
UNIVERSITY OF APPLIED SCIENCES OF EASTERN

SWITZERLAND (HSR FHO)

TERM PROJECT

Service Decomposition as a Series of
Architectural Refactorings

Author:
Stefan KAPFERER

Supervisor:
Prof. Dr. Olaf

ZIMMERMANN

A project submitted in fulfillment of the requirements
for the degree of Master of Science FHO in Engineering focusing on

Information and Communication Technologies

in the

Software and Systems
Master Research Unit

August 30, 2019

iii

Declaration of Authorship
I, Stefan KAPFERER, declare that this thesis titled, “Service Decomposition as a
Series of Architectural Refactorings” and the work presented in it are my own.
I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Rapperswil, August 30, 2019

Stefan Kapferer

v

UNIVERSITY OF APPLIED SCIENCES OF
EASTERN SWITZERLAND (HSR FHO)

Abstract
Master of Science FHO in Engineering focusing on Information and

Communication Technologies

Service Decomposition as a Series of Architectural Refactorings

by Stefan KAPFERER

Decomposing a system into modules or services always has been a hard de-
sign problem. With the current trend towards microservices, this issue has
become even more relevant and challenging. Domain-driven Design (DDD)
with its Bounded Contexts provides one popular technique to decompose a
domain into multiple parts. The open source tool Context Mapper, developed
in our previous term project, offers a Domain-specific Language (DSL) for the
strategic DDD patterns. DSL and supporting tools assist architects in the pro-
cess of finding service decompositions. Context Mapper has already been used
in practice projects, which led to suggestions how to improve the DSL to fur-
ther increase its usability. Moreover, Context Mapper at present does not of-
fer any transformations or refactoring tools to improve and evolve the DDD
models. Finally, our previous work only gives very basic advice on how to
implement systems that have been modeled in Context Mapper in a (micro-)
service-oriented architectural style.

This work presents a series of Architectural Refactorings (ARs) for strate-
gic DDD models based on corresponding Decoupling Criteria (DC) collected
from literature and personal experience. These refactorings allow a software
architect to (de-)compose a domain iteratively. Aiming for a broad DC cover-
age, a set of seven ARs has been implemented. These ARs are realized as code
refactorings for the Context Mapper DSL (CML) language and support split-
ting, extracting and merging Bounded Contexts and/or Aggregates. Therefore,
DSL users are able to refactor their CML models within the provided Eclipse
plugin. A new service contract generator offers assistance how to implement
the DDD models in an (micro-)service-oriented architecture. The resulting con-
tracts are written in the Microservices Domain Specific Language (MDSL), an-
other emerging DSL for specifying service contracts.

The provided DSL with its seven ARs, implemented as model transforma-
tions, support evolving DDD-based models in an iterative way. The conducted
validation activities support our hypothesis that software architects can benefit
from such an approach and tool. Action research has been applied to improve
Context Mapper in each iteration of the prototypical implementation. Basic
case studies conducted on real world projects in the industry indicated the use-
fulness and effectiveness of the modeling language. More advanced validation
activities still have to be conducted to analyze and demonstrate the practicabil-
ity of the ARs.

vii

Acknowledgements
I want to express my gratitude to Prof. Dr. Olaf Zimmermann for sharing his
knowledge and supporting this project as a supervisor. His insight and exper-
tise greatly supported this work. As an early adopter of the Context Mapper
tool [12] he further assisted the research and validation activities during the
course of this work beyond his supervision duties.

I am also grateful to Moritz Habegger and Micha Schena for using our tool
in their thesis [19] and providing the opportunity to apply our approach as a
case study to a real-world project. Their feedback and the results of the case
study have supported our validation activities notably.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Context and Problem . 1
1.2 Vision . 1
1.3 Results . 2
1.4 Related Work . 3

2 Decomposition Criteria and Architectural Refactorings (AR) Analysis 5
2.1 Service Decomposition Criteria Overview 5
2.2 Selection of Service Decomposition Criteria 7
2.3 Selection of Architectural Refactorings (ARs) 8
2.4 Architectural Refactoring (AR) Summaries 13

3 Domain-specific Language, AR and Generator Requirements 19
3.1 Architectural Refactoring User Stories 19
3.2 Service Contract Generator User Stories 21
3.3 Non-Functional Requirements (NFRs) 21

4 Context Mapper: Design and Implementation 25
4.1 Revised Context Mapper DSL (CML) Syntax 25
4.2 Architectural Refactorings (ARs) Design and Concepts 36
4.3 Service Contract Generation . 58

5 Summary, Evaluation and Conclusion 63
5.1 Results and Contributions . 63
5.2 Evaluation via Prototyping, Action Research and Case Studies . . 64
5.3 Validation of Requirements . 64
5.4 Conclusion and Future Work . 68

A Complete AR Examples in Context Mapper DSL (CML) 69
A.1 AR-1: Split Aggregate by Entities 69
A.2 AR-2: Split Bounded Context by Use Cases 71
A.3 AR-3: Split Bounded Context by Owner 74
A.4 AR-4: Extract Aggregates by Volatility 76
A.5 AR-5: Extract Aggregates by Cohesion 78
A.6 AR-6: Merge Aggregates . 80
A.7 AR-7: Merge Bounded Contexts . 83

x

B Revised CML Language Reference 87
B.1 Language Design . 87
B.2 Terminals . 87
B.3 Root Rule . 88
B.4 Context Map . 88
B.5 Bounded Context . 94
B.6 Domain and Subdomains . 96
B.7 Use Cases . 98
B.8 Domain Vision Statement . 98
B.9 Partnership . 99
B.10 Shared Kernel . 101
B.11 Customer-Supplier . 102
B.12 Conformist . 107
B.13 Open Host Service . 108
B.14 Anticorruption Layer . 109
B.15 Published Language . 109
B.16 Responsibility Layers . 110
B.17 Knowledge Level . 111
B.18 Aggregate . 112
B.19 Complete CML Grammar . 114

List of Figures 115

List of Tables 117

List of Abbreviations 119

Bibliography 121

1

Chapter 1

Introduction

1.1 Context and Problem

The Context Mapper DSL (CML) language [12] developed in our previous
project [20] provides a modeling tool based on the strategic Domain-driven De-
sign (DDD) patterns. With its bounded contexts1 and context maps1, DDD of-
fers a popular approach to model service decompositions. The Domain-specific
Language (DSL) implemented in the Context Mapper tool is meant to provide
a foundation for service decomposition based on this DDD approach. How-
ever, by applying action research, conducting case studies, and using the tool
as part of an application architecture exercise lesson at our university [20] we
evaluated the tool and detected possible improvements within the grammar of
the language. In addition, the tool currently only allows describing a certain
state of a systems architecture. There is no tool support to evolve and improve
the architecture iteratively. Changes to the models must be realized manually.
Furthermore, the tool does not address the question how the DDD-based mod-
els can be realized in an (micro-)service-oriented architecture. To support soft-
ware architects in evolving and implementing architectures modeled in CML
the tool must therefore be improved.

1.2 Vision

Since we believe that DDD context maps and the architectures they describe are
artifacts which evolve and change over time, we hypothesize that architects can
benefit from a tool such as Context Mapper which supports the creation and
evolution of DDD-based models in a formal and expressive way. However, the
tool does currently only support the creation of such models but not evolving
them with provided transformations. With this project we propose a series of
Architectural Refactorings (ARs) [43] based on decomposition and coupling crite-
ria collected from the literature and our own software engineering experience.
The DSL concept offers the possibility to implement these ARs as code refactor-
ings for the CML language. These refactorings support architects in evolving
and improving the decomposition of a systems architecture in an iterative way.
As part of this project we provide a set of AR implementations for the Context
Mapper tool as a “proof of concept”. Other refactorings may be implemented

1Please note that the DDD terms and patterns will be used throughout this paper without a
re-introduction. For an introduction to the Context Mapper and DDD concepts we refer to our
previous work [20] and the DDD literature [15, 16, 41].

2 Chapter 1. Introduction

in the future to extend the possibilities of the tool. In our own previous work
[21] we have shown how such refactorings for DSLs can be implemented.

In addition to the ARs as the main objective of this project we present a
“proof of concept” for a (micro-)service contract generator using the Microser-
vices Domain-Specific Language (MDSL) [42]. The generator shall support ar-
chitects in realizing the modeled systems and produces service contracts out
of DDD context maps automatically. In this way we answer the question how
DDD-based models with its bounded contexts can be implemented in a mi-
croservice architecture which has not been clearly answered yet.

In summary, the goals of this project are to improve existing grammar is-
sues, analyze the criteria to be used to decompose a system, implement at least
four ARs within the Context Mapper tool [12], realize a first “proof of con-
cept” for a service contract generator and provide CML examples for the im-
plemented ARs [22].

1.3 Results

Based on existing literature, the criteria catalog provided by Service Cutter [17],
and our own professional experience [8, 23] we have selected a set of Decom-
position Criteria (DCs). Based on these DCs we derived seven ARs. Chapter 2
will explain our selection process and the criteria for the selection of the DCs
and ARs in detail. As a prototype we implemented these seven ARs as code
refactorings on the basis of CML in our Context Mapper tool [12]. Figure 1.1
provides an overview of the selected and implemented ARs.

FIGURE 1.1: The implemented ARs organized by decomposition
vs. composition and their operations split, extract, and merge.

With this set of ARs we aim for a broad coverage of coupling and decomposi-
tion criteria. The selection further allows to decompose (split and extract ARs)
and compose (merge ARs) existing context maps modeled in CML.

Besides the ARs as the main result of this work, the CML language has been
improved in order to achieve a better usability. In addition, the service con-
tract generator implementation provides a suggestion how a (micro-)service-
oriented architectural style can be derived from strategic DDD models. With
this transformation a software architect is able to generate service contracts
written in the MDSL language [42]2.

2MDSL leverages Microservice API Patterns (MAP) [44] as language constructs.

1.4. Related Work 3

1.4 Related Work

Regarding the decomposition of software systems and the criteria to be used
for this complex issue many research papers already exist. D. L. Parnas [31]
presented one of the first papers regarding this topic many years ago. How-
ever, with this project we have not conducted a complete literature review,
since the Service Cutter project [17] already presents a coupling criteria catalog
[18] based on the available literature. In addition to this catalog and our own
experience [8, 23] we consulted DDD-based, mostly gray, literature regarding
the question how bounded contexts can be identified. We discuss these sources
below. In Chapter 2 we will describe how we derived the ARs based on the cri-
teria collected in the mentioned literature.

Brandolini [4] illustrates how context maps can evolve by splitting the ini-
tial problem domain iteratively. Based on his example, we created a ”proof
of concept“ for an AR on our CML language [21]. With his example ”same
term, different meaning“ he refers to the language as natural boundary between
contexts. With ”same concept, different use“ he suggests to respect different use
cases to find bounded contexts. He further introduced event storming [3, 9], a
workshop-based technique to analyze a domain and discover bounded con-
texts.

Tune and Millett [39] describe how bounded contexts can be discovered
using use cases and other domain heuristics such as language, domain expert
boundaries, business process steps, dataflow, or ownership. They emphasize
the importance of coevolving organizational and technical boundaries. The fact
that the structure and architecture of a system reflects the organizational struc-
tures of a company is widely known as Conway’s law [13]. Tigges [29] also pre-
sented a set of criteria to be considered to break down a domain into bounded
contexts: domain objects and their relations, use cases, processes, workflows,
quality goals, non-functional requirements and organizational aspects.

Plöd [33] calls the linguistic and model differences between parts of a sys-
tem the primary drivers for the identification of bounded contexts. He further
emphasizes the organization around business capabilities [25], decentralized
governance and evolutionary design as microservice characteristics which suit
the idea behind bounded contexts. Steinegger et al. [37] further mention the
importance of decomposing a system in several iterations, which supports our
hypothesis that a DDD context map should evolve iteratively.

All of the already mentioned authors aim to support DDD adopters and
practitioners in decomposing systems and identifying bounded contexts. They
provide criteria to be used for decomposing systems and are therefore comple-
mentary. However, besides the criteria to be used they mainly provide prac-
tical advice but do not describe concrete and structured procedures how the
decomposition shall be done. Gysel et al. [17] and Tyszberowicz et al. [40] in
comparison, propose structured approaches. Tyszberowicz et al. [40] illustrate
an approach to identify microservices using functional decomposition which
is based on use cases. Gysel et al. [17] implemented a structured approach,
namely Service Cutter, based on graph clustering algorithms and a scoring sys-
tem which uses their coupling criteria catalog.

In summary, all the mentioned literature and approaches tackle the prob-
lem how to decompose software systems. Therefore they contribute solutions

4 Chapter 1. Introduction

for the same main problem discussed in our work. However, the mentioned
DDD-based approaches work with practices, especially context mapping, which
are done manually by practitioners today. With our work we aim to answer
the question whether these practitioners can benefit from tool-support for this
practices or not. The existing practical advises and the criteria itself are not
sufficient and not concrete enough to be implemented within such a tool. With
our work we derive concrete transformation proposals in the form of ARs from
the existing practices and criteria to be used for the decomposition of software
systems. These transformations can then be implemented in a modeling tool
such as Context Mapper [12].

5

Chapter 2

Decomposition Criteria and
Architectural Refactorings (AR)
Analysis

This chapter presents our analysis and selection of the criteria to be used to de-
rive service decompositions. Based on these Decomposition Criteria (DCs) we
derived a set of Architectural Refactorings (ARs). The chapter further explains
how the DCs and ARs were selected for the implementation of our prototype
in the Context Mapper [12] tool.

2.1 Service Decomposition Criteria Overview

Gysel et al. [17] present a catalog of coupling criteria for service decomposition
distilled from the literature and industry experience. To select the decomposi-
tion criteria for our ARs, we first elaborated the criteria known from our own
professional experience in a brainstorming.

FIGURE 2.1: Decomposition Criteria (DC) «Brainstorming»

6 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

We additionally added the criterion from D. L. Parnas [31]. In a second step we
compared our results with the catalog of Gysel et al. [17] which we used as our
main source, since they already conducted an extensive literature review on
this topic. Figure 2.1 illustrates the result of the brainstorming with the added
criteria from Service Cutter [17] mapped to our own input. The complete crite-
ria catalog of Service Cutter can also be found online1. The criteria we acquired
from our own experience (brainstorming) were the following:

• Business entities and objects of the problem domain

• Use cases (data accessed by same use cases)

• Different business areas and development teams

• Existing services (decomposition is affected by legacy systems)

• Separation of input/output and processing (business) logic

• Separation of core domain and technical code

We further added the following criterion from D. L. Parnas original paper On
the criteria to be used in decomposing systems into modules [31]:

• Decomposition by design decisions which are likely to change (isolate
things which change often)

Together with the coupling criteria catalog of Gysel et al. [17] and our own
input we derived the following list of DCs illustrated by Table 2.1. The table
further maps our DCs to Service Cutters coupling criteria.

TABLE 2.1: Decomposition Criteria (DC) Overview

DC Name Description Source Corresponding
criteria from
Gysel et al.
[17]

DC-1 Business
entities

Entities/Objects and
attributes which be-
long together accord-
ing to problem do-
main.

Personal
experience
& Gysel et
al. [17]

Identity and
lifecycle com-
monality

DC-2 Use cases Entities/Objects and
attributes which are
accessed by the same
use cases.

Personal
experience
& Gysel et
al. [17]

Semantic
Proximity

DC-3 Business
areas &
devel-
opment
teams

Data belong to a same
business area or are
managed by the same
development team.

Personal
experience
& Gysel et
al. [17]

Shared Owner

1https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria

2.2. Selection of Service Decomposition Criteria 7

TABLE 2.1: Decomposition Criteria (DC) Overview (continued)

DC Name Description Source Corresponding
criteria from
Gysel et al.
[17]

DC-4 Existing
services

Data are coupled due
to already existing
legacy system which
is hard to change.

Personal
experience
& Gysel et
al. [17]

Predefined
Service Con-
straint

DC-5 Input /
Output
vs. busi-
ness logic

Processing or busi-
ness logic is often
separated from in-
put/output code.

Personal
experience

Not covered

DC-6 Business
vs. tech-
nical
code sep-
aration

Separation of core
business logic and
technical code.

Personal
experience

Not covered

DC-7 Likelihood
for
change

Isolate things which
are likely to change.

D. L. Par-
nas [31]

Structural
Volatility,
Content
Volatility

DC-8 Mutability Systems exchanging
immutable objects are
typically less coupled.

Gysel et al.
[17]

Mutability

DC-9 Storage
similarity

Data have to be
stored in same stor-
age.

Gysel et al.
[17]

Storage Simi-
larity

DC-10 Availability Data which must pro-
vide similar availabil-
ity characteristics.

Gysel et al.
[17]

Availability
Criticality

DC-11 Consistency Data which must pro-
vide similar consis-
tency characteristics.

Gysel et al.
[17]

Consistenty
Criticality,
Consistency
Constraint

DC-12 Security Data which must pro-
vide similar security
characteristics.

Gysel et al.
[17]

Security Con-
textuality, Se-
curity Criti-
cality, Security
Constraint

2.2 Selection of Service Decomposition Criteria

Since the scope of the project and the amount of ARs implemented in the pro-
totype had to be limited, we had to select a set of DCs from which we then
derived ARs. The selection of the DCs has been done on the basis of the fol-
lowing selection criteria:

8 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

1. Relevance in practice: Choose criteria which are relevant for all software
projects first and not only in specific contexts.

2. Representativeness: Prefer criteria which appeared in both, our own expe-
rience and in the criteria catalog of Gysel et al. [17] (multiple sources).

3. Generality: If the selected criteria are used for ARs, others can be used and
implemented in a similar way.

Since our goal was to select five to seven ARs we decided to first select
five DCs based on the criteria above. DC-1: business entities and DC-2: use
cases are criteria which are very relevent in mostly every software project in
practice (1). In addition both criteria are covered by our own considerations
and Gysel et al. [17] (2). Other criteria such as DC-4: existing services are similar
to the already mentioned DC-1 and DC-2 in terms of implementation. The
criteria DC-8: Mutability, DC-9: Storage similarity, DC-10: availability, DC-11:
consistency and DC-12: security are all concerning some specific Non-Functional
Requirement (NFR) and we decided to derive a generalized DC and later a
generalized AR for such cases. Based on this analysis and the selection criteria
above we selected the following five DCs as foundation for the ARs:

1. DC-1: Business entities

2. DC-2: Use cases

3. DC-3: Business areas & development teams

4. DC-7: Likelihood for change

5. DC-{8-12}: Generalized non-functional requirement (NFR)

• Generalized from DC-8, DC-9, DC-10, DC-11 and DC-12

Based these DCs the next section will explain how we derived and selected
corresponding ARs.

2.3 Selection of Architectural Refactorings (ARs)

This section presents all candidates for ARs we determined by using the De-
composition Criteria (DC) from Section 2.2 above, the context mapping ap-
proaches of Brandolini [4], and ideas for structural transformations on the Con-
text Mapper [12] DSL language itself.

2.3.1 AR Selection Criteria

To limit the amount of ARs for the prototype and the scope of this project we
have defined the following selection criteria:

1. Coupling Criteria Coverage: The selected five coupling criteria in Section
2.2 must be covered.

2. Implementation Generality: If the selected ARs are implemented, others can
be realized in a similar way.

2.3. Selection of Architectural Refactorings (ARs) 9

3. Operation Coverage: The selection of the ARs shall include possibly all
different operations, so that a user is able to evolve the model in different
directions. Concretely, it should not only be possible to split the model
into smaller bounded contexts and aggregates, but also to merge these
objects to decrease the granularity.

2.3.2 Implementation Approaches

In order to select ARs based on these criteria, we categorize them into differ-
ent implementation approaches. There are basically three different approaches
from the technical point of view, listed in Table 2.2. The categories are based
on different data input sources which are needed to implement the ARs. The
design and implementation costs of ARs within the same category should be
similar. By selecting at least one AR of each category we fulfill criterion (2) of
the AR selection criteria in Section 2.3.1.

TABLE 2.2: Architectural Refactoring Design Categories

AR Category Description
1 Simple «language-

based» ARs
These ARs do not need any additional input
and can be realized on the basis of the given
DSL model.

2 ARs based on criteria
added to the DSL

ARs of these category need additional infor-
mation which have to be provided by the DSL.
New language features are needed to realize
these ARs.

3 ARs based on exter-
nal user input

This category includes ARs which are based on
the given DSL and external user input. These
ARs might have higher implementation costs
since corresponding User Interfaces (UIs) must
be implemented in Eclipse.

Note that ARs of category 1 or 2 may require user input for parameters as well,
but they are given by the selection of an element such as a bounded context or
aggregate within the DSL editor. They do not require additional UIs to request
user input.

2.3.3 Operations

In the following section presenting the AR candidates we will further distin-
guish between different operations as listed in Table 2.3.

TABLE 2.3: Architectural Refactoring Operations

Operation Description
Split A split AR splits the subject (aggregate or bounded context)

into multiple objects of the same type. For example, splitting a
bounded context into multiple bounded contexts based on one
of the presented DCs. ARs of this type decompose a subject into
multiples.

10 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

TABLE 2.3: Architectural Refactoring Operations (continued)

Operation Description
Extract An extract AR creates one new element of the type of the sub-

ject (bounded contexts) and moves a set of child-elements of
the subject (aggregates) to the new object. For example, mov-
ing a set of aggregates which fulfill a specific DC from the ex-
isting bounded context into a new bounded context. ARs of
this type decompose a subject into two objects.

Merge A merge AR takes two subjects of the same type (aggregates
or bounded contexts) and merges them together to one ob-
ject. For example, merging two bounded context together into
one bounded context. ARs of this type compose two subjects
together into one.

The operation name is always part of the name of the AR and indicates the
general purpose independent of the concrete DC it uses. By selecting at least
one AR for each operation we fulfill criterion (3) of the AR selection criteria in
Section 2.3.1.

2.3.4 AR Candidates

Based on the three implementation approaches we elaborated a set of AR can-
didates. These candidates are based on the presented DCs and the first expe-
riences with the Context Mapper DSL (CML) language of the author and the
supervisor of this project. Note that the list of candidates does not claim com-
pleteness and other ARs might be suggested in the future.

Simple «language-based» ARs

First, Table 2.4 lists all refactoring candidates which operate on the language
constructs only. They do not require additional language features or external
user input.

TABLE 2.4: Simple «language-based» ARs

AR Name Parameters Description
1 Split Aggregate by

Entities (based on
DC-1: Business enti-
ties)

Reference to
aggregate

Splits an aggregate with multi-
ple entities. The AR creates one
aggregate per entity.

2 Extract Aggregate Reference to
aggregate

Removes the selected aggre-
gate from the existing bounded
context and moves it to a new
bounded context.

3 Merge Bounded
Contexts (BCs)

References
to both BCs

Merges a bounded context with
another one. The resulting con-
text contains all aggregates of
both bounded contexts.

2.3. Selection of Architectural Refactorings (ARs) 11

TABLE 2.4: Simple «language-based» ARs (continued)

AR Name Parameters Description
4 Merge Aggregates References

to both ag-
gregates

Merges an aggregate with an-
other one. The resulting aggre-
gate contains domain objects (en-
tities, value objects, etc.) of both
aggregates.

5 Extract Shared Ker-
nel to new BC

Reference
to Shared
Kernel rela-
tionship.

Given a Shared Kernel relation-
ship, this refactoring creates a
new bounded context for the
Shared Kernel and creates new
relationship declarations be-
tween the existing bounded con-
texts and the new one.

6 Split by Duplicate
Entity (inspired by
Brandolini [4] and
used in our previ-
ous work as “proof
of concept” for ARs
[21])

(Duplicate)
entity name

Splits a bounded context if it con-
tains two aggregates which both
contain an entity with the same
name. Results in two bounded
contexts each containing one of
the two entities.

ARs based on Criteria added to the DSL

The following AR candidates need additional language structures to specify
the needed input. For the ARs of this category which are part of the prototype
we will introduce the changes to the CML language in Chapter 4.

TABLE 2.5: ARs based on Criteria added to the DSL

AR Name Needed input
(DSL)

Description

7 Split Bounded Con-
text by Use Cases2

(based on DC-2: use
cases)

Aggregates
have to be
assigned to
use cases.

Splits a bounded context by
grouping those aggregates
together into one bounded
context which are used by the
same use case.

8 Split Bounded Con-
text by Owner2

(based on DC-3:
business areas & de-
velopment teams)

Aggregates
have to be as-
signed to the
owner (own-
ing team).

Splits a bounded context by
grouping those aggregates to-
gether into one bounded con-
text which are managed by the
same owner. We expect dis-
tinct ownership for this AR,
meaning that an aggregate has
exactly one owner.

2Split Bounded Contexts by Use Cases vs. Split Bounded Contexts by Owner: Note that the differ-
ence in the naming of these two ARs (singular vs. plural) highlights that an aggregate can be
used by multiple use cases but is owned by only one owner.

12 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

TABLE 2.5: ARs based on Criteria added to the DSL (continued)

AR Name Needed input
(DSL)

Description

9 Extract Aggregates
by Volatility (based
on DC-7: Likelihood
for change)

Requires in-
formation
which ag-
gregates
are likely
to change.
(volatility)

Moves all aggregates with a
certain volatility (likelihood for
change) into a new bounded
context.

ARs based on external user input

The last part of the AR candidates list in Table 2.6 shows ARs which need ad-
ditional user input not provided by the CML model.

TABLE 2.6: ARs based on External User Input

AR Name User Input Description
10 Extract Aggregates

by Cohesion (based
on DC-{8-12}: Gener-
alized NFR)

Aggregates
which shall be
extracted.

The user selects the aggregates
to form a new bounded context
manually based on any NFR
criterion. The goal of the AR is
to improve the cohesion within
the bounded contexts.

11 Change relationship
type

Specification
of the relation-
ship.

With this AR the user shall
be able to refactor the context
map, especially the relation-
ships between the bounded
contexts. The AR allows to
change the type of a specific
relationship.

2.3.5 AR Selection

Based on our AR selection criteria listed in Section 2.3.1, coupling criteria cov-
erage, implementation generality and operation coverage, we derived the following
set of seven ARs to be implemented in the prototype3:

• AR-1: Split Aggregate by Entities (#1)

• AR-2: Split Bounded Context by Use Cases (#7)

• AR-3: Split Bounded Context by Owner (#8)

• AR-4: Extract Aggregates by Volatility (#9)

• AR-5: Extract Aggregates by Cohesion (#10)

3Note that we have renumbered the selected ARs. The original numbers according to the
candidates list above are written in brackets.

2.4. Architectural Refactoring (AR) Summaries 13

• AR-6: Merge Aggregates (#4)

• AR-7: Merge Bounded Contexts (#3)

This selection of ARs fulfills our first criterion coupling criteria coverage as
illustrated in Figure 2.2. The five DCs selected in Section 2.2 are fully covered
by these ARs.

FIGURE 2.2: AR Selection by Decomposition Criteria (DC)

Note that AR-5, AR-6 and AR-7 are based on manual selections of the subjects
by the user. Thereby these ARs support the application of refactorings by any
NFRs. Whether an application of such an AR improves the architecture or not
depends on the knowledge of the user.

The selection does also fulfill our second criterion implementation generality.
As the reader may check, the selection contains ARs of all three implementation
approaches presented in Section 2.3.2. Finally, the criterion operation coverage is
fulfilled as well, since the selection contains all three operations split, extract
and merge as presented in Section 2.3.3.

