter passed by reference to const. If the function returns a reference,
the checker tests whether the parameter is returned directly or indirectly. If the
the function returns a pointer, the checker tests whether the the address of the

104

pointer, obtained by the address-of operator (&), is returned directly or indirectly.
In both cases, the return statement returning the value is reported. See Listing 35
for examples reported by the checker.

1 struct A {

2 };

3 A const & Fn1(A const ¶meter) noexcept

4 {

5 return parameter; // [A7-5-1]

6 }

7 using const_pointer = A const *;

8 const_pointer Fn2(A const ¶meter) noexcept

9 {

10 A const * variable { ¶meter };

11 return variable; // [A7-5-1]

12 }

Listing 35: Example of comparison violating rule A7-5-1

8.2.7. A13-05-02: All user-defined conversion operators shall
be defined explicit

Rule This rule defines that all user-defined conversion operators must be explicit.
To make an operator explicit, the explicit keyword needs to be added. This keyword
means that the operator needs to be explicitly called and cannot be called implicitly
[explicit specifier - cppreference.com 2019] [AUTOSAR 2018].

Analysis A user-defined conversion operator is a function definition. So the
checker needs to find out whether it is a function definition and if so, whether
it is explicit. A function definition can be made explicit by adding the explicit
keyword. This is what we could offer as a quick fix. We do not offer a quick fix
though, because it might break the code. If the code already used the operator in
a discouraged way, the code will not compile anymore after our quick fix.

105

1 struct A{

2 A(double value): a{value}{}

3 explicit operator double() const { return a; }

4 double a;

5 };

6

7 struct B{

8 B(double value): b{value}{}

9 operator double() const { return b; }

10 double b;

11 };

12

13 int main()

14 {

15 A a{3.141592653589793238462643383279502884197169399375105820974};

16 B b{3.141592653589793238462643383279502884197169399375105820974};

17

18 double da {a}; // <-- OK

19 double dn {b}; // <-- OK

20

21 float fa {a}; // <-- Compilation error

22 float fb {b}; // <-- Narrowing conversion but no compilation error

23

24 return 0;

25 }

Listing 36: The difference between an explicit and a non explicit conversion operator

The example in Listing 36 shows the problem with non explicit conversion operators.
The types A and B are very similar. They both have a double value and are
convertible to double. The difference is that the conversion operator of type A is
declared explicit as opposed to the one from type B, which is not declared explicit.
This leads to a compile error on line 21 where the code tries to implicitly convert
the double value of A to float. The same conversion does not result in a compilation
error for type B because it is not explicit. Instead the conversion of B to a float
value causes a data loss, which might go unnoticed. This is why user defined
conversion operators should be declared with the explicit keyword.

Checker The visitor reports a function declaration if the two following crite-
ria are met. First, the function declaration needs to be a conversion operator.

106

This can be tested by acquiring the name of declarator. If the name is of type
ICPPASTConversionName, the declarator is a conversion operator. The second
thing to check is whether the declarator is explicit. To determine this, the vis-
itor uses a helper method in ASTHelper. The declaration gets marked if it is a
conversion operator but not explicit.

8.2.8. A15-03-05: A class type exception shall be caught by
reference or const reference

Rule This rule states that class type exceptions must be caught by reference or
const reference. The problem with catching an exception by value is that slicing
might occur when a derived class is thrown but a base class is caught. [AUTOSAR
2018].

Analysis Slicing means that an object of a derived type was assigned to a variable
of its base type. This causes the part of the type that was added in the derived
class to be sliced off. This is why this checker is needed. Refer to Listing 37 for an
example.

1 catch (std::runtime_error e) {} // caught by value

2 catch (std::runtime_error & e) {} // caught by reference

Listing 37: Examples of catching a reference by value and by reference

Checker The checker needs to find all catch statements. Then, it is simply a
matter of looking at whether the exception has a ICPPASTReferenceOperator. If
so, it was caught by reference. If not, the node gets reported.

107

8.3. Existing rules

Important The checkers and quick fixes for the rules in this section were added
before this project and are therefore out of scope for this thesis. Their documenta-
tion is copied directly from the previous term proejct and were not updated for
this project [Puselja and Vlasek 2019].

8.3.1. A5-0-2: Condition of if/while/for shall be bool

Checker: The checker tests all statements and continues if they are either an
if, while, do or for statement. If so, their corresponding condition is inspected. If
the condition is a not a boolean, the statement is marked. But there are a few
exceptions. If there is a type initialization sequence, it is not marked, even though
it might be something besides bool. Also, if a type has an explicit conversion to
bool, it is ok. If not, it is marked. This is because it is contextually converted
to bool in this case. See the example below. [AUTOSAR 2018, p. 80] [Implicit
conversions - cppreference.com 2018]

Figure 8.2.: Example for A5-0-2 [AUTOSAR 2018]

1 struct A {

2 explicit operator bool() const { return false; }

3 };

4

5 struct B {

6 operator bool() const { return false; }

7 };

8

9 void F(){

10 A a{};

11 B b{};

12 if(a){} // compliant

13 if(b){} // non-compliant

14 return false;

15 }

The rule is not completely clearly specified. For example, there is a snippet in
which the following code is non-compliant.

108

Figure 8.3.: Unclear example [AUTOSAR 2018]

1 std::uint8_t u = 8;

2 bool boolean1 = false;

3 bool boolean2 = true;

4 if (u && (boolean1 <= boolean2)); // non-compliant

We assume that the problem is the conversion from u, which is a numeral, to a
boolean. This happens because the logical AND-operator needs two bool values as
operands. This conversion is implicit, which is prohibited according to the rule.
But technically the conversion happens when executing the AND-operation as
opposed to when the condition is evaluated. According to the description, this
would be compliant. But for this project we assume that the condition must not
contain any implicit bool conversions. [AUTOSAR 2018]

Quick fix: As stated in the requirements chapter, it was initially planned to
create a quick fix for this rule. Upon further research it became clear that it would
be very complicated to create a satisfying quick fix. The rule does not specify how
it should be resolved. A problem is that a quick fix might either make the code
less readable or do something that is technically correct but does not really make
sense. That is why we decided to not implement a quick fix for this rule.

Future possibilities: In the future a quick fix could be done but more time would
be needed to to analyze the rule than is available in this project.

8.3.2. A5-1-1: No magic numbers

Checker: Recognizing a literal value in the code is achieved by checking whether
an expression is a literal expression. The rule states that literal values are allowed
if they are in an initialization. By checking whether the parent of the literal
expression is an IASTInitializer, most exceptions are already found. There is one
special case though, which has to be checked separately. This special case is when
the initialization is part of a unary expression. For example, in a return or throw
statement: throw std logic error”LogicError” There is also another exception
which states that literal values are allowed when used for logging. But since there is
no reliable way to find out whether a literal value was used for logging, we decided
to leave it up to the user to suppress the warning if needed. [AUTOSAR 2018,
p. 86]

109

Quick fix: A possible fix for this problem would be to extract the literal value
into a constant or variable. This would require the user to enter a variable name.
But a quick fix is not intended to use user input. For cases like this, refactorings
should be used. Refactorings are not in the scope for this project, which is why
this is not possible. Another possibility is to generate a name from the code, but
this would lead to bad names that would have to be refactored again. That is the
reason why we decided it is best to just show the problem to the user and not
implement a quick fix.

