
Student Research Project

Safe C++ Guidelines

University of Applied Sciences Rapperswil

Institute for Software

Period Of Time: 16.09.2019 - 20.12.2019

Author Dario Fuoco

Jonas Pulfer

Supervisor Prof. Peter Sommerlad

Technical Adviser Hansruedi Patzen

Abstract

The main purpose of this student research project is the implemen-
tation of safe C++ guidelines. Previous teams implemented the in-
frastructure for the CodeAnalysator plug-in and have already imple-
mented various coding guidelines. In this work the focus is on the
AUTOSAR Guidelines. AUTOSAR is a consortium of the biggest auto-
motive manufacturers which released a coding standard for critical and
safety-related systems. The static code analysis is based on this guide-
line. The analysis process is done by traversing the Abstract Syntax
Tree and detecting rule violations. If a violation is found, the code line
will be reported with a marker. If possible, a quickfix will directly be
provided. In this project 22 rules and 5 quickfixes were implemented.

Safe C++ Guidelines i

Management Summary

Introduction

As C++ evolves and provides more and more complex features, the need
for guidelines as to how to write safe code rises. For example, safe code is
a must for the automotive industry to ensure driver and passenger safety.
The AUTOSAR consortium released such C++ rules for that industry. Un-
fortunately it is very hard to write code following all the rules defined
by AUTOSAR. To help by giving immediate feedback, previous student
projects have implemented and extended the CodeAnalysator plug-in for
the Cevelop IDE with some AUTOSAR rule checks. This plug-in shows
a C++ developer rule violations directly in the code as written by under-
lining the violating code snippet. Various violations can then be directly
resolved by applying a quick fix. A quick fix automatically transforms the
code such that the code doesn’t violate the guidelines anymore. The previ-
ous projects already implemented many rules and optimized the infrastruc-
ture surrounding the plug-in. The goal of this thesis is to implement further
rules to support developers even better.

Approach

Our approach to this task was very similar to the approach the previous
projects used. At the start of each week we decided which guidelines to im-
plement next, starting with the trivial ones and slowling working our way
to the more complex ones. The implementation of a guideline looked more
or less the same for each individual rule: First we analysed the guideline
consisting of it’s description, it’s rationale and the provided examples. If
we still weren’t sure whether we understood the guideline fully we also
checked the C++ language specification. Next we wrote many test to cover
the guideline as wide as possible. Once the tests were written we then
continued to analyse the C++ abstract syntax tree and wrote the checker ac-
cording to our findings. In these checkers we traversed the abstract syntax
tree to check whether it matched the desired layout to adhere to the guide-
line. For some violations there is a way to fix it automatically, e.g., if only a
keyword was missing. In such cases we also implemented a quick fix based
on our knowledge from the earlier analysis. Finally, we also defined test
cases for the application of such a quick fix. To make sure our checkers and
quick fixes were performant enough to be used in real projects, we tested all
of them using a profiler and two realistic open-source projects. While doing
these performance checks we also tested whether the checkers reported false
positives.

Safe C++ Guidelines ii

Result

As planned, we have implemented 22 guidelines in addition to 5 quick fixes
as well as extensive unit tests for all of the implemented guidelines and
quick fixes. A developer who wants to write safe C++ code can use the
CodeAnalysator plug-in an will be pointed to possible rule violations and
in some cases will be able to automatically fix the violation by applying a
quick fix.

Safe C++ Guidelines iii

Acknowledgements

We would like to thank the following people for their assistance during our
student research project:

• Prof. Peter Sommerlad
He, as our supervisor, always provided great support. We could profit
and learn a lot from his great knowledge and his many years of expe-
rience.

• Hansruedi Patzen
Hansruedi was our technical advisor during our project. He provided
us with a lot of technical tips. He also always had a suitable answer
for our questions during our work.

Safe C++ Guidelines iv

Contents

Glossary and List of Abbreviations vii

List of Figures x

1 Introduction 1
1.1 Initial situation . 1
1.2 Task description . 1
1.3 Code Analysator . 2
1.4 Safe C++ with AUTOSAR . 2

2 Infrastructure and Environment 3

3 Implemented Rules 5
3.1 A00-04-02: Type long double shall not be used 5
3.2 A02-10-01: An identifier declared in an inner scope shall not

hide an identifier declared in an outer scope 6
3.3 A02-10-06: A class or enumeration name shall not be hidden

by a variable, function or enumerator declaration in the same
scope . 9

3.4 A02-11-01: Volatile keyword shall not be used 11
3.5 A02-13-01: Only those escape sequences that are defined in

ISO/IEC 14882:2014 [ISO17] shall be used. 12
3.6 A02-13-03: Type wchar_t shall not be used 13
3.7 A05-07-01: A lamdbda shall not be an operand to decltype or

typeid . 13
3.8 A06-02-02: Expression statements shall not be explicit calls to

constructors of temporary objects only. 14
3.9 A06-05-02: A for loop shall contain a single loop-counter which

shall not have floating-point type. 17

Safe C++ Guidelines v

Contents

3.10 A07-01-09: A class, structure, or enumeration shall not be de-
clared in the definition of its type. 19

3.11 A08-04-01: Functions shall not be defined using the ellipsis
notation. 20

3.12 A08-04-04: Multiple output values from a function should be
returned as a struct or tuple . 21

3.13 A11-01-03: Friend declarations shall not be used. 21
3.14 A12-01-02: Both NSDMI and a non-static member initializer

in a constructor shall not be used in the same type. 23
3.15 A12-01-04: All constructors that are callable with a single ar-

gument of fundamental type shall be declared explicit. 25
3.16 A12-01-06: Derived classes that do not need further explicit

initialization and require all the constructors from the base
class shall use inheriting constructors. 27

