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Abstract. Model transformation is a key concept in Model-driven Soft-
ware Development (MDD) and refers to an automated process transform-
ing one model into another model. Models can be seen as an abstraction
of a system or any concept in the world. They can be represented in
various ways, for example graphically, as text or even code. Thus, mod-
els are a powerful instrument which is used in all disciplines of software
engineering. This paper gives an introduction into model transformation
and its classifications. It provides an overview over existing transforma-
tion tools and presents Henshin [1] as one particular approach based on
algebraic graph transformation. It further summarizes the theory behind
this graph transformation approach based on graph grammars. With an
example application in the context of architectural refactorings and ser-
vice decomposition, this paper demonstrates how model transformation
can be applied to Domain-specific Language (DSL) processing. Finally,
the Henshin concepts and its tools are evaluated based on the experience
gained through the development of the presented examples.

Keywords: Model Transformation · Henshin · Algebraic Graph Trans-
formation · Domain-specific Language (DSL) Processing

1 Introduction

The term model transformation describes a conversion process where the source
and target artifact are models. In contrast, if the source and target artifact of a
transformation are programs (source or machine code) the term program trans-
formation is used [29]. Refactorings on code level or optimization techniques
where code is transformed to other code while keeping the semantics are exam-
ples of such program transformations. Since models can be used for all levels
of abstraction, from abstract models of a system to concrete models of source
code, the term model transformation somehow includes program transformation
[29]. Model transformation not only includes model-to-model transformations,
but model-to-code and reverse transformations as well. Common tools like code
generators and parsers use model transformations. Since a program can be rep-
resented as a model, which can by transformed, it can be concluded that a model
transformation is one approach for implementing a program transformation.



2 Stefan Kapferer

1.1 Models and their Applications

Models are used in all disciplines and phases of the software development life-
cycle. Many Model-driven approaches (MD*) or at least many terms for the
same approach have been developed over the years. Model-driven Development
(MDD), Model-driven Engineering (MDE), Model-driven Architecture (MDA)[35],
Model-driven Security (MDS)[26], just to name a few of them.

Table 1: Models in SE disciplines

Software Engineering
Discipline

Examples of Models

Business Modeling & Re-
quirements Engineering

Domain Models, Use Case Models, Business Pro-
cess Models

Analysis & Design Domain Models, Architecture View Models,
DDD Context Maps, System Sequence Dia-
grams, State Machine Diagrams, Activity Di-
agrams

Implementation Class, Object, Data Models
Testing Performance Simulation Model, Test Case Spec-

ification Model
Operations & Maintenance Deployment Models, Maintenance Models

Table 1 shows how widespread models are within software engineering. Of course
the abstraction level of those models differ substantially from each other. The
models used in the implementation discipline typically contain way more techni-
cal details in comparison with the models in requirements engineering. Further,
the target audiences and people who create and use the models differ from one
discipline to another. For example a business analyst who is responsible for
modeling the requirements, may not be really interested in the technical details
which the models used in the implementation or testing discipline provides. Ad-
ditionally, the representation of a model might differ with respect to the target
audience as well. A software engineer may prefer writing a model in code, while
other stakeholders prefer a visual representation since it is easier for them to
read. Thus, it can be stated that the level of abstraction and the representation
of a model has to be adjusted depending on its use and the audience.

1.2 Model Transformation Taxonomy

The term model transformation covers a broad spectrum of familiar but still
different concepts. A transformation might for example change the level of ab-
straction of a model. An example would be a stepwise refinement of a domain
model towards a fully-fledged class diagram from which program code can be
generated. Other transformations keep the level of abstraction and just trans-
form the model into another language or representation. Typical examples here
would be refactorings or a migration of source code into another programming
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language. Mens and Van Gorp [29] presented a taxonomy describing these dif-
ferent concepts in detail. This section is just giving a summary over the most
important distinctions regarding model transformation.

Endogenous vs. Exogenous To compare model transformations a first impor-
tant distinction between transformations within the same language and transfor-
mations between different languages has to be made. A transformation is called
endogenous, if a model is transformed into another model in the same language
or meta-model. On the other hand, a transformation is called exogenous, if the
source and target model are not represented in the same language.

Well-known endogenous transformations are optimizations or refactorings,
where certain quality attributes of a model are improved while keeping the repre-
sentation language and semantics. An example for an exogenous transformation
might be a migration of a program from one language into another language.

