
UNIVERSITY OF APPLIED SCIENCES OF EASTERN

SWITZERLAND (HSR FHO)

MASTER THESIS

A Modeling Framework for
Strategic Domain-driven Design

and Service Decomposition

Author:
Stefan KAPFERER

Supervisor:
Prof. Dr. Olaf

ZIMMERMANN

External Examiner:
Dr. Gerald REIF

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science FHO in Engineering focusing on

Information and Communication Technologies

in the

Software and Systems
Master Research Unit

January 24, 2020

iii

Declaration of Authorship
I, Stefan KAPFERER, declare that this thesis titled, “A Modeling Framework
for Strategic Domain-driven Design and Service Decomposition” and the work
presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research
degree at this University.

• Where any part of this thesis has previously been submitted for a degree
or any other qualification at this University or any other institution, this
has been clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own
work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I
have made clear exactly what was done by others and what I have con-
tributed myself.

Rapperswil, January 24, 2020

Stefan Kapferer

v

UNIVERSITY OF APPLIED SCIENCES OF
EASTERN SWITZERLAND (HSR FHO)

Abstract
Master of Science FHO in Engineering

A Modeling Framework for Strategic Domain-driven Design
and Service Decomposition

by Stefan KAPFERER

The decomposition of a system into modules or services is a challenging prac-
tical problem and research question that has not been answered satisfactorily
yet. With the current trend towards microservices, Strategic Domain-driven
Design (DDD) has become a popular technique to decompose a domain into
so-called Bounded Contexts. In our previous work we presented Context Map-
per, an open source tool offering a Domain-specific Language (DSL) based on
the DDD patterns. It supports the evolution of DDD pattern-based architecture
models in a formal and expressive way. By applying Architectural Refactorings
(ARs), systems can be decomposed in an iterative manner. However, our vali-
dation activities have shown that our tool-based approach requires additional
capabilities to expand the target user group. For instance, support for reverse
engineering has been requested since re-modeling existing systems is often too
expensive in brownfield projects. Decomposition on the basis of a systematic
approach and generating graphical Context Maps are other user requirements.

With this thesis we propose a modular and extensible component architec-
ture for a modeling framework based on Strategic DDD. The already existing
Context Mapper tool evolved into a framework offering components for re-
verse engineering, architecture modeling, refactoring, systematic decomposi-
tion, and generation of other representations from the Context Mapper DSL
(CML) models. The DSL constitutes the core component of the framework.
With our discovery library we propose a strategy-based approach to reverse
engineer CML models. An extended set of ARs has been conceptualized allow-
ing users to evolve the architecture models iteratively. With Service Cutter, we
integrated a systematic service decomposition approach to derive new Context
Maps that improve coupling and cohesion. A graphical Context Map generator
enhances the transformation tools to convert CML code into visual diagrams.

The proposed framework supports architects and business analysts in cre-
ating DDD-based models and improve their productivity at the same time.
We hypothesize that the mentioned personas can benefit from a tool which
assists them in evolving Context Maps. During this thesis we applied action
research to validate our concepts and improve the prototype iteratively. With
case studies such as the Lakeside Mutual microservice project and our own
framework architecture we validated the usefulness and effectiveness of the
suggested modeling framework. The conducted validation activities indicate
that the hypothesis above holds true.

vii

Acknowledgements
I would like to express my deep gratitude to my supervisor Prof. Dr. Olaf
Zimmermann for his outstanding support during this thesis and throughout
my Master’s. I highly appreciate his guidance, insight, and expertise which as-
sisted my research projects greatly. By adopting and validating Context Map-
per, using and presenting the tool in application architecture courses at HSR,
and co-authoring a conference paper, he supported and challenged me during
my studies beyond his supervision duties. It has been a great privilege to work
and study under his guidance.

I am grateful to everyone who gave me the opportunity to present my
project in meetups, especially Vaughn Vernon for the possibility to demonstrate
Context Mapper in one of his IDDD workshops. I am also thankful to the stu-
dents and all those who used the tool and/or provided their valuable feedback
that allowed us to validate the research concepts and improve the prototypic
implementation of our modeling framework.

Last but not least I would like to thank my family and loved ones for being
there for me and for supporting me in everything I do in my life. Many thanks
to Brigita Okello for proofreading this thesis and all her love and support. I am
extremely grateful to my mother and stepfather for their support and advice
throughout my life, and for preparing me for my future. The completion of my
Master’s and this thesis would not have been possible without them.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Context and Problem . 1
1.2 Vision . 2
1.3 Thesis Results . 3

2 Framework Users and Requirements 7
2.1 User Roles and Personas . 7
2.2 Reverse Engineering Scenarios . 10
2.3 Structured Service Decomposition 10
2.4 Context Map Evolution with Architectural Refactorings (ARs) . . 11
2.5 Generating other Representations 11
2.6 Non-Functional Requirements (NFRs) 12

3 Analysis of the Modeling Framework Components 17
3.1 Context Map and Bounded Context Discovery Strategies 18
3.2 Structured Service Decomposition Algorithms 23
3.3 Architectural Refactoring (AR) Selection 25
3.4 Graphical DDD Context Map Tool Evaluation 33

4 Context Mapper: Design and Implementation 37
4.1 Component Overview . 37
4.2 Core: Context Mapping DSL (CML) 38
4.3 Discovery Library for Reverse Engineering 44
4.4 Service Decomposition with Service Cutter 57
4.5 Architectural Refactorings (ARs) 64
4.6 Generators . 70
4.7 Context Mapper DSL (CML) Example Models 78

5 Evaluation and Discussion 81
5.1 Validation via Prototyping, Action Research and Case Studies . . 81
5.2 Requirement Fulfillment Evaluation 84
5.3 Strengths and Weaknesses . 92

x

6 Comparison with Related Work 97
6.1 Modeling Language . 97
6.2 Discovery Library for Reverse Engineering 97
6.3 Architectural Refactorings (ARs) 98
6.4 Systematic Service Decomposition 99
6.5 Architecture Diagram Generation 100
6.6 Microservice Contract and Code Generation 100

7 Conclusion and Outlook 103
7.1 Thesis Summary and Results . 103
7.2 Future Work . 104

A Revised CML Language Reference 109
A.1 Language Design . 109
A.2 Terminals . 109
A.3 Root Rule . 110
A.4 Context Map . 110
A.5 Bounded Context . 116
A.6 Domain and Subdomains . 118
A.7 Use Cases . 120
A.8 Domain Vision Statement . 121
A.9 Partnership . 121
A.10 Shared Kernel . 123
A.11 Customer-Supplier . 125
A.12 Conformist . 129
A.13 Open Host Service . 130
A.14 Anticorruption Layer . 130
A.15 Published Language . 131
A.16 Responsibility Layers . 131
A.17 Knowledge Level . 133
A.18 Aggregate . 134
A.19 Complete CML Grammar . 136

B Architectural Refactoring (AR) Catalog 137
B.1 Structural Refactorings . 137
B.2 Relationship Refactorings . 145

List of Figures 147

List of Tables 149

List of Abbreviations 151

Bibliography 153

1

Chapter 1

Introduction

1.1 Context and Problem

Decomposing a system into appropriately sized services is a challenging task
which has gained much attention due to the trend towards (micro-)service-
oriented architectures during the last years. Strategic Domain-driven Design
(DDD) is a popular approach among practitioners to tackle this challenge. DDD
adopters decompose a system by identifying so-called Bounded Contexts1. Con-
text Map1 [10] diagrams and the corresponding relationship patterns further
allow them to model the relationships between the Bounded Contexts. How-
ever, modeling tools based on these DDD patterns rarely exist and there are dif-
ferent interpretations and opinions among practitioners regarding how these
patterns can be applied and combined. Context Maps and DDD-based archi-
tecture models are created manually and without tool support so far.

It is our hypothesis that software architects, service designers and business
analysts can benefit from a precise interpretation of the DDD patterns and a
tool which supports them in expressing DDD-based architecture models in a
rigorous and formal manner. Furthermore, we believe that software architec-
ture and the models describing it evolve iteratively by applying transforma-
tions and Architectural Refactorings (ARs) [103].

In our previous work [46, 50] we realized Context Mapper [15], an open
source project providing a Domain-specific Language (DSL) based on the strate-
gic DDD patterns including editing, validation, and transformation tools. In
our first term project [46] we conceptualized the Context Mapper DSL (CML)
based on a meta-model clarifying and offering advice regarding how the DDD
patterns can be combined. The second term project [50] proposed a series of
ARs for such DDD-based architecture models derived from Decomposition
Criteria (DCs). These ARs have been implemented as code refactorings for
the CML language and allow transforming the architecture models in an ag-
ile [1] way. Besides the language and the refactorings, Context Mapper [15]
provides generators to transform the CML Context Maps into other represen-
tations such as PlantUML [72] diagrams or Microservices Domain-Specific Lan-
guage (MDSL) [102] (micro-)service contracts.

However, the conducted validation activities revealed potential enhance-
ments and missing functionalities for certain user groups. Case studies in our
previous project [50] have shown that users in brownfield projects prefer tools

1Please note that the DDD terms and patterns will be used throughout this thesis without a
re-introduction. For an introduction to the Context Mapper and DDD concepts we refer to our
previous work [46] and the DDD literature [24, 25, 98].

2 Chapter 1. Introduction

that support reverse engineering of architecture models. Other architecture
modeling tools provide libraries to generate the models from existing source
code. In addition, a structured and systematic approach which suggests new
service decompositions on the basis of decoupling criteria was not yet available
in the Context Mapper tool. The suggested ARs only supported transform-
ing Bounded Contexts and Aggregates but not relationships between Bounded
Contexts. Finally, a generator which produces a graphical representation of the
Context Map was missing.

1.2 Vision

With this thesis we propose a framework architecture for Strategic DDD model-
ing tools such as Context Mapper [15]. The tool set realized so far must evolve
towards a modular and extensible framework which fulfills the requirements
of architects and business analysts applying DDD. Figure 1.1 illustrates the ca-
pabilities of the suggested framework. The CML language builds the core com-
ponent the of the architecture, allowing users to model a system in terms of the
DDD patterns.

FIGURE 1.1: DDD Modeling Framework
Architecture Overview

With the discovery library we propose a strategy-based reverse engineering
component to discover Bounded Contexts and Context Maps in existing source
code. Therefore, brownfield projects are allowed to reverse engineer CML
models of existing monolithic systems or entire Context Maps of systems ex-
hibiting a (micro-) service-oriented architecture. Given an initial CML model,

1.3. Thesis Results 3

architects are able to refactor the decomposition with our ARs [50] iteratively.
This set of already existing ARs must be extended with refactorings on the
Context Map relationship level.

A structured and systematic service decomposition approach such as Ser-
vice Cutter [36] shall be integrated into the framework. It allows generating
new decomposition suggestions on the basis of (de-) coupling criteria [36, 50]
and graph clustering algorithms. As illustrated in Figure 1.1, the input and out-
put of the Service Cutter component shall be CML code. Finally, the framework
allows to generate many other representations of the architectural models out
of CML code. Context Mapper [15] can already generate PlantUML [72] dia-
grams and (micro-) service contracts. With this thesis another generator pro-
ducing graphical Context Maps inspired by Vernon [98] and Brandolini [10]
shall be incorporated.

As Figure 1.1 indicates, future projects may enhance the discovery library
so that the generated CML models can be updated according to changes in the
codebase or with respect to manual adjustments in generated artifacts such as
the MDSL contracts. With such an update mechanism one can ensure that the
models stay up-to-date and that the «model-code» gap [26] is closed.

Finally, the framework must be designed in an extensible fashion so that
new discovery strategies, refactorings, and generators can be added easily.

1.3 Thesis Results

Based on the results of validation activities conducted during our previous
work [46, 50] we improved the existing components of the Context Mapper
tool [15] and realized the framework architecture as illustrated in Figure 1.1.

The CML language has been decoupled from the Eclipse Integrated De-
velopment Environment (IDE) and can now be used as standalone library in
Java projects. This allows users to parse CML code and use our generators
within their own applications. The existing MDSL service contract [102] and
PlantUML [72] generators were further validated and improved during the
thesis.

With the goal to fulfill the requirements of our target user group, we concep-
tualized a strategy-based Context Map discovery library for reverse engineer-
ing purposes. We researched which frameworks and technologies are popular
for realizing microservice projects and selected the following discovery strate-
gies to reverse engineer corresponding architectures. The library currently sup-
ports the discovery of CML Bounded Contexts from existing Spring Boot [71]
services. The discovery strategy derives one Bounded Context for each Spring
Boot application and Aggregates for each RESTful HTTP endpoint. The do-
main models within the Aggregates are derived from the Data Transfer Ob-
jects (DTOs) [28] of the operations within the endpoint. Moreover, the library
is able to discover a Context Map, concretely relationships between Bounded
Contexts, by analyzing Docker [20] configuration files (compose files). The se-
lection of these discovery strategies for our prototype is based on the follow-
ing criteria: feature coverage (discover complete CML models), representativeness
(support popular frameworks that promise to be future-oriented), and usability
(minimize manual work). We validated the approach with the Lakeside Mutual

4 Chapter 1. Introduction

microservice project [61] by recovering its architecture based on the proposed
discovery strategies.

The set of existing, structural ARs [50] was analyzed and enhanced by two
new refactorings as illustrated in Figure 1.2. These two refactorings allow users
to change the decomposition by adjusting Shared Kernel and Partnership rela-
tionships, hence striving for improved coupling and cohesion.

FIGURE 1.2: New «Structural» Architectural Refactorings (ARs)

In addition, we created a new AR category for relationship refactorings. Fig-
ure 1.3 shows the two prototypic and already implemented ARs within this
category. These ARs aim to provide simple tools to change the relationships
between Bounded Contexts without changing the decomposition itself.

FIGURE 1.3: New Category of ARs:
«Relationship» Refactorings

With Service Cutter [36] we integrated a structured and systematic service
decomposition component into our framework. We implemented a new library
version of the Service Cutter engine [35] first. The library is now used within
Context Mapper to generate new Context Maps on the basis of Service Cutter’s
coupling criteria catalog [37].

Finally, we implemented another generator that produces graphical Con-
text Maps. In our previous project reports [46, 50] we already used Context
Map illustrations inspired by the notations of Vernon [98] and Brandolini [10].
The generator implemented as part of this thesis produces such illustrations

1.3. Thesis Results 5

automatically out of a CML Context Map. Figure 1.4 illustrates an example
Context Map of our «fictitious insurance example»2.

FIGURE 1.4: Example Context Map Generated
by Context Mapper [15]

Besides the proposed modeling framework as the main result of this thesis, a
few small changes to the CML language were made to address the user feed-
back. Moreover, we have enhanced our examples repository to provide the
example models in different levels of detail. With these different stages we ad-
dress the requirements of users without technical background and offer them
simpler examples.

The remainder of this thesis is structured as follows. Chapter 2 discusses the
user roles and scenarios for which the modeling framework has been designed.
It further introduces the requirements in the form of user stories. Chapter 3
analyzes different realization approaches for the individual framework com-
ponents and documents decisions and rationales. In Chapter 4 we present the
design and implementation of the prototypes within the Context Mapper open
source project [15]. It explains implementation details of the individual frame-
work components and the interfaces between them. Chapter 5 evaluates the
results of this thesis and discusses strengths and weaknesses of the approach.
In Chapter 6 we discuss related work and compare the proposed framework
with other approaches. Finally, Chapter 7 summarizes the thesis and outlines
future work.

2https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

7

Chapter 2

Framework Users and
Requirements

This chapter discusses the user roles and requirements for the Context Mapper
DSL (CML) language and all other components of the proposed framework. It
presents the functional requirements for the language and the components for
reverse engineering, structured service decomposition based on coupling crite-
ria, the Architectural Refactorings (ARs), and the new graphical Context Map
generator. On top of that, the end of the chapter exhibits the Non-Functional
Requirements (NFRs) which have to be fulfilled by the implementation of our
prototypes within the Context Mapper tool [15].

All functional requirements are specified with user stories based on the
“Role-Feature-Reason” template invented 2001 by a team at Connextra in the
UK [2]:

«As a <who wants to accomplish something>,
I want to <what they want to accomplish>

so that <why they want to accomplish that thing>.» [2]

2.1 User Roles and Personas

In our previous work [46] we defined user stories and personas for our Domain-
specific Language (DSL) and surrounding tools. Business analysts can use the
language to analyse a domain and establish a so-called Ubiquitous Language
[24], a common understanding and vocabulary about the domain. Software
architects on the other hand can describe, evolve and communicate system ar-
chitectures in terms of strategic Domain-driven Design (DDD). An architect can
also describe Enterprise Application Integrations (EAIs) and how systems, ap-
plications, or development teams are connected. Adopters of (micro-)service-
oriented architectures can use the language and our tools to model and evolve
the decomposition into (micro-)services.

However, recent user feedback and validation activities have shown that
the language and the provided examples1 seem complex to users without tech-
nical background. We had focused more on the requirements of software archi-
tects and neglected those of business analysts. Therefore, the provided exam-
ple models shall be improved so that not only software architects and engineers
but also business analysts can be introduced to the language smoothly. With

1https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

8 Chapter 2. Framework Users and Requirements

the following personas and user stories we want to clarify the difference be-
tween these two user roles. In Chapter 4 we explain how we addressed the
problem and adjusted the example models concretely. Please note that the con-
secutive personas are based on our previous work [46] in which we already
worked out the requirements for our CML language.

2.1.1 Martin Analyst

«Martin is a business analyst and domain expert with many years of experience
within the domain of the project he is working on. Before he started working
in the current software company as a domain expert he used to work for one
of the customers using the software. Thus, he has a deep knowledge of the
business and the domain.

Martin talks with the customer and brings the requirements into the team.
His goal is to raise the knowledge about the domain within the team. However,
Martin does not want to translate the business language into another, lets say
developer language, since he knows from his experience that this always leads to
misunderstandings. He insists on speaking the businesses language and wants
to create models using the terms he knows.» [46]

Constraints [46]

We can derive requirements and constraints regarding a potential modeling
tool from the role of a domain expert such as described above. The way of how
a model is expressed should not require any programming skills. The language
should be as similar as possible to the natural language. This type of user ex-
pects from the modeling tool that he or she can create models using the natural
language. Furthermore, they do not want to learn a complex syntax such as
typical programming languages may provide. They simply aim to focus on the
core domain and its language.

2.1.2 Bob Architect

«Bob is a software architect and his goal is to influence architectural decisions
of the development teams and ensure that these are justified and properly doc-
umented. He further coaches the teams regarding design and architecture is-
sues that come up. He analyzes problems in existing architectures and tries
to propose solutions. Models are the major tool for Bob to communicate with
the other roles and stakeholders. With models he is able to illustrate poten-
tial architectural improvements or simply describe the actual state of a system.
Since Bob communicates with different audiences he wants to create models in
different representations and levels of abstraction.» [46]

Contraints [46]

A software architect may have to supervise many teams implementing differ-
ent applications or Bounded Contexts. Therefore, he perhaps does not have the
time and budget to familiarize himself with very complex tools at the begin-
ning of a project. The creation of models must be efficient and ideally the tool

2.1. User Roles and Personas 9

allows the architect to adapt the level of abstraction for the target audience and
generate other representations of the models. In comparison to the business
analyst he additionally supports the development teams regarding technical
details. Hence, the models must exhibit a certain technical depth. The domain
models of Bounded Contexts are potentially worked out on a level of detail
that allows to generate code.

From the personas above we can conclude that the level of detail in in-
troductory examples must be different depending on the user role. A busi-
ness analyst writes models which are understandable without programming
knowledge. Engineers and architects on the other hand may write domain
models from which code or database schemata could be derived. The exam-
ples provided by the Context Mapper tool [15] before this thesis did not fulfill
this requirement, since the Bounded Context specifications were too detailed
and the tactic DDD part of the DSL was too technical. The examples were split-
ted according to the two user roles introduced above. This change was guided
by the following user stories which highlight the essences of the different re-
quirements.

2.1.3 US-1: Analysing and Describing the Domain as
Business Analyst

As a business analyst, I want to describe the problem domain and its subdo-
mains in a natural language so that I can develop and communicate a common
understanding as well as an ubiquitous language about the business concepts
and their relationships in the given domain.

2.1.4 US-2: Describing Software Architecture and Design as
Software Architect

As a software architect or engineer responsible for the design and implemen-
tation based on the results of the business analysis (US-1), I want to model
the subsystems (Bounded Contexts) and components (Aggregates) of my ar-
chitecture and how they interact so that I can evolve the architecture with tool
support (refactorings and systematic service decomposition), communicate the
architecture, and generate other representations of the models such as Unified
Modeling Language (UML) diagrams, service contracts, or even code.

With the user stories and personas above we documented general require-
ments for our framework and the provided example models. The next sections
discuss the functional requirements for the individual framework components
specifically, followed by the NFRs the framework must fulfill.

10 Chapter 2. Framework Users and Requirements

2.2 Reverse Engineering Scenarios

The following user stories describe the requirements for brownfield project sce-
narios with existing systems. In such a case the users need a reverse engineer-
ing functionality to generate CML models automatically. The validation activ-
ities of our previous project [50] have shown that users in such projects are not
willing to re-model big existing systems in a new modeling tool.

Both user stories describe reverse engineering scenarios. The user story
US-3 however focuses on (micro-)service-oriented architectures where multiple
Bounded Contexts (services) and a Context Map can be discovered, while US-4
describes a scenario with a monolithic system where one Bounded Context can
be reverse engineered to decompose it afterwards.

2.2.1 US-3: Generate Bounded Contexts and Context Map Models
for existing (Micro-)Service Architecture

As a software architect or engineer developing a (micro-)service-oriented sys-
tem, I want to generate an architecture overview (i.e. a Context Map written in
CML) for my existing system so that I can analyze, communicate, and improve
the existing architecture as well as generate other representations of the model
such as UML diagrams or a graphical Context Map.

2.2.2 US-4: Generate Bounded Context Model from existing Mono-
lithic System

As a software architect or engineer who wants to decompose an existing mono-
lithic system into (micro-)services, I want to generate Bounded Context de-
scriptions written in CML out of my source code so that I can analyze it with
systematic decomposition approaches such as Service Cutter and find a service
decomposition in an iterative way by using architectural refactorings.

2.3 Structured Service Decomposition

Once a modeling framework user has a model of the system, reverse engi-
neered or manually modeled, he or she may want to analyze the decompo-
sition with respect to coupling and cohesion between the Bounded Contexts.
Based on (de-)coupling criteria [37, 50] systematic service decomposition ap-
proaches such as Service Cutter [36] allow to generate new service decompo-
sitions which improve the coupling between the individual services and the
cohesion within them.

2.3.1 US-5: Analyze a Strategic DDD Model using Coupling Criteria
to find Better Service Decompositions

As a software architect or engineer who has modeled a system in terms of
strategic DDD patterns with a tool such as Context Mapper, I want to let the
tool analyze my model on the basis of given coupling criteria and let it suggest
service decompositions so that I am able to improve the coupling between my
Bounded Contexts and the cohesion within them.

2.4. Context Map Evolution with Architectural Refactorings (ARs) 11

2.4 Agile Context Map Evolution with
Architectural Refactorings (ARs)

In our previous term project [50] we presented seven ARs which were already
implemented within the Context Mapper tool before this thesis. They support
the user in evolving and improving the architecture in an iterative way. The
following generic user story describes the idea behind our ARs generally:

«As a software architect or engineer, I would like to model strate-
gic DDD Context Maps rapidly and use supporting transformation
tools to revise and refine the architecture drafts, so that the DDD
models can be crafted and evolved in an agile way.» [50]

During validation and testing activities we determined that all provided ARs
focus on the decomposition of Bounded Contexts and Aggregates. There were
no refactorings allowing to transform the Context Map relationships. Thus, the
conceptualization of at least two relationship-related refactorings as a proto-
type was a requirement towards this thesis. Changing the type of a relation-
ship between two contexts manually can be error-prone and takes more time in
comparison with applying an automated refactoring. The following user story
shall express the need for such transformations.

2.4.1 US-6: Change the Relationship between Bounded Contexts

As a business analyst, software architect, or engineer who models the relation-
ships between Bounded Contexts, I want to revise and change the type of a
relationship between two Bounded Contexts rapidly and with tool support, so
that the DDD Context Map relationships can be crafted in an agile way and
errors due to manual code adjustments are avoided.

2.5 Generating other Representations

Besides decomposing and evolving the architecture model a user must be able
to generate other representations out of the model. With our previous projects
[46, 50] we already provided a PlantUML [72] diagram generator, a Microser-
vices Domain-Specific Language (MDSL) (micro-)service contract generator,
and Service Cutter [35] input file generators.

2.5.1 Graphical Context Map Generation

With this thesis we add another generator producing graphical Context Maps
to the framework. Users working with strategic DDD models are familiar with
the Context Map visualizations by Vernon [98] and Brandolini [10] and proba-
bly expect the generation of such graphics from a framework like ours.

US-7: Generate Graphical Context Map

As a user of a strategic DDD modeling tool such as Context Mapper, I want
to generate a graphical representation of the DDD Context Map automatically

12 Chapter 2. Framework Users and Requirements

so that I have a better representation for communication and documentation
purposes.

2.5.2 Existing Generators

Our validation activities also resulted in new requirements (enhancements) for
the existing PlantUML [72] and MDSL [102] generators. However, the user
stories for those existing generators are already part of the previous project re-
ports [46, 50]. Therefore, we will not repeat the requirements for them within
this thesis although they are still valid. In Chapter 4 we list the realized im-
provements in these generators in detail.

2.6 Non-Functional Requirements (NFRs)

This section presents the NFRs all the components of our modeling framework
have to fulfill. Please note that some of these requirements were already de-
fined in our previous projects [46, 50] and are taken from these project reports
since they are still valid and must be fulfilled by the new components of the
framework as well.

2.6.1 General Framework NFRs

We start with general NFRs which have to be fulfilled by all components and
continue with individual requirements in the following sections.

Future-oriented Use of Tools and Frameworks

The tools and libraries used for the development of the framework components
should be well established, open and sustainable. Libraries and frameworks
with no activity/commits during the last year should be avoided. At least be
sure that the tools can be replaced by using open and sustainable data formats.

Reliability

The developed tools should work reliably having no crashes and/or data losses.
To achieve these goals the tools have to be implemented in an resilient fashion
and should be tested well (Unit Tests, Integration Tests and manual User Tests).

Extensibility

The individual framework modules, namely the reverse engineering compo-
nent, the ARs, the Service Cutter [36] integration, and the generators shall be
developed in an extensible fashion. Adding new reverse engineering strate-
gies, ARs, service cutting algorithms, and generators must be possible without
substantial changes to the framework itself.

2.6. Non-Functional Requirements (NFRs) 13

Licences

Since the project is open source, licences such as «Apache License 2.0» and
«Eclipse Public License 1.0» are prefered. Libraries or frameworks under «GNU
General Public License (GNU GPL)» must not be used.

Supportability and Maintainability

The project’s code quality should be kept at a good level. We have to set up
appropriate tools and mechanisms to support this goal (updating master only
by pull request, use Continuous Integration (CI) build server, measure test cov-
erage and keep it high). The code should be clean and understandable, also for
a junior software engineer. Do not use very special (not well-known) language
features and create a documentation if it is needed for more complex compo-
nents.

Documentation

All new features added to the Context Mapper tool [15] shall be documented
on the project’s documentation website2.

Examples

The online documentation and the Context Mapper examples repository3 must
provide meaningful examples for all developed language features and tools.

2.6.2 Reverse Engineering Framework

The following requirement concerns the reverse engineering part of the frame-
work only.

Technology Neutrality and Extensibility

This component discovers Bounded Contexts and their relationships (Context
Map) by analyzing existing codebases. Since the systems to be analyzed can
be written in different languages and realized with different technologies, the
framework must provide the possibility to implement discovery strategies for
any language or technology. Note that we only implement two strategies as
a proof-of-concept as part of this thesis. However, the framework must be de-
signed such that new discovery strategies for other languages and technologies
can be added easily without changing the framework itself.

2.6.3 CML Modeling Language (Core)

If changes to the CML language are implemented, they must be designed with
respect to the following requirements. These DSL-related requirements have
been developed during our previous projects [46, 50] on the basis of our own

2https://contextmapper.org/docs
3https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.org/docs
https://github.com/ContextMapper/context-mapper-examples

14 Chapter 2. Framework Users and Requirements

experience with programming languages and DSLs, and the input of the su-
pervisor of this thesis.

Simplicity of the DSL

The DSL grammar should satisfy the requirements but still be designed as sim-
ple as possible. A software architect or engineer knowing the concepts of DDD
should be able to understand introductory examples written in the DSL within
15 to 20 minutes. With provided examples and tutorials one should also be
ready to start creating an own model within at most one hour.

Quickly Writable without Redundancy

A Context Map must stay easy and quickly to write. The syntax of the defini-
tions shall not exhibit any redundancies or ambiguities. With the help of pro-
vided examples a user must be able to define a new Context Map with three to
four Bounded Contexts within 30 minutes.

Well Readable

The definitions in a CML model shall be well readable. A user which is fa-
miliar with our DDD meta-model4 [46] must be able to identify corresponding
concepts and patterns on an existing CML Context Map within 5 minutes.

Consistent

The syntax of the DSL shall ensure that the definitions are always consistent
with our interpretation [46] of the possibilities regarding the strategic DDD
patterns. Semantic validators must be implemented to identify deviations if
needed.

Parsable by the Tool (Xtext)

The defined syntax must be realizable and easily parsable with the used lan-
guage framwork, namely Xtext [23].

2.6.4 Architectural Refactorings (ARs)

The following requirements must be fulfilled by all implemented ARs.

Transformations must result in valid Models

All ARs implemented in the Context Mapper tool must always result in valid
models according to the grammar of CML, which is the advantage of such tools
in comparison with applying the changes manually. If a transformation leads
to conflicts or necessary changes in other parts of the CML model, the AR must
solve them automatically.

4https://contextmapper.org/docs/language-model/

https://contextmapper.org/docs/language-model/

2.6. Non-Functional Requirements (NFRs) 15

Performance

The execution of an AR must not take longer than two to three seconds at most.
The performance shall be tested with the Context Mapper example models5.

2.6.5 Service Cutter Integration

The integration of the Service Cutter [36] engine shall be done with respect to
the requirement below.

Algorithm Exchangeability

The Service Cutter integration which shall propose new Context Maps on the
basis of the Service Cutter criteria catalog [37] shall be implemented in a way
which allows us to replace the algorithm behind the cutting mechanism. Ser-
vice Cutter already provides two graph clustering algorithms and new algo-
rithms may be evaluated as part of this thesis or future projects. Replacing the
algorithm shall be as easy as possible.

We close this chapter with the introduced NFRs. All requirements our mod-
eling framework must fulfill have been presented in the last sections. The
next chapter documents our analysis and research activities leading to deci-
sions and rationales regarding how the individual components can be real-
ized. It discusses strategies how the reverse engineering component can be
designed, outlines potential structured service decomposition algorithms, se-
lects new ARs for Context Map relationships, and evaluates potential tools to
realize the graphical Context Map generator.

5https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

17

Chapter 3

Analysis of the Modeling
Framework Components

In this chapter we research and analyze strategies and approaches for the im-
plementation of the individual components, or Bounded Contexts, of the mod-
eling framework proposed by this thesis. Figure 3.1 illustrates a corresponding
Context Map of our framework. As many other illustrations within this thesis
Figure 3.1 is generated with Context Mapper, since we model the architecture
of our framework with our own tool. The «language core» context represents
the Context Mapper DSL (CML) modeling language including the Xtext-based
[23] Eclipse plugin. The Published Language (PL) of the core component is
the semantic meta-model behind the CML language which we proposed in our
first term project [46]. The meta-model is introduced again in Chapter 4 in
order to explain the interfaces between the components in detail.

FIGURE 3.1: Strategic DDD Modeling Framework Context Map
(Generated by Context Mapper [15])

The Architectural Refactorings (ARs) presented in our second term project [50]
depend on the language and its meta-model as well. Thus, this Bounded Con-
text has a close relationship with the «core» and as illustrated in Figure 3.1,
the language meta-model can be seen as a Shared Kernel between these two
contexts.

The «generators» Bounded Context includes all transformation tools allow-
ing to generate other representations of the CML models or input files for other
tools. It currently encompasses the PlantUML [72] diagram, Microservices

18 Chapter 3. Analysis of the Modeling Framework Components

Domain-Specific Language (MDSL) [102], and Service Cutter input files [35]
generators.

The remaining Bounded Contexts in our Context Map in Figure 3.1 are new
and part of the evolution of the Context Mapper tool towards the modeling
framework proposed by this thesis. With the «discovery library» Bounded
Context the framework shall offer an extensible tool to generate CML mod-
els from existing source code. As illustrated, the discovery context uses the
meta-model (PL) of the core component to generate the models. In addition,
it acts as a Conformist (CF) and thus conforms to the published language of
the core component. The «structured service decomposition» context comple-
ments the modeling framework with a tool that supports the generation of ser-
vice decompositions automatically and based on defined Decomposition Cri-
teria (DCs). This context is implemented as a separate library which provides
an Open Host Service (OHS) (open API) that is used by the language core to
decompose CML models in a systematic manner.

The following sections discuss potential implementation approaches and
derive corresponding decisions on how the individual components of the frame-
work shall be realized or enhanced. Concretely, we analyze and select reverse
engineering strategies, new ARs to improve the refactoring possibilities, po-
tential algorithms for the structured service decomposition integration, and we
evaluate a library to realize a graphical strategic Domain-driven Design (DDD)
Context Map generator.

3.1 Context Map and Bounded Context
Discovery Strategies

With the discovery library we want to simplify the usage of the framework
for users who work on existing projects by providing a reverse engineering
functionality. The component shall generate CML models containing Bounded
Contexts and Context Maps from existing source code. By analyzing multiple
projects and their dependencies, the Context Map for existing (micro-)service-
oriented projects shall be generated. For projects with existing monolithic sys-
tems, the library must be able to generate a Bounded Context definition of a
system which can then be analyzed and decomposed within the framework
towards a (micro)-service-oriented architecture.

3.1.1 Discovery Strategies

The discovery library must support different languages and technologies in or-
der to gain many users. Moreover, microservice architectures typically consist
of services implemented with different technologies. It is therefore not suffi-
cient to concentrate on one programming language and/or technology. The
library must be extensible and support different implementations of «discov-
ery strategies». Based on different languages and technologies these discovery
strategies shall find Bounded Contexts and their relationships so as to generate
the CML model for the Context Mapper tool [15].

3.1. Context Map and Bounded Context Discovery Strategies 19

With this thesis we conceptualize the basic design for the library implemen-
tation and aim to provide example discovery strategies as a «proof of concept».
In order to generate a CML model we must discover (micro-)services that are
mapped to Bounded Contexts and their relationships that lead to a Context
Map. If the user wants to decompose the resulting model with decomposi-
tion approaches such as Service Cutter [36] or ARs later, the tool must discover
the Aggregates and domain objects (Entities, Value objects, etc.) within the
Bounded Contexts. Only by discovering the Bounded Context on that level
of detail, systematic service decomposition approaches are able to analyze the
coupling between the Bounded Contexts and the cohesion within them. Gen-
erally, we distinguish between the following two discovery mechanisms:

1. Bounded Context Discovery: Simple discovery strategies can just dis-
cover Bounded Contexts without the containing domain model, since this
is sufficient to produce a Context Map. More advanced strategies have to
reverse engineer the domain model within the Bounded Contexts and
generate the Aggregates and domain objects in CML.

2. Relationship Discovery: Discover relationships between the Bounded
Contexts or services.

As part of our research we analyzed open source projects developed in a mi-
croservices architecture on the basis of the list provided by Taibi [92]1. Based
on the research results we derived potential strategies how to realize these two
mechanisms. We evaluated which programming languages, technologies and
frameworks are used within all these projects and how Bounded Contexts and
Context Maps could be discovered accordingly. Table 3.1 lists potential ap-
proaches to discover Bounded Contexts (1) based on this evaluation.

TABLE 3.1: Potential Bounded Context Discovery Approaches

Approach Description
1 Framework-

based
discovery

With this approach, services can be detected by the
framework used to implement them. For example: Mi-
croservices implemented in Java often use the Spring
Boot [71] framework. By searching for their @Spring-
BootApplication2 annotation it is possible to detect such
services. To reverse engineer Aggregates and domain ob-
jects the strategy could search for @RequestMapping3 an-
notations and discover RESTful HTTP endpoints. From
the DTOs [28] within these endpoints it is possible to de-
rive a domain model. However, this approach needs a
strategy for each framework which shall be supported to
discover Bounded Contexts.

1https://github.com/davidetaibi/Microservices_Project_List (State: October 5, 2019)
2https://docs.spring.io/spring-boot/docs/current/reference/html/

using-spring-boot.html
3https://docs.spring.io/spring/docs/current/spring-framework-reference/web.

html

https://github.com/davidetaibi/Microservices_Project_List
https://docs.spring.io/spring-boot/docs/current/reference/html/using-spring-boot.html
https://docs.spring.io/spring-boot/docs/current/reference/html/using-spring-boot.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html

20 Chapter 3. Analysis of the Modeling Framework Components

TABLE 3.1: Potential Bounded Context Discovery Approaches
(continued)

Approach Description
2 Deployment

descriptor
based
discovery
(e.g. Docker
[20])

Having services that are independently deployable is one
major characteristic of a microservice architecture [78].
Richardson further recommends to deploy one service
per Docker container [77, 80]. According to our analy-
sis of the mentioned microservices list, these patterns
are followed by the community and many projects cre-
ate one Dockerfile [20] per (micro-)service. Thus, we could
simply detect those services and our Bounded Contexts
by searching for these files. However, this strategy does
not allow to reverse engineer the domain model of the
Bounded Context.