3.17 A12-04-01: Destructor of a base class shall be public virtual,
public override or protected non-virtual 30

3.18 A13-02-02: A binary arithmetic operator and a bitwise opera-
tor shall return a “prvalue” . 32

3.19 A18-01-02: The std::vector<bool> specialization shall not be
used . 33

3.20 A18-05-01: Functions malloc, calloc, realloc and free shall not
be used . 34

3.21 A18-09-03: The std::move shall not be used on objects de-
clared const or const& . 35

3.22 A26-05-01: Pseudorandom numbers shall not be generated
using std::rand() . 36

4 Quality Measures 37
4.1 Performance Tests . 37
4.2 Quality Tests . 37

4.2.1 A8-4-4 Correction . 38
4.2.2 A2-10-1 Correction . 38
4.2.3 A2-10-6 Correction . 39

4.3 Automated Test Compilation Checker 39

5 Conclusion and Outlook 40
5.1 Conclusion . 40
5.2 Outlook . 41
5.3 What we have learned / Tips for future projects 41

Bibliography 43

Safe C++ Guidelines vi

Glossary and List of Abbreviations

AST Abstract Syntax Tree - The Abstract Syntax Tree is a tree representation
of the structure of a source code file. Eclipse in combination with the
CDT provides several visualisation tools and an API for manipulation
of the abstract syntax tree. . 2, 15, 29, 30, 40

CDT C++ Development Toolkit is a set of Eclipse plug-ins. vii, 1, 40

IDE Integrated Development Environment - tool for developing software. 1

IFS Institute for Software from HSR - Institute at the University of applied
Sciences Rapperswil. 2, 3

NSDMI Non Static Data Member Initialization is an alternative to non-
static member initialization as it allows you to initialize a member
along with it’s declaration. 22

POD Plain Old Data - type without constructors, destructors and virtual
member functions [ref19d]. 20

RAII Resource Acquisition Is Initialization is a C++ programming tech-
nique, that binds the life cycle of a resource that must be acquired
before use to the lifetime of an object [ref19e] . 14

STL Standard Template Library is a software library for C++. 33

Safe C++ Guidelines vii

Listings

3.1 A0-4-2 violation example . 6
3.2 A2-10-1 violation example with an anonymous namespace . . 7
3.3 A2-10-1 violation example inside a lambda 7
3.4 A2-10-1 violation example with a function parameter 7
3.5 A2-10-6 violation example class type 9
3.6 A2-10-6 violation example enum type 9
3.7 A2-10-6 violation example enum and variable 10
3.8 A2-10-6 violation example header and sourcefile 10
3.9 A2-11-1 violation example member variable 11
3.10 A2-11-1 violation example type declaration 11
3.11 A2-13-1 violation example . 12
3.12 A2-13-3 violation examples . 13
3.13 A5-7-1 violation example . 13
3.14 A5-7-1 violation example . 14
3.15 A6-2-2 violation example mutex 14
3.16 A6-2-2 violation example temporary object 15
3.17 A6-2-2 violation example only construction of a temporary

object . 15
3.18 A6-2-2 quickfix example . 16
3.19 A6-5-2 violation examples . 17
3.20 A7-1-9 violation example enum 19
3.21 A7-1-9 violation example class type 19
3.22 A7-1-9 quickfix example . 20
3.23 A8-4-1 violation examples . 20
3.24 A8-4-4 violation example . 21
3.25 A11-1-3 violation example . 22
3.26 A12-1-2 violation according to autosar [AUT18] example . . . 23
3.27 A12-1-2 violation example . 23
3.28 A12-1-2 quickfix is not applicable example 25
3.29 A12-1-2 quickfix is applicable example 25

Safe C++ Guidelines viii

LISTINGS

3.30 A12-1-4 violation example . 26
3.31 A12-1-4 quickfix example . 27
3.32 A12-1-6 violation example . 27
3.33 A12-1-6 quickfix example . 28
3.34 A12-1-6 problem case multiple inheritance hierarchy 29
3.35 A12-1-6 problem case multiple inheritance hierarchy 30
3.36 A12-4-1 violation example . 30
3.37 A13-2-2 violation example [AUT18] 32
3.38 A18-1-2 violation examples . 33
3.39 A18-5-1 violation examples . 34
3.40 A18-5-1 exception example . 34
3.41 A18-9-3 violation example . 35
3.42 A26-5-1 violation example . 36
4.1 A2-10-1 corrected checker code snippet 38
4.2 A2-10-1 juCi++ false positive [juC19] 38
4.3 A2-10-1 corrected checker code snippet 39
4.4 A2-10-6 corrected checker code snippet 39

Safe C++ Guidelines ix

List of Figures

Safe C++ Guidelines x

Chapter 1

Introduction

1.1 Initial situation

Cevelop is an intergrated development environment for C++ code. It’s es-
sentially an advanced version of the Eclipse IDE with the CDT and a lot
of plugins to assist the developer in writing clean, safe and reliable C++
code. One such plugin is the so called "CodeAnalysator", which is used to
check, whether the code adheres to the AUTOSAR- / MISRA guidelines.
AUTOSAR and MISRA are two development partnerships which define
coding-guidelines for C++. The main goal of these coding-guidelines is
to reduce ambiguity and improve robustness in C++ programs. The plugin
itself checks the code for the developer, and whenever it detects a violation
of a guideline, reports the corresponding code with a marker and, where
applicable, offers a quickfix to improve the code.