2.4 Architectural Refactoring (AR) Summaries

To complete this chapter concerning the analysis of the Decomposition Criteria
(DCs) and Architectural Refactorings (ARs) this section summarizes the seven
selected ARs for our prototype. The summaries describe the context, motiva-
tion, solution and effects for each AR. Examples illustrating how the ARs work
will be presented in Chapter 4 by using CML.

2.4.1 AR-1: Split Aggregate by Entities

Context

On the level of attributes, or nanoentities in the terminology of Service Cutter
[17], it is common to group those together which belong to the same identity and
share a common lifecycle4 to form entities. On the level of business entities we
typically try to group those entities together which belong to the same part or

4https://github.com/ServiceCutter/ServiceCutter/wiki/

CC-1-Identity-and-Lifecycle-Commonality

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-1-Identity-and-Lifecycle-Commonality
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-1-Identity-and-Lifecycle-Commonality

14 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

area of the business (domain). These different areas form linguistic boundaries
and often also domain expert boundaries as explained by Tune and Millett [39].

Thereby we always aim to reduce the coupling between the entities and
increase the cohesion within the entities. The same approach can be applied
on the level of aggregates. The aggregates within one bounded context shall
be structured in a way which reduces coupling between the aggregates and
increases the cohesion within them.

Motivation

This AR can be applied if a bounded context contains an aggregate with enti-
ties which exhibit an unsatisfying cohesiveness. In such a case you may want
to split your aggregate into multiple aggregates for each entity aiming for im-
proved coupling and cohesion.

Solution and Effect

Given an aggregate with an unsatisfying cohesiveness this AR is applied to
decompose the aggregate by its entities. It splits an aggregate into multiple ag-
gregates. Each resulting aggregate will contain one of the entities and each
entity becomes an aggregate root.

Inverse ARs

AR-6: Merge Aggregates can be seen as the inverse AR as it allows to compose
aggregates together. With AR-6: Merge Aggregates a user is able to invert the
result produced by this AR.

2.4.2 AR-2: Split Bounded Context by Use Cases

Context

By decomposing a system into multiple bounded contexts we aim for loose
coupling between the bounded contexts and a high cohesion within them. One
approach to decompose a system into bounded contexts is splitting it by use
cases. This approach is mentioned by many Domain-driven Design (DDD)
experts such as Tigges [29], Plöd [33], Tune and Millett [39] or Tyszberowicz
et al. [40] regarding the question how to break down a domain into bounded
contexts. Chris Richardson further mentions use cases regarding the question
How to decompose the application into services? in his Microservice Architecture
pattern [10]. The approach further supports the single responsibility principle by
R.C. Martin et al. [26]. In the Service Cutter [17] coupling criteria catalog this
principle corresponds to the semantic proximity5 criterion.

Motivation

This AR can be used on bounded contexts containing aggregates which are in-
volved in the execution of different use cases. Splitting such a bounded context

5https://github.com/ServiceCutter/ServiceCutter/wiki/CC-2-Semantic-Proximity

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-2-Semantic-Proximity

2.4. Architectural Refactoring (AR) Summaries 15

by use cases can improve coupling and cohesion between and within bounded
contexts.

Solution and Effect

Split the bounded context into multiple bounded contexts by creating one for
each use case. The resulting bounded contexts will only contain aggregates
which are accessed by the same use case. The AR creates as many bounded
contexts as use cases exist.

Inverse ARs

AR-7: Merge Bounded Contexts can be seen as the inverse AR as it allows to com-
pose multiple bounded contexts together. With AR-7: Merge Bounded Contexts a
user is able to invert the result produced by this AR.

2.4.3 AR-3: Split Bounded Context by Owner

Context

Another approach to decompose a domain into bounded contexts besides use
cases is to build the contexts arround teams (owners). This organizational as-
pect also pointed out by many DDD experts such as Brandolini [4], Tune [28],
Plöd [33] and Tune and Millett [39] is widely known as Conway’s law [13]. Tune
[28] emphasizes that «bounded contexts decouple parts» and «parts are code and
teams». In our previous work [20] we already respected this aspect and imple-
mented the possibility to model teams in CML. Service Cutter [17] handles this
aspect with the shared owner6 criterion.

Motivation

This AR shall be applied if a bounded context contains aggregates which are
owned by different teams. Splitting a bounded context by owners can not only
improve the coupling and cohesion on a technical level, but further lead to
improvements on the organizational level. Striving for one team per bounded
context leads to clear responsibilities [33] and enables team autonomy [28].

Solution and Effect

Split the bounded context into multiple bounded contexts by creating one for
each owner/team. The application of this AR results in a context map with
only one team per bounded context. There will be as many bounded contexts
as teams exist.

Inverse ARs

As already mentioned for AR-2: Split Bounded Context by Use Cases, the inverse
AR of this one is AR-7: Merge Bounded Contexts which allows a user to invert
the changes of this refactoring.

6https://github.com/ServiceCutter/ServiceCutter/wiki/CC-3-Shared-Owner

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-3-Shared-Owner

16 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

2.4.4 AR-4: Extract Aggregates by Volatility

Context

With the paper On the criteria to be used in decomposing systems into modules D.L.
Parnas [31] presented one of the first approaches to decompose a system. This
AR is based on Parnas approach which states that we should isolate parts which
are likely to change. According to Service Cutters [17] criterion structural volatil-
ity7 we used the term volatility to name this AR.

Motivation

This AR allows to separate aggregates according to their volatility. By isolating
aggregates which are very likely to change in separate bounded contexts it is
possible to protect parts of a system from frequent changes. Hiding things
which are likely to change from others reduces the impact of revised design
decisions [31].

Solution and Effect

The AR extracts all aggregates with a specific volatility and moves them into a
new bounded context. It presumes that all aggregates have a volatility value,
rarely, normal or often, assigned in order to separate them. The result is a new
bounded context containing all aggregates with the volatility value given as
input parameter to the AR.

Inverse ARs

The changes of this AR can be reverted by using AR-7: Merge Bounded Contexts.

2.4.5 AR-5: Extract Aggregates by Cohesion

Context

Besides the already presented approaches for decomposing bounded contexts
many others based on different Decomposition Criteria (DCs) exist. As already
explained in Section 2.3.4, we derived this AR to enable architects to decom-
pose by any generalized NFR criterion. Thereby it is possible to manually select
the aggregates to be extracted aiming for improved coupling and cohesion. Ex-
amples for such DCs have already been presented within this chapter, namely
DC-8: mutability, DC-9: storage similarity, DC-10: availability, DC-11: consistency
or DC-12: security.

Motivation

This AR can be applied in cases where the user knows aggregates which shall
be extracted from a bounded context based on any NFR affecting cohesion neg-
atively. By extracting aggregates which share a certain characteristic regarding

7https://github.com/ServiceCutter/ServiceCutter/wiki/

CC-4-Structural-Volatility

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-4-Structural-Volatility
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-4-Structural-Volatility

2.4. Architectural Refactoring (AR) Summaries 17

the concerned NFR, for example regarding security, it is possible to achieve im-
proved cohesion within the bounded context.

Solution and Effect

If a subset of aggregates within a bounded context has other requirements re-
garding a specific NFR criterion as the others, extract them into a separate
bounded context. For example, if a few aggregates have other requirements
regarding security in comparison to all other aggregates, extract them from the
bounded context. The AR moves a selection of aggregates from an existing
bounded context into a new bounded context. It allows to isolate a set of ag-
gregates based on a manual selection.

Inverse ARs

Similar to the previous AR the changes of this AR can be reverted by using
AR-7: Merge Bounded Contexts.

2.4.6 AR-6: Merge Aggregates

Context

As explained for AR-1: Split Aggregate by Entities it is a common approach to
group business entities which belong to the same part or area of the business
(domain). These groups may form linguistic or domain expert boundaries [39].
This approach is typically not only applied on the higher level of bounded con-
texts but as well on aggregates which group entities. In the process of designing
a bounded context in terms of aggregates the granularity may get to high and
different aggregates contain entities which should belong together in order to
increase cohesion and reduce coupling between these aggregates.

Motivation

If the decomposition of aggregates within a bounded context is too fine-granular
and different aggregates contain entities which should belong together accord-
ing to domain experts, business capabilities [25], linguistic boundaries, or other
criteria, merging these aggregates together may improve coupling and cohe-
sion.

Solution and Effect

If two aggregates have a high coupling because their entities belong together
with respect to any criteria (for example business capabilities), merge the ag-
gregates together to reduce coupling and increase the cohesion. This AR merges
two aggregates within a bounded context together into one aggregate. There-
fore, the resulting aggregate contains all business objects (entities, value ob-
jects, etc.) of both original aggregates.

18 Chapter 2. Decomposition Criteria & Architectural Refactorings Analysis

Inverse ARs

The AR AR-1: Split Aggregate by Entities can be seen as an inverse AR to this
one as it decomposes (splits) aggregates whereas this one composes them.

2.4.7 AR-7: Merge Bounded Contexts

Context

With the decomposition of a domain into bounded contexts we aim for loose
coupling between the contexts and high cohesion within them. However, there
may be situations where the decomposition is too fine-granular and decreasing
the granularity would improve the coupling and cohesion.

Motivation

If two bounded contexts contain aggregates which belong together according
to domain experts, business capabilities [25], linguistic boundaries, or other
criteria, the coupling between them may be high. This AR can be applied in
situations where merging bounded contexts with a high coupling improves
the cohesion within the resulting bounded context and reduces the coupling
between contexts as the decomposition has become too fine-granular.

Solution and Effect

If two bounded contexts exhibit a high coupling because their aggregates be-
long together according to criteria such as business capablities [25], merge them
together to reduce coupling. This AR merges two bounded contexts together
into one bounded context. Therefore, the resulting bounded context will con-
tain all aggregates of both original bounded contexts.

Inverse ARs

The following ARs can all be seen as inverses of this AR since they decompose
bounded contexts whereas this AR composes them together:

• AR-2: Split Bounded Context by Use Cases

• AR-3: Split Bounded Context by Owner

• AR-4: Extract Aggregates by Volatility

• AR-5: Extract Aggregates by Cohesion

Within this chapter we analyzed the criteria to be used for decomposing a
domain into bounded contexts and proposed a set of Architectural Refactor-
ings (ARs) for DDD-based architecture models. These ARs allow a software
architect to evolve DDD context maps and improve the architecture iteratively.
The next chapter will discuss the requirements for our prototype implementa-
tion within the Context Mapper tool [12].

19

Chapter 3

Domain-specific Language, AR
and Generator Requirements

This chapter discusses the requirements this projects and especially the proto-
typic implementations in Context Mapper [12] have to fulfill. It presents the
functional requirements for the Architectural Refactorings (ARs) and the ser-
vice contract generator implemented during this project. In addition, it lists
the Non-Functional Requirement (NFR) for all new Context Mapper features
including changes to the Context Mapper DSL (CML).

First we will present the functional requirements for the ARs and the service
contract generator in the form of User Stories (US). All user stories [2] are based
on the “Role-Feature-Reason” template invented 2001 by a team at Connextra
in the UK [1]:

«As a <who wants to accomplish something>,
I want to <what they want to accomplish>

so that <why they want to accomplish that thing>.» [1]

3.1 Architectural Refactoring User Stories

In our previous project [20] we have already considered to implement ARs for
the CML language. The corresponding user story was defined as follows:

«As a software architect or engineer, I want to apply manual or
automatic transformations and Architectural Refactorings [7, 43] to
my model so that I can port and modernize the architecture.» [20]

A Domain-driven Design (DDD) variant of the same user story was stated as
follows:

«As a software architect or engineer, I want to apply manual or
automatic transformations and Architectural Refactorings [7, 43] to
my DDD context map so that I can decompose services (bounded
contexts) in order to decrease the coupling between them.» [20]

With the following user stories we concretize the idea behind this first AR story
based on the ARs we have selected in Chapter 2. For each AR we present a
user story illustrating the requirements from a users perspective. The first user
story US-0 highlights the general purpose and goal behind this project, namely
providing tools to support evolving a DDD context map and the corresponding
software architecture iteratively.

20 Chapter 3. Domain-specific Language, AR and Generator Requirements

3.1.1 US-0: Craft and evolve Context Maps iteratively

As a software architect or engineer, I would like to model strategic DDD context
maps rapidly and use supporting transformation tools to revise and refine the
architecture drafts, so that the DDD models can be crafted and evolved in an
agile way.

3.1.2 US-1: Split Aggregate by Entities

As a software architect or engineer, I want to split an existing aggregate by its
entities in case they do not belong together according to Decomposition Cri-
terion (DC) DC-1 and the aggregate exhibits an unsatisfying cohesion, so that
the entities are distributed to different aggregates and coupling and cohesion
of the aggregates improves.

3.1.3 US-2: Split Bounded Context by Use Cases

As a software architect or engineer, I want to split an existing bounded context
by the use cases of the aggregates, so that aggregates which are involved in
the execution of the same use cases form a bounded context and therefore the
cohesion within these bounded contexts is high while the coupling between
bounded contexts is reduced.

3.1.4 US-3: Split Bounded Context Owner

As a software architect or engineer, I want to split an existing bounded context
by the owner (team) of the aggregates, so that aggregates which are managed
by the same owner form a bounded context leading to team autonomy and
clear responsibilities and therefore the cohesion within these bounded contexts
is high while the coupling between bounded contexts is reduced.

3.1.5 US-4: Extract Aggregates by Volatility

As a software architect or engineer, I want to extract aggregates which are likely
to change into a separate bounded context, so that these aggregates are isolated
within their own component and changes are hidden from the others.

3.1.6 US-5: Extract Aggregates by Cohesion

As a software architect or engineer, I want to extract aggregates which share
a specific characteristic regarding an arbitrary DC such as DC-12: security, so
that these aggregates form a new bounded context and the cohesion within the
existing and the new bounded context is improved.

3.1.7 US-6: Merge Aggregates

As a software architect or engineer, I want to merge aggregates which have
become to fine-granular and contain entities which belong together (high cou-
pling), so that the amount of aggregates is reduced, the coupling between the
remaining aggregates is reduced, and the cohesion within the aggregates is in-
creased.

3.2. Service Contract Generator User Stories 21

3.1.8 US-7: Merge Bounded Contexts

As a software architect or engineer, I want to merge bounded contexts in situ-
ations where the decomposition is too fine-granular and the coupling between
the corresponding bounded contexts is too high, so that the amount of bounded
contexts is decreased, the coupling between contexts reduced, and the cohesion
within the merged bounded context is high.

3.2 Service Contract Generator User Stories

Besides the main topic of this project, the ARs, we also implemented a “proof
of concept” for a service contract generator as already mentioned in the intro-
duction. The following user story shall illustrate what value for the users we
expect from such a tool. With the concrete implementation explained in Chap-
ter 4 we further propose one approach how (micro-)service architectures can
be derived from DDD-based models (context maps).

3.2.1 US-8: Generate Service Contracts out of DDD Context Maps

As a software architect, I want to generate service contracts out of my CML
context maps providing suggestions how the (micro-)services and message ex-
change can be implemented, so that I can analyze which services, endpoints
and operations are needed for the concrete implementation quickly and am
supported in planning and coordinating the development of the system.

3.3 Non-Functional Requirements (NFRs)

Note that all NFRs for the Context Mapper tool [12] which have already been
defined in our previous project [20] still have to be fulfilled. Some of the NFRs
below are therefore copied from the previous project report [20].

3.3.1 Refinement of Context Mapper DSL

Through the validation of the CML language in our previous work [20] we
derived improvements regarding the syntax of the language in order to in-
crease its usability. The concrete issues were managed in our Github reposi-
tory1. However, all changes regarding the CML language implemented as part
of this project will be explained in detail in Chapter 4. The changes to the
Domain-specific Language (DSL) must conform to the following NFRs.

Quickly Writable without Redundancy

The definition of relationships on a CML context map must be easy and quickly
to write. The syntax of the definitions shall not exhibit any redundancies or
ambiguities. With the help of provided examples a user must be able to define
a new context map with three to four bounded contexts within 30 minutes.

1https://github.com/ContextMapper/context-mapper-dsl/issues

https://github.com/ContextMapper/context-mapper-dsl/issues

22 Chapter 3. Domain-specific Language, AR and Generator Requirements

Well Readable

The definitions on a context map shall be well readable. A user which is fa-
miliar with our DDD meta-model2 [20] must be able to identify corresponding
concepts and patterns on an existing CML context map within 5 minutes.

Consistent

The syntax of the DSL shall ensure that the definitions are always consistent
with our interpretation [20] of the possibilities regarding the strategic DDD
patterns. Semantic validators must be implemented to identify deviations if
needed.

Parsable by the Tool (Xtext)

The defined syntax must be realizable and easily parsable with the used lan-
guage framwork, namely Xtext [14].

«In line» with Common DDD Styles and the DDD Literature

The new syntax definitions should not deviate from common styles and under-
standing of the patterns in the DDD community and the literature. For exam-
ple if pattern name abbreviations are used, the implementation should use the
ones which are already established in the community.

3.3.2 Architectural Refactoring (AR) NFRs

The following NFRs concern the implementation of the ARs only.

Transformations must result in valid Models

All ARs implemented in the Context Mapper tool must always result in valid
models according to the grammar of CML, which is the advantage of such tools
in comparison with applying the changes manually. If a transformation leads
to conflicts or necessary changes in other parts of the CML model, the AR must
solve them automatically.

Performance

The execution of an AR must not take longer than two to three seconds at most.
The performance shall be tested with the Context Mapper example models3.

3.3.3 Common NFRs

Besides the already mentioned NFRs for the CML language and the ARs, the
following NFRs must be fulfilled for all implementations and prototypes of this
project.

2https://contextmapper.github.io/docs/language-model/
3https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.github.io/docs/language-model/
https://github.com/ContextMapper/context-mapper-examples

3.3. Non-Functional Requirements (NFRs) 23

Future-oriented Use of Tools and Frameworks

The tools and libraries used for the development of the ARs and generator tools
should be well established, open and sustainable. Libraries and frameworks
with no activity/commits during the last year should be avoided. At least be
sure that the tools can be replaced by using open and sustainable data formats
(such as XML or ECore).

Reliability

The developed tools should work reliable having no crashes and/or data losses.
To achieve these goals the tools have to be implemented in an resilient fashion
and should be tested well (Unit Tests, Integration Tests and manual User Tests).

Licences

Since the project is open source, licences such as «Apache license 2.0» and
«Eclipse Public License 1.0» are prefered. Libraries or frameworks under «Gen-
eral Public License (GPL)» must not be used.

Supportability and Maintainability

The projects code quality should be kept at a good level. Setup appropriate
tools and mechanisms to support this goal (updating master only by pull re-
quest, integrate static code analysis tools into the continuous integration pipeline).
The code should be clean and understandable, also for a Junior Software Engi-
neer. Do not use very special (not well-known) language features and create a
documentation if it is needed for more complex components.

Documentation

All new features added to the Context Mapper tool [12] shall be documented
on the project’s documentation website4.

4https://contextmapper.github.io/docs

https://contextmapper.github.io/docs

25

Chapter 4

Context Mapper: Design and
Implementation

The prototypic implementations of this project are based on the foundations
we have already realized during our last project [20] and continues the work
on the open source project Context Mapper [12]. The following sections will
first explain the changes made to the Context Mapper DSL (CML) language
followed by the design and implementation of the new features, namely the
Architectural Refactorings (ARs) and the (micro-)service contract generator.

4.1 Revised Context Mapper DSL (CML) Syntax

During the evaluation of the previous project [20] we detected a few ambigui-
ties and possible improvements within the grammar of the CML language. The
detailed feedback of the evaluators has been documented in the project report
[20]. This section documents the changes applied to the grammar in order to
improve the language according to the users feedbacks. Note that Appendix B
contains a complete and revised CML language reference explaining the cur-
rent version of the syntax.

The semantic model of the language has not changed and still corresponds
to the language version as described in [20]. The following Figure 4.1 illustrates
the Context Mapper [12] language meta-model [20] to recall the language se-
mantics based on the strategic Domain-driven Design (DDD) patterns.

However, the syntax of the bounded context relationships on the context
maps has been revised and improved to increase consistency and reduce am-
biguities. The new syntax works with abbreviations for the DDD patterns and
is therefore more compact in comparison to the previous version.

4.1.1 DDD Pattern Abbreviations

The following Table 4.1 lists all strategic DDD patterns which are used in bounded
context relationships with their abbreviation. The abbreviations OHS, PL and
ACL are used according to Vernon [41]. The abbreviation CF is chosen accord-
ing to the formal notation proposal by Plöd [27]. In line with all authors and
DDD experts we use the U for upstream and the D for downstream.

26 Chapter 4. Context Mapper: Design and Implementation

FIGURE 4.1: Context Mapper Semantic Model [12]

For the customer-supplier relationship, which is a special case of an upstream-
downstream relationship according to our interpretation, we use S (supplier)
and C (customer) respectively.

TABLE 4.1: DDD Pattern Abbreviations

Abbreviation Pattern
OHS Open Host Service
PL Published Language
ACL Anti-Corruption Layer
CF Conformist
U Upstream in upstream-downstream relationship
D Downstream in upstream-downstream relationship
S Supplier in customer-supplier relationship
C Customer in customer-supplier relationship
P Partner in a Partnership relationship

4.1. Revised Context Mapper DSL (CML) Syntax 27

TABLE 4.1: DDD Pattern Abbreviations (continued)

Abbreviation Pattern
SK Shared Kernel

4.1.2 Symmetric Bounded Context Relationships

For all relationship declarations, CML provides a “short” syntax and a longer
alternative. The “short” version for symmetric relationships uses an arrow di-
recting to the left and to the right (<->), indicating symmetry.

Partnership

Listing 1 illustrates an example of a Partnership relationship. The full example
of this and all following listings can be found in our examples repository1.

1 ContextMap {

2 contains PolicyManagementContext

3 contains RiskManagementContext

4

5 RiskManagementContext [P]<->[P] PolicyManagementContext {

6 implementationTechnology = "RabbitMQ"

7 }

8 }

LISTING 1: Partnership Relationship in “short” Syntax

The “short” syntax variant allows the brackets to be placed in front of the
bounded context name or behind. This allows different variations (listings 2, 3,
4 and 5) depending on the users preferences.

1 RiskManagementContext [P]<->[P] PolicyManagementContext

LISTING 2: Brackets: Option 1 (Right/Left)

1 [P]RiskManagementContext <-> [P]PolicyManagementContext

LISTING 3: Brackets: Option 2 (Left/Left)

1 RiskManagementContext[P] <-> PolicyManagementContext[P]

LISTING 4: Brackets: Option 3 (Right/Right)

1https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

28 Chapter 4. Context Mapper: Design and Implementation

1 [P]RiskManagementContext <-> PolicyManagementContext[P]

LISTING 5: Brackets: Option 4 (Left/Right)

As in the first CML version, a longer alternative version exists with the whole
pattern name, as shown in Listing 6.

1 RiskManagementContext Partnership PolicyManagementContext

LISTING 6: Partnership Alternative Syntax

Shared Kernel

Similar to the Partnership relationship, the Shared Kernel describes a symmet-
ric relationship. Therefore, the syntax is identical, but uses the SK abbreviation.
Listing 7 shows an example in the “short” syntax version and Listing 8 in the
alternative version.

1 PolicyManagementContext [SK]<->[SK] DebtCollection {

2 implementationTechnology = "Shared Java Library, Communication over RESTful HTTP"

3 }

LISTING 7: Shared Kernel “short” Syntax

1 PolicyManagementContext Shared-Kernel DebtCollection

LISTING 8: Shared Kernel Alternative Syntax

Analogous to the Partnership pattern, the brackets of the “short” syntax ver-
sion can be written to the left or to the right of the bounded context name (see
the four options as described for the Partnership relationship). By using a colon
it is optionally possible to give every relationship a name, as shown in Listing
9.

1 PolicyManagementContext [SK]<->[SK] DebtCollection : ExampleRelationshipPolicyDebt

LISTING 9: Relationship Name

4.1.3 Upstream-Downstream Relationships

The declarations of upstream-downstream relationships use arrows either to
the left (<-) or to the right (->). The arrow always points from the upstream
towards the downstream and expresses the influence flow [27]. The upstream
influences the downstream, whereas the downstream has no influence on the
upstream.

4.1. Revised Context Mapper DSL (CML) Syntax 29

Generic Upstream-Downstream Relationship

Listing 10 illustrates an upstream-downstream relationship in the “short” CML
syntax.

1 ContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains PolicyManagementContext

6 contains PrintingContext

7

8 PrintingContext [U]->[D] PolicyManagementContext {

9 implementationTechnology = "SOAP"

10 }

11 }

LISTING 10: Upstream-Downstream “short” Syntax (1)

The arrow can be used in both directions. Thus, the relationship declaration in
Listing 11 is semantically the same declaration as the one in Listing 10.

1 PolicyManagementContext [D]<-[U] PrintingContext {

2 implementationTechnology = "SOAP"

3 }

LISTING 11: Upstream-Downstream “short” Syntax (2)

Similar as with symmetric relationships, the “short” version of the syntax al-
lows the brackets to be on the left or on the right of a bounded context name,
which leads to the four options illustrated by the listings 12, 13, 14, and 15.

1 PrintingContext [U]->[D] PolicyManagementContext

LISTING 12: Brackets: Option 1 (Right/Left)

1 [U]PrintingContext -> [D]PolicyManagementContext

LISTING 13: Brackets: Option 2 (Left/Left)

1 PrintingContext[U] -> PolicyManagementContext[D]

LISTING 14: Brackets: Option 3 (Right/Right)

1 [U]PrintingContext -> PolicyManagementContext[D]

LISTING 15: Brackets: Option 4 (Left/Right)

30 Chapter 4. Context Mapper: Design and Implementation

The upstream and downstream roles, such as Open Host Service (OHS) or
Anti-Corruption Layer (ACL), are declared within the brackets in the new CML
version. Listing 16 shows an example of an upstream-downstream relationship
with role patterns added. Note that the brackets always have to start with the
U or D, followed by the roles.

1 PrintingContext [U,OHS,PL]->[D,ACL] PolicyManagementContext {

2 implementationTechnology = "SOAP"

3 }

LISTING 16: Upstream-Downstream “short” Syntax with Roles

As well as for symmetric relationships, CML provides a longer alternative syn-
tax version for upstream-downstream relationships. In this case, the Upstream-
Downstream or Downstream-Upstream keyword is used instead of the arrows.
The listings 17 and 18, which are semantically equivalent, show a correspond-
ing example.

1 PrintingContext Upstream-Downstream PolicyManagementContext

LISTING 17: Upstream-Downstream Alternative Syntax (1)

1 PolicyManagementContext Downstream-Upstream PrintingContext

LISTING 18: Upstream-Downstream Alternative Syntax (2)

This syntax variant works with brackets for the relationship role patterns as
well. In contrast to the “short” version the brackets contain the roles only, since
the U and D are given by the keyword and are thus not necessary. Listing 19
illustrates an example.

1 CustomerManagementContext[OHS,PL] Upstream-Downstream [CF]PolicyManagementContext {

2 implementationTechnology = "RESTful HTTP"

3 }

LISTING 19: Upstream-Downstream Alt. Syntax with Roles

Note: In this syntax version, the brackets must be written next to the relation-
ship keyword in the middle (on the left and right of Upstream-Downstream and
Downstream-Upstream respectively) and can not be placed as free as with the
“short” syntax version.

