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Abstract

The sequent calculus is the most widely used style of formal proof in computer science. Its
applications include proving logical statements correct and checking the type correctness
of programs. The sequent calculus is taught as part of the computer science bachelor
curriculum at the HSR.

Learning the sequent calculus on paper involves copying a lot of large formulae and is
therefore tedious. Mechanical checks cannot be performed when proving on paper, which
makes the process error prone. A few online web-based interactive proof assistants already
exist. Unfortunately, none of them are currently suitable for use as a didactic aid at the
HSR. Given the popularity of the sequent calculus, it would be advantageous to have a
well engineered, interactive, web-based proof assistant as a learning aid for the sequent
calculus.

This project has resulted in a web-based proof assistant, written in the functional
programming language Elm, that can be used as a didactic aid to teach several different
calculi in the sequent calculus style. Proofs are perfomed using a drag and drop style. The
implemented solution is structured in a way, to allow for easy extensibility without the
need of changing the kernel. As a result, new calculi with different proof rule schemas, side
conditions and operation symbols can be added without much effort. The implemented
website is a single-page application, running without a complicated deployment.

The thesis shows the possibilities and also the corresponding limits of sequent calculus
style proofs that can be performed in web applications.
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1 Setting
In computer science the most frequently used representation to reason about deduction systems
is the sequent calculus. The use of paper-based proofs to learn the application of the sequent
calculus is often tedious. A lot of pattern matching, rewriting and copying is involved in the
process of proving a sequent on paper. Furthermore, it is an error-prone process because each
deduction step cannot be checked by a formal machine.

For those reasons, a number of web-based interactive provers exist. Upon closer inspection it
was found that none were ideal to be used as didactic aids at the HSR due to the following
reasons:

• Logitext1 allows the user to prove sequents by clicking directly on them. This means that
they do not have to know about the proof rule schemas that get applied. This is different
from the process that is involved when proving on paper. Moreover, the user cannot go
back in a proof and try to apply different rules. Implementing new theories in this setting
seems difficult and impossible.

• The incredible proof machine2 supports multiple calculi and also seems to be fairly ex-
tensible. However, the proof rule schemas are in the natural deduction style and proofs
are performed in a DAG.

• The propositional sequent calculus prover3 works only with propositional logic. Unfortu-
nately, the proofs are displayed in an indented unordered list and not in a tree structure.

• SeqProver4 supports multiple output formats for proofs, such as plain text and LATEX. It
only works for the predicate calculus and is not an interactive prover.

As the sequent calculus is a powerful and important tool, it is clear that a well designed sequent
calculus calculator is highly sought-after.

1http://logitext.mit.edu/tutorial
2http://incredible.pm/
3https://www.nayuki.io/page/propositional-sequent-calculus-prover
4http://bach.istc.kobe-u.ac.jp/seqprover/
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2 Goal
The main goal of this thesis is to develop an interactive web-based theorem prover to teach the
sequent calculus. The software written in this project should outperform existing solutions in
the areas of usability, attractiveness, maintainability and extensibility. The idea is that it can
be used during the first half of the PrfM course at the HSR.

The formal requirements of the application, as provided by the advisor, are the following:

The application must:

• Support the construction of interactive sequent calculus style proofs in propositional logic,
predicate logic, the simply typed lambda calculus and the polymorphically typed lambda
calculus.

• Be easy and intuitive to use for teaching and learning.

• Have an attractive user interface that supports a drag and drop style of proof along with
explicit instantiation of meta-variables that cannot be determined using unification.

• Require no prior installation as far as possible.

• Be maintainable and easily extensible programmatically to support reasoning about other
theories.

• Use a CI/CD pipeline for development and deployment.

• Use a Haskell-based toolchain as far as possible.

• Use a LCF-style proof kernel.

• Take advantage of the good points in existing solutions.

• Be able to be effectively used for teaching and learning at the HSR and internationally.

The advisor describes additional requirements that can be included:

The application should:

• Be able to indicate which rule schemas are applicable to the current goal.

• Be able to save and load proofs.

• Be able to export proofs in a variety of formats.

• Be able to define (programatically) and use (via the UI) proof tactics.

In general, the kernel has to be of high enough code quality to be used as a case study for
functional programming. The results are to be documented in the form of a paper suitable for
academic publication.

6



3 Technology decisions
The software created for this thesis had to be written in a statically typed functional pro-
gramming language. This means that the functional programming language had to output
JavaScript that would then run in the browser of the user. This left multiple choices to be
made during the evaluation phase of the project. This section describes the decisions taken
and possible alternatives as well as reasons why they were not chosen.

3.1 Haskell to JavaScript transpilers

There exist multiple transpilers that convert Haskell to JavaScript. Each of them has different
properties. The ones that were considered during the evaluation phase are listed below.

GHCJS
GHCJS is still under development, but compiles most Haskell based libraries to JavaScript
[11]. To interact with JavaScript a so called Foreign Function Interface (FFI) can be used. The
installation process of GHCJS is quite tiresome as it can take up to multiple hours depending
on the computer hardware and internet connection.

Fay
Fay compiles a proper syntactic and semantic subset of Haskell to JavaScript [10]. It also uses
FFIs to call JavaScript code. The opposite, to call Fay from JavaScript, is also possible.

3.2 PureScript

PureScript focuses on the generation of readable, efficient JavaScript [17]. There is an extensive
collection of web development libraries available for PureScript. The syntax is similar to the
one of Haskell, but the evaluation strategy is quite different. PureScript is strictly evaluated as
this matches the evaluation strategy of JavaScript.

3.3 Elm

Elm’s syntax is similar to the one of Haskell [4]. The language is very beginner-friendly. There
is no support for type classes in Elm [8]. This implies that some parts of the source code
have to be duplicated in order to work with different types and refactoring types can become
cumbersome. For instance, changing from a List to a Dict requires one to change all List.map
calls to Dict.map calls. Elm has an enormous library and tooling ecosystem. With so called
ports and flags it is possible to interoperate with JavaScript code.

3.4 Decision

Elm was chosen for this project because it seemed to be the most simple language that would
solve the problem at hand. The tooling and library support played an important role in this
decision. With this choice it was also clear, that some downsides had to be accepted. Elm is
still lacking debugging and refactoring features and also requires some initial training.
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The number-two choice was GHCJS. However, the tedious installation led us to favour Elm
instead. Fay was not chosen because of the limited amount of libraries available at the time of
evaluation5. The last library that we decided against is PureScript. It still uses Bower6 as a
package manager, which has not been in active development since 2017. Moreover, PureScript
seems to be difficult to learn and get started with.

3.5 Renderer

To render proof rule schemas and proof rules we will write our own renderer. We choose not to
use an existing rendering library such as KaTeX7 or MathJax8. The following (not exhaustive)
list presents some of the reasons for that decision:

• Adding event listeners onto rendered LATEX is not possible.

• Styling parts of the rendered LATEX is not possible.

• The mentioned libraries use JavaScript which we try to avoid as much as possible.

• The instantiation view uses input fields to represent meta variables. Adding those to the
rendered output is not trivial.

• Proof trees use a custom LATEX style file9 which is probably not supported by those
libraries.

Yet, implementing our own renderer has several disadvantages. It takes a lot of time and can
be error prone. Furthermore, we have to support multiple browsers which can become time
consuming. As extensibility and customizability are of utmost importance to this project, we
still decided to write a custom solution.

One renderer should support the conversion of proof rule schemas, proof rule instantiations
and proof trees to HTML. This implies that the renderer has to be generic and that it has to
be configurable. For example, to support the rendering of proof rule instantiations it has to
replace meta variables with input fields. The implementation of this can be seen in section
13.2.2.

3.6 UI Frameworks

For the styling of the web application the well-known CSS framework Bootstrap10 is being used.
This framework was chosen because of its use in the Lambda Calculus Calculator project [3].
The decision was made that both, The Lambda Calculus Calculator and The Sequent Calculus
Calculator, should have a similar look and feel to increase the familiarity and usability for users
who work with both tools.

Special icons are provided by the icon provider Fontawesome11 because of its reputation and
wide range of high quality icons.

5Fay package list: https://github.com/faylang/fay/wiki#fay-packages
6https://bower.io/
7https://katex.org/
8https://docs.mathjax.org/
9http://research.nii.ac.jp/~tatsuta/proof-sty.html

10https://getbootstrap.com/
11https://fontawesome.com/
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4 Design decisions
The design of The Sequent Calculus Calculator is shaped by several decisions. These are
described and explained in this section.

4.1 Kernel

As the calculator has to be extensible, i.e. adding new calculi has to work seamlessly, there
has to be a well-defined set of APIs that are independent of any calculus. This part is called
the kernel. Changing the kernel could potentially break other parts of the project. Therefore
a stable kernel that still supports extension is required.

The design of this kernel is influenced by the paper “Strategic Principles in the Design of
Isabelle” by Lawrence Paulson [16]. He described that the interactive theorem prover Isabelle
[18] achieved its flexibility by three basic features:

• higher-order syntax

• logical variables and unification

• search primitives based on lazy lists

For The Sequent Calculus Calculator the higher order abstract syntax is the lambda calculus
syntax. This decision was already part of the problem statement. Unification is currently not
supported by the calculator and users have to instantiate proof rule schemas on their own. If
this feature should be implemented in the future, a modified version of the unification algorithm
presented in the Programming Languages and Formal Methods course could be used. The last
feature described in the paper is not part of The Sequent Calculus Calculator as Elm does not
support lazy lists by default [4].

Another major design decision is the style of the kernel. The Sequent Calculus Calculator uses
an LCF-style kernel. Section 6 documents how this is implemented.