The plugin, the corresponding infrastructure and some guidelines have al-
ready been implemented in earlier projects.

1.2 Task description

The main goal of our student research project is to improve the code compli-
ance checks in Cevelop. We continue the work of an earlier bachelor thesis
[PV19], which provided excellent preparatory work. We extended their clas-
sification of coding guidelines to the following categories.

• Trivial - approx. 4 to 12 hours

• Medium - approx. 12 to 24 hours

• Complex - approx. 28 hours

Safe C++ Guidelines 1

CHAPTER 1. INTRODUCTION

Additionally, we define three scopes which frame our project work.

• Minimal - approx. 10 trivial rules, 8 medium rules, 1 complex rule

• Desired - approx. minimal scope + 2 medium rules

• Optimal - approx. desired scope + 1 complex rule

1.3 Code Analysator

The Code Analysator is a plug-in for Cevelop, which is developed by the IFS.
This plug-in is used for performing static code analysis on C++ projects. It
consists of the core component, which is the base of all static code analy-
sis plug-ins in Cevelop. Currently the base CodeAnalysator plug-in imple-
ments static code analysis for AUTOSAR, MISRA and the C++ Core guide-
lines.
The Code Analysator provides the infrastructure for analyzing the source
files from a project. This means that the core plug-in traverse the whole AST
and provides the possibility to the specific plug-ins to analyze components
of the AST. The traversal of the AST is implemented with the Visitor pat-
tern [Gam+94]. The specific implementation could inherit from the Code
Analysator and override this visitor that fulfill his needs.

1.4 Safe C++ with AUTOSAR

AUTOSAR is a partnership of some of the biggest manufacturers (Toyota,
BMW, Volkswagen, etc.) in the automotive industry. AUTOSAR has pub-
lished a document that specifies the usage of C++ in safety-related and crit-
ical systems. [AUT18]
The motivation for this coding guideline is to manage the complexity as-
sociated with growth in functional scope. Another important point is the
achievement of non-functional requirements in the future. Their goal is to
fulfill future vehicle requirements in the availability and safety area. But
they want also enhance and ensure the exchangeability, maintabilty and
reusability of the software. The guidelines are primary written for automo-
tive applications and derived applications from this area such as "embedded
systems". The guidelines are not applicable for ultra-hazardous activities
like aviation and nuclear science. [AUT19]

Safe C++ Guidelines 2

Chapter 2

Infrastructure and Environment

As mentioned in the introduction we continue the work of a bachelor thesis
[PV19]. They provided an excellent infrastructure for the implementation
of static code analysis for Cevelop in cooperation with the IFS. We were
able profit a lot from their preparatory work. The project structure looks as
follows:

Codeanalysator Autosar

com.cevelop.codeanalysator.autosar

src
com.cevelop.codeanalysator.autosar.checker
com.cevelop.codeanalysator.autosar.guideline
com.cevelop.codeanalysator.autosar.quickfix
com.cevelop.codeanalysator.autosar.util
com.cevelop.codeanalysator.autosar.visitor

Table 2.1: Autosar Project Structure

For testing the code analysis plug-in, the IFS provide a testing infrastructure.
With support of this infrastructure, we are able to unit test the plug-in with
C++ test cases. The testing structure looks like this:

Safe C++ Guidelines 3

CHAPTER 2. INFRASTRUCTURE AND ENVIRONMENT

Autosar Tests

com.cevelop.codeanalysator.autosar.tests

src
com.cevelop.codeanalysator.autosar.tests
com.cevelop.codeanalysator.autosar.tests.checker
com.cevelop.codeanalysator.autosar.tests.quickfix
com.cevelop.codeanalysator.autosar.tests.util

resources
com.cevelop.codeanalysator.autosar.tests

checker
quickfix

Table 2.2: Testing Project Structure

The C++ test cases are located in the resource section. They are written in
".rts" files and contain the C++ code snippets, which test the checker and
quickfix functionality.

Safe C++ Guidelines 4

Chapter 3

Implemented Rules

In this chapter we split every rule we have implemented into three or more
parts:
Rule explains the rule and the reasoning for the guideline.
Analysis explains our thought process as we were implementing the rule.
Checker explains the actual checker we wrote in technical terms. The im-
plementation of the checkers can be found in the following folder:
com.cevelop.codeanalysator.autosar.visitor.
Quickfix explains the functionality of the quickfix for a given problem. The
implementation of the quickfixes can be found in the following folder:
com.cevelop.codeanalysator.autosar.quickfix
Problem this section is only present if we encountered difficulties during
the implementation.