In-place vs. Out-place The following distinction concerns endogenous trans-
formations only. An endogenous transformation is called in-place if the source
and target model are the same one, meaning the transformation directly operates
on the input model. If an endogenous transformation uses one model as source
but creates or changes another model, meaning that more than one model is in
play, it is called out-place. Exogenous transformations are always out-place.

Horizontal vs. Vertical This distinction between model transformations refers
to the level of abstraction. If the source and target model of a transformation are
on the same level of abstraction it is called horizontal, whereas transformations
between different levels of abstraction are called vertical.

1.3 Transformation Tools

Model transformation tools are typically compared with the distictions intro-
duced in Section 1.2. Mostly they are divided by the in-place vs. out-place
distinction. However, the technical space [29], meaning the model management
framework a transformation tool is part of, is important as well. The Eclipse
Modeling Framework (EMF)[36], with its Ecore meta-model, is one of the most
widespread frameworks in this field. This paper especially focuses on EMF-based
tools, since the goal is to show how model transformations can be used for
Domain-specific Languege (DSL) processing and the DSL of the related project
used in this paper is implemented with Xtext. This reduces the complexity since
Xtext is EMF-based as well. Several tools are available for implementing model
transformations, such as QVT [33], ATL [8], Tefkat [38], Kermeta [23], Moment2
[5], Epsilon Transformation Language (ETL)[14], EMF Tiger [3] and Henshin [1].

This paper explains model transformations with the Henshin tool, since it is
EMF-based and it relies on well-established formal foundations. Section 5 gives
further insights into the tool comparison and selection.
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2 Model Transformations with Henshin

Henshin [1] is an in-place model transformation tool for EMF models. It sup-
ports endogenous and exogenous transformations based on rules which are spec-
ified in a declarative manner. Both, horizontal and vertical transformations, can
be implemented with Henshin. It is based on algebraic graph transformations
and therefore provides the foundations for formal verification of transformation
models. The word Henshin actually has its origins in Japanese and means trans-
formation.

2.1 The Henshin Transformation Meta-Model

Since Henshin is based on EMF, the input and output for transformations have
to be EMF models. This means that they must be described with the Ecore
meta-model, provided by EMF. A concrete transformation in Henshin is de-
scribed declaratively and based on the Henshin meta-model, which itself bases
on the Ecore meta-model. The Henshin meta-model and thus the structure of a
transformation model is described below, followed by an example.

Fig. 1. Henshin Transformation Meta-Model – Copy from [20]

A Henshin transformation model consists of Rules which describe two graphs.
The left-hand side (LHS) and the right-hand side (RHS) graphs, both describing
model patterns. Whereas the LHS graph describes the pattern which must match
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the source model, the RHS graph describes the resulting pattern for the target
model. The LHS graph therefore describes in which cases a rule can be applied to
a certain model or not. If the pattern described by the LHS part can be matched
within a model, the rule is applicable. Elements which are part of the LHS graph
but not part of the RHS graph will be deleted. Likewise, elements which are part
of the RHS graph but not part of the LHS graph will be newly created. Nodes
to be preserved are mapped between the LHS and RHS graphs and are therefore
part of both graphs. Further, a Rule can have positive or negative Attribute
Conditions in order to design additional constraints which have to be fulfilled.
A rule will not be applied by the Henshin engine if one of those conditions is not
fulfilled by the input model.

A complete transformation specification is contained within a Module. Since
complex transformations consist of multiple Rules, the concept of Units or Trans-
formation Units provide a way to specify the control flow. Henshin provides a
set of different types of Units, such as Loop Units, Conditional Units, Sequential
Units, Priority Units or Independent Units, which offer several different pos-
sibilities to define the control flow. A detailed description of those posibilities
is provided by [19]. Applying multiple rules without a proper specification of
the control flow can lead to much non-determinism during the transformation
process (more details in section 3).

2.2 Example

This section illustrates the Henshin concept with a simple example. Note that
the example is taken from [18]. The used meta-model describes a simplified ap-
plication within the banking context. A bank manages accounts for their clients
and bank managers are responsible for certain clients.

Fig. 2. Banking Example Meta-Model [18]

The meta-model of the scenario is shown in Fig. 2. Adding a new account to an
existing customer is one of many use cases which can be implemented as a model
transformation for this meta-model. A rule in Henshin can take parameters as
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input. In this case a rule createAccount is implemented, which takes the customer
and a new account identifier as parameters. The model transformation must
create a new account with the given identifier for the given customer. If the
input model does not contain the name of the given customer or an account with
the given identifier already exists, the transformation should not be applied. As
Fig. 3 shows, the bank itself, the managers and the clients are preserved which
means these objects are part of the LHS and RHS graphs.