3 Custom
annotation
based
discovery

Letting the user annotate the objects which should be
discovered would be another approach. By providing a
library with annotations which must be placed within
the code of the application it would be possible to de-
tect Bounded Contexts, Aggregates, and domain objects
easily. For example, we could provide annotations such
as @BoundedContext and @Aggregate. If the users anno-
tate their corresponding classes, we could scan the code
for these annotations. Marker interfaces such as the ones
used by the Lakeside Mutual project4 [61] would be an-
other possible solution. However, the additional effort
required by the user of the tool is a huge disadvantage of
this approach.

Besides the discovery of Bounded Contexts we analyzed how their relation-
ships could be reverse engineered. This is a more challenging problem and
in some cases impossible to tackle by analyzing code. Table 3.2 lists potential
approaches.

TABLE 3.2: Potential Context Map Discovery Approaches

Approach Description
1 Framework

configura-
tion based
discovery

Many microservice projects implemented with frame-
works such as Spring Boot [71] configure the endpoints
of other services within their configuration files (at least
for the development environment where they all run on
the same machine). These are typically URLs containing
the port allowing to access the other service. Analyzing
all the property, XML, or YAML files and derive the rela-
tionships between the services by using these endpoints
would be a possible approach.

4https://github.com/Microservice-API-Patterns/DDD-Library

https://github.com/Microservice-API-Patterns/DDD-Library

3.1. Context Map and Bounded Context Discovery Strategies 21

TABLE 3.2: Potential Context Map Discovery Approaches
(continued)

Approach Description
2 Deployment

descriptor
based
discovery
(such as
docker-
compose files
[20])

Our analysis of the open source microservice projects
has shown that many projects using Docker [20] also use
Docker Compose (docker-compose.yml file). Compose [19]
is a tool which allows to configure how all containers
of the application shall be deployed and to start them
all together with one command. Such a configuration
contains the dependencies between the individual con-
tainers (services) and therefore allows to derive the rela-
tionships between them.

3 No
discovery

Lastly, there are many projects which use service dis-
covery tools such as kubernetes5, Consul6 or Eureka7. In
these cases other services are simply resolved by a name
which is often configured somewhere in the source code
of the microservice. This makes it practically impossi-
ble to detect the relationships from the codebase. A dy-
namic discovery at runtime goes beyond the scope of
this work. Context Mapper users with such a case will
only be able to reverse engineer the Bounded Contexts.
The relationships must be modeled manually.

Although the discovery component must allow us to implement all possible
approaches, we can only provide a «proof of concept» with this thesis project.
In the following we discuss our selection criteria and the selected approaches
for the implementation of our prototype.

3.1.2 Discovery Strategy Selection

To limit the scope of the project and the amount of discovery strategies to be
implemented we defined the following selection criteria:

1. Feature Coverage: The prototype should implement discovery strategies
for both cases, Bounded Contexts and Context Map. At least one Bounded
Context discovery strategy shall reverse engineer Aggregates and do-
main objects.

2. Representativeness: Choose technologies which are popular and often used
to implement microservices.

3. Usability: The strategies should reduce the effort needed from the user
to a minimum. The goal of this framework is to simplify the application
of the tool for users in brownfield projects. Strategies which still need
manual work lower the benefits we aim for.

5https://kubernetes.io
6https://www.consul.io/
7https://github.com/Netflix/eureka

https://kubernetes.io
https://www.consul.io/
https://github.com/Netflix/eureka

22 Chapter 3. Analysis of the Modeling Framework Components

Based on the selection criteria listed above we decided to include the following
discovery strategies in our prototype:

1. Bounded Context discovery: Use Spring Boot [71] annotations to detect the
Bounded Contexts, Aggregates, and domain objects. The Aggregates and
domain objects shall be discovered by using the request mapping anno-
tations and the DTOs [28] in the corresponding methods.

2. Relationship discovery: Use docker-compose [19] files and their dependency
declarations to find relationships between the Bounded Contexts.

With this selection we fulfill the criterion feature coverage (1) since it allows us
to detect Bounded Contexts, Context Map relationships, and Aggregates with
domain objects inside a Bounded Context. With the decision for the Spring
Boot [71] framework we implicitly choose Java to be the supported program-
ming language in our prototype. The language fulfills the criterion representa-
tiveness (2) with respect to our analysis of open source projects implementing
a microservice architecture (73 percent). Furthermore, Java is the most popu-
lar programming language in 2019 [94]. 78 percent of more than 40 analyzed
microservice applications [92] use Spring Boot or contain at least one service
implemented using the framework. It is a very popular framework among
Java developers and therefore fulfills the representativeness (2) as well. Finally,
we avoided approaches which require additional effort from the users to fulfill
the criterion usability (3).

3.1.3 Merging Heuristics

The discussed approach of separating Bounded Context and Context Map (re-
lationships) discovery requires some heuristics to match divergent Bounded
Context names. For example, the Bounded Context name derived from a Spring
Boot application is probably not equal to the container name mentioned in the
docker-compose file. Since relationships involve knowledge about Bounded Con-
texts as well, the two strategies have to share information and heuristics must
be applied to match the different names for the Bounded Contexts. The same
is true if multiple Bounded Context discovery strategies are involved and du-
plicates have to be merged. However, we consider this issue to be a design
decision and discuss the implemented solution in Chapter 4.

After an architecture model written in CML exists, a user may want to
evolve and improve the described architecture. This is where the two Bounded
Contexts or framework components for «Structured Service Decomposition»
and «ARs» according to the Context Map in Figure 3.1 come into play. These
framework parts support the user in evolving the decomposition based on DCs
or by applying refactorings iteratively. The next section discusses the integra-
tion of Service Cutter [35] into Context Mapper [15] as our approach towards
systematic service decomposition.

3.2. Structured Service Decomposition Algorithms 23

3.2 Structured Service Decomposition Algorithms

With this framework component a CML model shall be analyzed with respect
to DCs to suggest new service decompositions automatically. As part of our
first term project [46] we already generated the input files for the Service Cutter
tool [35]. Service Cutter [36] generates service decompositions on the basis
of 16 coupling criteria [37] and graph clustering algorithms. Not many other
structured and systematic service decomposition tools such as Service Cutter
exist. We discuss corresponding related work in Chapter 6. However, there
are no other approaches which provide an open source tool that are publicly
available besides Service Cutter.

Apart from the integration of the Service Cutter engine into our framework,
we researched whether there are new graph clustering algorithms available
which could enhance Service Cutter’s algorithm support. The tool currently
includes the «Epidemic Label Propagation» algorithm by Leung [56] and the
algorithm of Newman and Girvan [63]. Since the implementation of the algo-
rithm of Newman and Girvan is part of the Gephi tool [5] and licensed under
the GNU General Public License Version 3 (GNU GPLv3) we can not integrate
it into Context Mapper. It does not fulfill our licensing requirements docu-
mented in Chapter 2. The algorithm of Leung [56] is therefore the only one
already integrated in Service Cutter which can be used in Context Mapper.

3.2.1 Algorithms Evaluated by Gysel et al. [34]

First we checked the algorithms which were already evaluated by Gysel et al.
[34] at the time they realized Service Cutter. We re-evaluated whether there are
new implementations of algorithms which could not be integrated at that time.
Table 3.3 lists these graph clustering algorithms and our research results. The
criteria used to assess the algorithms are listed below:

• Distinct clusters [34]: Every nanoentity is contained once and only once
in a cluster. This is a criterion already used by Gysel et al. [34]. An
integration into the Service Cutter implementation would be difficult if
this criterion is not fulfilled.

• Java implementation: Our framework and tools are written in Java. To be
able to integrate the algorithm easily we require a Java implementation
correspondingly.

• License: The implementation license of the algorithm must fulfill our re-
quirements mentioned in Chapter 2 and be compatible with the Apache
2 license. GNU General Public License (GNU GPL) licenses are ruled out.

TABLE 3.3: Graph Clustering Algorithms Evaluated by
Gysel et al. [34]

Algorithm Candidate Research Results
Girvan-Newman
[63]

no We checked if another implementation
of the algorithm of Newman and Girvan
exists but have found none.

24 Chapter 3. Analysis of the Modeling Framework Components

TABLE 3.3: Graph Clustering Algorithms Evaluated by
Gysel et al. [34] (continued)

Algorithm Candidate Research Results
Markov Cluster
Algorithm (MCL)
[21]

no The implementation in Gephi [5] still
seems to be the only stable one written in
Java. Since GNU GPLv3 is no option we
cannot integrate this algorithm.

Highly Connected
Subgraphs (HCS)
[39] and CLICK
Clustering Algo-
rithm [84]

no For these two algorithms there are still
no Java implementations available.

K-mean algorithm
[38]

no As already mentioned by Gysel et al.
[34], there is no simple way to transform
the problem from a graph to a vector-
based representation available.

Epidemic Label
Propagation [56]

yes This algorithm by Leung [56] is already
integrated into Service Cutter.

Apiacoa8 [81] no This algorithm could work for our prob-
lem. However, the authors do not men-
tion any licensing information and the
project is not open source (only binaries
available). It is therefore difficult to eval-
uate if the library is stable and reliable.

3.2.2 Other Potential Graph Clustering Algorithms

The research results in Table 3.3 show that there are no new candidates among
the algorithms already assessed by Gysel et al. [34]. As our assessement led to
the same results, we did some research to find new graph clustering algorithm
implementations not yet considered by Gysel et al. Table 3.4 lists the potential
algorithms and candidates as a result of this research activity.

TABLE 3.4: Potential new Graph Clustering Algorithms for
Service Cutter [35]

Algorithm Candidate Research Results
Chinese
Whispers9

[6]

yes «Chinese Whispers» is a randomized graph-
clustering algorithm which seems to fulfill our
requirements. The implementation9 is pro-
vided in Java and licensed under Apache 2.

CFinder [13] no CFinder is a tool to find clusters and commu-
nities within networks. The approach is how-
ever not suitable since they find overlapping
and non-distinct groups of nodes.

8https://apiacoa.org
9Implemented in https://github.com/nlpub/watset-java

https://apiacoa.org
https://github.com/nlpub/watset-java

3.3. Architectural Refactoring (AR) Selection 25

TABLE 3.4: Potential new Graph Clustering Algorithms for
Service Cutter [35] (continued)

Algorithm Candidate Research Results
Louvain and
Leiden10 [95]

yes The community detection algorithms Lou-
vain and/or Leiden seem suitable for solv-
ing the problem we have and the Java
implementation10 is licensed under the MIT
license. The MIT license is very permissive
and would be compatible with our Apache 2
license.

Power Itera-
tion Cluster-
ing11 [57]

no The «Power Iteration Clustering» algorithm
by Lin and Cohen [57] seems to be a suit-
able solution for the problem. However, the
only implementation is provided by Apache
Spark11 which is a huge framework coming
with many dependencies. We would rather
avoid integrating such a huge framework into
our tool.

As Table 3.4 shows, we found two algorithm implementations which can be
tested within Service Cutter. Nevertheless, during the progress of this the-
sis project we decided to integrate the current state of Service Cutter with the
algorithm of Leung [56]. The approach can be validated with the existing al-
gorithm. If the validation activities confirm that this is a good approach, new
algorithms can be integrated to improve the component later. Despite this, im-
plementing our own algorithm with a slightly different approach could turn
out to be a better solution as the next section explains.

3.2.3 Implementing own Approach

Regarding this specific framework component more validation results have to
be conducted in future projects. The integration of Service Cutter as explained
later in Chapter 4 is a first step towards structured and systematic service de-
composition in Context Mapper. Nonetheless, other approaches besides gen-
erating completely new service decompositions might have to be evaluated as
well. A new algorithm could just suggest small extraction steps by identifying
parts within a model which should build a new Bounded Context with respect
to coupling and cohesion. This would allow us to provide refactoring sugges-
tions and guide the user in the process of decomposing the system iteratively.
Such an approach might be more consistent with agile practices [1] and the
results would probably be more comprehensible for the users.

3.3 Architectural Refactoring (AR) Selection

As documented in the requirements in Chapter 2 the set of ARs has been ex-
tended. They support the user in evolving and improving the architecture

10Implemented in https://github.com/CWTSLeiden/networkanalysis
11Implemented in https://spark.apache.org

https://github.com/CWTSLeiden/networkanalysis
https://spark.apache.org

26 Chapter 3. Analysis of the Modeling Framework Components

model iteratively. For example on the basis of the knowledge gained through
decompositions generated with Service Cutter [36] as described in the previous
section, the architect can change the model by applying ARs. In our previous
work [50] we already proposed seven ARs to split Bounded Contexts, extract
Aggregates, and merge Bounded Contexts or Aggregates. Figure 3.2 shows
these existing refactorings.

Our validation activities and the received user feedback revealed that addi-
tional ARs to refactor Context Map relationships would be useful.

FIGURE 3.2: Existing ARs organized by decomposition vs. compo-
sition and their operations split, extract, and merge [50].

Within the next sections we document potential candidates and the selection of
ARs to be realized as part of this thesis.

3.3.1 New AR Categorization

In regard to ARs with Context Map relationships as subjects we identified two
different kinds of refactorings. Simple ARs can change just the type of a re-
lationship without altering the structure of the decomposition (Bounded Con-
texts). For example, changing a generic Upstream-Downstream relationship
to a Customer-Supplier relationship has no impacts regarding structure. More
complex relationship ARs on the other hand can change the structure of the
decomposition. For example, if the goal of a refactoring is to remove a Shared
Kernel relationship, the domain model of the Shared Kernel can lead to a new
Bounded Context. Thus, the refactorings in our modeling framework and in
Context Mapper are now categorized into the following two categories:

• Structural refactorings: These ARs change the structure of the decompo-
sition.

• Relationship refactorings: ARs of this category change the type of a re-
lationship only. The structure of the decomposition is not changed.

The existing refactorings illustrated in Figure 3.2 are all structural refactorings.

3.3.2 AR Candidates

We derived candidates for new relationship ARs from the available user feed-
back and our own experience with the current version of the Context Mapper
tool. The following Table 3.5 lists structural refactoring candidates first.

3.3. Architectural Refactoring (AR) Selection 27

TABLE 3.5: Structural AR Candidates for
Context Map Relationships

AR Name Parameters Description
Extract
Shared
Kernel

Reference
to Shared
Kernel rela-
tionship

Removes the Shared Kernel relationship, creates
a new Bounded Context for the Shared Kernel,
and adds two new Upstream-Downstream re-
lationships (with the new context as upstream
and the existing two contexts as downstream).

Inline
Bounded
Context
to Shared
Kernel

Reference
to Bounded
Context

This would be the inverse refactoring to Extract
Shared Kernel. Instead of extracting the Shared
Kernel into a new Bounded Context, this AR
would create a Shared Kernel from an existing
Bounded Context that is upstream within two
Upstream-Downstream relationships.

Suspend
Partner-
ship

Reference
to Partner-
ship rela-
tionship

The Partnership pattern describes an intimate
relationship requiring coordination with re-
spect to planning and development between
the two involved teams. In order to achieve
increased autonomy between the individual
teams, which is often an important goal when
applying strategic DDD [96], it may be desirable
to eliminate a Partnership. This AR shall be able
to suspend a Partnership by offering three op-
tions: a) merge the Bounded Contexts, b) extract
a new Bounded Context with common parts
and establish Upstream-Downstream relation-
ships, or c) move commonalities to one of the
two Bounded Contexts and create an Upstream-
Downstream relationship between the two.

Inline
Bounded
Context to
Partner-
ship

Reference
to Bounded
Context

Analog to Inline Bounded Context to Shared Ker-
nel this would be the inverse refactoring to op-
tion b) of Suspend Partnership. Instead of ex-
tracting the Partnership’s commonalities into
a new Bounded Context, this AR would create
a Partnership from an existing Bounded Con-
text which is upstream within two Upstream-
Downstream relationships.

FIGURE 3.3: Extract Shared Kernel and Inline Bounded Context to
Shared Kernel

28 Chapter 3. Analysis of the Modeling Framework Components

Figure 3.3 and Figure 3.4 illustrate the idea behind the described AR candidates
in Table 3.5 graphically. If the user selects option b) in Suspend Partnership,
the two scenarios with extract and inline are basically the same for the Shared
Kernel and the Partnership case.

The cases a) and b) of Suspend Partnership are not illustrated graphically at
this point since they are trivial (illustration available in AR summary later in
this chapter). Case a) would lead to the same result as applying the already
existing AR Merge Bounded Contexts. Case c) on the other hand would simply
replace the Partnership relationship with an Upstream-Downstream relation-
ship.

FIGURE 3.4: Suspend Partnership and Inline Bounded Context to
Partnership

These AR candidates would not only transform Context Map relationships but
also change the structure of the decomposition as Figure 3.3 and Figure 3.4
clearly illustrate. Thus, they would belong to our structural refactorings cate-
gory. Table 3.6 on the other hand presents relationship refactorings which do not
change the decomposition.

TABLE 3.6: Relationship AR Candidates

AR Name Parameters Description
Change
Shared Ker-
nel to Part-
nership

Reference
to Shared
Kernel

This AR changes the type of a relationship
from Shared Kernel to Partnership.

Change
Partnership
to Shared
Kernel

Reference to
Partnership

This AR changes the type of a relationship
from Partnership to Shared Kernel.

Change
Upstream-
Downstream
to
Customer-
Supplier

Reference to
Upstream-
Downstream
relationship

This AR changes the type of a relationship
from Upstream-Downstream to Customer-
Supplier. Note that the AR has to ensure that
there are no conflicts with the relationship
patterns and our semantic rules [50]. For
example, the OHS pattern is not allowed in a
Customer-Supplier relationship according to
our semantics.

3.3. Architectural Refactoring (AR) Selection 29

TABLE 3.6: Relationship AR Candidates (continued)

AR Name Parameters Description
Change
Customer-
Supplier
to generic
Upstream-
Downstream

Reference to
Customer-
Supplier
relationship

This AR changes the type of a relation-
ship from Customer-Supplier to a generic
Upstream-Downstream relationship.

Although the refactorings listed by Table 3.6 may appear to be simple, the pro-
ductivity of our modeling framework users can still be improved if such mi-
nor changes are automated. Transforming the relationships manually can be
error-prone and take more time. Additional refactorings could be proposed to
change the relationship patterns (OHS, PL, Anticorruption Layer (ACL), CF)
and increase the refactoring support even more. Since the amount of refactor-
ings which we could implement during this thesis project was limited, we had
to concentrate on the refactorings listed above. Adding and removing the men-
tioned relationship patterns in CML is quite simple, even when done manually.

3.3.3 AR Selection

Because our implementation capacities were limited we had to select three to
four refactorings for our prototypic implementation in Context Mapper. Other
refactorings could be realized in future projects. The following criteria deter-
mined our AR selection.

• Relevance in practice: ARs which are likely to be applied more often than
others should be prefered.

• Generality: Both our AR categories shall be covered. In addition, if the
selected ARs for our prototype have been implemented, the remaining
ARs can be realized in a similar way.

• Usability: We chose ARs which increase the usability for users the most.
This means that we realize those ARs for which the manual changes are
the most complex.

According to the criteria listed above we decided to realize the following ARs
as part of this thesis project:

• AR-8: Extract Shared Kernel (structural)

• AR-9: Suspend Partnership (structural)

• AR-10: Change Shared Kernel to Partnership (relationship)

• AR-11: Change Partnership to Shared Kernel (relationship)

Considering that our scope allowed us to choose three to four ARs it made
sense to realize at least two structural refactorings due to the higher complex-
ity. The relationship refactorings are all similar with respect to implementa-
tion (generality). Out of the structural candidates in Table 3.5 we decided to

30 Chapter 3. Analysis of the Modeling Framework Components

realize Extract Shared Kernel and Suspend Partnership and not the correspond-
ing inverses. This decision is based on the relevance in practice criterion. Since
the Shared Kernel und Partnership relationships are very close relationships
and the coupling between these contexts is typically higher in comparison to
Upstream-Downstream relationships, we believe that it is more likely that ar-
chitects want to reduce this kind of relationships rather than introduce them.
These two refactorings tend to reduce coupling whereas the inverses do the
opposite.

The selection of relationship refactorings out of the candidates in Table 3.6
is more difficult since we assessed them all equally with respect to the criteria
mentioned above. We finally selected AR-10 and AR-11 since they refactor
Shared Kernels and Partnerships as well. The selection results in a suitable
set of ARs which offers more refactoring possiblities for the user. Especially,
changing a Shared Kernel to a Partnership relationship opens the possibility to
apply all three options (a, b and c) of Suspend Partnership to get rid of the tight
relationship and reduce the coupling. Overall we assumed that removing tight
relationships and therefore refactor Shared Kernels and Partnerships suits both
the relevance in practice as well as the usability criterion.

3.3.4 AR Summaries

We finish this section about the ARs by providing summaries of the selected
ones which have been implemented as part of this thesis. Note that the pattern
summaries providing context, motivation, solution, and effects of all ARs in
Context Mapper can be found online12 as well as in Appendix B.

AR-8: Extract Shared Kernel

Context: A Shared Kernel describes an intimate relationship in which two
Bounded Contexts share a part of their domain model. This shared model part
is typically implemented in a shared library used by both Bounded Contexts.
This kind of relationship leads to a higher coupling in comparison with other
relationship types such as Upstream-Downstream.

Motivation: A Shared Kernel leads to interdependencies between two teams
and may come with undesired coupling. Changes within the shared model
parts may influence both development teams in the relationship. If we strive
for clear responsibilities [74] and team autonomy [64], we may want to reduce
the coupling between teams. This AR can be applied in such a case if the Shared
Kernel reaches a size where the common model part can also be seen as a sep-
arate Bounded Context.

Solution and Effect: If the Shared Kernel model part between two teams is
getting big and costly to maintain, it might be a solution to build a separate
Bounded Context and team for this domain model. This AR creates a new
Bounded Context for the Shared Kernel and establishes Upstream-Downstream
relationships between the new context and the existing ones. The resulting
Upstream-Downstream relationships replacing the Shared Kernel may improve

12https://contextmapper.org/docs/architectural-refactorings/

https://contextmapper.org/docs/architectural-refactorings/

3.3. Architectural Refactoring (AR) Selection 31

the coupling between the contexts and the cohesion within them. Figure 3.5 il-
lustrates the transformation.

FIGURE 3.5: AR-8: Extract Shared Kernel

Inverse ARs: The inverse AR to AR-8: Extract Shared Kernel has not been im-
plemented yet. Previously in this chapter we briefly described how the inverse
refactoring would work.

AR-9: Suspend Partnership

Context: A Partnership relationship describes another intimate relationship
between two Bounded Contexts and/or development teams. In comparison
to the Shared Kernel however, it does not have to be the case that the teams
share parts of their domain models. The intimacy in a Partnership is defined
by interdependent features and a joint management of planning and integra-
tion. The organizational and feature-related interdependencies between the
two teams leads to a situation where both teams can either only fail or suc-
ceed together. New developments and releases must always be coordinated
between the teams.

Motivation: The interdependencies between the two teams in a Partnership
may lead to an undesired coupling and increased inter-team coordination and
communication to keep the product stable. To develop clear responsibilities
[74] and team autonomy [64] it might be necessary to decouple the teams and
suspend the Partnership. This AR can be applied if the coupling between two
teams is getting cumbersome and the Partnership must be suspended.

Solution and Effect: If the coupling between two teams in a Partnership re-
lationship must be reduced the Suspend Partnership refactoring can be applied.
This AR offers three options to get rid of the Partnership:

(a) Merge the two Bounded Contexts: if the teams are small enough and the
coupling very high, merging the Bounded Contexts might be the right
solution. This option corresponds to AR-7: Merge Bounded Contexts.

(b) Extract a new Bounded Context for tightly coupled model parts and es-
tablish Upstream-Downstream relationships: if the Partnership is mainly
defined by a common part of the domain models, the Partnership can be
suspended in the same way as AR-8: Extract Shared Kernel works.

32 Chapter 3. Analysis of the Modeling Framework Components

(c) Replace the Partnership with an Upstream-Downstream relationship: an-
other solution might be that one of the two teams takes over the respon-
sibilities of the common or highly coupled parts. This way one can estab-
lish an Upstream-Downstream relationship. Note that this option may
move responsibilities and reduce the influence of the new downstream
team.

Figure 3.6 illustrates the three possible solutions to suspend a Partnership of-
fered by this AR.

FIGURE 3.6: AR-9: Suspend Partnership

Inverse ARs: Although we briefly described the inverse AR to AR-9: Suspend
Partnership previously in this chapter, it has not yet been implemented.

Since the relationship refactorings are very simple in comparison to the struc-
tural ones, we only provide short summaries for them.

AR-10: Change Shared Kernel to Partnership

Our relationship refactorings allow the user/modeler to change the type of a
relationship on a Context Map easily without manual work. The symmetric

3.4. Graphical DDD Context Map Tool Evaluation 33

relationships according to our semantic model [46], Shared Kernel and Part-
nership, are interchangeable without impacts to the structure of the decompo-
sition. This refactoring changes a Shared Kernel relationship to a Partnership
relationship.

Inverse ARs: The result of AR-10: Change Shared Kernel to Partnership can be
inverted by applying AR-11: Change Partnership to Shared Kernel.

AR-11: Change Partnership to Shared Kernel

Similar to AR-10, Shared Kernels and Partnerships are interchangeable with-
out impacts to the structure of the decomposition. This refactoring changes a
Partnership relationship to a Shared Kernel relationship.

Inverse ARs: The inverse AR of AR-11: Change Partnership to Shared Kernel is
AR-10: Change Shared Kernel to Partnership.

After having conceptualized the additional ARs proposed by this thesis, we
will discuss graphical tools for the Context Map generator in the next section
and decide which one shall be used in the prototypic implementation.

3.4 Graphical DDD Context Map Tool Evaluation

The modeling framework has been extended by a Context Map generator that
transforms a CML Context Map into a graphical representation. We already
created graphical Context Maps to illustrate the examples in our previous work
[46] and in our examples repository13 manually. Figure 3.7 shows the Context
Map of our fictitious insurance example [46].

FIGURE 3.7: Graphical Context Map Example [46]

This graphical representation of a Context Map is inspired by the illustrations
of Vernon [98] and Brandolini [10]. The Context Map generator of our DDD
modeling framework produces such graphical representations automatically.
A graphical library or tool had to be evaluated in order to realize the generator.

13https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

34 Chapter 3. Analysis of the Modeling Framework Components

3.4.1 Tool Evaluation

Since a Context Map such as the one illustrated in Figure 3.7 is basically a graph
and one of our objectives was to avoid dealing with layout algorithms, we
focused on graph visualization tools. Some visualization and diagram tools
require to create the layout manually. Implementing our own layout algo-
rithm would have exceeded the scope of this thesis. Table 3.7 lists the potential
tool candidates for implementing our generator. Since Context Mapper [15] is
implemented in Java we only list libraries which provide an Application Pro-
gramming Interface (API) for this programming language.

TABLE 3.7: Graph Visualization Tools

Tool Description License
yFiles14 [101] yFiles provides a set of powerful diagram-

ming libraries which allow to create diagrams
with the help of automatic layout algorithms.
Besides Java it supports the creation of their
diagrams with .NET and HTML.

Commer-
cial

Gephi15 [5] Gephi is an open source tool for visualization
and exploration of graphs. Its goal is to help
data analysts and scientists to analyze graph-
based data.

CDDL-
1.0 and
GNU
GPLv3

Graphviz16

[30]
Graphviz is an open source graph visualiza-
tion software. In comparison with others it
is not only used to vizualize simple graphs
and networks, it also has applications in soft-
ware engineering tools. PlantUML [72] is one
example using Graphviz to create its UML di-
agrams. Other architecture visualization tools
such as Structurizr [91] export diagrams to the
Graphviz format as well.

CPL-1.0

JUNG17 [44] JUNG provides a language for the modeling,
analysis, and visualization of data that can be
represented as a graph or network.

BSD
license

Prefuse18 [40] Prefuse calls itself a software tool for creat-
ing rich interactive data visualizations in the
Java programming language. It supports data
structures such as tables, graphs, and trees. It
further provides layout and visual encoding
techniques.

BSD
license

Note that there are many more libraries for web technologies and browser ap-
plications which we have not listed due to our Java context. We further omitted

14https://www.yworks.com/products/yfiles
15https://gephi.org/
16http://www.graphviz.org/
17http://jung.sourceforge.net/
18https://github.com/prefuse/Prefuse

https://www.yworks.com/products/yfiles
https://gephi.org/
http://www.graphviz.org/
http://jung.sourceforge.net/
https://github.com/prefuse/Prefuse

3.4. Graphical DDD Context Map Tool Evaluation 35

tools which only support graph representations in a mathematical sense and do
not provide the needed graphical features.

We finally decided to use the Graphviz [30] tool based on graphical features,
future-orientation, and licences as our main decision drivers. yFiles [101] would
be a very powerful alternative but it is a commercial tool. Since we work on an
open source tool and want to use open libraries, yFiles is not an option. Gephi’s
[5] features focus on network visualization and offer less graphical features for
diagrams like we aim to produce in comparison with Graphviz. JUNG [44] and
Prefuse [40] both seem to be inactive projects with the last releases in 2010 and
2007. They do not fulfill our requirements regarding future-orientation (also see
Non-Functional Requirements (NFRs) in Chapter 2).

Graphviz is a very active project, licenced under the The Common Public Li-
cense 1.019, and offers enough features to generate a Context Map which at least
comes close to the graphical representation in Figure 3.7. It is further used by
many other open source software engineering tools, one of which is PlantUML
[72]. In addition, its DOT language20 is supported by other visualization tools
and web-based graph editors.

Within this chapter we analyzed the individual Bounded Contexts (compo-
nents) of our modeling framework, researched potential realization strategies,
and documented the required design and scope decisions for the implemen-
tation of the prototypes in Context Mapper. The next chapter discusses the
design and implementation of the individual components in Context Mapper
in detail. It further explains how the interfaces between the framework com-
ponents are designed and implemented.

19http://www.graphviz.org/license/
20https://www.graphviz.org/doc/info/lang.html

http://www.graphviz.org/license/
https://www.graphviz.org/doc/info/lang.html

37

Chapter 4

Context Mapper: Design and
Implementation

The Context Mapper open source project1 [15] represents the prototypic im-
plementation of the modeling framework proposed by this thesis. The Con-
text Mapper DSL (CML) language, which is the core of the modeling frame-
work, has been developed as part of the first term project [46]. In addition, the
PlantUML [72] generator and a Service Cutter [35] input file generator were al-
ready exising before this thesis. With the second term project [50] we added the
first Architectural Refactorings (ARs) and the Microservices Domain-Specific
Language (MDSL) generator to the tool.

This chapter discusses all changes and newly implemented framework com-
ponents which are part of this thesis in detail. It explains the design and im-
plementation of new components and documents improvements realized in
existing ones according to our validation activities.

4.1 Component Overview

In Chapter 1, we already provided an overview of the framework components
and introduced the functionalities. Before we explain the implementation de-
tails of the individual components, Figure 4.1 shows them again as a Unified
Modeling Language (UML) component diagram.

The core component exposes the semantic model of the Domain-specific
Language (DSL) [27] as a Published Language (PL) [24, 25]. The other compo-
nents use this model to process, generate, or transform CML models. The dis-
covery library generates CML models out of existing source code. It generates
code that always conforms with the model of the core. The structured service
decomposition component based on Service Cutter [36] uses CML models as
input and output. It generates other Context Maps (decompositions) of exist-
ing models and therefore uses the exposed model of the core to read and write
CML models. The ARs which are implemented as model transformations for
the DSL [49] are technically tightly coupled to the language model. Thus, the
semantic model of the language can be seen as a Shared Kernel in this case. The
generators consume the exposed model of the core to generate other represen-
tations, currently PlantUML [72] diagrams, graphical Context Maps, Service
Cutter [35] input files, and MDSL contracts, out of the CML models. While the

1https://contextmapper.org/

https://contextmapper.org/

38 Chapter 4. Context Mapper: Design and Implementation

discovery library simply conforms to the language model, the structured ser-
vice decomposition and generator components have minimal influence to the
design of the core language.

FIGURE 4.1: Context Mapper Framework Overview
(UML Component Diagram Generated by Context Mapper)

The next sections explain the design and implementation of all modeling frame-
work components as they are realized in the Context Mapper open source
project.

4.2 Core: Context Mapping DSL (CML)

Please note that this report does not explain the CML language syntax in detail.
We refer to our previous project reports [46, 50], the online documentation2,
and the language reference in Appendix A for syntax details.

Since the semantic model of the language [46] is important for all frame-
work components, we briefly introduce it again. Figure 4.2 illustrates this
model behind the CML language. A CML model contains a Context Map
with all relevant Bounded Contexts. A Bounded Context implements parts
of one or many Subdomains. Moreover, the Context Map models the rela-
tionships between the Bounded Contexts. We distinguish between symmetric
and Upstream-Downstream (asymmetric) relationships. The Domain-driven
Design (DDD) patterns, Partnership and Shared Kernel, represent symmetric re-
lationships whereas Customer-Supplier and Generic Upstream-Downstream rela-
tionships are asymmetric. The relationship patterns Published Language (PL)

2https://contextmapper.org/docs/

https://contextmapper.org/docs/

4.2. Core: Context Mapping DSL (CML) 39

and Open Host Service (OHS) can be used on the upstream side in Upstream-
Downstream relationships. Anticorruption Layer (ACL) and Conformist on the
downstream side respectively.

FIGURE 4.2: Context Mapper DSL (CML) Semantic Model [46]

The language further allows to specify the domain model within a Bounded
Context on the basis of the Sculptor [83] syntax. However, we will introduce
this part of the language model later.

4.2.1 Language Core Changes

The following Table 4.1 lists all changes to the core component which have been
implemented during this thesis. These improvements have been identified by
the validation activities during the previous project [50] and action research [4]
during this thesis.

40 Chapter 4. Context Mapper: Design and Implementation

TABLE 4.1: Changes in the Core Component
(Modeling Language)

Change Description
1 Standalone DSL

usage
The DSL is now published as standalone library
as well. Therefore it cannot only be used within
our Eclipse plugin, but can be integrated in any
Java application.

2 Adjusted relation-
ship grammar

The relationship syntax of CML has been adapted
so that the U for upstream and the D for down-
stream or complete brackets in Upstream-
Downstream relationships can be omitted.

3 Limited scope to
single file

The scoping regarding object references in CML
models was not correct if multiple files were used
(referencing objects in other CML files). Because
of this, we limited the scope of a single CML
model to references within the same file for now.

4 Refining Bounded
Contexts

A new keyword «refines» has been introduced
which allows to specify that a Bounded Context
refines another one (like an inheritance mecha-
nism).

5 Implementing do-
mains

Bounded Contexts can implement a complete do-
main now. So far the user had to reference a list of
subdomains.

6 Domain Vision
Statement on do-
main

Not only subdomains can have Domain Vision
Statements, but the surrounding domain as well.

7 Optional equality
sign

The equality sign («=») which is used to assign
attribute values is optional now.

The following sections explain the two major changes from the list above (#1
and #2) in detail. The other minor changes are further documented in the online
documentation3 or the language reference in Appendix A.

Standalone CML Usage (1)

Up to now, we provided the usage of the CML language within our Eclipse
plugin only. With this project we have adjusted the publication process so that
the language core is published as standalone Java library to the Maven central4

as well. The library also includes the ARs and generators. Consequently, it is
possible to parse, read, and refactor CML models in any Java application. On
top of that, it is possible to use our generators with the library. It can also be
used as a foundation for the implementation of other Integrated Development
Environment (IDE) plugins or Command Line Interfaces (CLIs).

The following Listing 1 illustrates how the standalone library can be used
to parse CML code and read data from a model.

3https://contextmapper.org/docs/
4https://repo1.maven.org/maven2/org/contextmapper/context-mapper-dsl/

https://contextmapper.org/docs/
https://repo1.maven.org/maven2/org/contextmapper/context-mapper-dsl/

4.2. Core: Context Mapping DSL (CML) 41

1 public static void main(String[] args) throws IOException {

2 // Setup and loading CML file:

3 ContextMappingDSLStandaloneSetup.doSetup();

4 Resource resource = new ResourceSetImpl()

5 .getResource(URI.createURI("./src/main/cml/Example-Model.cml"), true);

6 ContextMappingModel model = (ContextMappingModel) resource.getContents().get(0);

7

8 // We search for a Bounded Context ... (read model)

9 BoundedContext customerManagementBC = model.getBoundedContexts().stream()

10 .filter(bc -> bc.getName().equals("CustomerManagementContext")).findFirst().get();

11

12 // ... and add a new Aggregate to it (example change to the model)

13 Aggregate newAggregate = ContextMappingDSLFactory.eINSTANCE.createAggregate();

14 newAggregate.setName("New_Aggregate");

15 customerManagementBC.getAggregates().add(newAggregate);

16

17 // unparse model: saving changes in CML file

18 resource.save(SaveOptions.defaultOptions().toOptionsMap());

19 }

LISTING 1: Standalone CML Library Usage in Java

The example further shows how one can change the model and serialize the
changes back to the CML file. The additional Listing 2 demonstrates how a
generator, in this case the PlantUML generator, can be used on a given CML
resource.