3.1 A00-04-02: Type long double shall not be used

Rule The width of long double type, and therefore width of the significand,
is implementationdefined. The width of long double type can be either:

• 64 bits, as the C++14 Language Standard allows long double to provide
at least as much precision as type double does, or

• 80 bits, as the IEEE 754 [IEE08] standard allows extended precision
formats (see: Extended-Precision-Format), or

• 128 bits, as the IEEE 754 [IEE08] standard defines quadruple precision
format

[AUT18]

Safe C++ Guidelines 5

CHAPTER 3. IMPLEMENTED RULES

Listing 3.1: A0-4-2 violation example
1 using ldouble = long double; // Non-compliant as alias declaration
2
3 int main(){
4 long double testVar{0}; // Non-compliant as declaration
5 ldouble test{0}; // Non-compliant declared with an alias
6 }
7
8 long double testFunc() {} // Non-compliant as a function return value
9

10 struct A {
11 long double test; // Non-compliant as class member
12 };
13
14 void testFunc(long double testParam) {} // Non-compliant as function parameter

Analysis Besides the simple declarations we will also have to check the
parameter declarations to check for long double parameters which may be
expected in a function. When either a simple- or parameter declaration is
found, we check whether the declaration specifier is of type long double.

Checker First we check whether the declaration specifier of the declara-
tion is of type ICPPASTSimpleDeclSpecifier. If that is the case, we cast
the declaration specifier to the aforementioned type. Afterwards we can us
the isLong() method provided by ICPPASTSimpleDeclSpecifier, and check
whether the specifier’s type is double.
Visitor: TypeLongDoubleShallNotBeUsedVisitor.java
Tests: TypeLongDoubleShallNotBeUsedCheckerTest.rts

3.2 A02-10-01: An identifier declared in an inner scope
shall not hide an identifier declared in an outer
scope

Rule This rule says, that name identifiers from an inner scope should not
hide name identifiers from the outer scope. In the rule documentation inner
and outer scope are defined as follows:

• Identifiers inside an anonymous namespace, could be taken in consid-
eration as having a outer scope

• Identifiers with a block scope have an inner scope

• Nested blocks inside a scope, introduce an inner scope

Declared identifiers in a named namespaces will not hide other identifiers
from an outer scope. Because they can be accessed with a fully-qualified id,
for example NameSpaceName::VariableName. [AUT18]

Safe C++ Guidelines 6

CHAPTER 3. IMPLEMENTED RULES

Listing 3.2: A2-10-1 violation example with an anonymous namespace
1 #include <cstdint>
2 std::int32_t hiddenName = 0;
3 namespace
4 {
5 std::int32_t hiddenName; // Non-compliant, hides hiddenName in outer scope
6 }

Listing 3.3: A2-10-1 violation example inside a lambda
1 #include <cstdint>
2 int main(){
3 std::int32_t a { 0 };
4 std::int32_t hiddenName { 0 };
5 auto lambda = [a,hiddenName]() {
6 // Non Compliant - hiddenName was captured
7 std::int32_t hiddenName = 10;
8 return a + hiddenName;
9 };

10 }

Listing 3.4: A2-10-1 violation example with a function parameter
1 #include <cstdint>
2 std::int32_t hiddenName;
3
4 void F1(std::int32_t hiddenName)
5 {
6 //Non-compliant, hides hiddenName in outer scope
7 }

Analysis The analysis for this rule was really complicated and took a lot of
effort to implement afterwards. It is split in two parts. One visitor checks all
expression for lambdas, which capture variables and re declare them with
the same identifier name (see 3.2). In the other, more complicated part, we
analyze the whole translation unit. In the first step, all declarations from
the outermost scope are being added to a collection. In the next step, we
analyze if there are inner scopes. If yes, the inner scope is being analyzed
and checked for name hiding. If a hiding is detected, the declarations will be
reported. These steps are repeated recursively for other nested inner scopes.

Checker The first visitor checks all IASTExpression to see if they are a ICP-
PASTLamdpaExpression. Inside the lambda we check if one of the ICPPAST-
Capture will be redeclared in a IASTSimpleDeclaration. If that is the case,
we create a marker for the IASTSimpleDeclaration that violates the rule.

Safe C++ Guidelines 7

CHAPTER 3. IMPLEMENTED RULES

CPPASTLambdaExpression

CPPASTCapture

i

CPPASTCapture

j

() CPPASTCompoundStatement

CPPASTSimpleDeclaration

CPPASTNamedTypeSpecifier CPPASTDeclarator

j CPPASTInitializer

CPPASTReturnStatement

The second visitor checks the whole IASTTranslationUnit. Inside the trans-
lation unit, the following IASTDeclarations will be analyzed: ICPPAST-
NamespaceDefinition, IASTSimpleDeclaration and ICPPASTFunctionDef-
inition. All IASTSimpleDeclaration from the outermost scope are being
added to a Map<String, IASTDeclaration>. ICPPASTNamespaceDefinition
are being processed for violations and further nested scopes.

CPPASTTranslationunit

CPPASTNamespaceDefinition

NS CPPASTSimpleDeclaration

CPPASTNamedTypeSpecifier CPPASTDeclarator

hiddenName CPPASTInitializer

CPPASTNamespaceDefinition

CPPASTSimpleDeclaration

CPPASTNamedTypeSpecifier CPPASTDeclarator

hiddenName CPPASTInitializer

In a ICPPASTFunctionDefinition it will be checked if identifiers from the
outer scope are being hidden in the ICPPASTParameterDeclaration or in-
side a ICPPASTForStatement.