Fig. 3. Banking Example: Create Account Transformation [18] (Henshin Editor)

Objects marked with create are part of the RHS graph only, meaning they are
newly created during the transformation. In this example three new objects have
to be created in order to add the new account to the model. The first object is
the account with the given identifier. The other two objects are the references
to the bank and the according customer which owns the account. Note that this
example does not contain any objects which are part of the LHS graph only.
Such instances would be deleted during the transformation and marked with
delete in a transformation model as seen in Fig. 3.

Constraints are marked with forbid in the model of Fig. 3. This transforma-
tion model contains one negative attribute condition ensuring the uniqueness of
the account identifier.

Fig. 4 shows a concrete example transformation for the explained transfor-
mation model. John is a bank manager and has three clients Alice, Bob and
Charles. Alice and Bob both have one bank account while Charles has two. Now
the transformation createAccount(Bob, 5) according to the transformation model
from Fig. 3 is applied. The result is a new model with an additional account for
Bob, as the second object diagram in Fig. 4 illustrates. The transformation can
be executed without errors, since no account with the identifier 5 already exists
and no constraint is violated. Transformations such as createAccount(Alice, 1)
or createAccount(Bob, 2) would be rejected by the Henshin engine since the do
not fulfill the condition.

The explained example [18] is an endogenous transformation since both the
source and the target model are EMF Ecore models. Further it is an in-place
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transformation because it changes an existing model and the source and target
meta-model are identical. To completely classify it according to the taxonomy
mentioned in section 1.2 it can be stated that this is an example of a horizontal
transformation as it does not change the level of abstraction.

Fig. 4. Banking Example Transformation (UML Object Diagrams)

2.3 Tool Evaluation

Henshin provides two editors to define transformation models and a runtime
component to process them. Further, it offers analysis tools such as state space
analysis for verification and critical pair analysis (explained in section 3). Note
that the evaluations regarding Henshin expressed in this paper are based on ex-
periences we have gained during the experiments with the example in Section
2.2 and especially with the implementation of the DSL transformation in Section
4.3. The creation of transformation rules and units is simple with the provided
tree-based and graphical editor as soon as one understands the Henshin trans-
formation meta-model (Fig. 1) [20] and the used Ecore input meta-model is not
too complex. A screenshot of the graphical editor of Henshin has already been
shown in Fig. 3. However, as soon as the used meta-model is getting complex
and aggregates multiple Ecore models, the Henshin Eclipse tools are getting
challenging to handle. For example, the DSL-based example which will be ex-
plained in Section 4.3 is based on two Ecore models. The User Interface (UI) of
the tree-based editor can not handle this and certain changes had to be made
in the XML manually. Nevertheless, those are basically just usability issues.
The transformation engine works very well, once the transformation rules are
defined. Using the engine (runtime component) with the Java API provides a
better feedback weather the Eclipse UI, since the user is getting exceptions and
thus helpful information if something went wrong.

Despite the usability issues, Henshin is not only interesting for research but
for the industrial field as well, as the example [21] shows. On the one hand
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the widespread EMF Ecore meta-model and its tools provide a simple way to
implement transformations in comparison with other approaches, without the
need of a deep knowledge in the underlying graph transformation theories. On
the other hand the graph transformation concepts provide the opportunity for
formal reasoning if it is needed.

3 The Theory Behind: Algebraic Graph Transformation

The last section introduced Henshin as a tool for in-place model transforma-
tions from a very user-centric perspective. This section discusses the underlying
concepts in order to get a deeper understanding in how such a transformation
works. Henshin is based on Algebraic Graph Transformation (AGT) [11] relying
on graph grammars.

3.1 From String To Graph Grammars

The structure of graph grammars are quite similar to classical string grammars.
String grammars, for example in Backus-Naur Form (BNF), consist of a set
of production rules and are typically used for specifications of programming
languages. The following example [24] shows such a string grammar used in the
Java language specification [17].

DecimalNumeral ::= 0 | NonZeroDigit D i g i t s
D i g i t s ::= ε | D i g i t | D i g i t s D i g i t
D i g i t ::= 0 | NonZeroDigit
NonZeroDigit ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Every rule in such a grammar describes a derivation which is allowed to be
applied to a certain given character sequence. For example, the non-terminal
NonZeroDigit is allowed to be replaced by a 1, 2, 3 or 4 etc. Graph grammars
are built by similar rules.