Note that there is exactly one kernel for all calculi and not one per calculus. The kernel is
a general-purpose prover. The use of a HOAS makes this design possible. It would also be
possible to use one syntax per calculus and then map them to some kind of HOAS when they
are passed to the kernel. However, this would add additional logic to the kernel which is not
really necessary if you use one HOAS.

4.2 Switching between calculi at runtime

One important point is that The Sequent Calculus Calculator should be able to switch between
calculi at runtime. The users should not have to load a new webpage when they want to switch
to a different calculus. This has important implications on the structure of the frontend as it
also has to be divided into a generic and a calculus-specific part.

4.3 Monotonic logics

The Sequent Calculus Calculator only supports monotonic logics, i.e. logics that have an
inference rule called weakening [19]. The use of the implicit hypothesis H, which is inherently
part of The Sequent Calculus Calculator, dictates this requirement on the logic.
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4.4 Nominals and De Bruijn indices

To represent abstractions in the HOAS, nominals were chosen instead of De Bruijn indices
as they are more intuitive to understand. Doing α-conversions and checking α-equivalences
becomes more complicated by using nominals. This disadvantage was accepted in favour of
simplicity during the design of the kernel.

4.5 Architecture

As shown in figure 1, the application consists of two parts, a frontend and a backend. The
backend is again split into two parts, the kernel and multiple modules. Despite the separation,
the entire application runs on the clients machine. That is, the backend and frontend are
both compiled to JavaScript. As there is no client-server communication apart from the initial
request, no long-lived internet connection is required.

Application

Frontend Backend

Kernel Modules

Figure 1: Component overview

How the components interact and what information they share with one another can be seen
in figure 2.

Kernel

Frontend

Modules

Data structures
& API calls

Proof rule schemas (LCF style)
& Data structures

Module specifications

Figure 2: Interaction overview

The kernel does not depend on other components. The modules pass their proof rule schemas
to the kernel. They also use the data structures provided by the kernel. The frontend uses the
module specifications that are part of the modules. These are described as part of section 15.
Finally, the frontend calls the kernel to apply proof rules or instantiate proof rule schemas.
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4.5.1 Frontend

The user interface is a web application which is written in Elm. The decision on why this
language was chosen is evident from section 3.

Elm modules
According to the Elm architecture guide, a typical Elm project should consist of a model, a view
representation and an update function [6]. This architecture resembles the well known Model-
View-Controller pattern. The model contains the application state. In our case, it also holds
references to calculi specific functions, such as the parser and the supported operators. The
view consists of the HTML representation of the application. It is responsible for combining
the different DOM elements. The update function reacts to user input and manipulates the
DOM accordingly.

This core idea is used as a design guideline for The Sequent Calculus Calculator. However, the
different view representations and the kernel logic were again separated into different modules
to improve the reusability of generic logic. This allows a separation of concerns and leads to
less duplicated code. Simultaneously it increases the complexity of the application.

4.5.2 Backend

As the kernel has to be highly extensible, it has to support some kind of plugin architecture.
For The Sequent Calculus Calculator plugins are user defined modules. Those modules allow
for extension by new, not yet supported calculi. The backend could theoretically be used on
the command line as well. It is not dependent on a particular user interface.

Kernel
The kernel contains generic algorithms that support the instantiation of proof rule schemas and
the application of proof rules. The kernel does not depend on calculi modules and can therefore
be used without them. Furthermore it is able to load and save previously created proofs stored
as JSON files.

Modules
A module consists of components that are specific to a calculus. Each calculus that has to be
supported by the web application needs its own Elm modules. A module contains a parser,
implemented based on the EBNF of the calculus grammar. Implementing a parser is a complex
and time consuming task. That is why a parsing library was used [5]. Section 5 answers why
this specific library was chosen. The proof rule schemas of a calculus are also part of the
module. They are instantiated during a proof performed by the user.

It is important to note here, that only one such module can be active at once. This is to prevent
proof rules of different calculi to interfere with each other.
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5 Make or reuse decision
This decision answers the question whether a component should be written from scratch or
reused as is from other sources. In this case this question had to be answered for the parser
component. We decided to use two parsing libraries written in Elm [5, 13]. This allowed us to
do rapid prototyping early on without having to write a complex parser. The chosen parser falls
into the category of top-down parsers [2]. One downside of this library is that left-recursive
grammars cannot be parsed. In the case of propositional calculus predicates, this problem
required some additional effort to solve. For an example on how this problem was solved for
the basic predicate calculus syntax, see section 7.1. With this library we lost some degree of
flexibility which a hand written parser would have provided.
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6 Data types
The most important data types of this project are Term, Sequent, TrustedProofRuleSchema,
TrustedProofRule and ProofTree. They are all part of the kernel and play an important role in
most algorithms.

Term
As described in section 4 The Sequent Calculus Calculator uses the lambda calculus syntax.

type Term
= Variable String
| Metavariable String
| Application Term Term
| InParentheses Term

Listing 1: Term data type

A meta variable represents a variable that gets replaced by a concrete term during the instan-
tiation process. Meta variables are part of proof rule schemas but are never present in concrete
proof rules.

The InParentheses constructor should preserve parentheses declared by the user. Without this
constructor it would not be possible to retain this information in the AST. In order to not
confuse the user, explicit parentheses are never removed and always displayed.

Sequent
A sequent contains hypotheses and goals, both of which can contain multiple elements. For
our purpose, the goal side of a sequent contains exactly one goal. However, there are calculi
for which the goal side contains multiple Terms.

The resulting data type looks like this:

type alias Sequent =
{ hypotheses : List Term , goals : List Term }

Listing 2: Sequent data type

TrustedProofRuleSchema
Trusted proof rule schemas are part of the kernel and, surprisingly, not of the calculus module.
That is because the TrustedProofRuleSchema type is implemented in the LCF-style, i.e. the
constructor is not exposed. The creation of trusted proof rule schemas is therefore only possible
inside this kernel module. Users cannot create arbitrary proof rule schemas on their own. This
prevents users and developers from creating arbitrary proofs that might be wrong.

TrustedProofRule
Similar to the TrustedProofRuleSchema type, the TrustedProofRule type does not expose its
constructor. A trusted proof rule can only be created by instantiating a trusted proof rule
schema. Users are never able to create proof rules on their own.
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ProofTree
A proof tree consists of Nodes. A Node always contains a path that is represented as a List
of Ints and a Sequent. Furthermore, when no TrustedProofRule has been applied to a Node it
contains a Nothing. If, on the other hand, a TrustedProofRule has been applied it contains a
Tuple consisting of the proof rule name and a list of child Nodes.

type ProofTree
= Node (List Int) Sequent (Maybe ( String , List ProofTree ))

Listing 3: Proof tree data type

The so called pending subgoals of a proof tree are the leafes that have not been proven. Those
are the Nodes that contain a Nothing. Conversely, a proven leaf contains a Just of an empty
list. A proof tree is proven if it contains no pending subgoals.

Applying a TrustedProofRule to a Node of a ProofTree converts the tree into a new tree.
The concrete algorithm is described in section 9. ProofTrees cannot be directly created or
manipulated by the user as it is also hiding its constructor.

The previously mentioned path that is part of each Node is always unique within the ProofTree.
This is necessary because the (==) operator of Elm uses structural equivalence. If the path
was not present, a proof rule could be applied to multiple (accidentally equivalent) locations.
A path is constructed by labeling each child Node with an increasing number starting at zero.
The path of a particular Node could look like this: [0, 1, 0], i.e. the first child of the second
child of the first child.
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7 Parser
The parsers are part of the calculus specific modules. For new calculi the parser has to be
programmatically provided. It is not possible to generate the parser logic based on the EBNF,
as this would require an Elm-based parser generator.

As discussed in section 4, The Sequent Calculus Calculator uses the lambda calculus syntax.
This means that every term has to be represented as some kind of function application. The
parser has to convert text representations to function applications.

7.1 Example

The following example illustrates how a term is parsed. First, the user provides a string as
input. The parser then tries to match it against one of the possible categories. For basicPC
those are the logical complement, conjunction, variable or contradiction. The most difficult
part lies in this step. The basicPC grammar is left recursive:

P → P ∧ P | ¬P | A . . . Z | ⊥

It contains a production rule of the form A→ Aα. A top-down parser is not able to parse such
production rule because it would end up in an infinite loop. To solve this problem the grammar
has to be slightly modified:

P → ¬PP ′ | A . . . ZP ′ | ⊥P ′

P ′ → ∧ P | ε

This solution is able to parse the same strings but removes the left-recursion [1]. Note that a
term of the form A ∧ B ∧ C is ambiguous and will not be parsed correctly. To resolve such
ambiguities, the user has to use parentheses.

In an ideal scenario the module developer does not have to think about this property of the
grammar. Therefore, they can use the Elm parsing library parser-extras which is able to
parse expressions, operators and resolve their precedence [13]. The usage of this library is
highly recommended but not mandatory.

Pasing the term ¬(A ∧B) with the above grammar will result in the following data structure:

Application (Variable "¬") (
Application

(Application (Variable "∧") (Variable "A"))
(Variable "B")

)

Listing 4: Parsed term represented in the term data structure
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8 Instantiation algorithm
This algorithm takes instantiations provided by the user and creates a TrustedProofRule from
a TrustedProofRuleSchema. This is achieved by replacing meta variables with concrete terms.
The implementation is straightforward:

instantiate : String -> Term -> Term -> Term
instantiate metavariable assignment term =

case term of
Variable _ ->

term

Metavariable content ->
if metavariable == content then

assignment

else
term

Application left right ->
Application

(instantiate metavariable assignment left)
(instantiate metavariable assignment right)

Abstraction parameter body ->
Abstraction

(instantiate metavariable assignment parameter)
(instantiate metavariable assignment body)

InParentheses inParanthesis ->
InParentheses

(instantiate metavariable assignment inParanthesis)

Listing 5: Instantiation of a term

The if statement checks if the correct meta variable has been reached. If so, it does a simple
replace. Otherwise the structure of the term is unchanged. Despite the fact that a term of a
TrustedProofRuleSchema never contains parentheses this case has to be handled.