CPPASTTranslationunit

CPPASTSimpleDeclaration

CPPASTNamedTypeSpecifier CPPASTDeclarator

hiddenName CPPASTInitializer

CPPASTFunctionDefinition

void CPPASTFunctionDeclarator

F1 CPPASTFunctionDeclarator

CPPASTNamedTypeSpecifier CPPASTDeclarator

hiddenName

{...}

Visitor: IdentifierShallNotHideOuterScopeIdentififersVisitor.java
Tests: IdentifierShallNotHideOuterScopeIdentififersCheckerTest.rts

Safe C++ Guidelines 8

CHAPTER 3. IMPLEMENTED RULES

3.3 A02-10-06: A class or enumeration name shall not
be hidden by a variable, function or enumerator
declaration in the same scope

Rule The C++ Language Standard allows that a class or an enumeration
can be hidden by a declaration with the same name. This could be from a
variable, data member, functions or a enumerator in the same scope. Using
the same names for different declarations can lead to misunderstandings
and should be avoided. [AUT18]

Listing 3.5: A2-10-6 violation example class type
1 namespace NS1 {
2 class A {
3 };
4
5 void A() {} //non-compliant, hides class A
6 }
7
8 int main(void) {
9 NS1::A();

10 class NS1::A a { }; //accessing hidden class type name
11 }

Listing 3.6: A2-10-6 violation example enum type
1 #include <cstdint>
2 namespace NS3 {
3 class A {
4 };
5 enum B
6 {
7 A = 0, //non-compliant, hides class A
8 };
9 }

10
11 int main(void) {
12 class NS3::A c { }; //accessing hidden class type name
13 std::uint8_t z { NS3::A };
14 }

Safe C++ Guidelines 9

CHAPTER 3. IMPLEMENTED RULES

Listing 3.7: A2-10-6 violation example enum and variable
1 #include <cstdint>
2 namespace NS2 {
3 enum class A {
4 VALUE = 0,
5 };
6 std::uint8_t A { 17 }; //non-compliant, hides scoped enum A
7 }
8
9 int main(void) {

10 enum NS2::A b; //accessing scoped enum NS2::A
11 NS2::A = 7;
12 }

Listing 3.8: A2-10-6 violation example header and sourcefile
1 //@main.h
2 #ifndef MAIN_H_
3 #define MAIN_H_
4
5 namespace NS1 {
6 class G {
7 };
8 }
9 #endif

10
11 //@main.cpp
12 #include "main.h"
13 #include <cstdint>
14 namespace NS1 {
15 void G() {} //non-compliant, hides class G inside headerfile
16 }
17
18 int main(void) {
19 NS1::G();
20 class NS1::G a { }; //accessing hidden class type name
21 }

Analysis The analysis process for this rule includes the whole translation
unit. All the defined scopes of the translation unit need to be checked for
rule violations. Initially it worked straight forward and the rule did not
seem to cause troubles. The use cases mentioned in the Autosar [AUT18]
specification could all be done with manageable effort. But with increasing
knowledge in the topic, we found test cases which were more complicated
to solve, for example splitting the scope in two parts or if the scope is spread
over two files (header and source file). To solve these problems, we had to
use the index provided by Eclipse.

Safe C++ Guidelines 10

CHAPTER 3. IMPLEMENTED RULES

CPPASTTranslationunit

CPPASTNamespaceDefinition

NS1 CPPASTSimpleDeclarator

CPPASTCompositeTypeSpecifier

hiddenName

CPPASTNamespaceDefinition

NS2 CPPASTSimpleDeclarator

CPPASTNamespaceDefinition

NS1 CPPASTFunctionDefinition

void CPPASTFunctionDeclarator

hiddenName

...

Checker The checker visits all IASTDeclaration of a ICPPASTTranslatio-
nUnit. During the processing of a scope we differentiate between three pos-
sible options: ICPPASTNamespaceDefinition, IASTSimpleDeclaration and
ICPPASTFunctionDefinition. With the IASTSimpleDeclaration we visit all
declarations for the current scope. These names are saved into a collec-
tion. In a ICPPASTNamespaceDefinition or in a ICPPASTFunctionDefini-
tion we check if a name inside scope has been reused. Because scopes
could be nested multiple times, the whole processing logic is implemented
recursively. To also get hidden variable names in the same scope but dif-
ferent files, we search inside the index. Inside the index we search with the
function findBindings() for IBindings with the same name. As a result
we receive a list with all declarations with the given name.. A hiding is
given, when for example a function name and a binding of type IPDOMCPP-
ClassType with the same name exists
Visitor: ClassEnumShallNotBeHiddenInSameScopeVisitor.java
Tests: ClassEnumShallNotBeHiddenInSameScopeCheckerTests.rts

3.4 A02-11-01: Volatile keyword shall not be used

Rule This rule intends to reduce incorrect usages of the volatile keyword.
As the keyword disables compiler optimizations for a particular object, it is
very error prone and often misused. [AUT18]

Listing 3.9: A2-11-1 violation example member variable
1 #include <cstdint>
2 class A {
3 volatile std::int32_t test{2}; //violation due to usage of volatile
4 };

Listing 3.10: A2-11-1 violation example type declaration
1 #include <cstdint>
2 struct A {
3 std::int32_t a;
4 const std::int32_t b;
5 };
6 volatile struct A x; //violation due to usage of volatile

Safe C++ Guidelines 11

CHAPTER 3. IMPLEMENTED RULES

Analysis To check for this rule we will have to look at the simple declara-
tions. We simply have to check each declaration specifier for whether they
are declared volatile.