Fig. 5. Graph grammar rule example: Add account

A graph grammar rule describes a certain given structure within a graph which
is allowed to be replaced by another structure. Fig. 5 illustrates an example
for such a graph grammer rule. These rules are called graph rewriting rules
as well. Every rectangle within Fig. 5 represents a vertex and the connections



Model Transformations for DSL Processing 9

between the rectangles are the edges of the graph. The left side of the rule is
called the left-hand side (LHS) graph whereas the right side of the rule is called
right-hand side (RHS) graph. This graph rewriting rule describes a simplified
transformation according to the Henshin example in the last section. Whenever
a manager vertex is adjacent with a client vertex which itself is adjacent with an
account vertex in a graph or part of a graph, the LHS graph of the rule matches
and the rule can be applied. Applying the rule adds another account vertex to
the graph to which the rule is applied and connects the added vertex with the
client vertex.

3.2 Transformation Fundamentals

The graph grammar example above may already provide some kind of intuition
of how a model transformation based on graphs can be implemented by apply-
ing multiple graph grammar rules onto an existing graph. This section aims to
present the concepts behind such graph grammar based transformations in a
formal manner. Note that all the following definitions and formalizations are
based on the work of Ehrig et al. [11] and are not accomplished by this paper.

A simple graph with vertices and edges is not sufficient to model a transfor-
mation using such a rule as shown in Fig. 5. The vertices and edges have to be
typed in order to create such a rule. Concretely, a manager vertex for example,
differs from a client vertex by its type.

Definition 1 (Graph). A graph G(V,E, s, t) consists of a set V of vertices, a
set E of edges, source and target functions s, t : E → V .

In order to formalize such a transformation, a so-called typed graph is needed.
A typed graph supplements a graph with types for all edges and vertices. This
is actually realized with another additional graph. In addition to a given graph
G a so-called type graph TG is needed, which provides the types of all vertices
and edges of G.

Definition 2 (Type Graph). A type graph is a graph TG = (VTG, ETG, sTG, tTG).

Hence, the two graphs have to be connected in order to assign every vertex
and edge in graph G the according vertices and edges in the type graph TG.
Mathematically this is solved with a graph morphism. A graph morphism defines
two functions. One function maps the vertices of a graph to the other graph and
the second function does the same thing with the edges.

Definition 3 (Graph Morphism). A graph morphism is an application f :
G1 → G2, f = (fV , fE) of a graph G1 to another graph G2 which consists of two
functions fV : V1 → V2 and fE : E1 → E2.

Having a graph G, a type graph TG and such a graph morphism from G to TG
it is possible to define the needed typed graph GT .
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Definition 4 (Typed Graph). A typed graph GT = (G, ftype) over a type
graph TG is a graph G and a graph morphism ftype : G→ TG.

Fig. 6 illustrates these definition of a typed graph applied to the example with
the already introduced banking meta-model. The upper graph shows the type
graph TG while the lower graph represents an example for a graph G. The
dashed arrows illustrate the graph morphism ftype : G → TG. Note that the
graph grammar rule previously shown in Fig. 5 actually consists of two such
typed graphs even if it is not explicitely show.

Fig. 6. Example: Typed graph GT = (G, ftype) over type graph TG

Graph rewriting rules as seen in Fig. 5 are also called graph productions, espe-
cially in the mathematical context. Such rules are defined by a pair of graphs
LHS and RHS, as already mentioned. The LHS graph represents the precondi-
tions which have to match a certain graph which should be transformed. The
RHS represents the postconditions of the rule or ’how the graph should look
like’ after the transformation. However, for a graph production, a third graph
K called the gluing graph has to be deduced. This graph is derived by the map-
ping between the LHS and RHS graph. This mapping is not explicitely visible
within the grammar rule, but as already explained in the Henshin example, the
mapping between the LHS and RHS graph has to be provided. It defines the
preserved vertices and edges and is also implicitely existing in the grammar rule
in Fig. 5 (for example it is clear that the manager vertex in the LHS graph must
be the same vertex as the manager vertex in the RHS graph).
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Definition 5 (Graph Production). A graph production p = (LHS
l←− K

r−→
RHS) consists of (typed) graphs LHS, K and RHS, and injective (typed) graph
morphisms l and r.

In order to transform a graph G into another graph G′ given a production
p a procedure to actually perform the transformation, or mathematically an
operator, is needed. The crucial concept used for this problem in algebraic graph
transformation [11] is the so-called pushout. The pushout concept is part of the
category theory [28,2]. However, explaining this theory in detail would be beyond
the scope of this paper, but the definition of a pushout and a graphical intuition
(Fig. 7) how this is applied to graphs is given.