1 public static void main(String[] args) {

2 // Setup and loading CML file:

3 ContextMappingDSLStandaloneSetup.doSetup();

4 Resource resource = new ResourceSetImpl()

5 .getResource(URI.createURI("./src/main/cml/Example-Model.cml"), true);

6

7 // Create the PlantUML generator

8 PlantUMLGenerator generator = new PlantUMLGenerator();

9

10 // Generate the UML diagrams into 'src-gen'

11 JavaIoFileSystemAccess javaIoFileSystem = FileSystemHelper.getFileSystemAccess();

12 javaIoFileSystem.setOutputPath("./src-gen");

13 generator.doGenerate(resource, javaIoFileSystem, new GeneratorContext());

14 }

LISTING 2: Standalone CML Library: Generator Example

An extensive set of examples on how to use CML standalone can be found in
our standalone example project5. It further shows how to use the Xtext [23] build
plugins in Gradle6 or Maven7 in order to compile and validate CML models
during the build of a project.

Adjusted Relationship Grammar (2)

The second major change in the core component is an adjustment of the rela-
tionship grammar. Listing 3 illustrates a CML Context Map with an Upstream-
Downstream relationship.

5https://github.com/ContextMapper/context-mapper-standalone-example
6https://github.com/xtext/xtext-gradle-plugin/
7https://github.com/xtext/maven-xtext-example/

https://github.com/ContextMapper/context-mapper-standalone-example
https://github.com/xtext/xtext-gradle-plugin/
https://github.com/xtext/maven-xtext-example/

42 Chapter 4. Context Mapper: Design and Implementation

This example corresponds to the syntax as implemented in our previous
projects [46, 50]. The declaration of the relationship is still valid with the cur-
rent version of CML.

1 ContextMap InsuranceExampleContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 /* Add bounded contexts to this context map: */

6 contains PrintingContext

7 contains PolicyManagementContext

8

9 /* Define the context relationships: */

10 PrintingContext [U,OHS,PL]->[D,ACL] PolicyManagementContext

11 }

LISTING 3: CML: Upstream-Downstream Example

However, users who worked with the language repeatedly mentioned the re-
dundancy of the upstream and downstream declaration in this syntax. To sim-
plify this example Listing 4 shows the same relationship declaration without
the relationship patterns (OHS, PL, ACL).

1 PrintingContext [U]->[D] PolicyManagementContext

LISTING 4: CML: Upstream-Downstream Example Simplified

The redundancy in this declaration is given by the fact that the arrow must
always point from the upstream towards the downstream, since it represents the
influence flow [73]. Although we believe this example may be easier to read
for users, it is clear that the declaration does not lose information if the U and
the D are omitted. The arrow already specifies which Bounded Context is the
upstream and which one is the downstream.

Thus, we decided to adjust the grammar and make the U and the D op-
tional. The declaration in Listing 5 can be parsed as well and is semantically
the same declaration as the one in Listing 4.

1 PrintingContext -> PolicyManagementContext

LISTING 5: CML: Upstream-Downstream Adjusted Syntax (1)

Note that this declaration requires a higher awareness regarding the meaning
of the arrow among new users or model readers. A user who is aware of the
meaning of the U and D was able to derive the meaning of the arrow in the
original version in Listing 3. With this adjustment we reduce redundancy but a
user must have a clear understanding what the arrow means now. It could be
misinterpreted as «the PrintingContext uses/calls the PolicyManagementContext»,
which is not the case here.

If we add the relationship patterns from the original Listing 3 again and still
ommit the U and D we get the declaration in Listing 6.

4.2. Core: Context Mapping DSL (CML) 43

1 PrintingContext [OHS,PL]->[ACL] PolicyManagementContext

LISTING 6: CML: Upstream-Downstream Adjusted Syntax (2)

This situation required another adjustment of the grammar behind Upstream-
Downstream relationships since a user may want to add patterns on one side
of the arrow only. Therefore, it is now possible to add only one bracket beside
the arrow as the examples in Listing 7 illustrate.

1 PrintingContext [OHS,PL]-> PolicyManagementContext

2

3 PrintingContext ->[ACL] PolicyManagementContext

LISTING 7: CML: Upstream-Downstream Adjusted Syntax (3)

This flexibility made it necessary to limit the possibilities regarding the place-
ment of the brackets, otherwise it would have become too difficult to parse
the relationship declarations. Before the adjustment it was possible to place
the brackets either on the left side or on the right side of the Bounded Context
name. Therefore all alternatives illustrated in Listing 8 were allowed.

1 PrintingContext [U]->[D] PolicyManagementContext

2

3 // deprecated:

4 [U]PrintingContext -> [D]PolicyManagementContext

5

6 // deprecated:

7 PrintingContext[U] -> PolicyManagementContext[D]

8

9 // deprecated:

10 [U]PrintingContext -> PolicyManagementContext[D]

LISTING 8: CML: Upstream-Downstream Deprecated Bracket
Placements

As the listing points out, only the first alternative with the brackets immedi-
ately on the left and/or on the right side of the arrow is still supported. The
other options introduced in our previous project [50] no longer compile in our
latest releases. The same changes apply to Customer-Supplier relationships.

Note that it is still possible to use the U and the D within the brackets, as it
was supported before. From our perspective it can increase the readability of
the models for users which are new to the language.

After the overview over the changes within the core component the next
sections introduces the new components of the proposed modeling framework
implemented during this thesis.

44 Chapter 4. Context Mapper: Design and Implementation

4.3 Discovery Library for Reverse Engineering

With the discovery library we aim to provide an extensible tool to reverse en-
gineer CML models from existing source code. Users working in brownfield
projects shall be able to generate CML models of an existing system without
manual modeling work. As already explained in Chapter 3, the discovery li-
brary is designed in an extensible way so that different discovery strategies
can be implemented. Thus, it is possible to support various frameworks and
technologies.

4.3.1 Library Design

The UML class diagram illustrated in Figure 4.3 shows the fundamental design
of the library. The ContextMapDiscoverer is the main class to discover the model
from user perspective.

FIGURE 4.3: Discovery Library Design Overview

By using the method discoverContextMap it reverse engineers a ContextMap which
consists of BoundedContexts and Relationships. The ContextMapDiscoverer uses a
set of BoundedContextDiscoveryStrategy implementations to discover Bounded
Contexts and a set of RelationshipDiscoveryStrategy implementations to discover
the relationships between them. These two interfaces provide the extension
point to inject individual discovery strategies. Already implemented strategies
are introduced later in this chapter.

The BoundedContextNameMappingStrategy interface offers another extension
point to apply heuristics allowing to map dissimilar Bounded Context names.

4.3. Discovery Library for Reverse Engineering 45

These mapping strategies are used by the implemented discovery logic to as-
sign relationships to the correct Bounded Contexts. For example, a Bound-
edContextDiscoveryStrategy may discover two Bounded Contexts named Con-
text1 and Context2 while the RelationshipDiscoveryStrategy finds the relation-
ship between them with the names context-1 and context-2. By implementing a
corresponding BoundedContextNameMappingStrategy it is possible to map these
names and discover the relationship correctly.

The ContextMapSerializer finally allows to persist the discovered model in a
CML file. Therefore, a user can simply reverse engineer a CML model with the
following three steps:

1. Create and configure a ContextMapDiscoverer.

2. Call the discoverContextMap() method.

3. Create and persist a CML model by using the ContextMapSerializer.

Listing 9 illustrates a simple example how a library user can implement this in
Java.

1 public static void main(String[] args) throws IOException {

2 // configure discoverer with discovery strategies (1)

3 ContextMapDiscoverer discoverer = new ContextMapDiscoverer()

4 .usingBoundedContextDiscoveryStrategies(

5 new SpringBootBoundedContextDiscoveryStrategy("org.example.app"))

6 .usingRelationshipDiscoveryStrategies(

7 new DockerComposeRelationshipDiscoveryStrategy(new File("/source/example-app/")))

8 .usingBoundedContextNameMappingStrategies(

9 new DefaultNameMappingStrategy());

10

11 // discover context map (2)

12 ContextMap contextmap = discoverer.discoverContextMap();

13

14 // save CML file (3)

15 new ContextMapSerializer().serializeContextMap(contextmap,

16 new File("./src-gen/example-model.cml"));

17 }

LISTING 9: Discovery Library: Simple Usage Example

4.3.2 Discovery Model and Mapping to CML

A BoundedContextDiscoveryStrategy can discover much more than just a Bounded
Context with a name. The implemented discovery model allows to derive Ag-
gregates with Entities and Value Objects as well. Those domain objects can
contain attributes, references to other domain objects, and methods. With our
approach, it depends on the implementation of the BoundedContextDiscoveryS-
trategy how much details of the Bounded Contexts are discovered. Figure 4.4
illustrates the current version of the discovery model. The discovery strategy
implementations return the discovered data as an instance of this meta-model.

46 Chapter 4. Context Mapper: Design and Implementation

FIGURE 4.4: Discovery Model: Information Reverse
Engineered by Discovery Strategies

The ContextMapSerializer implementation finally maps this model to the CML
language model. As already mentioned ealier, the grammar and semantic
model of the tactic DDD part within CML is based on Sculptor [83]. The fol-
lowing Figure 4.5 shows both models, the discovery model and the tactic CML
model, and illustrates how the ContextMapSerializer of the discovery library
maps the elements. Note that the CML model in Figure 4.5 is extremely sim-
plified due to space limitations.

Since the model of the discovery library is already based on the DDD pat-
terns, many objects such as ContextMap, BoundedContext, and Aggregate map
naturally to their counterparts. However, within the discovery library we only
detect asymmetric Upstream-Downstream relationships, since the detection of
Partnerships or Shared Kernels would be difficult. Thus, the Relationship of the
discovery model maps to the UpstreamDownstreamRelationship in CML. The tac-
tical part to detect the domain model within a Bounded Context is kept simple
within the discovery model. With the current version, it is possible to detect En-
tities and Value Objects only. Many other domain object types inheriting from

4.3. Discovery Library for Reverse Engineering 47

DomainObject in CML are not depicted in Figure 4.5 since we do not support
the detection.

FIGURE 4.5: Discovery Model to CML Mapping

DomainObject’s of the types ENTITY or VALUE_OBJECT naturally map to the
corresponding types in CML. Just like the CML meta-model, the discovery li-
brary supports Attribute’s, Reference’s, and Method’s (DomainObjectOperation’s
in CML) within the domain objects. Thus, the mapping between these ele-
ments is trivial. A discovered CML code example is presented later in our case
study (Section 4.3.4).

4.3.3 Discovery Strategies

After having seen what output the discovery strategies produce (model ex-
plained above) this section discusses the already implemented strategies. In
Chapter 3 we explained the selection process and decided to realize the follow-
ing two strategies as part of the prototype implemented during this thesis:

1. Bounded Context discovery including domain model for Spring Boot [71]
applications.

2. Relationship discovery on the basis of Docker «Compose» [19].

48 Chapter 4. Context Mapper: Design and Implementation

Figure 4.6 illustrates the implemented strategies as a UML class diagram.

FIGURE 4.6: Implemented Discovery Strategies (Prototype)

Spring Boot Bounded Context Discovery

With the SpringBootBoundedContextDiscoveryStrategy we provide a first proto-
type to discover Bounded Contexts including Aggregates, Entities, Value Ob-
jects, and corresponding attributes and methods. Many microservice projects
use Spring Boot [71] to realize individual services [92]. Since one service in
a microservice architecture corresponds to the idea of a Bounded Context on a
DDD Context Map, we create one Bounded Context for each discovered Spring
Boot [71] application accordingly.

This discovery strategy is based on Java runtime metadata analysis with the
reflections library8 and the Java reflection Application Programming Interface
(API)9.

A Spring Boot [71] application can be identified by the SpringBootApplica-
tion annotation. By using the mentioned reflections library we scan for those
annotations on the classpath to find the individual Bounded Contexts. Note
that the user who wants to analyze a microservice application based on Spring

8https://github.com/ronmamo/reflections
9https://www.oracle.com/technical-resources/articles/java/javareflection.html

https://github.com/ronmamo/reflections
https://www.oracle.com/technical-resources/articles/java/javareflection.html

4.3. Discovery Library for Reverse Engineering 49

Boot [71] must add all corresponding service classes to the Java classpath of the
analysis application using our discovery library.

Table 4.2 summarizes how we detect the elements of the discovery model
by using the Spring annotations. The following examples illustrate the behav-
ior in detail.

TABLE 4.2: Spring Annotations to Discovery Model Mapping

Annotation / Code Element Resulting Object in Discovery Model
@SpringBootApplication Bounded Context
@RequestMapping on class Aggregate with one «aggregate root»

Entity
@RequestMapping, @GetMap-
ping, @PostMapping, @PutMap-
ping, @PathMapping, and
@DeleteMapping on methods

Method in «aggregate root» Entity

Parameters in discovered meth-
ods above

Domain object of type Value Object

Return type in discovered meth-
ods above

Domain object of type Value Object

Listing 10 shows an example Java class annotated with the SpringBootApplica-
tion annotation.

1 @SpringBootApplication

2 public class DiscoveryExampleApplication {

3 public static void main(String[] args) {

4 SpringApplication.run(DiscoveryExampleApplication.class, args);

5 }

6 }

LISTING 10: Example Spring Boot Application

Having this class on the classpath, our library would create a Bounded Context
called «DiscoveryExample». The name of the Bounded Context is derived from
the annotated class. If the class name ends with «Application», we remove this
ending from the Bounded Context name.

Once we have discovered the application, we scan the given Java package
for RESTful HTTP resources. These resources can be found by searching for
Spring annotations again. Listing 11 and Listing 12 show an example class
representing such a resource implemented for the Spring framework.

1 @RestController

2 @RequestMapping({"/customers"})

3 public class CustomerInformationHolder {

4

5 @PutMapping({"/{customerId}/address"})

6 public ResponseEntity<Address> changeAddress(@PathVariable CustomerId customerId,

7 @RequestBody Address requestDto) {

LISTING 11: Example Spring RESTful HTTP Resource (1)

50 Chapter 4. Context Mapper: Design and Implementation

8 // just an example operation...

9 }

10

11 @GetMapping({"/{customerId}/"})

12 public ResponseEntity<Customer> getCustomer(@PathVariable CustomerId customerId) {

13 // just an example operation...

14 }

15

16 @GetMapping({"/{customerIds}/"})

17 public ResponseEntity<List<Customer>> getCustomers(

18 @PathVariable List<CustomerId> customerIds) {

19 // just an example operation...

20 }

21

22 }

LISTING 12: Example Spring RESTful HTTP Resource (2)

The example illustrates the Java annotations used to discover resources and
operations. The RequestMapping annotation on the class allows us to find the
resource for which we would create a «customers» Aggregate (name is derived
from resource path). By searching for RequestMapping, GetMapping, PostMap-
ping, PutMapping, PatchMapping, and DeleteMapping annotations on methods,
we find the operations within the resource. A «root» Entity is created within
each Aggregate derived from the resources. This «root» Entity will contain
methods derived from the operations of the resource. From the example in
Listing 11 and Listing 12 we would derive a «root» Entity with the methods
changeAddress, getCustomer, and getCustomers.

In addition, this discovery strategy derives Value Objects for all Data Trans-
fer Objects (DTOs) [28] appearing in the operation parameters and return types
(currently non-recursive). Listing 13 and Listing 14 show example CML code
which would be discovered assuming the Spring Boot [71] application in List-
ing 10 contains the RESTful HTTP resource illustrated in Listing 11 and Listing
12 within the same package or a sub-package.

1 ContextMap {

2 contains DiscoveryExample

3

4 }

5

6 BoundedContext DiscoveryExample {

7 implementationTechnology "Spring Boot"

8

9 // This Aggregate has been created on the basis of the RESTful HTTP controller

10 // org.contextmapper.discovery.example.CustomerInformationHolder.

11 Aggregate customers {

12 // This value object has been derived from the class

13 // org.contextmapper.discovery.example.Address.

14 ValueObject Address {

15 String city

16 int plz

17 String street

18 List<String> arrayTest

19 }

LISTING 13: Example Discovery Result in CML (1)

4.3. Discovery Library for Reverse Engineering 51

20 // This value object has been derived from the class

21 // org.contextmapper.discovery.example.CustomerId.

22 ValueObject CustomerId {

23 String id

24 }

25 // This value object has been derived from the class

26 // org.contextmapper.discovery.example.Customer.

27 ValueObject Customer {

28 - List<Address> addressList

29 - CustomerId id

30 }

31 Entity customers_RootEntity {

32 aggregateRoot

33 def @Customer getCustomer(@CustomerId arg0);

34 def @Address changeAddress(@CustomerId arg0, @Address arg1);

35 def List<@Customer> getCustomers(List<@CustomerId> arg0);

36 }

37 }

38 }

LISTING 14: Example Discovery Result in CML (2)

The discovered Bounded Context contains the «customers» Aggregate with a
«root» Entity. The Entity contains the three methods which are derived from
the resource operations illustrated in Listing 11 and Listing 12. The parame-
ter and return types are modeled as Value Objects. The generated comments
help the user to understand from which classes in the original source code the
individual Aggregates and Value Objects have been derived.

In this example we used only the SpringBootBoundedContextDiscoveryStrat-
egy to reverse engineer a Bounded Context. Thus, the Context Map does not
contain any relationships between contexts. The following section presents our
prototypic discovery strategy to reverse engineer such relationships between
(micro-)services (Bounded Contexts).

Docker «Compose» Relationship Discovery

As discussed in Chapter 3, Docker «Compose» [19] is often used in microser-
vice projects to run all the services within Docker containers [20]. To start and
manage the services correctly, Docker «Compose» [19] must know the depen-
dencies between the services. They are configured in a docker-compose.yml file
in the YAML Ain’t Markup Language (YAML) format.

With the DockerComposeRelationshipDiscoveryStrategy we provide a proto-
typic implementation for a Context Map relationship discovery in projects us-
ing Docker «Compose» [19]. The discovery library always applies Bounded-
ContextDiscoveryStrategy’s first. After that, all RelationshipDiscoveryStrategy’s
are applied. The relationship strategies can only find relationships between
Bounded Contexts which have been previously discovered by the Bounded
Context strategies. For example, we may discover Bounded Contexts based on
Spring Boot [71] and then find the relationships between these contexts with
the Docker «Compose» [19] configuration.

The following small example will illustrate how the strategy works. As-
sume there are two Spring Boot [71] applications already discovered with the
strategy explained before. The two applications in Listing 15 (simplification)
lead to the Bounded Contexts Microservice1 and Microservice2.

52 Chapter 4. Context Mapper: Design and Implementation

1 @SpringBootApplication

2 public class Microservice1 {

3 }

4

5 @SpringBootApplication

6 public class Microservice2 {

7 }

LISTING 15: Spring Boot Microservices (Simplified Example)

A docker-compose.yml file for this scenario could look like the one illustrated in
Listing 16. Important here is the depends_on attribute in the configuration of
microservice2.

1 version: "3"

2 services:

3 microservice1:

4 build: microservice1

5 image: example/microservice1

6 ports:

7 - "8080:8080"

8 microservice2:

9 build: microservice2

10 image: example/microservice2

11 depends_on:

12 - microservice1

13 ports:

14 - "8090:8090"

LISTING 16: docker-compose.yml Example File

The DockerComposeRelationshipDiscoveryStrategy will reverse engineer Upstream-
Downstream relationships in CML based on these dependency declarations.
Running the discovery with the two presented strategies and the inputs of List-
ing 15 and Listing 16 generates the following CML code shown in Listing 17.

1 ContextMap {

2 contains Microservice1

3 contains Microservice2

4

5 Microservice1 -> Microservice2

6 }

7

8 BoundedContext Microservice1 {

9 implementationTechnology "Spring Boot"

10 }

11

12 BoundedContext Microservice2 {

13 implementationTechnology "Spring Boot"

14 }

LISTING 17: Discovered Relationships Example (CML)

The listing shows the discovered relationship with Microservice1 as upstream
context and Microservice2 as downstream context. Remember that the relation-
ship arrow in CML illustrates the influence flow [73]. The current version of our
prototype simply discovers Upstream-Downstream relationships as illustrated

4.3. Discovery Library for Reverse Engineering 53

above. The discovery of additional relationship patterns such as Open Host
Service (OHS), Published Language (PL), Anticorruption Layer (ACL), or Con-
formist (CF) is not yet supported. The discovery library may be enhanced in
future projects to support the detection of such patterns.

The careful reader may have already noticed that the Bounded Context
names in the example above cannot be matched automatically. While the names
discovered by the Bounded Context strategy are Microservice1 and Microser-
vice2, the corresponding names in the docker-compose.yml file are microservice1
and microservice2 (upper vs. lower case). This leads us to the last extension
point of our discovery framework which allows to inject name mapping strate-
gies flexibly.

Bounded Context Name Mapping Strategies

The different discovery strategies in a reverse engineering process with our dis-
covery library may find the same Bounded Context with different names. The
example in the last section illustrates such a scenario. Different technologies,
in the case above Spring Boot [71] and Docker «Compose» [19], may configure
and represent the same service with varying names.

The BoundedContextNameMappingStrategy interface offers an extension point
to inject various name mapping strategies which help the ContextMapDiscoverer
to identify these Bounded Contexts. If you provide multiple name mapping
strategies, the current implementation will apply them all in the order of con-
figuration until a Bounded Context is found. If a relationship discovery strat-
egy cannot find a Bounded Context in the list of previously discovered contexts
it will ignore the relationship.

Table 4.3 explains the two already provided name mapping strategies im-
plemented as part of our prototype (see Figure 4.6). The second strategy has
been used in the example of the previous section to match the names that differ
with reference to capitalization of the first letter.

TABLE 4.3: Implemented Name Mapping Strategies
(Discovery Library)

Strategy Description
DefaultBoundedContext-
NameMappingStrategy

This is the default strategy used by the discov-
ery library. If no other strategy to map Bounded
Context names has been registered, this one will
be applied. This strategy maps names as they are
(basically no mapping).

SeparatorToCamelCase-
BoundedContext-
NameMappingStrategy

This strategy maps lower case strings which
use a separation character to camel case strings.
Example: The name my-example-service can be
mapped to MyExampleService by using the minus
sign («-») as separator.

54 Chapter 4. Context Mapper: Design and Implementation

4.3.4 Lakeside Mutual Case Study

We validated the discovery library by applying it on a microservice project.
The Lakeside Mutual10 project is a fictitious insurance company which serves
as a sample application to demonstrate microservices and the application of
Microservice API Patterns (MAP) [105]. We chose the project since it contains
several services based on Spring Boot [71] and also uses Docker «Compose»
[19]. Thus, it is suitable to validate the current state of the discovery library
with the provided discovery strategies.

Architecture Overview

Figure 4.7 shows the architecture of the Lakeside Mutual application as docu-
mented in their GitHub repository10.

FIGURE 4.7: Lakeside Mutual Architecture Overview [61]

From the components illustrated on this overview, we built and added the fol-
lowing to our classpath:

• Customer Core

• Customer Management Backend

• Customer Self-Service Backend

• Policy Management Backend

Frontends and services implemented with other technologies than Spring Boot
[71] can not be discovered at the moment. Thus, the architecture we are able to
discover with the current prototype simplifies to the one illustrated in Figure
4.8. Note that all relationships will be discovered as asymmetric Upstream-
Downstream relationships as specified in the Docker configuration. The Ac-
tiveMQ11 messaging channel between the Customer Self-Service Backend and the
Policy Management Backend might actually be a symmetric relationship as indi-
cated in Figure 4.8. To discover this detail we will have to implement another
discovery strategy specifically for this technology in future projects.

10https://github.com/Microservice-API-Patterns/LakesideMutual
11https://activemq.apache.org/

https://github.com/Microservice-API-Patterns/LakesideMutual
https://activemq.apache.org/

4.3. Discovery Library for Reverse Engineering 55

FIGURE 4.8: Lakeside Mutual: Discoverable Components

Discovery and Resulting CML Model

We used our discovery library to reverse engineer the components as illus-
trated above. The required source code to apply the library on the Lakeside
Mutual project is shown in Listing 18.

The SpringBootBoundedContextDiscoveryStrategy is used to detect Bounded
Contexts, while the DockerComposeRelationshipDiscoveryStrategy discovers the
relationships. For the name mapping we used an adjusted SeparatorToCamel-
CaseBoundedContextNameMappingStrategy. Since only the Docker «Compose»
[19] file uses the endings «Backend», we remove this part to map the names
with the Spring Boot [71] application names correctly.

1 public class LakesideMutualContextMapDiscoverer {

2 public static void main(String[] args) throws IOException {

3 ContextMapDiscoverer discoverer = new ContextMapDiscoverer()

4 .usingBoundedContextDiscoveryStrategies(

5 new SpringBootBoundedContextDiscoveryStrategy("com.lakesidemutual"))

6 .usingRelationshipDiscoveryStrategies(

7 new DockerComposeRelationshipDiscoveryStrategy(

8 new File(System.getProperty("user.home") + "/source/LakesideMutual/")))

9 .usingBoundedContextNameMappingStrategies(

10 new SeparatorToCamelCaseBoundedContextNameMappingStrategy("-") {

11 @Override

12 public String mapBoundedContextName(String s) {

13 // remove the "Backend" part of the Docker service names ...

14 String name = super.mapBoundedContextName(s);

15 return name.endsWith("Backend") ?

16 name.substring(0, name.length() - 7) : name;

17 }

18 });

19

20 ContextMap contextmap = discoverer.discoverContextMap();

21 new ContextMapSerializer().serializeContextMap(contextmap,

22 new File("./src-gen/lakesidemutual.cml"));

23 }

24 }

LISTING 18: Java Code to Apply Discovery Library
on Lakeside Mutual Project

The complete source code and CML result of this case study can be found in
the GitHub repository of our discovery library12 under the examples13. Listing

12https://github.com/ContextMapper/context-map-discovery
13https://github.com/ContextMapper/context-map-discovery/tree/master/Examples

https://github.com/ContextMapper/context-map-discovery
https://github.com/ContextMapper/context-map-discovery/tree/master/Examples

56 Chapter 4. Context Mapper: Design and Implementation

19 shows a shortened version of the discovered CML output without domain
models within the Bounded Contexts. The complete model would take too
much space within this thesis report. Note that all relationships illustrated in
Figure 4.8 have been discovered. As already mentioned the asymmetry be-
tween PolicyManagement and CustomerSelfService might not be correct.

1 ContextMap {

2 contains PolicyManagement, CustomerManagement, CustomerSelfService, CustomerCore

3

4 CustomerCore -> PolicyManagement

5

6 CustomerCore -> CustomerManagement

7

8 PolicyManagement -> CustomerSelfService

9

10 CustomerCore -> CustomerSelfService

11 }

12

13 // note: removed domain models from Bounded Contexts to save space:

14 BoundedContext PolicyManagement {

15 implementationTechnology "Spring Boot"

16 }

17 BoundedContext CustomerManagement {

18 implementationTechnology "Spring Boot"

19 }

20 BoundedContext CustomerSelfService {

21 implementationTechnology "Spring Boot"

22 }

23 BoundedContext CustomerCore {

24 implementationTechnology "Spring Boot"

25 }

LISTING 19: Lakeside Mutual Case Study:
Discovered CML Model

However, after having the model reverse engineered, the user is able to correct
such details manually as well. The accuracy of the resulting CML model for this
case study could be further improved by implementing additional discovery
strategies in future projects.

4.3.5 Known Limitations

The validation of our discovery approach with the Lakeside Mutual project has
shown that especially the reverse engineering of the domain models within the
Bounded Contexts is challenging. Currently all DTOs [28] are simply mapped
to Value Objects which might not conform with the reality. In fact, many of
the discovered domain objects are actually Entities. However, with the current
approach it is not easily possible to differentiate these types on the basis of
the DTOs. In future projects we may find improved strategies for this problem,
although correcting such mistakes within the resulting model is still easier than
creating the model manually. Thus, users with existing projects already benefit
from this approach.

In addition, the current approach creates duplicate domain objects in case
one is used in multiple RESTful HTTP endpoints. We currently create Value
Objects within an Aggregate for all discovered DTOs in the corresponding end-
points. If the same DTO occurs in two endpoints, we create two separate Value

4.4. Service Decomposition with Service Cutter 57

Objects, one for each resulting Aggregate. This is for example problematic if
the created model is later decomposed using the structured service decompo-
sition component. The duplicate domain objects will hide potential coupling
between objects that influences the resulting decomposition.

Another issue not yet solved is the detection of exposed Aggregates. In the
complete resulting CML model14 of the case study one can see that we cur-
rently add all discovered Aggregates to the exposedAggregates attribute of the
corresponding relationships. This might not be correct in all cases since there
can be Aggregates which are only used by some consumers but not all. De-
tecting which Aggregates (or originally RESTful HTTP resources) are actually
used by which consumers is another challenging issue for future releases of the
library.

4.4 Service Decomposition with Service Cutter

With the Service Cutter [36] integration into our framework we provide an-
other approach to decompose an existing DDD Context Map. While the ARs
offer manual steps to (de-)compose the model iteratively, this structured ap-
proach generates new decompositions based on Decomposition Criteria (DCs)
automatically. The Service Cutter tool [35] realizes this with graph clustering
algorithms and a scoring system based on its coupling criteria catalog [37] as
already explained in Chapter 3.

4.4.1 Integration

The original Service Cutter tool [35] is a web application based on Spring Boot
[71] and built with JHipster [43]. To integrate the approach into Context Map-
per we created a fork from the original project and realized our own Service
Cutter library15 as part of this thesis project. The library offers an API to gen-
erate service decompositions used by Context Mapper as illustrated by the ex-
tract of the framework component diagram in Figure 4.9.

FIGURE 4.9: Service Cutter Library Framework Interface

With the Service Cutter library we implemented an API for service cutting
which could be used in any Java application and not only in Context Map-
per. The API is based on the same data structures which have to be provided in
the original Service Cutter tool [35] as JavaScript Object Notation (JSON) files.

14https://github.com/ContextMapper/context-map-discovery/tree/master/Examples
15https://github.com/ContextMapper/service-cutter-library

https://github.com/ContextMapper/context-map-discovery/tree/master/Examples
https://github.com/ContextMapper/service-cutter-library

58 Chapter 4. Context Mapper: Design and Implementation

We use the MDSL contract language16 [102] to present the service cutting
API here. This way we not only provide a service contract but also validate our
own tool at the same time since we generated the MDSL contract with Context
Mapper. It is important to note that the contract has been simplified for the
presentation in this report. We shortened some data types since not all details
are necessary to understand the basic structure. The complete CML model and
MDSL contract can be found in our examples repository17.

1 // input model (Entity Relation Diagram & User Representations)

2 data type EntityRelationshipDiagram {

3 "name":V<string>,

4 "entities":{ "name":V<string>, "nanoentities":V<string>* }*,

5 "relations":{ "origin":{ "name":V<string>, "nanoentities":V<string>* },

6 "destination":{ "name":V<string>, "nanoentities":V<string>* },

7 "relationType":RelationType }* }

8 data type UserRepresentations {

9 /* removed user representation details to save space (see Figure 4.10) */ }

10 data type ERDAndUserRepresentationsContainer {

11 "erd":EntityRelationshipDiagram, "representations":UserRepresentations }

12 data type RelationType { "AGGREGATION" | "COMPOSITION" | "INHERITANCE" }

LISTING 20: Service Cutter API Data Types (MDSL)

Listing 20 and Listing 21 show the datatypes of the API first. The initial block
in Listing 20 corresponds to the input model describing the system required by
Service Cutter [35]. It consists of an entity relation diagram and optional user
representations such as use cases. Figure 4.10 illustrates this input model as a
UML class diagram.

FIGURE 4.10: Service Cutter Library Input Model
for System Description [46]

16All MDSL code snippets in this thesis and the current state of the MDSL generator are com-
patible with the MDSL version 1.0.2 (released in October 2019).

17https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

4.4. Service Decomposition with Service Cutter 59

The following MDSL block describes the complete context value object needed
to call the cutting service.

15 // Service cutting context built by input and coupling criteria

16 data type ServiceCutterContext {

17 "systemName":V<string>, "criteriaCatalog":CouplingCriteriaCatalog,

18 "couplingInstances":CouplingInstance*, "nanoEntities":V<string>*,

19 "solverConfiguration":SolverConfiguration }

20 data type CouplingCriteriaCatalog P // not specified in detail to save space

21 data type CouplingInstance P // not specified in detail to save space

22

23 // Solver configuration provided by user (algorithm and priorities)

24 data type SolverConfiguration {

25 "algorithm":V<string>, "solverPriorities":{ "criterion":V<string>,

26 "priority":SolverPriority }* }

27 data type SolverPriority { "IGNORE" | "XS" | "S" | "M" | "L" | "XL" | "XXL" }

28

29 // Cutting result provided by Service Cutter

30 data type SolverResult {

31 "services":{ "nanoentities":V<string>*, "id":char }*,

32 "relations":{ "serviceA":V<string>, "serviceB":V<string>,

33 "sharedEntities":V<string>*, "direction":Direction }* }

34 data type Direction { "OUTGOING" | "INCOMING" | "BIDIRECTIONAL" }

LISTING 21: Service Cutter API Data Types (MDSL, continued)

It contains the following: the coupling criteria catalog [37], coupling instances
which describe the coupling between nanoentities for a specific coupling crite-
rion, all nanoentities, and the solver configuration. An Entity in Service Cutter
contains a set of so-called nanoentities [36] which are basically the attributes of
the Entities in our case.

FIGURE 4.11: Service Cutter Library Output Model
Describing the Suggested Service Cut [46]

60 Chapter 4. Context Mapper: Design and Implementation

With the solver configuration the user of the API is able to control which graph
clustering algorithm is used and how the individual coupling criteria are prior-
itized. The prioritization influences the scoring system used in Service Cutter
and therefore has a corresponding effect on how the services are cut. The last
block of the MDSL data types in Listing 21 describes the output model which
is returned by the cutting process. It contains the resulting services as a set
of nanoentities and the suggested relations between the services. Figure 4.11
illustrates the output model as UML class diagram again.

As the endpoints of the MDSL contract in Listing 22 illustrate, there are
three API types (endpoints) to be used.

1 endpoint type ServiceCutterContextBuilder // stateful type

2 exposes

3 operation ServiceCutterContextBuilder // constructor

4 expecting

5 payload EntityRelationshipDiagram

6 operation withUserRepresentations // provide user representations (optionally)

7 expecting

8 payload UserRepresentations

9 operation withCustomSolverConfiguration // change solver configuration (optionally)

10 expecting

11 payload SolverConfiguration

12 operation build // build the context

13 delivering

14 payload ServiceCutterContext

15

16 endpoint type SolverConfigurationFactory

17 exposes

18 operation createDefaultConfiguration // create initial/default solver configuration

19 delivering

20 payload SolverConfiguration

21

22 endpoint type ServiceCutter

23 exposes

24 operation generateDecomposition // decompose the system with the provided context

25 expecting

26 payload ServiceCutterContext

27 delivering

28 payload SolverResult

LISTING 22: Service Cutter API Operations (MDSL)

The first one is used to construct the ServiceCutterContext object by provid-
ing the input models and the solver configuration. The second SolverConfig-
urationFactory is used to create an initial solver configuration which can be
changed by the user. The decomposition is generated with the third type. List-
ing 23 and Listing 24 illustrate the usage from a user’s perspective in Java.

1 EntityRelationDiagram erd = /* construct the ERD model */;

2 UserRepresentationContainer userRepresentations = /* construct user representations */;

3

4 // create and maybe adjust solver configuration

5 SolverConfiguration solverConfiguration = new SolverConfigurationFactory()

6 .createDefaultConfiguration();

LISTING 23: Service Cutter API Usage Example (Java)

4.4. Service Decomposition with Service Cutter 61

7 // create context

8 ServiceCutterContext context = new ServiceCutterContextBuilder(erd)

9 .withUserRepresentations(userRepresentations)

10 .withCustomSolverConfiguration(solverConfiguration)

11 .build();

12

13 // generate decomposition

14 ServiceCutter serviceCutter = new ServiceCutter(context);

15 SolverResult result = serviceCutter.generateDecomposition();

LISTING 24: Service Cutter API Usage Example (Java)

Finally, the MDSL contract specifies the provider and the client of the API as
illustrated in Listing 25.

1 API provider ServiceCutterLibrary

2 offers ServiceCutterContextBuilder

3 offers SolverConfigurationFactory

4 offers ServiceCutter

5 API client LanguageCore

6 consumes ServiceCutterContextBuilder

7 consumes SolverConfigurationFactory

8 consumes ServiceCutter

LISTING 25: Service Cutter API Provider and Client (MDSL)

This is equivalent to the component diagram already shown in Figure 4.9 at
the beginning of this section. Our Service Cutter library provides the three API
types (endpoints) which are then used by the core component to generate new
service decompositions.

FIGURE 4.12: Service Cutter Entity Relation Input Mapping [46]

62 Chapter 4. Context Mapper: Design and Implementation

As indicated in Figure 4.9 our core component uses a translation and ACL
layer to convert between the Service Cutter library model and the CML model.
The mapping between these models has already been defined in our first term
project [46]. At this time we already provided generators producing the JSON
input files for the original Service Cutter tool [35]. The input mapping is illus-
trated in Figure 4.12.