Checker The Checker uses the isVolatile() method provided by the IAST-
DeclSpecifier, which checks if the volatile keyword is used. If the method
returns true, we create a marker to mark the violation
Visitor: VolatileKeywordShallNotBeUsedVisitor.java
Tests: VolatileKeywordShallNotBeUsedCheckerTests.rts

3.5 A02-13-01: Only those escape sequences that are
defined in ISO/IEC 14882:2014 [ISO17] shall be
used.

Rule The use of undefined escape sequences leads to undefined behaviour.
The defined sequences are: \’, \", \?, \\, \a, \b, \f, \n, \r, \t, \v,
\<Octal Number>, \x<Hexadecimal Number>.
Additionally universal-character-names (\u hex-quad and \U hex-quad) are
also allowed in character and string literals.

Listing 3.11: A2-13-1 violation example
1 #include <string>
2 std::string testString1{"\’ \" \? \\ \a \b \f \n \r \t \v"}; //compliant
3 std::string testString2{"\x"}; //violation as \textbackslash x is not

allowed by ISO 14882:2014
4 std::string testString3{"\xGG"}; //violation as \textbackslash xGG is no

correct hexadecimal number
5 std::string testString4{"\x2555"}; //violation as \textbackslash x2555 is

no correct octal number

Analysis At first it seemed like we would have to split up each individual
string and char literal. But after our first few tries we got the idea to write a
regular expression which covers the above cases. We have defined the RegEx
and defined extensive test cases to make sure all edge cases are covered.

Checker The checker simply checks all expression and if it is a ICPPASTLit-
eralExpression we use the precompiled pattern with the Pattern.matches()
method provided by Java. When the pattern matches the node gets reported.
Visitor: OnlyUseEscapeSequencesDefinedInIsoVisitor.java
Tests: OnlyUseEscapeSequencesDefinedInIsoCheckerTest.rts

Safe C++ Guidelines 12

CHAPTER 3. IMPLEMENTED RULES

3.6 A02-13-03: Type wchar_t shall not be used

Rule The width of the type wchar_t is implementation defined. Instead of
wchar_t, char_16 or char_32 should be used. [AUT18]

Listing 3.12: A2-13-3 violation examples
1 using charAlias = wchar_t; // Non-compliant as alias
2
3 int main(){
4 wchar_t string1[] = L"GHI"; // Non-compliant as declaration
5 charAlias string2[]{L"GHI"}; // Non-compliant declaration with alias
6 auto string3[] = L"GHI"; // Non-compliant as literal with auto
7 }
8 wchar_t testFunc(); // Non-compliant as return type
9

10 struct A {
11 wchar_t string3[10]; // Non-compliant as class member
12 };
13
14 void testFunc(wchar_t string[]) {} // Non-compliant as function parameter

Analysis For finding the usage of type wchar_t all simple declarations and
parameter declarations have to be checked. Inside the simple declarations
beside the simple declaration specifier and the function definition, we need
to search for alias declarations and named type specifiers as well.

Checker The checker uses getType() for getting the type from a simple
declaration specifier. Then it can be verified with the type wchar_t and is
reported when successfully. If the usage of an alias is inspected, the binding
of the named type specifier should be checked.
Visitor: TypeWcharTShallNotBeUsedVisitor.java
Tests : TypeWcharTShallNotBeUsedCheckerTest.rts

3.7 A05-07-01: A lamdbda shall not be an operand to
decltype or typeid

Rule Due to each lambda expression having a different unique and un-
named classtype, the use of lambda in conjunction with decltype / typeid
is heavily discouraged, as two lambda which are defined as exactly the same
function still are not considered equal by if-conditions for example.

Listing 3.13: A5-7-1 violation example
1 #include <cstdint>
2 #include <vector>
3
4 static auto lambda1 = []() -> std::int8_t { return 1; };
5 std::vector<decltype(lambda1)> v; //non-compliant

Safe C++ Guidelines 13

CHAPTER 3. IMPLEMENTED RULES

Listing 3.14: A5-7-1 violation example
1 #include <typeinfo>
2 int testVar{0};
3
4 const std::type_info& type{typeid(testVar)}; //non-compliant

Analysis To check for the usage of lambda both in decltype and typeid
we will have to check all expressions(typeid), as well as all DeclSpeci-
fiers(decltype). Afterwards we will work with the ICPPInternalBinding
to check the contained ExpressionType.

Checker We check both all expression and all declaration specifiers. Once
we have found one of either, we can either use the getExpressionType()
function of either the operand of typeid or of the declTypeExpression
which is contained in the declaration specifier. This expression type then
has to be cast into a ICPPInternalBinding, which allows us to use getDef-
inition() to check whether this definition is an instance of ICPPASTLamb-
daExpression.
Visitor: LambdaShallNotBeAnOperandToDeclTypeOrTypeIdVisitor.java
Tests: LambdaShallNotBeAnOperandToDeclTypeOrTypeIdCheckerTest.rts

3.8 A06-02-02: Expression statements shall not be
explicit calls to constructors of temporary objects
only.

Rule This rule defines that temporary objects should be avoided. Tempo-
rary objects are unnamed variables or implementations of the RAII. Such
temporary objects only live until the end of the expression. [AUT18]

Listing 3.15: A6-2-2 violation example mutex
1 #include <cstdint>
2 #include <mutex>
3 class A {
4 public:
5 void SetValue(std::int32_t value) {
6 std::lock_guard<std::mutex> { m_mtx }; // Non-compliant: temporary

object
7 m_value = value; // Assignment to m_value is not protected by lock
8 }
9

10 private:
11 mutable std::mutex m_mtx;
12 std::int32_t m_value;
13 };