Customer-Supplier Relationship

A customer-supplier relationship is a special case of an upstream-downstream
relationship, according to our interpretation. Thus, the syntax corresponds to
the upstream-downstream syntax as introduced above. If the user wants to

4.1. Revised Context Mapper DSL (CML) Syntax 31

declare an upstream-downstream relationship to be a customer-supplier rela-
tionship, he can simply add the abbreviations C (customer) and S (supplier).
Listing 20 illustrates an example.

1 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext

LISTING 20: Customer-Supplier “short” Syntax (1)

The parser also allows to ommit the U and the D in a customer-supplier re-
lationship, since the upstream is always the supplier and the downstream the
customer. In this case the same example would be declared as in Listing 21.

1 CustomerSelfServiceContext [C]<-[S] CustomerManagementContext

LISTING 21: Customer-Supplier “short” Syntax without U/D

Remember that the arrow must still direct from the upstream towards the down-
stream (influence flow), or in a customer-supplier relationship from the sup-
plier towards the customer. However, you can use the arrow in both directions,
as already explained for the generic upstream-downstream case.

Note: We would recommend to use the syntax in Listing 20 instead of List-
ing 21, which shows that the relationship is an upstream-downstream as well as
a customer-supplier relationship. This avoids any ambiguity and clearly states
that a customer-supplier relationship is always an upstream-downstream rela-
tionship as well.

Similar to the generic upstream-downstream case, it is possible to add further
relationship roles to the brackets, as illustrated by Listing 22.

1 CustomerSelfServiceContext [D,C,ACL]<-[U,S,PL] CustomerManagementContext

LISTING 22: Customer-Supplier “short” Syntax with Roles

The customer-supplier relationship can be declared with a longer alternative
syntax as well. Instead of the keywords Upstream-Downstream or Downstream-
Upstream, you simply use the keywords Customer-Supplier or Supplier-Customer.
The listings 23 and 24, which are semantically equivalent, illustrate an example.

1 CustomerSelfServiceContext Customer-Supplier CustomerManagementContext

LISTING 23: Customer-Supplier Alternative Syntax (1)

1 CustomerManagementContext Supplier-Customer CustomerSelfServiceContext

LISTING 24: Customer-Supplier Alternative Syntax (2)

32 Chapter 4. Context Mapper: Design and Implementation

Additional pattern roles can again be added with the brackets near the rela-
tionship keyword in the middle (see Listing 25).

1 CustomerSelfServiceContext[ACL] Customer-Supplier [PL]CustomerManagementContext

LISTING 25: Customer-Supplier Alternative Syntax with Roles

Finally, as for all relationship declarations, the upstream-downstream and customer-
supplier relationship declarations support to add a name at the end, by using
a colon. Listing 26 illustrates an example.

1 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext : ExampleName

LISTING 26: Customer-Supplier Relationship with Name

Arrow Defaults

Note that it is still possible to use the arrows (->, <- and <->) without the brack-
ets, even if we do not recommend it due to decreased readability. However,
if you use the arrows without brackets it is important to know that -> and <-
declare upstream-downstream relationships and not customer-supplier rela-
tionships. Using the symmetric arrow <-> without brackets declares a Shared
Kernel.

4.1.4 Other Small Syntax Changes & Syntactic Sugar

The following Table 4.2 lists all additional and small syntax changes which
have been made. We will not explain these little changes in detail, since we
provide an online documentation2 which explains all features regarding the
current version v4.1.13 of the language.

TABLE 4.2: Small Syntax Changes & Syntactic Sugar

Change Description
Name for context map It is now possible to give context maps names.

The name can simply be added after the Con-
textMap keyword. For example: ContextMap
myInsuranceContextMap { ... }

Adding multiple
bounded contexts with
one contains keyword

Earlier versions required to use one contains
keyword for each bounded context added to a
context map. With the latest release it is possi-
ble to add multiple bounded contexts by using
only one contains keyword and separating the
bounded contexts with commas. For example:
contains context1, context2

2https://contextmapper.github.io/docs/
3https://github.com/ContextMapper/context-mapper-dsl/releases/tag/v4.1.1

https://github.com/ContextMapper/context-mapper-dsl/releases/tag/v4.1.1

4.1. Revised Context Mapper DSL (CML) Syntax 33

TABLE 4.2: Small Syntax Changes & Syntactic Sugar
(continued)

Change Description
Introduced Domain
keyword

Subdomains are no longer root elements of the
model but part of a Domain. The Domain is de-
clared on the root level of the CML file.

Brackets { ... } optional
for entities and aggre-
gates

The brackets which surround the contents of en-
tities and aggregates are optional now and do not
have to be written if no content is specified.

Responsibilities are
simple strings without
ID.

Responsibilities are simple comma-separated
string lists now. The specific grammar rule with
an ID for the responsibility has not been used yet.

4.1.5 Additional Language Features

Besides changes in the syntax, this project added a few new language features
to CML. As we will se later in the section about the ARs, these changes are
needed to provide specific information needed by the refactorings. This section
summarizes the additional language features added during this project quickly.

Downstream Rights

As Plöd [33] mentions, a team or bounded context might have varying power
or influence on the other part of a relationship. Concretely, it can be of interest
how many influence a downstream has regarding the activities of the upstream
in an upstream-downstream relationship.

In CML we added the possibility to specify the downstream’s power or in-
fluence on the upstream with the downstreamRights attribute. Listing 27 shows
an example how this can be specified.

1 VoyagePlanningContext [D,ACL]<-[U,OHS,PL] LocationContext {

2 implementationTechnology = "RESTful HTTP"

3 downstreamRights = VETO_RIGHT

4 }

LISTING 27: downstreamRights Attribute Example

Table 4.3 lists the possible values which are accepted for the downstreamRights
attribute.

TABLE 4.3: Downstream Right Characteristics

Value Description
INFLUENCER The downstream has no direct power but aims to

influence the upstream activities.
OPINION_LEADER In this case the downstream has influence in such

a way that his opinions are respected by the up-
stream.

34 Chapter 4. Context Mapper: Design and Implementation

TABLE 4.3: Downstream Right Characteristics (continued)

Value Description
VETO_RIGHT The downstream has a veto right regarding all deci-

sions of the upstream and can at least prevent unde-
sired changes.

DECISION_MAKER In this case the downstream has the power to make
decisions about the upstream activities and changes.

MONOPOLIST The downstream has the exclusive power to decide
about changes in the upstream context. There are no
other downstream contexts which interfere.

Exposed Aggregates

An upstream bounded context exposes parts of his model to the downstream
bounded contexts with which he has relationships. For our service contract
generator which will be introduced later, it will be important to know which
aggregates an upstream bounded context exposes in his relationships.

In CML it is now possible to define the exposed aggregates with the ex-
posedAggregates attribute for each upstream-downstream or customer-supplier
relationship. Listing 28 illustrates an example of such a declaration.

1 VoyagePlanningContext [D,ACL]<-[U,OHS,PL] LocationContext {

2 implementationTechnology = "RESTful HTTP"

3 downstreamRights = VETO_RIGHT

4 exposedAggregates = Customers, Addresses

5 }

LISTING 28: exposedAggregates Attribute Example

Note that the two aggregates Customers and Addresses in the example above
must be part of the upstream, which is the LocationContext.

Use Cases

As we have already seen in Chapter 2, use cases play an important role regard-
ing the decomposition of a domain into bounded contexts. To be able to apply
refactorings based on this information, we must know which parts of the sys-
tem are accessed by which use cases. Therefore, we added the possibility to
CML to assign aggregates to use cases.

Listing 29 illustrates how the user can define use cases on the root level of
the model. These use cases can then be assigned to the corresponding aggre-
gates, as shown in Figure 30.

1 /* Simple use case (only name given) */

2 UseCase UpdateContract

3 UseCase UpdateOffer

LISTING 29: Simple Use Case Declaration

4.1. Revised Context Mapper DSL (CML) Syntax 35

1 Aggregate Contract {

2 useCases = UpdateContract

3

4 Entity Contract {

5 aggregateRoot

6

7 /* removed content to save space */

8 }

9

10 /* removed other domain objects to save space */

11 }

LISTING 30: Aggregate: Assigning Use Cases

The useCases attribute takes a list of references, thereby it is possible to assign
multiple use cases to an aggregate (comma-separated). Note that it is also pos-
sible to specify use cases in more detail as illustrated in Figure 31.

1 /* Extended declaration with read and written attributes */

2 UseCase CreateOfferForCustomer {

3 reads "Customer.id", "Customer.name"

4 writes "Offer.offerId", "Offer.price", "Offer.products", "Offer.client"

5 }

LISTING 31: Advanced Use Case Declaration

This use case declaration with the attributes which are read and written corre-
sponds to the use case declaration needed for the Service Cutter [17] integration
explained in our previous work [20]. Thereby you can reuse the same way of
declaration and future releases of the Service Cutter input generator may use
these CML declarations directly.

Owners

Another important criterion for service decomposition are the teams and the
structure of the organisation, as we have seen in Chapter 2. Aligning bounded
contexts arround teams which own a certain part of a system and have the
autonomy over it is again important for one of our ARs. Therefore, CML has
been extended so that aggregates can be assigned to a team. Thereby the team
becomes the owner of the aggregate. Listing 32 illustrates how an aggregate can
be assigned to a team by using the owner attribute. A team is declared with a
bounded context of the type TEAM, a feature which already existed in CML.

1 Aggregate CustomerFrontend {

2 owner = CustomerFrontendTeam

3

4 /* the rest of the aggregate has been removed to save space */

5 }

LISTING 32: Aggregate Owner Example

The semantic checkers of the CML language check that the referenced bounded
context is of the type TEAM and throw an exception if this is not the case.

36 Chapter 4. Context Mapper: Design and Implementation

Structural Volatility

Another important Decomposition Criterion (DC) mentioned in Chapter 2 is
the volatility, first introduced by D.L. Parnas [31]. In order to implement our
AR-4: Extract Aggregates by Volatility, we added an attribute likelihoodForChange
on aggregate level allowing to specify the volatility. Listing 33 illustrates how
it can be used.

1 Aggregate CustomerFrontend {

2 likelihoodForChange = OFTEN

3

4 DomainEvent CustomerAddressChange {

5 - UserAccount issuer

6 - Address changedAddress

7 }

8 }

LISTING 33: Likelihood for Change (Volatility) on Aggregate

The possible values for the likelihoodForChange attribute are RARELY, NORMAL
and OFTEN.

After we have summarized the CML language changes realized during this
project the next sections will focus on the core topics and new features, namely
the ARs and the (micro-)service contract generator.

4.2 Architectural Refactorings (ARs) Design and Concepts

With this project we implemented the seven ARs selected in Chapter 2 as a pro-
totype in the Context Mapper tool [12]. Figure 1.1 in our introduction (Chapter
1) already provided an overview of the selected ARs organized by the decom-
position operations split and extract, and the composition operation merge.

FIGURE 4.2: The implemented ARs organized by their oper-
ations split, extract, merge and by the subjects aggregate and

bounded context.

4.2. Architectural Refactorings (ARs) Design and Concepts 37

The refactorings support to either split a subject, extract parts from the subject,
or merge two subjects, as we have already explained in Chapter 2.

With Figure 4.2 we provide another overview of the implemented ARs, but
additionally organized by subject. The two possible subjects are the aggregate
and the bounded context. The subject of an AR is the type of object on which
the refactoring is available in the Context Mapper Eclipse plugin [12]. The two
ARs AR-1 and AR-6 can be applied to an aggregate whereas AR-2, AR-3, AR-4,
AR-5 and AR-7 are applicable on bounded contexts.

In this section we will explain how the ARs illustrated in Figure 4.2 have
been implemented for CML. We will further illustrate their behavior using cor-
responding examples.

4.2.1 Architectural Refactorings as CML Code Refactorings

On an abstract level the ARs presented in this project describe architectural
changes of systems designed on the basis of strategic DDD patterns. Therefore
they are basically applicable to every architectural model based on these pat-
terns whether they are written in CML or not. Even if the model is written in
CML such ARs can always be applied manually without tool support. How-
ever, with this project we provide the presented seven ARs as code refactorings
on the CML Domain-specific Language (DSL).

The advantage of this approach is that the refactorings provide operations
always leading to a syntactically correct and valid model. The refactorings
ensure that all places in the code which are affected by a desired change are
adjusted correspondingly. For example if an aggregate which was exposed by
one bounded context is moved to another bounded context, relationships on
the context map may become invalid. If such a change is done manually the
user has to fix subsequent errors in the code manually as well. With the imple-
mentation of our DSL refactorings we provide transformations which execute
such changes as a whole and in one single step. With this approach we aim for
an improved productivity in evolving DDD context maps iteratively.

4.2.2 Refactoring Implementation

The CML DSL is realized with Xtext [14] which generates an Eclipse Modeling
Framework (EMF) Ecore [36] model. This generated model corresponds to the
DDD meta-model [20] in our case. The implementations of our ARs process
this meta-model. The application of one of our ARs to a CML file is an endoge-
nous in-place model transformation [21]. The ARs only change the structure
of the modeled systems, without changing the level of abstraction of the mod-
els. They are therefore horizontal model transformations [21]. They always
proceed in the following three steps:

1. CML Text
parsing−−−−→ Abstract Syntax Tree (AST) −→Model (EMF)

2. Model (EMF)
trans f ormation−−−−−−−−→Model (EMF)

3. Model (EMF) −→ Abstract Syntax Tree (AST)
unparsing−−−−−→ CML Text

38 Chapter 4. Context Mapper: Design and Implementation

The text in the CML file is parsed by the Xtext [14] framework which creates
an Abstract Syntax Tree (AST) and provides the model on the basis of the EMF
Ecore meta-model [36]. We then apply transformations, in our case our ARs,
to this model and it is unparsed back to the CML file. In our previous work
[21] we have already described how such transformations can be implemented
on the basis of Henshin [38]. However, the transformation in step 2 can also
be implemented without additional frameworks by simply manipulating the
model via the Application Programming Interface (API) provided by EMF.

FIGURE 4.3: AR Implementations Logical View

During the implementation of the ARs we had to observe that the description
of the transformations with the graph-based approach of Henshin [21, 38] can
get complicated with increased complexity in the meta-model of the language
and in the transformations. Describing the ARs in such a way is, at least in our
case, often way more complex then simply solve the problem in an imperative
way using the EMF API. For this reason we finally implemented only one refac-
toring with the presented approach in [21]. The other ARs of this prototype are
simply implemented in Java by using the EMF API [36].

Figure 4.3 shows a logical view [24] of the current implementation of the
ARs in Context Mapper. All ARs implement the same interface with the doRefac-
tor method which takes an Eclipse EMF Ecore model resource as input. The

4.2. Architectural Refactorings (ARs) Design and Concepts 39

given resource must contain a valid CML model on which the refactoring will
be applied. The refactorings are configured by constructor parameters. As
Figure 4.3 further indicates, only the AR-1: Split Aggregate by Entities is im-
plemented with the Henshin approach [21], since its class SplitAggregateByEn-
titiesRefactoring inherits from AbstractHenshinRefactoring. The two ARs AR-2:
Split Bounded Context by Use Cases and AR-3: Split Bounded Context by Owner
work identical with the aggregate attribute (use case or owner) as the only
difference. For this reason, this AR is generalized in the class SplitBoundedCon-
textByAggregateAttribute. The two AR classes SplitBoundedContextByUseCases
and SplitBoundedContextByOwner both use this generalized implementation.

The source code of the AR implementations can be found in the package
org.contextmapper.dsl.refactoring of the main DSL project in our Github reposi-
tory context-mapper-dsl4. The following Table 4.45 lists the input parameters,
preconditions and the corresponding result for all implemented ARs.

TABLE 4.4: Input, Results and Preconditions of the ARs

AR Input Preconditions Result / Output
AR-1: Split
Aggregate
by Entities

• The name of
the aggregate
which shall be
split.

• The input ag-
gregate must
at least contain
two entities.

• Multiple aggre-
gates, one for
each entity.

• All entities be-
come aggregate
roots.

AR-2: Split
Bounded
Context by
Use Cases

• The name of
the bounded
context to be
split.

• The bounded
context must
contain at least
two aggregates.

• The aggregates
must be as-
signed to dif-
ferent use cases.

• This AR cre-
ates multiple
bounded con-
texts. Each
bounded con-
text contains
one or more ag-
gregates which
are used by the
same use cases.

AR-3: Split
Bounded
Context by
Owner

• The name of
the bounded
context to be
split.

• The bounded
context must
contain at least
two aggregates.

• The aggregates
must be as-
signed to dif-
ferent teams.

• This AR cre-
ates multiple
bounded con-
texts. Each
bounded con-
text contains
one or more ag-
gregates which
are owned by
the same team.

4https://github.com/ContextMapper/context-mapper-dsl
5A table listing the input and output of all ARs can also be found in our online documenta-

tion: https://contextmapper.github.io/docs/architectural-refactorings/

https://github.com/ContextMapper/context-mapper-dsl
https://contextmapper.github.io/docs/architectural-refactorings/

40 Chapter 4. Context Mapper: Design and Implementation

TABLE 4.4: Input, Results and Preconditions of the ARs
(continued)

AR Input Preconditions Result / Output
AR-4: Ex-
tract Ag-
gregates by
Volatility

• The name of
the bounded
context from
which Aggre-
gates shall be
extracted.

• The volatilty
or likelihood
for change by
which shall be
extracted.

• The selected
bounded con-
text must con-
tain at least two
aggregates.

• The aggregates
must have dif-
ferent likeli-
hoods for change
(volatility).

• This AR cre-
ates another
bounded con-
text containing
all the aggre-
gates with the
chosen volatil-
ity.

AR-5: Ex-
tract Ag-
gregates by
Cohesion

• The name of
the bounded
context from
which the ag-
gregates shall
be extracted.

• The aggregate
selection to ex-
tract.

• The selected
bounded con-
text must at
least contain
two aggregates.

• A new bounded
context which
contains all the
selected aggre-
gates.

AR-6:
Merge Ag-
gregates

• The names of
two aggregates
which belong
to the same
bounded con-
text.

• The model must
contain two ag-
gregates within
one bounded
context which
can be merged.

• The two aggre-
gates are not
allowed to con-
tain domain
objects with the
same name.

• One aggregate
which contains
all objects of
the two input
aggregates.

AR-7:
Merge
Bounded
Contexts

• The names of
two bounded
contexts
which shall be
merged.

• The model must
at least contain
two bounded
contexts.

• The result of
this AR is one
bounded con-
text containing
all aggregates
of the two in-
put bounded
contexts.

4.2.3 User Interface: Refactorings within the CML Editor

The ARs are integrated within the Context Mapper [12] CML Eclipse editor.
Thereby, the ARs can be used as any other refactorings for a language such
as Java within the Integrated Development Environment (IDE). As Figure 4.4

4.2. Architectural Refactorings (ARs) Design and Concepts 41

illustrates, the refactorings are available within the CML editor by using the
context menu on the two subjects Bounded Context or Aggregate. The context
menu always checks for the preconditions of the ARs and offers only refactor-
ings which can be applied on the selected object.

FIGURE 4.4: ARs in Context Mapper Eclipse Plugin

4.2.4 Examples

In the following we explain how the ARs work on the basis of simple CML
examples. The listings only contain the necessary parts to illustrate the behav-
ior of the ARs. The complete examples including all parts of the model can be
found in Appendix A.

Please note that the following CML listings contain syntax and language
concepts which are not explained within this paper. For a language reference
and complete documentation we refer to the Context Mapper website6, Ap-
pendix B, or the report of our previous project [20]. All tactic DDD concepts
within the aggregates (entities, value objects, services, etc.) are based on the
Sculptor DSL [34]. For an introduction to the Sculptor syntax we recommend
to consult their online documentation7 as well.

AR-1: Split Aggregate by Entities

Listing 34 illustrates a simplified CML example with an aggregate containing
two entities.

6https://contextmapper.github.io/docs
7http://sculptorgenerator.org/documentation/

https://contextmapper.github.io/docs
http://sculptorgenerator.org/documentation/

42 Chapter 4. Context Mapper: Design and Implementation

1 BoundedContext CustomerManagementContext {

2 Aggregate Customers {

3 Entity Customer {

4 aggregateRoot

5

6 String firstname

7 String lastname

8 }

9 Entity Address {

10 String street

11 String city

12 }

13 }

14 }

LISTING 34: AR-1: Example Input

If an aggregate contains more then one entities, Split Aggregate by Entities can
be applied. The AR will generate one aggregate per entity. Applied to the
aggregate Customers shown in Listing 34, Split Aggregate by Entities produces
the following result illustrated by Listing 35.

1 BoundedContext CustomerManagementContext {

2 Aggregate Customers {

3 Entity Address {

4 aggregateRoot

5

6 String street

7 String city

8 }

9 }

10 Aggregate NewAggregate1 {

11 Entity Customer {

12 aggregateRoot

13

14 String firstname

15 String lastname

16 }

17 }

18 }

LISTING 35: AR-1: Example Output

The new aggregates which are created by the AR are named NewAggregateX
where X is an incremented number starting at 1. Note that all entities become
aggregate roots within their aggregate.

AR-2: Split Bounded Context by Use Cases

As already explained earlier in this chapter, the current CML version allows to
assign use cases to aggregates. Listing 36 shows how this can be done and is
further an example on which Split Bounded Context by Use Cases can be applied.

4.2. Architectural Refactorings (ARs) Design and Concepts 43

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Aggregate Offers {

3 useCases = CreateOffer4Customer

4

5 Entity Offer {

6 aggregateRoot

7

8 int offerId

9 /* ... */

10 }

11 }

12 Aggregate Products {

13 useCases = CreateOffer4Customer

14

15 Entity Product {

16 aggregateRoot

17

18 - ProductId identifier

19 String productName

20 }

21 /* ... */

22 }

23 Aggregate Contract {

24 useCases = UpdateContract

25

26 Entity Contract {

27 aggregateRoot

28

29 - ContractId identifier

30 /* ... */

31 }

32 /* ... */

33 }

34 }

35

36 UseCase UpdateContract

37 UseCase CreateOffer4Customer

LISTING 36: AR-2: Example Input

Note that it would also be possible to assign multiple use cases to one aggregate
(comma-separated). In the example above we have one bounded context with
three aggregates. The first two aggregates Offers and Products are used by the
same use case CreateOffer4Customer. The third aggregate is assigned another
use case UpdateContract. The bounded context contains aggregates used by
two use cases in total. Therefore, applying Split Bounded Context by Use Cases
will create two bounded contexts. One bounded context for every use case.
The listings 37 and 38 illustrate the result after the application of this AR to the
example shown in Listing 36 above.

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Aggregate Contract {

3 useCases = UpdateContract

4

5 Entity Contract {

6 aggregateRoot

7

8 - ContractId identifier

LISTING 37: AR-2: Example Output (1)

44 Chapter 4. Context Mapper: Design and Implementation

9 /* ... */

10 }

11 /* ... */

12 }

13 }

14

15 BoundedContext NewBoundedContext1 {

16 Aggregate Offers {

17 useCases = CreateOffer4Customer

18

19 Entity Offer {

20 aggregateRoot

21

22 int offerId

23 /* ... */

24 }

25 }

26 Aggregate Products {

27 useCases = CreateOffer4Customer

28

29 Entity Product {

30 aggregateRoot

31

32 - ProductId identifier

33 String productName

34 }

35 /* ... */

36 }

37 }

LISTING 38: AR-2: Example Output (2)

The AR leaves one use case within the existing bounded context and creates
new bounded contexts for all other use cases. In the result above, the Con-
tract aggregate which is used by the UpdateContract use case has been left in
the existing PolicyManagementContext. The other use case CreateOffer4Customer
with the two aggregates Offers and Products has been moved to a new bounded
context NewBoundedContext1.

The goal of this refactoring is to create one bounded context for every use
case. However, if aggregates are used by multiple use cases, we use the com-
plete set of use cases and create one bounded context for each unique set. For
example, if there are two aggregates which are both used by Use Case X and
Use Case Y, both aggregates will be within the same bounded context. If there
is a third aggregate which is only used by Use Case X but not by Use Case Y, we
create a separate bounded context for this case. In other words, only if aggre-
gates are assigned to the very same set of use cases, they will end in the same
bounded context. Different sets of use cases lead to different bounded contexts.

AR-3: Split Bounded Context by Owner

Split Bounded Context by Owner works very similar to Split Bounded Context by
Use Cases but uses the owner attribute instead of the useCases attribute. This
CML language feature has already been introduced in Section 4.1.5. The fol-
lowing Listing 39 shows how aggregates can be assigned to their owner and
represent an example input for the Split Bounded Context by Owner AR.

4.2. Architectural Refactorings (ARs) Design and Concepts 45

1 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

2 Aggregate CustomerFrontend {

3 owner = CustomerFrontendTeam

4

5 Entity CustomerAddressChange {

6 aggregateRoot

7

8 - UserAccount issuer

9 - Address changedAddress

10 }

11 }

12 Aggregate Acounts {

13 owner = CustomerBackendTeam

14

15 Entity UserAccount {

16 aggregateRoot

17

18 String username

19 - Customer accountCustomer

20 }

21 }

22 }

LISTING 39: AR-3: Example Input

This AR is slightly simpler than Split Bounded Context by Use Cases since an
aggregate can only have one owner and not multiple. The owners referenced
in the example above must be specified as bounded contexts of the type TEAM
as shown in the following Listings 40.

1 /* team definitions */

2 BoundedContext CustomerBackendTeam {

3 type = TEAM

4 }

5 BoundedContext CustomerFrontendTeam {

6 type = TEAM

7 }

LISTING 40: AR-3: Owner Specifications

Applying Split Bounded Context by Owner will create one bounded context for
each owner. In the example input above we have one bounded context Cus-
tomerSelfServiceContext which contains two aggregates owned by two different
teams. Applying this AR will create two bounded contexts as shown in the
following listings 41 and 42.

1 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

2 Aggregate CustomerFrontend {

3 owner = CustomerFrontendTeam

4

5 Entity CustomerAddressChange {

6 aggregateRoot

7

8 - UserAccount issuer

9 - Address changedAddress

LISTING 41: AR-3: Example Output (1)

46 Chapter 4. Context Mapper: Design and Implementation

10 }

11 }

12 }

13

14 BoundedContext NewBoundedContext1 {

15 Aggregate Acounts {

16 owner = CustomerBackendTeam

17

18 Entity UserAccount {

19 aggregateRoot

20

21 String username

22 - Customer accountCustomer

23 }

24 }

25 }

LISTING 42: AR-3: Example Output (2)

As in the previous AR, the existing bounded context is reused for one of the
teams. For all the other teams new bounded contexts are created. In the exam-
ple above, a new bounded context NewBoundedContext1 has been created for all
aggregates of the team CustomerBackendTeam while all aggregates of the team
CustomerFrontendTeam remained in the existing bounded context.

AR-4: Extract Aggregates by Volatility

We have already introduced the volatility attribute likelihoodForChange added to
CML in Section 4.1.5. The AR Extract Aggregates by Volatility uses this attribute
to extract aggregates with a specific likelihood for change. The following Listing
43 shows an example how this language feature can be used and illustrates a
situation where Extract Aggregates by Volatility can be applied.