Future possibilities: Working with this rule turned on can be tedious. In
the future it could be made configurable, which types of literal values are to be
marked and which are not. For example, true, false and nullptr are literal
expressions which most people probably don’t want to have marked every time.
This customization is realizable but lies out of the scope of this project. In a future
project, this could very well be done.

8.3.3. A5-1-2: Do not implicitly capture variables in lambda
expressions

Checker: The checker reports all lambda expressions with capture defaults. [AU-
TOSAR 2018, p. 88]

quick fix: Removes all capture defaults from lambda expressions and adds explicit
captures for all previously implicitly captured variables. We studied the cppreference
page on lambda expressions for which variables are implicitly captured when a
capture default is present. [Lambda expressions (since C++11) - cppreference.com
2018] A variable is implicitly captured by a lambda expression, if the variable
is defined outside the scope of the lambda, is potentially evaluated, cannot be
used without a capture and is not explicitly captured. The quick fix computes
implicitly captured variables by visiting all variable uses inside the body of a
lambda expression and, if the above condition holds true, adds the variable to the
implicitly captured variables. [AUTOSAR 2018, p. 88] [Lambda expressions (since
C++11) - cppreference.com 2018]

8.3.4. A5-1-3: Parameter list shall be included in lambda

Checker: The checker for this rule is a simplified version of the checker for rule
A5-1-6. It tests whether the expression is a lambda and has a declarator. If not,
there is no parameter list and the lambda is reported. [AUTOSAR 2018, p. 89]

110

Quick fix: This quick fix adds an empty declarator to the lambda expression, which
results in an empty parameter list. An empty parameter list is always correct, as an
omitted parameter list means a lambda takes no parameters. [Lambda expressions
(since C++11) - cppreference.com 2018]

8.3.5. A5-1-4: Lambda expressions shall not outlive reference
captured objects

Checker: The checker visits all lambda expressions and reports statements or
expressions which allow the lambda expression to escape, meaning potentially
allowing the lambda expression to outlive its reference captured objects. Return
statements allow lambdas to escape. Except when the lambda expression is inside
another lambda expression and the reference captured objects are still valid outside
the lambda. Assignment expressions allow lambdas to escape if the assignment
target is a global variable, a field, a reference parameter, a local variable with static
storage duration or a local variable outside the scope of a reference captured object.
Additionally, the checker performs simple alias checking. In case the value of a
lambda expression is assigned to a variable, all uses, and aliases of that variable
are recursively checked as well. [AUTOSAR 2018, p. 90]
The checker for this rule was more elaborate than our highest estimation category.
There were no specific problems or unexpected difficulties, implementing the
different escape and alias checks was simply more time-consuming than expected.
It should have been estimated with a higher amount or a higher new complexity
category.

Quick fix: There is no feasible way to implement a quick fix for this rule, as
there is no general algorithm to rewrite reference captures into copy captures while
preserving the behaviour of the code.

8.3.6. A5-1-6: Explicit lambda return type

Checker: The checker visits all expressions and checks whether it is a lambda
expression. If so, it tests whether its return type is specified explicitly or implicitly.
The return type of a lambda expression is specified implicitly, if the trailing-return-
type is omitted or if the trailing-return-type is the auto or decltype(auto) specifier.
If the return type is implicit and not void, the lambda is reported. [AUTOSAR
2018, p. 91] [Lambda expressions (since C++11) - cppreference.com 2018]

Quick fix: The quick fix creates a new lambda declarator with the lambda return
type deduced by the CDT. It then either replaces the old declarator or simply

111

inserts the new one, depending on whether the lambda already had a declarator.

8.3.7. A5-1-8: Do not nest lambda expressions

Checker: The checker visits all lambda expressions and checks whether they are
enclosed by another lambda expression inside the same function. If so, the nested
lambda expression is reported. [AUTOSAR 2018, p. 93]

Quick fix: There is no sensible way to automatically refactor a lambda expression
away.

8.3.8. A5-16-1: Do not use the ternary conditional operator as
sub-expression

Checker: The checker visits all expressions and, in the case of a ternary conditional
operator, checks whether it is used as a sub-expression. If the conditional operator
is used as a sub-expression, the conditional operator is reported. If the super
expression is a parentheses unary expression, the check is instead performed for
the parentheses expression. [AUTOSAR 2018, p. 111]

Quick fix: There is no sensible way to automatically refactor a nested expression
out.

8.3.9. A6-4-1: Switch shall have at least two cases

Checker: The checker visits all switch statements and counts the number of
case-clauses. If there are less than two case-clauses the switch statement is reported.
[AUTOSAR 2018, p. 117]

Quick fix: This quick fix turned out to have more edge cases than expected. After
a thorough study of the article on switch statements on cppreference, we came
to to the following solution. Switch statements with less than two case-clauses
can be replaced with a construct consisting of an optional init-part, an optional
if-part, an optional else-part and an optional unconditional following-part. The
quick fix is not applicable for switch statements containing statements outside of
clauses. The init-part contains a possible init-statement, a controller declaration or
in the case of no if-part, a controller expression. The if-, else- and following-parts
contain the statements of the clauses. The clauses are assigned to a part depending
on which clauses exist, whether they are fall-through and their order. Lastly, the
quick fix checks whether the replacement code declares an identifier conflicting

112

with an existing identifier in the surrounding scope. If there are no conflicts,
the quck fix replaces the switch statement with the replacement code directly,
otherwise, the switch statement is replaced with a compound statement containing
the replacement code. The following table shows how the clauses of the switch
statement are assigned to the if-, else- and following-parts. [switch statement -
cppreference.com 2018]

Case If-part Else-part Following-part
No clauses - - -
Only a default-clause - - default-clause
Only a case-clause case-clause - -
Case-clause and default-clause case-clause default-clause -
Fall-through from case to default case-clause - default-clause
Fall-through from default to case default-clause - case-clause

Table 8.3.: Assignment of clauses to if-, else- and following-parts

8.3.10. A7-1-4: The register keyword shall not be used

Checker: It is deprecated, and some compilers even ignore it. The use of the
register keyword makes the code less portable because it doesn’t work in the same
way on every machine. Also, the functionality of it is just a suggestion to the
machine to store the value in a register. Even on machines that support the keyword,
it is not guaranteed that it has any effect. The checker marks all occurrences of the
keyword. [AUTOSAR 2018, p. 129] [C++ keywords: register - cppreference.com
2018]

Quick fix: The quick fix removes the register keyword.