Bounded Contexts, Aggregates, and all domain objects in the CML model
are represented as an Entity in the Service Cutter model. We further create
nanoentities for all attributes of domain objects in CML. References between
domain objects are mapped to corresponding entity relations in Service Cutter.

From the result model illustrated in Figure 4.10 we produce CML code
again. Listing 26 shows an example of a model (DDD sample application [24])
decomposed with the Service Cutter library. Resulting services are mapped to
Bounded Contexts. Each Bounded Context further contains an Aggregate with
the corresponding Entities and attributes derived from the nanoentities. Note
that we currently do not reconstruct the original types of the attributes. The
types are lost within the process and are not provided by Service Cutter. Thus,
the type of all attributes is set to UnknownType at the moment.

1 ContextMap {

2 contains ServiceA, ServiceB, ServiceC

3

4 ServiceA [SK]<->[SK] ServiceB

5 ServiceC [U]->[D] ServiceB

6 }

7 BoundedContext ServiceA {

8 Aggregate AggregateA {

9 Entity A_CarrierMovement {

10 UnknownType departureTime

11 UnknownType arrivalTime

12 }

13 Entity A_VoyageNumber {

14 UnknownType number

15 }

16 }

17 }

18 BoundedContext ServiceB {

19 Aggregate AggregateB {

20 Entity B_Cargo {

21 UnknownType trackingId

22 }

23 /* other entities removed here (saving space) */

24 }

25 }

26 BoundedContext ServiceC {

27 Aggregate AggregateC {

28 Entity C_UnLocode {

29 UnknownType unLocode

30 }

31 }

32 }

LISTING 26: Service Cutter Integration: CML Result
Code Example [46]

In addition, Listing 26 illustrates that service relations of the types INCOMING
and OUTGOING are mapped to Upstream-Downstream relationships while
BIDIRECTIONAL relations result in Shared Kernels.

4.4. Service Decomposition with Service Cutter 63

4.4.2 Eclipse Plugin Integration

The functionality to generate new Context Maps with the Service Cutter library
has been integrated into our Context Mapper Eclipse plugin. A dialog similar
to the web User Interface (UI) of the original Service Cutter tool [35] allows the
user to change the solver configuration. Figure 4.13 shows this UI within our
plugin. It allows specifying the algorithm to be used and the priorities for all
coupling criteria. In addition to that, the file with the user representations can
be referenced.

The specification of the user representations is done in a separate DSL called
Service Cutter DSL (SCL). This DSL has already been developed during our
previous work [46]. For details about this configuration we refer to the corre-
sponding project report [46] or the online documentation18.

Finishing the dialog as shown in Figure 4.13 generates a new decomposition
using the presented library and creates a new CML file such as in the example
in Listing 26.

FIGURE 4.13: Service Cutter Integration into Context Mapper
(UI)

4.4.3 Validation

We have already validated the Service Cutter approach as part of the first term
project [46]. With our fictitious insurance example19 we showed that the ap-
proach produces reasonable service cuts. As part of this thesis we tested the

18https://contextmapper.org/docs/service-cutter/
19https://github.com/ContextMapper/context-mapper-examples

https://contextmapper.org/docs/service-cutter/
https://github.com/ContextMapper/context-mapper-examples

64 Chapter 4. Context Mapper: Design and Implementation

integration of the library version into Context Mapper with the same example
again. Since we have not changed the cutting engine the results stay the same.
More validation with other algorithms has to be done in future projects.

4.4.4 Cutting Algorithms

In Chapter 3 we presented candidates for additional graph clustering algo-
rithms which could be integrated. Currently the Leung [56] algorithm is the
only one supported in Context Mapper. During the process of integrating Ser-
vice Cutter and validating the approach within our tool, we decided to not
integrate other graph clustering algorithms during this thesis. More validation
in future projects shall first show that this is the approach to continue with. Im-
plementing our own algorithm, which only suggests potential extraction can-
didates (Bounded Contexts) instead of complete decompositions, might be a
valid alternative. This would allow us to suggest AR applications instead of
creating complete new CML models and would fit better into an iterative de-
composition process.

4.4.5 Known Limitations

As already indicated, some information within a CML model such as data
types are currently lost within the service cutting process. This means that the
original CML model contains information which are no longer present in the
resulting CML files including new decompositions. This is a limitation which
influences the usability in a negative way. The produced decompositions can
be used as suggestions and provide hints regarding the coupling between En-
tities, but the user is not able to continue the modeling process on the basis of
the produced files. To avoid data loss, the user has to re-model the intended
decomposition steps within the original model manually.

In addition, the tool currently only supports the algorithm of Leung [56]
which is non-deterministic. This means that every execution of the algorithm
potentially produces a new result. If this approach is pursued in future projects,
the integration of more stable algorithms may be necessary.

Finally, note that the application of the Service Cutter tool within Context
Mapper only produces reasonable results if the specified Bounded Contexts in-
clude Aggregates, Entities, and attributes. Without attributes within the Enti-
ties of the domain models, it is not possible to derive corresponding nanoentities
which are required for the approach.

4.5 Architectural Refactorings (ARs)

As already introduced in previous chapters, the ARs allow the users of our
framework to evolve the architecture model iteratively. Since we already dis-
cussed how these model transformations [49] are implemented on the technical
level in our previous project [50], this section focuses on providing examples
for the newly conceptualized ARs.

From the framework perspective the AR component interacts with the lan-
guage core component closely. As illustrated by the extract of the framework

4.5. Architectural Refactorings (ARs) 65

component diagram in Figure 4.14 the two components are in a Shared Kernel
relationship in terms of DDD.

Both components share the same domain model which is the semantic model
[27] of the CML language introduced in Section 4.2 (Figure 4.2). The language
core parses the CML code and provides the modeled system as an Eclipse Mod-
eling Framework (EMF) model [89] whereas the ARs perform transformations
on that model. The parsing and serialization back to CML code is realized with
the Xtext framework [23].

FIGURE 4.14: Architectural Refactorings (ARs)
Framework Interfaces

4.5.1 Additional Refactorings

As explained in Chapter 3, four ARs have been added to Context Mapper as
part of this thesis project. These new refactorings focus on Context Map re-
lationships while the existing ARs from our previous work [50] focus on the
decomposition of Bounded Contexts and Aggregates.

FIGURE 4.15: Architectural Refactorings (ARs) by Category

Figure 4.15 shows a categorization that includes the new ARs introduced with
this thesis. In the following we will explain the four added ARs (AR-8, AR-9,
AR-10, and AR-11) with corresponding examples.

66 Chapter 4. Context Mapper: Design and Implementation

4.5.2 AR-8: Extract Shared Kernel

Extract Shared Kernel offers the possibility to suspend an existing Shared Kernel
relationship by moving the Shared Kernel into a new Bounded Context. We
already explained the details about the refactoring in Chapter 3. Listing 27
illustrates a CML Context Map on which this refactoring can be applied.

1 ContextMap InsuranceContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains PolicyManagementContext, DebtCollection

6

7 PolicyManagementContext [SK]<->[SK] DebtCollection

8 }

9

10 BoundedContext PolicyManagementContext

11

12 BoundedContext DebtCollection

LISTING 27: AR-8: Extract Shared Kernel Example (Input)

Note that all examples here are simplified and contain only the necessary parts
to illustrate the transformation. The complete examples can be found in our
GitHub repository20.

FIGURE 4.16: Architectural Refactoring Example in
Context Mapper Eclipse Plugin

Within our IDE (Eclipse plugin) a user can refactor a Shared Kernel relationship
with a right-click on it as shown in Figure 4.16.

Applying Extract Shared Kernel to the example illustrated in Listing 27 pro-
duces the result shown in Listing 28. The refactoring creates a new Bounded

20https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

4.5. Architectural Refactorings (ARs) 67

Context for the Shared Kernel and two new Upstream-Downstream relation-
ships. Since the shared domain model has been used by both original Bounded
Contexts we assume that both need a relationship with the new generated con-
text. The generated Bounded Context contains an Aggregate and a «root» En-
tity acting as empty placeholders.

1 ContextMap InsuranceContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains PolicyManagementContext, DebtCollection

6 contains PolicyManagementContext_DebtCollection_SharedKernel

7

8 PolicyManagementContext_DebtCollection_SharedKernel [U]->[D] PolicyManagementContext

9

10 PolicyManagementContext_DebtCollection_SharedKernel [U]->[D] DebtCollection

11 }

12

13 BoundedContext PolicyManagementContext

14

15 BoundedContext DebtCollection

16

17 BoundedContext PolicyManagementContext_DebtCollection_SharedKernel {

18 Aggregate SharedKernelAggregate {

19 Entity SharedKernelRoot {

20 aggregateRoot

21 }

22 }

23 }

LISTING 28: AR-8: Extract Shared Kernel Example (Output)

We currently can not generate the domain model of the Shared Kernel since the
CML language does not support to specify which parts of the models actually
belong to the kernel. This might be an improvement for future releases.

4.5.3 AR-9: Suspend Partnership

Suspend Partnership is a similar refactoring to Extract Shared Kernel, but sus-
pending a Partnership currently provides more options.

1 ContextMap InsuranceContextMap {

2 contains PolicyManagementContext, RiskManagementContext

3

4 RiskManagementContext [P]<->[P] PolicyManagementContext

5 }

6

7 BoundedContext PolicyManagementContext

8

9 BoundedContext RiskManagementContext

LISTING 29: AR-9: Suspend Partnership Example (Input)

Listing 29 shows an example model on which the refactoring can be applied.
Applying this refactoring gives the user a choice of three options to suspend
the Partnership. Figure 4.17 shows the options within our plugin.

68 Chapter 4. Context Mapper: Design and Implementation

The first one allows the user to merge the two Bounded Contexts. In this
case the wizard will ask which context shall remain. The other context will
then be merged into the remaining one. If applied to the model in Listing 29,
this option leads to the result illustrated in Listing 30.

FIGURE 4.17: AR-9: Suspend Partnership Options

In the case of such a simple model with only two Bounded Context the result-
ing CML file will only contain one context without any relationships.

1 ContextMap InsuranceContextMap {

2 type = SYSTEM_LANDSCAPE

3 state = TO_BE

4

5 contains RiskManagementContext

6 }

7

8 BoundedContext RiskManagementContext

LISTING 30: AR-9: Suspend Partnership Example
(Output Option 1)

The second option would be similar to Extract Shared Kernel. In this case we
assume the Partnership is defined by some commonalities which can be ex-
tracted to a new Bounded Context in order to suspend the Partnership. By
creating a new Bounded Context the Partnership relationship can be replaced
with two Upstream-Downstream relationships. Listing 31 illustrates the result-
ing CML model for this option. The refactoring further creates an Aggregate
and a «root» Entity as empty placeholders within the new Bounded Context.

4.5. Architectural Refactorings (ARs) 69

1 ContextMap InsuranceContextMap {

2 contains PolicyManagementContext, RiskManagementContext

3 contains RiskManagement_PolicyManagement_Partnership

4

5 RiskManagement_PolicyManagement_Partnership [U]->[D] RiskManagementContext

6

7 RiskManagement_PolicyManagement_Partnership [U]->[D] PolicyManagementContext

8 }

9

10 BoundedContext PolicyManagementContext

11

12 BoundedContext RiskManagementContext

13

14 BoundedContext RiskManagement_PolicyManagement_Partnership {

15 Aggregate CommonModelAggregate {

16 Entity CommonModelPartRoot {

17 aggregateRoot

18 }

19 }

20 }

LISTING 31: AR-9: Suspend Partnership Example
(Output Option 2)

A third simple option to suspend the Partnership is to replace the relation-
ship only. This option does not change the model structurally but replaces the
existing relationship with an Upstream-Downstream relationship. This could
for example be the case if two development teams decide that one of the two
teams includes all commonalities into their own Bounded Context. With that
the team taking over the common parts becomes the upstream and the other
team the downstream within the new relationship. Listing 32 illustrates the
according result written in CML. The user must manually select in the wizard
which Bounded Context becomes upstream.

1 ContextMap InsuranceContextMap {

2 contains PolicyManagementContext, RiskManagementContext

3

4 PolicyManagementContext [U]->[D] RiskManagementContext

5 }

6

7 BoundedContext PolicyManagementContext

8

9 BoundedContext RiskManagementContext

LISTING 32: AR-9: Suspend Partnership Example
(Output Option 3)

The two presented ARs both concern Context Map relationships which also
affect the decomposition structurally. The next refactorings, AR-10 and AR-11,
have no impact to the structure of the decomposition.

4.5.4 AR-10: Change Shared Kernel to Partnership

This refactoring simply changes a Shared Kernel relationship to a Partnership
relationship. Applied to the relationship illustrated in Listing 33 results in the
changed relationship shown in Listing 34.

70 Chapter 4. Context Mapper: Design and Implementation

1 ContextMap InsuranceContextMap {

2 contains PolicyManagementContext, DebtCollection

3

4 PolicyManagementContext [SK]<->[SK] DebtCollection

5 }

6

7 BoundedContext PolicyManagementContext

8

9 BoundedContext DebtCollection

LISTING 33: AR-10: Shared Kernel to Partnership
Example (Input)

1 ContextMap InsuranceContextMap {

2 contains PolicyManagementContext, DebtCollection

3

4 PolicyManagementContext [P]<->[P] DebtCollection

5 }

6

7 BoundedContext PolicyManagementContext

8

9 BoundedContext DebtCollection

LISTING 34: AR-10: Shared Kernel to Partnership
Example (Output)

4.5.5 AR-11: Change Partnership to Shared Kernel

We do not show another example for AR-11 since it is trivially the inverse trans-
formation of the already explained AR-10 above. Applying Change Partnership
to Shared Kernel to the model in Listing 34 would transform it back to Listing
33.

With the last two sections we discussed the implementation details of the
two framework components to decompose the CML models, namely the ARs
and the Service Cutter integration. The next section introduces the last part of
the modeling framework: the generators.

4.6 Generators

The generators component of the proposed modeling framework offers users
the possibility to transform the CML models into other representations. These
can be graphical representations such as UML diagrams or formats to integrate
with other tools. As the extract of the framework component diagram in Fig-
ure 4.18 shows, the generators depend on the CML core component. They all
read the data from existing models and generate other artifacts based on these
information.

4.6. Generators 71

FIGURE 4.18: Generators Framework Interface

With our previous projects [46, 50] we already implemented generators pro-
ducing PlantUML [72] diagrams, MDSL contracts, and Service Cutter [35] in-
put files (JSON). The PlantUML and MDSL generators have been improved
during this thesis project according to the feedback collected with our vali-
dation activities. In addition to this, we added a new graphical Context Map
generator. The illustrated interface in Figure 4.18 is mainly defined by the CML
meta-model introduced in the beginning of this chapter.

FIGURE 4.19: Implemented Generators (UML Class Diagram)

Figure 4.19 shows the implemented generators in a UML class diagram with
the common interface they implement.

72 Chapter 4. Context Mapper: Design and Implementation

All generators implement the IGenerator2 interface provided by the Xtext
[23] framework. The AbstractGenerator class is provided by Xtext as well. The
AbstractContextMapGenerator is our own abstract class used to generate out-
puts with a Context Map as input. Generators implementing this abstract class
expect the given EMF Resource to contain a CML Context Map. All gener-
ators process the Context Map by implementing the generateFromContextMap
method.

With the common interface the usage of a generator is always implemented
in the same way from user perspective. Listing 35 shows how it is done for the
PlantUML example. To use another one, only line 5 has to be replaced with the
instantiation of the preferred generator.

1 ContextMappingDSLStandaloneSetup.doSetup();

2 Resource resource = new ResourceSetImpl().getResource(URI.createURI("input.cml"), true);

3

4 // Create the generator (can be any other generator of our framework as well)

5 IGenerator2 generator = new PlantUMLGenerator();

6

7 // Generate the output files into 'src-gen'

8 JavaIoFileSystemAccess javaIoFileSystemAccess = FileSystemHelper.getFileSystemAccess();

9 javaIoFileSystemAccess.setOutputPath("./src-gen");

10 generator.doGenerate(resource, javaIoFileSystemAccess, new GeneratorContext());

LISTING 35: Generators Usage in Java (Standalone)

Note that this example illustrates the usage in a standalone scenario outside
Eclipse. The usage in Eclipse is basically the same but without calling the
doSetup method of the ContextMappingDSLStandaloneSetup class. The IFileSys-
temAccess2 and IGeneratorContext instances are initialized in a different way as
well.

4.6.1 Graphical Context Map Generator

As already mentioned, the implementation of a graphical Context Map gen-
erator is part of the scope of this thesis. The selection of the graphical tool to
implement the generator, Graphviz [30], is documented in Chapter 3. Note that
this generator is the only one with system preconditions since Graphviz must
be installed on the users computer to execute it.

To realize this generator we first implemented a Java library21 to generate
such Context Maps based on Graphviz which is independent of our frame-
work. The generator implementation within our framework uses this library.
Therefore, we provide a Context Map generator which could be used in any
other frameworks or modeling tools realized in Java as well. The API is very
straight forward as shown in Listing 36. The graphical illustration in Figure
4.20 is automatically generated with this piece of Java code.

21https://github.com/ContextMapper/context-map-generator

https://github.com/ContextMapper/context-map-generator

4.6. Generators 73

1 public static void main(String[] args) throws IOException {

2 BoundedContext cargoBookingContext = new BoundedContext("Cargo Booking Context");

3 BoundedContext voyagePlanningContext = new BoundedContext("Voyage Planning Context");

4 BoundedContext locationContext = new BoundedContext("Location Context");

5

6 ContextMap contextMap = new ContextMap()

7 .addBoundedContext(cargoBookingContext)

8 .addBoundedContext(voyagePlanningContext)

9 .addBoundedContext(locationContext)

10 .addRelationship(new SharedKernel(cargoBookingContext, voyagePlanningContext))

11 .addRelationship(new UpstreamDownstreamRelationship(locationContext,

12 cargoBookingContext)

13 .setUpstreamPatterns(OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE))

14 .addRelationship(new UpstreamDownstreamRelationship(locationContext,

15 voyagePlanningContext)

16 .setUpstreamPatterns(OPEN_HOST_SERVICE, PUBLISHED_LANGUAGE));

17

18 new ContextMapGenerator().setLabelSpacingFactor(4)

19 .generateContextMapGraphic(contextMap, Format.PNG, "/home/user/context-map.png");

20 }

LISTING 36: Context Map Generator Library:
Java Usage Example

The first two code blocks construct the example Context Map by defining the
Bounded Contexts and the Context Map relationships. The model corresponds
to our meta-model introduced in the beginning of this chapter. The last two
lines generate the image. The label spacing factor parameter has been introduced
to solve label overlapping problems. Sometimes Graphviz produces graphics
with overlapping labels. By increasing the mentioned factor the distance be-
tween graph edges is increased which solves the problem almost always. We
currently support the generation of the Context Maps in the following three
formats: Scalable Vector Graphics (SVG), Portable Network Graphics (PNG),
and Graphviz’s Graph Description Language (DOT).

FIGURE 4.20: Output Image (Context Map) for Example in
Listing 36

74 Chapter 4. Context Mapper: Design and Implementation

The DOT format, a language specifically used to describe graphs, is also sup-
ported by other graph tools apart from Graphviz. This allows to continue edit-
ing the generated Context Maps in other tools. Of course this is also possible
with SVG files.

The user does not have to write code to generate the Context Map with
the generator implementation in our core component. It is automatically con-
structed and generated from CML Context Maps. The user can parameterize
the generator with the UI shown in Figure 4.21 within our Eclipse plugin easily.

FIGURE 4.21: Context Map Generation Parameters in
Context Mapper

The parametrization further allows to control the output image resolution by
providing a fixed width or height.

Validation and Examples

We tested the Context Map generator with the models in our examples repos-
itory22 and the Lakeside Mutual [61] case study reverse engineered with our
discovery library. The results were positive although we do not have an influ-
ence to the layout algorithms of Graphviz.

Figure 4.22 illustrates the Context Map for the Lakeside Mutual project [61].
It is generated out of the CML model which has been reverse engineerd as ex-
plained in Section 4.3 of this chapter. This example does not contain any rela-
tionship patterns such as PL or OHS since the discovery library cannot detect
such patterns yet.

Another example of a Context Map generated with our tool has already
been presented in Chapter 3. The Context Map illustrating our own frame-
work’s Bounded Contexts was generated with Context Mapper. The output for
the DDD «Cargo» sample application which is also modeled in our examples

22https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

4.6. Generators 75

repository has already been shown in Figure 4.20 of this section. Note that re-
generating Context Maps with the same CML input always results in slightly
different results since the shapes of the Bounded Contexts are computed ran-
domly.

FIGURE 4.22: Lakeside Mutual [61] Context Map
(Generated with Context Mapper)

An example which incorporates all patterns supported by CML is shown in
Figure 4.23. It is the Context Map for our fictitious insurance scenario. The
Context Map features all types of relationships: Partnership, Shared Kernel,
Upstream-Downstream, and Customer-Supplier. With PL, OHS, ACL and CF,
it also contains all supported relationship patterns.

FIGURE 4.23: Fictitious Insurance Scenario Context Map
(Generated with Context Mapper)

The generator produced good results for all our Context Maps although we
have no influence on the layout. In addition, the tool was tested with Con-
text Maps containing more than twenty Bounded Contexts and still produced
readable results. However, if one Bounded Context has many relationships
with other contexts, the generator may produce graphics with overlapping re-
lationship pattern labels. This can not be avoided completely.

76 Chapter 4. Context Mapper: Design and Implementation

4.6.2 PlantUML Generator

Existing generators including the PlantUML [72] generator developed during
the first term project [46] have been improved during this thesis according to
the collected user feedback. Table 4.4 summarizes the PlantUML generator
changes realized during this project.

TABLE 4.4: PlantUML Generator Improvements

Change Description
Class diagrams for
subdomains

CML already supported the usage of Entities within
subdomains to specify which domain objects are part
of such a subdomain. With this change the PlantUML
generator not only produces class diagrams for
Bounded Contexts but for subdomains as well (as
long as a subdomain contains Entities).

Adjustments in
interface labels

The labels of interface exposures in component dia-
grams state which Aggregates are exposed concretely
(exposed Aggregates must be specified in CML).

Support nullable
attributes

Attributes which are specified as nullable in CML are
now marked as such in the generated class diagrams.

Support inheri-
tance

The tactic DDD syntax based on Sculptor [83] sup-
ports to model inheritance. With this change the
PlantUML class generator respects these inheritance
hierarchies and represents them in the UML dia-
grams correctly.

Customer-Supplier
relationship labels

The labels for Customer-Supplier relationships in
component diagrams indicate which component is
the customer and which one is the supplier now.

Improved domain
object reference
labels

The labels of references to other domain objects in
class diagrams now show the corresponding attribute
name (source of reference).

Since this generator already existed before this thesis project we do not show
any examples or more details in this report. Readers interested in the generator
and example diagrams may consult our online documentation23.

4.6.3 MDSL Service Contract Generator

The second generator which has been improved during this thesis is the MDSL
service contract generator. Table 4.5 lists and documents the improvements
and changes realized.

TABLE 4.5: MDSL Generator Improvements

Change Description
Support nullable
attributes

Attributes which are specified as nullable in CML are
mapped to the corresponding concept in MDSL cor-
rectly.

23https://contextmapper.org/docs/plant-uml/

https://contextmapper.org/docs/plant-uml/

4.6. Generators 77

TABLE 4.5: MDSL Generator Improvements (continued)

Change Description
Added Domain
Vision Statements
and relationship
patterns to MDSL
output

The Domain Vision Statements of Bounded Contexts
and the relationship patterns (PL, OHS, ACL, CF)
are now added as comments to the generated MDSL
output.

Generate usage con-
text

The attribute usage context of MDSL is now generated
as well.

Protected regions
[32]

The generator now supports protected regions and
re-generation. This means that the generation of a
contract can be executed multiple times to override
the existing contract with new changes modeled in
CML. Protected regions which are marked with pre-
defined comments are not changed if a contract is
overwritten. With this change we allow the user to
adjust generated contracts and support re-generation
at the same time. Protected regions are one approach
to integrate handwritten and generated code [32].

Generate resource
roles and responsi-
bilities

MDSL supports the specification or resource roles (in-
formation holder, processing resource, etc.) on endpoints
and operation responsibilities (computation function,
retrieval operation, etc.) on operations. The genera-
tor extracts the corresponding MAP pattern names
[105] from CML documentation strings (supported
by Sculptor [83] syntax) and generates the attributes
in MDSL now.

Support enums Enums in CML are now mapped to MDSL as well.
Resolve inherited
attributes

If a domain object inherits attributes from other ob-
jects (extends mechanism), these attributes are re-
solved and respected in the generated parameter
trees [105] in MDSL.

Note that we do not introduce MDSL language details in this report. A doc-
umentation of the language can be found online24. We already provided an
example for a concrete MDSL application with the Service Cutter interface doc-
umentation in Section 4.4. More information about the generator can be found
online25 as well.

With the generators we discussed the design and implementation of the last
component of the proposed framework architecture. The next and last section
of this chapter discusses changes in our CML example models briefly.

24https://socadk.github.io/MDSL/
25https://contextmapper.org/docs/mdsl/

https://socadk.github.io/MDSL/
https://contextmapper.org/docs/mdsl/

78 Chapter 4. Context Mapper: Design and Implementation

4.7 Context Mapper DSL (CML) Example Models

As already mentioned in Chapter 2, our validation activities and user feed-
backs showed that our example CML models26 were too detailed for certain
user groups. According to our own requirements, these example models had
to be enhanced so that the language can be introduced to all target user roles.
Users such as business analysts without technical background as well as soft-
ware architects must find example models which suit them.

This issue has been solved by providing and evolving the models in mul-
tiple stages. Each stage adds additional details. Users without technical back-
ground may be interested in the first stages while software engineers or archi-
tects might prefer the last stages with the detailed domain models. Table 4.6
summarizes the stages we currently provide for the CML models in our exam-
ples repository.

TABLE 4.6: CML Example Model Stages

Stage Description
Stage 1 The first stage models a Context Map in its simplest form. There

are no relationship patterns yet and the Bounded Contexts do not
contain any details (Aggregates or domain objects). The follow-
ing example illustrates a Context Map in this stage:
ContextMap DDDSampleMap {

contains CargoBookingContext, LocationContext

CargoBookingContext <- LocationContext

}

BoundedContext CargoBookingContext

BoundedContext LocationContext

Stage 2 The second stage refines the Context Map relationships of the
examples and adds relationship patterns (PL, OHS, ACL, CF).
The relationship of the example in stage one could look like this
in stage two:
CargoBookingContext [D]<-[U,OHS,PL] LocationContext

Stage 3 Stage three starts to increase the level of detail with respect to
Bounded Contexts. The Aggregates are added, but still no do-
main objects. The following example shows a Bounded Context
in stage three:
BoundedContext CargoBookingContext {

Aggregate CargoItineraryLegDeliveryRouteSpecification

Aggregate Handling

}

Stage 4 This stage adds simple domain object (Entities, Value Objects,
etc.) to the Aggregates. The domain objects do not contain any
attributes. Thus, this stage just expresses which objects are part
of the Bounded Context domain models but does not specify the
objects in detail (attributes, methods, etc.). This stage may still be
understandable for many users without technical background.
For example, the CargoItineraryLegDeliveryRouteSpecification Ag-
gregate of the previous stage might be enriched as follows:

26https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

4.7. Context Mapper DSL (CML) Example Models 79

TABLE 4.6: CML Example Model Stages (continued)

Stage Description
Stage 4
(cont.)

Aggregate CargoItineraryLegDeliveryRouteSpecification {

Entity Cargo

ValueObject Delivery

ValueObject Itinerary

}

Stage 5 Stage five finally adds all details within the Aggregates and do-
main objects. Attributes and methods are specified within the do-
main objects and the Aggregates can contain services, reposito-
ries, and so on. This stage clearly addresses users with technical
and programming background. The Aggregate in the previous
example could look as follows in this stage:
Aggregate CargoItineraryLegDeliveryRouteSpecification {

Entity Cargo {

aggregateRoot

TrackingId trackingId

- LocationShared origin

- RouteSpecification routeSpecification

- Itinerary itinerary

- Delivery delivery

Repository CargoRepository {

@Cargo find(TrackingId tId) throws CargoNotFoundException;

List<@Cargo> findAll;

store(@Cargo cargo);

TrackingId nextTrackingId();

}

}

Service RoutingService {

List<@Itinerary> fetchRoutesForSpec(@RouteSpecification rs);

}

}

More user feedback regarding this approach has to be collected in future projects
to evaluate whether it solved the mentioned problem. More stages could be
developed in the future as well. Stage one already contains the subdomains
which are realized by the Bounded Contexts (not shown above but in our ex-
amples repository). A stage zero without subdomains might further simplify
the introduction to the CML language for new users.

With the improvement of our example models we conclude this chapter docu-
menting the design and implementation work of this thesis. The next chapter
evaluates the results and discusses the benefits and potential liabilities of the
proposed framework.

81

Chapter 5

Evaluation and Discussion

This chapter discusses our validation activities and evaluates the fulfillment of
the requirements presented in Chapter 2 and the defined project goals. It fur-
ther discusses strengths and potential weaknesses of the proposed approach.

5.1 Validation via Prototyping, Action Research
and Case Studies

In this section we discuss the validation goals and techniques. We further out-
line the applied validation activities for the individual framework components
and the corresponding results.

5.1.1 Validation Goals

Research contributions such as the framework proposed by this thesis must
be validated. In Chapter 1 we hypothesized that software architects, service
designers, and business analysts applying Domain-driven Design (DDD) can
benefit from a modeling framework such as ours. The main goal of our valida-
tion activities was to demonstrate the usefulness of the framework and that it is
indeed beneficial for the target user group. Validating the feasibility of the pro-
posed concepts and the usability of the tools were other important objectives.

5.1.2 Validation Techniques

The prototypic implementation of the framework in the Context Mapper open
source project [15], the application of the tool in case studies, and action re-
search [4] were our primary validation activities. In addition, we conducted
self-experiments and used the tool for teaching at our institution.

The implementation combined with action research allowed us to improve
the framework and its tools iteratively and with short feedback cycles. The
supervisor of this thesis applied the tool in projects and provided feedback
based on experience on a regular basis. Case studies such as the Lakeside Mu-
tual project [61] further allowed us to validate the practicability of individual
framework components in specific use cases. Besides that, we conducted a
self-experiment by using our own tool to model and document the architec-
ture of the framework itself. All these activities supported us in validating the
usefulness and usability of the tools. Table 5.1 provides an overview over all
validation activities for the individual framework components.

82 Chapter 5. Evaluation and Discussion

TABLE 5.1: Validation Activities Overview

Component (or Use Case) Validation Activities
Complete Modeling
Framework

Prototyping (the Context Mapper tool repre-
sents the prototype)

Core: CML modeling
language

Action research, case studies, teaching, self-
experiment

Discovery library
(reverse engineering)

Lakeside Mutual [61] case study

ARs Action research, small case studies
(Context Mapper examples1)

Systematic service
decomposition
(Service Cutter library)

Fictitious insurance case study1

Generators Action research, case studies, self-experiment

The applied validation approach corresponds to Shaw’s validation type experi-
ence [85]. This type of validation suits the kind of problem we address in this
thesis, in contrast to analysis based on rigorous proofs and controlled experi-
ments. It has the goal to demonstrate correctness, usefulness, and effectiveness of
the proposed concepts, framework, and tools.

5.1.3 Validation Results

In the following we discuss the validation activities and their results for each
individual framework component.

Core: CML Modeling Language

The CML language as core component of the modeling framework has evolved
iteratively by applying action research. We further validated the language with
the case studies in our examples repository1. In addition, we modeled our own
framework architecture in CML (self-experiment) as part of this thesis. Differ-
ent versions of the modeling language were further used as part of an appli-
cation architecture course by 20 exercise participants at our institution. These
computer science students and the advisor of this thesis modeled a real-world
scenario from the oil industry [99] with the CML language. We questioned
and evaluated whether they were able to understand the example models and
write their own models within given time frames. The collected feedback was
generally positive and we implemented corresponding improvements during
this thesis.

By applying all these validation activities we were able to improve the us-
ability of the language during our previous work [46, 50] and this thesis. The re-
sults support our hypothesis that a Domain-specific Language (DSL) to model
DDD Context Maps in formal manner can be beneficial and useful for software
architects and business analysts. The implementation in Context Mapper con-
firmed the feasibility of the model-driven approach based on a DSL.

1https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

5.1. Validation via Prototyping, Action Research and Case Studies 83

Discovery Library

The discovery library to reverse engineer CML models was validated with the
Lakeside Mutual [61] case study. As explained in Chapter 4 we were able to
recover the architecture of this microservice project using our library with a
few lines of code. The resulting Context Map contains all Bounded Contexts
besides the ones implemented in JavaScript. To discover the architecture com-
pletely, new discovery strategies have to be implemented in future projects.
We validated the discovered Context Map by comparing it with the architec-
ture overview provided by the authors of the project. In addition, we had the
model checked by one of the authors. The case study indicates that our ap-
proach towards reverse engineering is feasible and useful for adopters in brown-
field projects.

Architectural Refactorings (ARs)

So far, the ARs have only been validated by implementing them as code refac-
torings in Context Mapper and by applying them to our example models [14].
More validation has to be done in future projects to show their usefulness and
effectiveness. A chain of ARs shall be applied to illustrate how a real world
system can be decomposed stepwise.

Systematic Service Decomposition

We validated the systematic service decomposition component of our frame-
work by applying it to our fictitious insurance case study [14]. Since we have
not integrated a new algorithm into the Service Cutter [35] engine, the results
with respect to the generated decompositions itself do not deviate from the
results presented in our previous project [46]. In this thesis we focused on
validating the usefulness and effectiveness of the Service Cutter integration into
Context Mapper rather than the decomposition results itself. The validation
has shown that the current algorithm is not practical to decompose a system
iteratively. Future projects may focus on other approaches suggesting single
AR steps instead of generating a decomposition in one single step. This would
also allow integrating the systematic decomposition component with the ARs.
In addition, the usability of the current prototype is decreased due to the fact
that parts of the input model are lost during the decomposition process with
Service Cutter. To obtain all information the user is forced to merge the orig-
inal CML model with the generated decomposition manually. This merging
process must be automated in future projects if the approach is pursued.

Generators

The generators component of the framework was validated during this thesis
as well. First, we used the PlantUML [72], Microservices Domain-Specific Lan-
guage (MDSL) [102], as well as the new graphical Context Map generator to
document our own framework online2 and in this report (self-experiment). We
applied action research and improved the existing generators (PlantUML and

2https://contextmapper.org/

https://contextmapper.org/

84 Chapter 5. Evaluation and Discussion

MDSL) according to the validation results conducted during this thesis imme-
diately. Especially the MDSL generator was validated intensively, not only by
the author of this work but also by the supervisor and creator of the MDSL lan-
guage. The usability and the workflow when utilizing the generator have been
improved by introducing protected regions [32] and other enhancements listed in
Chapter 4. All generators were also applied to the modeled case studies (such
as Lakeside Mutual [61]) and example models [14]. The results suggest that the
transformations into other representations on different levels of abstraction are
useful for users of the framework.

5.1.4 Summary and Conclusion

In summary, the validation results over the whole framework were positive
and suggest that our hypothesis that software architects and business analysts
can benefit from a modeling framework based on strategic DDD is true. We
applied prototyping and action research [4] for all framework components.
The reverse engineering component was validated with the Lakeside Mutual
[61] case study. Additional validation activities included self-experiments and
teaching. However, more validation has to be done in future projects, espe-
cially regarding the ARs and the systematic service decomposition approach.

5.2 Requirement Fulfillment Evaluation

In Chapter 1 of this report we established the goals of this thesis. A detailed
list of required deliverables has been compiled in the project definition [48].
Chapter 2 further specified functional requirements in the form of user stories,
as well as Non-Functional Requirements (NFRs). This section discusses the
degree of fulfillment for all specified requirements.

5.2.1 Project Deliverables

Table 5.2 lists all project deliverables originally specified by our project defini-
tion [48] and how we assess their fulfillment.

TABLE 5.2: Project Deliverables: Fulfillment Evaluation

Deliverable Fulfillment
Known issues and limita-
tions which resulted from
user feedback during the
previous project should
be prioritized and incor-
porated.

All issues in already existing components
which we identified through our validation
were respected during this project. The issues
were discussed, prioritized, and solved ac-
cording to the defined priorities. The points
which have actually been solved during this
thesis can be found in our GitHub issues3.
Thus, we consider this requirement addressed
sufficiently.

3https://github.com/ContextMapper/context-mapper-dsl/issues

https://github.com/ContextMapper/context-mapper-dsl/issues

5.2. Requirement Fulfillment Evaluation 85

TABLE 5.2: Project Deliverables: Fulfillment Evaluation
(continued)

Deliverable Fulfillment
A modular component
architecture for strategic
DDD modeling tools such
as Context Mapper shall
be conceptualized. The
framework must cover
architecture modeling,
analysis, ARs, generators,
and reverse engineering
tools.