The implicit meta variable H is never explicitly instantiated by the user. This meta variable
gets its assignment when applying the proof rule to a pending subgoal of the proof tree. With
this restriction in mind it’s clear that each meta variable gets assigned to exactly one term.
How this implicit meta variable is instantiated is described in section 9.1.
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9 Application algorithm
When applying a TrustedProofRule to a Node of the ProofTree multiple preconditions have to
hold. As seen in listing 6, there are three preconditions:

isApplicable : ProofTree -> ProofTree -> TrustedProofRule -> Result String ()
isApplicable tree location trustedProofRule =

boolToResult (isEmpty location) "Only pending subgoals"
|> Result.andThen

(always <|
boolToResult (isSubtree location tree) "Not part of tree"

)
|> Result.andThen

(always <|
isApplicableToLocation trustedProofRule location

)
|> Result.map (always ())

Listing 6: Preconditions of an application

The isEmpty function call checks if the location where the proof rule should be applied is a leaf
of the ProofTree. If not, then no proof rule can be applied.

The second function call checks if the location is part of the tree. It could be that a developer
accidentally applied a proof rule to a Node that is not even part of the current ProofTree.

The last precondition is a bit more interesting. It checks if the consequent of the Trusted-
ProofRule is equal to the pending subgoal, i.e. the Sequent contained within the location Node.
It is important to note that this check disregards the order of terms. P,Q can be applied to
Q,P . For the hypotheses of the sequents a sublist comparison is perfomed because the implicit
hypothesis H could match multiple terms. Finally, the side conditions are evaluated.

If all preconditions are complied, the application takes place. The following listing 7 shows part
of the application algorithm.
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applyProofRule : ProofTree -> ProofTree -> List Int -> ProofRule -> ProofTree
applyProofRule (Node path sequent possibleChildren) appliedLocation

currentPath proofRule =

if Node path sequent possibleChildren == appliedLocation then
proofRule.antecedents

|> List.indexedMap Tuple.pair
|> List.map

(\( index , element ) ->
createNode

(currentPath ++ [ index ])
element

)
|> Tuple.pair proofRule.name
|> Just
|> Node path sequent

else
case possibleChildren of

Nothing ->
Node path sequent Nothing

Just ( name , children ) ->
children

|> List.indexedMap Tuple.pair
|> List.map

(\( index , element ) ->
applyProofRule

element
appliedLocation
(currentPath ++ [ index ])
proofRule

)
|> Tuple.pair name
|> Just
|> Node path sequent

Listing 7: Application of a proof rule

The if statement checks if the recursion reached the location where the proof rule should be
applied. If so the new pending subgoals get created and all of them receive their own paths. If,
on the other hand, the base case has not been reached, the function applyProofRule is called
on all children.

9.1 Implicit hypothesis matching

The matching of the implicit hypothesis H is quite simple. The algorithm uses the proof
rule that should be applied as well as the node of the proof tree and modifies the proof rule
appropriately. It does this by adding all the hypotheses that are not present in the proof rule
but in the node of the proof tree to the proof rule itself.

If, for example, the following proof rule X ` A ∧ B gets applied to this pending subgoal
X,A,B ` A ∧ B, then H will be instantiated with {A,B}. The instantiation of H will also
be added to all antecedents of the proof rule. This ensures that the new pending subgoals are
consistent.
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10 Substitution operator
The substitution operator, which is part of basicFoPCe and FoPCe, is a fundamental operator
that allows the user to apply substitutions. The implementation is largely based on the script
of the PrfM course [9, p. 48].

10.1 Known limitations

One restriction that is important to keep in mind is that only one substitution can be applied
per step. To completely apply the substitution [x := E](> ∧ ⊥) a total of three substitutions
are necessary. The individual steps can bee seen in figure 3.

[x := E](> ∧⊥)

=̂ ([x := E]>) ∧ ([x := E]⊥)

=̂ > ∧ ([x := E]⊥)

=̂ > ∧⊥

Figure 3: Steps of a substitution

Allowing multiple substitutions at a step would make the source code much more complicated
and could potentially confuse the user. For those reasons it was not implemented.

10.2 Applying a substitution

Applying a substitution, i.e. substituting a bound variable for its replacement, happens when
a user clicks on the substitution operator. To uniquely identify the location of the substitution
a node and a path are necessary. The node identifies the sequent of the proof tree and the path
identifies the term inside the sequent. The node is structured as described in section 6.

10.3 Alpha conversion

Certain substitutions require non-freeness side conditions. More information on side conditions
and their implementation can be found in section 11. One such non-freeness side condition is
present in the =̂[:=]∀2 substitution:

[x := E](∀y.P ) =̂ ∀y.([x := E]P )

if x, y are distinct and (y nfin E)

The following example illustrates the necessity of the side condition: The substitution
[x := y](∀y.x) should not result in ∀y.y as this would bind the free variable y by mistake. The
correct result of the substitution is ∀y.x. In general, the bound variable y of the ∀ quantification
has to be renamed before substituting the term E if the side condition check fails [9, p. 49].

The following code listing 8 shows how such an α-conversion could be implemented.
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replaceBoundVariable : String -> String -> Term -> Term
replaceBoundVariable current replacement term =

case term of
Variable variable ->

if variable == current then
Variable replacement

else
term

Application left right ->
Application

(replaceBoundVariable current replacement left)
(replaceBoundVariable current replacement right)

Abstraction parameter body ->
Abstraction

(replaceBoundVariable current replacement parameter)
(replaceBoundVariable current replacement body)

InParentheses termInParentheses ->
InParentheses

(replaceBoundVariable current replacement termInParentheses)

_ ->
term

Listing 8: Simple α-conversion
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11 Side Condition
Side conditions are a fundamental part of many calculi. For instance, they occur in the ∀hyp
proof rule schema, which is part of basicFoPCe. New calculi could introduce different kinds of
side conditions. Supporting such conditions requires the implementation to be generic.

11.1 Instantiation of side conditions

Side conditions are instantiated as soon as possible. This means that side conditions on meta
variables are instantiated whilst instantiating the proof rule schema itself. Yet, side conditions
on the implicit hypothesis H can only be instantiated after the proof rule is applied to a pending
subgoal. This is because only at that point the instantiation of H is available.

As soon as a side condition is instantiated, the user-supplied instantiations are applied to the
function represented by an UninstantiatedSideCondition and the result is saved as an Instan-
tiatedSideCondition. These type constructors can be seen in listing 9.

type SideCondition dictContent
= InstantiatedSideCondition Bool
| UninstantiatedSideCondition (Instantiations dictContent -> Bool)

Listing 9: Side condition type

11.2 Checking of side conditions

All side conditions are checked at the same time, namely as part of the precondition check in
the application algorithm, even though most side condition results are already known earlier.
A more detailed description of the application algorithm can be found in section 9. One ad-
vantage of evaluating the side conditions simultaneously is that there are not multiple, possibly
confusing, error messages.

11.3 Definition of side conditions

Side conditions need to be defined as part of a proof rule schema. The type alias for a side
condition can be seen in listing 10.

type alias SideConditions =
{ implicitHypothesis : List (SideCondition (List Term))
, normal : List (SideCondition Term)
, name : String
}

Listing 10: Side conditions type alias

In addition to the side condition functions, a name can be defined, which will be appended to
the proof rule schema name. We decided to omit the side condition name in the proof tree,
as it is no longer of any concern to the user at that point. It would not have been trivial to
implement this feature. Long proof rule names tend to overlap with other content in the proof
tree and replacing meta variables with the string representation of their instantiation is not
straightforward either.
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11.4 Limitation of the genericity

Listing 9 shows that side conditions can base their truth value only on instantiations. Side
conditions that evaluate something else cannot be represented in The Sequent Calculus Calcu-
lator. This should not be a problem as the calculi presented as part of PrfM do not have such
side conditions.

Usually meta variables represent exactly one term. However, the implicit hypothesis H can
match multiple terms. Therefore, these two instances of side conditions need to be handled
separately. Listing 10 shows that The Sequent Calculus Calculator differentiates between nor-
mal and implicitHypothesis side conditions. With this restriction in mind, it is clear that an
UninstantiatedSideCondition can contain two different side condition types. Listing 11 shows
the two possible types of side condition functions.

sideConditionFunctionImplicitH : Instantiations (List Term) -> Bool
sideConditionFunction : Instantiations Term -> Bool

Listing 11: Side condition function type

If a developer of a calculus wants to add new kinds of side conditions checks, they have to
implement both side condition functions of listing 11.
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11.5 Supported side condition types

From the supported calculi only basicFoPCe and FoPCe require side conditions. In both calculi
there are proof rule schemas that require a non-freeness check. Therefore, a non-freeness side
condition was introduced, which can be seen in listing 12.

notFreeIn : String -> Term -> Bool
notFreeIn nonFreeVariable term =

case term of
Variable variable ->

variable /= nonFreeVariable

Application leftTerm rightTerm ->
notFreeIn nonFreeVariable leftTerm

&& notFreeIn nonFreeVariable rightTerm

Abstraction (Variable parameter) body ->
if parameter == nonFreeVariable then

True

else
notFreeIn nonFreeVariable body

InParentheses inParenthesis ->
notFreeIn nonFreeVariable inParenthesis

_ ->
False

Listing 12: Implementation of a non-freeness side condition

The algorithm is a recursive traversal of the term structure. It follows the rules presented in
the script of the PrfM course [9, p. 47, 48]. As meta variables are not allowed to be present
during a non-freeness check, a term containig one will always fail that check.
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12 Proof tree export and import
To allow saving and loading proof trees, an export to and an import from JSON is available to
the user. The implementation, the format of the JSON, as well as restrictions and problems
with this functionality are part of this section.