8.3.11. The auto specifier shall not be used

Checker: This checker visits all declarations. If a declaration is a simple declara-
tion, the checker tests whether the declaration is declared with the auto declaration
specifier and if the variables are not initialized with a function call or initializer of
non-fundamental type. If so, the declaration is reported. [AUTOSAR 2018, p. 129
] [auto specifier (since C++11) - cppreference.com 2018] [Fundamental types -
cppreference.com 2018] Otherwise, if a declaration is a function definition, the
checker tests whether the function is defined with the auto declaration specifier
and if the function is not a template function using trailing return type syntax. If

113

so, the function definition is reported. [AUTOSAR 2018, p. 129] [auto specifier
(since C++11) - cppreference.com 2018]

Quick fix: In case of a variable declaration, the quick fix iterates through all
declarators in the declaration and inserts for each declarator a new declaration
with the deduced type and declarator, before removing the auto declaration. If
the declarator is an rvalue reference declarator and the deduced type is an lvalue
reference, the declarator is changed to an lvalue reference, according to auto specifier
deduction rules. [auto specifier (since C++11) - cppreference.com 2018]
In case of a function defined with the auto keyword, the quick fix removes an
eventual trailing return type and replaces the auto declaration specifier with a
specifier of the deduced type. [auto specifier (since C++11) - cppreference.com
2018]
NOTE: Due to limitations in Eclipse CDT, declaration specifiers cannot be correctly
constructed for template instances with std::char16 t, std::char32 t, reference
(&), pointer (*), pointer to member (T::*) and enumeration non-type template
parameters, because the argument used to instantiate the template is not available.
As a fallback the template instance is constructed using the types instead of the
values as arguments. This does not compile but should be sufficient as a hint to
which arguments are required.
This quick fix took significantly longer than estimated, mainly due to two reasons.
Unexpected changes aside from replacing the auto keyword with the deduced type
(const- and volatile-qualifiers, auto&& reference being an rvalue or lvalue reference
depending on assigned value) and non-existing functionality to generate an AST
type specifier from a semantic type, requiring its implementation for this quick fix.

8.3.12. A7-1-6: The typedef specifier shall not be used

Checker: Implementation of this rule was trivial. We copied the visitor that
simply checks declarations for the keyword typedef and marks every occurrence.
[AUTOSAR 2018, p. 131]

Quick fix: The quick fix replaces the typedef with one or multiple using statements.

8.3.13. A7-2-2: Enumeration underlying base type shall be
explicitly defined

Checker: This checker visits all enumeration specifiers and reports them, if they do
not have an explicitly specified base type. [AUTOSAR 2018, p. 137] [Enumeration
declaration - cppreference.com 2018]

114

Quick fix: The quick fix has only been partially implemented, due to missing
support in CDT to insert enum base types.

Future possibilities: In the future, with added support in CDT to insert the base
type between name and enumerators, the quick fix could be completed.

8.3.14. A7-2-3: Declare enumerations as scoped enum classes

Checker: The checker visits all enumeration specifiers and reports enums which are
not scoped. [AUTOSAR 2018, p. 138] [Enumeration declaration - cppreference.com
2018]

Quick fix: A quick fix changing the enum to an enumeration class would have to
additionally change all implicit conversions from the enum to numeric values to
explicit casts and qualify all unqualified references to the enumeration values. There-
fore no quick fix has implemented. [Enumeration declaration - cppreference.com
2018]

8.3.15. A7-2-4: Initialize none, the first or all enumerators

Checker: This checker visits all enumeration specifiers and reports them, if a
single enumerator is initialized and it is not the first or if more than one enumerator
is initialized but not all. [AUTOSAR 2018, p. 139] [Enumeration declaration -
cppreference.com 2018]

Quick fix: The quick fix has only been partially implemented, due to missing
support in CDT to rewrite enumerators.

Future possibilities: In the future, with added support in CDT to rewrite enu-
merators, the quick fix could be completed.

8.3.16. A7-4-1: The asm declaration shall not be used

Checker: Using the asm keyword, it is possible to run assembler code in C++.
But this makes the code very machine dependent and is discouraged. The checker
marks every occurrence of the asm keyword. [AUTOSAR 2018, p. 142] [asm
declaration - cppreference.com 2018]

115

Quick fix: Since writing a parser that translates the assembler code into C++
would greatly exceed our time budget, we decided to not implement a quick fix for
this rule.

8.3.17. A8-5-2: Braced-initialization {}, without equals sign,
shall be used for variable initialization

Checker: This checker visits all simple declarations (variable declarations). The
checker reports non-braced-initializers in declarations unless non-braced-initialization
is required. Parentheses initialization is required when calling a constructor which
would be overshadowed by an initializer-list constructor with braces initialization.
An exception is made for auto declarations, as braced-initialization of auto variables
would violate the following rule A8-5-3. [AUTOSAR 2018, p. 170] [list initialization
(since C++11) - cppreference.com 2018] [direct initialization - cppreference.com
2018]
NOTE: The checker has not been implemented for temporary object, object with
dynamic storage duration (new-expression) and constructor member initialization,
due to time constraints and a possible constructor resolution bug in CDT.

Quick fix: The quick fix replaces constructor initializer (parentheses) with initial-
izer lists (braces) when parentheses initialization is not required. [list initialization
(since C++11) - cppreference.com 2018] [direct initialization - cppreference.com
2018]

8.3.18. A8-5-3: A variable of type auto shall not be initialized
using {} or ={} braced-initialization

Checker: There are multiple ways to initialize a variable in C++ using auto;

Figure 8.4.: Different ways of initializing an auto variable[Initialization - cpprefer-
ence.com 2018]

1 auto x1 (10); // constructor initializer

2 auto x2 = 10; // equals initializer

3 auto x3 = int{}; // typed initializer list

4 auto x4 {10}; // initializer list

5 auto x5 = {10}; // equals initializer list

116

C++ performs type deduction when initializing a variable with auto. In the first
three cases of the example the expected type will be deduced. But if an initializer
list is used, the deduced type will be initializer list. This can be confusing so if it
is used, it will be flagged. [AUTOSAR 2018, p. 173] [auto specifier (since C++11)
- cppreference.com 2018]

Quick fix: The same quick fix as for rule A7-1-5 is used. See section 8.3.11 for
more information.

8.3.19. A9-5-1: Unions shall not be used

Checker: This rule has a special exception that allows to use tagged unions before
the introduction of std::variant. It would have been very difficult to check whether
a union was used in such a way. std::variant was introduced in C++ 17, so starting
from there, it is not allowed anymore. That is why we decided not to check for this
exception. Because of this decision, the visitor was quite simple to implement. The
visitor simply searches for the keyword union and marks it if found. [AUTOSAR
2018, p. 179] [std::variant - cppreference.com 2018]

Quick fix: There is no fix for this, that will be correct in all cases. We decided
not to implement a quick fix for this rule.

8.3.20. A10-1-1: Class shall not be derived from more than
one base class which is not an interface class.

Checker: The glossary of the AUTOSAR document defines an interface class as
follows: A class is an interface class if there are only public pure virtual methods
and public static constexpr data members. Additionally there can be a virtual
destructor. The visitor looks at all the base classes and counts how many of
them are not interfaces. If that number is larger than one, the class is flagged.
[AUTOSAR 2018, p. 183]

Quick fix: There is no way to decide which classes should be removed, so we
decided to not add a quick fix.