With this thesis we present a modeling frame-
work covering the requested components. The
CML modeling language conceptualized in
our first term project [46] supports the creation
of architecture models based on strategic DDD
patterns (pattern selection documented in our
previous work [46], Appendix A, and online4).
In addition, we improved the language dur-
ing this thesis as described in Section 4.2 of
Chapter 4. As documented in Section 4.4 we
realized a framework component that decom-
poses CML models in a structured and sys-
tematic manner (Service Cutter library). The
component analyzes the models based on cou-
pling criteria and suggests new Context Maps
with improved coupling and cohesion. With
our previous term project [50] and this thesis
we implemented eleven ARs as code refactor-
ings for the CML language. All refactorings
are documented online5 or in Appendix B.
With the new graphical Context Map genera-
tor introduced in Section 4.6 of Chapter 4 we
offer a set of four generators6 now. Finally, the
discovery library introduced in Section 4.3 al-
lows users to reverse engineer CML models
from existing source code. Thus, we covered
all requested framework components and con-
sider this point to be fulfilled.

A reverse engineering li-
brary to generate CML
code from existing code
bases shall be imple-
mented. The solution
should be extensible with
different Context Map
and Bounded Context dis-
covery strategies. This
«proof of concept» shall
provide two discovery
approaches, one for each
case.

We proposed an extensible discovery library
allowing to inject new Bounded Context and
relationship discovery strategies in Section 4.3
of Chapter 4. The prototype includes a strat-
egy to discover Bounded Contexts based on
Spring Boot [71] and another one to discover
relationships based on Docker Compose [19].
The design of the library allows us to add new
discovery strategies in future projects easily.
Therefore, this requirement has been fulfilled.

4https://contextmapper.org/docs/language-reference/
5https://contextmapper.org/docs/architectural-refactorings/
6https://contextmapper.org/docs/generators/

https://contextmapper.org/docs/language-reference/
https://contextmapper.org/docs/architectural-refactorings/
https://contextmapper.org/docs/generators/

86 Chapter 5. Evaluation and Discussion

TABLE 5.2: Project Deliverables: Fulfillment Evaluation
(continued)

Deliverable Fulfillment
The Service Cutter engine
shall be integrated into
the Context Mapper tool
to provide new Context
Map suggestions directly
within the tool.

We realized a new Service Cutter library and
integrated it into the Context Mapper tool as
explained in Section 4.4 of Chapter 4. It allows
users to generate new Context Maps based on
Service Cutter’s coupling criteria [37] and a
graph clustering algorithm. The library is de-
signed in an extensible fashion which allows
us to include new algorithmic solutions in fu-
ture projects. Although more validation activi-
ties and probably new algorithms are needed,
we delivered a first approach and prototype
that is integrated in Context Mapper.

A new generator should
produce graphical Con-
text Maps in the notation
inspired by Vernon [98]
and Brandolini [10].

The graphical Context Map generator has
been implemented with Graphviz [30] as
documented in Section 4.6 of Chapter 4. The
notation of the generated graphics which is
also used in this thesis report is based on the
Context Map illustrations by Vernon [98] and
Brandolini [10]. Thus, this point is fulfilled as
well.

At least two new ARs
must allow the users to
refactor relationships on
the Context Map.

We implemented the following four ARs dur-
ing this thesis: Extract Shared Kernel, Suspend
Partnership, Change Shared Kernel to Partnership,
and Change Partnership to Shared Kernel (docu-
mented in Chapter 4 and Appendix B). These
four ARs are all designed to refactor Context
Map relationships. This project requirement is
thus met.

Adjusted and new model
examples must distin-
guish between software
engineering and business
analysis users. With this
we provide less detailed
models which can be read
easily by users without
engineering background.

As explained in Chapter 4, we introduced five
stages with different levels of detail for all our
model examples to address this issue. The first
stages do not contain technical details and are
understandable for users without engineering
background while stage four and five intro-
duce the details required by software engi-
neers and architects. We consider the point as
fulfilled. However, we may further improve
the documentation and the examples based on
future user feedback.

5.2. Requirement Fulfillment Evaluation 87

TABLE 5.2: Project Deliverables: Fulfillment Evaluation
(continued)

Deliverable Fulfillment
The implemented lan-
guage tools and refactor-
ings must be easy to use,
robust and validated with
respect to the project re-
quirements.

ARs can be applied easily and are executed
within maximal two to three seconds in the
CML editor in our Eclipse plugin, identical to
the already existing ARs from our previous
work [50]. With our quality practices we held
the robustness of all tools as high as possible.
The core component with the DSL, the ARs,
and the generators have an overall test cover-
age of 93.86 percent. The test coverages of the
discovery library, Service Cutter library and
Context Map generator library are at 96.58
percent, 90.48 percent, and 98.82 percent7.
Therefore, the requirements regarding the ro-
bustness of the tools are addressed. The ful-
fillment regarding the projects functional and
non-functional requirements are discussed
later in this chapter.

All features shall be doc-
umented on the Context
Mapper website.

Every improvement or new feature has been
mentioned in our release notes8 and the online
documentation9 was always updated. This
requirement is therefore met as well.

In summary, Table 5.2 shows that all requested deliverables from the project
definition [48] were respected and at least a minimal prototype has been real-
ized in Context Mapper [15]. The following sections discuss the results of this
thesis with respect to the functional and non-functional requirements.

5.2.2 Functional Requirements

Chapter 2 introduced user stories representing the requirements for all frame-
work components. In the following we discuss the actual results for each user
story and point out open issues.

US-1: Analysing and Describing the Domain as Business Analyst

The core component of the modeling framework with its CML language al-
lows describing a domain based on the strategic DDD patterns. The integrated
Sculptor syntax [83] offers the possibility to describe domain objects (such as
Entities, Value Objects, etc.) and therefore the Ubiquitous Language of the do-
main. With the newly introduced stages in our modeling examples [14] (see
Section 4.7 in Chapter 4) we illustrated how a system or domain can be de-
scribed on a level of detail which is understandable for business analysts or
other user roles without technical background.

7The test coverages were measured before the submission of this thesis in January 2020.
8https://github.com/ContextMapper/context-mapper-dsl/releases
9https://contextmapper.org/

https://github.com/ContextMapper/context-mapper-dsl/releases
https://contextmapper.org/

88 Chapter 5. Evaluation and Discussion

Future validation activities will have to elaborate whether the current pre-
sentation of the models fulfills the requirements of business analysts completely.
Based on user feedback the amount of stages might be increased and the changes
from one stage to the next one minimized. For example, we could evolve the
subdomain definitions stepwise as well. The stages currently focus on the evo-
lution of the Bounded Context definitions.

US-2: Describing Software Architecture and Design as Software Architect

The CML modeling language allows software architects to describe systems
and their decomposition into (micro-)services in terms of DDD Bounded Con-
texts. With the Context Map and relationship patterns such as Published Lan-
guage (PL), Open Host Service (OHS), Anticorruption Layer (ACL), and Con-
formist (CF) an architect can describe the relationships between components,
sub-systems, services, or teams. Thus, the concepts also allow describing En-
terprise Application Integration (EAI) solutions.

The generator component of the modeling framework supports the trans-
formation into other representations such as Unified Modeling Language (UML)
diagrams required by this user story. With the ARs and the structured service
decomposition component we provide tool support to evolve the architecture
models iteratively.

US-3: Generate Bounded Contexts and Context Map Models for existing
(Micro-)Service Architecture

With the realized discovery library we provide a tool to generate CML Bounded
Contexts and Context Maps from existing code bases of microservice projects.
Our Lakeside Mutual [61] case study explained in Chapter 4 demonstrated
how it works on a real microservice project. As this user story required, the li-
brary is able to discover relationships between the Bounded Contexts. The dis-
covered decomposition can then be analyzed, communicated, and improved
with the ARs. The generators allow the framework users to transform the dis-
covered architecture into graphical representations such as Context Maps or
PlantUML [72] diagrams.

US-4: Generate Bounded Context Model from existing Monolithic System

The discovery library is not only designed to identify Bounded Contexts and
their relationships (Context Map), but to reverse engineer the domain models
within those Bounded Contexts as well. Thus, users in brownfield projects are
allowed to reverse engineer a single Bounded Context from a monolithic sys-
tem and then decompose it by using the other components of our modeling
framework. The ARs allow them to refactor the system iteratively. With the
Service Cutter [35] integration a user can decompose the monolith systemati-
cally.

The prototypic discovery strategy based on Spring Boot [71] reverse engi-
neers Aggregates, Entities, and Value Objects of the corresponding Bounded
Contexts. However, the identification of the domain object type (Entity, Value
Object, etc.) might currently not be correct in all cases since we map all Data

5.2. Requirement Fulfillment Evaluation 89

Transfer Objects (DTOs) [28] discovered in the RESTful HTTP endpoints to
Value Objects. For example, domain objects could be mapped to Value Ob-
jects although they might be Entities. Future projects will have to improve the
current solution in order to map these domain object types correctly (or at least
generate a corresponding comment, if the type can not be discovered). In ad-
dition, the current solution produces duplicate domain objects in case the cor-
responding DTO was discovered in multiple Aggregates. The implementation
must consider such situations in the future and consolidate the domain objects
beyond Aggregate boundaries. With the current duplication of domain objects
(creation of domain object in each Aggregate) we hide coupling between the
Aggregates which exists in the real system.

Nevertheless, the current version of the discovery library in combination
with the provided ARs and the systematic service decomposition component
fulfills the requirements of this user story in principle.

US-5: Analyze a Strategic DDD Model using Coupling Criteria to find Better
Service Decompositions

The structured service decomposition component, concretely the Service Cut-
ter [35] integration, is meant to address the requirements of this user story. The
tool is based on a coupling criteria catalog [37] and its goal is to generate service
decompositions which improve coupling and cohesion.

With the current solution we provide a first «proof of concept» for this user
story. However, our validation activities showed that we have to improve this
part of the framework in future projects. The generated decompositions in the
form of new CML models lose information which were provided by the input
model, leading to unsatisfying usability. Because the generated output has to
be merged with the original input model manually if the user does not want to
lose the information, it is not well integrated into the workflow. Therefore, an
architect is only able to use the generated decompositions as an inspiration on
how to refactor the system. Furthermore, the results are often difficult to inter-
pret and it is not clear whether and why coupling and cohesion is improved.

US-6: Change the Relationship between Bounded Contexts

With the four new ARs allowing to refactor Context Map relationships we ad-
dressed this user story and the user feedback we received regarding the exist-
ing ARs. While modeling a Context Map in CML these refactorings allow users
to revise and change the type of a relationship between two contexts rapidly
and with tool support. In total we offer eleven ARs now. Therefore we support
crafting the Context Map in an agile way and reduce errors due to manual code
changes.

US7: Generate Graphical Context Map

We introduced the graphical Context Map generator based on Graphviz [30] in
Section 4.6 of Chapter 4. In addition, the Context Map illustrations throughout
this thesis are created with the tool. The generator fulfills the requirements
claimed by this user story. Users can generate the graphical representation of

90 Chapter 5. Evaluation and Discussion

a Context Map inspired by Vernon [98] and Brandolini [10] for communication
and documentation purposes automatically.

In summary, five out of seven user stories are fully addressed. US-4 and
US-5 are satisfied partially but the concepts and implemented prototypes must
be improved in future projects. The discovery of the domain models inside
Bounded Contexts must be enhanced in order to map the types of the objects
correctly and avoid duplicates (US-4). In addition, a new algorithmic solution
for the systematic service decomposition component must be found (US-5).
Moreover, additional validation activities are required especially regarding the
usability for business analysis users and the usefulness of the ARs.

5.2.3 Non-Functional Requirements

Chapter 2 not only introduced functional requirements but listed NFRs for the
framework components as well. Within this section we discuss the fulfillment
of these NFRs. As in Chapter 2 we start with general framework requirements
and continue with the discovery library, CML language, ARs, and finish with
the Service Cutter [35] integration.

Future-oriented Use of Tools and Frameworks

We used only frameworks and libraries that promise to be established, open,
and sustainable. In the discovery library we realized strategies for Spring Boot
[71] and Docker Compose [19], both tools that exhibit the mentioned three at-
tributes. The discovery library itself only uses few dependencies like the re-
flections library10 or Apache Commons libraries11 which fulfill the attributes
as well.

With the new ARs, we have not introduced any new libraries or dependen-
cies. We consider the Service Cutter tool [35] open and sustainable. However,
it is still a research project which is not known to be used in the industry. Thus,
one could question whether it can be said to be established or not. Neverthe-
less, the approach is acknowledged by the academic field and currently the
best choice among tools for structured and systematic service decomposition.
Related projects are only theoretical and no other open source projects realizing
a similar approach exist.

For the implementation of the graphical Context Map generator we used
Graphviz [30]. The library is used in many other projects and software diagram
tools such as PlantUML [72]. Thus, it definitely exhibits the mentioned three
attributes above.

Although the establishment of Service Cutter can be questioned we con-
sider this NFR as mainly accomplished.

Reliability

As this NFR requests we were striving for a resilient implementation and tested
all developed functionalities with unit tests, integration tests and manual user

10https://github.com/ronmamo/reflections
11http://commons.apache.org/

https://github.com/ronmamo/reflections
http://commons.apache.org/

5.2. Requirement Fulfillment Evaluation 91

tests. As already mentioned in this chapter, we held the test coverage as high
as possible. None of our own components have a test coverage lower than 90
percent. This NFR can hence be considered fulfilled.

Extensibility

The framework components are designed in an extensible fashion. New dis-
covery strategies, ARs, service decomposition algorithms, and generators can
be added without major changes to the framework and its design itself. There-
fore, we consider this NFR to be met.

Licenses

This NFR is fulfilled since we only included third-party libraries with open
licenses. No GNU General Public License (GNU GPL) licensed libraries are
used within Context Mapper.

Supportability and Maintainability

The code quality has been kept as high as possible by applying corresponding
quality measures. Mechanisms such as mandatory pull requests for updates
on the master branch (code review), Continuous Integration (CI) build server
executing unit and integration tests for each commit, and a high test cover-
age measured by a corresponding tool12 have been established. The Java code
is clean and understandable for a junior software engineer. Furthermore, we
have not used any special or not well-known language features. This NFR can
therefore be seen satisfied.

Documentation

Since we documented all new features on the project’s online documentation
website13, this NFR is met as well.

Examples

We provide example CML models for all language features and ARs in our ex-
amples repository [14]. The Lakeside Mutual [61] case study for the discovery
library can be found in the GitHub repository of the library itself14 (Examples
folder). Examples of graphical Context Maps generated with our tool can be
found online15 and in this thesis report. Therefore we provide examples for all
new features and tools realized during this thesis.

12https://codecov.io
13https://contextmapper.org
14https://github.com/ContextMapper/context-map-discovery
15https://contextmapper.org/docs/context-map-generator/

https://codecov.io
https://contextmapper.org
https://github.com/ContextMapper/context-map-discovery
https://contextmapper.org/docs/context-map-generator/

92 Chapter 5. Evaluation and Discussion

Reverse Engineering: Technology Neutrality and Extensibility

With the strategy-based discovery library we designed the reverse engineer-
ing framework component in a style which is technology neutral and extensi-
ble. It allows adding arbitrary strategies supporting all kinds of programming
languages, frameworks, and technologies. With our current prototype we fo-
cused on Java-related frameworks and Java Virtual Machine (JVM) languages
but new programming languages could be supported by adding new strategies
and without any changes to the framework itself. Thus, this NFR is fulfilled.

CML-Related NFRs

Chapter 2 lists the following non-functional requirements for the CML lan-
guage: Simplicity of the DSL, Quickly Writable without Redundancy, Well Readable,
Consistent, and Parsable by the Tool (Xtext).

We consider all of those NFRs fulfilled since we did not have to realize
major changes in the language grammar during this thesis. The collected user
feedback was positive and only small adjustments regarding the language were
requested. The changes as documented in Chapter 4 have not affected the lan-
guage in a way that violates the requirements above.

ARs: Transformations must result in valid Models

The new ARs were tested carefully and transformations which lead to potential
validation errors were considered. The model transformations should always
result in valid CML models. We consider this NFR fulfilled, although it is not
possible to guarantee that we covered all possible cases.

ARs: Performance

The application of an AR never took longer than three seconds with our case
study models. Thus, this NFR is accomplished.

Service Cutter Integration: Algorithm Exchangeability

The Service Cutter [35] engine is already designed to support different cluster-
ing algorithms. Within our new library version of the tool we have not changed
anything in this regard. We kept the new Application Programming Interface
(API) which we call from Context Mapper independent of the cutting algo-
rithms. This makes it possible to integrate new algorithmic solutions without
changing the API and the Context Mapper ACL. Therefore we consider this
NFR to be fulfilled.

5.3 Strengths and Weaknesses

We conclude this chapter by discussing the strengths or benefits, and weak-
nesses of the proposed modeling framework.

5.3. Strengths and Weaknesses 93

5.3.1 Consistency with DDD Patterns and Terminology

The approach mainly targets software architects and business analysts already
applying strategic DDD. For this reason the CML language, from which the
framework originally evolved, is shaped by the DDD patterns, terms and defi-
nitions [24, 25, 98]. This is an advantage regarding understandability and usabil-
ity for all DDD practitioners which are familiar with the patterns. Our semantic
rules and validators [46] may even lead to learning effects and increased aware-
ness regarding possible pattern combinations among these practitioners. The
consistency with the original DDD patterns allows them to understand and get
started with the modeling language rapidly.

On the other hand, this can be a disadvantage if we want to introduce the
framework to users without extensive knowledge of the DDD concepts. Cer-
tain terms like Upstream-Downstream or patterns such as PL are often not self-
explanatory and require users to familiarize themselves with the patterns.

5.3.2 Increased Productivity for Context Mapping

The context mapping activity seems to be practiced by hand so far. In compar-
ison to hand-drawn Context Maps our framework allows evolving the archi-
tecture models with little effort. Hand-drawn sketches have to be re-drawn to
update them according to major architecture changes. With our ARs we sim-
plify the application of such model transformations which can be applied iter-
atively. The refactorings can be a benefit in comparison with other modeling or
diagramming tools where architectural changes have to be modeled manually.

5.3.3 (Non-)Conformance With Agile Practices

The support for iterative model evolution as mentioned above is why we be-
lieve that the approach also conforms to agile practices [1]. The tool can be
used to evolve the architecture and «respond to changes» instead of create a
Context Map once and «follow the plan». The Agile Modeling (AM) approach
by Ambler [3] also supports our claim that agile and modeling practices can be
combined.

Nevertheless, the model-driven architecture approach might be considered
non-conforming with agile practices by others. Practitioners of agile methods
are often equating architecture-centric methods and model-driven architecture
with «high-ceremony processes emphasizing document production» [65]. From
this perspective the formalization of the Context Maps could be seen as a weak-
ness of the approach, non-conforming with «working software over compre-
hensive documentation» [1]. Practitioners of agile methods may prefer the in-
formal and hand-drawn approach for context mapping.

5.3.4 Different Levels of Abstraction Supported by Generators

From our perspective, the possibility to generate other diagrams and repre-
sentations of the same input model is one of the strengths of the proposed
approach. The modeling framework does not focus on specific types of dia-
grams or representations. Communicating architecture always requires differ-
ent levels of abstraction and different perspectives depending on the usage and

94 Chapter 5. Evaluation and Discussion

the audience. This is an issue addressed in many other architecture modeling
approaches such as UML, the «4+1» view model of software architecture by
Kruchten [53], or the C4 model by Brown [11]. The advantage of the DSL and
generators approach is that the architect does not have to create different dia-
grams for different perspectives manually. The CML language allows model-
ers to add as much detail to the architecture model as needed. The generators
will then use the information on the level of abstraction it needs to produce
the requested output. For example, a user can generate a high-level graphical
Context Map illustrating relationships between Bounded Contexts as well as a
detailed class diagram for a certain component or context out of the same CML
model.

At the same time, maintaining all architectural perspectives within a sin-
gle model can be a weakness since their complexity increases with the level
of details. If the models have to be understandable for all user roles, business
analysts as well as engineers and architects, this may lead to conflicts. To gen-
erate class diagrams the model has to be enriched with details which may be
too technical for business analysts. The approach how we solved this in our
examples repository16, by providing different stages for the same model, leads
to duplicate CML code. This might be acceptable for our illustration purposes,
but is a disadvantage not negligible in a productive scenario. An extension
mechanism allowing to add details in separate CML files might be a solution
to tackle this problem in future projects.

5.3.5 The «Model-Code» Gap

Another liability of the model-driven approach, especially for detailed domain
models, is the «model-code» gap [26]. If the domain models within the Bounded
Contexts are modeled manually they are likely to become obsolete quickly. The
strength of the proposed framework concerning this matter is the discovery
library that allows to close this gap. If the domain models of the Bounded
Contexts are generated from the source code automatically, it is possible to up-
date the models frequently without manual work. However, if the user adjusts
the discovered models it is not yet possible to update them without losing the
manual changes.

5.3.6 IDE Support for DSL

Furthermore, we identified the provisioning of different Integrated Develop-
ment Environments (IDEs) as potential weakness of the DSL-based approach.
For a good usability the framework user needs an editor providing code com-
pletion, syntax highlighting, and validators which check that the models are
syntactically and semantically correct. Unfortunately there is currently no al-
ternative DSL framework to Xtext [23] available which is able to generate plu-
gins for all popular IDEs. Since developers and software architects work with
different IDEs it is difficult to reach all of them only by supporting Eclipse.
Future projects have to address this issue by realizing a web-based approach

16https://github.com/ContextMapper/context-mapper-examples

https://github.com/ContextMapper/context-mapper-examples

5.3. Strengths and Weaknesses 95

such as the one suggested by Bünder [12] (Eclipse Theia17) or by implementing
plugins for other IDEs.

5.3.7 Future Safety

Despite technical challenges as mentioned above, we consider the approach
based on domain modeling and DDD to be future-proof. The independence
from technology and architectural style is a strength of the concept. Even if
the hype regarding (micro-)service-oriented architectures should be over in the
future, domain modeling will always be relevant in practice.

5.3.8 Evolutionary Framework Design

Finally, we believe it to be a strength of the proposed modeling framework that
it evolved from user requirements iteratively. During the previous projects [46,
50] and this thesis we validated the approach constantly and added framework
components due to the collected user feedback. Thus, the design reflects actual
user requirements and is not made up in advance.

In this chapter we outlined our validation activities and discussed their results
which suggest that the target audience of our modeling framework can benefit
from the proposed approach. We demonstrated that the requested project de-
liverables and goals are satisfied. The evaluation of the requirements further
exhibited that five out of seven user stories are fully addressed and the fulfill-
ment of the NFRs has been ensured. In addition, we discussed strengths and
weaknesses of the proposed framework.

We conclude the chapter as follows: Although parts of the framework must
be improved in future projects, the validation results are positive and encour-
age us to continue our work. The consistency with the DDD patterns and termi-
nology (for DDD practitioners), increased productivity in context mapping, sup-
port for iterative (agile) decomposition through automated refactorings, and
the generation of architecture diagrams on different levels of abstraction are
important benefits of the proposed modeling framework. The initial usability
and understandability for users without DDD knowledge, the maintenance of
models for different user roles, the «model-code» gap, and the IDE support are
current liabilities and issues for future projects.

The next chapter discusses related work and compares our framework with
other architecture modeling tools and similar approaches.

17https://theia-ide.org/

https://theia-ide.org/

97

Chapter 6

Comparison with Related Work

The decomposition of software systems into modules or services has gained
attention within the last years, especially due to the trend towards microservice
architectures [104]. Domain-driven Design (DDD) as one approach to tackle the
challenge of decomposing a system has not only been applied by practitioners
but has also been mentioned by the academic field [18, 41, 54, 59, 62, 70, 75].

6.1 Modeling Language

Not many modeling languages or tools based on DDD patterns already exist.
The few projects implementing Domain-specific Languages (DSLs) based on
DDD such as Sculptor [83], fuin.org’s DDD DSL [29], or DSL Platform [22] are
focused on the tactical patterns rather than the strategic ones. Tactic DDD fo-
cuses on the domain model within one Bounded Context, while our modeling
framework concentrates on the strategic DDD patterns to model the relation-
ships between Bounded Contexts. Domain-driven frameworks such as Apache
Isis1 or OpenXava2 which are based on internal DSLs using conventions and
annotations are designed to support the implementation of applications rather
than modeling the architecture. Duc Minh Le et al. [55] proposed another
annotation-based DSL for object-oriented software development.

Rademacher [76] proposed a Unified Modeling Language (UML) profile to
model microservice architectures with DDD patterns. The profile is mentioned
to be a foundation for validating domain models and deriving microservice
code. However, the described UML profile covers tactical DDD patterns only.

Certainly, many other modeling tools and languages allowing to describe
software architectures exist. However, no tools on the basis of the strategic
DDD patterns to express Context Maps [24, 98] and/or support context mapping
[10] as a technique existed before Context Mapper. Graphical representations
of Context Maps were introduced by Brandolini [10] and Vernon [98]. Plöd
[73] proposed another formal notation. Nonetheless, no tool support for these
approaches already exists.

6.2 Discovery Library for Reverse Engineering

Reverse engineering components such as our discovery library have also been
implemented in other software architecture modeling tools. Structurizr [91]

1https://isis.apache.org/
2https://openxava.org/

https://isis.apache.org/
https://openxava.org/

98 Chapter 6. Comparison with Related Work

for example provides a similar library to derive their C4 models [11] from ex-
isting code. Other architecture modeling tools based on UML, such as En-
terprise Architect [88], are often limited to reverse engineer class diagrams
from code. O’Brien et al. [66] presented current approaches towards soft-
ware architecture reconstruction in 2002. However, the presented approaches
describe recovery techniques which are not specifically designed for (micro-)
service-oriented architectures. They further proposed an architecture recon-
struction tool called ARMIN (Architecture Reconstruction and MINing) [87].
Cuadrado et al. [17] presented a recovery process for Service-oriented Archi-
tectures (SOAs). Granchelli et al. [31] proposed an architecture recovery ap-
proach for microservice architectures called MicroART. In comparison to our
static analysis approach they perfom dynamic analysis at runtime as well.

A disadvantage of many reverse engineering tools that generate architec-
ture diagrams from source code is that they are too detailed. They often gen-
erate class diagrams but do not provide good overviews over the system’s
components. In this regard our discovery library is similar to and is actually
inspired by the libraries3 of Simon Brown’s Structurizr [91]. His and our ap-
proach allow to recover parts of a system on a higher level than classes. Both
can use different strategies to discover system parts based on their names, an-
notations, or other characteristics in the code. Our library concretely allows to
discover Bounded Contexts, Aggregates, and business objects (Entities, Value
Objects, etc.), while Structurizr [91] works with the terms of the C4 model [11]
(context, container, components, and code). Both approaches enable a user to
generate diagrams on different levels of abstraction as soon as the model has
been created.

6.3 Architectural Refactorings (ARs)

With our Architectural Refactorings (ARs) [103] we provide single steps to de-
compose the modeled system based on Decomposition Criteria (DCs) compiled
in our previous work [50] in an iterative manner. We collected these criteria
from the Service Cutter coupling criteria catalog [37], our own professional ex-
perience, and mostly gray literature regarding how Bounded Contexts can be
identified. In the following we will mention all the literature consulted to de-
sign our ARs.

One of the first research papers regarding the criteria to be used to decom-
pose systems has been presented by D. L. Parnas [68]. The mentioned approach
to separate parts which change often from others has led to one of our ARs. Use
Cases and other domain heuristics such as language, domain expert bound-
aries, business process steps, data flow, or ownership are other criteria men-
tioned by Tune and Millet [96]. As many other DDD experts they mention
the importance of coevolving organizational and technical boundaries which
is also widely known as Conway’s law [16].

Tigges [93] presents another list of criteria to be used when breaking a do-
main down to Bounded Contexts: domain objects and their relations, use cases,
processes, workflows, quality goals, non-functional requirements, and organi-
zational aspects. Plöd [74] emphasizes that the linguistic differences and model

3https://github.com/structurizr

https://github.com/structurizr

6.4. Systematic Service Decomposition 99

differences are the primary drivers for Bounded Context identification. Mi-
croservice characteristics such as the organization around business capabilities
[82], decentralized governance, and evolutionary design suit the idea behind
Bounded Contexts according to him. The statement that it is important to de-
compose a system in several iterations by Steinegger et al. [90] supports our
hypothesis that a Context Map should be evolved iteratively as well. Bran-
dolini [10] shows how Context Maps can evolve in multiple steps. He further
invented event storming [8, 9], a workshop technique to analyze a domain and
discover Bounded Contexts.

All these mentioned authors provide criteria, practices, and heuristics that
are important to decompose software systems. However, none of them offer
concrete, systematic, or algorithmic procedures describing how the decompo-
sition shall be done. The proposed ARs of our modeling framework use the
researched criteria and heuristics mentioned above but additionally provide
concrete procedures and steps which can be realized as code refactorings for a
DDD-based modeling language such as the Context Mapper DSL (CML).

Comparable architecture modeling tools that are based on a DSL and also
support refactorings for the language do not exist. However, Mens and Tourwé
mention a research trend towards refactorings on design level artifacts in their
survey of software refactoring [60]. For example, Boger et al. [7] discuss how
the idea of refactorings can be extended to UML models. Although no similar
approaches based on DSLs exist, the concept behind the implementation of our
refactorings is not new. They are based on model transformations [49] applied
to the Eclipse Modeling Framework (EMF) models [89] behind our Xtext-based
DSL [23]. Ivkovic and Kontogiannis [42] introduce another approach to refac-
tor software architecture artifacts using model transformations. Grunske [33]
further presents an approach to formalize architectural refactorings as hyper-
graph transformations with the goal to apply them to architectural specifica-
tions automatically.

6.4 Systematic Service Decomposition

The approach mentioned above offers a stepwise decomposition by applying a
series of the proposed ARs. With the integration of Service Cutter, a structured
and systematic service decomposition approach by Gysel et al. [36], we go one
step further and provide an approach which generates service decompositions
automatically. The approach uses graph clustering algorithms and a scoring
system using their coupling criteria catalog [37] to calculate decompositions.

Tyszberowicz et al. [97] propose another systematic approach to identify
microservices using functional decomposition based on use cases. A similar
algorithmic solution based on clustering has also been suggested by Mazlami,
Cito, and Leitner [59]. In comparison to Service Cutter, their approach does not
depend on a prepared input model but constructs the monolithic structure to
be decomposed into microservices from a Git4 repository. Another approach
to decompose a monolithic system based on existing source code has been pro-
posed by Kamimura et al. [45]. They use their own dependency-based software

4https://git-scm.com/

https://git-scm.com/

100 Chapter 6. Comparison with Related Work

clustering algorithm «SArF» (Software Architecture Finder) [51] and visualize
the microservice candidates with a city metaphor [52].

With the structured service decomposition component of our framework
we do not contribute new algorithmic solutions. We use the clustering-based
approach of Service Cutter [36] to generate the decompositions. However, with
the integration we contribute a systematic decomposition tool with strategic
DDD models (Context Maps) as input and output. This component is designed
to integrate different algorithmic solutions. Thus, future projects could inte-
grate other decomposition algorithms such as the above mentioned.

6.5 Architecture Diagram Generation

A user can generate Context Maps, UML component diagrams, and UML class
diagrams with the two graphical generators provided by our framework. The
UML diagrams are based on PlantUML [72]. In comparison with the C4 [11]
approach we cover three of the four perspectives. The context diagram of C4
corresponds to the DDD Context Map. We can generate a component diagram
with PlantUML [72] and the code diagram corresponds to our class diagram.
The C4 model [11] supports a container diagram which we however do not
support yet.

Of course many other tools to create architecture diagrams exist, amongst
which are UML tools, although these are not listed herein. The only mentioned
one, PlantUML [72], is based on a textual language as well. Thus, the generated
diagrams by our framework can be adjusted and used within other editors
supporting PlantUML.

There are no other tools specifically designed to create DDD Context Maps
besides Context Mapper. Our generator is however based on Graphviz [30]
which supports the Graph Description Language (DOT). Hence, users could
create similar Context Maps by describing the graphs in Graphviz directly or
by using another graph visualization tool. We have already mentioned such
tools in the evalution in Chapter 3. In practice, architecture diagrams are often
created with free diagramming tools such as Visio5 or Gliffy6 as well.

6.6 Microservice Contract and Code Generation

With the Microservices Domain-Specific Language (MDSL) service contract gen-
erator, we provide a tool that assists the architect regarding the question how
the (micro-)service-oriented architecture can be implemented concretely. In
future projects our users may be able to generate microservice stubs out of
our Context Maps automatically. Similar approaches towards code generation
from service contracts are provided by the OPEN API initiative [67] and Swag-
ger [86]. From the service contracts described in their tools users can generate
service stubs as well.

5https://products.office.com/visio/
6https://www.gliffy.com/

https://products.office.com/visio/
https://www.gliffy.com/

6.6. Microservice Contract and Code Generation 101

A DSL-approach comparable with our language but specifically designed
to generate code is provided by JHipster [43] and their JHipster Domain Lan-
guage (JDL). JDL allows to describe applications with their domain models
(entities with their relationships) and deployments. Out of the JDL language
they are able to generate complete microservice applications based on frame-
works such as Spring Boot [71]. In comparison to the CML language, JDL is
less powerful and specifically designed for the JHipster [43] application gen-
erator. The goal of our framework is to offer a technology-neutral modeling
language from which we can generate arbitrary representations. However, just
like our language, JDL allows to specify the individual microservices (Bounded
Contexts in our case) and which entities belong to which individual service. It
further generates UML diagrams out of the specified entities.

In this chapter we discussed related work with respect to the individual com-
ponents and functionalities of the proposed modeling framework. The next
and final chapter of this report summarizes the results and contributions of
this thesis and outlines future work.

103

Chapter 7

Conclusion and Outlook

In the previous chapters we introduced our modeling framework, validated
the results, and compared it with related work. This final chapter summarizes
the thesis and its contributions. Finally, it outlines potential future work.

7.1 Thesis Summary and Results

With this thesis we conceptualized a modeling framework for strategic Domain-
driven Design (DDD) and service decomposition. The Context Mapper DSL
(CML) modeling language has been complemented with tools supporting to
reverse engineer DDD Context Maps and decompose them iteratively. In ad-
dition, generator tools allow users to transform the architecture models into
different representations. By applying empirical research methods [47, 100]
such as action research and case study we validated our approach and evolved
the Context Mapper tool [15] towards the suggested modeling framework.

The framework provides a formal way for context mapping, a technique for
service decomposition practiced manually on paper by DDD adopters so far.
Through the core component of our framework, the CML language, we estab-
lished a strategic DDD meta-model and semantic rules [46] that define how the
patterns can be combined on Context Maps.

A set of eleven Architectural Refactorings (ARs) implemented as code refac-
torings for CML, ease the evolution of Context Maps. Seven ARs that are
based on researched Decomposition Criteria (DCs) were already developed in
our previous term project [50]. Four new ARs conceptualized during this the-
sis support refactoring relationships between Bounded Contexts and therefore
evolving Context Maps.

As part of this thesis we researched how microservice projects are imple-
mented in open source projects and which technologies are popular. Based
on the results we conceptualized a discovery library which allows framework
users to reverse engineer the Context Map and the Bounded Context domain
models of such microservice projects. In comparison to most reverse engineer-
ing tools, we not only support generating diagrams on class level but also
support the discovery of higher-level system units such as Aggregates and
Bounded Contexts. The strategy-based design of the discovery library allows
us and/or the open source community to implement new discovery strate-
gies on the basis of other programming languages and technologies in future
projects.

104 Chapter 7. Conclusion and Outlook

The integration of a structured and systematic service decomposition ap-
proach allows users to derive suggestions on how the reverse engineered or
manually created CML models could be further improved automatically. The
tool decomposes the modeled systems with the goal to optimize coupling and
cohesion based on a catalog of coupling criteria [37]. This framework compo-
nent has to be improved and enhanced with new algorithms in future projects.
The design of the Service Cutter library1 realized as part of this thesis supports
the inclusion of other algorithmic approaches.

The generator tools of our modeling framework allow to transform the
CML Context Maps into graphical representations. With the Context Map,
Unified Modeling Language (UML) component, and UML class diagrams, we
offer the generation of architecture diagrams on different levels of abstraction.
Besides the graphical transformations, the Microservices Domain-Specific Lan-
guage (MDSL) [102] generator supports architects regarding the question how
the (micro-)service-oriented systems can be implemented. In future projects,
our generators may even be able to produce (micro-)service server and client
stubs.

In summary, our modeling framework supports software architects and
business analysts in creating and evolving strategic DDD Context Maps and
therefore the architecture of software systems. With the proposed framework
components we further simplify the creation of the models and the genera-
tion of other representations. Although parts of our framework have to be
improved, the validation activities suggest that our original hypothesis is true.
Software architects and especially DDD adopters can benefit from a tool which
supports the creation of the DDD models in a rigorous and expressive way.
The maintenance of models on varying levels of abstraction for different user
roles, the «model-code» gap [26], and the Integrated Development Environ-
ment (IDE) support for the Domain-specific Language (DSL) are challenges
that must be addressed in the future. The consistency of the modeling lan-
guage with the DDD patterns and the increased productivity in context map-
ping are strengths of the approach. The transformation tools and ARs which
allow evolving the models iteratively promote the application of the approach
in agile projects as well. We consider the concept based on domain modeling
and DDD promising and future-proof since it is independent of technologies
and architectural styles.