1 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

2 Aggregate CustomerFrontend {

3 likelihoodForChange = OFTEN

4

5 Entity CustomerAddressChange {

6 aggregateRoot

7

8 - UserAccount issuer

9 - Address changedAddress

10 }

11 }

12 Aggregate Acounts {

13 Entity UserAccount {

14 aggregateRoot

15

16 String username

17 - Customer accountCustomer

18 }

19 }

20 }

LISTING 43: AR-4: Example Input

Note that a bounded context on which this AR shall be applied must contain at
least two aggregates with different likelihoodForChange values. In the example

4.2. Architectural Refactorings (ARs) Design and Concepts 47

above only the CustomerFrontend has the value set explicitely to OFTEN. The
default value for the likelihoodForChange attribute, and therefore the value for
the Accounts aggregate above, is NORMAL. The preconditions to apply this AR
are therefore fulfilled. The Listing 44 illustrates the result after applying the
refactoring with the value OFTEN as input.

1 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

2 Aggregate Acounts {

3 Entity UserAccount {

4 aggregateRoot

5

6 String username

7 - Customer accountCustomer

8 }

9 }

10 }

11

12 BoundedContext CustomerSelfServiceContext_Volatility_OFTEN {

13 Aggregate CustomerFrontend {

14 likelihoodForChange = OFTEN

15

16 Entity CustomerAddressChange {

17 aggregateRoot

18

19 - UserAccount issuer

20 - Address changedAddress

21 }

22 }

23 }

LISTING 44: AR-4: Example Output

In this case all aggregates with the likelihoodForChange value OFTEN are ex-
tracted into a new bounded context. The existing bounded context in this
example has the name CustomerSelfServiceContext from which the name for
the new bounded context, CustomerSelfServiceContext_Volatility_OFTEN, is de-
rived.

AR-5: Extract Aggregates by Cohesion

The goal of the AR Extract Aggregates by Cohesion is to extract specific aggre-
gates into new bounded contexts in order to improve the cohesion inside the
contexts. Since we currently can not calculate or score the cohesion automat-
ically, the implementation of this AR allows the architect to choose the aggre-
gates manually. Thereby the user can extract aggregates on the basis of any
Non-Functional Requirement (NFR) or criteria which influences the cohesion.
The listings 45 and 46 illustrate an example of a bounded context with multiple
aggregates on which this AR can be applied.

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Aggregate Offers {

3 Entity Offer {

4 aggregateRoot

LISTING 45: AR-5: Example Input (1)

48 Chapter 4. Context Mapper: Design and Implementation

5 int offerId

6 /* ... */

7 }

8 }

9 Aggregate Products {

10 Entity Product {

11 aggregateRoot

12 - ProductId identifier

13 String productName

14 }

15 /* ... */

16 }

17 Aggregate Contract {

18 Entity Contract {

19 aggregateRoot

20

21 - ContractId identifier

22 /* ... */

23 }

24 /* ... */

25 }

26 }

LISTING 46: AR-5: Example Input (2)

The bounded context in the example above contains three aggregates. By ap-
plying the AR Extract Aggregates by Cohesion we can extract a specific set of
these aggregates and move them into a new bounded context. The following
Listing 47 shows the result of the application using the aggregate name Offers
as input for the AR.

1 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

2 Aggregate Products {

3 Entity Product {

4 aggregateRoot

5 - ProductId identifier

6 String productName

7 }

8 /* ... */

9 }

10 Aggregate Contract {

11 Entity Contract {

12 aggregateRoot

13

14 - ContractId identifier

15 /* ... */

16 }

17 /* ... */

18 }

19 }

20 BoundedContext SalesBoundedContext {

21 Aggregate Offers {

22 Entity Offer {

23 aggregateRoot

24

25 int offerId

26 /* ... */

27 }

28 }

29 }

LISTING 47: AR-5: Example Output

4.2. Architectural Refactorings (ARs) Design and Concepts 49

The AR creates a new bounded context with the Offers aggregate. The other
aggregates remain in the already existing bounded context. Since this AR re-
quires external user input, a corresponding dialog appears before the AR is
applied. The dialog for this case is shown in Figure 4.5.

FIGURE 4.5: AR-5: Dialog for External User Input

The dialog further allows the user to specify how the new bounded context
shall be named.

AR-6: Merge Aggregates

The Merge Aggregates AR allows to merge two aggregates within a bounded
context. The listings 48 and 49 show a bounded context in CML which contains
more than one aggregates.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 Aggregate Customers {

3 Entity Customer {

4 aggregateRoot

5

6 String firstname

7 String lastname

8 /* ... */

9 }

10 /* ... */

11 }

LISTING 48: AR-6: Example Input (1)

50 Chapter 4. Context Mapper: Design and Implementation

12 Aggregate Addresses {

13 Entity Address {

14 String street

15 int postalCode

16 /* ... */

17 }

18 }

19 }

LISTING 49: AR-6: Example Input (2)

Applying Merge Aggregates with the two aggregate names Customers and Ad-
dresses as input parameters on the example above results in the CML model
shown in Listing 50.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 Aggregate Customers {

3 Entity Customer {

4 aggregateRoot

5

6 String firstname

7 String lastname

8 /* ... */

9 }

10

11 Entity Address {

12 String street

13 int postalCode

14 /* ... */

15 }

16

17 /* ... */

18 }

19 }

LISTING 50: AR-6: Example Output

Note that this AR merges the elements of the second aggregate (second param-
eter) into the first aggregate given. In the example above we passed Customers
as the first parameter and Addresses as the second. Therefore all objects within
the Addresses aggregate are merged into Customers. In the Context Mapper tool
the user is able to switch this behavior on the User Interface (UI) in order to use
the second aggregate as the target if needed. However, all aggregate attributes
such as the name are always taken from this target aggregate (first parameter
by default).

AR-7: Merge Bounded Contexts

Merge Bounded Contexts works similar as Merge Aggregates but merges bounded
contexts instead of aggregates. To apply this AR at least two bounded contexts
are needed. Listing 51 illustrates an example on which we can apply Merge
Bounded Contexts.

4.2. Architectural Refactorings (ARs) Design and Concepts 51

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 Aggregate Customers {

3 Entity Customer {

4 aggregateRoot

5

6 String firstname

7 String lastname

8 /* ... */

9 }

10 /* ... */

11 }

12 }

13

14 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

15 Aggregate CustomerFrontend {

16 Entity CustomerAddressChange {

17 aggregateRoot

18

19 - UserAccount issuer

20 - Address changedAddress

21 }

22 }

23 Aggregate Acounts {

24 Entity UserAccount {

25 aggregateRoot

26

27 String username

28 - Customer accountCustomer

29 }

30 }

31 }

LISTING 51: AR-7: Example Input

As with the Merge Aggregates AR the Merge Bounded Contexts has two name
parameters and the first bounded context (first parameter) will be the target
bounded context. All aggregates of the second bounded context will be merged
into the first bounded context. The listings 52 and 53 show the result of this AR
applied to the example above with the parameters CustomerManagementContext
and CustomerSelfServiceContext.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 Aggregate Customers {

3 Entity Customer {

4 aggregateRoot

5

6 String firstname

7 String lastname

8 /* ... */

9 }

10 /* ... */

11 }

12 Aggregate CustomerFrontend {

13 Entity CustomerAddressChange {

14 aggregateRoot

15

16 - UserAccount issuer

17 - Address changedAddress

18 }

19 }

LISTING 52: AR-7: Example Output (1)

52 Chapter 4. Context Mapper: Design and Implementation

20 Aggregate Acounts {

21 Entity UserAccount {

22 aggregateRoot

23

24 String username

25 - Customer accountCustomer

26 }

27 }

28 }

LISTING 53: AR-7: Example Output (2)

As the listings above illustrate, all three aggregates of the originally two bounded
contexts are part of the remaining merged bounded context after the applica-
tion of Merge Bounded Contexts.

4.2.5 Context Map Consistency

As already mentioned previously, the main benefit of implementing the ARs
as code refactorings on the basis of our DSL is that the model always stays in
a valid state. This means that the implementations of the refactorings must
adjust places which are somehow affected by a desired change. For our refac-
torings this mainly affects the context map.

If a refactoring for example deletes a bounded context (e.g. in Merge Bounded
Contexts) the implementation has to adjust all relationships on the context map
in which the deleted bounded context has been a participant. The deletion or
movement of an aggregate has similar implications since relationships on con-
text maps in CML specify which upstream aggregates are exposed in a relation-
ship (see Section 4.1.5). In the following we summarize the applied heuristics
to resolve these situations.

Extracted Aggregates

The following four ARs may move one or multiple aggregates into a new
bounded context:

• AR-2: Split Bounded Context by Use Cases

• AR-3: Split Bounded Context by Owner

• AR-4: Extract Aggregates by Volatility

• AR-5: Extract Aggregates by Cohesion

The two ARs above which split a bounded context always leave some aggre-
gates in the existing bounded context, but also move one or more into a new
bounded context. The two extract ARs extract specific aggregates and create
new bounded contexts for them as already explained in the examples above.

The context map of a model is getting invalid if an aggregate, which is ex-
posed in a relationship, is moved into a new bounded context. To explain this
situation with an example we use the simple context map in Listing 54 with
only one relationship between two contexts.

4.2. Architectural Refactorings (ARs) Design and Concepts 53

1 ContextMap InsuranceContextMap {

2 contains CustomerManagementContext, PolicyManagementContext

3

4 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

5 implementationTechnology = "RESTful HTTP"

6 exposedAggregates = Customers, CustomerFrontend

7 }

8

9 }

LISTING 54: Simple context map with upstream-downstream
relationship exposing aggregates

From the listing above we know that the two aggregates Customers and Cus-
tomerFrontend are part of and exposed by the CustomerManagementContext. The
PolicyManagementContext uses the Open Host Service (OHS) which exposes the
two aggregates. We assume now that the user splits the CustomerManagement-
Context with one of our ARs and thereby moves the CustomerFrontend aggregate
to a new bounded context. He could also extract the same aggregate to a new
bounded context, which leads to the same situation.

In this case, the context map in Listing 54 will no longer compile since Cus-
tomerFrontend is not found anymore within the CustomerManagementContext.
Our ARs always apply the same heuristic in this case to keep the context map
valid.

First, we remove the moved aggregate from the existing relationship (1).
This would make the context map already compile again. However, seman-
tically this would imply that the PolicyManagementContext no longer uses the
CustomerFrontend aggregate. Since we can not presume that this is the case, we
create a new relationship between the downstreams and the new bounded
context (2) in a second step. Thereby we ensure that all downstream bounded
contexts which had access to the aggregate, still have this access.

Asuming the CustomerFrontend aggregate is moved to a new bounded con-
text called CustomerSelfServiceContext, our ARs adjust the context map as ex-
plained above, which leads to the result illustrated in Listing 55.

1 ContextMap InsuranceContextMap {

2 contains CustomerManagementContext, PolicyManagementContext

3 contains CustomerSelfServiceContext

4

5 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

6 implementationTechnology = "RESTful HTTP"

7 exposedAggregates = Customers

8 }

9

10 CustomerSelfServiceContext [U,OHS,PL]->[D,CF] PolicyManagementContext {

11 implementationTechnology = "RESTful HTTP"

12 exposedAggregates = CustomerFrontend

13 }

14 }

LISTING 55: New context map after moving CustomerFrontent
by applying an AR

54 Chapter 4. Context Mapper: Design and Implementation

The result is a new relationship on the context map with the PolicyManagement-
Context as downstream and the new CustomerSelfServiceContext as upstream,
exposing CustomerFrontend. The relationship attributes such as the roles (OHS,
PL, etc.) or the implementation technology are taken from the previously ex-
isting relationship.

With this strategy our ARs always produce a valid context map in case an
aggregate which has been exposed is moved to a new bounded context. The
user can adjust the new relationship after applying the AR in case the generated
one does not express the desired state.

Splitted Aggregates

Another issue to be respected in context maps are splitted aggregates which are
exposed to other bounded contexts. Even though the splitting of an aggregate
does not produce an invalid context map, it seams unreasonable in many cases
to leave the original aggregate the only exposed aggregate. Downstream con-
texts which used the exposed aggregate may need both resulting aggregates
after the application of such a refactoring. This issue affects the following AR:

• AR-1: Split Aggregate by Entities

The refactoring solves this issue by adding the new aggregate which is cre-
ated due to the splitting operation to the exposed aggregates of all relationships
which previously exposed the original aggregate.

1 ContextMap InsuranceContextMap {

2 contains CustomerManagementContext, PolicyManagementContext

3

4 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

5 implementationTechnology = "RESTful HTTP"

6 exposedAggregates = Customers

7 }

8

9 }

LISTING 56: Simple context map with upstream-downstream
relationship exposing one aggregate

Assuming we have a context map such as the one in Listing 56 and we split the
Customers aggregate into two aggregates, the result would be as illustrated in
Listing 57.

1 ContextMap InsuranceContextMap {

2 contains CustomerManagementContext, PolicyManagementContext

3

4 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

5 implementationTechnology = "RESTful HTTP"

6 exposedAggregates = Customers, NewAggregate1

7 }

8

9 }

LISTING 57: Example context map after splitting aggregate

4.2. Architectural Refactorings (ARs) Design and Concepts 55

Merged Aggregates

Merging two aggregates implies that one of the two original aggregates will no
longer exist. This can cause invalid context maps in case the corresponding ag-
gregate was exposed in a relationship. To solve this issue the Merge Aggregates
AR must ensure that if one of the two affected aggregates is part of a relation-
ship, the resulting exposed aggregate corresponds to the final aggregate of the
merge operation.

For example if a relationship exposes the aggregate Addresses, it can be the
case that this aggregate is merged into the aggregate Customers. In this case
the final and resulting aggregate is Customers. The aggregate Addresses will no
longer exist. Therefore our AR Merge Aggregates will change the context map
and replace the exposed aggregate Addresses with Customers.

Merged Bounded Contexts

The last AR which needs adjustments on the context map is Merge Bounded
Contexts. Merging two contexts basically deletes one of the two corresponding
contexts. The context which is deleted can naturally be part of relationships
on the context map. In this case our refactoring adjusts the context map with
two steps. First, we delete direct relationships between the two contexts (1).
Since the two contexts are merged into one, the relationships between the two
become needless. In a second step, we replace the deleted bounded context in
all relationships with the remaining bounded context (2).

Listing 58 illustrates an example to explain this behavior. The context map
contains four bounded contexts and three relationships. Note that the example
is constructed to illustrate the AR behavior at this point and that the relation-
ships between the contexts might be questionable.

1 ContextMap InsuranceContextMap {

2 contains CustomerManagementContext, CustomerSelfServiceContext

3 contains PolicyManagementContext, PrintingContext

4

5 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext {

6 exposedAggregates = Customers

7 }

8

9 CustomerSelfServiceContext [D,ACL]<-[U,OHS,PL] PrintingContext {

10 implementationTechnology = "SOAP"

11 downstreamRights = INFLUENCER

12 exposedAggregates = Printing

13 }

14

15 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerSelfServiceContext {

16 implementationTechnology = "RESTful HTTP"

17 exposedAggregates = CustomerFrontend

18 }

19 }

LISTING 58: Context map merging contexts example

If we now apply Merge Bounded Contexts to the two contexts CustomerManage-
mentContext and CustomerSelfServiceContext of the give example, the first direct
relationship between the two contexts will disappear. We further assume that

56 Chapter 4. Context Mapper: Design and Implementation

we merge CustomerSelfServiceContext into CustomerManagementContext and not
vice versa. Thus, we basically delete the CustomerSelfServiceContext and the re-
maining context will be the CustomerManagementContext. Since the second and
third relationship in the example incorporate CustomerSelfServiceContext as a
member, they have to be adjusted to preserve the valid context map. Our AR
will solve this issue by replacing the occurrences of CustomerSelfServiceContext
with CustomerManagementContext in all relationships. Therefore, we finally get
the valid context map illustrated by Listing 59.

4 ContextMap InsuranceContextMap {

5 contains CustomerManagementContext

6 contains PolicyManagementContext, PrintingContext

7

8 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

9 implementationTechnology = "SOAP"

10 exposedAggregates = Printing

11 }

12

13 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

14 implementationTechnology = "RESTful HTTP"

15 exposedAggregates = CustomerFrontend

16 }

17

18 }

LISTING 59: Context map after merging the bounded contexts

We have now presented all implementation details of the ARs developed in
this project. In the next section we will finish the part about CML and the ARs
by list a number of known limitations and issues which could not be solved
during the project.

4.2.6 Known Limitations

During the implementation of the ARs we came accross a few technical issues,
especially regarding the unparsing process. The unparsing converts the trans-
formed Ecore model, after the application of the refactoring, back into the tex-
tual DSL form. Concerning this matter the tool currently has some limitations
regarding formatting and the order in which the root elements are unparsed.

Formatting

In general, the Xtext framework unparses only the changed parts of the model.
This means that the convertion from the runtime model into the DSL text is
only done for the parts which have changed. The advantage of this approach
is that no text changes if there were no changes in that part of the model. How-
ever, due to an Xtext framework issue8 we run into cases where new elements
(such as newly added bounded contexts) are added at the end of the file which
may lead to a result which cannot be parsed because it does not correspond to
the grammar.

8https://bugs.eclipse.org/bugs/show_bug.cgi?id=369175

https://bugs.eclipse.org/bugs/show_bug.cgi?id=369175

4.2. Architectural Refactorings (ARs) Design and Concepts 57

This has to do with the fact that the root elements of our grammar must
occur block-wise per type. Root elements in a CML file are the following:

• Context Map (only one per file/model)

• Bounded Contexts

• Domains

• Use Cases

The order in which these types are written in a CML file does not matter,
but each type must be written as one block. For example, all bounded contexts
must be written in one block. It is not allowed to write a bounded context fol-
lowed by a domain followed by a bounded context. Whether the file contains
a block with bounded contexts first, followed by a block of domains or vice
versa, does on the other hand not matter as long as all elements of one type are
written in one block.

Since we add new bounded contexts in some of our ARs, the framework
issue mentioned above led to situations where bounded contexts were added
at the end of file, even though the bounded context block was not the last block
in the file. Therefore, the resulting file was no longer parsable. To solve this
issue we implemented the workaround9 proposed by a member of the Eclipse
community. This workaround ensures the correct order of the root elements.

However, the workaround comes with a big disadvantage. The CML file
is unparsed completely every time, even if only small parts of the model have
changed. Unparsing also means that the CML code is brought into the format-
ting as implemented by our code formatters. If the user used another format-
ting, this differences get lost once one applies an AR. This leads to the limita-
tion that user-specific formatting cannot be preserved when working with the
refactorings.

Root Element Order

Besides the formatting which is always aligned according to the predefined for-
matters, the order of the root elements is another issue. Due to the workaround
mentioned in the Formatting section above, the unparsing mechanism always
uses the default order according to the grammar, which is Context Map, Bounded
Contexts, Domains, Use Cases. If the user uses another order, which is generally
possible, the application of an AR reorders all the elements according to this
default order.

To reduce the inconvenience caused by this limitation we recommend to
always use the default order. If this order is used upfront, the application of an
AR does not reorder the elements in the CML file.

Scoping & Multiple CML Files

In the current version of Context Mapper [12] we have not yet handled the
scoping issues which Xtext brings by default if the model is spread over mul-
tiple files. If you create multiple CML files within your project the DSL editor

9https://www.eclipse.org/forums/index.php/t/1080047/

https://www.eclipse.org/forums/index.php/t/1080047/

58 Chapter 4. Context Mapper: Design and Implementation

allows you to reference objects in other files and lists them in the autocomple-
tion mechanism. However, if you use a file as input resource for generators or
if you apply ARs the Xtext API does not resolve references to objects in other
files. This is a limitation to be solved in the future since the editor allows to
create references which cannot be processed by generators later (at least not
with the default Xtext setup). To solve this properly, an import mechanism is
needed which allows the user to import other files explicitely. References to
objects which are not part of the imported files should no longer be possbible
then. For the moment we recommend to strictly model one context map with
all its bounded contexts within one single CML file.

To finish the implementation chapter the next section will present the “proof
of concept” of our service contract generator, another topic covered by this
project. However, it is somehow a side project included in this work but not
part of the main topic which is service decomposition with ARs.

4.3 Service Contract Generation

With the Microservices Domain-Specific Language (MDSL)10 [42] generator
we provide a tool to produce service contracts which can be used as assis-
tance towards implementing the system modeled in CML in an (micro-)service-
oriented architecture. The generator produces contracts for all upstream-down-
stream relationships modeled in your context map. The produced contracts
describe the APIs which should be provided by the corresponding upstream
bounded contexts. MDSL is a DSL to specify (micro-)service contracts and their
data representations. The language concepts of MDSL use and support the Mi-
croservice API Patterns11 [44]. The current implementation of the generator is
compatible with MDSL in the version v1.0. Note that we will not introduce de-
tails about MDSL and its syntax here. For details about the language we refer
to the online documentation10.

4.3.1 Preconditions

The current implementation of the MDSL generator provides a first “proof of
concept” and therefore not all MDSL features are used and generated. In ad-
dition, some preconditions have to be fullfilled by the model so that a service
contract is generated.

• The CML relationship must be an upstream-downstream relationship.

• The relationship declaration must declare the exposed aggregates of the
upstream (see exposedAggregates attribute explained in Section 4.1.5).

• The exposed aggregates must declare an aggregate root entity.

• The aggregate must declare at least one method/operation either on the
root entity or within a service.

10https://socadk.github.io/MDSL/
11https://microservice-api-patterns.org/

https://socadk.github.io/MDSL/
https://microservice-api-patterns.org/

4.3. Service Contract Generation 59

4.3.2 Data Mapping

The generator produces (micro-)service contracts according to the following
mapping definitions, which reflect our proposal how we would derive services
from models based on strategic DDD.

FIGURE 4.6: CML to MDSL Mapping

Figure 4.6 illustrates how we generate these contracts and how the Context
Mapper model is mapped to the MDSL language. The mappings between the
two models are illustrated with the dashed lines («create»). In addition, each
mapping in Figure 4.6 is numbered and explained in Table 4.5. We generate one
API description for every upstream bounded context (#1). The API contains an
endpoint for every exposed aggregate (#2). The endpoint itself contains oper-
ations which are derived by the aggregate root entity operations and services
in CML (#3). The payload data types are derived by the parameters and return
types of these methods in CML (#4). We further generate an API provider for
the upstream context (#5) and an API client for the downstream context (#6).

TABLE 4.5: CML to MDSL Mapping Table

CML input MDSL output Description
1 Upstream

bounded contexts
from upstream-
downstream rela-
tionships

Service spec-
ification (API
description)

We create one service for each
upstream bounded context from
our context map which exposes
parts of its model to others.

60 Chapter 4. Context Mapper: Design and Implementation

TABLE 4.5: CML to MDSL Mapping Table (continued)

CML input MDSL output Description
2 Exposed aggre-

gates
Service end-
point

Every exposed aggregate of the
upstream bounded context re-
sults in an endpoint of the corre-
sponding service.

3 Public meth-
ods/operations of
the aggregate root
entity or services

Operation The exposed aggregates should
contain methods/operations ei-
ther on the aggregate root entity
or in corresponding services.
For every method/operation in
those CML objects an operation
in MDSL is generated.

4 Parameters & re-
turn types of meth-
ods

Base types
or data type
specifications
if possible (us-
ing param-
eter trees in
MDSL).

If primitive types in CML are
used, they are mapped to cor-
responding primitive types of
MDSL. References to other ob-
jects (such as entities) in CML
lead to the generation of a corre-
sponding parameter tree. Types
which are not further declared
are mapped to abstract, unspeci-
fied elements (“P” keyword; see
MDSL documentation).

5 Upstream
bounded contexts
from upstream-
downstream rela-
tionships

API provider For the upstream bounded con-
text we further generate an API
provider.

6 Downstream
bounded contexts
from upstream-
downstream rela-
tionships

API client Downstream bounded contexts
are mapped to corresponding
API clients.

For further details regarding the MDSL generator, such as the mapping of the
primitive data types, we refer to our Context Mapper [12] online documenta-
tion12.

4.3.3 MDSL Example

Let us illustrate the concepts and the mapping explained above with an exam-
ple. We use the insurance example scenario introduced in our previous work
[20] which can also be found in our examples repository13 online. Figure 4.7

12https://contextmapper.github.io/docs/mdsl/
13https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.github.io/docs/mdsl/
https://github.com/ContextMapper/context-mapper-examples

4.3. Service Contract Generation 61

illustrates the context map of the example in a graphical form inspired by Bran-
dolini [4] and Vernon [41]. The CML code of the whole example can be found
online.

FIGURE 4.7: Context Mapper [12] “Insurance” Example

Since the generator only considers upstream-downstream relationships, the
partnerships and shared kernels can be ignored. In the remaining relation-
ships in Figure 4.7 we have two bounded contexts which are upstream, namely
Customer Management Context and Printing Context. The former is used by
the downstreams Policy Management Context and Customer Self-Service Context
while the Printing Context is used by Customer Management Context, Dept Collec-
tion Context and Policy Management Context.

The MDSL generator will produce two API descriptions and thus, two
MDSL files. The listings 60 and 61 show the MDSL file for the Customer Man-
agement Context.

1 API description CustomerManagementContextAPI

2

3 data type Address { "street":V<string>, "postalCode":V<int>, "city":V<string> }

4 data type AddressId P

5 data type changeCustomerParameter { "firstname":V<string>, "lastname":V<string> }

6

7 endpoint type CustomersAggregate

8 exposes

9 operation createAddress

10 expecting

11 payload Address

12 delivering

13 payload AddressId

14 operation changeCustomer

15 expecting

16 payload changeCustomerParameter

17

18 API provider CustomerManagementContextProvider

19 offers CustomersAggregate

20 at endpoint location "http://localhost:8001"

21 via protocol "RESTful HTTP"

LISTING 60: MDSL example: “Customer Management” API (1)

62 Chapter 4. Context Mapper: Design and Implementation

22 API client PolicyManagementContextClient

23 consumes CustomersAggregate

24 API client CustomerSelfServiceContextClient

25 consumes CustomersAggregate

26

27 IPA

LISTING 61: MDSL example: “Customer Management” API (2)

The Customer Management Context contains one aggregate Customers for which
the generator created the endpoint CustomersAggregate. The aggregate contains
methods and services which were mapped to operations and corresponding
data types. As illustrated in the listings 60 and 61 we generate one API provider
for the upstream and two API clients for the corresponding downstreams. List-
ing 62 shows another MDSL example file for the Printing Context.

1 API description PrintingContextAPI

2

3 data type PrintStatus P

4 data type PrintindId P

5

6 endpoint type PrintingAggregate

7 exposes

8 operation printJob

9 expecting

10 payload PrintindId

11 delivering

12 payload PrintStatus

13

14 API provider PrintingContextProvider

15 offers PrintingAggregate

16 at endpoint location "http://localhost:8000"

17 via protocol "SOAP"

18

19 API client CustomerManagementContextClient

20 consumes PrintingAggregate

21 API client DebtCollectionClient

22 consumes PrintingAggregate

23 API client PolicyManagementContextClient

24 consumes PrintingAggregate

25

26 IPA

LISTING 62: MDSL example: “Printing” API

With the MDSL generator all implementation details of this project have
been introduced now. Within this chapter we presented the new or changed
CML language features, the implementation of the ARs which are considered
the major result of this project, and the MDSL generator. The next chapter
will discuss the validation of our results, summarize the project and outline
potential future work.