8.3.21. A10-2-1: Do not redefine non-virtual member functions

Checker: If a non-virtual method is redefined in a derived class, the initial
function is hidden. To detect this, the base-classes of the derived class need to be
checked. This also includes classes that are multiple levels higher in the inheritance

117

tree or that are in another file. Every non-virtual member function of each base-
class is compared to the redefined function. If they are equal, the base method
is shadowed. This needs to be marked. To perform this check, there is some
additional functionality needed such as finding all base classes, finding out whether
methods override or not and so forth. This functionality is in a separate helper
class called VirtualHelper. This class is used for some other checkers as well. The
functionality of it was heavily inspired by the class OverrideIndicatorManager from
the CDT. [AUTOSAR 2018, p. 185] [OverrideIndicatorManager 2018]

Figure 8.5.: B.F() shadows A.F()

1 struct A

2 {

3 public:

4 void F() noexcept {}

5 };

6 struct B : public A

7 {

8 public:

9 void F() noexcept { } // hides F() from A

10 };

Quick fix: There is no fix for this, that will be correct in all cases. We decided
not to implement a quick fix for this rule.

8.3.22. A10-3-1: Virtual function declarations shall have
exactly one of the specifiers virtual, override or final

Checker: This rule can be violated in two ways. Either there are too many
specifiers, or there is none when there should be one. The visitor counts how many
VirtualSpecifiers are present on the declarator. Since the virtual keyword is not
contained in the VirtualSpecifiers, this needs to be checked separately by looking at
the method through the binding. If the total amount is larger than 1, the declarator
is marked. If the total amount is 0, but the function is virtual, it is marked as
well. To find out whether it is virtual, the VirtualHelper is used. [AUTOSAR 2018,
p. 186]

Quick fix: As stated in the checker section, there are multiple ways in which this
rule can be violated. Here are the different cases. The rule specifies that virtual

118

should only be used to declare new virtual methods.

1. If there is a final specifier, we assume, that it is supposed to be final. In that
case all the other specifiers are removed.

2. If there is an override and virtual specifier, and the method does override a
method in the base class, the virtual specifier is removed.

3. If a keyword is missing, but there is supposed to be one because it overrides
a method in its base class, the override keyword is added.

8.3.23. A10-3-2: Each overriding virtual function shall be
declared with the override or final specifier.

Checker: The checker checks every function that overrides another function in a
base class, whether it has one of the two virtual specifiers override and final. If it
does not have one, the declarator is flagged. A special case are destructors. If a
base class has a virtual destructor, the destructor of the derived class overrides the
base destructor, even though they have a different signature. Hence, it must have
an override keyword as well and is marked if it does not. [AUTOSAR 2018, p. 188]

Quick fix: There are two solutions for this problem. The user must choose which
one they prefer. That is why there are two quick fixes. One that adds the final
keyword and one that adds the override keyword.

8.3.24. A10-3-3: Do not introduce virtual member functions in
a final class

Checker: Since deriving from a final class is not possible, defining a method
virtual in it is inconsistent and should therefore not be done. There are two ways a
method can be virtual. [AUTOSAR 2018, p. 189]

1. The first one is straight forward when the method has the virtual keyword.
In that case the declaration is always marked when it appears inside of a final
class. The problem is, that C++ allows a few special cases. For example, it
is possible to introduce a pure-virtual final method. This member cannot be
derived from, but it is still virtual.

2. The second possibility is, when a member overrides a virtual base class
member. This cannot be recognized by traversing the AST. Instead the
helper class VirtualHelper is used again. Note that this case is already caught
by the rule A10-3-1 most of the times but it still needs to be checked, because
a user might disable the other rule.

119

Quick fix: The quick fix is only applicable if the member is not pure-virtual.
Otherwise if it is virtual because of the virtual keyword, the keyword is removed.
If it is virtual because it is overriding a virtual function, the override keyword is
replaced with the final keyword. For declarations it must be handled differently.
For example, if the function is virtual, you cannot remove the virtual keyword and
add the final keyword. That would cause a compile error, so it is not applicable.

8.3.25. A10-3-5: User defined assignment operators shall not
be virtual

Checker: It is possible to override an assignment operator of a base class A in a
derived class B. This allows to call the operator on B with an argument of type
B. This can lead to undefined behaviour. It is possible to identify a method as an
operator if the name is an instance of ICPPOperatorName. But this class does
not offer any functionality to find out what kind of operator it is. Internally the
operator is created by appending the operator (i.e. *=, = or —=) to the word
operator. That is how we check now as well. There is a list of operator names and
if it is contained in there, the operator is flagged. [AUTOSAR 2018, p. 190]

Quick fix: There is no fix for this, that will be correct in all cases. We decided to
not implement a quick fix for this rule.

8.4. Conclusion

We implemented eight new checkers and two new quick fixes during this project
which is less than we initially wanted. This is mainly due to the fact that other
parts of the project took more time than expected. But it is not too bad, since
we planned this part of the project to be some kind of buffer that can be easily
expanded or made smaller. We are still content with what we achieved and consider
the newly implemented rules to be worthy additions.

120

9. Quality Measures

The goal of this chapter is to list the different measures we took to ensure a good
quality of the project. This includes the technical report as well as the written
code.

• All checkers and quick fixes are covered with various automated tests. These
tests are run locally regularly. After each commit, they are also run on the
CI Server. This way problems are immediately recognized.

• A large part of this thesis consists of performance testing and functional testing
with a real project. This will further improve the quality and robustness of
the plugin. Using the insight from these tests, we will improve the code.

• Some parts of the code that we find to be particularly critical are created by
applying pair-programming.

121

10. Conclusion

In this chapter we will summarize what we did and achieved in the different parts
of this project. We also give a brief outlook on further work that could be done.

10.1. Retrospective

The goals of this thesis were to improve upon the CodeAnalysator plug-in and
extend the functionality with quick assists and new checkers as well as quick fixes
for further rules of the AUTOSAR guidelines. In a preceding term project we
implemented many checkers and quick fixes and gained experience with the plug-in.
Based on this experience, we started out our thesis with refactoring the code in order
to improve the architecture of the CodeAnalysator plug-in. Our main objectives
were to improve upon the many mappings in the GuidelineConflictResolver

and to simplify the large number of classes responsible for rule suppression. We
believe we were quite successful at accomplishing that. We were able to refactor the
need for many of those mappings away and split the GuidelineConflictResolver

according to its various responsibilities. We were also able to significantly reduce
the number of classes in suppression while also simplifying the suppression logic.
Together with many smaller refactorings throughout our thesis we improved the
quality of the code and the architecture of the CodeAnalysator plug-in.
Our other undertaking to improve the CodeAnalysator plug-in consisted in testing
the functionality and the performance of the plug-in on actual projects. For this
purpose we used the two open source projects LevelDB, a key-value storage library,
and Jucipp, a lightweight C++ IDE, with the projects containing from 20’000
(LevelDB) to 40’000 (Jucipp) lines of code. During the functional testing we
were able to confirm the correctness of most of our checkers and quick fixes, with
the exception of a few errors mostly resulting from not considered edge cases.
Exceptions being thrown were very rare. We fixed the errors encountered and
improved the reliability of the checker and quick fixes.
In the second part we ran performance tests. While most checkers had a negligible
running time, we discovered two major bottlenecks. Firstly, there was a group of
checkers, which took a very long time to run and accounted for the vast majority
of the running time. This bottleneck was caused by the checkers compiling related
files and accessing the AST instead of querying the index, which already contained