7.2 Future Work

In future projects we plan to further improve and enhance the framework
and its components. We identified potential future work regarding the lan-
guage tooling, in the discovery library, the ARs, systematic decomposition al-
gorithms, and the generation tools.

1https://github.com/ContextMapper/service-cutter-library

https://github.com/ContextMapper/service-cutter-library

7.2. Future Work 105

7.2.1 Language Tooling

A liability already identified during our previous projects [46, 50] is the IDE
support. Many software engineers and architects use other IDEs than the cur-
rently supported Eclipse2 IDE. In future projects we may implement editor
support for CML within other IDEs like IntelliJ IDEA3 or Visual Studio Code4.
Implementing a web-based editor would be another solution. The approach
presented by Bünder [12] using Theia5 and the Language Server Protocol (LSP)
would already provide support for Xtext-based [23] DSLs.

Another weakness with respect to the language tooling is that models cur-
rently have to be written in one single CML file. Future projects could tackle
this issue by providing an import mechanism which allows users to distribute
model parts into multiple files. Large CML files could be avoided, for exam-
ple by modeling each Bounded Context in a separate file. In addition, it is
currently not possible to increase the level of detail of a domain model within
another file. If different levels of abstraction of a domain model are required
to satisfy the demands of different user roles, such as business analysts and
software architects, creating multiple models and therefore duplicating code is
currently the only solution. An extension mechanism that supports increasing
the level of detail in a separate file could solve this issue in a future project.
This would allow us to keep the stages in our example models6 as explained in
Section 4.7 of Chapter 4 but reduce the duplicated code.

7.2.2 Discovery Library

Additional discovery strategies are required to reverse engineer other technolo-
gies apart from Spring Boot [71]. By supporting other programming languages
and/or frameworks, the tool may become interesting for more users. Relation-
ships between Bounded Contexts may also be discovered using other mecha-
nisms besides Docker [20]. In addition, the existing prototype can be improved
to discover supplementary CML model data.

The prototypic Bounded Context domain model discovery implemented
during this thesis may be improved to identify domain object types correctly
(i.e. Entity vs. Value Object). In addition, the creation of duplicate domain
objects in different Aggregates must be avoided as we hide coupling between
these Aggregates in this way. This would improve the effectiveness of system-
atic decomposition approaches applied to discovered CML models since they
are based on the coupling between domain objects.

By implementing an approach to integrate the discovered (generated) CML
code with handwritten adjustments, such as protected regions [32], future projects
should close the «model-code» gap [26]. This would allow the framework users
to update the CML models with the discovery library and ensure that they are
not outdated with respect to the codebase. In addition, users may want to up-
date the CML models according to manual changes in the generated artifacts

2https://www.eclipse.org/
3https://www.jetbrains.com/idea/
4https://code.visualstudio.com/
5https://theia-ide.org/
6https://github.com/ContextMapper/context-mapper-examples

https://www.eclipse.org/
https://www.jetbrains.com/idea/
https://code.visualstudio.com/
https://theia-ide.org/
https://github.com/ContextMapper/context-mapper-examples

106 Chapter 7. Conclusion and Outlook

such as the MDSL contracts. Hence, we would close the cycle as illustrated in
the framework overview in Chapter 1.

For example, in combination with a new generator that produces microser-
vice server and/or client stubs (see Section 7.2.5) we could generate an appli-
cation for our fictitious insurance example7, change the source code manually,
and then update the CML model with the discovery library as illustrated in
Figure 7.1.

FIGURE 7.1: Closed «Model-Code» Gap [26] (Future Work)

7.2.3 Architectural Refactorings (ARs)

Future case studies in real-world projects have to validate whether the current
collection of ARs provided by the framework is sufficient and feasible. A tuto-
rial and chain of refactorings could help new users to understand how the ARs
can be applied to decompose a Context Map. Based on the validation activities
and user feedbacks, future projects might propose and implement new ARs.

7.2.4 Systematic Service Decomposition Algorithms

The integrated Service Cutter [35] library providing the structured and sys-
tematic decomposition functionality has to be enhanced with other algorithms
in future projects. According to our validation activities the current approach
that calculates completely new decompositions must be questioned. In future
projects we may conceptualize alternative algorithmic solutions that are able to
suggest the application of specific ARs. Thereby, the integration of the solution
into the users decomposition workflow can be improved. Instead of comput-
ing new decompositions, the algorithm could for example suggest Aggregates
that should be extracted into a new Bounded Context. However, the solution
should still be based on (de-)coupling criteria with the goal to improve cou-
pling and cohesion.

7https://github.com/ContextMapper/context-mapper-examples/tree/master/src/

main/cml/insurance-example

https://github.com/ContextMapper/context-mapper-examples/tree/master/src/main/cml/insurance-example
https://github.com/ContextMapper/context-mapper-examples/tree/master/src/main/cml/insurance-example

7.2. Future Work 107

7.2.5 Generation Tools

Generating code out of the CML Context Maps would be another interesting
project for the future. Concretely, we could generate microservice project stubs.
This would allow users to model a DDD Context Map and then generate a
corresponding microservice project automatically. In combination with future
adjustments in the discovery library (see Section 7.2.2) we could establish an
update mechanism that allows keeping the CML models up-to-date as illus-
trated in Figure 7.1. Generating Swagger [86] or Open API [67] contracts out
of MDSL would be one approach since the Open API project already provides
code generators. Using JHipster [43] for the microservice stub generation is an-
other interesting approach in this direction. JHipster Domain Language (JDL)
models could be generated out of CML. Thereby our framework users would
be able to generate microservices with the technologies already supported by
JHipster [43].

In this final chapter we summarized the results of this thesis and outlined po-
tential future work. Based on the positive validation results and the received
user feedback we believe that the proposed modeling framework has the po-
tential to benefit software architects and business analysts in applying DDD.

We envision the tool to increase the productivity of DDD adopters in analyz-
ing and describing domains as well as evolving and communicating software architec-
tures. The ARs and the systematic decomposition component ease the iterative
evolution of the software architecture models conforming to agile principles
[1]. Users in brownfield projects can reverse engineer the CML models easily.
The generation of different architecture diagrams, service contracts, or code is
another benefit of formalizing DDD Context Maps.

We consider the approach to be promising and will continue our work on
the Context Mapper open source project8 [15] after this thesis.

8https://contextmapper.org/

https://contextmapper.org/

109

Appendix A

Revised CML Language
Reference

This appendix contains a reference for the current version v5.6.11 of the Context
Mapper DSL (CML) language. It is an updated version of the language refer-
ences we provided in our previous work [46, 50]. This reference is adjusted
with respect to all language changes implemented during this thesis.

Please note that this reference explains syntax and semantic rules of the
CML language only. The purposes and goals of the individual language fea-
tures are explained in our previous work [46] and Chapter 4 of this report in
case its a new feature. All CML language concepts and the syntax explained in
this language reference can further be found in our online documentation2.

The tactic Domain-driven Design (DDD) parts within the Aggregates are
realized with the Sculptor Domain-specific Language (DSL) [83] and not ex-
plained within this language reference. We refer to the Sculptor online docu-
mentation3.

A.1 Language Design

The design of our DSL and its rules is based on the domain model presented in
our previous project [46]. It can also be found online4.

A.2 Terminals

The grammar snippets within the language reference use the terminals defined
in Listing 37.

1 terminal OPEN: '{';

2 terminal CLOSE: '}';

LISTING 37: Xtext CML Terminals

1https://github.com/ContextMapper/context-mapper-dsl/tree/v5.6.1
2https://contextmapper.org/docs
3http://sculptorgenerator.org/documentation/
4https://contextmapper.org/docs/language-model/

https://github.com/ContextMapper/context-mapper-dsl/tree/v5.6.1
https://contextmapper.org/docs
http://sculptorgenerator.org/documentation/
https://contextmapper.org/docs/language-model/

110 Appendix A. Revised CML Language Reference

A.3 Root Rule

The root elements allowed in a CML file are the Context Map, Bounded Contexts,
Domains and Use Cases. A CML model can contain one Context Map only. All
other root elements can occur multiple times. Listing 38 shows the root gram-
mar rule of the language.

1 ContextMappingModel:

2 (

3 (map = ContextMap)? &

4 (boundedContexts += BoundedContext)* &

5 (domains += Domain)* &

6 (useCases += UseCase)*

7)

8 ;

LISTING 38: Xtext Root Grammar Rule

The order in which these root elements occur does not matter, but they have
to occur in one block per type. All Bounded Contexts, domains and use cases
have to occur in a block for each type. Whether the CML file lists Bounded
Contexts or domains first does not matter. We recommend to use the order as
given by the grammar rule, since the application of Architectural Refactorings
(ARs) currently unparses the whole model in this order. We mentioned this as
a known limitation in our previous project report [50].

A.4 Context Map

The Context Maps grammar rule is shown in Listing 39. A Context Map is
declared with the ContextMap keyword followed by an optional name for the
map. With the state keyword the ContextMapState is assigned, whereas the type
keyword allows the assignment of the ContextMapType. With the contains key-
word multiple Bounded Contexts can be assigned to the Context Map. It is
possible to use contains multiple times, but also to list multiple Bounded Con-
texts with just a single usage of contains (comma-separated). At the end of the
grammar rule body the Bounded Context relationships can be added.

1 ContextMap:

2 {ContextMap}

3 'ContextMap' (name=ID)?

4 OPEN

5 (('type' ('=')? type=ContextMapType)? &

6 ('state' ('=')? state=ContextMapState)?)

7 ('contains' boundedContexts += [BoundedContext]

8 ("," boundedContexts += [BoundedContext])*)*

9 relationships += Relationship*

10 CLOSE

11 ;

LISTING 39: Xtext Context Map Grammar Rule

A.4. Context Map 111

Listing 40 illustrates an example for the Context Map rule. Note that the order
of the state and type does not matter. The listing further illustrates both variants
how to add Bounded Contexts with the contains keyword and a few examples
for relationships.

1 ContextMap DDD_Sample_Map {

2 type = SYSTEM_LANDSCAPE

3 state = AS_IS

4

5 /* add bounded contexts to map: */

6

7 contains CargoBookingContext, VoyagePlanningContext

8 contains LocationContext

9

10 /* relationship examples: */

11

12 CargoBookingContext [SK]<->[SK] VoyagePlanningContext

13

14 CargoBookingContext [D]<-[U,OHS,PL] LocationContext

15

16 LocationContext [U,OHS,PL]->[D] VoyagePlanningContext

17 }

LISTING 40: Syntax example for the ContextMap rule

Listing 41 shows the enums ContextMapState and ContextMapType which define
the possible values for the Context Map attributes type and state.

1 enum ContextMapState:

2 AS_IS | TO_BE

3 ;

4

5 enum ContextMapType:

6 SYSTEM_LANDSCAPE | ORGANIZATIONAL

7 ;

LISTING 41: Xtext: ContextMapState & ContextMapType

The Relationship rule which can be used to add Bounded Context relationships
to a Context Map, allows the application of the two rules SymmetricRelationship
and UpstreamDownstreamRelationship, as shown in Listing 42.

1 Relationship:

2 SymmetricRelationship | UpstreamDownstreamRelationship

3 ;

LISTING 42: Xtext: Relationship Rule

The SymmetricRelationship rule further allows the application of the rules Part-
nership or SharedKernel (Listing 43).

112 Appendix A. Revised CML Language Reference

1 SymmetricRelationship:

2 Partnership | SharedKernel

3 ;

LISTING 43: Xtext: SymmetricRelationship Rule

For the syntax of the Partnership rule we refer to Section A.9. The SharedKernel
rule is explained in Section A.10.

The rule UpstreamDownstreamRelationship shown in Listing 44 allows either
the application of the CustomerSupplierRelationship rule or directly writing a
generic upstream-downstream relationship.

1 UpstreamDownstreamRelationship:

2 CustomerSupplierRelationship |

3 (

4 (

5 // variant 1: arrow from left to right or vice versa

6 (upstream = [BoundedContext] (('[''U'']') | ('['('U'',')?

7 (upstreamRoles+=UpstreamRole) ("," upstreamRoles+=UpstreamRole)*)']')?

8 '->'

9 (('[''D'']') | ('['('D'',')?(downstreamRoles+=DownstreamRole)

10 ("," downstreamRoles+=DownstreamRole)*)']')? downstream = [BoundedContext]

11) |

12 (downstream = [BoundedContext] (('[''D'']') | ('['('D'',')?

13 (downstreamRoles+=DownstreamRole) ("," downstreamRoles+=DownstreamRole)*)']')?

14 '<-'

15 (('[''U'']') | ('['('U'',')?(upstreamRoles+=UpstreamRole)

16 ("," upstreamRoles+=UpstreamRole)*)']')? upstream = [BoundedContext]

17) |

18

19 // variant 2: long keywords

20 (upstream = [BoundedContext] ('['((upstreamRoles+=UpstreamRole)

21 ("," upstreamRoles+=UpstreamRole)*)?']')?

22 'Upstream-Downstream'

23 ('['((downstreamRoles+=DownstreamRole)

24 ("," downstreamRoles+=DownstreamRole)*)?']')? downstream = [BoundedContext]

25) |

26 (downstream = [BoundedContext] ('['((downstreamRoles+=DownstreamRole)

27 ("," downstreamRoles+=DownstreamRole)*)?']')?

28 'Downstream-Upstream'

29 ('['((upstreamRoles+=UpstreamRole)

30 ("," upstreamRoles+=UpstreamRole)*)?']')? upstream = [BoundedContext]

31)

32)

33 // name and body

34 (':' name=ID)?

35 (OPEN (

36 ('implementationTechnology' ('=')? implementationTechnology=STRING)? &

37 (('exposedAggregates' ('=')? upstreamExposedAggregates += [Aggregate])

38 ("," upstreamExposedAggregates += [Aggregate])*

39 (exposedAggregatesComment=SL_COMMENT)?

40)? &

41 ('downstreamRights' ('=')? downstreamGovernanceRights=DownstreamGovernanceRights)?

42)

43 CLOSE)?

44)

45 ;

LISTING 44: Xtext: UpstreamDownstreamRelationship Rule

Please note that we are aware of the fact that the readability of the rule above is

A.4. Context Map 113

not very good in this report. The complete grammar in the original line length
can be found in our repository on GitHub5 and might be easier to read. The
length and complexity of this rule is increased due to the different variants we
offer our users to declare relationships.

As declared in the grammar rule, there are basically two alternative syn-
taxes which allow the specification of the same Upstream-Downstream rela-
tionship. Listing 45 and Listing 46 show a corresponding example in all possi-
ble ways. All these declarations are semantically equal and the LocationContext
is always upstream whereas the CargoBookingContext is downstream.

1 // from left to right

2 LocationContext [U]->[D] CargoBookingContext

3 // or without the brackets:

4 LocationContext -> CargoBookingContext

5

6 // from right to left

7 CargoBookingContext [D]<-[U] LocationContext

8 // or without the brackets:

9 CargoBookingContext <- LocationContext

LISTING 45: CML: Upstream-Downstream Variant 1 (Arrow)

The first variant (short) uses the abbreviations U for upstream and D for down-
stream. Note that if the variant with the arrows (-> or <-) is used, the arrow
always points from the upstream towards the downstream, reflecting the influ-
ence flow [73] (the downstream is influenced by and depends on the upstream).

The upstream and downstream roles Open Host Service (OHS), Published
Language (PL), Anticorruption Layer (ACL) and Conformist (CF) are declared
within the brackets. In the short syntax with the arrows, the U and the D are
optional within the brackets. However, if the U and D are used, the relationship
patterns must always be listed behind them.

1 LocationContext Upstream-Downstream CargoBookingContext

2 // or inverse:

3 CargoBookingContext Downstream-Upstream LocationContext

LISTING 46: CML: Upstream-Downstream Variant 2
(long keywords)

In the variant with the long keywords we use the same brackets for the roles but
always without the abbreviations for upstream and downstream (U, D). Note
that it is also possible to declare only one bracket, if there are no relationship
patterns on one side of the relationship.

Listing 47 and Listing 48 illustrate the same relationships as before but with
upstream and downstream roles. They show various options how a relation-
ship can be declared, emphasizing that brackets, U’s, and D’s are optional. All
listed options are syntactically correct in CML.

5https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

114 Appendix A. Revised CML Language Reference

1 LocationContext -> CargoBookingContext

2 LocationContext [U]->[D] CargoBookingContext

3 LocationContext [U]-> CargoBookingContext

4 LocationContext [OHS,PL]-> CargoBookingContext

5 LocationContext [U,OHS,PL]-> CargoBookingContext

6 LocationContext [U,OHS,PL]->[ACL] CargoBookingContext

7 LocationContext [U,OHS,PL]->[D,ACL] CargoBookingContext

8 LocationContext [OHS,PL]->[ACL] CargoBookingContext

9 // or inverse:

10 CargoBookingContext <- LocationContext

11 CargoBookingContext [D]<-[U] LocationContext

12 CargoBookingContext [D]<- LocationContext

13 CargoBookingContext [ACL]<- LocationContext

14 CargoBookingContext [D,ACL]<- LocationContext

15 CargoBookingContext [D,ACL]<-[OHS,PL] LocationContext

16 CargoBookingContext [D,ACL]<-[U,OHS,PL] LocationContext

17 CargoBookingContext [ACL]<-[OHS,PL] LocationContext

LISTING 47: CML Upstream-Downstream Variant 1:
Examples with Roles

1 LocationContext Upstream-Downstream CargoBookingContext

2 LocationContext[OHS,PL] Upstream-Downstream CargoBookingContext

3 LocationContext[OHS,PL] Upstream-Downstream [ACL]CargoBookingContext

4 // or inverse:

5 CargoBookingContext Downstream-Upstream LocationContext

6 CargoBookingContext[ACL] Downstream-Upstream LocationContext

7 CargoBookingContext[ACL] Downstream-Upstream [OHS,PL]LocationContext

LISTING 48: CML Upstream-Downstream Variant 2:
Examples with Roles

Listing 49 shows the Xtext enumerations UpstreamRole and DownstreamRole
which specify the allowed values for the roles inside the corresponding brack-
ets.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

7 ;

LISTING 49: Xtext: UpstreamRole and DownstreamRole

With a colon at the end of the specification followed by a string it is possible to
give every relationship in CML a name. Listing 50 illustrates an example for a
relationship declaration with name.

1 LocationContext [U]->[D] VoyagePlanningContext : ExampleName

LISTING 50: CML: Relationship with Name

A.4. Context Map 115

Within the body of the rule (inside the terminals OPEN and CLOSE, which
are optional), the implementation technology, the exposed aggregates and the
downstream rights can be defined. The corresponding keywords are implemen-
tationTechnology, exposedAggregates and downstreamRights. Please note that this
language reference does not state rationale or the goals for language features.
Chapter 4 of this work together with the report of our previous projects [46,
50] explain all the language features and the reasons why they were added.
Listing 51 shows an example for a relationship specification with body and
corresponding attributes. All attributes here are optional and the order does
not matter.

1 LocationContext [U]->[D] VoyagePlanningContext : ExampleName {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Location, OtherAggregate

4 downstreamRights = INFLUENCER

5 }

LISTING 51: CML: Upstream-Downstream Example with
Attributes (Body)

In addition, the assigment sign (=) became optional with one of the versions
released during this thesis. Therefore, the relationship from Listing 51 can also
be written as in Listing 52.

1 LocationContext [U]->[D] VoyagePlanningContext : ExampleName {

2 implementationTechnology "RESTful HTTP"

3 exposedAggregates Location, OtherAggregate

4 downstreamRights INFLUENCER

5 }

LISTING 52: CML: Upstream-Downstream Example with
Attributes (Body; without assignment sign)

The exposedAggregates attribute must reference Aggregates (see syntax in Sec-
tion A.18) which are part of the upstream Bounded Context of the relationship.
The compiler will throw an error if a referenced Aggregate is specified within
another Bounded Context. Listing 53 shows the rule specifying the allowed
values for the downstreamRights attribute.

1 enum DownstreamGovernanceRights:

2 INFLUENCER | OPINION_LEADER | VETO_RIGHT | DECISION_MAKER | MONOPOLIST

3 ;

LISTING 53: Xtext: DownstreamGovernanceRights

The alternative in the UpstreamDownstreamRelationship rule, defined by the rule
CustomerSupplierRelationship, is explained in Section A.11.

116 Appendix A. Revised CML Language Reference

A.4.1 Context Map Semantic Rules

Note that semantic validators exist for the Context Map. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Context Map:

• A Bounded Context which is not part of the Context Map (referenced
with the contains keyword), can not be referenced from a relationship
within that Context Map.

• A Bounded Context of the type TEAM (BoundedContextType rule) can not
be contained in a Context Map if the Context Map type is
SYSTEM_LANDSCAPE (ContextMapType rule).

• If the Context Map type is ORGANIZATIONAL (ContextMapType rule),
every Bounded Context added to the Context Map (with the contains key-
word) has to be of the type TEAM (BoundedContextType rule).

• Aggregates which are exposed by relationships must be part of the corre-
sponding upstream Bounded Context.

• Context Map relationships must always be declared between two differ-
ent Bounded Contexts. A relationship where both participants are the
same Bounded Context is not allowed.

A.5 Bounded Context

A Bounded Context can be defined according to the BoundedContext grammar
rule, shown in Listing 54 and Listing 55.

With the keyword domainVisionStatement a Domain Vision Statement is as-
signed to the Bounded Context. The keyword type allows the assigning of a
BoundedContextType. With the responsibilities keyword, multiple Responsibility
Layers (see Section A.16) can be assigned. The keyword implementationTechnol-
ogy assigns an implementation technology and the keyword knowledgeLevel a
Knowledge Level (see Section A.17).

1 BoundedContext:

2 (comment=SL_COMMENT)?

3 'BoundedContext' name=ID

4 (('implements' (implementedDomainParts+=[DomainPart])

5 ("," implementedDomainParts+=[DomainPart])*)? &

6 ('realizes' (realizedBoundedContexts+=[BoundedContext])

7 ("," realizedBoundedContexts+=[BoundedContext])*)? &

8 ('refines' refinedBoundedContext=[BoundedContext])?

9)

10 (

11 OPEN

12 (('domainVisionStatement' ('=')? domainVisionStatement=STRING)? &

13 ('type' ('=')? type=BoundedContextType)? &

14 (('responsibilities' ('=')? responsibilities+=STRING)

15 ("," responsibilities+=STRING)*)? &

LISTING 54: Xtext: BoundedContext rule (1)

A.5. Bounded Context 117

16 ('implementationTechnology' ('=')? implementationTechnology=STRING)? &

17 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)?)

18 modules += Module*

19 aggregates += Aggregate*

20 CLOSE

21)?

22 ;

LISTING 55: Xtext: BoundedContext rule (2)

The allowed values for the enum’s BoundedContextType and KnowledgeLevel are
given by the rules in Listing 56.

1 enum BoundedContextType:

2 FEATURE | APPLICATION | SYSTEM | TEAM

3 ;

4 enum KnowledgeLevel :

5 META | CONCRETE

6 ;

LISTING 56: Xtext: BoundedContextType & KnowledgeLevel

Responsibilities can further be added as a list of strings (also mentioned in
Section A.16). The Bounded Context further allows to contain modules and
Aggregates. Modules are not further explained within this language reference
since it is a Sculptor [83] concept. However it is modified and can contain
Aggregates in addition to the other Sculptor [83] elements. Aggregates are
explained in Section A.18.

With the implements keyword it is possible to define which domain or sub-
domains is/are implemented by the Bounded Context. The referenced subdo-
mains must be specified within a domain as explained in Section A.6. In addi-
tion, the refines keyword allows to reference another Bounded Context which is
refined by the current context. Thereby we provide an inheritance mechanism
that allows to specify whether one Bounded Context is a specialization of an-
other one. Listing 57 and Listing 58 show an example for a Bounded Context
specification.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = Customers, Addresses { "The addresses of a customer" }

6 knowledgeLevel = CONCRETE

7

8 Module addresses {

9 Aggregate Addresses {

10 Entity Address {

11 String city

12 }

13 }

14 }

15 Aggregate Customers {

LISTING 57: CML: Bounded Context Example (1)

118 Appendix A. Revised CML Language Reference

16 Entity Customer {

17 aggregateRoot

18

19 - SocialInsuranceNumber sin

20 String firstname

21 String lastname

22 - List<Address> addresses

23 }

24 }

25 }

LISTING 58: CML: Bounded Context Example (2)

Listing 59 illustrates an example how to use the refines keyword.

1 BoundedContext DDD_Modeling_Tool {

2 type APPLICATION

3 domainVisionStatement "A tool that allows to model software architecture by using DDD

4 patterns"

5 }

6

7 BoundedContext ContextMapper refines DDD_Modeling_Tool {

8 implementationTechnology "Xtext DSL, Java"

9 }

LISTING 59: CML: Bounded Context refines Example

If the Bounded Context is of the type TEAM, it is allowed to use the realizes
keyword and specify which Bounded Context is implemented by the team.
Listing 60 shows an example for this use case.

1 BoundedContext CustomersBackofficeTeam implements CustomerManagementDomain realizes

2 CustomerManagementContext {

3 type = TEAM

4 domainVisionStatement = "This team is responsible for implementing ..."

5 }

LISTING 60: Xtext: realizes Keyword Example

A.5.1 Bounded Context Semantic Rules

Note that semantic validators exist for a Bounded Context. This means that not
everything is allowed, even if it is syntactically correct according to the rules
explained above. The following rules apply to a Bounded Context:

• The realizes keyword of the BoundedContext rule can only be used if the
type of the Bounded Context is TEAM (BoundedContextType rule).

A.6 Domain and Subdomains

Domains can be defined as root elements of a CML file. A domain is defined
by a name and the definitions of its subdomains. Listing 61 illustrates the cor-
responding Domain grammar rule.

A.6. Domain and Subdomains 119

1 Domain:

2 'Domain' name=ID

3 (

4 OPEN

5 (('domainVisionStatement' ('=')? domainVisionStatement=STRING)? &

6 (subdomains += Subdomain)*)

7 CLOSE

8)?

9 ;

LISTING 61: Xtext: Domain Rule

The Subdomain pattern is defined by the grammar rule in Listing 62. As on a
Bounded Context (A.5) the domain as well as the subdomain allow to specify
a Domain Vision Statement. The type attribute on subdomains allows values
defined by the SubDomainType enum, illustrated in Figure 63.

1 Subdomain:

2 'Subdomain' name=ID

3 (

4 OPEN

5 (('type' ('=')? type=SubDomainType)? &

6 ('domainVisionStatement' ('=')? domainVisionStatement=STRING)?)

7 entities += Entity*

8 CLOSE

9)?

10 ;

LISTING 62: Xtext: Subdomain Rule

The subdomain further offers the possibility to add Entities (Sculptor [83], En-
tity rule), which may be useful to describe the subdomain in more detail. How-
ever, note that they are currently not used within the generators. The Entities
within Bounded Contexts and Aggregates are relevant there.

1 enum SubDomainType:

2 CORE_DOMAIN | SUPPORTING_DOMAIN | GENERIC_SUBDOMAIN

3 ;

LISTING 63: Xtext: SubDomainType enum

Listing 64 and Listing 65 illustrate an example how a domain with its subdo-
mains can be specified in CML.

1 Domain InsuranceDomain {

2 Subdomain CustomerManagementDomain {

3 type = CORE_DOMAIN

4 domainVisionStatement = "Subdomain managing everything customer-related."

5 }

LISTING 64: CML: Domain and Subdomains (1)

120 Appendix A. Revised CML Language Reference

6 Subdomain PolicyManagementDomain {

7 type = CORE_DOMAIN

8 domainVisionStatement = "Subdomain managing contracts and policies."

9 }

10 Subdomain RiskManagementDomain {

11 type = GENERIC_SUBDOMAIN

12 domainVisionStatement = "Subdomain supporting risk management."

13 }

14 }

LISTING 65: CML: Domain and Subdomains (2)

The implements keyword already seen in the Bounded Context grammar (see
Section A.5) references so-called DomainPart’s. This rule is illustrated in Listing
66 and only used to enable references to domains as well as subdomains.

1 DomainPart:

2 Domain | Subdomain

3 ;

LISTING 66: Xtext: DomainPart Super-Type for Domain and
Subdomain References

Note that a Bounded Context is supposed to implement subdomains of one
and only one domain. The CML validator will create a warning if multiple
domains are referenced from one Bounded Context.

A.7 Use Cases

Use cases can be defined on the root level of a CML file and are then referenced
from Aggregates (see Section A.18). They are used to specify which Aggregates
are accessed by the same use cases. Listing 67 illustrates the corresponding
grammar rule.

1 UseCase:

2 'UseCase' name=ID

3 (OPEN

4 (('isLatencyCritical' ('=')? isLatencyCritical?='true')? &

5 (('reads' nanoentitiesRead+=STRING*) ("," nanoentitiesRead+=STRING)*)? &

6 (('writes' nanoentitiesWritten+=STRING*) ("," nanoentitiesWritten+=STRING)*)?)

7 CLOSE)?

8 ;

LISTING 67: Xtext: Use Cases

Use cases can either be defined in a simple way by just giving its name, or
with more details regarding which attributes are read/written by the use case.
The isLatencyCritical attribute further allows to specify whether the use case is
latency critical or not. Listing 68 shows two examples how use cases can be
defined in CML.

A.8. Domain Vision Statement 121

1 // simple:

2 UseCase UpdateContract

3

4 // with details:

5 UseCase CreateOffer {

6 isLatencyCritical = true // if false, just remove this line

7 reads "Customer.firstName", "Customer.familyName", "Contract.contractId"

8 writes "Offer.offerId", "Offer.products", "Offer.price"

9 }

LISTING 68: CML: Use Cases

A.8 Domain Vision Statement

The Domain Vision Statement pattern is implemented as a description attribute
(String) on Bounded Contexts and subdomains. For the corresponding gram-
mar rules, we refer to Section A.5 and Section A.6. Listing 69 shows an example
Bounded Context with a Domain Vision Statement, and Listing 70 a subdomain
accordingly.

1 BoundedContext CustomerContext {

2 domainVisionStatement = "This context is responsible for ..."

3 }

LISTING 69: Xtext: Domain Vision Statement on Bounded Con-
text

1 Subdomain CustomerManagementDomain {

2 type = CORE_DOMAIN

3 domainVisionStatement = "Subdomain managing everything customer-related."

4 }

LISTING 70: Xtext: Domain Vision Statement on Subdomain

A.9 Partnership

The Partnership relationship pattern is defined by the grammar rule illustrated
in Listing 71 and Listing 72. There are two syntax variants to declare a Partner-
ship relationship.

1 Partnership:

2 (

3 // variant 1: arrow

4 (participant1 = [BoundedContext] '[''P'']'

5 '<->'

6 '[''P'']' participant2 = [BoundedContext]) |

7 ('[''P'']' participant1 = [BoundedContext]

8 '<->'

9 '[''P'']' participant2 = [BoundedContext]) |

LISTING 71: Xtext: Partnership Rule (1)

122 Appendix A. Revised CML Language Reference

10 (participant1 = [BoundedContext] '[''P'']'

11 '<->'

12 participant2 = [BoundedContext] '[''P'']') |

13 ('[''P'']' participant1 = [BoundedContext]

14 '<->'

15 participant2 = [BoundedContext] '[''P'']') |

16

17 // variant 2: (long) Partnership keyword

18 (participant1 = [BoundedContext] 'Partnership' participant2 = [BoundedContext])

19)

20 (':' name=ID)?

21 (OPEN

22 ('implementationTechnology' ('=')? implementationTechnology=STRING)?

23 CLOSE)?

24 ;

LISTING 72: Xtext: Partnership Rule (2)

Listing 73 and Listing 74 illustrate applications of both syntax options.

1 PolicyManagementContext [P]<->[P] DebtCollection

LISTING 73: CML: Partnership Syntax Variant 1

The second variant uses the Partnership keyword whereas the first uses an ar-
row pointing in both directions, indicating symmetry, and the abbreviation P
within brackets for both partners.

1 PolicyManagementContext Partnership DebtCollection

LISTING 74: CML: Partnership Syntax Variant 2

The variant with the arrow allows to place the brackets in different positions.
Listing 75 illustrates all possible variants. All four variants are semantically
equal. Whitespaces around the brackets are ignored by the compiler, so that
the user is free to add whitespaces between the brackets, arrows and Bounded
Context names or not.

1 PolicyManagementContext [P]<->[P] DebtCollection // brackets centered

2

3 [P]PolicyManagementContext <-> DebtCollection[P] // brackets outside

4

5 [P]PolicyManagementContext <-> [P]DebtCollection // both on the left side

6

7 PolicyManagementContext[P] <-> DebtCollection[P] // both on the right side

LISTING 75: CML: Partnership Bracket Placements

With a colon at the end of the specification followed by a string it is possible to
give every relationship in CML a name. Listing 76 illustrates an example for a
Partnership relationship declaration with name.

A.10. Shared Kernel 123

1 PolicyManagementContext [P]<->[P] DebtCollection : exampleRelationship

LISTING 76: CML: Partnership Relationship with Name

As Listing 77 illustrates, both syntax variants allow to declare the implemen-
tation technology for a Partnership relationship inside the optional OPEN and
CLOSE brackets.

1 // Variant 1:

2 PolicyManagementContext Partnership DebtCollection : exampleRelationship {

3 implementationTechnology = "Java application"

4 }

5 // Variant 2:

6 PolicyManagementContext [P]<->[P] DebtCollection : exampleRelationship {

7 implementationTechnology = "Java application"

8 }

LISTING 77: CML: Partnership Relationships with
Implementation Technology

Note that the Shared Kernel relationship is the default with respect to the two
symmetric relationships. A relationship declaration with arrow but without
brackets as illustrated by Listing 78 is possible as well. However, it is important
to note that this declares a Shared Kernel relationship and not a Partnership
relationship.

1 PolicyManagementContext <-> DebtCollection // declares a Shared Kernel (not Partnership)

LISTING 78: CML: Shared Kernel as Default Asymmetric
Relationship

A.10 Shared Kernel

The Shared Kernel relationship pattern is defined by the grammar rule illus-
trated in Listing 79 and Listing 80. There are two syntax variants to declare a
Shared Kernel relationship, corresponding to the Partnership relationship.

1 SharedKernel:

2 (

3 // variant 1: arrow

4 (participant1 = [BoundedContext] '[''SK'']'

5 '<->'

6 '[''SK'']' participant2 = [BoundedContext]) |

7 ('[''SK'']' participant1 = [BoundedContext]

8 '<->'

9 '[''SK'']' participant2 = [BoundedContext]) |

10 (participant1 = [BoundedContext] '[''SK'']'

11 '<->'

12 participant2 = [BoundedContext] '[''SK'']') |

LISTING 79: Xtext: Shared Kernel Rule (1)

124 Appendix A. Revised CML Language Reference

13 ('[''SK'']' participant1 = [BoundedContext]

14 '<->'

15 participant2 = [BoundedContext] '[''SK'']') |

16

17 // variant 2: (long) Shared-Kernel keyword

18 (participant1 = [BoundedContext] 'Shared-Kernel' participant2 = [BoundedContext]) |

19

20 // default case for symmetric relationships

21 (participant1 = [BoundedContext] '<->' participant2 = [BoundedContext])

22)

23 (':' name=ID)?

24 (OPEN

25 ('implementationTechnology' ('=')? implementationTechnology=STRING)?

26 CLOSE)?

27 ;

LISTING 80: Xtext: Shared Kernel Rule (2)

The first uses the arrow (indicating symmetry) again, whereas the second uses
the Shared-Kernel keyword. Listing 81 and Listing 82 illustrate examples for
both variants.

1 PolicyManagementContext [SK]<->[SK] DebtCollection

LISTING 81: CML: Shared Kernel Syntax Variant 1

1 PolicyManagementContext Shared-Kernel DebtCollection

LISTING 82: CML: Shared Kernel Syntax Variant 2

The second variant with the arrow allows to place the brackets in different po-
sitions similar to the Partnership relationship presented in Section A.9. Listing
83 illustrates all possible variants. All four variants are semantically equal.
Whitespaces around the brackets are ignored by the compiler, so that the user
is free to add whitespaces between the brackets, arrows and Bounded Context
names or not.

1 PolicyManagementContext [SK]<->[SK] DebtCollection // brackets centered

2

3 [SK]PolicyManagementContext <-> DebtCollection[SK] // brackets outside

4

5 [SK]PolicyManagementContext <-> [SK]DebtCollection // both on the left side

6

7 PolicyManagementContext[SK] <-> DebtCollection[SK] // both on the right side

LISTING 83: CML: Shared Kernel Bracket Placements

With a colon at the end of the specification followed by a string it is possible to
give every relationship in CML a name. Listing 84 illustrates an example for a
Shared Kernel relationship declaration with name.

A.11. Customer-Supplier 125

1 PolicyManagementContext [SK]<->[SK] DebtCollection : exampleRelationship

LISTING 84: CML: Shared Kernel Relationship with Name

As Listing 85 illustrates, both syntax variants allow to declare the implementa-
tion technology for a Shared Kernel relationship inside the optional OPEN and
CLOSE brackets.