Safe C++ Guidelines 14

CHAPTER 3. IMPLEMENTED RULES

Listing 3.16: A6-2-2 violation example temporary object
1 #include <string>
2 #include <fstream>
3
4 void PrintNonCompliant(std::string const &fname, std::string const &s) {
5 // Non-compliant: only constructing a temporary object
6 std::ofstream { fname };
7 }
8 void PrintCompliant(std::string const &fname, std::string const &s) {
9 // Compliant: Not only constructing a temporary object

10 std::ofstream { fname }.write(s.c_str(), s.length());
11 }

Listing 3.17: A6-2-2 violation example only construction of a temporary
object

1 struct A {
2 A(std::int32_t i1, std::int32_t i2) : i1(i1), i2(i2) {};
3 private:
4 std::int32_t i1;
5 std::int32_t i2;
6 };
7 int main(){
8 A { 5,4}; // Non-compliant only construction of an object
9 }

Analysis To check this rule, every expression needs to be checked. The check
is really straight forward, if a expression constructs a temporary object and
is not a field reference, then the rule is violated and the marker will be set
on the expression.

Checker The checker is straightforward and effective. All expression of type
ICPPASTSimpleTypeConstructorExpression are potential candidates for a
rule violation. To confirm the violation, it needs to be ensured that it is a
autonomous expression statement and it is not a field reference. If both con-
ditions are true, the rule is violated and the marker can be set.
The AST view of a temporary object looks as follows:

CPPASTFunctionDefinition

void CPPASTFunctionDeclarator CPPASTCompoundStatement

CPPASTExpressionStatement

CPPASTSimpleTypeConstructorExpression

CPPASTExpressionStatement

Safe C++ Guidelines 15

CHAPTER 3. IMPLEMENTED RULES

Whereas an object with a variable name looks like this:

CPPASTFunctionDefinition

void CPPASTFunctionDeclarator CPPASTCompoundStatement

CPPASTDeclarationStatement

CPPASTSimpleDeclaration

CPPASTExpressionStatement

Visitor: ExpressionsShallNotBeCallsToTempObjectsCtorsVisitor.java
Tests: ExpressionsShallNotBeCallsToTempObjectsCtorsCheckerTest.rts

Quickfix In our first attempt, we wanted to create a sort of inplace editor, in
which the temporary object could be given a name. We spent a lot investi-
gation effort, but we failed on the Eclipse API. So we decided to implement
a simpler version of this quick-fix. If this quick-fix is applied, the temporary
object receives a name "pleaseRename".

Listing 3.18: A6-2-2 quickfix example
1 //before quickfix -> line 3 is marked
2 void SetValue(std::int32_t value) {
3 std::lock_guard<std::mutex> { m_mtx };
4 m_value = value;
5 }
6
7 //after quickfix
8 void SetValue(std::int32_t value) {
9 std::lock_guard<std::mutex> pleaseRename { m_mtx };

10 m_value = value;
11 }

Quickfix: ExpressionsShallNotBeCallsToTempObjectsCtorsQuickFix.java
Tests: ExpressionsShallNotBeCallsToTempObjectsCtorsQuickFixTest.rts

Safe C++ Guidelines 16

CHAPTER 3. IMPLEMENTED RULES

3.9 A06-05-02: A for loop shall contain a single
loop-counter which shall not have floating-point
type.

Rule The rule says that a for loop shall contain only one loop-counter. If
a loop without loop-counter is desired, a while loop is the more appropri-
ate solution. This rule also states that floating-point types should not be
used as loop-counter. This is due to encountering problems with equality or
inequality checks. [AUT18]

Listing 3.19: A6-5-2 violation examples
1 #include <cstdint>
2 int main(){
3 constexpr std::int32_t xlimit{20};
4 constexpr std::int32_t ylimit{15};
5
6 // Non-compliant, two loop-counters declared inside the loop
7 for (std::int32_t a {0}, b{0}; (a < xlimit) && (b < ylimit) ;a++, b++)
8 {
9 // ...

10 }
11
12 std::int32_t c{0};
13 std::int32_t d{0};
14
15 // Non-compliant, two loop-counters but declared outside the loop
16 for (; (c < xlimit) && (d < ylimit) ;c++, d++)
17 {
18 // ...
19 }
20
21 // Non-compliant, two loop-counters but one modified inside the loop
22 for(std::int32_t e{0}, f{0}; e < xlimit;e++) {
23 f++;
24 }
25
26 constexpr float glimit = 2.5F;
27 // Non-compliant, float with !=
28 for (float g = 0.0F; g != glimit;g += 0.1F)
29 {
30 // ...
31 }
32 }

Analysis The analysis process for this rule was more complicated than ini-
tially thought. Because of the widely ranged origin of problems, the whole
declaration of a for loop and its body must be computed for different vio-
lations. The most problematic point of the analysis process is that a loop-
counter could be declared outside the for statement.

Safe C++ Guidelines 17

CHAPTER 3. IMPLEMENTED RULES

The only case which is not covered by our analysis steps is if two loop
counter are declared outside the loop and are incremented or decremented
inside the body of the loop.