12.1 Implementation

The encoding of the proof tree data structure to a JSON string and decoding it back to the
data structure is implemented using elm/json12.

To download and upload files elm/file13 is being used. Implementing a file download with this
library is straightforward. The file upload, on the other hand, is much more complicated. The
upload functionality requires three Elm messages, as each step of the upload process is called
individually. One is called when requesting a JSON file to be uploaded, another one after the
user selects the file and the final message is sent as soon as the upload completes. The last
message contains the content of the selected file as a string. The required messages can be seen
in listing 13.

ImportProofTreeRequested
ImportProofTreeSelected File
ImportProofTreeLoaded String

Listing 13: Import messages

12.2 Format of the JSON

The chosen format is a simple JSON representation of the Higher-order abstract syntax. Be-
cause of that, new calculi are automatically able to use this feature without any additional
implementation effort. The structure of a proof tree can be seen in listing 14.

{
"modulId": String ,
"proofTree": {

"path": [ Int ],
"sequent": {

"hypotheses": [ Term ],
"goals": [ Term ]

},
"appliedProofRule": {

"appliedProofRuleName": String ,
"children": [ ProofTree ]

}
}

}

Listing 14: Proof tree JSON structure

12https://package.elm-lang.org/packages/elm/json/latest/
13https://package.elm-lang.org/packages/elm/file/latest/
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As there are four different term constructors, each one of them needs its own JSON structure,
which are displayed in listings 15, 16, 17 and 18. The type attribute is always the name of the
term constructor. Meta variables can never be part of a proof tree and they do not need to be
represented as part of the JSON structure.

{
"type": String ,
"value": String

}

Listing 15: Variable JSON structure

{
"type": String ,
"left": Term ,
"right": Term

}

Listing 16: Application JSON structure

{
"type": String ,
"parameter": Term ,
"body": Term

}

Listing 17: Abstraction JSON structure

{
"type": String ,
"term": Term

}

Listing 18: InParentheses JSON structure
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12.3 Emerging problems

12.3.1 Import checks

The current solution does not check if the specified proof tree is valid or not.

It does, however, check if the generated proof tree is of the exact same calculus as the currently
active one. If this is not the case, the decoding of the JSON fails. This one-to-one check
was chosen in favour of an “inheritance”-type check, even though some calculi are completely
contained in other ones (e.g. basicPC in PC ). The reason for this is its simpler implementation
and because the initial sequent of a proof determines the rules that can be applied to a proof.
If a user begins his proof in basicPC they will never switch to PC during the course of their
proof.

It is also important to mention that a malicious user could circumvent this protection by editing
the JSON file directly. However, our concerns lie with the protection of the average user, for
whom this approach is sufficient.

12.3.2 LCF-style circumvention

Allowing a user to specify and load his own arbitrary proof tree results in a circumvention of
the LCF-style. A user could potentially upload a proof tree that’s not proven up to that point.
This circumvention is possible because the import and export is directly part of the kernel.
Even though this is a very serious problem and could potentially lead to broken proof trees,
it is also a highly sought after feature. It should primarily be used to exchange or save proof
trees and not to write them in JSON by hand.
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13 User Interface
This section describes all UI components and their interactions with each other in more detail.
The architecture of the frontend is part of section 4.5 and is not described here.

Figure 4: Entire webapplication

13.1 Special character encoding

To make the input fields user friendly, the user does not have to enter Unicode characters of
operators. Instead, predefined keywords can be used. These are defined in calculus specific
Elm modules, as operators vary between calculi. As soon as a keyword is detected, it gets
converted to the corresponding Unicode symbol. For example basicPC contains the following
special characters:

! → ¬
^ → ∧

\not → ¬
\and → ∧
\true → ⊥

13.2 Rendering algorithms

There are three different rendering algorithms in The Sequent Calculus Calculator. One is used
to display the proof tree data structure in a tree form to the user. Another one creates the
proof rule schema view and the instantiation view. The last one is module dependent and is
responsible for constructing an HTML structure from a term.
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13.2.1 Proof tree renderer

The proof tree renderer is independent of the module and uses the term renderer to complete
its task. It creates a tree structure by nesting HTML divs into one another. This structure is
later styled using CSS, which makes it look like the trees seen during the PrfM course. The
fully proven sequent A,B ` A ∧B can be seen in figure 5.

Figure 5: Rendered proof tree

13.2.2 Proof rule schema renderer

Just like the proof tree renderer, the proof rule schema renderer is module independent and
uses the term renderer to fulfill its task. In contrast to the proof tree HTML structure, the
proof rule schema does not need nested HTML elements. A proof rule schema is not a recursive
structure after all.

13.2.3 Term renderer

The term renderer is module dependent, as different modules have different conventions and
need to call different parsers based on the term structure. Because the term renderer is used
in the proof rule schema list view, the instantiation view and the proof tree view, it needs to
be highly generic. As a result, it accepts a lot of parameters for configuration and has to fulfill
different purposes.

The following list contains the tasks that the term renderer needs to fulfill:

• The renderer has to create the path representation of rendered terms and add them in
case they are required to identify terms in the proof tree.

• It has to support the rendering of meta variables in a dynamic way, as they are represented
as input fields in the instantiation view and as normal strings in the proof rule schema
list view.

• It has to call the correct parser for meta variables. Note that expressions, predicates and
variables do not use the same parser.

Term to string renderer
Besides the term to HTML renderer, there is also a term to string version. This functionality
can be used on the CLI.

13.3 Webpage header

The webpage header contains a dropdown menu, to allow the user to switch between calculi.
The selection is saved in the local storage14 of the browser and loaded upon startup. The
Sequent Calculus Calculator detects which calculus was used during the previous session and
loads the current proof rule schemas accordingly.

14https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage
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There is also a getting started guide for new users where they can learn the usage of the web
application. It also contains a list of all special character encodings available as part of the
selected calculus. More on special character encodings can be read in section 13.1.

Lastly, there is an about button containing information on the thesis itself and a link to the git
repository, to encourage people to add new modules and improve the user interface.

Both, the getting started guide and the about page, are implemented using bootstrap modals15.

13.4 Proof rule schema view

The proof rule schema view displays all proof rule schemas of the active calculus. The schemas
are loaded on startup and can be changed by selecting a different calculus from the dropdown
menu. Section 4.5.2 described these calculus modules. Figure 6 shows the proof rule schema
list view.

Figure 6: Proof rule schema view

Presentation
As previousely mentioned, the rendering of proof rule schemas does not use a rendering library
that is able to convert LATEX to HTML because of reasons discussed in section 3.5.

15https://getbootstrap.com/docs/4.0/components/modal/
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To achieve the desired UI the following CSS components are used:

• The antecedents are spread evenly by the flexible box module (Flexbox) [15].

• The horizontal bar between the consequent and the antecedents is a border on the top
side of the consequent.

• The proof rule name is placed to the right of the div on the same height as the vertical
bar.

Interaction
By clicking on a proof rule schema it gets loaded as an instantiatable version into the instanti-
ation view.

13.5 Instantiation view

The instantiation view displays the selected proof rule schema. The user can instantiate meta
variables, i.e. change meta variables to concrete terms. Figure 7 shows the instantiation view
with an instantiated ∧goal proof rule schema.

Figure 7: Instantiation view

Presentation
The instantiation view uses the same rendering algorithm as the proof rule schema view. The
only difference between them is that the instantiation view renders meta variables as input
fields.

Upon each user input, the inserted text gets parsed by the term parser of the loaded module.
If this parsing process fails, the user gets a notification in form of a tooltip, indicating that his
inserted term is not valid. This tooltip is removed as soon as the term is parsable again or the
user changes the input field. In addition, the border of the input field turns red, as long as
the term inside the input field is not parsable. Figure 8 shows the instantiation view with an
invalid meta variable instantiation.

Interaction
Using input fields, the user can replace meta variables with terms. Input fields representing
the same meta variables are coupled to each other, i.e. changing one input field also changes
all connected fields.

As soon as all meta variables are instantiated, the user can drag the proof rule over a pending
subgoal of the proof tree. Dropping the proof rule results in an application of the proof rule to
the pending subgoal.
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Figure 8: Instantiation view with an error

13.6 Proof view

The proof view consists of four components. An export button, an import button, the sequent
input field and the proof tree view. The proof tree view is responsible for displaying the proof
tree. If the user has not yet inserted a sequent to be proven, a placeholder text is displayed
instead. Figure 9 shows the proof view with a partially proven proof tree.

Figure 9: Proof view

Presentation
The import and export buttons are used to save the current proof tree and load an old proof
tree respectively. More information about exporting and importing proof trees can be found in
section 12. The export button is disabled, as long as the user has not yet started a proof. It
would not make sense to export an empty proof.

The component with the sequent input field is made up of the input field itself and a proof
button to the right. The input field itself has the same functionality as the ones of the instanti-
ation view of section 13.5. The only difference is the used parser, as in this case the user input
needs to be an entire sequent and not just a single term. The proof button is disabled, as long
as the sequent is not parsable.

Pending subgoals are treated differently, as they are highlighted through a blue background to
give the users a visual aid of what they can proof next. On dragging a proof rule over a pending
subgoal, its background color changes to green to indicate the drop location.