122

all the required information. The second bottleneck was caused by the applicability
checking of quick fixes. The checks required compiling the AST and as the checks
are run every time a problem marker comes into view, this resulted sluggish
scrolling. Fixing these two bottlenecks greatly improved the performance of the
CodeAnalysator plug-in and made it usable for realistic projects.
We are very satisfied with the improvements we were able to make and performing
the functional and performance testing was definitely worth while. While the
functional testing improved the correctness and reliability of the checkers and quick
fixes, the performance testing made them usable for realistic projects. Together
with the refactorings performed in the first task we achieved our goal of improving
the CodeAnalysator plug-in.
Following the code improvement and testing we extended the functionality of
the CodeAnalysator plug-in with two quick assists, Overrider and Struct/Class-
Switcher. The quick assists offer small refactorings to be performed, like replacing
a struct with a class definition. We were able to implement both planned quick
assists and they offer additional useful functionality for the IDE.
Another requested additional functionality was to be able to configure guideline
preferences per-project as opposed to only for the whole workspace. The reasons
behind were twofold. One, for the actual functionality of being able to configure the
preferences on a finer granularity. Two, to make the user interface more consistent
and easier discoverable. We implemented the per-project configuration and herewith
extended the functionality and improved the usability of the CodeAnalysator plug-
in.
Lastly, we implemented new checkers and quick fixes for the AUTOSAR guidelines.
With code improvement and testing being rather large tasks, the scope of new
checkers and quick fixes was smaller than in the preceding term project. Nonetheless
we extended the CodeAnalysator plug-in with additional checkers and quick fixes
and refactored some of the existing ones.
As a whole we have achieved the goals of thesis. We improved the code and
architecture of the CodeAnalysator plug-in, discovered and fixed errors in its
checkers and quick fixes, resolved performance bottlenecks and extended the plug-
ins functionality with quick assists, a per-project preferences page and new checkers
and quick fixes.

10.2. Considerations for future projects

In the respective chapters considerations for future projects have already been
mentioned. Here we will only summarize the two most significant ones. Firstly,
implementing a mono checker. Currently, one checker is run per guideline. This
results in redundancy and makes the design more complicated by requiring these

123

checkers to be coordinated. Having a single checker running all visitors would mostly
simplify the code while requiring additional code to register problems and visitors
of guidelines. Complexity, where not reduced, would be moved from run time to
initialization. Secondly, making some checkers configurable. Currently, checkers
can be either disabled or enabled but none can be configured. For some checkers
configuration would be very useful. For example A05-01-01, which disallows using
literals in general, except some hard-coded cases, could have its exceptions made
configurable, letting the user decided which kinds of literals were permissible and
which prohibited.

124

Bibliography

Gibbs, Michael and Bjarne Stroustrup (2006). Fast dynamic casting. In: Software
- Practice and Experience 36.2, pp. 139–156. issn: 00380644. doi: 10.1002/spe.
686.

AUTOSAR (2018). Guidelines for the use of the C++14 language in
critical and safety-related systems. AUTOSAR.

Deicha, Andreas and Pascal Bertschi (2018). Safe C++ Guidelines Checkers
und Quick Fixes.

Kormanyos, C.M. (2018). Real-Time C++: Efficient Object-Oriented and
Template Microcontroller Programming, Third Edition. Springer, Hei-
delberg.

MISRA C ++ : 2008 Guidelines for the use of the C ++ language in critical
systems (2018). June 2008. isbn: 9781906400033.

Puselja, Viktor and Gabriel Vlasek (2019). Safe C++ Guidelines.

C++ Core Guidelines (2019). url: https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines (visited on 06/11/2019).

C++ Operator Precedence - cppreference.com (2019). url: https://en.cppreference.
com/w/cpp/language/operator%7B%5C_%7Dprecedence (visited on 06/05/2019).

Comparison operators - cppreference.com (2019). url: https://en.cppreference.
com/w/cpp/language/operator%5C_comparison (visited on 06/05/2019).

cppit / jucipp · GitLab (2019). url: https://gitlab.com/cppit/jucipp (visited
on 05/28/2019).

dynamic cast conversion - cppreference.com (2019). url: https://en.cppreference.
com/w/cpp/language/dynamic%7B%5C_%7Dcast (visited on 06/04/2019).

125

https://doi.org/10.1002/spe.686
https://doi.org/10.1002/spe.686
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://en.cppreference.com/w/cpp/language/operator%7B%5C_%7Dprecedence
https://en.cppreference.com/w/cpp/language/operator%7B%5C_%7Dprecedence
https://en.cppreference.com/w/cpp/language/operator%5C_comparison
https://en.cppreference.com/w/cpp/language/operator%5C_comparison
https://gitlab.com/cppit/jucipp
https://en.cppreference.com/w/cpp/language/dynamic%7B%5C_%7Dcast
https://en.cppreference.com/w/cpp/language/dynamic%7B%5C_%7Dcast

explicit specifier - cppreference.com (2019). url: https://en.cppreference.com/
w/cpp/language/explicit (visited on 06/06/2019).

GitHub - ckormanyos/real-time-cpp: Real-Time C++ Companion Code (2019). url:
https://github.com/ckormanyos/real-time-cpp (visited on 05/28/2019).

GitHub - google/leveldb: LevelDB is a fast key-value storage library written at
Google that provides an ordered mapping from string keys to string values. (2019).
url: https://github.com/google/leveldb (visited on 05/28/2019).

id-Software/DOOM-3: Doom 3 GPL source release (2019). url: https://github.
com/id-Software/DOOM-3 (visited on 04/12/2019).

Integer literal in C/C++ (Prefixes and Suffixes) - GeeksforGeeks (2019). url:
https://www.geeksforgeeks.org/integer-literal-in-c-cpp-prefixes-

suffixes/ (visited on 06/03/2019).

Java Profiler - JProfiler (2019). url: https://www.ej-technologies.com/
products/jprofiler/overview.html (visited on 04/30/2019).

PeterSommerlad: Anforderungen An Studienarbeiter - (2019). url: https://wiki.
hsr.ch/PeterSommerlad/wiki.cgi?AnforderungenAnStudienarbeiter (vis-
ited on 03/05/2019).

Pointer declaration - cppreference.com (2019). url: https://en.cppreference.
com/w/cpp/language/pointer#Pointers_to_members (visited on 06/07/2019).

STAN - Structure Analysis for Java (2019). url: http://stan4j.com/ (visited
on 03/12/2019).

User-defined literals (since C++11) - cppreference.com (2019). url: https://
en.cppreference.com/w/cpp/language/user%7B%5C_%7Dliteral (visited on
06/03/2019).

asm declaration - cppreference.com (2018). url: https://en.cppreference.com/
w/cpp/language/asm (visited on 12/17/2018).

attribute specifier sequence(since C++11) - cppreference.com (2019). url: https://
en.cppreference.com/w/cpp/language/attributes (visited on 04/27/2019).

auto specifier (since C++11) - cppreference.com (2018). url: https : / / en .

cppreference.com/w/cpp/language/auto (visited on 12/17/2018).