Definition 6 (Pushout). A pushout PO over two graph morphisms f : G1 →
G2 and g : G1 → G3 is defined by a pushout graph G4 and morphisms f ′ : G3 →
G4 and g′ : G2 → G4 with f ′ ◦ g = g′ ◦ f .

Fig. 7. Graphical intuition of a pushout (Definition 6) [12]

Note that three different pushout approaches exist and this papers refers to the
so-called Single Pushout (SPO)[27]. Transformation systems may also use the
Double Pushout (DPO) approach [10] or the High Level Replacement (HLR)
approach [9] which are not introduced here.
The single pushout (SPO) method applied to a graph G can be summarized as
follows [28]:

1. Find a match of LHS in G, or formally, find a morphism m : LHS → G.
2. Deleting the sub-graph m(LHS)−m(LHS ∩RHS) from G, which trivially

removes all elements from the graph that are within the LHS graph but not
in the intersection graph of the LHS and RHS graph and thus are meant to
be deleted by the rewriting rule.

3. Adding the sub-graph m(RHS) − m(LHS ∩ RHS) to G to get the result
G′. This step adds all elements which are part of the RHS graph but not
part of the intersection of the LHS and RHS graph and thus are meant to
be created in G′ by the rewriting rule.
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Note that Definition 6 and Fig. 7 describe the universal concept of a pushout.
Mapped to the single pushout procedure in the graph transformation context,
as described above, the graph G1 would be the LHS graph, G2 the RHS graph,
G3 the input graph G and G4 the resulting output graph G′.

The given graph productions (Definition 5) together with a pushout op-
erator PO (Definition 6) are used to realize graph transformations. A direct
(typed) graph transformation applies a single production p to a graph G using
the pushout PO, if a morphism m : LHS → G can be found (matching of the
LHS).

Definition 7 (Direct (Typed) Graph Transformation). A direct (typed)

graph transformation G
p,m
==⇒ G′ is given by POs, a production p and match

m : LHS → G.

While a direct (typed) graph transformation applies exactly one production, the
term (typed) graph transformations is used if a whole sequence of productions is
applied.

Definition 8 ((Typed) Graph Transformation). A (typed) graph transfor-

mation G0
∗

=⇒ Gn is a sequence G0 ⇒ G1 ... ⇒ Gn of direct (typed) graph
transformations.

Fig. 8 illustrates the theory explained above on the banking example. The graph
rewriting rule should again be used to add an additional bank account to a bank
customer.

Fig. 8. Banking example: rewriting rule with single pushout

Besides the four graphs LHS, RHS, G and G′ illustrating the pushout principle,
the rewriting rule in Fig. 8 contains a negative application condition (NAC)
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graph. This concept is also considered within the algebraic graph transformation
concepts, but not formally introduced at this point. Whereas the LHS part
reflects the matching function m : LHS → G, this NAC represents a graph
which must not match the corresponding graph G. If the NAC matches, the rule
is in fact not applicable. Within this example the NAC graph ensures that no
account with an already existing identifier is created. However, the upper part
of Fig. 8 shows the rewriting rule already introduced. The graph G represents
a concrete example with the manager John which consults the customer Alice.
Alice already has a bank account and by the application of the rewriting rule
she is getting a second account.

Given the presented definitions it is possible to formally define the term of a
graph transformation system (GTS). It is built by a type graph TG and a set of
graph productions p which can be described as graph rewriting rules.

Definition 9 ((Typed) Graph Transformation System). A (typed) graph
transformation system GTS = (TG,P ) consists of a type graph TG and a set of
(typed) graph productions P .

Further, it is now possible to formally define a graph grammar GG. A graph
grammar is built with a graph grammar system GTS (Definition 9) and a start
graph S.

Definition 10 ((Typed) Graph Grammar). A (typed) graph grammar GG =
(GTS, S) consists of a graph transformation system GTS and a (typed) start
graph S1.

Fig. 9. Graph Grammar & Graph Language (Definition Dependencies)

1 The start graph S is a typed graph, see Definition 4.
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On the basis of a graph grammar GG it is possible to define a graph language
L. Note that the start graph for a graph grammar is the same concept as the
start variable you may know from string grammars.

Definition 11 ((Typed) Graph Language). A (typed) graph language L
based on a graph grammar GG is defined by L = { G | ∃ (typed) graph transfor-

mation S
∗

=⇒ G }.

The dependencies of all presented definitions and how they build a graph gram-
mar is illustrated in Fig. 9.