Interaction
After the users specify a sequent and click on the proof button, the sequent gets displayed in
the poof tree view as the only pending subgoal and the placeholder text disappears.
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14 Testing
The application logic is tested with the help of elm-explorations/test16. The frontend is
not automatically tested because we know from experience that this requires a lot of effort and
has little benefits. The folder structure of our tests mirrors the one of the system under test.

14.1 Test dependencies

The term renderer tests and parser tests are based on each other, i.e. the PC tests are built
on top of the basicPC tests and so forth. This avoids unnecessary code duplication of the test
modules.

14.2 Fuzzing

All modules use a fuzzer to test the term to string rendering. The following property has to
hold for any term t: t = parse(termToString(t)). This is important because it allows the user
to copy displayed text and paste it into input fields. The function parse removes superfluous
whitespaces so it is not the exact inverse function of termToString.

Generating random terms is not a simple task. The following example shows how unary oper-
ations are generated for basicPC :

unaryOperationGenerator : Generator Term
unaryOperationGenerator =

Random.map2
(\ operator operand ->

createUnaryOperation operator operand
|> InParentheses

)
(Random.constant "¬")
(Random.lazy (\_ -> termGenerator ))

Listing 19: Unary operation generator

16https://github.com/elm-explorations/test
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The same process is implemented for all term structures currently available. For instance, to
generate an expression, the following generator is used:

expressionGenerator : Generator Term
expressionGenerator =

Random.andThen
(\b ->

if b < 9 then
Random.lazy (\_ -> variableExpressionGenerator)

else
Random.lazy (\_ -> functionExpressionGenerator)

)
(Random.int 0 10)

Listing 20: Expression generator

Note that it uses Random.lazy to force a lazy evaluation of the expressions. In nine out of ten
cases the first and simpler case is chosen. This is because Elm runs out of stack space when
using too many recursive function calls.

14.2.1 Shrinker

A fuzzer is usually combined with a shrinker which simplifies the random data in case a test
fails. Its purpose is to make it easier for the developer to identify the failing component. Let
us assume the following term is generated by the fuzzer:

Application(..)(Application(V ariable”?”)(V ariable”P”))

It might not be parsed correctly, because of the question mark used as a variable as part of the
application. The left side of the outer application might consist of multiple nested terms.

The shrinker would now take this whole term and find simpler terms that also fail the test.
As a developer I would then not have to search for the failing input, because I would receive
Application(V ariable”?”)(V ariable”P”) directly. A shrinker is therefore nothing but a simpli-
fier.

Unfortunately, there is an unresolved issue17 that prevents developers from writing their own
shrinkers. At the moment a term is not simplified and identifying the failing component can
be difficult.

14.3 System tests

To verify that the application works as a whole, we performed system tests at the end of the
implementation phase. This section describes the tests and their results. All tests described in
this section are performed manually on each of the implemented calculi. Of course, some tests
require a specific calculus and will therefore not be performed on the other ones.

17https://github.com/elm-explorations/test/issues/66

33

https://github.com/elm-explorations/test/issues/66


Nr. Description Expected result Applicable calculi
1 Enter the sequent P ∧ Q ∧

O ` P into the sequent in-
put field.

The sequent should not
parse and an error message
should be displayed.

Any

2 Enter the sequent P ∧ (Q ∨
O) ` P into the sequent in-
put field.

The sequent should parse
and clicking the Proof but-
ton should display the new
subgoal.

PC , basicFoPCe, FoPCe

3 Show that conjunctions are
associative by proving P ∧
(Q ∧O) ` (P ∧Q) ∧O.

It should be possible to
prove the sequent.

Any

4 Apply contr, ¬hyp and hyp
(in this order) to the sequent
¬¬⊥ ` >.

The sequent should be
proven.

Any

5 Enter and proof ∀x.H(x)⇒
M(x), H(s) `M(s).

It should be possible to
proof the sequent.

basicFoPCe, FoPCe

6 Enter the sequent x ` ∀x.P
and apply ∀goal.

The side condition should
fail and an error message
should be displayed.

basicFoPCe, FoPCe

7 Enter the sequent ` [x :=
y]∀y.x and perform a substi-
tution on the goal.

The new pending subgoal
should be ` ∀y1.[x := y]x.

basicFoPCe, FoPCe

Table 1: System tests

The cases presented in table 1 verify that the core behaviour of the application is correct.
Although the aforementioned test cases test the system thoroughly, several exercises that were
set during the PrfM course were also solved using the calculator. Using the calculator it should
be possible to proof all exercises of basicPC , PC , basicFoPCe and FoPCe. Proving the validity
of proof rule schemas is currently not possible with the application, because syntactic rewriting
rules are not part of the application.
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15 Implementing a new calculus
How a new calculus can be implemented and integrated in the current application is described
in this section. Each calculus is a separate module which is represented using the following
data type:

type alias Module =
{ name : String
, id : String
, proofRuleSchemas : List TrustedProofRuleSchema
, termToHtml :

Maybe (Term -> ParseFunction Term -> Html Message)
-> (Html Message -> List Int -> Html Message)
-> List Int
-> Term
-> Html Message

, termToString : Term -> String
, parse : ParseFunction Term
, parseTerm : Parser Term
, specialCharacters : SpecialCharacters
, operators : Operators
}

Listing 21: Primary module data structure

This data type can be used as a checklist when implementing a new calculus. Providing all
functions in their correct type is already a good indicator as to whether the module is correctly
implemented.

15.1 Name and identifier

Each calculus module has to contain a name and an identifier. The former is a text representa-
tion that does not have to be unique, whereas the latter has to be unique as it is used internally
to match the calculus.

15.2 Parser

The first thing one should write when adding support for a new calculus is the parser. This
step is arguably the most tedious one. The parser has to expose a function of the following
type, where element is of type Term:

type alias ParseFunction element =
String -> Result (List DeadEnd) element

Listing 22: ParseFunction type

The parse function takes the user input and converts it into a Result that either contains a List
of DeadEnds or the parsed Term.
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To make the parsing of operators a bit easier, the Elm package Punie/elm-parser-extras can
be used [13]. It handles the precedence of operators and supports both binary and unary oper-
ators. To use it, simply add an operator table and then use the function buildExpressionParser.
The operators that appear before others in the list have higher precedence.

operators : OperatorTable Term
operators =

[ [ prefixOperator "¬" ]
, [ infixOperator "∧" ]
]

term : Parser Term
term =

buildExpressionParser operators (lazy <| \_ -> variable)

Listing 23: BasicPC operators

15.3 Proof rule schemas

The next step is to add the proof rule schemas of the calculus. They have to be added to the
file Kernel/TrustedProofRuleSchema.elm as that is the only place where the corresponding
constructor is visible. More information on why this restriction exists can be found in section
6.

15.4 Term renderers

Now the term renderers can be written. There has to be a renderer that converts Terms to
HTML and one that converts them to text. The type of the former is slightly different:

termToHtml :
Maybe (Term -> ParseFunction Term -> Html Message)
-> (Html Message -> List Int -> Html Message)
-> List Int
-> Term
-> Html Message

Listing 24: Type of termToHtml

The first three parameters require some explanation:

• The first parameter defines how meta variables are rendered. This has to be configured
outside of the renderer and that is why this function is passed as a parameter. If it is a
Nothing then the meta variable will simply be displayed as text. If the term is rendered
as part of an instantiation, the meta variables are represented as input fields. The second
part of the first parameter is the parser that should be called when rendering the meta
variable. This part is defined by the current renderer. For instance, in basicFoPCe a
meta variable E represents an expression, whereas P represents a predicate.

• The second parameter is a decorator that is called on substitution operators. basicFoPCe
uses it to add onClick listeners for substitutions.
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• The third parameter is the path of the proof tree that was taken before this Term was
reached. This path is there to uniquely identify the Term inside the ProofTree. It is
constructed similarly to the one of the Node which is described in section 6.

15.5 Special character encoding

The final step is to define which special characters are part of the calculus. These definitions
will be used to replace occurences of special characters in user input.

specialCharacters : SpecialCharacters
specialCharacters =

Dict.fromList
[ ( "\\and", "∧" )
, ( "&", "∧" )
, ( "\\not", "¬" )
, ( "!", "¬" )
, ( "\\false", "⊥" )
]

Listing 25: Special characters of BasicPC

The above listing defines that & should be replaced with ∧ when encountered in user input.
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16 Deployment
elm-live18 is used to deploy the application locally. It compiles the Elm code and serves static
files through a web server. Furthermore, it reloads the website automatically as soon as an Elm
module changes. This can be quite helpful during live testing. Elm provides a similar utility
called elm-reactor19 which does not support auto-reloads.

In general, an Elm application is built using elm-make20. It compiles Elm modules to JavaScript
but does not publish them to a web server.

Deploying the application is fairly simple. After compiling the application to a single JavaScript
file, it has to be served with all static files (HTML, JS, acrshortcss) using a web server of your
choice. The current solution uses GitLab pages for this task. The configuration that describes
how the code is built looks like this:

build -website:
stage: build
image: trenneman/elm -ci
script:

- cd code
- elm make src/Main.elm --output=build/src/out/elm.js
- cp src/index.html build/
- cp -r src/stylesheets/ build/src/
- cp -r src/images/ build/src/

artifacts:
paths:

- code/build

Listing 26: Website build plan

18https://github.com/wking-io/elm-live
19https://guide.elm-lang.org/install.html#elm-reactor
20https://guide.elm-lang.org/install.html#elm-make
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17 Evaluation
The results of the thesis are described in this section. We will begin by describing what we
were able to implement as part of the project and what not. Furthermore, we will discuss the
problems that we came across during the development of The Sequent Calculus Calculator and
what the consequences of the LCF-style are. Finally we will draw a conclusion.