126

https://en.cppreference.com/w/cpp/language/explicit
https://en.cppreference.com/w/cpp/language/explicit
https://github.com/ckormanyos/real-time-cpp
https://github.com/google/leveldb
https://github.com/id-Software/DOOM-3
https://github.com/id-Software/DOOM-3
https://www.geeksforgeeks.org/integer-literal-in-c-cpp-prefixes-suffixes/
https://www.geeksforgeeks.org/integer-literal-in-c-cpp-prefixes-suffixes/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
https://wiki.hsr.ch/PeterSommerlad/wiki.cgi?AnforderungenAnStudienarbeiter
https://wiki.hsr.ch/PeterSommerlad/wiki.cgi?AnforderungenAnStudienarbeiter
https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_members
https://en.cppreference.com/w/cpp/language/pointer#Pointers_to_members
http://stan4j.com/
https://en.cppreference.com/w/cpp/language/user%7B%5C_%7Dliteral
https://en.cppreference.com/w/cpp/language/user%7B%5C_%7Dliteral
https://en.cppreference.com/w/cpp/language/asm
https://en.cppreference.com/w/cpp/language/asm
https://en.cppreference.com/w/cpp/language/attributes
https://en.cppreference.com/w/cpp/language/attributes
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/auto

Statements - cppreference.com (2019). url: https://en.cppreference.com/w/
cpp/language/statements#Compound_statements (visited on 03/16/2019).

Declarations - cppreference.com (2019). url: https://en.cppreference.com/w/
cpp/language/declarations (visited on 03/16/2019).

direct initialization - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/direct%5C_initialization (visited on 12/17/2018).

Bug 309760 - [checker][quick fix] Provide checker for name resolution problems
found by indexer (2019). url: https://bugs.eclipse.org/bugs/show_bug.
cgi?id=309760 (visited on 05/04/2019).

Enumeration declaration - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/enum (visited on 12/17/2018).

Fundamental types - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/types (visited on 12/17/2018).

Implicit conversions - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/implicit%7B%5C_%7Dconversion (visited on 12/17/2018).

Initialization - cppreference.com (2018). url: https://en.cppreference.com/w/
cpp/language/initialization (visited on 12/17/2018).

Lambda expressions (since C++11) - cppreference.com (2018). url: https://en.
cppreference.com/w/cpp/language/lambda (visited on 12/17/2018).

list initialization (since C++11) - cppreference.com (2018). url: https://en.
cppreference.com/w/cpp/language/list%5C_initialization (visited on
12/17/2018).

OverrideIndicatorManager (2018). url: http://git.eclipse.org/c/cdt/

org . eclipse . cdt . git / tree / core / org . eclipse . cdt . ui / src / org /

eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=

71ed78fcbef9ef8e620ab9a2d043763981bcaeaf (visited on 11/05/2018).

C++ keywords: register - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/keyword/register (visited on 12/17/2018).

std::variant - cppreference.com (2018). url: https://en.cppreference.com/w/
cpp/utility/variant (visited on 12/17/2018).

127

https://en.cppreference.com/w/cpp/language/statements#Compound_statements
https://en.cppreference.com/w/cpp/language/statements#Compound_statements
https://en.cppreference.com/w/cpp/language/declarations
https://en.cppreference.com/w/cpp/language/declarations
https://en.cppreference.com/w/cpp/language/direct%5C_initialization
https://en.cppreference.com/w/cpp/language/direct%5C_initialization
https://bugs.eclipse.org/bugs/show_bug.cgi?id=309760
https://bugs.eclipse.org/bugs/show_bug.cgi?id=309760
https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/enum
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/types
https://en.cppreference.com/w/cpp/language/implicit%7B%5C_%7Dconversion
https://en.cppreference.com/w/cpp/language/implicit%7B%5C_%7Dconversion
https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/initialization
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/lambda
https://en.cppreference.com/w/cpp/language/list%5C_initialization
https://en.cppreference.com/w/cpp/language/list%5C_initialization
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
http://git.eclipse.org/c/cdt/org.eclipse.cdt.git/tree/core/org.eclipse.cdt.ui/src/org/eclipse/cdt/internal/ui/editor/OverrideIndicatorManager.java?id=71ed78fcbef9ef8e620ab9a2d043763981bcaeaf
https://en.cppreference.com/w/cpp/keyword/register
https://en.cppreference.com/w/cpp/keyword/register
https://en.cppreference.com/w/cpp/utility/variant
https://en.cppreference.com/w/cpp/utility/variant

switch statement - cppreference.com (2018). url: https://en.cppreference.
com/w/cpp/language/switch (visited on 12/17/2018).

128

https://en.cppreference.com/w/cpp/language/switch
https://en.cppreference.com/w/cpp/language/switch

Glossary

AUTOSAR Guidelines for the use of the C++14 language in critical and safety-
related systems [AUTOSAR 2018]. 13, 24, 132, 133

checker Checks C++ code for a given rule. 132, 137

Codan A static analysis framework in Eclipse CDT.. 6, 19, 34

CodeAnalysator Eclipse static code analysis plugin. 131

Eclipse Eclipse is an integrated development environment. 129, 131

guideline A set of rules for programming. 129

rule A single regulation of a guideline regarding a specific programming concept
or element. 129

129

Appendix

A. Developer Guide

The goal of this chapter is to provide information and guidance on how to implement
a new rule in the CodeAnalysator plug-in. It is intended to be read by developers.
Any reader should be familiar with terms like checker, visitor, marker and quick
fix. For detailed information on Eclipse plug-in development, please refer to the
ILTIS documentation. [Deicha and Bertschi 2018]
Implementing a rule can be roughly divided into the tasks checker, quick fix and
testing. These tasks are covered in the following subsections. It is not necessary to
tackle these tasks in any given order, but there are some limitations i.e. a quick fix
is not testable without a corresponding visitor.

Note In the documentation to the previous project, there already exists a de-
veloper guide, written by the same authors. Over the course of this project, we
changed the architecture of the plug-in significantly. This invalidated parts of the
existing developer guide. Therefore this chapter with an updated developer guide
exists. Some parts of the old guide are still valid and are used here again [Puselja
and Vlasek 2019].

131

A.1. Checker

This section explains how to create a checker for a given rule. In the CodeAnalysator
plug-in, there are not multiple checkers. Instead there is one checker for every
guideline with many different visitors each.

A.1.1. Visitor

This section covers the creation of a visitor.

Step 1: Register your problemId in AutosarIdHelper The problemId is used in
several places to refer to the rule. It consists of the default qualifier plus ”.problem.”
plus a name of your choosing. The name should make it easy to link to the
corresponding AUTOSAR rule. Check the snippet below for an example. See
listing 38.

1 package com.cevelop.CodeAnalysator.autosar.util;

2

3 public class AutosarIdHelper {

4 public static final String DEFAULT_QUALIFIER =

5 "com.cevelop.CodeAnalysator.autosar";

6 ...

7 public static final String ExampleProblemId =

8 DEFAULT_QUALIFIER + ".problem.example";

9 // Your new problemid

10 }

Listing 38: AutosarIdHelper

Step 2: Create the visitor This step consists of adding the visitor itself. Add a
class extending CodeAnalysatorVisitor to the visitor package of the corresponding
guideline. If the visitor is supposed to be used by multiple guidelines, put it into
the visitor.shared package in the core plug-in. Next, add the proposed constructor
and the method setShouldVisit() which should be proposed by eclipse. In
setShouldVisit() you can set the different types of nodes you want to visit. The
example in listing 39 visits all expressions. For every type you want to visit, you
need to add a visit method as well. After initialization, your visitor could look like
in Listing 39.