The presented algebraic graph transformation approach further allows one to
reason formally about applicability of a production p on a graph G. Ehrig et al.
[11] also describe how to analyze if productions are parallel independet or not.
This is crutial when it comes to the topic of performance and big models have
to be processed. Having a good model with parallel independet productions al-
lows parallelism and concurrency within the execution of graph transformation.
Further it is possible to find so-called critical pairs, pairs of direct transforma-
tions which are parallel dependent and thus may lead to problems during the
execution of a transformation system.

Another challenge is the handling of non-determinism as soon as a set of
transformation rules is applied [37]. Non-determinism occurs if more than one
rule is applicable and one of them is arbitrarily chosen. Another possible reason
for non-determinism arises if a certain applied rule leads to multiple matches in
the graph. There are techniques providing the possibility to indroduce a control
flow to somehow reduce these kind of arbitrary choices. The problem can further
be addressed by using input parameters and additional conditions in the rules
in order to reduce non-determinism. Henshin addresses this problem with its
control flow units introduced in Section 2.1.

3.3 Other Approaches

An extended concept of the presented typed graph transformations are typed at-
tributed graph transformations [13]. One approach which is actually using typed
attributed graphs is the attributed graph grammar system AGG [40], allowing
a graph to be attributed by Java objects. AGG is a development environment
for graph transformation which in comparison to Henshin requires much more
knowledge of the algebraic theories from the user. However, since AGG is based
on algebraic graph transformation as well, it is possible to transform a Henshin
transformation model into AGG.

Another closely related concept are triple graph grammars (TGG) [34]. The
main advantage of this concept is the possibility to execute a transformation
in both directions, despite the declarative transformation specification. Further,
they allow the definition of a relation between two different models. A transfor-
mation using TGGs maintains the consistency of those two models, meaning if
one model is transformed, the other model is transformed accordingly. This is
possible since a TGG rule consists of three separate graphs, a source, a target
and a correspondence graph.
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Fig. 10 shows the notorious example for TGGs. Two models, one modeling
packages and classes and the other modeling the corresponding database schema
with its tables. The correspondence model in between synchronizes the two mod-
els and keeps them consistent. Atom3 [37,25] is one approach providing a tool
for model transformation with TGGs.

Fig. 10. TGG example: Two synchronised models with correspondence graph [24]

Besides the already mentioned approaches which are fully based on algebraic
graph transformations, other approaches relying on different theories exist. An
example is the VIATRA [42] approach which combines graph transformation
with the formal paradigm of abstract state machines (ASM) [4].

After the introduction into the graph transformation fundamentals and theo-
ries within this section, we return to the practical applications. The next section
is going to show how model transformation can be applied to DSL processing.

4 Towards DSL Processing

Models can be represended in various ways. Often they are represented in graph-
ical notations such as the Unified Modeling Language (UML) or simply in code.
However, sometimes these approaches do not suit ideally, for example if the us-
ability is not sufficient. In such a case it might be a better solution to come up
with a new representation which is specifically developed for the actual problem
domain.

4.1 Domain-specific Languages (DSL)

Domain-specific Languages (DSL) are languages which are implemented for a
specific domain, as the name DSL already implies. In contrast to General Purpose
Languages (GPLs) such as C, C++ or Java, DSLs are very limited in their
features. GPLs are not limited to a certain problem domain and are used for
implementing systems of any kind, whereas DSLs aim to improve the software
development process within a specific and restricted scope. On one hand this can
improve the productivity for developers, since it is easier to describe the structure
and behavior of the domain in the specific language and on the other hand
it might improve the communication between developers and domain experts
because the language is much easier to read [16].

DSLs are used to define models in a certain representation. The parser of
a DSL reads the text written in the defined syntax and generates a semantic
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model, the model which is populated by the DSL [16]. The model can then be
processed further. Often DSLs are used to generate code in a GPL, which is
basically a model-to-code transformation with the semantic model of the DSL
as input. Nevertheless, DSLs are not limited to this kind of application. They can
be used for designing and modeling sofware architectures as well, also mentioned
as Architecture DSLs (ADSLs) in [43], or for requirements engineering purposes.
As already explained in the beginning of this paper, models can be used in all
software engineering disciplines.

4.2 DSL Processing with Model Transformation

As previously mentioned, a DSL and the concrete instances written in a DSL
are generally developed to somehow process them further. Besides generating
code or applying any other exogenous transformation, it might be interesting to
apply refactorings to your DSL. Further, architectural refactorings [44] could be
applied if the DSL describes the architecture of a software.