17.1 Implemented features

In this thesis we implemented a fully functional web application that is able to proof sequents
of multiple calculi in a drag and drop proof style. The application can and hopefully will be
used to teach basicPC , PC , basicFoPCe and FoPCe as part of the PrfM course. The Sequent
Calculus Calculator is able to support side conditions as well as substitutions, which are both
part of basicFoPCe as well as FoPCe.

The developed web application does not need a web server at all. It is a simple single-page
application that works on the client-side. The deployment is also straightforward as can be
seen from section 16.

The kernel uses an LCF style and is extensible. Through strict code reviews we tried to
achieve a very high code quality. This project can be used to introduce students to functional
programming. Elm is very beginner friendly and can easily be understood. It is clear that due
to its genericity, the kernel might not be as simple as it could have been if we used one kernel
per calculus. This was a decision that made the project more extensible from a long-term
perspective but also less suitable for didactic use (to teach functional programming).

To make sure that the application works as intended, we performed system tests, which are
described in section 14.3. The kernel and the parser were tested through unit tests. To assure
that the application is intuitive to use, a usability test was conducted. From there we gained
valuable feedback which we described in section E.2. The fuzzer tests that are described in
section 14.2 helped us identify failing cases that we would have never found through manual or
simple unit testing.

The Sequent Calculus Calculator allows one to switch between calculi at runtime. The users do
not have to visit a new webpage to proof a sequent in a different calculus. All available calculi
are listed in a dropdown menu.

It is possible to export the current proof state to JSON. This format was chosen because Elm
already supports this encoding through elm/json21. The implementation was straightforward
and worked without any problems. Other formats are currently not supported. LATEX, for
example, could be added to the supported export formats in the future. However, this would
require a new kind of renderer, i.e. one that converts terms to LATEX, as well as a new parser.

21https://package.elm-lang.org/packages/elm/json/latest/
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17.2 Features that were not implemented

We did not implement other calculi than the ones mentioned above. For instance the lambda
calculus was not implemented in The Sequent Calculus Calculator. Implementing basicFoPCe
took longer than we expected as we ran into multiple problems which will be described in the
next section.

During the implementation of The Sequent Calculus Calculator we decided to not support
syntactic rewrite rules as they would introduce a handful of new challenges. Supporting them
in our current kernel would probably not be too difficult. But they need to be added to the
current user interface as a new concept. Due to our limited time we chose to first implement
everything else and then focus on this feature. A consequence of the missing syntactic rewrite
rules is that a type of exercise of the PrfM course cannot be solved. Exercises that ask the
reader to prove proof rules based on other proof rules can only be partially solved with The
Sequent Calculus Calculator.

Substitutions have been implemented as part of proof rule schemas. Users cannot enter them
during instantiations though. This limitation is not too problematic as it does not prevent the
user from proving vital sequents. Because of this, two exercises of the PrfM course that cannot
be solved using The Sequent Calculus Calculator. We did not implement this because it would
make the parsing step more complicated. In section 4.4 we described that we use nominals
instead of de brujin indices. These could also become problematic when allowing the user to
enter substitutions of the form [x := E]P .

Automatic unification is not part of The Sequent Calculus Calculator. We decided to focus
on the important features to make the web application usable for teaching at the HSR. We
accepted the downside of having to enter sequents manually during instantiation.

Finally, we did not write a technical paper that is suitable for academic publication. However,
the technical documentation tries to be a replacement for the missing paper.

17.3 Problems

17.3.1 Renderer

The renderers of basicFoPCe and FoPCe are currently the most complicated pieces of code
of our project. Refactoring them is, from our point of view, not possible at the moment as it
would require a lot of effort. Unfortunately, those renderers play an important role and perform
multiple tasks at the same time:

• They render terms to HTML and thereby follow certain calculus specific conventions.

• They call the correct parsers when used in the instantiation view.

• They calculate paths that are needed to match Terms in ProofTrees.

Ultimately, this lead to some code duplication as all renderers convert similar structures to
HTML. Furthermore, the basicPC and PC renderers do not use all the parameters that are
passed to them. Elm requires us to use one and the same signature for all of them though.
As this is an important problem, we decided to add it to the development roadmap that is
described in section F.
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17.3.2 GitLab free plan

The GitLab free plan offers only 2,000 CI pipeline minutes per group and month [12]. As we
did not know about this restriction, we ran into the problem of using up all of our free hours.
We were no longer able to deploy our application and had to work with a local version for
about a week. This risk occurence and how we solved the problem for the future is described
in section C.1.

17.3.3 Styling-problem with Safari

During our tests with different browsers, we discovered a bug in the proof view when using
Safari. As it turns out, Safari does not support the CSS value relative for the property
position on an HTML table row element in the same way as Firefox does. Therefore, the name
of the applied proof rule was positioned relative to the first div element with the previously
described position property. In our case, this was the div containing the entire proof tree
view.

Solution
The solution to this bug was quite simple but it took us a while to find it. It turns out that
setting the property display to the value block prevented this bug from happening in Safari.
The following listing shows the fix:

.proof-tree .subgoal:last-child .proven-sequent {
position: relative;
/* Needs to be set to fix a display bug in Safari */
display: block;

}

Listing 27: CSS bug fix for Safari

This example shows that supporting multiple browsers can become very challenging. Different
behaviour in different rendering engines is not an uncommon occurence.
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17.4 Consequences of the LCF-style

The LCF-style allows us, as developers, to be sure that no invalid proofs can be constructed.
For instance, a user with malicious intent is not able to create proofs that are not valid with
respect to the sequent calculus or the current active calculus. Note that this is not entirely
true due to the import function that has been added to the kernel directly. It allows a user to
upload unverified proofs. In the future, some kind of check could be implemented that prevents
users from doing that though.

The LCF-style forces the developer to not expose type constructors of their protected types.
This leads to very large modules, as code that has to use such a type constructor suddenly
becomes part of that module. In our case the ProofTree and the TrustedProofRuleSchema
modules are prime examples of that problem.

Another consequence of the LCF-stlye is that proof rule schemas have to be defined in the
kernel itself. The constructor is only available as part of the kernel. This makes the design
somewhat awkward as one would think that they should be part of their individual module.

Overall, the LCF-style is very helpful as it gives the project stability and allows us to argue
about types with a certain confidence. The current import undermines this and should therefore
be fixed as soon as possible.

17.5 Conclusion

This thesis shows that it is possible to implement an extensible web based sequent calculus
calculator. The developed application can be used as a didactic aid and supports almost all of
the requested features. Thanks to the generic kernel, it is possible to switch between calculi at
runtime without any problems. The convenient export and import feature allows users to share
proofs. Moreover, supporting a new calculus is also possible without changing the existing
kernel.

The genericity of the kernel will definitely pay off in the future when new calculi are added.
Of course, it took us a lot of time to get to this point but the reuse factor that we get now is
much greater compared to an implementation that uses one kernel per calculus.

It is clear that there are some limitations to the application that can make the process of
proving a sequent cumbersome. For instance, the missing unification can be a bit frustrating.
As this tool is intended to be used as a didactic aid to teach students the basics of the sequent
calculus, we think that the current solution is satisfactory.

Overall, we would say that the outcome of the project is a well-engineered application that
shows great potential for future development. We cannot wait to see how this tool is used in
the upcoming semester and how it will improve over time.
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Task Description – Bachelor Project 
„The Sequent Calculus Calculator“ 
FS 2019 

1. Client and Supervisor 
• Client: Institute for Software, HSR 
• Supervisor: Prof. Dr. Farhad Mehta  

2. Students 

• Matteo Kamm 
• Mike Marti  

3. Setting 
The sequent calculus is the most frequently used representation to specify and reason about 
deduction systems (such as those used for proof and type checking) in computer science. Although it is 
a simple, formal, syntax-based technique, the use of paper-based proofs to learn the sequent calculus 
is often tedious (since there is a lot of copying involved) and error prone (since paper-based proofs 
cannot be mechanically checked). 

A number of online web-based interactive provers currently exist. Although well made, upon closer 
inspection it was found that none were ideal to be used as a didactic aid at the HSR due to the 
following reasons: 

1. Logitext (http://logitext.mit.edu/tutorial): The application of proof rule schemas is linked to 
the syntax of the formula. This makes the process of proving a sequent different from how it is 
done on paper. The user can no longer try to apply different rules and see why they are not 
applicable, nor is possible to have a UI action for rule application in general, making 
implementing new theories in this setting difficult. 

2. The incredible proof machine (http://incredible.pm): Supports multiple theories, but proof rule 
schemas are in the style of natural deduction, and proofs in the form of DAGs. 

3. Propositional sequent calculus prover (https://www.nayuki.io/page/propositional-sequent-
calculus-prover): Only for propositional logic. Proofs are listed as indented sequences and not 
trees. 

4. SeqProver (http://bach.istc.kobe-u.ac.jp/seqprover/): Supports multiple proof output formats, 
but only works for predicate calculus. Unclear if it can be extended. Is not an interactive 
prover. 

 

Appendix

A Task description
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Given the possible widespread use of the sequent calculus, there is great potential for a well designed 
and engineered sequent calculus based interactive prover to be used for teaching and learning 
worldwide. 

4. Goals 
The main aim of this project is to design and develop an interactive web-based graphical online 
theorem prover to learn and play with the sequent calculus that outperforms existing solutions in the 
areas of usability, attractiveness, maintainability and extensibility. The application must: 

1. Be able to support the construction of interactive sequent calculus style proofs in 
propositional logic, predicate logic, the simply typed lambda calculus, and the polymorphically 
typed lambda calculus. 