63

Chapter 5

Summary, Evaluation and
Conclusion

This last chapter summarizes the results of the project and discusses our eval-
uation via prototyping, action research and case studies. It further presents the
validation regarding the fulfillment of the requirements presented in Chapter
3 and gives an outlook to future work.

5.1 Results and Contributions

With this work we presented a set of seven Architectural Refactorings (ARs) for
service decomposition based on strategic Domain-driven Design (DDD) pat-
terns. We analyzed the criteria to be used to decompose a system based on
existing literature and the literature review provided by Service Cutter [17]. In
addition we studied opinions of DDD experts [3, 9, 28, 29, 33, 37, 39] regarding
the question how a domain can be decomposed into bounded contexts. The
proposed ARs are derived from these criteria, the expert input and our own
professional experience [8, 23]. The ARs aim to support software architects us-
ing context maps and the DDD patterns in evolving a service decomposition in
an iterative way.

Alongside this conceptual contribution, we implemented prototypes of the
ARs as code refactorings for the Context Mapper DSL (CML) language. There-
fore the Context Mapper tool [12] has been enhanced to not only create but also
evolve DDD context maps on the basis of a formal Domain-specific Language
(DSL). As part of this project the CML language has been improved in terms
of usability on the basis of user feedback and our evaluation activities during
the previous project [20]. In addition we added new features to the language
to enable the prototypic implementation of the ARs in Context Mapper.

Besides these main results of this project we have implemented another
generator. With our previous work [20] we already provided two generators
producing PlantUML [32] diagrams and Service Cutter [17] input files out of
CML models. The new service contract generator illustrates how DDD-based
context maps can be implemented with a (micro)-service-oriented architecture.
The generated contracts are written in the Microservices Domain-Specific Lan-
guage (MDSL) [42]. With this prototype we propose one approach how to im-
plement strategic DDD models as a conceptual contribution, but also support
architects using Context Mapper towards implementing systems modeled in
CML.

64 Chapter 5. Summary, Evaluation and Conclusion

5.2 Evaluation via Prototyping, Action Research
and Case Studies

Our validation approach corresponds to Shaw’s recommendations and the val-
idation type experience [35] with the goal to demonstrate correctness, usefulness
and effectiveness of our concepts and tools. To validate the presented ARs, we
implemented a prototype in the Context Mapper tool. During the implemen-
tation we applied action research [6] to improve the tool within short feedback
cycles. The implemented prototype has then been validated by using the ARs
on our fictitious “insurance” case study [11]. Thereby we especially validated
the correctness of the AR implementations. However, regarding the ARs more
validation has to be done to show their usefulness and effectiveness.

Regarding the CML language itself additional validation activities have
been conducted after the language has been improved. With the project of
Habegger and Schena [19] the Context Mapper tool has been applied to a real-
world project and productive system in the health-care sector. This case study
supported us in validating the usability and usefulness of the CML language
as a modeling tool. The authors Habegger and Schena provided positive feed-
back regarding the language and mentioned it as a promising approach within
their work [19] which supports our hypothesis that a modeling tool such as
Context Mapper can be useful for software architects working with DDD.

However, they also mentioned that they currently would not recommend
the tool for the identification of microservice decompositions for big monolithic
systems. According to them it is too time-consuming to completely model such
a system in CML and Context Mapper does currently not support to gener-
ate models out of existing source code as it other comparable modeling tools
do. We have noted this as a potential weakness of the tool, at least for users
working with existing monoliths. Future projects may provide tools generat-
ing CML out of existing source code to overcome this issue.

In addition, an industry contact of the advisor of this project could success-
fully model with CML, even though support regarding the DDD patterns was
needed. Being familiar with the strategic DDD patterns clearly seems to be a
prerequisite to be able to start modeling with our CML language quickly.

Besides the mentioned case studies we have further applied the new lan-
guage version to our existing example models [11]. In summary, the results of
our validation activities still suggest that our hypothesis regarding the useful-
ness of such a tool for software architects holds true.

5.3 Validation of Requirements

At the beginning of this project a set of concrete deliverables and critical success
factors which are outlined in Chapter 1 have been defined. They required solv-
ing the existing CML grammar issues identified in our previous project [20],
analyzing the criteria to be used to decompose a system, implementing at least
four ARs, implementing a “proof of concept” for a service contract generator
and finally providing meaningful examples of CML specifications and corre-
sponding ARs. In addition the project definition [22] required that the tools are
easy to use, robust and validated with respect to the project requirements.

5.3. Validation of Requirements 65

The existing CML grammar issues have been solved and the language has
been improved as explained in Chapter 4. We have analyzed the Decomposi-
tion Criteria (DCs) in Chapter 2 and implemented more then four (seven) ARs.
We further implemented a generator for (micro-)service contracts as explained
in Chapter 4. Examples of how the ARs work with corresponding CML models
have been provided in Chapter 4, online1, in our examples repository2 [11] and
in Appendix A. The user feedback we received from our evaluation activities
suggests that the tool is easy to use and robust. Within this chapter we will
further discuss all requirements listed in Chapter 3 and if they are fulfilled or
not. Therefore, it can be stated that the critical success factors have been ful-
filled. The next section will discuss and validate the functional requirements
the project had to accomplish.

5.3.1 User Stories

In Chapter 3 we have derived user stories for all selected ARs. As we have im-
plemented all of them within the Context Mapper tool [12] these single user
stories are fulfilled. However, these single AR stories are derived from an
abstract user story asking for transformation tools allowing the user to port,
evolve and modernize the architecture in an iterative way. If this higher-level
requirement is fulfilled basically depends on whether the selected ARs are suf-
ficient for the case or not. We consider the functional requirements regarding
the ARs as fulfilled for our prototype. As a productive tool it may require the
implementation of further ARs to fulfill the users requirements.

Regarding the service contract generator we consider the implementation
of the MDSL generator presented in Chapter 4 as sufficient to fulfill the corre-
sponding user story US-8 in Chapter 3. It generates services with endpoints
and operations and therefore provides a suggestion how a context map can be
implemented in a (micro-)service architecture. Note that our goal concerning
this matter was to provide a “proof of concept”. The advisor of this project,
who is the creator of the MDSL language [42], has already used our generator
as well and his feedback confirms the fulfillment of this user story.

5.3.2 Non-Functional Requirements

Besides the functional requirements Chapter 3 also listed Non-Functional Re-
quirements (NFRs). Within this section we want to discuss each of them briefly
and validate if they are fulfilled. The NFRs are discussed in the order as pre-
sented in Chapter 3, starting with the CML refinements, continuing with the
ARs, and ending with the general NFRs.

Quickly Writable without Redundancy

The new CML syntax uses shorter notations in comparison with the version
presented in our previous project [20]. Redundancies and ambiguities with re-
spect to our meta-model [20] were removed explicitely as part of this project.
With the case studies of Habegger and Schena [19] and the already mentioned

1https://contextmapper.github.io/docs/architectural-refactorings/
2https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.github.io/docs/architectural-refactorings/
https://github.com/ContextMapper/context-mapper-examples

66 Chapter 5. Summary, Evaluation and Conclusion

industry contact of the advisor of this work we had new users who used the
revised syntax. Habegger and Schena confirmed that they were able to model
bounded contexts and a context map within the mentioned time limit. They
stated that other CML examples are necessary to start modeling quickly. The
industry contact was able to model his system as well. However, the feedback
revealed that it is important to be familiar with the DDD patterns before start
using our CML language. The results of our modeling and validation activities
suggest that this NFR is fulfilled. However, we have not conducted a represen-
tative user test to measure and finally evaluate it yet.

Well Readable

Similar to the previous NFR we consider this NFR as fulfilled on the basis of
our validation activities including the case studies with Habegger and Schena
[19] and the mentioned industry contact. Whether the user is already familiar
with the DDD patterns or not seems to be a critical factor for this NFR as well.
To evaluate this NFR quantitatively we have to conduct a user test.

Consistent

This NFR requested our DSL syntax to be consistent with our meta-model [20],
which we consider to be fulfilled. The syntax has been improved accordingly
and existing deviations and ambiguities especially regarding the customer-
supplier relationship have been solved. Additional semantic validators ensure
consistency with our model and throw compiler errors in case of invalid pat-
tern combinations.

Parsable by the Tool (Xtext)

This NFR is fullfilled since we were able to implement the defined syntax with
the Xtext3 framework.

«In line» with Common DDD Styles and the DDD Literature

The new CML syntax works with pattern abbreviations and we used the corre-
sponding ones from literature [15, 16, 27, 41]. Therefore we consider this NFR
as satisfied.

The following NFRs concern the implementation of the ARs.

Transformations must result in valid Models

The implemented transformations operate on bounded contexts and aggre-
gates of the CML language. Potential conflicts occur whenever other objects
refer the ones affected by an AR, which is the case for the context map in CML.
As we have explained in Chapter 4, the context map is always adjusted accord-
ingly so that the ARs result in valid CML models. Corresponding unit tests
have been written for all ARs and all known cases. Therefore we acknowledge
this NFR as fully addressed.

3https://www.eclipse.org/Xtext/

https://www.eclipse.org/Xtext/

5.3. Validation of Requirements 67

Performance

We have validated the performance of all ARs with our CML example models4

as requested by this NFR and the transformations never took longer than two to
three seconds. This NFR may has to be checked again in the future when bigger
real-world projects are modeled with the tool. For this project we consider the
NFR as fulfilled.

The remaining NFRs concern all Context Mapper implementations in general.

Future-oriented Use of Tools and Frameworks

For tools which were already used by Context Mapper before this project we
refer to our previous work [20]. The only new tool or framework introduced by
this project is Henshin5 [38] which was used for the implementation of one AR.
In our paper Model Transformations for DSL Processing [21] we have compared all
available tools for such model transformations and concluded that Henshin is
the most modern and most established. Note that the MDSL [42] generator cur-
rently not requires any dependencies to external tools or frameworks since we
simply generate text. As already mentioned in our previous work [20], Xtext
[14] uses ANTLR [5] to generate the parser which would simplify a potential
future technology switch. In summary, we consider this NFR as fulfilled.

Reliability

The tool is tested with unit and integration tests and currently (v4.1.1) a test
coverage of 93 percent is measured. During our validation and modeling ac-
tivities we have further applied manual tests to ensure stability.

Licences

This NFR is fulfilled since the only new library introduced to the tool, namely
Henshin, is licenced under an «Eclipse Public License». No GPL licences have
been introduced.

Supportability and Maintainability

All tools and mechanisms promoting good code quality have already been set
up for Context Mapper in our previous work [20]. With this project we were
able to further increase the test coverage. We further avoided the usage of
special and/or unkown language features of the used programming languages
(Java, Xtend and Xtext). We therefore consider this NFR fulfilled.

4https://github.com/ContextMapper/context-mapper-examples
5https://www.eclipse.org/henshin/

https://github.com/ContextMapper/context-mapper-examples
https://www.eclipse.org/henshin/

68 Chapter 5. Summary, Evaluation and Conclusion

5.4 Conclusion and Future Work

In summary, the project requirements and critical goals have been fulfilled. Re-
garding the ARs there are still validation activities to be done to demonstrate
their practicability. Future case studies may show that other ARs are needed in
practice. The missing possibility to generate CML from existing source code is
a potential liability of the Context Mapper tool in the current state. Users with
big existing monoliths aiming to find a service decomposition might choose
other tools. Another liability already mentioned in our previous project [20]
is the fact that we currently only provide the tool for Eclipse, while many
software engineers work with other Integrated Development Environments
(IDEs). Overall the results and validation activities still suggest that the tool
has the potential to be helpful for software architects which encourages us to
continue our work in the future.

This project further provided the opportunity to strengthen the personal
knowledge regarding the criteria to be used to decompose a software system.
The elaboration of the ARs allowed us to study how these criteria can be used
in the context of DDD with the goal to decompose domains into bounded con-
texts. Additional knowledge regarding how DDD-based architecture models
can be implemented has been acquired through the development of the MDSL
(micro-)service contract generator.

The decision which ARs to apply is currently left to the user. Using heuris-
tics and algorithms similar to Service Cutter [17] to offer the architect AR sug-
gestions based on our DCs automatically might be a promising approach for
our next research project. In this way the Context Mapper tool could propose
ARs which improve the architecture by analysing the current CML model. The
collection of implemented ARs may be extended according to future user feed-
back and results from validation activities.

Future projects shall further decouple the CML language from the Eclipse
IDE with the goal to provide support for other IDEs or a Command Line In-
terface (CLI). Context Mapper users have already asked for a CLI to use our
generator tools.

Other future projects may increase the target user group by providing tools
which generate CML models from existing source code. This would support
users with already existing monolithic systems in identifying service decompo-
sitions. Generating (micro-)service project stubs out of the context maps might
be an interesting feature as well. By generating specifications in a standard for-
mat such as OpenAPI [30] our users would be able to generate server stubs,
client libraries, or Application Programming Interface (API) documentation by
using other open source tools as well.

69

Appendix A

Complete AR Examples in
Context Mapper DSL (CML)

In Chapter 4 we presented examples for all seven implemented Architectural
Refactorings (ARs). Those examples are reduced to the necessary parts which
are needed to explain the behavior of the ARs. This appendix contains the
complete Context Mapper DSL (CML) example models which can be compiled
by the CML tool in the current version1 (v4.1.1). These examples can also be
found in our examples repository2 [11].

A.1 AR-1: Split Aggregate by Entities

A.1.1 Example Input Model

1 /* This is an example CML model for the 'Split Aggregate by Entities' refactoring and

2 * shows a small part of the insurance example.

3 */

4 ContextMap {

5 contains CustomerManagementContext

6

7 }

8

9 BoundedContext CustomerManagementContext {

10 type = FEATURE

11 domainVisionStatement = "The customer management context is responsible for ..."

12 implementationTechnology = "Java, JEE Application"

13 responsibilities = "Customers, Addresses"

14

15 /* With a right-click on the 'Customers' aggregate in our Eclipse IDE you can

16 * call the 'Split Aggregate by Entities' refactoring in the 'Context Mapper:

17 * Refactor' context menu. The refactoring will create a new aggregate and

18 * move one of the two entities to the new aggregate.

19 */

20 Aggregate Customers {

21 Entity Customer {

22 aggregateRoot

LISTING 63: Input AR-1: Split Aggregate by Entities (1)

1https://github.com/ContextMapper/context-mapper-dsl/releases/tag/v4.1.1
2https://github.com/ContextMapper/context-mapper-examples/tree/master/src/

main/resources/architectural-refactorings

https://github.com/ContextMapper/context-mapper-dsl/releases/tag/v4.1.1
https://github.com/ContextMapper/context-mapper-examples/tree/master/src/main/resources/architectural-refactorings
https://github.com/ContextMapper/context-mapper-examples/tree/master/src/main/resources/architectural-refactorings

70 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

23 - SocialInsuranceNumber sin

24 String firstname

25 String lastname

26 - List<Address> addresses

27 }

28 Entity Address {

29 String street

30 int postalCode

31 String city

32 }

33 }

34 }

LISTING 64: Input AR-1: Split Aggregate by Entities (2)

A.1.2 AR Result

1 /* This is an example CML model for the 'Split Aggregate by Entities' refactoring and

2 * shows a small part of the insurance example.

3 */

4 ContextMap {

5 contains CustomerManagementContext

6

7 }

8

9 BoundedContext CustomerManagementContext {

10 domainVisionStatement = "The customer management context is responsible for ..."

11 responsibilities = "Customers, Addresses" implementationTechnology = "Java, JEE"

12 Aggregate Customers {

13 Entity Address {

14 aggregateRoot

15

16 String street

17 int postalCode

18 String city

19 }

20 }

21

22 /* The newly created aggregate after applying 'Split Aggregate by Entities'

23 * on the aggregate in the input listing above.

24 *

25 * Note that the refactoring does not produce meaningful aggregate names.

26 * You can use the 'Rename Element' refactoring (SHIFT-ALT-R) to rename

27 * the new aggregate.

28 */

29 Aggregate NewAggregate1 {

30 Entity Customer {

31 aggregateRoot

32

33 - SocialInsuranceNumber sin

34 String firstname

35 String lastname

36 - List<Address> addresses

37 }

38 }

39 }

LISTING 65: Result AR-1: Split Aggregate by Entities

A.2. AR-2: Split Bounded Context by Use Cases 71

A.2 AR-2: Split Bounded Context by Use Cases

A.2.1 Example Input Model

1 /* This is an example CML model for the 'Split Bounded Context by Use Cases'

2 * refactoring and shows a small part of the insurance example.

3 */

4 ContextMap {

5 contains PolicyManagementContext

6

7 }

8

9 /* With a right-click on the 'PolicyManagementContext' bounded context in our Eclipse

10 * IDE you can execute the 'Split Bounded Context by Use Cases' refactoring. It will

11 * split the existing bounded context and group the two aggregates of the

12 * 'CreateOffer4Customer' use case together. The 'Contract' aggregate used by the

13 * 'UpdateContract' use case will be separated.

14 */

15 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

16 type = FEATURE

17 domainVisionStatement = "This bounded context manages the contracts and policies."

18 responsibilities = "Offers, Contracts, Policies"

19 implementationTechnology = "Java, Spring App"

20

21 Aggregate Offers {

22 useCases = CreateOffer4Customer

23

24 Entity Offer {

25 aggregateRoot

26

27 int offerId

28 - Customer client

29 - List<Product> products

30 BigDecimal price

31 }

32 }

33 Aggregate Products {

34 useCases = CreateOffer4Customer

35

36 Entity Product {

37 aggregateRoot

38

39 - ProductId identifier

40 String productName

41 }

42 ValueObject ProductId {

43 int productId key

44 }

45 }

46 Aggregate Contract {

47 useCases = UpdateContract

48

49 Entity Contract {

50 aggregateRoot

51

52 - ContractId identifier

53 - Customer client

54 - List<Product> products

55 }

56 ValueObject ContractId {

57 int contractId key

58 }

LISTING 66: Input AR-2: Split Bounded Context by Use Cases
(1)

72 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

59 Entity Policy {

60 int policyNr

61 - Contract contract

62 BigDecimal price

63 }

64 }

65 }

66

67 /* Domain & Subdomain Definitions */

68 Domain InsuranceDomain {

69 Subdomain PolicyManagementDomain {

70 type = CORE_DOMAIN

71 domainVisionStatement = "Subdomain managing contracts and policies."

72 }

73 }

74

75 UseCase UpdateContract

76 UseCase CreateOffer4Customer

LISTING 67: Input AR-2: Split Bounded Context by Use Cases
(2)

A.2.2 AR Result

1 /* This is an example CML model for the 'Split Bounded Context by Use Cases'

2 * refactoring and shows a small part of the insurance example.

3 */

4 ContextMap {

5 contains PolicyManagementContext

6

7 }

8

9 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

10 domainVisionStatement = "This bounded context manages the contracts and policies."

11 responsibilities = "Offers, Contracts, Policies"

12 implementationTechnology = "Java, Spring App"

13

14 Aggregate Contract {

15 useCases = UpdateContract

16

17 Entity Contract {

18 aggregateRoot

19

20 - ContractId identifier

21 - Customer client

22 - List<Product> products

23 }

24 ValueObject ContractId {

25 int contractId key

26 }

27

28 Entity Policy {

29 int policyNr

30 - Contract contract

31 BigDecimal price

32 }

33 }

34 }

LISTING 68: Result AR-2: Split Bounded Context by Use Cases
(1)

A.2. AR-2: Split Bounded Context by Use Cases 73

35 /**

36 * A new bounded context created by the 'Split Bounded Context by Use Cases'

37 * refactoring applied to the CML in the input listing above.

38 *

39 * Note that the refactoring does not produce meaningful bounded context names.

40 * You can use the 'Rename Element' refactoring (SHIFT-ALT-R) to rename the

41 * new aggregate.

42 */

43 BoundedContext NewBoundedContext1 {

44 Aggregate Offers {

45 useCases = CreateOffer4Customer

46

47 Entity Offer {

48 aggregateRoot

49

50 int offerId

51 - Customer client

52 - List<Product> products

53 BigDecimal price

54 }

55 }

56 Aggregate Products {

57 useCases = CreateOffer4Customer

58

59 Entity Product {

60 aggregateRoot

61

62 - ProductId identifier

63 String productName

64 }

65 ValueObject ProductId {

66 int productId key

67 }

68 }

69 }

70

71 /* Domain & Subdomain Definitions */

72 Domain InsuranceDomain {

73 Subdomain PolicyManagementDomain {

74 type = CORE_DOMAIN

75 domainVisionStatement = "Subdomain managing contracts and policies."

76 }

77 }

78

79 UseCase UpdateContract

80 UseCase CreateOffer4Customer

LISTING 69: Result AR-2: Split Bounded Context by Use Cases
(1)

74 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

A.3 AR-3: Split Bounded Context by Owner

A.3.1 Example Input Model

1 /* This is an example CML model for the 'Split Bounded Context by Owner' refactoring and

2 * shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerSelfServiceContext

5

6 }

7

8 /* With a right-click on the 'CustomerSelfServiceContext' bounded context in our Eclipse

9 * IDE you can execute the 'Split Bounded Context by Owners' refactoring. It will split

10 * the existing bounded context according to the two owning teams 'CustomerBackendTeam'

11 * and 'CustomerFrontendTeam'.

12 */

13 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

14 type = APPLICATION

15 domainVisionStatement = "This context represents a web application which allows ..."

16 responsibilities = "AddressChange"

17 implementationTechnology = "PHP Web Application"

18

19 Aggregate CustomerFrontend {

20 owner = CustomerFrontendTeam

21

22 Entity CustomerAddressChange {

23 aggregateRoot

24

25 - UserAccount issuer

26 - Address changedAddress

27 }

28 }

29 Aggregate Acounts {

30 owner = CustomerBackendTeam

31

32 Entity UserAccount {

33 aggregateRoot

34

35 String username

36 - Customer accountCustomer

37 }

38 }

39 }

40

41 /* Team Definitions */

42 BoundedContext CustomerBackendTeam {

43 type = TEAM

44 }

45

46 BoundedContext CustomerFrontendTeam {

47 type = TEAM

48 }

49

50 /* Domain & Subdomain Definitions */

51 Domain InsuranceDomain {

52 Subdomain CustomerManagementDomain {

53 type = CORE_DOMAIN

54 domainVisionStatement = "Subdomain managing everything customer-related."

55 }

56 }

LISTING 70: Input AR-3: Split Bounded Context by Owner

A.3. AR-3: Split Bounded Context by Owner 75

A.3.2 AR Result

1 /* This is an example CML model for the 'Split Bounded Context by Owner' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerSelfServiceContext

5

6 }

7

8 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

9 domainVisionStatement = "This context represents a web application which allows ..."

10 type = APPLICATION

11 responsibilities = "AddressChange"

12 implementationTechnology = "PHP Web Application"

13

14 Aggregate CustomerFrontend {

15 owner = CustomerFrontendTeam

16

17 Entity CustomerAddressChange {

18 aggregateRoot

19

20 - UserAccount issuer

21 - Address changedAddress

22 }

23 }

24 }

25

26 /* Team Definitions */

27 BoundedContext CustomerBackendTeam {

28 type = TEAM

29 }

30

31 BoundedContext CustomerFrontendTeam {

32 type = TEAM

33 }

34

35 /**

36 * The new bounded context created by the 'Split Bounded Context by Owners' refactoring

37 * applied to the input CML model in the listing above.

38 *

39 * Note that the refactoring does not produce meaningful bounded context names.

40 * You can use the 'Rename Element' refactoring (SHIFT-ALT-R) to rename the new

41 * aggregate.

42 *

43 * The automated refactorings add newly created bounded contexts at the end of the

44 * 'bounded context' block, which might not always be the desired order.

45 * You may change the order after the refactoring manually.

46 */

47 BoundedContext NewBoundedContext1 {

48 Aggregate Acounts {

49 owner = CustomerBackendTeam

50

51 Entity UserAccount {

52 aggregateRoot

53

54 String username

55 - Customer accountCustomer

56 }

57 }

58 }

LISTING 71: Result AR-3: Split Bounded Context by Owner (1)

76 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

59 /* Domain & Subdomain Definitions */

60 Domain InsuranceDomain {

61 Subdomain CustomerManagementDomain {

62 type = CORE_DOMAIN

63 domainVisionStatement = "Subdomain managing everything customer-related."

64 }

65 }

LISTING 72: Result AR-3: Split Bounded Context by Owner (2)

A.4 AR-4: Extract Aggregates by Volatility

A.4.1 Example Input Model

1 /* This is an example CML model for the 'Extract Aggregates by Volatility' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerSelfServiceContext

5

6 }

7

8 /* With a right-click on the 'CustomerSelfServiceContext' bounded context in our

9 * Eclipse IDE you can execute the 'Extract Aggregates by Volatility' refactoring.

10 * If you choose the volatility 'OFTEN', it will extract the volatile

11 * 'CustomerFrontend' aggregate and create a new bounded context for it.

12 */

13 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

14 type = APPLICATION

15 domainVisionStatement = "This context represents a web application which allows ..."

16 responsibilities = "AddressChange"

17 implementationTechnology = "PHP Web Application"

18

19 Aggregate CustomerFrontend {

20 likelihoodForChange = OFTEN

21

22 Entity CustomerAddressChange {

23 aggregateRoot

24

25 - UserAccount issuer

26 - Address changedAddress

27 }

28 }

29 Aggregate Acounts {

30 Entity UserAccount {

31 aggregateRoot

32

33 String username

34 - Customer accountCustomer

35 }

36 }

37 }

38

39 /* Domain & Subdomain Definitions */

40 Domain InsuranceDomain {

41 Subdomain CustomerManagementDomain {

42 type = CORE_DOMAIN

43 domainVisionStatement = "Subdomain managing everything customer-related."

44 }

45 }

LISTING 73: Input AR-4: Extract Aggregates by Volatility

A.4. AR-4: Extract Aggregates by Volatility 77

A.4.2 AR Result

1 /* This is an example CML model for the 'Extract Aggregates by Volatility' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerSelfServiceContext

5

6 }

7

8 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

9 domainVisionStatement = "This context represents a web application which allows ..."

10 type = APPLICATION

11 responsibilities = "AddressChange"

12 implementationTechnology = "PHP Web Application"

13

14 Aggregate Acounts {

15 Entity UserAccount {

16 aggregateRoot

17

18 String username

19 - Customer accountCustomer

20 }

21 }

22 }

23

24 /**

25 * The extracted bounded context after applying 'Extract Aggregates by Volatility'

26 * to the input CML model in the listing above. The chosen volatility was 'OFTEN'.

27 *

28 * You may want to change the name of newly created bounded contexts after applying

29 * refactorings.

30 */

31 BoundedContext CustomerSelfServiceContext_Volatility_OFTEN {

32 Aggregate CustomerFrontend {

33 likelihoodForChange = OFTEN

34

35 Entity CustomerAddressChange {

36 aggregateRoot

37

38 - UserAccount issuer

39 - Address changedAddress

40 }

41 }

42 }

43

44 /* Domain & Subdomain Definitions */

45 Domain InsuranceDomain {

46 Subdomain CustomerManagementDomain {

47 type = CORE_DOMAIN

48 domainVisionStatement = "Subdomain managing everything customer-related."