132

1 public class ExampleVisitor extends CodeAnalysatorVisitor{

2

3 protected ExampleVisitor(Rule rule, RuleReporter ruleReporter) {

4 super(rule, ruleReporter);

5 }

6

7 @Override

8 protected void setShouldVisit() {

9 shouldVisitExpressions = true;

10 }

11

12 @Override

13 public int visit(final IASTExpression expression) {

14 return super.visit(expression);

15 }

16 }

Listing 39: AutosarIdHelper

Step 3: Register the problem in the fragment.xml To make a rule appear in
the settings panel in eclipse, you need to register the rule in the file fragment.xml

which can be found in the root folder of the AUTOSAR bundle. You need to add
your rule to the codan.core.checkers extension point. You need to provide a
category, a severity a description, a message pattern a name and a marker type.
Additionally, you need to specify whether the rule is enabled by default. There is
also an id which refers to the problem id created in the last section. Check the
code snippet in Listing 40 to see how to format.

133

1 <extension point="org.eclipse.cdt.codan.core.checkers">

2 <checker>

3 <problem

4 category="com.cevelop.CodeAnalysator.core.autosar"

5 defaultSeverity="Warning"

6 defaultEnabled="true"

7 description="AXX-XX-XX: Example description"

8 id="com.cevelop.CodeAnalysator.autosar.problem.

9 exampleproblemid"

10 messagePattern="AXX-XX-XX: Example Message"

11 name="AXX-XX-XX: Example name"

12 markerType="com.cevelop.CodeAnalysator.core.autosar.

13 marker">

14 </problem>

15 <problem>

16 <!-- your new problem -->

17 </problem>

18 </checker>

19 </extension>

Listing 40: fragment.xml

Step 4: Add a rule to the guidelines In every fragment of the CodeAnalysator
except for the core fragment, there is a guideline class. These guidelines already
have multiple guidelines registered. To add a new one, add a new member variable
of type rule. In the constructor, use the registry to create and register the rule. You
need to pass a number, the guideline which is usually this and the problemId that
was defined in step 1. If the rule uses a visitor that is used in multiple guidelines
you should also enter a sharedID. This will enable priority checking and improve
performance. See Listing 41 for an example.

134

1 public class AutosarGuideline implements IGuideline {

2 public static Rule A02_13_05_HexValuesMustBeUppercase;

3 public static Rule A04_07_01_AvoidLossyConversions;

4 private static final String autosarSuppressTag = "autosar";

5

6 private AttributeSuppressionStrategy suppressionStrategy =

7 new AttributeSuppressionStrategy(autosarSuppressTag, "autosar");

8

9 public AutosarGuideline() {

10 RuleRegistry registry =

11 CodeAnalysatorRuntime.getDefault().getRuleRegistry();

12

13 //No shared id, used only in this guideline

14 A02_13_05_HexValuesMustBeUppercase =

15 registry.createAndRegisterRule("A2-13-5", this,

16 AutosarIdHelper.HexValuesMustBeUppercaseProblemId);

17

18 // With shared id, used in multiple guidelines

19 A04_07_01_AvoidLossyConversions = registry.createAndRegisterRule

20 ("A4-7-1", this, AutosarIdHelper.AvoidLossyConversionsProblemId,

21 CoreIdHelper.AvoidLossyConversionsSharedProblemId);

22 }

23 //...

24 }

Listing 41: fragment.xml

Step 5: Add the visitor to the checkers Every guideline has exactly one checker
in its checker package. For AUTOSAR this would for example be com.cevelop.Code-
Analysator.autosar.checker. In this class all the visitors of this guidelines are listed.
In the method initVisitor, add your newly created visitor like in Listing A.1.1.

135

1 @Override

2 protected Collection<CodeAnalysatorVisitor> createVisitors

3 (RuleReporter ruleReporter) {

4

5 Collection<CodeAnalysatorVisitor> visitors = new ArrayList<>();

6 visitors.add(new ExampleVisitor(ExampleGuideline.

7 AXX_XX_XX_Example, ruleReporter));

8 }

Listing 42: AutosarChecker.java

A.1.2. Testing

This section describes the steps to take when writing checker tests.

Step 1: Add a new test class Add a class that extends the checker test base
class for the corresponding bundle to the package com.cevelop.CodeAnalysator.X.-
tests.checker. The base class for AUTOSAR for example is AutosarCheckerTestBase.
This class does not contain the actual tests, which makes the file very short. The
only thing that needs to be done is overriding the function getRuleToCheck. In
this method, return the Rule that you created in step 4 of the create visitor tutorial
above. Look at the code in Listing A.1.2 to see an example test class.

1 public abstract class ExampleCheckerTest extends AutosarCheckerTestBase {

2

3 @Override

4 protected Rule getRuleToCheck() {

5 return AutosarGuideline.AXX_XX_XX_ExampleRule;

6 }

7 }

Listing 43: Adding the test class to the test suite

Step 2: Register the test There is a class PluginUITestSuiteAll.java in the
package com.cevelop.CodeAnalysator.autosar.tests. To add your tests to the
test suite of the plug-in, the visitor must be added to the list of test classes in this
file as is shown in Listing A.1.2.

136

1 @SuiteClasses({

2 // ...

3 ExampleCheckerTest.class,

4 // ...

5 })

Listing 44: Adding the test class to the test suite

Step 3: Add a new test rts file In the tests package, there is a folder named
resources. In the sub-folder checker, add a file with the same name as your new test
class. But instead of .java use the ending .rts. In this rts files, the actual tests
are located. They have the following structure. To begin a new test, add a line
with two slashes and an exclamation mark. Text on the same line is the title of the
test. Below this you can add different files. It is advised to add a .config file where
you can describe your settings. After that you can add a main.cpp where you can
put your C++ code. In the .config section, you can use the markerLines attribute
to say where you expect your marker to report a problem. If the reported lines and
the expected lines are the same, the test passes. You can omit the markerLines
attribute, if you want to check a case where nothing is reported. The new test file
should look similar to the example in Listing A.1.2.

1 //! Example test

2 //@.config

3 setPreferencesEval=(GUIDELINE_SETTING_ID|AUTOSAR_GUIDELINE_ID)

4 markerLines=2

5 //@main.cpp

6 /*

7 Your C++ code here

8 */

Listing 45: An example rts file

137

A.2. Quick Fix

This section explains how to add a quick fix to the plug-in. A quick fix is associated
to a visitor, but there can be multiple quick fixes per visitor. In this section it is
assumed that a corresponding checker already exists.

A.2.1. Quick Fix

This section covers the creation of a quick fix.

Step 1: Add the new quick fix Add a new quick fix class that extends BaseQuick-
Fix to the package com.cevelop.CodeAnalysator.core.quickfixes.shared if
it is a shared quick fix or to the corresponding quick fix folder in the according
guideline. This new quick fix needs a constructor that takes a String as its label.
The method handleMarkedNode is used to handle the node reported by the checker.
The method isApplicable is not mandatory but it is advised to use it. It is used
to test whether the problem can be solved by the quick fix. Your new quick fix
could look similar to the one in Listing A.2.1.