This brings us back to model transformation since any processing of a DSL
can be implemented with this concept. A concrete DSL instance can be parsed
and therefore processed into an model instance of the semantic model (meta-
model) behind the language. Obviously it is then possible to apply a model
transformation to that model. As long as the transformed target model is still
based on the same meta-model (the semantic model of the DSL) it can be con-
verted back to the syntax of the DSL.

The next section explains a concrete example of this process using Henshin
and a DSL based on Xtext. Xtext is one of the most widespread technologies for
implementing external DSLs. It further suits well for implementing DSL process-
ing as explained above, since the meta-model of the semantic model produced
by Xtext is the Ecore model, which is used by many model transformation tools
such as Henshin. The process for the following example can be summarized as
follows:

1. A Xtext-based DSL instance is parsed by the Xtext parser which creates an
Ecore model.

2. Henshin is used to apply a model transformation to that Ecore model.
3. The transformed Ecore model is then converted back to the DSL syntax.

4.3 Example: A DSL for Service Decomposition

This example is based on the ContextMapper2 DSL [7], a DSL for service de-
composition [22]. The language allows to model context maps based on strategic
Domain-driven Design (DDD) patterns. In a future project the DSL should be
used to realize a tool calculating service decomposition proposals as a series of
architectural refactorings [44] based on model transformations. Note that this
example is simplified and only a little part of the DSL semantic model is used.

2 https://contextmapper.github.io/

https://contextmapper.github.io/
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The whole model actually covers almost all DDD patterns, strategic and tactic.
This example is reduced to the patterns Bounded Context, Aggregate and Entity.

Listing 1.1. Example Input: Bounded Contexts specified with ContextMapper DSL

BoundedContext CustomerManagement {
Aggregate Customers {

Entity Customer{
Str ing f irstName
Str ing familyName
Account customerBankAccount

}
Entity Account {

Str ing iban
Str ing bankName

}
}
Aggregate CustomerSe l fServ ice {

Entity Account {
Str ing username
Str ing password
Customer owner

}
}

}

A bounded context implements one or multiple aggregates and each aggregate
can then contain multiple entities. For details regarding these patterns please
consult the according literature [15,41,30,22]. Listing 1.1 shows an example of a
bounded context modeled with the ContextMapper DSL.

Service decomposition deals with the problem how services, or in terms of
DDD, how bounded contexts should be splitted. One possible indicator that a
bounded context should be splitted is the existence of a same term with different
meanings [6]. The following transformation implements a simplified architectural
refactoring [44] for such a case. Listing 1.1 shows a bounded context which imple-
ments two aggregates. These aggregates both include an entity called Account.
Once it means the bank account of a customer and in the other case the user
account for the self-service application login (the same term for different mean-
ings). The refactoring should split such a bounded context into two. This means
the resulting context map should contain two bounded contexts, each of them
containing one of the existing aggregates.

Fig. 11. Example: Split Bounded Context Transformation Rule
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Figure 11 illustrates the refactoring, implemented with Henshin. To simplify the
example, the name of the entity by which the refactoring should split the context
is given as a parameter. The LHS graph matches a bounded context with two
aggregates, each one containing an entity with the name given by the parameter.
The RHS graph does not contain one of the two edges connecting the bounded
context with its aggregates, which disconnects one aggregate from the existing
bounded context. Note that it is somehow non-deterministic which aggregate
moves to the new bounded context within this example. Further, the RHS graph
contains a new bounded context named SplitBoundedContext which is connected
to the moving aggregate with a new edge.

Another additional edge adds the bounded context to the context map. Ap-
plying this Henshin transformation to the example model from Listing 1.1 leads
to the following result shown in Listing 1.2.

Listing 1.2. Example Output: Bounded Contexts specified with ContextMapper DSL

BoundedContext CustomerManagement {
Aggregate Customers {

Entity Customer{
Str ing f irstName
Str ing familyName
Account customerBankAccount

}
Entity Account {

Str ing iban
Str ing bankName

}
}

}
BoundedContext SplitBoundedContext {

Aggregate CustomerSe l fServ ice {
Entity Account {

Str ing username
Str ing password
Customer owner

}
}

}

The two entities with the same name are now distributed to two separate
bounded contexts. Of course the example is kept very simple and needs to be
enhanced for a productive refactoring tool. However, it is a good illustration how
model transformation can be used for processing DSLs.

5 Related Work

This section is giving an overview over other tools and approaches and compares
them with the Henshin approach.