49 }

50 }

LISTING 74: Result AR-4: Extract Aggregates by Volatility

78 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

A.5 AR-5: Extract Aggregates by Cohesion

A.5.1 Example Input Model

1 /* This is an example CML model for the 'Extract Aggregates by Cohesion' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains PolicyManagementContext

5

6 }

7

8 /* With a right-click on the 'PolicyManagementContext' bounded context in our Eclipse

9 * IDE you can execute the 'Extract Aggregates by Cohesion' refactoring. A dialog

10 * will pop up which allows you to select the aggregates to be extracted. You can

11 * further specify the name of the new bounded context. For example: As architect

12 * you may want to extract the 'Offers' aggregate due to other differing

13 * availability requirements.

14 */

15 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

16 type = FEATURE

17 domainVisionStatement = "This bounded context manages the contracts and policies."

18 responsibilities = "Offers, Contracts, Policies"

19 implementationTechnology = "Java, Spring App"

20

21 Aggregate Offers {

22 Entity Offer {

23 aggregateRoot

24

25 int offerId

26 - Customer client

27 - List<Product> products

28 BigDecimal price

29 }

30 }

31 Aggregate Products {

32 Entity Product {

33 aggregateRoot

34

35 - ProductId identifier

36 String productName

37 }

38 ValueObject ProductId {

39 int productId key

40 }

41 }

42 Aggregate Contract {

43 Entity Contract {

44 aggregateRoot

45

46 - ContractId identifier

47 - Customer client

48 - List<Product> products

49 }

50 ValueObject ContractId {

51 int contractId key

52 }

LISTING 75: Input AR-5: Extract Aggregates by Cohesion (1)

A.5. AR-5: Extract Aggregates by Cohesion 79

53 Entity Policy {

54 int policyNr

55 - Contract contract

56 BigDecimal price

57 }

58 }

59 }

60

61 /* Domain & Subdomain Definitions */

62 Domain InsuranceDomain {

63 Subdomain PolicyManagementDomain {

64 type = CORE_DOMAIN

65 domainVisionStatement = "Subdomain managing contracts and policies."

66 }

67 }

LISTING 76: Input AR-5: Extract Aggregates by Cohesion (2)

A.5.2 AR Result

1 /* This is an example CML model for the 'Extract Aggregates by Cohesion' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains PolicyManagementContext

5

6 }

7

8 BoundedContext PolicyManagementContext implements PolicyManagementDomain {

9 domainVisionStatement = "This bounded context manages the contracts and policies."

10 responsibilities = "Offers, Contracts, Policies"

11 implementationTechnology = "Java, Spring App"

12

13 Aggregate Products {

14 Entity Product {

15 aggregateRoot

16

17 - ProductId identifier

18 String productName

19 }

20 ValueObject ProductId {

21 int productId key

22 }

23 }

24 Aggregate Contract {

25 Entity Contract {

26 aggregateRoot

27

28 - ContractId identifier

29 - Customer client

30 - List<Product> products

31 }

32 ValueObject ContractId {

33 int contractId key

34 }

LISTING 77: Result AR-5: Extract Aggregates by Cohesion (1)

80 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

35 Entity Policy {

36 int policyNr

37 - Contract contract

38 BigDecimal price

39 }

40 }

41 }

42

43 /**

44 * New bounded context after applying 'Extract Aggregates by Cohesion' to

45 * the input CML model in listing above, with the following parameters:

46 * - New bounded context name: 'SalesBoundedContext'

47 * - Selected aggregates: 'Offers'

48 */

49 BoundedContext SalesBoundedContext {

50 Aggregate Offers {

51 Entity Offer {

52 aggregateRoot

53

54 int offerId

55 - Customer client

56 - List<Product> products

57 BigDecimal price

58 }

59 }

60 }

61

62 /* Domain & Subdomain Definitions */

63 Domain InsuranceDomain {

64 Subdomain PolicyManagementDomain {

65 type = CORE_DOMAIN

66 domainVisionStatement = "Subdomain managing contracts and policies."

67 }

68 }

LISTING 78: Result AR-5: Extract Aggregates by Cohesion (2)

A.6 AR-6: Merge Aggregates

A.6.1 Example Input Model

1 /* This is an example CML model for the 'Merge Aggregates' refactoring and

2 * shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerManagementContext

5 contains CustomerSelfServiceContext

6

7 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext {

8 exposedAggregates = Customers, Addresses

9 }

10 }

LISTING 79: Input AR-6: Merge Aggregates (1)

A.6. AR-6: Merge Aggregates 81

11 /* With a right-click on the 'Customers' aggregate (or on the 'Addresses' aggregate,

12 * as you wish) in our Eclipse IDE you can execute the 'Merge Aggregates' refactoring.

13 * A dialog will show up and ask you with which other aggregate you want to merge.

14 * Choose the other aggregate and the refactoring will merge them.

15 */

16 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

17 type = FEATURE

18 domainVisionStatement = "The customer management context is responsible for ..."

19 implementationTechnology = "Java, JEE Application"

20 responsibilities = "Customers, Addresses"

21

22 Aggregate Customers {

23 Entity Customer {

24 aggregateRoot

25 - SocialInsuranceNumber sin

26 String firstname

27 String lastname

28 - List<Address> addresses

29 }

30 ValueObject SocialInsuranceNumber {

31 String sin key

32 }

33 }

34 Aggregate Addresses {

35 Entity Address {

36 String street

37 int postalCode

38 String city

39 }

40 }

41 }

42

43 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

44 type = APPLICATION

45 domainVisionStatement = "This context represents a web application which allows ..."

46 responsibilities = "AddressChange"

47 implementationTechnology = "PHP Web Application"

48

49 Aggregate CustomerFrontend {

50 Entity CustomerAddressChange {

51 aggregateRoot

52 - UserAccount issuer

53 - Address changedAddress

54 }

55 }

56 Aggregate Acounts {

57 Entity UserAccount {

58 aggregateRoot

59 String username

60 - Customer accountCustomer

61 }

62 }

63 }

64

65 /* Domain & Subdomain Definitions */

66 Domain InsuranceDomain {

67 Subdomain CustomerManagementDomain {

68 type = CORE_DOMAIN

69 domainVisionStatement = "Subdomain managing everything customer-related."

70 }

71 }

LISTING 80: Input AR-6: Merge Aggregates (2)

82 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

A.6.2 AR Result

1 /* This is an example CML model for the 'Merge Aggregates' refactoring and

2 * shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerManagementContext

5 contains CustomerSelfServiceContext

6

7 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext {

8 exposedAggregates = Customers

9 }

10 }

11

12 /*

13 * The resulting bounded context after applying 'Merge Aggregates' to the input CML

14 * model in the listing above. The 'Addresses' aggregate has been merged into the

15 * 'Customers' aggregate.

16 */

17 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

18 domainVisionStatement = "The customer management context is responsible for ..."

19 responsibilities = "Customers, Addresses"

20 implementationTechnology = "Java, JEE Application"

21 Aggregate Customers {

22 Entity Customer {

23 aggregateRoot

24 - SocialInsuranceNumber sin

25 String firstname

26 String lastname

27 - List<Address> addresses

28 }

29 ValueObject SocialInsuranceNumber {

30 String sin key

31 }

32 Entity Address {

33 String street

34 int postalCode

35 String city

36 }

37 }

38 }

39

40 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

41 domainVisionStatement = "This context represents a web application which allows ..."

42 type = APPLICATION

43 responsibilities = "AddressChange"

44 implementationTechnology = "PHP Web Application"

45

46 Aggregate CustomerFrontend {

47 Entity CustomerAddressChange {

48 aggregateRoot

49 - UserAccount issuer

50 - Address changedAddress

51 }

52 }

53 Aggregate Acounts {

54 Entity UserAccount {

55 aggregateRoot

56 String username

57 - Customer accountCustomer

58 }

59 }

60 }

LISTING 81: Result AR-6: Merge Aggregates (1)

A.7. AR-7: Merge Bounded Contexts 83

61 /* Domain & Subdomain Definitions */

62 Domain InsuranceDomain {

63 Subdomain CustomerManagementDomain {

64 type = CORE_DOMAIN

65 domainVisionStatement = "Subdomain managing everything customer-related."

66 }

67 }

LISTING 82: Result AR-6: Merge Aggregates (2)

A.7 AR-7: Merge Bounded Contexts

A.7.1 Example Input Model

1 /* This is an example CML model for the 'Merge Bounded Contexts' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerManagementContext

5 contains CustomerSelfServiceContext

6 contains PrintingContext

7

8 CustomerSelfServiceContext [D,C]<-[U,S] CustomerManagementContext {

9 exposedAggregates = Customers

10 }

11

12 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

13 implementationTechnology = "SOAP"

14 downstreamRights = INFLUENCER

15 exposedAggregates = Printing

16 }

17

18 }

19

20 /* With a right-click on the 'CustomerManagementContext' (or one of the other contexts,

21 * as you wish) bounded context in our Eclipse IDE you can execute the

22 * 'Merge Bounded Contexts' refactoring. A dialog will show up and ask you with which

23 * other bounded context you want to merge. Choose a second bounded context and the

24 * refactoring will merge them.

25 */

26 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

27 type = FEATURE

28 domainVisionStatement = "The customer management context is responsible for ..."

29 implementationTechnology = "Java, JEE Application"

30 responsibilities = "Customers, Addresses"

31

32 Aggregate Customers {

33 Entity Customer {

34 aggregateRoot

35

36 - SocialInsuranceNumber sin

37 String firstname

38 String lastname

39 - List<Address> addresses

40 }

41 Entity Address {

42 String street

43 int postalCode

44 String city

45 }

LISTING 83: Input AR-7: Merge Bounded Contexts (1)

84 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

46 ValueObject SocialInsuranceNumber {

47 String sin key

48 }

49 }

50 }

51

52 BoundedContext CustomerSelfServiceContext implements CustomerManagementDomain {

53 type = APPLICATION

54 domainVisionStatement = "This context represents a web application which allows ..."

55 responsibilities = "AddressChange"

56 implementationTechnology = "PHP Web Application"

57

58 Aggregate CustomerFrontend {

59 Entity CustomerAddressChange {

60 aggregateRoot

61

62 - UserAccount issuer

63 - Address changedAddress

64 }

65 }

66 Aggregate Acounts {

67 Entity UserAccount {

68 aggregateRoot

69

70 String username

71 - Customer accountCustomer

72 }

73 }

74 }

75

76 BoundedContext PrintingContext implements PrintingDomain {

77 type = SYSTEM

78 responsibilities = "Document Printing"

79 domainVisionStatement = "An external system which provides printing services."

80

81 Aggregate Printing {

82 Entity PrintingJob {

83 aggregateRoot

84

85 int printingId

86 - Document document

87 - Template template

88 }

89

90 Entity Document {

91 DomainObject source

92 String template

93 }

94 }

95 Aggregate Templating {

96 Entity Template {

97 aggregateRoot

98

99 int templateId

100 String templateName

101 }

102 }

103 }

104

105 /* Domain & Subdomain Definitions */

106 Domain InsuranceDomain {

107 Subdomain CustomerManagementDomain {

108 type = CORE_DOMAIN

109 domainVisionStatement = "Subdomain managing everything customer-related."

110 }

LISTING 84: Input AR-7: Merge Bounded Contexts (2)

A.7. AR-7: Merge Bounded Contexts 85

111 Subdomain PrintingDomain {

112 type = SUPPORTING_DOMAIN

113 domainVisionStatement = "Service (external system) to solve printing for ..."

114 }

115 }

LISTING 85: Input AR-7: Merge Bounded Contexts (3)

A.7.2 AR Result

1 /* This is an example CML model for the 'Merge Bounded Contexts' refactoring

2 * and shows a small part of the insurance example. */

3 ContextMap {

4 contains CustomerManagementContext

5 contains PrintingContext

6

7 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

8 implementationTechnology = "SOAP"

9 exposedAggregates = Printing

10 }

11

12 }

13

14 /**

15 * The merged bounded context after applying 'Merge Bounded Contexts' to the input CML

16 * model in the listing above. We selected the 'CustomerSelfServiceContext' context

17 * as the second bounded context.

18 */

19 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

20 domainVisionStatement = "The customer management context is responsible for ..."

21 responsibilities = "Customers, Addresses" , "AddressChange"

22 implementationTechnology = "Java, JEE Application"

23 Aggregate Customers {

24 Entity Customer {

25 aggregateRoot

26

27 - SocialInsuranceNumber sin

28 String firstname

29 String lastname

30 - List<Address> addresses

31 }

32 Entity Address {

33 String street

34 int postalCode

35 String city

36 }

37 ValueObject SocialInsuranceNumber {

38 String sin key

39 }

40 }

41 Aggregate CustomerFrontend {

42 Entity CustomerAddressChange {

43 aggregateRoot

44

45 - UserAccount issuer

46 - Address changedAddress

47 }

48 }

LISTING 86: Result AR-7: Merge Bounded Contexts (1)

86 Appendix A. Complete AR Examples in Context Mapper DSL (CML)

49 Aggregate Acounts {

50 Entity UserAccount {

51 aggregateRoot

52

53 String username

54 - Customer accountCustomer

55 }

56 }

57 }

58

59 BoundedContext PrintingContext implements PrintingDomain {

60 domainVisionStatement = "An external system which provides printing services."

61 type = SYSTEM

62 responsibilities = "Document Printing"

63 Aggregate Printing {

64 Entity PrintingJob {

65 aggregateRoot

66

67 int printingId

68 - Document document

69 - Template template

70 }

71

72 Entity Document {

73 DomainObject source

74 String template

75 }

76 }

77 Aggregate Templating {

78 Entity Template {

79 aggregateRoot

80

81 int templateId

82 String templateName

83 }

84 }

85 }

86

87 /* Domain & Subdomain Definitions */

88 Domain InsuranceDomain {

89 Subdomain CustomerManagementDomain {

90 type = CORE_DOMAIN

91 domainVisionStatement = "Subdomain managing everything customer-related."

92 }

93 Subdomain PrintingDomain {

94 type = SUPPORTING_DOMAIN

95 domainVisionStatement = "Service (external system) to solve printing for ..."

96 }

97 }

LISTING 87: Result AR-7: Merge Bounded Contexts (2)

87

Appendix B

Revised CML Language
Reference

This appendix contains a reference for the current version v4.1.11 of the Context
Mapper DSL (CML) language. It is an updated version of the language refer-
ence we provided in our previous work [20]. This reference is adjusted with
respect to all the language changes we have implemented during this project.

Please note that this reference explains syntax and semantic rules of the
CML language only. The purposes and goals of the individual language fea-
tures are explained in our previous work [20] and Chapter 4 of this report in
case its a new feature. All CML language concepts and the syntax explained in
this language reference can further be found in our online documentation2.

The tactic Domain-driven Design (DDD) parts within the aggregates are
realized with the Sculptor Domain-specific Language (DSL) [34] and not ex-
plained within this language reference. We refer to the Sculptor online docu-
mentation3.

B.1 Language Design

The design of our DSL and its rules is based on the domain model presented in
our previous project [20]. It can also be found online4.

B.2 Terminals

The grammar snippets within the language reference use the terminals defined
in Listing 88.

1 terminal OPEN: '{';

2 terminal CLOSE: '}';

LISTING 88: Xtext CML Terminals

1https://github.com/ContextMapper/context-mapper-dsl/tree/v4.1.1
2https://contextmapper.github.io/docs
3http://sculptorgenerator.org/documentation/
4https://contextmapper.github.io/docs/language-model/

https://github.com/ContextMapper/context-mapper-dsl/tree/v4.1.1
https://contextmapper.github.io/docs
http://sculptorgenerator.org/documentation/
https://contextmapper.github.io/docs/language-model/

88 Appendix B. Revised CML Language Reference

B.3 Root Rule

The root elements allowed in a CML file are the context map, bounded contexts,
domains and use cases. A CML model can have one context map only. All other
root elements can occur multiple times. Listing 89 shows the root grammar
rule of the language.

1 ContextMappingModel:

2 (

3 (map = ContextMap)? &

4 (boundedContexts += BoundedContext)* &

5 (domains += Domain)* &

6 (useCases += UseCase)*

7)

8 ;

LISTING 89: Xtext Root Grammar Rule

The order in which these root elements occur does not matter, but they have
to occur in one block per type. All bounded contexts, domains and use cases
have to occur in a block for each type. Whether the CML file lists bounded
contexts or domains first does not matter. We recommend to use the order as
given by the grammar rule, since the application of Architectural Refactorings
(ARs) currently unparses the whole model in this order. We have mentioned
this as a known limitation in Chapter 4.

B.4 Context Map

The context maps grammar rule is shown in Listing 90. A context map is de-
clared with the ContextMap keyword followed by an optional name for the
map. With the state keyword the ContextMapState is assigned, whereas the
type keywords allows the assignment of the ContextMapType. With the con-
tains keyword multiple bounded contexts can be assigned to the context map.
It is possible to use contains multiple times, but also to list multiple bounded
contexts with just one usage of contains (comma-separated). At the end of the
grammar rule body the bounded context relationships can be added.

1 ContextMap:

2 {ContextMap}

3 'ContextMap' (name=ID)?

4 OPEN

5 (('state' '=' state=ContextMapState)? &

6 ('type' '=' type=ContextMapType)?)

7 ('contains' boundedContexts += [BoundedContext]

8 ("," boundedContexts += [BoundedContext])*)*

9 relationships += Relationship*

10 CLOSE

11 ;

LISTING 90: Xtext Context Map Grammar Rule

B.4. Context Map 89

Listing 91 illustrates an example for the context map rule. Note that the order
of the state and type does not matter. The listing further illustrates both variants
how to add bounded contexts with the contains keyword and a few examples
for relationships.

1 ContextMap DDD_Sample_Map {

2 type = SYSTEM_LANDSCAPE

3 state = AS_IS

4

5 /* add bounded contexts to map: */

6

7 contains CargoBookingContext, VoyagePlanningContext

8 contains LocationContext

9

10 /* relationship examples: */

11

12 CargoBookingContext [SK]<->[SK] VoyagePlanningContext

13

14 CargoBookingContext [D]<-[U,OHS,PL] LocationContext

15

16 LocationContext [U,OHS,PL]->[D] VoyagePlanningContext

17 }

LISTING 91: Syntax example for the ContextMap rule

Listing 92 shows the enums ContextMapState and ContextMapType which de-
fine the possible values for the context map attributes type and state.

1 enum ContextMapState:

2 AS_IS | TO_BE

3 ;

4

5 enum ContextMapType:

6 SYSTEM_LANDSCAPE | ORGANIZATIONAL

7 ;

LISTING 92: Xtext: ContextMapState & ContextMapType

The Relationship rule which can be used to add bounded context relationships
to a context map, allows the application of the two rules SymmetricRelation-
ship and UpstreamDownstreamRelationship, as shown in Listing 93.

1 Relationship:

2 SymmetricRelationship | UpstreamDownstreamRelationship

3 ;

LISTING 93: Xtext: Relationship Rule

The SymmetricRelationship rule further allows the application of the rules
Partnership or SharedKernel (Listing 94).

90 Appendix B. Revised CML Language Reference

1 SymmetricRelationship:

2 Partnership | SharedKernel

3 ;

LISTING 94: Xtext: SymmetricRelationship Rule

For the syntax of the Partnership rule we refer to Section B.9. The SharedKernel
rule is explained in Section B.10.

The rule UpstreamDownstreamRelationship shown in the listings 95 and 96
allows either the application of the CustomerSupplierRelationship rule or di-
rectly writing a generic upstream-downstream relationship.

1 UpstreamDownstreamRelationship:

2 CustomerSupplierRelationship |

3 (

4 (

5 // variant 1: long keywords

6 (upstream = [BoundedContext] ('['((upstreamRoles+=UpstreamRole)

7 ("," upstreamRoles+=UpstreamRole)*)?']')?'Upstream-Downstream'

8 ('['((downstreamRoles+=DownstreamRole)

9 ("," downstreamRoles+=DownstreamRole)*)?']')? downstream = [BoundedContext]) |

10 (downstream = [BoundedContext] ('['((downstreamRoles+=DownstreamRole)

11 ("," downstreamRoles+=DownstreamRole)*)?']')?'Downstream-Upstream'

12 ('['((upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)?']')?

13 upstream = [BoundedContext]) |

14

15 // variant 2: arrow from left to right

16 (

17 (upstream = [BoundedContext] '->' downstream = [BoundedContext]) |

18 (upstream = [BoundedContext] '[''U'(','(upstreamRoles+=UpstreamRole)

19 ("," upstreamRoles+=UpstreamRole)*)?']' '->'

20 '[''D'(','(downstreamRoles+=DownstreamRole)

21 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]) |

22 ('[''U'(','(upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)?']'

23 upstream = [BoundedContext] '->''[''D'(','(downstreamRoles+=DownstreamRole)

24 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]) |

25 (upstream = [BoundedContext] '[''U'(','(upstreamRoles+=UpstreamRole)

26 ("," upstreamRoles+=UpstreamRole)*)?']''->' downstream = [BoundedContext]

27 '[''D'(','(downstreamRoles+=DownstreamRole)

28 ("," downstreamRoles+=DownstreamRole)*)?']') |

29 ('[''U'(','(upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)?']'

30 upstream = [BoundedContext] '->' downstream = [BoundedContext]

31 '[''D'(','(downstreamRoles+=DownstreamRole)

32 ("," downstreamRoles+=DownstreamRole)*)?']')

33) |

34

35 // variant 3: arrow from right to left

36 (

37 (downstream = [BoundedContext] '<-' upstream = [BoundedContext]) |

38 (downstream = [BoundedContext] '[''D'(','(downstreamRoles+=DownstreamRole)

39 ("," downstreamRoles+=DownstreamRole)*)?']' '<-'

40 '[''U'(','(upstreamRoles+=UpstreamRole)

41 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext]) |

42 ('[''D'(','(downstreamRoles+=DownstreamRole)

43 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]

44 '<-''[''U'(','(upstreamRoles+=UpstreamRole)

45 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext]) |

LISTING 95: Xtext: UpstreamDownstreamRelationship Rule (1)

B.4. Context Map 91

46 (downstream = [BoundedContext] '[''D'(','(downstreamRoles+=DownstreamRole)

47 ("," downstreamRoles+=DownstreamRole)*)?']''<-' upstream = [BoundedContext]

48 '[''U'(','(upstreamRoles+=UpstreamRole)

49 ("," upstreamRoles+=UpstreamRole)*)?']') |

50 ('[''D'(','(downstreamRoles+=DownstreamRole)

51 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]

52 '<-' upstream = [BoundedContext] '[''U'(','(upstreamRoles+=UpstreamRole)

53 ("," upstreamRoles+=UpstreamRole)*)?']')

54)

55)

56 // name and body

57 (':' name=ID)?

58 (OPEN (

59 ('implementationTechnology' '=' implementationTechnology=STRING)? &

60 (('exposedAggregates' '=' upstreamExposedAggregates += [Aggregate])

61 ("," upstreamExposedAggregates += [Aggregate])*)? &

62 ('downstreamRights' '=' downstreamGovernanceRights=DownstreamGovernanceRights)?

63)

64 CLOSE)?

65)

66 ;

LISTING 96: Xtext: UpstreamDownstreamRelationship Rule (2)

Please note that we are aware of the fact that the readability of the rule above
is not very good in this report. The complete grammar in the original line
length can be found in our repository on Github5 and might be easier to read.
The length and complexity of this rule is increased due to the many different
variants we offer our users to declare relationships.

As declared in the grammar rule, there are basically three alternative syn-
taxes which allow the specification of the same upstream-downstream relation-
ship. The listings 97, 98 and 99 show a corresponding example in all possible
ways. All these declarations are semantically equal and the LocationContext is
always upstream whereas the CargoBookingContext is downstream.

1 LocationContext Upstream-Downstream CargoBookingContext

2 // or inverse:

3 CargoBookingContext Downstream-Upstream LocationContext

LISTING 97: CML: Upstream-Downstream Variant 1

The variants 2 and 3 use the abbreviations U for upstream and D for down-
stream.

1 LocationContext [U]->[D] CargoBookingContext

2 // or: (without the brackets and the 'U' and 'D' one declares an upstream-downstream

3 // relationship as well)

4 LocationContext -> CargoBookingContext

LISTING 98: CML: Upstream-Downstream Variant 2

5https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

92 Appendix B. Revised CML Language Reference

1 CargoBookingContext [D]<-[U] LocationContext

2 // or: (without the brackets and the 'U' and 'D' one declares an upstream-downstream

3 // relationship as well)

4 CargoBookingContext <- LocationContext

LISTING 99: CML: Upstream-Downstream Variant 3

Note that if one of the variants with the arrows (-> or <-) is used, the arrow
always points from the upstream towards the downstream, reflecting the in-
fluence flow [27] (the downstream is influenced by and depends on the up-
stream). The upstream and downstream roles Open Host Service (OHS), Pub-
lished Language (PL), Anticorruption Layer (ACL) and Conformist (CF) are
declared within the brackets behind the U and the D. In the variant with the
long keywords we use the same brackets for the rules but without the abbrevi-
ations for upstream and downstream, since this would be redundant.

The following listings 100, 101 and 102 illustrate the same relationships as
before but with upstream and downstream roles.

1 LocationContext[OHS,PL] Upstream-Downstream [ACL]CargoBookingContext

2 // or inverse:

3 CargoBookingContext[ACL] Downstream-Upstream [OHS,PL]LocationContext

LISTING 100: CML: Upstream-Downstream Variant 1 with
Roles

1 LocationContext [U,OHS,PL]->[D,ACL] CargoBookingContext

LISTING 101: CML: Upstream-Downstream Variant 2 with
Roles

1 CargoBookingContext [D,ACL]<-[U,OHS,PL] LocationContext

LISTING 102: CML: Upstream-Downstream Variant 3 with
Roles

Listing 103 shows the Xtext enumerations UpstreamRole and DownstreamRole
which specify the allowed values for the roles inside the corresponding brack-
ets.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

7 ;

LISTING 103: Xtext: UpstreamRole and DownstreamRole

B.4. Context Map 93

The syntax with the arrows and the abbreviations further allows to place the
brackets with the upstream (U), downstream (D) and relationship roles flexible
in front or after the bounded context name. Whitespaces around the brackets
are ignored by the compiler, so that the user is free to add whitespaces between
the brackets, arrows and bounded context names or not. Listing 104 shows all
possible placements. However, all four variants are again semantically equal.
Note that this flexible bracket placement is not possible for the variant with the
long keywords Upstream-Downstream and Downstream-Upstream.

1 LocationContext [U]->[D] VoyagePlanningContext // brackets centered

2

3 [U]LocationContext -> VoyagePlanningContext[D] // brackets outside

4

5 [U]LocationContext -> [D]VoyagePlanningContext // both on the left side

6

7 LocationContext[U] -> VoyagePlanningContext[D] // both on the right side

LISTING 104: CML: Upstream-Downstream Bracket
Placements

With a colon at the end of the specification followed by a string it is possible
to give every relationship in CML a name. Listing 105 illustrates an example
for a relationship declaration with name.