1 public class ExampleQuickFix extends BaseQuickFix {

2 public ExampleQuickFix(String label) { this.label = label; }

3

4 @Override

5 public String getLabel() {

6 return label;

7 }

8

9 @Override

10 public boolean isApplicable(IMarker marker) {

11 return super.isApplicable(marker);

12 }

13

14 @Override

15 protected void handleMarkedNode(IASTNode markedNode,

16 ASTRewrite hRewrite) {

17 }

18 }

Listing 46: An example quick fix

138

Step 2: Register the quick fix in the AutosarGuideline In the same class where
you already mapped the visitor, AutosarGuideline.java, register your new quick
fix. If you are not using AUTOSAR, register it in the according guideline mapper
of the corresponding guideline. To do this, use the rule variable that you create
before and call its method addQuickFixes as shown in Listing A.2.1. This method
takes any number of quick fixes.

1 public AutosarGuideline() {

2 // ...

3 AXX_XX_XX_SomeRule.addQuickFixes(new SomeQuickFix("AXX-XX-XX:"

4 "Fix something"));

5 // ...

6 }

Listing 47: Registering your quick fix

A.2.2. Testing

This section describes how to test quick fixes.

Step 1: Add a new test class Add a class to the quick fix folder of the desired
guideline test project that extends the quick fix base class of the corresponding
guideline. For AUTOSAR this would be AutosarQuickFixBaseTest for example.
To make it work, two methods need to be overridden. GetRuleToQuickFix()

returns the rule from the guideline and getQuickFixToTest and returns a newly
created quick fix object. The new test class should look similar to the example in
listing A.2.2.

139

1 public class SomeFixTest extends AutosarQuickFixTestBase{

2

3 @Override

4 protected Rule getRuleToQuickFix() {

5 return AutosarGuideline.XX_XX_XX_SomeRule;

6 }

7

8 @Override

9 protected IMarkerResolution getQuickFixToTest() {

10 return new SomeQuickFix("");

11 }

12 }

Listing 48: A new quick fix test class

Step 2: Register the test class in the test suite The quick fix test class needs
to be registered in the test suite in the same way as the visitor test before. See
Listing A.2.2 for an example.

1 @SuiteClasses({

2 // ...

3 ExampleQuickFixTest.class,

4 // ...

5 })

Listing 49: Adding the test class to the test suite

140

Step 3: Add a new rts file Quick fixes use .rts files to test as well. This time
the markerLines attribute can be omitted. Instead you can add a new section with
the header =. Here you can write what the code should look like after the quick
fix has been applied. The test passes, if the quick fix applied to the code in main.h
results in the code in the =-section. See the example in Listing A.2.2.

1 //! Example quick fix test

2 //@.config

3 setPreferencesEval=(GUIDELINE_SETTING_ID|AUTOSAR_GUIDELINE_ID)

4 //@main.h

5 /*

6 * C++ code before applying the quick fix

7 */

8 //=

9 /*

10 * C++ code after applying the quick fix

11 */

Listing 50: An example quick fix rts file

141

	Abstract
	Management Summary
	Introduction
	Approach
	Results
	Outlook

	Introduction
	Safe C++
	Workings of the CodeAnalysator
	Previous Work
	Project Goals

	Code Improvement
	Overview
	Guideline Mapping and Priority Resolution
	Rule Suppression
	CodeAnalysatorVisitor Type Parameter
	CodeAnalysator Visitors
	Performance Measurement
	Rule Reporting
	Rule Enablement Checking
	CodeAnalysator Checkers
	BaseQuickFix
	AttributeSuppressQuickfix
	Remove Bug Workaround
	Relation to BaseQuickFix

	Package Structure
	Checker and Quick Fix Tests
	Refactor Old Tests
	Ordering of Rules
	A6-4-1: A switch statement shall have at least two case-clauses, distinct from the default label.
	Switch statement with non-compound statement as direct child
	Surrounding compound statement
	Further errors

	A8-5-3: A variable of type auto shall not be initialized using {} or = braced-initialization.
	Conclusion
	Reflection
	Proposed Future Work

	Functional and performance testing
	Finding Suitable Test Projects
	Possible Projects
	Decision

	Functional Tests
	Sample Test Cases: jucipp
	Functional Reports Tests: jucipp
	Functional Sample Test Cases: LevelDB
	Functional Reports Test: Leveldb
	Changes Based on Functional Tests
	Conclusion of Functional Tests

	Performance Tests
	Test Results
	Changes Based on Performance Tests
	Test Results after Changes

	Conclusion

	Quick Assists
	Getting Started
	Overrider
	Struct/Class Switcher

	Per-Project Guideline Configuration
	Implementation of checkers and quick fixes for further rules
	Analysis
	Possible Rules to implement

	New rules
	A02-13-05: Hexadecimal constants should be upper case.
	A5-0-3: The declaration of objects shall contain no more than two levels of pointer indirection.
	A05-02-01: Dynamic_cast should not be used
	A05-02-06: The operands of a logical && or shall be parenthesized if the operands contain binary operators.
	A5-10-1: A pointer to member virtual function shall only be tested for equality with null-pointer-constant.
	A7-5-1: A function shall not return a reference or a pointer to a parameter that is passed by reference to const.
	A13-05-02: All user-defined conversion operators shall be defined explicit
	A15-03-05: A class type exception shall be caught by reference or const reference

	Existing rules
	A5-0-2: Condition of if/while/for shall be bool
	A5-1-1: No magic numbers
	A5-1-2: Do not implicitly capture variables in lambda expressions
	A5-1-3: Parameter list shall be included in lambda
	A5-1-4: Lambda expressions shall not outlive reference captured objects
	A5-1-6: Explicit lambda return type
	A5-1-8: Do not nest lambda expressions
	A5-16-1: Do not use the ternary conditional operator as sub-expression
	A6-4-1: Switch shall have at least two cases
	A7-1-4: The register keyword shall not be used
	The auto specifier shall not be used
	A7-1-6: The typedef specifier shall not be used
	A7-2-2: Enumeration underlying base type shall be explicitly defined
	A7-2-3: Declare enumerations as scoped enum classes
	A7-2-4: Initialize none, the first or all enumerators
	A7-4-1: The asm declaration shall not be used
	A8-5-2: Braced-initialization {}, without equals sign, shall be used for variable initialization
	A8-5-3: A variable of type auto shall not be initialized using {} or ={} braced-initialization
	A9-5-1: Unions shall not be used
	A10-1-1: Class shall not be derived from more than one base class which is not an interface class.
	A10-2-1: Do not redefine non-virtual member functions
	A10-3-1: Virtual function declarations shall have exactly one of the specifiers virtual, override or final
	A10-3-2: Each overriding virtual function shall be declared with the override or final specifier.
	A10-3-3: Do not introduce virtual member functions in a final class
	A10-3-5: User defined assignment operators shall not be virtual

	Conclusion

	Quality Measures
	Conclusion
	Retrospective
	Considerations for future projects

	Glossary
	Developer Guide
	Checker
	Visitor
	Testing

	Quick Fix
	Quick Fix
	Testing