1 // Variant 1:

2 PolicyManagementContext Shared-Kernel DebtCollection : exampleRelationship {

3 implementationTechnology = "Java application"

4 }

5 // Variant 2:

6 PolicyManagementContext [SK]<->[SK] DebtCollection : exampleRelationship {

7 implementationTechnology = "Java application"

8 }

LISTING 85: CML: Shared Kernel Relationships with
Implementation Technology

Note that the Shared Kernel relationship is the default with respect to the two
symmetric relationships. A relationship declaration with arrow but without
brackets as illustrated by Listing 86 is possible as well. However, it is important
to note that this declares a Shared Kernel relationship and not a Partnership
relationship.

1 PolicyManagementContext <-> DebtCollection // declares a Shared Kernel (not Partnership)

LISTING 86: CML: Shared Kernel as Default Asymmetric
Relationship

A.11 Customer-Supplier

The Customer-Supplier relationship pattern is defined by the grammar rule il-
lustrated in Listing 87 and Listing 88. Note that Customer-Supplier is a special
case of an Upstream-Downstream relationship. Thus, the syntax is principally
the same besides the keywords. The Upstream-Downstream keyword is replaced
with Customer-Supplier and the Downstream-Upstream keyword is replaced with
Supplier-Customer. The short syntax with the U for upstream and D for down-
stream is extended in this case with a S for supplier and a C for customer.

1 CustomerSupplierRelationship:

2 (

3 (

4 // variant 1: arrows

5 (upstream = [BoundedContext] '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

6 ("," upstreamRoles+=UpstreamRole)*)?']'

7 '->'

LISTING 87: Xtext: Customer-Supplier Rule (1)

126 Appendix A. Revised CML Language Reference

8 '['('D'',')?'C'(','(downstreamRoles+=DownstreamRole)

9 ("," downstreamRoles+=DownstreamRole)*)?']' downstream = [BoundedContext]) |

10 (downstream = [BoundedContext] '['('D'',')?'C'(','

11 (downstreamRoles+=DownstreamRole) ("," downstreamRoles+=DownstreamRole)*)?']'

12 '<-'

13 '['('U'',')?'S'(','(upstreamRoles+=UpstreamRole)

14 ("," upstreamRoles+=UpstreamRole)*)?']' upstream = [BoundedContext]) |

15

16 // variant 2: long keywords

17 (downstream = [BoundedContext] ('['((downstreamRoles+=DownstreamRole)

18 ("," downstreamRoles+=DownstreamRole)*)?']')?

19 'Customer-Supplier'

20 ('['((upstreamRoles+=UpstreamRole)

21 ("," upstreamRoles+=UpstreamRole)*)?']')? upstream = [BoundedContext]) |

22 (upstream = [BoundedContext] ('['((upstreamRoles+=UpstreamRole)

23 ("," upstreamRoles+=UpstreamRole)*)?']')?

24 'Supplier-Customer'

25 ('['((downstreamRoles+=DownstreamRole)

26 ("," downstreamRoles+=DownstreamRole)*)?']')? downstream = [BoundedContext])

27)

28 (':' name=ID)?

29 (OPEN (

30 ('implementationTechnology' ('=')? implementationTechnology=STRING)? &

31 (('exposedAggregates' ('=')? upstreamExposedAggregates += [Aggregate])

32 ("," upstreamExposedAggregates += [Aggregate])*

33 (exposedAggregatesComment=SL_COMMENT)?)? &

34 ('downstreamRights' ('=')? downstreamGovernanceRights=DownstreamGovernanceRights)?

35)

36 CLOSE)?

37)

38 ;

LISTING 88: Xtext: Customer-Supplier Rule (2)

Please note that we are aware of the fact that the readability of the rule above is
not very good in this report. The complete grammar in the original line length
can be found in our repository on GitHub6 and might be easier to read. The
length and complexity of this rule is increased due to the different variants we
offer our users to declare relationships.

As declared in the grammar rule, there are basically two alternative syn-
taxes which allow the specification of the same Customer-Supplier relation-
ship. Listing 89 and Listing 90 show corresponding examples for both options.
All these declarations are semantically equal and the LocationContext is always
supplier/upstream whereas the CargoBookingContext is customer/downstream.

1 LocationContext [U,S]->[D,C] CargoBookingContext

2 CargoBookingContext [D,C]<-[U,S] LocationContext // inverse

3

4 // or: alternatively, the U and D can be omitted in customer-supplier relationships

5 LocationContext [S]->[C] CargoBookingContext

6 CargoBookingContext [C]<-[S] LocationContext // inverse

LISTING 89: Xtext: Customer-Supplier Variant 1

6https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/master/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

A.11. Customer-Supplier 127

1 LocationContext Supplier-Customer CargoBookingContext

2 // or inverse:

3 CargoBookingContext Customer-Supplier LocationContext

LISTING 90: Xtext: Customer-Supplier Variant 2

Note that if the variant with the arrows (-> or <-) is used, the arrow always
points from the supplier (upstream) towards the customer (downstream), re-
flecting the influence flow [73] (the downstream is influenced by and depends
on the upstream). The upstream and downstream roles OHS, PL, ACL and CF
are declared within the brackets behind the S and the C. In the variant with the
long keywords we use the same brackets for the rules but without the abbrevi-
ations for supplier and customer.

Listing 91 and Listing 92 illustrate the same relationships as before but with
upstream and downstream roles.

1 LocationContext [U,S,PL]->[D,C,ACL] CargoBookingContext

2 CargoBookingContext [D,C,ACL]<-[U,S,PL] LocationContext // inverse

3 // or: alternatively, the U and D can be omitted in customer-supplier relationships

4 LocationContext [S,PL]->[C,ACL] CargoBookingContext

5 CargoBookingContext [C,ACL]<-[S,PL] LocationContext // inverse

LISTING 91: CML: Customer-Supplier Variant 1 with Roles

1 LocationContext[PL] Supplier-Customer [ACL]CargoBookingContext

2 // or inverse:

3 CargoBookingContext[ACL] Customer-Supplier [PL]LocationContext

LISTING 92: CML: Customer-Supplier Variant 2 with Roles

Listing 93 shows the Xtext enumerations UpstreamRole and DownstreamRole
which specify the allowed values for the roles inside the corresponding brack-
ets.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

4

5 enum DownstreamRole:

6 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

7 ;

LISTING 93: Xtext: UpstreamRole and DownstreamRole

With a colon at the end of the specification followed by a string it is possible to
give every relationship in CML a name. Listing 94 illustrates an example for a
Customer-Supplier relationship declaration with name.

128 Appendix A. Revised CML Language Reference

1 LocationContext [U,S]->[D,C] VoyagePlanningContext : ExampleName

LISTING 94: CML: Customer-Supplier Relationship with Name

Within the body of the rule (inside the terminals OPEN and CLOSE, which
are optional), the implementation technology, the exposed aggregates and the
downstream rights can be defined. The corresponding keywords are imple-
mentationTechnology, exposedAggregates and downstreamRights. Listing 95 shows
an example for a relationship specification with body and corresponding at-
tributes. All attributes here are optional and the order does not matter.

1 LocationContext [U,S]->[D,C] VoyagePlanningContext : ExampleName {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Location, OtherAggregate

4 downstreamRights = DECISION_MAKER

5 }

LISTING 95: CML: Customer-Supplier Example with
Attributes (Body)

The exposedAggregates attribute must reference Aggregates (see syntax in Sec-
tion A.18) which are part of the supplier (upstream) Bounded Context of the
relationship. The compiler will throw an error if a referenced aggregate is spec-
ified within another Bounded Context. Listing 96 shows the rule specifying the
allowed values for the downstreamRights attribute.

1 enum DownstreamGovernanceRights:

2 INFLUENCER | OPINION_LEADER | VETO_RIGHT | DECISION_MAKER | MONOPOLIST

3 ;

LISTING 96: Xtext: DownstreamGovernanceRights

A.11.1 Customer-Supplier vs. Upstream-Downstream

Note that according to our understanding of the patterns and our semantic
model7 [46] the Customer-Supplier relationship is a special case of an Upstream-
Downstream relationship. With the Customer-Supplier keyword you always de-
clare Customer-Supplier relationships. For generic Upstream-Downstream re-
lationships which are not Customer-Supplier relationships, use the Upstream-
Downstream keyword explained in Section A.4.

A Customer-Supplier relationship is an Upstream-Downstream relation-
ship where the downstream priorities factor into upstream planning. The up-
stream team may succeed interdependently of the fate of the downstream team
and therefore the needs of the downstream have to be addressed by the up-
stream. They interact as customer and supplier. A generic Upstream-Downstream
relationship is not necessarily a Customer-Supplier relationship. You have to
specify this explicitely in CML .

7https://contextmapper.org/docs/language-model/

https://contextmapper.org/docs/language-model/

A.12. Conformist 129

A.11.2 Customer-Supplier Semantic Rules

Note that semantic validators exist for the Customer-Supplier relationship. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Customer-
Supplier:

• The Conformist pattern (DownstreamRole) is not applicable in a Customer-
Supplier relationship.

• The Open Host Service pattern (UpstreamRole) is not applicable in a Customer-
Supplier relationship.

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a Customer-Supplier relationship.

– Note that this rule produces a Warning only.

A.12 Conformist

The Conformist (CF) pattern is implemented as a value of the DownstreamRole
enum, as shown in Listing 97.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

3 ;

LISTING 97: Xtext: DownstreamRole enum

The CONFORMIST (CF) role can be used as a role for the downstream context
in any Upstream-Downstream relationship. Listing 98 illustrates an example.

1 PolicyManagementContext [D,CF]<-[U,OHS,PL] CustomerManagementContext {

2 implementationTechnology = "RESTful HTTP"

3 exposedAggregates = Customers

4 }

LISTING 98: Xtext: Conformist Example

A.12.1 Conformist Semantic Rules

Note that semantic validators exist for the Conformist pattern. This means that
not everything is allowed, even if it is syntactically correct according to the
rules explained above. The following rules apply to Conformist:

• The Conformist pattern (DownstreamRole) is not applicable in a Customer-
Supplier relationship.

130 Appendix A. Revised CML Language Reference

A.13 Open Host Service

The Open Host Service (OHS) pattern is implemented as a value of the Up-
streamRole enum, as shown in Listing 99.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

LISTING 99: Xtext: UpstreamRole enum

The OPEN_HOST_SERVICE (OHS) role can be used as a role for the upstream
context in any Upstream-Downstream relationship. Listing 100 illustrates an
example.

1 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

2 implementationTechnology = "SOAP"

3 downstreamRights = INFLUENCER

4 exposedAggregates = Printing

5 }

LISTING 100: CML: Open Host Service Example

A.13.1 Open Host Service Semantic Rules

Note that semantic validators exist for the Open Host Service pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Open Host Ser-
vice:

• The Open Host Service pattern (UpstreamRole) is not applicable in a Customer-
Supplier relationship.

A.14 Anticorruption Layer

The Anticorruption Layer (ACL) pattern is implemented as a value of the Down-
streamRole enum, as shown in Listing 101.

1 enum DownstreamRole:

2 ANTICORRUPTION_LAYER = 'ACL' | CONFORMIST = 'CF'

3 ;

LISTING 101: Xtext: DownstreamRole enum

The ANTICORRUPTION_LAYER (ACL) role can be used as a role for the down-
stream context in any Upstream-Downstream relationship. Listing 102 illus-
trates an example.

A.15. Published Language 131

1 CustomerManagementContext [D,ACL]<-[U,OHS,PL] PrintingContext {

2 implementationTechnology = "SOAP"

3 downstreamRights = INFLUENCER

4 exposedAggregates = Printing

5 }

LISTING 102: CML: Anticorruption Layer Example

A.14.1 Anticorruption Layer Semantic Rules

Note that semantic validators exist for the Anticorruption Layer pattern. This
means that not everything is allowed, even if it is syntactically correct accord-
ing to the rules explained above. The following rules apply to Anticorruption
Layer:

• The Anticorruption Layer pattern (DownstreamRole) shall not be used in
a Customer-Supplier relationship.

– Note that this rule produces a Warning only.

A.15 Published Language

The Published Language (PL) pattern is implemented as a value of the Up-
streamRole enum, as shown in Listing 103.

1 enum UpstreamRole:

2 PUBLISHED_LANGUAGE = 'PL' | OPEN_HOST_SERVICE = 'OHS'

3 ;

LISTING 103: Xtext: UpstreamRole Enum

The PUBLISHED_LANGUAGE (PL) role can be used as a role for the upstream
context in any Upstream-Downstream relationship. Listing 104 illustrates an
example.

1 PrintingContext [U,OHS,PL]->[D,ACL] PolicyManagementContext {

2 implementationTechnology = "SOAP"

3 exposedAggregates = Printing

4 }

LISTING 104: CML: Published Language Example

A.16 Responsibility Layers

The implementation of the Responsibility Layers pattern has changed lately.
Responsibilities no longer have ID’s, since we do not reference them at the
moment. The responsibilities can now be added as simple list of strings to
Bounded Contexts and Aggregates. Listing 105 illustrates the two correspond-
ing grammar rules.

132 Appendix A. Revised CML Language Reference

1 BoundedContext:

2 (comment=SL_COMMENT)?

3 'BoundedContext' name=ID

4 (('implements' (implementedDomainParts+=[DomainPart])

5 ("," implementedDomainParts+=[DomainPart])*)? &

6 ('realizes' (realizedBoundedContexts+=[BoundedContext])

7 ("," realizedBoundedContexts+=[BoundedContext])*)? &

8 ('refines' refinedBoundedContext=[BoundedContext])?

9)

10 (

11 OPEN

12 (('domainVisionStatement' ('=')? domainVisionStatement=STRING)? &

13 ('type' ('=')? type=BoundedContextType)? &

14 (('responsibilities' ('=')? responsibilities+=STRING)

15 ("," responsibilities+=STRING)*)? &

16 ('implementationTechnology' ('=')? implementationTechnology=STRING)? &

17 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)?)

18 modules += Module*

19 aggregates += Aggregate*

20 CLOSE

21)?

22 ;

23 Aggregate :

24 (comment=SL_COMMENT)?

25 (doc=STRING)?

26 "Aggregate" name=ID (OPEN

27 (

28 (('responsibilities' ('=')? responsibilities+=STRING)

29 ("," responsibilities+=STRING)*)? &

30 (('useCases' ('=')? useCases += [UseCase]) ("," useCases += [UseCase])*)? &

31 ('owner' ('=')? owner=[BoundedContext])? &

32 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)? &

33 ('likelihoodForChange' ('=')? likelihoodForChange=LikelihoodForChange)?

34)

35 ((services+=Service) |

36 (resources+=Resource) |

37 (consumers+=Consumer) |

38 (domainObjects+=SimpleDomainObject))*

39 CLOSE)?;

LISTING 105: Xtext: Responsibility Layers on
Bounded Contexts and Aggregates

The following CML Listing 106 illustrates how responsibilities can be added to
Bounded Contexts and Aggregates.

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 domainVisionStatement = "The customer management context is responsible for ..."

4 implementationTechnology = "Java, JEE Application"

5 responsibilities = "Customers", "Addresses"

6

7 Aggregate Customers {

8 responsibilities = "Customers"

9

10 Entity Customer

11 }

12 }

LISTING 106: CML: Responsibility Layers
on Bounded Contexts and Aggregates

A.17. Knowledge Level 133

A.17 Knowledge Level

The Knowledge Level pattern is implemented with an Xtext enum which can
be used on Bounded Contexts and Aggregates. The allowed values are defined
by the KnowledgeLevel enum, illustrated in Listing 107. Listing 108 shows the
two grammar rules for Bounded Contexts and Aggregates, highlighting the
corresponding Knowledge Level attributes.

1 enum KnowledgeLevel :

2 META="META" | CONCRETE="CONCRETE"

3 ;

LISTING 107: Xtext: KnowledgeLevel enum

1 BoundedContext:

2 (comment=SL_COMMENT)?

3 'BoundedContext' name=ID

4 (('implements' (implementedDomainParts+=[DomainPart])

5 ("," implementedDomainParts+=[DomainPart])*)? &

6 ('realizes' (realizedBoundedContexts+=[BoundedContext])

7 ("," realizedBoundedContexts+=[BoundedContext])*)? &

8 ('refines' refinedBoundedContext=[BoundedContext])?

9)

10 (

11 OPEN

12 (('domainVisionStatement' ('=')? domainVisionStatement=STRING)? &

13 ('type' ('=')? type=BoundedContextType)? &

14 (('responsibilities' ('=')? responsibilities+=STRING)

15 ("," responsibilities+=STRING)*)? &

16 ('implementationTechnology' ('=')? implementationTechnology=STRING)? &

17 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)?)

18 modules += Module*

19 aggregates += Aggregate*

20 CLOSE

21)?

22 ;

23 Aggregate :

24 (comment=SL_COMMENT)?

25 (doc=STRING)?

26 "Aggregate" name=ID (OPEN

27 (

28 (('responsibilities' ('=')? responsibilities+=STRING)

29 ("," responsibilities+=STRING)*)? &

30 (('useCases' ('=')? useCases += [UseCase]) ("," useCases += [UseCase])*)? &

31 ('owner' ('=')? owner=[BoundedContext])? &

32 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)? &

33 ('likelihoodForChange' ('=')? likelihoodForChange=LikelihoodForChange)?

34)

35 ((services+=Service) |

36 (resources+=Resource) |

37 (consumers+=Consumer) |

38 (domainObjects+=SimpleDomainObject))*

39 CLOSE)?;

LISTING 108: Xtext: Knowledge Level on Bounded Contexts
and Aggregates

Listing 109 shows an example on a Bounded Context and Listing 110 on an
Aggregate.

134 Appendix A. Revised CML Language Reference

1 BoundedContext CustomerManagementContext implements CustomerManagementDomain {

2 type = FEATURE

3 knowledgeLevel = CONCRETE

4 }

LISTING 109: CML: Knowledge Level on Bounded Context

1 Aggregate Customers {

2 knowledgeLevel = CONCRETE

3

4 Entity Customer {

5 aggregateRoot

6

7 /* ... attributes ... */

8 }

9 }

LISTING 110: CML: Knowledge Level on Aggregate

A.18 Aggregate

The Aggregate rule shown in Listing 111 has been added to CML to also sup-
port tactic DDD patterns within Bounded Contexts. All elements within the
Aggregates are realized with the Sculptor [83] grammar. Therefore, all other
tactic DDD patterns are not documented here. We refer to the Sculptor project
[83] and their documentation8.

1 Aggregate :

2 (comment=SL_COMMENT)?

3 (doc=STRING)?

4 "Aggregate" name=ID (OPEN

5 (

6 (('responsibilities' ('=')? responsibilities+=STRING)

7 ("," responsibilities+=STRING)*)? &

8 (('useCases' ('=')? useCases += [UseCase]) ("," useCases += [UseCase])*)? &

9 ('owner' ('=')? owner=[BoundedContext])? &

10 ('knowledgeLevel' ('=')? knowledgeLevel=KnowledgeLevel)? &

11 ('likelihoodForChange' ('=')? likelihoodForChange=LikelihoodForChange)?

12)

13 ((services+=Service) |

14 (resources+=Resource) |

15 (consumers+=Consumer) |

16 (domainObjects+=SimpleDomainObject))*

17 CLOSE)?

18 ;

LISTING 111: Xtext: Aggregate rule

The Aggregate supports the Responsibility Layers pattern and the Knowledge
Level pattern explained in Section A.16 and Section A.17 respectively. As shown
in Listing 111 they are specified with the keywords responsibilities and knowl-
edgeLevel.

8http://sculptorgenerator.org/documentation/

http://sculptorgenerator.org/documentation/

A.18. Aggregate 135

An Aggregate can further specify which use cases access it by using the
useCases keyword. The attribute takes a list of references to use cases. How the
corresponding use cases can be specified is explained in Section A.7. The owner
attribute allows to specify by which TEAM an Aggregate is owned. It takes a
reference to a Bounded Context of the type TEAM. The compiler ensures that
the referenced Bounded Context has this type. Section A.5 explains how the
type of a Bounded Context can be declared.

With the likelihoodForChange attribute a user can define how volatile (likely
for change) an Aggregate is (used for the corresponding AR). Listing 112 il-
lustrates the enum specifying the allowed values for the likelihoodForChange
attribute.

1 enum LikelihoodForChange :

2 NORMAL | RARELY | OFTEN

3 ;

LISTING 112: Xtext: LikelihoodForChange enum

An Aggregate can further contain Services, Resources, Consumers and Simple-
DomainObjects (Entities, Value Objects, Domain Events, etc.) which are not
further introduced here. The according rules are defined by the Sculptor [83]
DSL, as already mentioned. However, Listing 113 illustrates an example of an
Aggregate with the explained attributes above and tactic DDD elements in the
Sculptor [83] syntax.

1 Aggregate Contract {

2 responsibilities = "Contracts", "Policies"

3 knowledgeLevel = CONCRETE

4 useCases = UpdateContract, CreateOffer

5 owner = ContractsTeam

6 likelihoodForChange = NORMAL

7

8 Entity Contract {

9 aggregateRoot

10

11 - ContractId identifier

12 - Customer client

13 - List<Product> products

14 }

15

16 ValueObject ContractId {

17 int contractId key

18 }

19

20 Entity Policy {

21 int policyNr

22 - Contract contract

23 BigDecimal price

24 }

25 }

LISTING 113: CML: Aggregate Example

136 Appendix A. Revised CML Language Reference

A.19 Complete CML Grammar

The previous sections in this language reference illustrated their corresponding
parts of the CML grammar. The complete CML grammar file in the version
v5.6.1 documented in this report can be found in our GitHub repository9.

9https://github.com/ContextMapper/context-mapper-dsl/blob/v5.6.1/org.

contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

https://github.com/ContextMapper/context-mapper-dsl/blob/v5.6.1/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext
https://github.com/ContextMapper/context-mapper-dsl/blob/v5.6.1/org.contextmapper.dsl/src/org/contextmapper/dsl/ContextMappingDSL.xtext

137

Appendix B

Architectural Refactoring (AR)
Catalog

This appendix contains the summaries and descriptions of all Architectural
Refactorings (ARs) implemented in Context Mapper. They can also be found
online1. Note that only the ARs AR-8, AR-9, AR-10 and AR-11 were realized
as part of this thesis. The ARs AR-{1-7} including their summaries have been
developed in our previous term project [50].

B.1 Structural Refactorings

The following summaries describing the structural refactorings of our model-
ing framework provide the context, motivation, solution and effects for each
individual AR.

B.1.1 AR-1: Split Aggregate by Entities

Context

On the level of attributes, or nanoentities in the terminology of Service Cutter
[36], it is common to group those together which belong to the same identity and
share a common lifecycle2 to form Entities. On the level of business objects we
typically try to group those Entities together which belong to the same part or
area of the business (domain). These different areas form linguistic boundaries
and often also domain expert boundaries as explained by Tune and Millett [96].

Thereby we always aim to reduce the coupling between the Entities and in-
crease the cohesion within them. The same approach can be applied on the
level of Aggregates. The Aggregates within one Bounded Context shall be
structured in a way which reduces coupling between the Aggregates and in-
creases the cohesion within them.

Motivation

This AR can be applied if a Bounded Context contains an Aggregate with Enti-
ties which exhibit an unsatisfying cohesiveness. In such a case you may want

1https://contextmapper.org/docs/architectural-refactorings/
2https://github.com/ServiceCutter/ServiceCutter/wiki/

CC-1-IdEntity-and-Lifecycle-Commonality

https://contextmapper.org/docs/architectural-refactorings/
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-1-IdEntity-and-Lifecycle-Commonality
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-1-IdEntity-and-Lifecycle-Commonality

138 Appendix B. Architectural Refactoring (AR) Catalog

to split your Aggregate into multiples for each Entity aiming for improved cou-
pling and cohesion.

Solution and Effect

Given an Aggregate with an unsatisfying cohesiveness this AR is applied to
decompose the Aggregate by its Entities. It splits an Aggregate into multiple
Aggregates. Each resulting Aggregate will contain one of the Entities and each
Entity becomes an aggregate root.

Inverse ARs

AR-6: Merge Aggregates can be seen as the inverse AR as it allows to compose
Aggregates together. With AR-6: Merge Aggregates a user is able to invert the
result produced by this AR.

B.1.2 AR-2: Split Bounded Context by Use Cases

Context

By decomposing a system into multiple Bounded Contexts we aim for loose
coupling between the Bounded Contexts and a high cohesion within them. One
approach to decompose a system into Bounded Contexts is splitting it by use
cases. This approach is mentioned by many Domain-driven Design (DDD)
experts such as Tigges [93], Plöd [74], Tune and Millett [96] or Tyszberowicz
et al. [97] regarding the question how to break down a domain into Bounded
Contexts. Chris Richardson further mentions use cases regarding the question
How to decompose the application into services? in his Microservice Architecture
pattern [79]. The approach further supports the single responsibility principle by
R.C. Martin et al. [58]. In the Service Cutter [36] coupling criteria catalog this
principle corresponds to the semantic proximity3 criterion.

Motivation

This AR can be used on Bounded Contexts containing Aggregates which are in-
volved in the execution of different use cases. Splitting such a Bounded Context
by use cases can improve coupling and cohesion between and within Bounded
Contexts.

Solution and Effect

Split the Bounded Context into multiple Bounded Contexts by creating one for
each use case. The resulting Bounded Contexts will only contain Aggregates
which are accessed by the same use case. The AR creates as many Bounded
Contexts as use cases exist.

3https://github.com/ServiceCutter/ServiceCutter/wiki/CC-2-Semantic-Proximity

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-2-Semantic-Proximity

B.1. Structural Refactorings 139

Inverse ARs

AR-7: Merge Bounded Contexts can be seen as the inverse AR as it allows to com-
pose multiple Bounded Contexts together. With AR-7: Merge Bounded Contexts
a user is able to invert the result produced by this AR.

B.1.3 AR-3: Split Bounded Context by Owner

Context

Another approach to decompose a domain into Bounded Contexts besides use
cases is to build the contexts arround teams (owners). This organizational as-
pect also pointed out by many DDD experts such as Brandolini [10], Tune [64],
Plöd [74] and Tune and Millett [96] is widely known as Conway’s law [16]. Tune
[64] emphasizes that «Bounded Contexts decouple parts» and «parts are code and
teams». In our previous work [46] we already respected this aspect and imple-
mented the possibility to model teams in Context Mapper DSL (CML). Service
Cutter [36] handles this aspect with the shared owner4 criterion.

Motivation

This AR shall be applied if a Bounded Context contains Aggregates which are
owned by different teams. Splitting a Bounded Context by owners can not only
improve the coupling and cohesion on a technical level, but further lead to
improvements on the organizational level. Striving for one team per Bounded
Context leads to clear responsibilities [74] and enables team autonomy [64].

Solution and Effect

Split the Bounded Context into multiple Bounded Contexts by creating one for
each owner/team. The application of this AR results in a context map with
only one team per Bounded Context. There will be as many Bounded Contexts
as teams exist.

Inverse ARs

As already mentioned for AR-2: Split Bounded Context by Use Cases, the inverse
AR of this one is AR-7: Merge Bounded Contexts which allows a user to invert
the changes of this refactoring.

B.1.4 AR-4: Extract Aggregates by Volatility

Context

With the paper On the criteria to be used in decomposing systems into modules D.L.
Parnas [69] presented one of the first approaches to decompose a system. This
AR is based on Parnas approach which states that we should isolate parts which

4https://github.com/ServiceCutter/ServiceCutter/wiki/CC-3-Shared-Owner

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-3-Shared-Owner

140 Appendix B. Architectural Refactoring (AR) Catalog

are likely to change. According to Service Cutters [36] criterion structural volatil-
ity5 we used the term volatility to name this AR.

Motivation

This AR allows to separate Aggregates according to their volatility. By isolating
Aggregates which are very likely to change in separate Bounded Contexts it is
possible to protect parts of a system from frequent changes. Hiding things
which are likely to change from others reduces the impact of revised design
decisions [69].

Solution and Effect

The AR extracts all Aggregates with a specific volatility and moves them into a
new Bounded Context. It presumes that all Aggregates have a volatility value,
rarely, normal or often, assigned in order to separate them. The result is a new
Bounded Context containing all Aggregates with the volatility value given as
input parameter to the AR.

Inverse ARs

The changes of this AR can be reverted by using AR-7: Merge Bounded Contexts.

B.1.5 AR-5: Extract Aggregates by Cohesion

Context

Besides the already presented approaches for decomposing Bounded Contexts
many others based on different Decomposition Criteria (DCs) exist. We derived
this AR to enable architects to decompose by any generalized Non-Functional
Requirement (NFR) criterion. Thereby it is possible to manually select the Ag-
gregates to be extracted aiming for improved coupling and cohesion. Examples
for such Decomposition Criteria (DCs) have already been presented within this
chapter, namely DC-8: mutability, DC-9: storage similarity, DC-10: availability,
DC-11: consistency or DC-12: security.

Motivation

This AR can be applied in cases where the user knows Aggregates which shall
be extracted from a Bounded Context based on any NFR affecting cohesion
negatively. By extracting Aggregates which share a certain characteristic re-
garding the concerned NFR, for example regarding security, it is possible to
achieve improved cohesion within the Bounded Context.

Solution and Effect

If a subset of Aggregates within a Bounded Context has other requirements
regarding a specific NFR criterion as the others, extract them into a separate

5https://github.com/ServiceCutter/ServiceCutter/wiki/

CC-4-Structural-Volatility

https://github.com/ServiceCutter/ServiceCutter/wiki/CC-4-Structural-Volatility
https://github.com/ServiceCutter/ServiceCutter/wiki/CC-4-Structural-Volatility

B.1. Structural Refactorings 141

Bounded Context. For example, if a few Aggregates have other requirements
regarding security in comparison to all other Aggregates, extract them from the
Bounded Context. The AR moves a selection of Aggregates from an existing
Bounded Context into a new Bounded Context. It allows to isolate a set of
Aggregates based on a manual selection.

Inverse ARs

Similar to the previous AR the changes of this AR can be reverted by using
AR-7: Merge Bounded Contexts.

B.1.6 AR-6: Merge Aggregates

Context

As explained for AR-1: Split Aggregate by Entities it is a common approach to
group business Entities which belong to the same part or area of the business
(domain). These groups may form linguistic or domain expert boundaries [96].
This approach is typically not only applied on the higher level of Bounded
Contexts but as well on Aggregates which group Entities. In the process of
designing a Bounded Context in terms of Aggregates the granularity may get
to high and different Aggregates contain Entities which should belong together
in order to increase cohesion and reduce coupling between these Aggregates.

Motivation

If the decomposition of Aggregates within a Bounded Context is too fine-granular
and different Aggregates contain Entities which should belong together ac-
cording to domain experts, business capabilities [82], linguistic boundaries, or
other criteria, merging these Aggregates together may improve coupling and
cohesion.

Solution and Effect

If two Aggregates have a high coupling because their Entities belong together
with respect to any criteria (for example business capabilities), merge the Ag-
gregates together to reduce coupling and increase the cohesion. This AR merges
two Aggregates within a Bounded Context together into one Aggregate. There-
fore, the resulting Aggregate contains all business objects (Entities, Value Ob-
jects, etc.) of both original Aggregates.

Inverse ARs

The AR AR-1: Split Aggregate by Entities can be seen as an inverse AR to this
one as it decomposes (splits) Aggregates whereas this one composes them.

142 Appendix B. Architectural Refactoring (AR) Catalog

B.1.7 AR-7: Merge Bounded Contexts

Context

With the decomposition of a domain into Bounded Contexts we aim for loose
coupling between the contexts and high cohesion within them. However, there
may be situations where the decomposition is too fine-granular and decreasing
the granularity would improve the coupling and cohesion.

Motivation

If two Bounded Contexts contain Aggregates which belong together according
to domain experts, business capabilities [82], linguistic boundaries, or other
criteria, the coupling between them may be high. This AR can be applied in
situations where merging Bounded Contexts with a high coupling improves
the cohesion within the resulting Bounded Context and reduces the coupling
between contexts as the decomposition has become too fine-granular.

Solution and Effect

If two Bounded Contexts exhibit a high coupling because their Aggregates be-
long together according to criteria such as business capablities [82], merge them
together to reduce coupling. This AR merges two Bounded Contexts together
into one Bounded Context. Therefore, the resulting Bounded Context will con-
tain all Aggregates of both original Bounded Contexts.

Inverse ARs

The following ARs can all be seen as inverses of this AR since they decompose
Bounded Contexts whereas this AR composes them together:

• AR-2: Split Bounded Context by Use Cases

• AR-3: Split Bounded Context by Owner

• AR-4: Extract Aggregates by Volatility

• AR-5: Extract Aggregates by Cohesion

B.1.8 AR-8: Extract Shared Kernel

Context

A Shared Kernel describes an intimate relationship where two Bounded Con-
texts share a part of their domain model. Typically this shared model part is
implemented in a shared library used by both Bounded Contexts. This kind of
relationship leads to a higher coupling in comparison with other relationship
types such as Upstream-Downstream.

B.1. Structural Refactorings 143

Motivation

A Shared Kernel leads to interdependencies between two teams and may come
with undesired coupling. Changes within the shared model parts may influ-
ence both development teams in the relationship. If we strive for clear respon-
sibilities [74] and team autonomy [64], we may want to reduce the coupling
between teams. This AR can be applied in such a case if the Shared Kernel
reached a size where the common model part can also be seen as a separate
Bounded Context.

Solution and Effect

If the Shared Kernel model part between two teams is getting big and costly to
maintain, it might be a solution to build a separate Bounded Context and team
for this domain model. This AR creates a new Bounded Context for the Shared
Kernel and establishes Upstream-Downstream relationships between the new
context and the existing ones. Figure B.1 illustrates the transformation.

FIGURE B.1: AR-8: Extract Shared Kernel

The resulting situation with Upstream-Downstream relationships instead of a
Shared Kernel may improve the coupling between the contexts and the cohe-
sion within them.

Inverse ARs

The inverse AR to AR-8: Extract Shared Kernel has not been implemented yet. In
Chapter 3 we have described how the inverse refactoring would work briefly.

B.1.9 AR-9: Suspend Partnership

Context

A Partnership relationship describes another intimate relationship between two
Bounded Contexts and/or development teams. In comparison to the Shared
Kernel however, it does not have to be the case that the teams share parts of
their domain models. The intimacy in a Partnership is defined by interdepen-
dent features and a joint management of planning and integration. The orga-
nizational and feature-related interdependencies between the two teams leads
to a situation where both teams can either only fail or succeed together. New
developments and releases must always be coordinated between the teams.

144 Appendix B. Architectural Refactoring (AR) Catalog

Motivation

The interdependencies between the two teams in a Partnership may lead to
an undesired coupling and increased inter-team coordination and communi-
cation to keep the product stable. To develop clear responsibilities [74] and
team autonomy [64] it might be necessary to decouple the teams and suspend
the Partnership. This AR can be applied if the coupling between two teams is
getting painful and the Partnership must be suspended.

Solution and Effect

If the coupling between two teams in a Partnership relationship must be re-
duced this AR can be applied to suspend the Partnership.

FIGURE B.2: AR-9: Suspend Partnership

The AR offers three options to get rid of the Partnership:

• a) Merge the two Bounded Contexts: if the teams are small enough and
the coupling very high, merging the Bounded Context might be the right
solution. This option corresponds to AR-7: Merge Bounded Contexts.

• b) Extract a new Bounded Context for tightly coupled model parts and es-
tablish Upstream-Downstream relationships: if the Partnership is mainly

B.2. Relationship Refactorings 145

defined by a common part of the domain models, the Partnership can be
suspended in the same way as AR-8: Extract Shared Kernel works.

• c) Simply replace the Partnership with an upstream-downstream rela-
tionship: another solution might be that one of the two teams takes over
the responsibilities regarding the common or highly coupled parts. This
way one can establish an Upstream-Downstream relationship. Note that
this option may move responsibilities and reduce the power of the new
downstream team.

Figure B.2 illustrates the three possible solutions this AR offers to suspend a
Partnership.

Inverse ARs

The inverse AR to AR-9: Suspend Partnership has not been implemented yet. In
Chapter 3 we have described how the inverse refactoring could work briefly.

B.2 Relationship Refactorings

The relationship refactorings are very simple in comparison to the structural
ones. We just provide short summaries for these ARs in the following.

B.2.1 AR-10: Change Shared Kernel to Partnership

Our relationship refactorings allow the user/modeller to change the type of a
relationship on a Context Map easily without manual work. The symmetric
relationships according to our semantic model [46], Shared Kernel and Part-
nership, are interchangeable without impacts to the structure of the decompo-
sition. This refactoring changes a Shared Kernel relationship to a Partnership
relationship.

Inverse ARs

The result of AR-10: Change Shared Kernel to Partnership can be inverted by ap-
plying AR-11: Change Partnership to Shared Kernel.

B.2.2 AR-11: Change Partnership to Shared Kernel

The symmetric relationships according to our semantic model [46], Shared Ker-
nel and Partnership, are interchangeable without impacts to the structure of the
decomposition. This refactoring changes a Partnership relationship to a Shared
Kernel relationship.

Inverse ARs

The inverse AR of AR-11: Change Partnership to Shared Kernel is AR-10: Change
Shared Kernel to Partnership.