1 LocationContext [U]->[D] VoyagePlanningContext : ExampleName

LISTING 105: CML: Relationship with Name

Within the body of the rule (inside the terminals OPEN and CLOSE, which
are optional), the implementation technology, the exposed aggregates and the
downstream rights can be defined. The corresponding keywords are imple-
mentationTechnology, exposedAggregates and downstreamRights. Please note that
this language reference does not state rationale or the goals for language fea-
tures. Chapter 4 of this work together with the report of our previous project
[20] explain all the language features and the reasons why they were added.
Listing 106 shows an example for a relationship specification with body and
corresponding attributes. All attributes here are optional and the order does
not matter.

1 LocationContext [U]->[D] VoyagePlanningContext : ExampleName {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Location, OtherAggregate

4 downstreamRights = INFLUENCER

5 }

LISTING 106: CML: Upstream-Downstream Example with
Attributes (Body)

The exposedAggregates attribute must reference aggregates (see syntax in Sec-
tion B.18) which are part of the upstream bounded context of the relationship.

94 Appendix B. Revised CML Language Reference

The compiler will throw an error if a referenced aggregate is specified within
another bounded context. Listing 107 shows the rule specifying the allowed
values for the downstreamRights attribute.

1 enum DownstreamGovernanceRights:

2 INFLUENCER | OPINION_LEADER | VETO_RIGHT | DECISION_MAKER | MONOPOLIST

3 ;

LISTING 107: Xtext: DownstreamGovernanceRights

The alternative UpstreamDownstreamRelationship defined by the role Cus-
tomerSupplierRelationship is explained in Section B.11.

B.4.1 Context Map Semantic Rules

Note that semantic validators exist for a Context Map. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Context Map:

• A bounded context which is not part of the context map (referenced with
the contains keyword), can not be referenced from a relationship rule
within that context map.

• A bounded context of the type TEAM (BoundedContextType rule) can
not be contained in a context map if the context map type is
SYSTEM_LANDSCAPE (ContextMapType rule).

• If the context map type of a context map is ORGANIZATIONAL (Con-
textMapType rule), every bounded context added to the context map
(with the contains keyword) has to be of the type TEAM (BoundedCon-
textType rule).

• Aggregates which are exposed by relationships must be part of the corre-
sponding upstream bounded context.

• Context map relationships must always be declared between two differ-
ent bounded contexts. A relationship where both participants are the
same bounded context is not allowed.

B.5 Bounded Context

A bounded context can be defined according to the BoundedContext grammar
rule, shown in Listing 108.

With the keyword domainVisionStatement a Domain Vision Statement is as-
signed to the bounded context. The keyword type allows the assigning of a
BoundedContextType. With the responsibilities keyword, multiple Responsibil-
ity Layers can be assigned. The keyword implementationTechnology assigns an
implementation technology and the keyword knowledgeLevel allows the assign-
ing of a KnowledgeLevel.

B.5. Bounded Context 95

1 BoundedContext:

2 'BoundedContext' name=ID

3 (('implements' (implementedSubdomains+=[Subdomain])

4 ("," implementedSubdomains+=[Subdomain])*)?

5 & ('realizes' (realizedBoundedContexts+=[BoundedContext])

6 ("," realizedBoundedContexts+=[BoundedContext])*)?)

7 (

8 OPEN

9 (('domainVisionStatement' '=' domainVisionStatement=STRING)? &

10 ('type' '=' type=BoundedContextType)? &

11 (('responsibilities' '=' responsibilities+=STRING)

12 ("," responsibilities+=STRING)*)? &

13 ('implementationTechnology' '=' implementationTechnology=STRING)? &

14 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

15 modules += Module*

16 aggregates += Aggregate*

17 CLOSE

18)?

19 ;

LISTING 108: Xtext: BoundedContext rule

The allowed values for the enum’s BoundedContextType and KnowledgeLevel
are given by the rules in Listing 109.

1 enum BoundedContextType:

2 FEATURE | APPLICATION | SYSTEM | TEAM

3 ;

4 enum KnowledgeLevel :

5 META | CONCRETE

6 ;

LISTING 109: Xtext: BoundedContextType & KnowledgeLevel

Responsibilities can further be added as a list of strings (also mentioned in Sec-
tion B.16). The bounded context further allows to contain modules and aggre-
gates. Modules are not further explained within this language reference since it
is a Sculptor [34] concept. However it is modified and can contain aggregates
in addition to the other Sculptor [34] elements. Aggregates are explained in
Section B.18.

With the implements keyword it is further possible to define which subdo-
mains the bounded context implements. The referenced subdomains must be
specified within a domain as explained in Section B.6. The listings 110 and 111
show an example for a bounded context specification.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = Customers, Addresses { "The addresses of a customer" }

6 knowledgeLevel = CONCRETE

LISTING 110: CML: Bounded Context Example (1)

96 Appendix B. Revised CML Language Reference

7 Module addresses {

8 Aggregate Addresses {

9 Entity Address {

10 String city

11 }

12 }

13 }

14 Aggregate Customers {

15 Entity Customer {

16 aggregateRoot

17

18 - SocialInsuranceNumber sin

19 String firstname

20 String lastname

21 - List<Address> addresses

22 }

23 }

24 }

LISTING 111: CML: Bounded Context Example (2)

If the bounded context is of the type TEAM, it is allowed to use the realizes key-
word and specify which bounded context is implemented by the team. Listing
112 shows an example for this use case.

1 BoundedContext CustomersBackofficeTeam implements CustomerManagementDomain realizes

2 CustomerManagementContext {

3 type = TEAM

4 domainVisionStatement = "This team is responsible for implementing ..."

5 }

LISTING 112: Xtext: realizes Keyword Example

B.5.1 Bounded Context Semantic Rules

Note that semantic validators exist for a Bounded Context. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Bounded Context:

• The realizes keyword of the BoundedContext rule can only be used if the
type of the bounded context is TEAM (BoundedContextType rule).

B.6 Domain and Subdomains

Domains can be defined as root elements of a CML file. A domain is defined
by a name and the definitions of its subdomains. Listing 113 illustrates the
corresponding Domain grammar rule.

B.6. Domain and Subdomains 97

1 Domain:

2 'Domain' name=ID

3 (

4 OPEN

5 (subdomains += Subdomain)*

6 CLOSE

7)?

8 ;

LISTING 113: Xtext: Domain Rule

The Subdomain pattern is defined by the grammar rule in Listing 114. As
on a bounded context (B.5) the subdomain allows to specify a domain vision
statement string. The type attribute on subdomains allows values defined by
the SubDomainType enum, illustrated in Figure 115.

1 Subdomain:

2 'Subdomain' name=ID

3 (

4 OPEN

5 (('type' '=' type=SubDomainType)? &

6 ('domainVisionStatement' '=' domainVisionStatement=STRING)?)

7 entities += Entity*

8 CLOSE

9)?

10 ;

LISTING 114: Xtext: Subdomain Rule

The subdomain further offers the possibility to add entities (Sculptor [34], En-
tity rule), which may be useful to describe the subdomain in more detail. How-
ever, note that they are currently not used within the generators. The entities
within bounded contexts and aggregates are relevant there.

1 enum SubDomainType:

2 CORE_DOMAIN | SUPPORTING_DOMAIN | GENERIC_SUBDOMAIN

3 ;

LISTING 115: Xtext: SubDomainType enum

The listings 116 and 117 illustrate an example how a domain with its sub-
domains can be specified in CML.

1 Domain InsuranceDomain {

2 Subdomain CustomerManagementDomain {

3 type = CORE_DOMAIN

4 domainVisionStatement = "Subdomain managing everything customer-related."

5 }

6 Subdomain PolicyManagementDomain {

7 type = CORE_DOMAIN

8 domainVisionStatement = "Subdomain managing contracts and policies."

9 }

LISTING 116: CML: Domain and Subdomains (1)

98 Appendix B. Revised CML Language Reference

10 Subdomain RiskManagementDomain {

11 type = GENERIC_SUBDOMAIN

12 domainVisionStatement = "Subdomain supporting risk management."

13 }

14 }

LISTING 117: CML: Domain and Subdomains (2)

B.7 Use Cases

Uses cases can be defined on the root level of a CML file and are then referenced
from aggregates (see Section B.18). They are used to specify which aggregates
are accessed by the same use cases. Listing 118 illustrates the corresponding
grammar rule.

1 UseCase:

2 'UseCase' name=ID

3 (OPEN

4 (('isLatencyCritical' '=' isLatencyCritical?='true')? &

5 (('reads' nanoentitiesRead+=STRING*) ("," nanoentitiesRead+=STRING)*)? &

6 (('writes' nanoentitiesWritten+=STRING*) ("," nanoentitiesWritten+=STRING)*)?)

7 CLOSE)?

8 ;

LISTING 118: Xtext: Use Cases

Use cases can either be defined in a simple way by just giving its name, or
with more details regarding which attributes are read/written by the use case.
The isLatencyCritical attribute further allows to specify whether the use case is
latency critical or not. Listing 119 shows two examples how use cases can be
defined in CML.

10 // simple:

11 UseCase UpdateContract

12

13 // with details:

14 UseCase CreateOffer {

15 isLatencyCritical = true // if false, just remove this line

16 reads "Customer.firstName", "Customer.familyName", "Contract.contractId"

17 writes "Offer.offerId", "Offer.products", "Offer.price"

18 }

LISTING 119: CML: Use Cases

B.8 Domain Vision Statement

The Domain Vision Statement pattern is implemented as a description attribute
(String) on bounded contexts (B.5) and subdomains (B.6). For the correspond-
ing grammar rules, we refer to Section B.5 and Section B.6. Listing 120 shows
an example bounded context with a domain vision statement, and Listing 121
a subdomain accordingly.

B.9. Partnership 99

1 BoundedContext CustomerContext {

2 domainVisionStatement = "This context is responsible for ..."

3 }

LISTING 120: Xtext: Domain Vision Statement on Bounded
Context

1 Subdomain CustomerManagementDomain {

2 type = CORE_DOMAIN

3 domainVisionStatement = "Subdomain managing everything customer-related."

4 }

LISTING 121: Xtext: Domain Vision Statement on Subdomain

B.9 Partnership

The Partnership relationship pattern is defined by the grammar rule illustrated
in Listing 122. There are two syntax variants to declare a partnership relation-
ship.

1 Partnership:

2 (

3 (participant1 = [BoundedContext] 'Partnership' participant2 = [BoundedContext]) |

4 (participant1 = [BoundedContext] '[''P'']' '<->'

5 '[''P'']' participant2 = [BoundedContext]) |

6 ('[''P'']' participant1 = [BoundedContext] '<->'

7 '[''P'']' participant2 = [BoundedContext]) |

8 (participant1 = [BoundedContext] '[''P'']' '<->'

9 participant2 = [BoundedContext] '[''P'']') |

10 ('[''P'']' participant1 = [BoundedContext] '<->'

11 participant2 = [BoundedContext] '[''P'']')

12)

13 (':' name=ID)?

14 (OPEN

15 ('implementationTechnology' '=' implementationTechnology=STRING)?

16 CLOSE)?

17 ;

LISTING 122: Xtext: Partnership Rule

The first uses the Partnership keyword whereas the second uses an arrow point-
ing in both directions, indicating symmetry, and the abbreviation P within
brackets for both partners. The listings 123 and 124 illustrate examples for both
variants.

1 PolicyManagementContext Partnership DebtCollection

LISTING 123: CML: Partnership Syntax Variant 1

100 Appendix B. Revised CML Language Reference

1 PolicyManagementContext [P]<->[P] DebtCollection

LISTING 124: CML: Partnership Syntax Variant 2

The second variant with the arrow allows to place the brackets in different
positions similar to upstream-downstream relationships presented in Section
B.4. Listing 125 illustrates all possible variants. All four variants are seman-
tically equal. Whitespaces around the brackets are ignored by the compiler,
so that the user is free to add whitespaces between the brackets, arrows and
bounded context names or not.

1 PolicyManagementContext [P]<->[P] DebtCollection // brackets centered

2

3 [P]PolicyManagementContext <-> DebtCollection[P] // brackets outside

4

5 [P]PolicyManagementContext <-> [P]DebtCollection // both on the left side

6

7 PolicyManagementContext[P] <-> DebtCollection[P] // both on the right side

LISTING 125: CML: Partnership Bracket Placements

With a colon at the end of the specification followed by a string it is possible
to give every relationship in CML a name. Listing 126 illustrates an example
for a partnership relationship declaration with name.

1 PolicyManagementContext [P]<->[P] DebtCollection : exampleRelationship

LISTING 126: CML: Partnership Relationship with Name

As Listing 127 illustrates, both syntax variants allow to declare the imple-
mentation technology for a partnership relationship inside the optional OPEN
and CLOSE brackets.

1 // Variant 1:

2 PolicyManagementContext Partnership DebtCollection : exampleRelationship {

3 implementationTechnology = "Java application"

4 }

5 // Variant 2:

6 PolicyManagementContext [P]<->[P] DebtCollection : exampleRelationship {

7 implementationTechnology = "Java application"

8 }

LISTING 127: CML: Partnership Relationships with Implemen-
tation Technology

Note that the shared kernel relationship is the default relationship regard-
ing the two asymmetric relationships. A relationship declaration with arrow
but without brackets as illustrated by Listing 128 is possible as well. However,
it is important to note that this declares a shared kernel relationship and not a
partnership relationship.

B.10. Shared Kernel 101

1 PolicyManagementContext <-> DebtCollection // declares a shared kernel (not partnership)

LISTING 128: CML: Shared Kernel as Default Asymmetric Re-
lationship

B.10 Shared Kernel

The Shared Kernel relationship pattern is defined by the grammar rule illus-
trated in Listing 129. There are two syntax variants to declare a shared kernel
relationship.

1 SharedKernel:

2 (

3 (participant1 = [BoundedContext] 'Shared-Kernel' participant2 = [BoundedContext]) |

4 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext]) |

5 (participant1 = [BoundedContext] '[''SK'']' '<->'

6 '[''SK'']' participant2 = [BoundedContext]) |

7 ('[''SK'']' participant1 = [BoundedContext] '<->'

8 '[''SK'']' participant2 = [BoundedContext]) |

9 (participant1 = [BoundedContext] '[''SK'']' '<->'

10 participant2 = [BoundedContext] '[''SK'']') |

11 ('[''SK'']' participant1 = [BoundedContext] '<->'

12 participant2 = [BoundedContext] '[''SK'']')

13)

14 (':' name=ID)?

15 (OPEN

16 ('implementationTechnology' '=' implementationTechnology=STRING)?

17 CLOSE)?

18 ;

LISTING 129: Xtext: Partnership Rule

The first uses the Shared-Kernel keyword whereas the second uses an arrow
pointing in both directions, indicating symmetry, and the abbreviation SK within
brackets. The listings 130 and 131 illustrate examples for both variants.

1 PolicyManagementContext Shared-Kernel DebtCollection

LISTING 130: CML: Shared Kernel Syntax Variant 1

1 PolicyManagementContext [SK]<->[SK] DebtCollection

LISTING 131: CML: Shared Kernel Syntax Variant 2

The second variant with the arrow allows to place the brackets in different
positions similar to upstream-downstream relationships presented in Section
B.4. Listing 132 illustrates all possible variants. All four variants are seman-
tically equal. Whitespaces around the brackets are ignored by the compiler,
so that the user is free to add whitespaces between the brackets, arrows and
bounded context names or not.

102 Appendix B. Revised CML Language Reference

1 PolicyManagementContext [SK]<->[SK] DebtCollection // brackets centered

2

3 [SK]PolicyManagementContext <-> DebtCollection[SK] // brackets outside

4

5 [SK]PolicyManagementContext <-> [SK]DebtCollection // both on the left side

6

7 PolicyManagementContext[SK] <-> DebtCollection[SK] // both on the right side

LISTING 132: CML: Shared Kernel Bracket Placements

With a colon at the end of the specification followed by a string it is possible
to give every relationship in CML a name. Listing 133 illustrates an example
for a shared kernel relationship declaration with name.

1 PolicyManagementContext [SK]<->[SK] DebtCollection : exampleRelationship

LISTING 133: CML: Shared Kernel Relationship with Name

As Listing 134 illustrates, both syntax variants allow to declare the im-
plementation technology for a shared kernel relationship inside the optional
OPEN and CLOSE brackets.

1 // Variant 1:

2 PolicyManagementContext Shared-Kernel DebtCollection : exampleRelationship {

3 implementationTechnology = "Java application"

4 }

5 // Variant 2:

6 PolicyManagementContext [SK]<->[SK] DebtCollection : exampleRelationship {

7 implementationTechnology = "Java application"

8 }

LISTING 134: CML: Shared Kernel Relationships with Imple-
mentation Technology

Note that the shared kernel relationship is the default relationship regard-
ing the two asymmetric relationships. A relationship declaration with arrow
but without brackets as illustrated by Listing 135 is possible as well. However,
it is important to note that this declares a shared kernel relationship and not a
partnership relationship.

1 PolicyManagementContext <-> DebtCollection // declares a shared kernel (not partnership)

LISTING 135: CML: Shared Kernel as Default Asymmetric Re-
lationship

B.11 Customer-Supplier

The customer-supplier relationship pattern is defined by the grammar rule il-
lustrated in the listings 136 and 137. Note that customer-supplier is a special
case of an upstream-downstream relationship. Thus, the syntax is principally

B.11. Customer-Supplier 103

the same besides the keywords. The Upstream-Downstream keyword is replaced
with Customer-Supplier and the Downstream-Upstream keyword is replaced with
Supplier-Customer. The short syntax with the U for upstream and D for down-
stream is extended in this case with a S for supplier and a C for customer.

1 CustomerSupplierRelationship:

2 (

3 (

4 // variant 1: long keywords

5 (downstream = [BoundedContext] ('['((downstreamRoles+=DownstreamRole)

6 ("," downstreamRoles+=DownstreamRole)*)?']')?'Customer-Supplier'

7 ('['((upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)?']')?

8 upstream = [BoundedContext]) |

9 (upstream = [BoundedContext] ('['((upstreamRoles+=UpstreamRole)

10 ("," upstreamRoles+=UpstreamRole)*)?']')?'Supplier-Customer'

11 ('['((downstreamRoles+=DownstreamRole)

12 ("," downstreamRoles+=DownstreamRole)*)?']')? downstream = [BoundedContext]) |

13 // variant 2: arrow from left to right

14 (

15 (upstream = [BoundedContext] '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

16 ("," upstreamRoles+=UpstreamRole)*)?']' '->' '['('D'',')?'C'

17 (','(downstreamRoles+=DownstreamRole)

18 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]) |

19 ('['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

20 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext] '->'

21 '['('D'',')?'C'(','(downstreamRoles+=DownstreamRole)

22 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]) |

23 (upstream = [BoundedContext] '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

24 ("," upstreamRoles+=UpstreamRole)*)?']' '->' downstream = [BoundedContext]

25 '['('D'',')?'C'(','(downstreamRoles+=DownstreamRole)

26 ("," downstreamRoles+=DownstreamRole)*)?']') |

27 ('['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

28 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext] '->'

29 downstream = [BoundedContext] '['('D'',')?'C'

30 (','(downstreamRoles+=DownstreamRole)

31 ("," downstreamRoles+=DownstreamRole)*)?']')

32) |

33 // variant 3: arrow from right to left

34 (

35 (downstream = [BoundedContext] '['('D'',')?'C'

36 (','(downstreamRoles+=DownstreamRole)

37 ("," downstreamRoles+=DownstreamRole)*)?']' '<-' '['('U'',')?'S'

38 (','(upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)?']'

39 upstream = [BoundedContext]) |

40 ('['('D'',')?'C'(','(downstreamRoles+=DownstreamRole)

41 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext] '<-'

42 '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

43 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext]) |

44 (downstream = [BoundedContext] '['('D'',')?'C'

45 (','(downstreamRoles+=DownstreamRole)

46 ("," downstreamRoles+=DownstreamRole)*)?']' '<-' upstream = [BoundedContext]

47 '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

48 ("," upstreamRoles+=UpstreamRole)*)?']') |

49 ('['('D'',')?'C'(','(downstreamRoles+=DownstreamRole)

50 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext] '<-'

51 upstream = [BoundedContext] '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

52 ("," upstreamRoles+=UpstreamRole)*)?']')

53)

54)

LISTING 136: Xtext: Customer-Supplier Rule (1)

104 Appendix B. Revised CML Language Reference

55 // name and body

56 (':' name=ID)?

57 (OPEN (

58 ('implementationTechnology' '=' implementationTechnology=STRING)? &

59 (('exposedAggregates' '=' upstreamExposedAggregates += [Aggregate])

60 ("," upstreamExposedAggregates += [Aggregate])*)? &

61 ('downstreamRights' '=' downstreamGovernanceRights=DownstreamGovernanceRights)?

62)

63 CLOSE)?

64)

65 ;

LISTING 137: Xtext: Customer-Supplier Rule (2)

Please note that we are aware of the fact that the readability of the rule above
is not very good in this report. The complete grammar in the original line
length can be found in our repository on Github6 and might be easier to read.
The length and complexity of this rule is increased due to the many different
variants we offer our users to declare relationships.

As declared in the grammar rule, there are basically three alternative syn-
taxes which allow the specification of the same customer-supplier relation-
ship. The listings 138, 139 and 140 show a corresponding example in all possi-
ble ways. All these declarations are semantically equal and the LocationCon-
text is always supplier/upstream whereas the CargoBookingContext is cus-
tomer/downstream.

1 LocationContext Supplier-Customer CargoBookingContext

2 // or inverse:

3 CargoBookingContext Customer-Supplier LocationContext

LISTING 138: Xtext: Customer-Supplier Variant 1

1 LocationContext [U,S]->[D,C] CargoBookingContext

2 // or: alternatively, the U and D can be omitted in customer-supplier relationships

3 LocationContext [S]->[C] CargoBookingContext

LISTING 139: Xtext: Customer-Supplier Variant 2

1 CargoBookingContext [D,C]<-[U,S] LocationContext

2 // or: alternatively, the U and D can be omitted in customer-supplier relationships

3 CargoBookingContext [C]<-[S] LocationContext

LISTING 140: Xtext: Customer-Supplier Variant 3

Note that if one of the variants with the arrows (-> or <-) is used, the arrow al-
ways points from the supplier (upstream) towards the customer (downstream),

6https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

B.11. Customer-Supplier 105

reflecting the influence flow [27] (the downstream is influenced by and de-
pends on the upstream). The upstream and downstream roles OHS, PL, ACL
and CF are declared within the brackets behind the S and the C. In the variant
with the long keywords we use the same brackets for the rules but without the
abbreviations for supplier and customer, since this would be redundant.

The following listings 141, 142 and 143 illustrate the same relationships as
before but with upstream and downstream roles.

1 LocationContext[PL] Supplier-Customer [ACL]CargoBookingContext

2 // or inverse:

3 CargoBookingContext[ACL] Customer-Supplier [PL]LocationContext

LISTING 141: CML: Customer-Supplier Variant 1 with Roles

1 LocationContext [U,S,PL]->[D,C,ACL] CargoBookingContext

2 // or: alternatively, the U and D can be omitted in customer-supplier relationships

3 LocationContext [S,PL]->[C,ACL] CargoBookingContext

LISTING 142: CML: Customer-Supplier Variant 2 with Roles

1 CargoBookingContext [D,C,ACL]<-[U,S,PL] LocationContext

2 // or: alternatively, the U and D can be omitted in customer-supplier relationships

3 CargoBookingContext [C,ACL]<-[S,PL] LocationContext

LISTING 143: CML: Customer-Supplier Variant 3 with Roles

Listing 144 shows the Xtext enumerations UpstreamRole and DownstreamRole
which specify the allowed values for the roles inside the corresponding brack-
ets.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

7 ;

LISTING 144: Xtext: UpstreamRole and DownstreamRole

The syntax with the arrows and the abbreviations further allows to place
the brackets with the supplier (S)/upstream (U), customer (C)/downstream
(D) and relationship roles flexible in front or after the bounded context name.
Whitespaces around the brackets are ignored by the compiler, so that the user
is free to add whitespaces between the brackets, arrows and bounded context
names or not. Listing 145 shows all possible placements. However, all four
variants are again semantically equal. Note that this flexible bracket placement
is not possible for the variant with the long keywords Customer-Supplier and
Supplier-Customer.

106 Appendix B. Revised CML Language Reference

1 LocationContext [U,S]->[D,C] VoyagePlanningContext // brackets centered (1)

2 LocationContext [S]->[C] VoyagePlanningContext // brackets centered (2)

3

4 [U,S]LocationContext -> VoyagePlanningContext[D,C] // brackets outside (1)

5 [S]LocationContext -> VoyagePlanningContext[C] // brackets outside (2)

6

7 [U,S]LocationContext -> [D,C]VoyagePlanningContext // both on the left side (1)

8 [S]LocationContext -> [C]VoyagePlanningContext // both on the left side (2)

9

10 LocationContext[U,S] -> VoyagePlanningContext[D,C] // both on the right side (1)

11 LocationContext[S] -> VoyagePlanningContext[C] // both on the right side (2)

LISTING 145: CML: Customer-Supplier Bracket Placements

With a colon at the end of the specification followed by a string it is possible
to give every relationship in CML a name. Listing 146 illustrates an example
for a customer-supplier relationship declaration with name.

1 LocationContext [U,S]->[D,C] VoyagePlanningContext : ExampleName

LISTING 146: CML: Customer-Supplier Relationship with
Name

Within the body of the rule (inside the terminals OPEN and CLOSE, which
are optional), the implementation technology, the exposed aggregates and the
downstream rights can be defined. The corresponding keywords are implemen-
tationTechnology, exposedAggregates and downstreamRights. Listing 147 shows
an example for a relationship specification with body and corresponding at-
tributes. All attributes here are optional and the order does not matter.

1 LocationContext [U,S]->[D,C] VoyagePlanningContext : ExampleName {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Location, OtherAggregate

4 downstreamRights = DECISION_MAKER

5 }

LISTING 147: CML: Customer-Supplier Example with
Attributes (Body)

The exposedAggregates attribute must reference aggregates (see syntax in Sec-
tion B.18) which are part of the supplier (upstream) bounded context of the
relationship. The compiler will throw an error if a referenced aggregate is spec-
ified within another bounded context. Listing 148 shows the rule specifying the
allowed values for the downstreamRights attribute.

1 enum DownstreamGovernanceRights:

2 INFLUENCER | OPINION_LEADER | VETO_RIGHT | DECISION_MAKER | MONOPOLIST

3 ;

LISTING 148: Xtext: DownstreamGovernanceRights

B.12. Conformist 107

B.11.1 Customer-Supplier vs. Upstream-Downstream

Note that according to our understanding of the patterns and our semantic
model7 [20] the customer-supplier relationship is a special case of a upstream-
downstream relationship. With the Customer-Supplier keyword you always de-
clare customer-supplier relationships. For generic upstream-downstream re-
lationships which are not customer-supplier relationships, use the Upstream-
Downstream keyword explained in Section B.4.

A customer-supplier relationship is an upstream-downstream relationship
where the downstream priorities factor into upstream planning. The upstream
team may succeed interdependently of the fate of the downstream team and
therefore the needs of the downstream have to be addressed by the upstream.
They interact as customer and supplier. A generic upstream-downstream rela-
tionship is not necessarily a customer-supplier relationship. In CML you have
to specify this explicitely.