2. Be easy and intuitive to use for teaching and learning. 
3. Have an attractive user interface that supports a drag and drop style of proof along with 

explicit instantiation of meta-variables that cannot be determined using unification. 
4. Require no prior installation (e.g. deployment as a single-page web-application) as far as 

possible. 
5. Require no application server as far as possible. 
6. Be maintainable and easily extensible programmatically to support reasoning other theories 

(e.g. other forms of type checking, term rewrite systems, ...). 
7. Use a CI/CD pipeline for development and deployment. 
8. Use a Haskell-based toolchain as far as possible. 
9. Use an LCF-style proof kernel. 
10. Take advantage of the good points in existing solutions. 
11. Be able to be effectively used for teaching and learning at the HSR and internationally. 

The students are expected to refine and modify these initial requirements, as well as specify additional 
requirements, during the course of the project in order to achieve its main aim. Possibilities of such 
additional requirements could be, that the application must: 

1. Be able to indicate to the user, which rule schemas are applicable to the current goal. 
2. Be able to save and load proofs. 
3. Be able to export proofs in a variety of formats (LaTeX, ASCII, …) 
4. Be able to define (programatically) and use (via the UI) proof tactics. 

The logical kernel must be of high enough code quality to be used as a case study for functional 
programming in Haskell. To this end, the project should, as a warm-up, first start with refactoring the 
kernel (business logic, i.e. syntax and rewrite engine) of the existing lamdaCalc.io code, and then 
develop the logical kernel for this application. 

The results should also be documented in the form of a paper suitable for academic publication. 
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The results of this project may be used and developed further without restriction by the students, the 
client, and the supervisor. 

 

The effective regulations of the HSR and Department of Computer Science apply. 

 

 

 

Rapperswil, 19.02.2019 
Prof. Dr. Farhad Mehta 
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B Project plan
The project The Sequent Calculus Calculator will be realised iteratively with a sprint length of two weeks. Based on the 12 ECTS credits for
the bachelor thesis, each project member should achieve roughly 42 hours of work per sprint.

B.1 Milestones
Milestone Period Project phase Tasks
M1 Initialisation finished 18.02 - 04.03 Elaboration Write project plan, setup project management tools, study

documents, setup project homepage, sketch kernel API, analyse
lambdacalc.io code

M2 Research conducted 05.03 - 18.03 End of Elaboration Finalize kernel API description, implement kernel prototype,
specify used technologies, define project architecture, conduct
usability tests, setup CI/CD, create UI mockups, implement
simple parts of the UI

M3 Kernel construction started 19.03 - 01.04 Construction Alpha Implement stable kernel, add calculi modules
M4 Kernel construction finished 02.04 - 15.04 Construction Beta Refactor kernel, add more calculi modules, implement UI, prepare

intermediate presentation
M5 UI construction started 16.04 - 29.04 Construction Gamma Hold intermediate presentation, refactor and improve kernel,

finalize UI, prepare and hold first presentation
M6 UI construction finished 30.04 - 13.05 Construction Delta Conduct usability tests with live system, improve UI based on

usability test results, implement export logic, implement
save/load logic

M7 Construction finished 14.05 - 27.05 Construction Release Improve technical documentation, prepare presentation
M8 Project completed 28.05 - 14.06 Transition Finalize documentation and scientific paper, hold presentation,

create poster
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C Risk analysis

Nr Description Max. amount of damage in
hours

Probability of occurence Prevention measures

R1 Temporary downtime of GitLab 4h 20% No opportunities of influence.
Work with local a version.

R2 Temporary downtime of
YouTrack

4h 20% No opportunities of influence.
Track time on a piece of paper.

R3 The project management and
development tools are not
powerful enough

5h 10% Use them early on and discuss
alternatives if problems occur.

R4 Scope of the project is too large 20h 40% Work iteratively and
dynamically change the
specified scope based on the
current state of the project.

R5 Used technologies need more
read up time than expected

20h 40% Reserve enough study time for
the used technologies during
the elaboration phase. Reserve
extra hours for tickets that
involve working with complex
technologies.

R6 The kernel implementation
takes up more time than
expected due to its extension
capabilities and its high
complexity

30h 60% Reserve enough time for the
kernel API and project
architecture definition. Keep
the scope dynamic.

R7 The usability and intuitiveness
of the UI are not as good as
expected

30h 60% Create UI mockups and
conduct usability tests early on.

R8 The used libraries are
impractical and hinder the
project

10h 10% Conduct research during the
elaboration phase and use
libraries in prototype projects.
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C.1 Occurences

Occurences of risks will be tracked in this subsection.
Risk Nr Timecost Reason Solution
R3 55m The GitLab time tracking tool lacked some important

features such as multiple assignees, time spending
comments and a strong time evaluation tool.

The time and issue tracking was moved to YouTrack. All
previous tickets and booked time had to be moved as
well.

R1 - Our free GitLab Runner time was exhausted during May.
It was no longer possible to deploy / test the application.

We improved the build script to only build based on
changes. Furthermore, the docker container is now only
downloaded once per build and not once per LATEX build.

R4 - The scope of the project was too large for a single
bachelor thesis.

We chose to not implement all requested features. The
reasoning behind our choice has been documented
accordingly. A roadmap for follow-up projects has also
been written.

R8 10h Elm compares instances based on their structure and not
based on identity. For comparisons of Nodes in the
ProofTree this is not sufficient.

A path was added to each Node that makes the instance
unique.48



D EBNF descriptions
This section contains the EBNF descriptions of all calculi which are part of this bachelor thesis.
Note that parentheses are not part of these descriptions. However, the parser handles them.

D.1 Basic propositional calculus
Predicate = UnaryOperator Predicate Predicate’ | Variable Predicate’ | Symbol

Predicate’.
Predicate’ = [ BinaryOperator Predicate ].
Variable = "A" | . . . | "Z".
Symbol = "⊥".
UnaryOperator = "¬".
BinaryOperator = "∧".

D.2 Propositional calculus
Predicate = UnaryOperator Predicate Predicate’ | Variable Predicate’ | Symbol

Predicate’.
Predicate’ = [ BinaryOperator Predicate ].
Variable = "A" | . . . | "Z".
Symbol = "⊥" | ">".
UnaryOperator = "¬".
BinaryOperator = "∧" | "∨" | "⇒" | "⇔".

D.3 Basic first-order predicate calculus with equality
Predicate = UnaryOperator Predicate Predicate’ | PredicateVariable

Predicate’ | PredicateSymbol Predicate’ | Quantification |
Expression "=" Expression | Relation.

Predicate’ = [ BinaryOperator Predicate ].
Quantification = QuantificationSymbol ExpressionVariable "." Predicate.
Expression = ExpressionVariable | Function.
Function = ExpressionVariable "("{ Expression }")".
Relation = PredicateVariable "("{ Expression }")".
PredicateVariable = "A" | . . . | "Z".
ExpressionVariable = "a" | . . . | "z".
PredicateSymbol = "⊥" | ">".
QuantificationSymbol = "∀".
UnaryOperator = "¬".
BinaryOperator = "∧" | "∨" | "⇒" | "⇔".
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D.4 First-order predicate calculus with equality
Predicate = UnaryOperator Predicate Predicate’ | PredicateVariable

Predicate’ | PredicateSymbol Predicate’ | Quantification |
Expression "=" Expression | Relation.

Predicate’ = [ BinaryOperator Predicate ].
Quantification = QuantificationSymbol ExpressionVariable "." Predicate.
Expression = ExpressionVariable | Function.
Function = ExpressionVariable "("{ Expression }")".
Relation = PredicateVariable "("{ Expression }")".
PredicateVariable = "A" | . . . | "Z".
ExpressionVariable = "a" | . . . | "z".
PredicateSymbol = "⊥" | ">".
QuantificationSymbol = "∀" | "∃".
UnaryOperator = "¬".
BinaryOperator = "∧" | "∨" | "⇒" | "⇔".

D.5 Simply typed lambda calculus
TypedLambdaTerm = LambdaTerm [ ":" SimpleType ].
LambdaTerm = TermVariable | Application | Abstraction.
Application = LambdaTerm LambdaTerm.
Abstraction = "λ" Variable "." LambdaTerm.
SimpleType = TypeVariable | TypeVariable SimpleType’.
SimpleType’ = [ "→" SimpleType ].
TermVariable = "a" | . . . | "z".
TypeVariable = "α" | . . . | "ω".

D.6 Polymorphically typed lambda calculus
TypedLambdaTerm = LambdaTerm [ ":" PolymorphicType ].
LambdaTerm = TermVariable | Application | Abstraction.
Application = LambdaTerm LambdaTerm.
Abstraction = "λ" Variable "." LambdaTerm.
PolymorphicType = TypeVariable PolymorphicType’ | "∀" TypeVariable "."

PolymorphicType PolymorphicType’.
PolymorphicType’ = [ "→" PolymorphicType ].
TermVariable = "a" | . . . | "z".
TypeVariable = "α" | . . . | "ω".
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E Usability test with paper mockups
To improve the user interface, a usability test was carried out at the beginning of the project.
The usability test was performed using paper mockups of the website. The goal of this test was
to locate UI shortcomings and unintuitive behaviour of certain UI components and actions.

Setup

• Prepare all UI elements.

• Present the main window.

• Present all proof rule schemas.

• Present the sequent that needs to be proven.

Story
You are a student and are currently taking the PrfM course. The course is extra demanding
and you need to put more time into it. Because you do not like wasting paper you try The
Sequent Calculus Calculator, which was recommended by your teacher. Therefore you go to
the website and try to prove a sequent you had a lot of trouble with before.