5.1 Graph-based Approaches

A closely related approach is AGG [40], as already mentioned. Similar to Henshin
it is based on an algebraic approach. Further, it works with attributed typed
graphs and allows to attribute a graph with Java objects. However, AGG [40] is
a quite theoretic research project and the usage of the engine demands a higher
effort to implement a transformation in practice. It can be seen as a low-level
framework or engine for algebraic graph transformation. Actually, EMF Tiger
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[3] which is the predecessor of Henshin is based on AGG. Thus, all of these three
approaches are based on the same theory, but Henshin which has enhanced the
EMF Tiger approach is the most modern and most mature tool of the three.
Since it is based on EMF Ecore models it benefits from the broad spectrum of
available tools arround the EMF framework which makes it easy to model the
transformation input. Further, a Henshin transformation can be converted to
AGG if it is needed for deeper analysis and verifications.

5.2 Other Tools

Model transformation tools typically differ from the others by in the technical
space and the type of transformation (in-place or out-place) they realize. In the
case of Henshin [1] and EMF Tiger [3] this would be the EMF framework. Other
EMF-based approaches are Kermeta [23], Mola [31], Fujaba [39], Moment2 [5]
and the Epsilon Transformation Language (ETL) [14], which all have in common
that they implement in-place transformations.

Representative out-place approaches are QVT [33], ATL [8] and Tefkat [38].
QVT [33] is a specification of the Object Management Group (OMG) and part
of their Meta Object Facility (MOF) [32]. ATL [8] is an Eclipse-based toolkit
and provides a huge scenario catalog for exogenous out-place transformations
with their transformations zoo. Tefkat [38] uses the EMF framework in their
out-place transformation implementation. Since the goal of this paper is to show
an example of in-place transformation for DSL processing and the DSL is based
on Xtext, the tool selection was reduced to EMF Ecore-based in-place transfor-
mation tools. Thus, this section will not discuss the other tools and approaches
further.

Kermeta provides an imperative action language for implementing model
transformations, which is a completely different approach in comparison to Hen-
shin. The transformation has to be implemented in an imperative style and is not
based on rules. Thus, no formal foundation exists. A similar approach is provided
by ETL. Even though it is rule-based, the implementation of a rule is given in
an imperative style. Mola transformations can be specified with a graphical tool
resulting in so-called Mola diagrams. It is based on pattern-matching and rules.
However, those are specified by traditional programming concepts such as loops,
branching and calls to subprograms. There is no basis for a formal validation of
a transformation. Fujaba is an acronym for ’From UML to Java and back again’
which already indicates that the Fujaba tool was invented for rather specific
transformations. But it provided a feature to specify model-to-model transfor-
mations based on triple graph grammars (TGG). However, the project seem
to be out-dated and no longer maintained. Moment2 provides transformations
based on a rewriting logic concept similar to graph transformation. Further, it is
possible to formally verify and analyze its transformations. The major drawback
is that these rewrites cannot be composed to a larger transformation system.
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5.3 Summary

In summary, Henshin seems to be the only EMF-based tool which does not only
provide the formal foundations based on algebraic graph transformations, but
also provide tools and a Java API which are mature enough to use in the practical
field as well. In comparison to many others, the transformation system and its
rules are specified with an Ecore-based model in a rather declarative instead of
an imperative way. The formal foundations might not only be interesting for
research but in practice as well as soon as it comes to analysis and verification
of a transformation system.

6 Conclusion

In this paper we introduced the term model transformation and its character-
istics. We further compared it with the term program transformation and con-
cluded that program transformations can be seen or implemented as code-to-code
model transformations. In addition, we illustrated how a model transformation
approach can be applied to DSL processing. A proof of concept using the Con-
text Mapper DSL [7] has been implemented to demonstrate how the approach
can be used to implement architectural refactorings [44] on the basis of a DSL.

To implement this approach as shown in Section 4, the Henshin transfor-
mation tool has been used. We further introduced its concepts and the theories
behind it. By implementing the presented examples, we evaluated the tool and
compared it with other available approaches.

To summarize, the Henshin tool seems to be one of the most mature model
transformation tools, especially in the Ecore universe. Besides the usability is-
sues regarding the Eclipse UIs, we have not faced any problems and were able
to implement the DSL example transformation within a few hours. The tool
is documented well and we got used to it quickly. The declarative approach of
specifying the transformation rules with the automatically generated graphical
diagram provides a good expressiveness in comparison with other rather imper-
ative approaches. Note that the presented formal theories behind the approach
are not needed as a user of the tool. However, due to the solid foundations behind
Henshin it is possible to formally reason about the implemented transformations
which might be helpful if the implemented transformation systems are getting
complex.
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