B.11.2 Customer-Supplier Semantic Rules

Note that semantic validators exist for the customer-supplier relationship. This
means that not everything is allowed, even if it is syntactically correct ac-
cording to the rules explained above. The following rules apply to customer-
supplier:

• The Conformist pattern (DownstreamRole) is not applicable in a customer-
supplier relationship.

• The Open Host Service pattern (UpstreamRole) is not applicable in a
customer-supplier relationship.

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a customer-supplier relationship.

– Note that this rule produces a Warning only.

B.12 Conformist

The Conformist pattern is implemented as a value of the DownstreamRole
enum, as shown in Listing 149.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

3 ;

LISTING 149: Xtext: Conformist implementation

The CONFORMIST (CF) role can be used as a role for the downstream context
in any upstream-downstream relationship. Listing 150 illustrates an example.

7https://contextmapper.github.io/docs/language-model/

https://contextmapper.github.io/docs/language-model/

108 Appendix B. Revised CML Language Reference

1 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Customers

4 }

LISTING 150: Xtext: Conformist Example

B.12.1 Conformist Semantic Rules

Note that semantic validators exist for the Conformist pattern. This means that
not everything is allowed, even if it is syntactically correct according to the
rules explained above. The following rules apply to Conformist:

• The Conformist pattern (DownstreamRole) is not applicable in a customer-
supplier relationship.

B.13 Open Host Service

The Open Host Service pattern is implemented as a value of the UpstreamRole
enum, as shown in Listing 151.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

LISTING 151: CML: Open Host Service implementation

The OPEN_HOST_SERVICE (OHS) role can be used as a role for the upstream
context in any upstream-downstream relationship. Listing 152 illustrates an
example.

1 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

2 implementationTechnology = "SOAP"

3 downstreamRights = INFLUENCER

4 exposedAggregates = Printing

5 }

LISTING 152: CML: Open Host Service Example

B.13.1 Open Host Service Semantic Rules

Note that semantic validators exist for the Open Host Service pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Open Host Ser-
vice:

• The Open Host Service pattern (DownstreamRole) is not applicable in a
customer-supplier relationship.

B.14. Anticorruption Layer 109

B.14 Anticorruption Layer

The Anticorruption Layer pattern is implemented as a value of the Down-
streamRole enum, as shown in Listing 153.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

3 ;

LISTING 153: Xtext: Anticorruption Layer implementation

The ANTICORRUPTION_LAYER (ACL) role can be used as a role for the down-
stream context in any upstream-dDownstream relationship. Listing 154 illus-
trates an example.

1 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

2 implementationTechnology = "SOAP"

3 downstreamRights = INFLUENCER

4 exposedAggregates = Printing

5 }

LISTING 154: CML: Anticorruption Layer Example

B.14.1 Anticorruption Layer Semantic Rules

Note that semantic validators exist for the Anticorruption Layer pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Anticorruption
Layer:

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a customer-supplier relationship.

– Note that this rule produces a Warning only.

B.15 Published Language

The Published Language pattern is implemented as a value of the Upstream-
Role enum, as shown in Listing 155.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

LISTING 155: Xtext: Published Language implementation

The PUBLISHED_LANGUAGE (PL) role can be used as a role for the upstream
context in any upstream-downstream relationship. Listing 156 illustrates an
example.

110 Appendix B. Revised CML Language Reference

1 PrintingContext [U,OHS,PL]->[D,ACL] PolicyManagementContext {

2 implementationTechnology = "SOAP"

3 exposedAggregates = Printing

4 }

LISTING 156: CML: Published Language Example

B.16 Responsibility Layers

The implementation of the Responsibility Layers pattern has changed lately.
Responsibilities no longer have ID’s, since we do not reference them at the
moment. The responsibilities can now be added as simple list of strings to
bounded contexts and aggregates. Listing 157 illustrates the two correspond-
ing grammar rules.

1 BoundedContext:

2 'BoundedContext' name=ID (('implements' (implementedSubdomains+=[Subdomain])

3 ("," implementedSubdomains+=[Subdomain])*)? & ('realizes'

4 (realizedBoundedContexts+=[BoundedContext])

5 ("," realizedBoundedContexts+=[BoundedContext])*)?)

6 (

7 OPEN

8 (('domainVisionStatement' '=' domainVisionStatement=STRING)? &

9 ('type' '=' type=BoundedContextType)? &

10 (('responsibilities' '=' responsibilities+=STRING)

11 ("," responsibilities+=STRING)*)? &

12 ('implementationTechnology' '=' implementationTechnology=STRING)? &

13 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

14 modules += Module*

15 aggregates += Aggregate*

16 CLOSE

17)?

18 ;

19 Aggregate :

20 (doc=STRING)?

21 "Aggregate" name=ID (OPEN

22 (

23 (('responsibilities' '=' responsibilities+=STRING)

24 ("," responsibilities+=STRING)*)? &

25 (('useCases' '=' useCases += [UseCase]) ("," useCases += [UseCase])*)? &

26 ('owner' '=' owner=[BoundedContext])? &

27 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)? &

28 ('likelihoodForChange' '=' likelihoodForChange=LikelihoodForChange)?

29)

30 ((services+=Service) |

31 (resources+=Resource) |

32 (consumers+=Consumer) |

33 (domainObjects+=SimpleDomainObject))*

34 CLOSE)?;

LISTING 157: Xtext: Responsibility Layers on Bounded Con-
texts and Aggregates

The following CML listings 158 and 159 illustrate how responsibilities can
be added to bounded contexts and aggregates.

B.17. Knowledge Level 111

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = "Customers", "Addresses"

6 }

LISTING 158: CML: Responsibility Layers
on Bounded Contexts

1 Aggregate Customers {

2 responsibilities = "Customers", "Addresses"

3

4 Entity Customer {

5 aggregateRoot

6

7 - SocialInsuranceNumber sin

8 String firstname

9 String lastname

10 - List<Address> addresses

11 }

12 }

LISTING 159: CML: Responsibility Layers on Aggregates

B.17 Knowledge Level

The Knowledge Level pattern is implemented with an Xtext enum which can
be used on bounded contexts and aggregates. The allowed values are defined
by the KnowledgeLevel enum, illustrated in Listing 160. The listings 161 and
162 show the two grammar rules for bounded contexts and aggregates, high-
lighting the corresponding knowledge level attribute.

1 enum KnowledgeLevel :

2 META="META" | CONCRETE="CONCRETE"

3 ;

LISTING 160: Xtext: KnowledgeLevel enum

1 BoundedContext:

2 'BoundedContext' name=ID (('implements' (implementedSubdomains+=[Subdomain])

3 ("," implementedSubdomains+=[Subdomain])*)? & ('realizes'

4 (realizedBoundedContexts+=[BoundedContext])

5 ("," realizedBoundedContexts+=[BoundedContext])*)?)

6 (

7 OPEN

8 (('domainVisionStatement' '=' domainVisionStatement=STRING)? &

9 ('type' '=' type=BoundedContextType)? &

LISTING 161: Xtext: Knowledge Level on Bounded Contexts
and Aggregates (1)

112 Appendix B. Revised CML Language Reference

10 (('responsibilities' '=' responsibilities+=STRING)

11 ("," responsibilities+=STRING)*)? &

12 ('implementationTechnology' '=' implementationTechnology=STRING)? &

13 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)?)

14 modules += Module*

15 aggregates += Aggregate*

16 CLOSE

17)?

18 ;

19

20 Aggregate :

21 (doc=STRING)?

22 "Aggregate" name=ID (OPEN

23 (

24 (('responsibilities' '=' responsibilities+=STRING)

25 ("," responsibilities+=STRING)*)? &

26 (('useCases' '=' useCases += [UseCase]) ("," useCases += [UseCase])*)? &

27 ('owner' '=' owner=[BoundedContext])? &

28 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)? &

29 ('likelihoodForChange' '=' likelihoodForChange=LikelihoodForChange)?

30)

31 ((services+=Service) |

32 (resources+=Resource) |

33 (consumers+=Consumer) |

34 (domainObjects+=SimpleDomainObject))*

35 CLOSE)?;

LISTING 162: Xtext: Knowledge Level on Bounded Contexts
and Aggregates (2)

Listing 163 shows an example on a bounded context and Listing 164 on an
aggregate.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 knowledgeLevel = CONCRETE

4 }

LISTING 163: CML: Knowledge Level on Bounded Context

1 Aggregate Customers {

2 knowledgeLevel = CONCRETE

3

4 Entity Customer {

5 aggregateRoot

6

7 /* ... attributes ... */

8 }

9 }

LISTING 164: CML: Knowledge Level on Aggregate

B.18 Aggregate

The Aggregate rule shown in Listing 165 has been added to CML to also sup-
port tactic DDD patterns within bounded context. All elements within the ag-
gregates are realized with the Sculptor [34] grammar. Therefore, all other tactic

B.18. Aggregate 113

DDD patterns are not documented here. We refer to the Sculptor project [34]
and their documentation8.

1 Aggregate :

2 (doc=STRING)?

3 "Aggregate" name=ID (OPEN

4 (

5 (('responsibilities' '=' responsibilities+=STRING)

6 ("," responsibilities+=STRING)*)? &

7 (('useCases' '=' useCases += [UseCase]) ("," useCases += [UseCase])*)? &

8 ('owner' '=' owner=[BoundedContext])? &

9 ('knowledgeLevel' '=' knowledgeLevel=KnowledgeLevel)? &

10 ('likelihoodForChange' '=' likelihoodForChange=LikelihoodForChange)?

11)

12 ((services+=Service) |

13 (resources+=Resource) |

14 (consumers+=Consumer) |

15 (domainObjects+=SimpleDomainObject))*

16 CLOSE)?

17 ;

LISTING 165: Xtext: Aggregate rule

The aggregate supports the Responsibility Layers pattern (B.16) and the Knowl-
edge Level pattern (B.17) explained in Section B.16 and Section B.17 respec-
tively. As shown in Listing 165 they are specified with the keywords responsi-
bilities and knowledgeLevel.

An aggregate can further specify which use cases access it by using the
useCases keyword. The attribute takes a list of references to use cases. How
the corresponding use cases can be specified is explained in Section B.7. The
owner attribute allows to specify which TEAM owns an aggregate. It takes a
reference to a bounded context of the type TEAM. The compiler ensures that
the referenced bounded context has this type. Section B.5 explains how the
type of a bounded context can be declared.

With the likelihoodForChange attribute a user can define how volatile (likely
for change) an aggregate is (used for the corresponding AR). Listing 166 il-
lustrates the enum specifying the allowed values for the likelihoodForChange
attribute.

1 enum LikelihoodForChange :

2 NORMAL | RARELY | OFTEN

3 ;

LISTING 166: Xtext: LikelihoodForChange enum

An aggregate can further contain Services, Resources, Consumers and Sim-
pleDomainObjects (Entities, Value Objects, Domain Events, etc.) which are not
further introduced here. The according rules are defined by the Sculptor [34]
DSL, as already mentioned. However, Listing 167 illustrates an example of an
aggregate with the explained attributes above and tactic DDD elements in the
Sculptor [34] syntax.

8http://sculptorgenerator.org/documentation/

http://sculptorgenerator.org/documentation/

114 Appendix B. Revised CML Language Reference

1 Aggregate Contract {

2 responsibilities = "Contracts", "Policies"

3 knowledgeLevel = CONCRETE

4 useCases = UpdateContract, CreateOffer

5 owner = ContractsTeam

6 likelihoodForChange = NORMAL

7

8 Entity Contract {

9 aggregateRoot

10

11 - ContractId identifier

12 - Customer client

13 - List<Product> products

14 }

15

16 ValueObject ContractId {

17 int contractId key

18 }

19

20 Entity Policy {

21 int policyNr

22 - Contract contract

23 BigDecimal price

24 }

25 }

LISTING 167: Xtext: Aggregate Example

B.19 Complete CML Grammar

All previous sections in this language reference have illustrated their corre-
sponding parts of the grammar. The complete CML grammar file in the version
v4.1.1 documented in this report can be found in our source code repository9.

9https://github.com/ContextMapper/context-mapper-dsl/blob/v4.1.1/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/v4.1.1/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/v4.1.1/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

115

List of Figures

1.1 Architectural Refactorings by Operation 2

2.1 Decomposition Criteria (DC) «Brainstorming» 5
2.2 AR Selection by Decomposition Criteria (DC) 13

4.1 Context Mapper Semantic Model [12] 26
4.2 Architectural Refactorings by Operation and Subject 36
4.3 AR Implementations Logical View 38
4.4 ARs in Context Mapper Eclipse Plugin 41
4.5 AR-5: Dialog for External User Input 49
4.6 CML to MDSL Mapping . 59
4.7 Context Mapper [12] “Insurance” Example 61

117

List of Tables

2.1 Decomposition Criteria (DC) Overview 6
2.1 Decomposition Criteria (DC) Overview (continued) 7
2.2 Architectural Refactoring Design Categories 9
2.3 Architectural Refactoring Operations 9
2.3 Architectural Refactoring Operations (continued) 10
2.4 Simple «language-based» ARs . 10
2.4 Simple «language-based» ARs (continued) 11
2.5 ARs based on Criteria added to the DSL 11
2.5 ARs based on Criteria added to the DSL (continued) 12
2.6 ARs based on External User Input 12

4.1 DDD Pattern Abbreviations . 26
4.1 DDD Pattern Abbreviations (continued) 27
4.2 Small Syntax Changes & Syntactic Sugar 32
4.2 Small Syntax Changes & Syntactic Sugar (continued) 33
4.3 Downstream Right Characteristics 33
4.3 Downstream Right Characteristics (continued) 34
4.4 Input, Results and Preconditions of the ARs 39
4.4 Input, Results and Preconditions of the ARs (continued) 40
4.5 CML to MDSL Mapping Table . 59
4.5 CML to MDSL Mapping Table (continued) 60

119

List of Abbreviations

ACL Anticorruption Layer. 92, 105

API Application Programming Interface. 38, 58–62, 68

AR Architectural Refactoring. 1–5, 7–19, 21–23, 25, 33, 35–58, 62–69, 88, 113

AST Abstract Syntax Tree. 38

CF Conformist. 92, 105

CLI Command Line Interface. 68

CML Context Mapper DSL. 1–3, 10–13, 15, 19, 21, 22, 25, 29, 33–42, 44, 46, 49,
50, 52, 56–58, 60–69, 87, 88, 93, 96–98, 100, 102, 106, 107, 110, 112, 114

DC Decomposition Criterion. 2, 5–10, 13, 16, 20, 36, 65, 68

DDD Domain-driven Design. 1–4, 14, 15, 18–22, 25, 37, 41, 59, 63, 64, 66, 68,
87, 112, 113

DSL Domain-specific Language. 1, 2, 9, 11, 12, 21, 22, 37, 39, 41, 52, 56–58, 63,
66, 87, 113

EMF Eclipse Modeling Framework. 37, 38

GPL General Public License. 23

IDE Integrated Development Environment. 40, 68

MAP Microservice API Patterns. 2

MDSL Microservices Domain-Specific Language. 2, 58, 60–63, 65, 67, 68

NFR Non-Functional Requirement. 8, 12, 13, 16, 17, 19, 21, 22, 47, 65–67

OHS Open Host Service. 53, 92, 105

PL Published Language. 92, 105

UI User Interface. 9, 50

US User Story. 19

121

Bibliography

[1] Agile Alliance. Role-Feature-Reason User Story Template. https://www.
agilealliance.org/glossary/role-feature/. [Online; Accessed: 2019-
03-13].

[2] Agile Alliance. User Stories. https://www.agilealliance.org/glossary
/user-stories. [Online; Accessed: 2019-03-13].

[3] Alberto Brandolini. Introducing Event Storming. http://ziobrando.bl
ogspot.com/2013/11/introducing- event- storming.html. [Online;
Accessed: 2019-07-17].

[4] Alberto Brandolini. Strategic Domain Driven Design with Context Mapping.
https : / / www . infoq . com / articles / ddd - contextmapping. [Online;
Accessed: 2019-04-02].

[5] ANTLR. ANTLR (ANother Tool for Language Recognition). https://www.
antlr.org/. [Online; Accessed: 2019-08-26].

[6] David E. Avison et al. “Action Research”. In: Commun. ACM 42.1 (Jan.
1999), pp. 94–97. ISSN: 0001-0782. DOI: 10.1145/291469.291479. URL:
http://doi.acm.org/10.1145/291469.291479.

[7] Christian Bisig. “Ein werkzeugunterstütztes Knowledge Repository für
Architectural Refactoring”. MA thesis. Rapperswil: University of Ap-
plied Sciences HSR, 2016.

[8] Michael Brandner et al. “Web services-oriented architecture in produc-
tion in the finance industry”. In: Informatik Spektrum 27.2 (2004), pp. 136–
145. DOI: 10.1007/s00287-004-0380-2. URL: https://doi.org/10.
1007/s00287-004-0380-2.

[9] A. Brandolini. Introducing EventStorming: An act of Deliberate Collective
Learning. Leanpub, 2018.

[10] Chris Richardson. Pattern: Microservice Architecture - How to decompose the
application into services? https://microservices.io/patterns/micros

ervices.html#how-to-decompose-the-application-into-services.
[Online; Accessed: 2019-08-13].

[11] Context Mapper. Context Mapper: CML examples repository. https://gith
ub.com/ContextMapper/context-mapper-examples. [Online; Accessed:
2019-08-15].

[12] Context Mapper. Context Mapper is an open source project providing a Domain-
specific Language (DSL) based on Domain-Driven Design (DDD) patterns for
context mapping and service decomposition. https://contextmapper.githu
b.io/. [Online; Accessed: 2019-03-12].

[13] Melvin Conway. Conway’s law. 1968.

https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/user-stories
https://www.agilealliance.org/glossary/user-stories
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://www.infoq.com/articles/ddd-contextmapping
https://www.antlr.org/
https://www.antlr.org/
https://doi.org/10.1145/291469.291479
http://doi.acm.org/10.1145/291469.291479
https://doi.org/10.1007/s00287-004-0380-2
https://doi.org/10.1007/s00287-004-0380-2
https://doi.org/10.1007/s00287-004-0380-2
https://microservices.io/patterns/microservices.html#how-to-decompose-the-application-into-services
https://microservices.io/patterns/microservices.html#how-to-decompose-the-application-into-services
https://github.com/ContextMapper/context-mapper-examples
https://github.com/ContextMapper/context-mapper-examples
https://contextmapper.github.io/
https://contextmapper.github.io/

122 Bibliography

[14] Eclipse Xtext. Xtext - Language Engineering Made Easy! https://www.

eclipse.org/Xtext/. [Online; Accessed: 2019-08-20].

[15] Eric Evans. Domain-driven design : tackling complexity in the heart of soft-
ware. eng. 18th prin. Upper Saddle River, NJ: Addison-Wesley, 2012. ISBN:
978-0-321-12521-7.

[16] Eric Evans. Domain-Driven Design Reference: Definitions and Pattern Sum-
maries. [Online; Accessed: 2018-10-22]. https://domainlanguage.com,
2015. URL: http://domainlanguage.com/wp-content/uploads/2016/
05/DDD_Reference_2015-03.pdf.

[17] Michael Gysel et al. “Service Cutter: A Systematic Approach to Service
Decomposition”. In: Service-Oriented and Cloud Computing. Ed. by Marco
Aiello et al. Cham: Springer International Publishing, 2016, pp. 185–200.
ISBN: 978-3-319-44482-6.

[18] Michael Gysel et al. Service Cutter Coupling Criteria Catalog. https : / /
github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria.
[Online; Accessed: 2019-05-28].

[19] Moritz Habegger and Micha Schena. “Cloud-Native Refactoring in a
mHealth Scenario”. Bachelor Thesis. University of Applied Sciences of
Eastern Switzerland (HSR FHO), 2019.

[20] Stefan Kapferer. “A Domain-specific Language for Service Decomposi-
tion”. https://eprints.hsr.ch/722. Term Project. University of Ap-
plied Sciences of Eastern Switzerland (HSR FHO), 2018.

[21] Stefan Kapferer. “Model Transformations for DSL Processing”. https://
stefan.kapferer.ch/model-transformations-for-dsl-processing.
Seminar Paper. University of Applied Sciences of Eastern Switzerland
(HSR FHO), 2018.

[22] Stefan Kapferer. Project Definition: Service Decomposition as a Series of Ar-
chitectural Refactorings. 2019.

[23] Stefan Kapferer and Samuel Jost. “Attributbasierte Autorisierung in einer
Branchenlösung für das Versicherungswesen”. https://eprints.hsr
.ch/602/. Bachelor Thesis. University of Applied Sciences of Eastern
Switzerland (HSR FHO), 2017.

[24] Philippe Kruchten. “The 4+1 View Model of Architecture”. In: IEEE Soft-
ware 12.6 (1995), pp. 42–50. DOI: 10.1109/52.469759. URL: https://doi.
org/10.1109/52.469759.

[25] Margaret Rouse. Business Capability Definition. https://searchapparchi
tecture.techtarget.com/definition/business-capability. [Online;
Accessed: 2019-08-25].

[26] R.C. Martin et al. Agile Software Development: Principles, Patterns, and Prac-
tices. Alan Apt series. Pearson Education, 2003. ISBN: 9780135974445.

[27] Michael Plöd. DDD Context Maps - an enhanced view. https://speakerd
eck.com/mploed/context-maps-an-enhanced-view. [Online; Accessed:
2018-12-16].

https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://domainlanguage.com
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://eprints.hsr.ch/722
https://stefan.kapferer.ch/model-transformations-for-dsl-processing
https://stefan.kapferer.ch/model-transformations-for-dsl-processing
https://eprints.hsr.ch/602/
https://eprints.hsr.ch/602/
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://searchapparchitecture.techtarget.com/definition/business-capability
https://searchapparchitecture.techtarget.com/definition/business-capability
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed/context-maps-an-enhanced-view

Bibliography 123

[28] Nick Tune. Domain-Driven Design: Hidden Lessons from the Big Blue Book.
Talk at Craft Conf Budapest, May 2019, http://ntcoding.co.uk/sp
eaking/talks/domain-driven-design-hidden-lessons-from-the-

big-blue-book/craft-conf-budapest-may-2019. [Online; Accessed:
2019-08-13].

[29] Oliver Tigges. How to break down a domain to bounded contexts? https:

//speakerdeck.com/otigges/how- to- break- down- a- domain- to-

bounded-contexts. [Online; Accessed: 2019-08-09].

[30] OpenAPI Initiative. OpenAPI. https://www.openapis.org/. [Online;
Accessed: 2019-08-26].

[31] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Commun. ACM 15.12 (Dec. 1972), pp. 1053–1058. ISSN: 0001-
0782. DOI: 10.1145/361598.361623. URL: http://doi.acm.org/10.
1145/361598.361623.

[32] plantuml.com. Open-source tool that uses simple textual descriptions to draw
UML diagrams. http://plantuml.com/. [Online; Accessed: 2019-08-26].

[33] M. Plöd. Hands-on Domain-driven Design - by example. Leanpub, 2019.

[34] Sculptor Project. Sculptor - Generating Java code from DDD-inspired textual
DSL. http://sculptorgenerator.org/. [Online; Accessed: 2019-08-22].

[35] Mary Shaw. “Writing Good Software Engineering Research Papers: Mini-
tutorial”. In: Proceedings of the 25th International Conference on Software
Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,
pp. 726–736. ISBN: 0-7695-1877-X. URL: http://dl.acm.org/citation.
cfm?id=776816.776925.

[36] D. Steinberg et al. EMF: Eclipse Modeling Framework. Eclipse Series. Pear-
son Education, 2008. ISBN: 9780132702218.

[37] Roland H Steinegger et al. “Overview of a Domain-Driven Design Ap-
proach to Build Microservice-Based Applications”. In: The Thrid Int. Conf.
on Advances and Trends in Software Engineering. 2017.

[38] The Eclipse Foundation. Henshin - A state-of-the-art Model Transformation
Language for the Eclipse Modeling Framework. https://www.eclipse.org/
henshin/. [Online; Accessed: 2019-08-20].

[39] N. Tune and S. Millett. Designing Autonomous Teams and Services: Deliver
Continuous Business Value Through Organizational Alignment. O’Reilly Me-
dia, 2017.

[40] Shmuel Tyszberowicz et al. “Identifying Microservices Using Functional
Decomposition”. In: Dependable Software Engineering. Theories, Tools, and
Applications. Ed. by Xinyu Feng, Markus Müller-Olm, and Zijiang Yang.
Cham: Springer International Publishing, 2018, pp. 50–65. ISBN: 978-3-
319-99933-3.

[41] Vaughn Vernon. Implementing Domain-Driven Design. 1st. Addison-Wesley
Professional, 2013. ISBN: 0321834577, 9780321834577.

[42] Olaf Zimmermann. A Domain-specific Language to specify (micro-)service
contracts and data representations (realizing API Description pattern from MAP).
https://socadk.github.io/MDSL/. [Online; Accessed: 2019-05-27].

http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://www.openapis.org/
https://doi.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://plantuml.com/
http://sculptorgenerator.org/
http://dl.acm.org/citation.cfm?id=776816.776925
http://dl.acm.org/citation.cfm?id=776816.776925
https://www.eclipse.org/henshin/
https://www.eclipse.org/henshin/
https://socadk.github.io/MDSL/

124 Bibliography

[43] Olaf Zimmermann. “Architectural refactoring for the cloud: a decision-
centric view on cloud migration”. In: Computing 99.2 (2017), pp. 129–145.
ISSN: 1436-5057. DOI: 10.1007/s00607-016-0520-y. URL: https://link.
springer.com/article/10.1007/s00607-016-0520-y.

[44] Olaf Zimmermann et al. Microservice API Patterns. https://microservi
ce-api-patterns.org. [Online; Accessed: 2019-05-27].

https://doi.org/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://microservice-api-patterns.org
https://microservice-api-patterns.org

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context and Problem
	Vision
	Results
	Related Work

	Decomposition Criteria and Architectural Refactorings (AR) Analysis
	Service Decomposition Criteria Overview
	Selection of Service Decomposition Criteria
	Selection of Architectural Refactorings (ARs)
	Architectural Refactoring (AR) Summaries

	Domain-specific Language, AR and Generator Requirements
	Architectural Refactoring User Stories
	Service Contract Generator User Stories
	Non-Functional Requirements (NFRs)

	Context Mapper: Design and Implementation
	Revised Context Mapper DSL (CML) Syntax
	Architectural Refactorings (ARs) Design and Concepts
	Service Contract Generation

	Summary, Evaluation and Conclusion
	Results and Contributions
	Evaluation via Prototyping, Action Research and Case Studies
	Validation of Requirements
	Conclusion and Future Work

	Complete AR Examples in Context Mapper DSL (CML)
	AR-1: Split Aggregate by Entities
	AR-2: Split Bounded Context by Use Cases
	AR-3: Split Bounded Context by Owner
	AR-4: Extract Aggregates by Volatility
	AR-5: Extract Aggregates by Cohesion
	AR-6: Merge Aggregates
	AR-7: Merge Bounded Contexts

	Revised CML Language Reference
	Language Design
	Terminals
	Root Rule
	Context Map
	Bounded Context
	Domain and Subdomains
	Use Cases
	Domain Vision Statement
	Partnership
	Shared Kernel
	Customer-Supplier
	Conformist
	Open Host Service
	Anticorruption Layer
	Published Language
	Responsibility Layers
	Knowledge Level
	Aggregate
	Complete CML Grammar

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