As the test subject, it is not your task to know which proof rule schema you should apply next.
It is also not important that you know about all of them. However, you still need to know
about the calculus to understand the result of the behaviour of the application. Therefore you,
as the test subject, should use the following list from top to bottom to solve the sequent:

1. ∀goal

2. =⇒ goal

3. hyp (produces an error)

4. =⇒ hyp

5. hyp

6. ∃goal

7. =̂[:=]

8. hyp

51



E.1 Insights

This section contains notes taken by the examiner during the usability test. It also contains
feedback from the test subject after the test was conducted, which influences the conclusion.

Observations:

• Test subject understands how and where to insert the provided sequent.

• Specify proof rule field is confusing.

• Test subject thinks he can already drag and drop a proof rule schema.

• Test subject tries clicking after failed drag and drop attempt.

• Test comes to a halt. Test subject doesn’t know what to do with the specified proof rule.

• Test subject klicks around and tries different things to get on.

• The input field was not directly visible or understandable (could be because the test is
done with paper mockups).

• After the specify proof rule is explained, the test subject knows how to proceed.

• Drag and drop of the specific proof rule was not intuitive.

• Drop space of the drag and drop functionality was intuitive and understood immediately.

• Error message was immediately visible and understood by the test subject.

• After the initial difficulties the test subject could solve the proof without any further help.

Discussion and feedback by the test subject:

• The test subject asked how he can write the special characters of the input sequent.

• The Run button was confusing. The test subject thought he has to run a program.

• It was not clear that he had to click on the proof rule schemas at first, but it would have
been, if the test was conducted in the real browser application.

• The text Specify proof rule was very confusing. The test subject didn’t know what
to do at that step.

• The popup of the rule violation was comprehensible.

• The test subject asked how to start a new proof (their first guess whould have been right)
and he also asked what would happen with the current proof.

• The test subject asked if there is a history of old proofs.

• The test subject thinks the drop mechanic would be even more intuitive if the possible
drop locations were highlighted.

• The test subject suggested that the cursor should change if it hovers over a proof rule
that can be dragged.

• Proof rule schemas should not span multiple lines.

• The test subject thinks it is worse if the proof rule schemas wrap than if the current proof
wraps to multiple lines.

• The title Derivation is not fitting.
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E.2 Conclusion

This section contains all important recommendations and insights, that will be taken into
consideration during the development of the frontend.

• Rename the Run button to Proof.

• Either add a tutorial, a good getting started guide or describe the different windows with
a small text.

• Add a small popup when the user starts a new proof and tell him that his previous proof
will be deleted (include an option to hide this popup the next time).

• Add a history of old proofs.

• Highlight the input fields in the specify proof rule box.

• Highlight the drop-off points to improve usability.

• Use the cursor to indicate the possible actions on the component.

• Change the title Derivation to something more fitting.
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Snippets for Usability Tests
Proof

hyp

At A 3goal
hyA

AABtB hyp

A BiAB goal

BtA B AgoalGnfinLaxA B

DxA B t Vx.CA B
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Proof rule schemas
H 1 P

hyp EDIt p t P H t CE ETP

H t fo E p
Ht QtR hyp

HI zx.p
Ts.at H P Q l R

H p Q tt PV goalcxnf.IN
goal H t Fx PH t p a

Proof rule instantiations

hyp
H t p

It 1 PD HI COE.EE ED

Ht Cx gp
Ht QtR hyp

HI jx.p
Ts.at H I R

H p Q tt PV goalcxnf.IN

7HtDpgoal H 1 Fx
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F Development Roadmap
In this section we describe how we would continue the development of The Sequent Calculus
Calculator. This roadmap should guide follow-up projects.

Refactor import logic
Currently, the import feature does not verify whether the imported proof tree is proven or not.
This circumvents the LCF-style and could lead to problems. This is described in more detail
in section 12.3.2.

Because of the above-mentioned reasons we would focus on refactoring the import. In an ideal
scenario, it would verify that the user-supplied proof tree is correct and proven up until that
point. Only then would it return the proof tree data structure to the frontend.

Refactor term renders
The rendering logic is of high importance to this application. It is quite complicated and could
hinder the development of new calculi modules. To prevent this we would refactor the term
rendering accordingly. Some important points to keep in mind whilst doing so are:

• There is a single renderer for proof rule schemas, proof rules and proof trees.

– Configuring the renderer happens through parameters.

– In some cases the renderer has to use input fields to represent meta variables.

– Some renderers use different parsers depending on the type of meta variable that is
displayed.

• Writing a renderer should not be too complicated.

Improve parsing libarary
The current parsing library has one major shortcoming, namely the parsing of unary operations
requires explicit parentheses. The term ¬¬P cannot be parsed without explicit parentheses as
in ¬(¬P ). This problem has to be solved at the library level. Submitting a pull request to
Punie/elm-parser-extras22 would be able to change this behaviour.

Unification
This is a non-trivial task that has to be tackled in the future. Unification happens only for the
implicit hypothesis H, which is a trivial case because all other instantiations are known at that
time. Supporting a complete unification is not that simple because Elm, unlike Prolog, does
not support this out of the box.

Once unification is implemented, the following features can be added to the calculator:

• Highlighting of applicable proof rules, i.e. the ones that unify with any of the pending
subgoals.

• Support automatic proving by applying applicable proof rules at each step.

– This feature should only be enabled in “Expert”-Mode and certainly not by default.
22https://github.com/Punie/elm-parser-extras
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Implement Lambda Calculus modules
This should not be too challenging, as all primitive operations are already implemented. Sub-
stitution, for example, is part of the current implementation and can be used to support β-
reductions of the Lambda Calculus.

The implementations of the Simply Typed Lambda Calculus and the Polymorphically Typed
Lambda Calculus can be based on the Lambda Calculus module.

Support exporting of proofs
In the future an export to a different format, such as LATEX, next to the current supported
format JSON, would be useful. The exported LATEX could be used to create the PDF solution
of the exercises.

A new kind of renderer is necessary to convert proof trees to LATEX. With the help of elm/file23
it is possible to allow a user to download the generated LATEX directly. An import does the
reverse of an export, i.e. it parses the LATEX code and reconstructs the proof tree. This is
not trivial as LATEX is a complicated format. A proper subset of LATEX would first have to be
defined as parsing any valid LATEX would probably be out of scope for this project.

Support syntactic rewrite rules
As described in section 17.2 syntactic rewrite rules are currently not supported. To support
them, a generic way of detecting and replacing such structures would be required.

For example the term P ∨Q would have to be detected in a proof tree. Clicking on this term
would then apply the rewrite rule and display ¬(¬P ∧ ¬Q). This features requires several
changes in the term renderer logic and could potentially make them even more complicated.

Support substitutions in the user input
To be able to solve all exercises presented in PrfM, the user has to be able to insert substitutions
in the user input. This poses some new questions: How should they be represented as text?
How can the parser handle them in case there are conflicting names? Will the application
algorithm ignore the fact that [x := E]P and [y := E]P might represent the same term?

After answering those questions, this feature could probably be implemented fairly quickly as
it does not require changing the kernel a lot.

23https://package.elm-lang.org/packages/elm/file/latest/
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G Redevelopment Roadmap
In this section we describe how we would develop the technical side of the application if we
could start from scratch.

Reconsider programming language decision
First of all we would reconsider the language decision. Elm is a simple functional program-
ming language that works well with single-page web application. Unfortunately, it has some
shortcomings, which we discovered whilst developing The Sequent Calculus Calculator.

• Elm does not support type classes and makes it hard to write generic code. For example
it’s not possible to compare user-defined types. This restriction prevents the developer
from creating Dicts that have a custom type as their key.

• Equality is based on the structure of records and types in Elm. Comparing nodes of a
tree data structure, for example, is not as trivial as it would be in other programming
languages. A possible solution for this problem has been described in section 6.

• Tools that support the development of Elm applications don’t provide enough refactoring
support. There are some tools which allow simple refactorings but they seem to be still
in development [7, 14].

• A previous version of Elm supported a Time Traveling Debugger24. Due to internal
changes of the implementation, they decided to cease further development. Printing values
to the console is currently the only feasible way to debug. This was quite challenging
when developing the tree data structure that has to manage internal paths to support
comparisons.

Renderer
Reuse and refactor the current rendering infrastucture if possible. This includes an important
design decision, namely should there be one renderer for each occurence of proof rules and
proof rule schemas or not. We decided to write exactly one renderer that can be used in
different views. With this we were able to maximize code reuse. Simultaneously we accepted
the downside of some rather complex code.

Rethink the HOAS
The HOAS has a lot of advantages and makes the kernel extensible. On the other hand it makes
the encoding of some terms awkward. For instance, the encoding of a universal quantification
such as ∀x.P cannot be represented in the lambda calculus syntax. Adding a new data structure
per calculus is definitely not the way to go and we would strongly advise against that, as it
would make the kernel less extensible.

Adding a quantification type constructor to the Term type would probably be a good compro-
mise that does not pose too many restrictions on the kernel. This new type constructor would
also solve the previously mentioned encoding problem.

Obviously there is no clear answer to the question “Should a HOAS be used or not?”. We think
that the HOAS has many advantages. For instance, the export / import only works because
we had this syntax available. It allows us to reuse a lot of code. In general, we would say that
the HOAS is the way to go as we did with The Sequent Calculus Calculator.

24https://github.com/elm-lang/elm-reactor
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Consider new calculi early on
Adding support for basicFoPCe and FoPCe introduced a lot of new functionality which in turn
forced us to rewrite and refactor a big chunk of our code. We think that this is normal as it
is almost impossible to plan this far ahead. However, next time we would definitely plan the
support of the basicFoPCe from the start. This requires some initial effort as it is difficult to
see the bigger picture during the inception phase of a project.
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