147

List of Figures

1.1 DDD Modeling Framework Architecture Overview 2
1.2 New «Structural» Architectural Refactorings (ARs) 4
1.3 New Category of ARs: «Relationship» Refactorings 4
1.4 Example Context Map Generated by Context Mapper [15] 5

3.1 Strategic DDD Modeling Framework Context Map 17
3.2 Existing Architectural Refactorings by Operation 26
3.3 Extract Shared Kernel and Inline Bounded Context to Shared Kernel . 27
3.4 Suspend Partnership and Inline Bounded Context to Partnership . . . 28
3.5 AR-8: Extract Shared Kernel . 31
3.6 AR-9: Suspend Partnership . 32
3.7 Graphical Context Map Example [46] 33

4.1 Context Mapper Framework Overview 38
4.2 Context Mapper DSL (CML) Semantic Model [46] 39
4.3 Discovery Library Design Overview 44
4.4 Discovery Model: Reverse Engineered Information 46
4.5 Discovery Model to CML Mapping 47
4.6 Implemented Discovery Strategies (Prototype) 48
4.7 Lakeside Mutual Architecture Overview [61] 54
4.8 Lakeside Mutual: Discoverable Components 55
4.9 Service Cutter Library Framework Interface 57
4.10 Service Cutter Library Input Model for System Description [46] . 58
4.11 Service Cutter Library Output Model [46] 59
4.12 Service Cutter Entity Relation Input Mapping [46] 61
4.13 Service Cutter Integration into Context Mapper (UI) 63
4.14 Architectural Refactorings (ARs) Framework Interfaces 65
4.15 Architectural Refactorings (ARs) by Category 65
4.16 AR Example in Context Mapper Eclipse Plugin 66
4.17 AR-9: Suspend Partnership Options 68
4.18 Generators Framework Interface 71
4.19 Implemented Generators (UML Class Diagram) 71
4.20 Output Context Map for Example in Listing 36 73
4.21 Context Map Generation Parameters in Context Mapper 74
4.22 Lakeside Mutual [61] Context Map 75
4.23 Fictitious Insurance Scenario Context Map 75

7.1 Closed «Model-Code» Gap [26] (Future Work) 106

B.1 AR-8: Extract Shared Kernel . 143
B.2 AR-9: Suspend Partnership . 144

149

List of Tables

3.1 Potential Bounded Context Discovery Approaches 19
3.1 Potential Bounded Context Discovery Approaches (continued) . . 20
3.2 Potential Context Map Discovery Approaches 20
3.2 Potential Context Map Discovery Approaches (continued) 21
3.3 Graph Clustering Algorithms Evaluated by Gysel et al. [34] . . . 23
3.3 Graph Clustering Algorithms Evaluated by Gysel et al. (cont.) . . 24
3.4 Potential Graph Clustering Algorithms for Service Cutter [35] . . 24
3.4 Potential Graph Clustering Algorithms for Service Cutter (cont.) . 25
3.5 Structural AR Candidates for Context Map Relationships 27
3.6 Relationship AR Candidates . 28
3.6 Relationship AR Candidates (continued) 29
3.7 Graph Visualization Tools . 34

4.1 Changes in the Core Component (Modeling Language) 40
4.2 Spring Annotations to Discovery Model Mapping 49
4.3 Implemented Name Mapping Strategies (Discovery Library) . . . 53
4.4 PlantUML Generator Improvements 76
4.5 MDSL Generator Improvements 76
4.5 MDSL Generator Improvements (continued) 77
4.6 CML Example Model Stages . 78
4.6 CML Example Model Stages (continued) 79

5.1 Validation Activities Overview . 82
5.2 Project Deliverables: Fulfillment Evaluation 84
5.2 Project Deliverables: Fulfillment Evaluation (continued) 85
5.2 Project Deliverables: Fulfillment Evaluation (continued) 86
5.2 Project Deliverables: Fulfillment Evaluation (continued) 87

151

List of Abbreviations

ACL Anticorruption Layer. 29, 53, 62, 75, 77, 78, 88, 92, 113, 127

AM Agile Modeling. 93

API Application Programming Interface. 34, 48, 57, 58, 60, 61, 72, 92

AR Architectural Refactoring. 1–4, 7, 11, 12, 14, 15, 17–19, 22, 25–33, 37, 40, 57,
64, 65, 69, 70, 82–93, 98, 99, 103, 104, 106, 107, 110, 135, 137–145

BSD license Berkeley Source Distribution (BSD) License. 34

CDDL-1.0 Common Development and Distribution License 1.0. 34

CF Conformist. 18, 29, 53, 75, 77, 78, 88, 113, 127

CI Continuous Integration. 13, 91

CLI Command Line Interface. 40

CML Context Mapper DSL. 1–3, 5, 7, 8, 10, 13, 14, 17–19, 22, 23, 29, 33, 37,
38, 40–42, 44–47, 50, 52, 55–58, 62–72, 74–79, 82, 83, 85, 87–94, 99, 101,
103–107, 109, 110, 113, 114, 118–120, 122, 124, 127, 128, 132, 134, 136, 139

CPL-1.0 Common Public License Version 1.0. 34

DC Decomposition Criterion. 1, 18, 22, 23, 57, 98, 103, 140

DDD Domain-driven Design. 1, 2, 7, 9–11, 14, 18, 33, 38, 46, 48, 57, 62, 65, 74,
76, 81, 82, 84, 85, 87, 88, 93, 95, 97–100, 103, 104, 107, 109, 134, 135, 138,
139

DOT Graph Description Language. 73, 74, 100

DSL Domain-specific Language. 1, 7, 9, 13, 14, 37, 40, 63, 82, 87, 92, 94, 97, 99,
101, 104, 105, 109, 135

DTO Data Transfer Object. 3, 19, 22, 50, 56, 88, 89

EAI Enterprise Application Integration. 7, 88

EMF Eclipse Modeling Framework. 65, 72, 99

GNU GPL GNU General Public License. 13, 23, 91

GNU GPLv3 GNU General Public License Version 3. 23, 24, 34

152 List of Abbreviations

IDE Integrated Development Environment. 3, 40, 66, 94, 95, 104, 105

JDL JHipster Domain Language. 101, 107

JSON JavaScript Object Notation. 57, 62, 71

JVM Java Virtual Machine. 92

LSP Language Server Protocol. 105

MAP Microservice API Patterns. 54, 77

MDSL Microservices Domain-Specific Language. 1, 3, 11, 12, 17, 37, 58–61, 71,
76, 77, 83, 84, 100, 104, 106, 107

NFR Non-Functional Requirement. 7, 9, 12, 15, 35, 84, 90–92, 95, 140

OHS Open Host Service. 18, 28, 29, 53, 74, 75, 77, 78, 88, 113, 127

PL Published Language. 17, 18, 29, 53, 74, 75, 77, 78, 88, 93, 113, 127

PNG Portable Network Graphics. 73

SCL Service Cutter DSL. 63

SOA Service-oriented Architecture. 98

SVG Scalable Vector Graphics. 73, 74

UI User Interface. 63, 74

UML Unified Modeling Language. 9, 34, 37, 44, 48, 58, 60, 70, 71, 76, 88, 94,
97–101, 104

URL Uniform Resource Locator. 20

XML Extensible Markup Language. 20

YAML YAML Ain’t Markup Language. 20, 51

153

Bibliography

[1] Agile Alliance. Agile manifesto. https://www.agilealliance.org/agil
e101/the-agile-manifesto/. [Online; Accessed: 2019-12-07].

[2] Agile Alliance. Role-Feature-Reason User Story Template. https://www.ag
ilealliance.org/glossary/role-feature/. [Online; Accessed: 2019-
09-24].

[3] Scott Ambler. Agile modeling: effective practices for extreme programming
and the unified process. John Wiley & Sons, 2002.

[4] David E. Avison et al. “Action Research”. In: Commun. ACM 42.1 (Jan.
1999), pp. 94–97. ISSN: 0001-0782. DOI: 10.1145/291469.291479. URL:
http://doi.acm.org/10.1145/291469.291479.

[5] Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. Gephi: An
Open Source Software for Exploring and Manipulating Networks. 2009. URL:
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154.

[6] Chris Biemann. “Chinese Whispers: An Efficient Graph Clustering Al-
gorithm and Its Application to Natural Language Processing Problems”.
In: Proceedings of the First Workshop on Graph Based Methods for Natural
Language Processing. TextGraphs-1. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2006, pp. 73–80. URL: http://dl.acm.
org/citation.cfm?id=1654758.1654774.

[7] Marko Boger, Thorsten Sturm, and Per Fragemann. “Refactoring Browser
for UML”. In: Objects, Components, Architectures, Services, and Applica-
tions for a Networked World. Ed. by Mehmet Aksit, Mira Mezini, and
Rainer Unland. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 366–377. ISBN: 978-3-540-36557-0.

[8] Alberto Brandolini. Introducing Event Storming. http://ziobrando.bl
ogspot.com/2013/11/introducing-event-storming.html. [Online;
Accessed: 2019-12-06].

[9] Alberto Brandolini. Introducing EventStorming: An act of Deliberate Col-
lective Learning. Leanpub, 2018.

[10] Alberto Brandolini. Strategic Domain Driven Design with Context Map-
ping. https://www.infoq.com/articles/ddd-contextmapping. [On-
line; Accessed: 2019-04-02].

[11] Simon Brown. The C4 model for visualising software architecture. https:
//c4model.com/. [Online; Accessed: 2019-12-07].

https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.agilealliance.org/agile101/the-agile-manifesto/
https://www.agilealliance.org/glossary/role-feature/
https://www.agilealliance.org/glossary/role-feature/
https://doi.org/10.1145/291469.291479
http://doi.acm.org/10.1145/291469.291479
http://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
http://dl.acm.org/citation.cfm?id=1654758.1654774
http://dl.acm.org/citation.cfm?id=1654758.1654774
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html
https://www.infoq.com/articles/ddd-contextmapping
https://c4model.com/
https://c4model.com/

154 Bibliography

[12] Hendrik Bünder. “Decoupling Language and Editor - The Impact of
the Language Server Protocol on Textual Domain-Specific Languages”.
In: Proceedings of the 7th International Conference on Model-Driven Engi-
neering and Software Development - Volume 1: MODELSWARD, INSTICC.
SciTePress, 2019, pp. 131–142. ISBN: 978-989-758-358-2. DOI: 10.5220/
0007556301310142.

[13] CFinder. CFinder - Clusters and Communities: Overlapping dense groups in
networks. http://www.cfinder.org/. [Online; Accessed: 2019-12-19].

[14] Context Mapper. Context Mapper: CML examples repository. https : / /
github.com/ContextMapper/context-mapper-examples. [Online; Ac-
cessed: 2019-09-24].

[15] Context Mapper. Context Mapper is an open source project providing a Domain-
specific Language (DSL) based on Domain-Driven Design (DDD) patterns for
context mapping and service decomposition. https://contextmapper.org/.
[Online; Accessed: 2020-01-24].

[16] Melvin Conway. Conway’s law. 1968.

[17] F. Cuadrado et al. “A Case Study on Software Evolution towards Service-
Oriented Architecture”. In: 22nd International Conference on Advanced In-
formation Networking and Applications - Workshops (aina workshops 2008).
2008, pp. 1399–1404. DOI: 10.1109/WAINA.2008.296.

[18] P. Di Francesco, P. Lago, and I. Malavolta. “Migrating Towards Microser-
vice Architectures: An Industrial Survey”. In: 2018 IEEE International
Conference on Software Architecture (ICSA). 2018, pp. 29–2909. DOI: 10.
1109/ICSA.2018.00012.

[19] Docker Inc. Docker Compose. https://docs.docker.com/compose/.
[Online; Accessed: 2019-12-08].

[20] Docker Inc. Docker: Enterprise Container Platform. https://www.docker.
com/. [Online; Accessed: 2019-10-08].

[21] Stijn Dongen. “Graph Clustering by Flow Simulation”. In: PhD thesis,
Center for Math and Computer Science (CWI) (May 2000).

[22] dsl-platform.com. DSL Platform: Domain-Driven Design. https://docs.
dsl-platform.com/ddd-foundations. [Online; Accessed: 2019-12-05].

[23] Eclipse Xtext. Xtext - Language Engineering Made Easy! https://www.
eclipse.org/Xtext/. [Online; Accessed: 2019-10-05].

[24] Eric Evans. Domain-driven design : tackling complexity in the heart of soft-
ware. eng. 18th prin. Upper Saddle River, NJ: Addison-Wesley, 2012.
ISBN: 978-0-321-12521-7.

[25] Eric Evans. Domain-Driven Design Reference: Definitions and Pattern Sum-
maries. [Online; Accessed: 2018-10-22]. https://domainlanguage.com,
2015. URL: http://domainlanguage.com/wp-content/uploads/2016/
05/DDD_Reference_2015-03.pdf.

[26] George Fairbanks. Just enough software architecture: a risk-driven approach.
Marshall & Brainerd, 2010.

https://doi.org/10.5220/0007556301310142
https://doi.org/10.5220/0007556301310142
http://www.cfinder.org/
https://github.com/ContextMapper/context-mapper-examples
https://github.com/ContextMapper/context-mapper-examples
https://contextmapper.org/
https://doi.org/10.1109/WAINA.2008.296
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1109/ICSA.2018.00012
https://docs.docker.com/compose/
https://www.docker.com/
https://www.docker.com/
https://docs.dsl-platform.com/ddd-foundations
https://docs.dsl-platform.com/ddd-foundations
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://domainlanguage.com
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf
http://domainlanguage.com/wp-content/uploads/2016/05/DDD_Reference_2015-03.pdf

Bibliography 155

[27] Martin Fowler. Domain Specific Languages. 1st. Addison-Wesley Profes-
sional, 2010. ISBN: 0321712943, 9780321712943.

[28] Martin Fowler. Patterns of Enterprise Application Architecture. Addison-
Wesley, 2003. ISBN: 9780321127426.

[29] fuin.org. DDD DSL: Xtext based DSL supporting Domain-driven design
(DDD). https://github.com/fuinorg/org.fuin.dsl.ddd. [Online;
Accessed: 2019-12-05].

[30] Emden R. Gansner and Stephen C. North. “An open graph visualization
system and its applications to software engineering”. In: SOFTWARE -
PRACTICE AND EXPERIENCE 30.11 (2000), pp. 1203–1233.

[31] G. Granchelli et al. “Towards Recovering the Software Architecture of
Microservice-Based Systems”. In: 2017 IEEE International Conference on
Software Architecture Workshops (ICSAW). 2017, pp. 46–53. DOI: 10.1109/
ICSAW.2017.48.

[32] Timo Greifenberg et al. “Integration of Handwritten and Generated
Object-Oriented Code”. In: Model-Driven Engineering and Software De-
velopment. Ed. by Philippe Desfray et al. Cham: Springer International
Publishing, 2015, pp. 112–132. ISBN: 978-3-319-27869-8.

[33] L. Grunske. “Formalizing architectural refactorings as graph transfor-
mation systems”. In: Sixth International Conference on Software Engineer-
ing, Artificial Intelligence, Networking and Parallel/Distributed Computing
and First ACIS International Workshop on Self-Assembling Wireless Network.
2005, pp. 324–329. DOI: 10.1109/SNPD-SAWN.2005.37.

[34] Michael Gysel and Lukas Kölbener. “Service Cutter - A Structured Way
to Service Decomposition”. https://eprints.hsr.ch/476/. Bache-
lor Thesis. University of Applied Sciences of Eastern Switzerland (HSR
FHO), 2015.

[35] Michael Gysel and Lukas Kölbener. Service Cutter - A Structured Way
to Service Decomposition. http://servicecutter.github.io/. [Online;
Accessed: 2019-12-04].

[36] Michael Gysel et al. “Service Cutter: A Systematic Approach to Service
Decomposition”. In: Service-Oriented and Cloud Computing. Ed. by Marco
Aiello et al. Cham: Springer International Publishing, 2016, pp. 185–200.
ISBN: 978-3-319-44482-6.

[37] Michael Gysel et al. Service Cutter Coupling Criteria Catalog. https://gi
thub.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria.
[Online; Accessed: 2019-09-24].

[38] J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A K-Means Cluster-
ing Algorithm”. In: Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28.1 (1979), pp. 100–108. ISSN: 00359254, 14679876.

[39] Erez Hartuv and Ron Shamir. “A clustering algorithm based on graph
connectivity”. In: Information Processing Letters 76.4 (2000), pp. 175 –181.
ISSN: 0020-0190. DOI: https://doi.org/10.1016/S0020- 0190(00)
00142-3.

https://github.com/fuinorg/org.fuin.dsl.ddd
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/SNPD-SAWN.2005.37
https://eprints.hsr.ch/476/
http://servicecutter.github.io/
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://github.com/ServiceCutter/ServiceCutter/wiki/Coupling-Criteria
https://doi.org/https://doi.org/10.1016/S0020-0190(00)00142-3
https://doi.org/https://doi.org/10.1016/S0020-0190(00)00142-3

156 Bibliography

[40] Jeffrey Heer, Stuart K. Card, and James A. Landay. “Prefuse: A Toolkit
for Interactive Information Visualization”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’05. Portland,
Oregon, USA: ACM, 2005, pp. 421–430. ISBN: 1-58113-998-5. DOI: 10.
1145/1054972.1055031. URL: http://doi.acm.org/10.1145/1054972.
1055031.

[41] Benjamin Hippchen et al. “Designing Microservice-Based Applications
by Using a Domain-Driven Design Approach”. In: International Journal
on Advances in Software (1942-2628) 10 (Dec. 2017), pp. 432 –445.

[42] I. Ivkovic and K. Kontogiannis. “A framework for software architecture
refactoring using model transformations and semantic annotations”. In:
Conference on Software Maintenance and Reengineering (CSMR’06). 2006,
10 pp.–144. DOI: 10.1109/CSMR.2006.3.

[43] JHipster Team. JHipster - Generate your Spring Boot + Angular/React appli-
cations! https://www.jhipster.tech/. [Online; Accessed: 2019-12-13].

[44] JUNG Framework Development Team. JUNG: Java Universal Network /
Graph Framework. http://jung.sourceforge.net. [Online; Accessed:
2019-10-09].

[45] M. Kamimura et al. “Extracting Candidates of Microservices from Mono-
lithic Application Code”. In: 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). 2018, pp. 571–580. DOI: 10 . 1109 / APSEC . 2018 .
00072.

[46] Stefan Kapferer. “A Domain-specific Language for Service Decompo-
sition”. https://eprints.hsr.ch/722/. Term Project. University of
Applied Sciences of Eastern Switzerland (HSR FHO), 2018.

[47] Stefan Kapferer. “Empirical Research in Software Engineering”. http
s : / / eprints . hsr . ch / 820/. Seminar Paper. University of Applied
Sciences of Eastern Switzerland (HSR FHO), 2019.

[48] Stefan Kapferer. Master Thesis Project Definition: A Modeling Framework
for Strategic Domain-driven Design and Service Decomposition. 2019.

[49] Stefan Kapferer. “Model Transformations for DSL Processing”. https:
//eprints.hsr.ch/819/. Seminar Paper. University of Applied Sci-
ences of Eastern Switzerland (HSR FHO), 2018.

[50] Stefan Kapferer. “Service Decomposition as a Series of Architectural
Refactorings”. https://eprints.hsr.ch/784/. Term Project. Univer-
sity of Applied Sciences of Eastern Switzerland (HSR FHO), 2019.

[51] Kenichi Kobayashi et al. “Feature-gathering dependency-based software
clustering using Dedication and Modularity”. In: 2012 28th IEEE Inter-
national Conference on Software Maintenance (ICSM) (2012). DOI: 10.1109/
icsm.2012.6405308. URL: http://dx.doi.org/10.1109/ICSM.2012.
6405308.

[52] Kenichi Kobayashi et al. SArF Map: Visualizing Software Architecture from
Feature and Layer Viewpoints. 2013. arXiv: 1306.0958 [cs.SE].

https://doi.org/10.1145/1054972.1055031
https://doi.org/10.1145/1054972.1055031
http://doi.acm.org/10.1145/1054972.1055031
http://doi.acm.org/10.1145/1054972.1055031
https://doi.org/10.1109/CSMR.2006.3
https://www.jhipster.tech/
http://jung.sourceforge.net
https://doi.org/10.1109/APSEC.2018.00072
https://doi.org/10.1109/APSEC.2018.00072
https://eprints.hsr.ch/722/
https://eprints.hsr.ch/820/
https://eprints.hsr.ch/820/
https://eprints.hsr.ch/819/
https://eprints.hsr.ch/819/
https://eprints.hsr.ch/784/
https://doi.org/10.1109/icsm.2012.6405308
https://doi.org/10.1109/icsm.2012.6405308
http://dx.doi.org/10.1109/ICSM.2012.6405308
http://dx.doi.org/10.1109/ICSM.2012.6405308
http://arxiv.org/abs/1306.0958

Bibliography 157

[53] Philippe Kruchten. “The 4+1 View Model of Architecture”. In: IEEE Soft-
ware 12.6 (1995), pp. 42–50. DOI: 10 . 1109 / 52 . 469759. URL: https :
//doi.org/10.1109/52.469759.

[54] Einar Landre, Harald Wesenberg, and Harald Rønneberg. “Architec-
tural Improvement by Use of Strategic Level Domain-driven Design”.
In: Companion to the 21st ACM SIGPLAN Symposium on Object-oriented
Programming Systems, Languages, and Applications. OOPSLA ’06. Port-
land, Oregon, USA: ACM, 2006, pp. 809–814. ISBN: 1-59593-491-X. DOI:
10.1145/1176617.1176728. URL: http://doi.acm.org/10.1145/
1176617.1176728.

[55] Duc Minh Le, Duc-Hanh Dang, and Viet-Ha Nguyen. “On domain driven
design using annotation-based domain specific language”. In: Computer
Languages, Systems & Structures 54 (2018), pp. 199 –235. ISSN: 1477-8424.
DOI: https://doi.org/10.1016/j.cl.2018.05.001.

[56] Ian X. Y. Leung et al. “Towards real-time community detection in large
networks”. In: Physical Review E 79.6 (2009). ISSN: 1550-2376. DOI: 10.
1103 / physreve . 79 . 066107. URL: http : / / dx . doi . org / 10 . 1103 /
PhysRevE.79.066107.

[57] Frank Lin and William W. Cohen. “Power Iteration Clustering”. In: Pro-
ceedings of the 27th International Conference on Machine Learning (ICML-
10), June 21-24, 2010, Haifa, Israel. 2010, pp. 655–662. URL: https://icml.
cc/Conferences/2010/papers/387.pdf.

[58] R.C. Martin et al. Agile Software Development: Principles, Patterns, and
Practices. Alan Apt series. Pearson Education, 2003. ISBN: 9780135974445.

[59] G. Mazlami, J. Cito, and P. Leitner. “Extraction of Microservices from
Monolithic Software Architectures”. In: 2017 IEEE International Confer-
ence on Web Services (ICWS). 2017, pp. 524–531. DOI: 10.1109/ICWS.
2017.61.

[60] T. Mens and T. Tourwe. “A survey of software refactoring”. In: IEEE
Transactions on Software Engineering 30.2 (2004), pp. 126–139. ISSN: 2326-
3881. DOI: 10.1109/TSE.2004.1265817.

[61] Microservice API Patterns (MAP) Project. Lakeside Mutual. https : / /
github.com/Microservice-API-Patterns/LakesideMutual. [Online;
Accessed: 2019-12-12].

[62] I. J. Munezero et al. “Partitioning Microservices: A Domain Engineering
Approach”. In: 2018 IEEE/ACM Symposium on Software Engineering in
Africa (SEiA). 2018, pp. 43–49.

[63] M. E. J. Newman and M. Girvan. “Finding and evaluating community
structure in networks”. In: Phys. Rev. E 69 (2 2004), p. 026113. DOI: 10.
1103/PhysRevE.69.026113. URL: https://link.aps.org/doi/10.
1103/PhysRevE.69.026113.

[64] Nick Tune. Domain-Driven Design: Hidden Lessons from the Big Blue Book.
Talk at Craft Conf Budapest, May 2019, http : / / ntcoding . co . uk /
speaking/talks/domain-driven-design-hidden-lessons-from-the-

big-blue-book/craft-conf-budapest-may-2019. [Online; Accessed:
2019-12-21].

https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1109/52.469759
https://doi.org/10.1145/1176617.1176728
http://doi.acm.org/10.1145/1176617.1176728
http://doi.acm.org/10.1145/1176617.1176728
https://doi.org/https://doi.org/10.1016/j.cl.2018.05.001
https://doi.org/10.1103/physreve.79.066107
https://doi.org/10.1103/physreve.79.066107
http://dx.doi.org/10.1103/PhysRevE.79.066107
http://dx.doi.org/10.1103/PhysRevE.79.066107
https://icml.cc/Conferences/2010/papers/387.pdf
https://icml.cc/Conferences/2010/papers/387.pdf
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1109/TSE.2004.1265817
https://github.com/Microservice-API-Patterns/LakesideMutual
https://github.com/Microservice-API-Patterns/LakesideMutual
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
https://link.aps.org/doi/10.1103/PhysRevE.69.026113
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019
http://ntcoding.co.uk/speaking/talks/domain-driven-design-hidden-lessons-from-the-big-blue-book/craft-conf-budapest-may-2019

158 Bibliography

[65] R. L. Nord and J. E. Tomayko. “Software architecture-centric methods
and agile development”. In: IEEE Software 23.2 (2006), pp. 47–53. ISSN:
1937-4194. DOI: 10.1109/MS.2006.54.

[66] Liam O’Brien, Christoph Stoermer, and Chris Verhoef. “Software Archi-
tecture Reconstruction: Practice Needs and Current Approaches”. In:
(Jan. 2002).

[67] OpenAPI Initiative. The OpenAPI Specification: a broadly adopted industry
standard for describing modern APIs. https://www.openapis.org/. [On-
line; Accessed: 2019-12-29].

[68] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Commun. ACM 15.12 (Dec. 1972), pp. 1053–1058. ISSN:
0001-0782. DOI: 10.1145/361598.361623. URL: http://doi.acm.org/
10.1145/361598.361623.

[69] D. L. Parnas. “On the Criteria to Be Used in Decomposing Systems into
Modules”. In: Commun. ACM 15.12 (Dec. 1972), pp. 1053–1058. ISSN:
0001-0782. DOI: 10.1145/361598.361623. URL: http://doi.acm.org/
10.1145/361598.361623.

[70] C. Pautasso et al. “Microservices in Practice, Part 1: Reality Check and
Service Design”. In: IEEE Software 34.1 (2017), pp. 91–98. ISSN: 1937-
4194. DOI: 10.1109/MS.2017.24.

[71] Pivotal Software. Spring Boot. https://spring.io/projects/spring-
boot. [Online; Accessed: 2019-10-05].

[72] plantuml.com. Open-source tool that uses simple textual descriptions to draw
UML diagrams. http://plantuml.com/. [Online; Accessed: 2019-10-05].

[73] Michael Plöd. DDD Context Maps - an enhanced view. https://speakerde
ck.com/mploed/context-maps-an-enhanced-view. [Online; Accessed:
2018-12-16].

[74] Michael Plöd. Hands-on Domain-driven Design - by example. Leanpub,
2019.

[75] F. Rademacher, J. Sorgalla, and S. Sachweh. “Challenges of Domain-
Driven Microservice Design: A Model-Driven Perspective”. In: IEEE
Software 35.3 (2018), pp. 36–43. ISSN: 1937-4194. DOI: 10.1109/MS.2018.
2141028.

[76] Florian Rademacher, Sabine Sachweh, and Albert Zündorf. “Towards a
UML Profile for Domain-Driven Design of Microservice Architectures”.
In: Software Engineering and Formal Methods. Ed. by Antonio Cerone and
Marco Roveri. Cham: Springer International Publishing, 2018, pp. 230–
245. ISBN: 978-3-319-74781-1.

[77] Chris Richardson. Microservices patterns. Manning Publications Shelter
Island, 2018.

[78] Chris Richardson. Pattern: Microservice Architecture. https://microser
vices.io/patterns/microservices.html. [Online; Accessed: 2019-10-
08].

https://doi.org/10.1109/MS.2006.54
https://www.openapis.org/
https://doi.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
https://doi.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
http://doi.acm.org/10.1145/361598.361623
https://doi.org/10.1109/MS.2017.24
https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot
http://plantuml.com/
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://speakerdeck.com/mploed/context-maps-an-enhanced-view
https://doi.org/10.1109/MS.2018.2141028
https://doi.org/10.1109/MS.2018.2141028
https://microservices.io/patterns/microservices.html
https://microservices.io/patterns/microservices.html

Bibliography 159

[79] Chris Richardson. Pattern: Microservice Architecture - How to decompose
the application into services? https://microservices.io/patterns/

microservices.html#how- to- decompose- the- application- into-

services. [Online; Accessed: 2019-12-21].

[80] Chris Richardson. Pattern: Service instance per container. https://micro
services.io/patterns/deployment/service-per-container.html.
[Online; Accessed: 2019-10-08].

[81] Fabrice Rossi and Nathalie Villa-Vialaneix. “Représentation d’un grand
réseau à partir d’une classification hiérarchique de ses sommets”. In:
(Jan. 2011).

[82] Margaret Rouse. Business Capability Definition. https://searchapparc
hitecture.techtarget.com/definition/business-capability. [On-
line; Accessed: 2019-12-06].

[83] Sculptor Project. Sculptor - Generating Java code from DDD-inspired textual
DSL. https://github.com/sculptor/sculptor. [Online; Accessed:
2019-12-05].

[84] Roded Sharan and Ron Shamir. “CLICK: A clustering algorithm with
applications to gene expression analysis”. In: In Proc. 8th Int. Conf. Intel-
ligent Systems for Molecular Biology. 2000, pp. 307–316.

[85] Mary Shaw. “Writing Good Software Engineering Research Papers: Mini-
tutorial”. In: Proceedings of the 25th International Conference on Software
Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,
pp. 726–736. ISBN: 0-7695-1877-X. URL: http://dl.acm.org/citation.
cfm?id=776816.776925.

[86] SmartBear. Swagger. https://swagger.io/. [Online; Accessed: 2019-12-
29].

[87] Software Engineering Institute. Architecture Reconstruction Case Study.
Tech. rep. CMU/SEI-2003-TN-008. Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2003. URL: http://resource
s.sei.cmu.edu/library/asset-view.cfm?AssetID=6431.

[88] Sparx Systems. Enterprise Architect. https://sparxsystems.com/. [On-
line; Accessed: 2019-12-07].

[89] D. Steinberg et al. EMF: Eclipse Modeling Framework. Eclipse Series. Pear-
son Education, 2008. ISBN: 9780132702218.

[90] Roland H Steinegger et al. “Overview of a Domain-Driven Design Ap-
proach to Build Microservice-Based Applications”. In: The Thrid Int. Conf.
on Advances and Trends in Software Engineering. 2017.

[91] Structurizr. Structurizr - visualise, document and explore your software ar-
chitecture. https://structurizr.com/. [Online; Accessed: 2019-12-07].

[92] Davide Taibi. A curated list of Open Source projects developed with a mi-
croservices architectural style. https://github.com/davidetaibi/Micro
services_Project_List. [Online; Accessed: 2019-10-05].

[93] Oliver Tigges. How to break down a domain to bounded contexts? https:

//speakerdeck.com/otigges/how-to-break-down-a-domain-to-

bounded-contexts. [Online; Accessed: 2019-12-06].

https://microservices.io/patterns/microservices.html#how-to-decompose-the-application-into-services
https://microservices.io/patterns/microservices.html#how-to-decompose-the-application-into-services
https://microservices.io/patterns/microservices.html#how-to-decompose-the-application-into-services
https://microservices.io/patterns/deployment/service-per-container.html
https://microservices.io/patterns/deployment/service-per-container.html
https://searchapparchitecture.techtarget.com/definition/business-capability
https://searchapparchitecture.techtarget.com/definition/business-capability
https://github.com/sculptor/sculptor
http://dl.acm.org/citation.cfm?id=776816.776925
http://dl.acm.org/citation.cfm?id=776816.776925
https://swagger.io/
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6431
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6431
https://sparxsystems.com/
https://structurizr.com/
https://github.com/davidetaibi/Microservices_Project_List
https://github.com/davidetaibi/Microservices_Project_List
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts
https://speakerdeck.com/otigges/how-to-break-down-a-domain-to-bounded-contexts

160 Bibliography

[94] TIOBE - The Software Quality Company. TIOBE Index. https://www.
tiobe.com/tiobe-index/. [Online; Accessed: 2019-10-08].

[95] V. A. Traag, L. Waltman, and N. J. van Eck. “From Louvain to Lei-
den: guaranteeing well-connected communities”. In: Scientific Reports
9.1 (2019). ISSN: 2045-2322. DOI: 10.1038/s41598-019-41695-z. URL:
http://dx.doi.org/10.1038/s41598-019-41695-z.

[96] N. Tune and S. Millett. Designing Autonomous Teams and Services: Deliver
Continuous Business Value Through Organizational Alignment. O’Reilly Me-
dia, 2017.

[97] Shmuel Tyszberowicz et al. “Identifying Microservices Using Functional
Decomposition”. In: Dependable Software Engineering. Theories, Tools, and
Applications. Ed. by Xinyu Feng, Markus Müller-Olm, and Zijiang Yang.
Cham: Springer International Publishing, 2018, pp. 50–65. ISBN: 978-3-
319-99933-3.

[98] Vaughn Vernon. Implementing Domain-Driven Design. 1st. Addison-Wesley
Professional, 2013. ISBN: 0321834577, 9780321834577.

[99] Harald Wesenberg, Einar Landre, and Harald Rønneberg. “Using domain-
driven design to evaluate commercial off-the-shelf software”. In: Comp.
to 21th Annual ACM SIGPLAN OOPSLA. 2006, pp. 824–829. DOI: 10.
1145/1176617.1176730. URL: https://doi.org/10.1145/1176617.
1176730.

[100] Claes Wohlin et al. Experimentation in Software Engineering. Springer Pub-
lishing Company, Incorporated, 2012. ISBN: 3642290434, 9783642290435.

[101] yWorks. yFiles Product Family. https://www.yworks.com/products/
yfiles. [Online; Accessed: 2019-10-09].

[102] Olaf Zimmermann. A Domain-specific Language to specify (micro-)service
contracts and data representations (realizing API Description pattern from
MAP). https://socadk.github.io/MDSL/. [Online; Accessed: 2019-
09-24].

[103] Olaf Zimmermann. “Architectural refactoring for the cloud: a decision-
centric view on cloud migration”. In: Computing 99.2 (2017), pp. 129–
145. ISSN: 1436-5057. DOI: 10.1007/s00607-016-0520-y. URL: https:
//link.springer.com/article/10.1007/s00607-016-0520-y.

[104] Olaf Zimmermann. “Microservices tenets”. In: Computer Science - Re-
search and Development 32.3 (2017), pp. 301–310. ISSN: 1865-2042. DOI:
10.1007/s00450- 016- 0337- 0. URL: https://doi.org/10.1007/
s00450-016-0337-0.

[105] Olaf Zimmermann et al. Microservice API Patterns. https://microservi
ce-api-patterns.org. [Online; Accessed: 2019-05-27].

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1038/s41598-019-41695-z
http://dx.doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1145/1176617.1176730
https://doi.org/10.1145/1176617.1176730
https://doi.org/10.1145/1176617.1176730
https://doi.org/10.1145/1176617.1176730
https://www.yworks.com/products/yfiles
https://www.yworks.com/products/yfiles
https://socadk.github.io/MDSL/
https://doi.org/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://link.springer.com/article/10.1007/s00607-016-0520-y
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/s00450-016-0337-0
https://microservice-api-patterns.org
https://microservice-api-patterns.org

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context and Problem
	Vision
	Thesis Results

	Framework Users and Requirements
	User Roles and Personas
	Reverse Engineering Scenarios
	Structured Service Decomposition
	Context Map Evolution with Architectural Refactorings (ARs)
	Generating other Representations
	Non-Functional Requirements (NFRs)

	Analysis of the Modeling Framework Components
	Context Map and Bounded Context Discovery Strategies
	Structured Service Decomposition Algorithms
	Architectural Refactoring (AR) Selection
	Graphical DDD Context Map Tool Evaluation

	Context Mapper: Design and Implementation
	Component Overview
	Core: Context Mapping DSL (CML)
	Discovery Library for Reverse Engineering
	Service Decomposition with Service Cutter
	Architectural Refactorings (ARs)
	Generators
	Context Mapper DSL (CML) Example Models

	Evaluation and Discussion
	Validation via Prototyping, Action Research and Case Studies
	Requirement Fulfillment Evaluation
	Strengths and Weaknesses

	Comparison with Related Work
	Modeling Language
	Discovery Library for Reverse Engineering
	Architectural Refactorings (ARs)
	Systematic Service Decomposition
	Architecture Diagram Generation
	Microservice Contract and Code Generation

	Conclusion and Outlook
	Thesis Summary and Results
	Future Work

	Revised CML Language Reference
	Language Design
	Terminals
	Root Rule
	Context Map
	Bounded Context
	Domain and Subdomains
	Use Cases
	Domain Vision Statement
	Partnership
	Shared Kernel
	Customer-Supplier
	Conformist
	Open Host Service
	Anticorruption Layer
	Published Language
	Responsibility Layers
	Knowledge Level
	Aggregate
	Complete CML Grammar

	Architectural Refactoring (AR) Catalog
	Structural Refactorings
	Relationship Refactorings

	List of Figures
	List of Tables
	List of Abbreviations
	Bibliography