Following case are currently being detected by our analysis process - Two
loop counters:

• Two loop counters, both declared and incremented inside the for header

• Two loop counters, one declared inside the for header and one outside,
but both incremented inside the for header

• Two loop counters, both declared outside, but both incremented inside
the for header

• Two loop counters, both declared inside the for header, one incre-
mented in the for header and one incremented in the body

• Two loop counters, both declared inside the for header and both incre-
mented in the body

• Declared loop counter are being checked, if they are used inside the
for header and the body. If two are declared but not used, no marking
process will be started

The following case is currently detected by our analysis process - compari-
son of floating type:

• Loop counter declared as float inside for header

Checker The checker computes every section of the for loop. First of all
IASTDeclaration are checked, if they contain multiple counters or a counter
of the type float. All declared variables are put into a collection for further
checks. Next the conditions are being tested for whether the IASTExpres-
sion type is float. Multiple nested IASTBinaryExpression are being checked
as well with a recursive method. In a further step all the iteration expres-
sions will be checked if two loop counters are being used. If two loop coun-
ters have been declared inside the loop, the iteration expression and the
ICPPASTCompoundStatement of the loop will be checked for their usage.

Visitor: ForLoopShallContainSingleCounterNoFloatsVisitor.java
Tests: ForLoopShallContainSingleCounterNoFloatsCheckerTest.rts

Safe C++ Guidelines 18

CHAPTER 3. IMPLEMENTED RULES

3.10 A07-01-09: A class, structure, or enumeration
shall not be declared in the definition of its type.

Rule This rule says, that a class, struct or enum shall not be declared right
after it’s definition, as combining a type definition with a declaration of
another entity can lead to readability problems and can be confusing for a
developer. [AUT18]

Listing 3.20: A7-1-9 violation example enum
1 enum class DIRECTION
2 {
3 UP,
4 DOWN
5 } dir; //non-compliant -> dir is declared right after the definition of the

DIRECTION enumeration

Listing 3.21: A7-1-9 violation example class type
1 #include <cstdint>
2 struct Bar
3 {
4 std::uint32_t a;
5 } barObj; //non-compliant

Analysis As classes, structs and enumerations all appear inside of simple
declarations, we check all of those. Inside of the simple declaration we can
check whether it contains one of the aforementioned type specifiers. If it
does, we can then check if one of the rest of the children is a declarator.

Checker Just as the analysis suggested, the checker works by visiting each
IASTSimpleDeclaration and checking it’s children. If a child is of type ICP-
PASTCompositeTypeSpecifier or ICPPASTEnumerationSpecifier, then all
other children are checked to see if they are of type IASTDeclarator. If
this is true for one of the children, the node gets reported.
Visitor: DoNotDeclareTypesInTheirDefinitionVisitor.java
Tests: DoNotDeclareTypesInTheirDefinitionCheckerTest.rts

Quickfix The quickfix for this rule is a bit more complicated, as it has to
be able to take the declarations out of the definition and create a new dec-
laration statement. To achieve this, we first extract all variable and / or
pointer names from the IASTSimpleDeclaration. Once we have those, we
also have to get the IASTName of the class/enum/struct. Now we create a
new IASTSimpleDeclaration and an array of new IASTDeclarators which
we combine into a new IASTDeclarationStatement. As there is only an
insertBefore() method to rewrite the AST we have to first copy the old
IASTSimpleDeclaration and reinsert it before the original one, then we re-
place the old declaration with our new IASTDeclarationStatement.

Safe C++ Guidelines 19

CHAPTER 3. IMPLEMENTED RULES

Listing 3.22: A7-1-9 quickfix example
1 //before quickfix -> line 4 is marked
2 struct Bar {
3 int a;
4 } barObj{10};
5
6 //after quickfix
7 struct Bar {
8 int a;
9 };

10 Bar barObj { 10 };

Quickfix: DoNotDeclareTypesInTheirDefinitionQuickFix.java
Tests: DoNotDeclareTypesInTheirDefinitionQuickFixTest.rts

3.11 A08-04-01: Functions shall not be defined using
the ellipsis notation.

Rule This rules says that functions shall not be defined using the ellipsis
notation. Usage of variadic arguments leads to bypassing of the type check
from the compiler [ref19f]. When a non POD class type is used, it results in
undefined behavior. Instead variadic templates should be used. They offer
a type-safe alternative for the ellipsis notation. [AUT18]

Listing 3.23: A8-4-1 violation examples
1 void Print1(const char* fmt...) // Non-compliant - variadic arguments are used
2 {
3 // ...
4 }
5 void Print2(...) // Non-compliant - variadic arguments are used
6 {
7 // ...
8 }

Analysis This rule can be violated by all declarations. If a declaration is a
function, it is checked more closely. The queries are made on the binding
of the function and on the function type. If variadic arguments are passed,
then this guideline is violated.

Checker For this rule, violations are really simple to detect. If we have a
function definition, we need to resolve the binding. Resulting of the binding
resolution we receive an ICPPFunction. On the basis of that, we could get
the function type as a ICPPFunctionType. On the function type is defined
a member function takeVarArgs(), which returns a boolean when variadic
arguments are taken by that function.
Visitor: FunctionsShallNotBeDefinedInEllipsisNotationVisitor.java
Tests: FunctionsShallNotBeDefinedInEllipsisNotationCheckerTest.rts

Safe C++ Guidelines 20

CHAPTER 3. IMPLEMENTED RULES

3.12 A08-04-04: Multiple output values from a
function should be returned as a struct or tuple

Rule This rule says that function should return multiple output values as
struct or tuple. [AUT18] This means that functions parameter that are de-
livered as reference, should not be manipulated as a side effect inside a
function. In consultation with Prof. Sommerlad, we defined that the return
value should preferably be a struct instead as a tuple.

Listing 3.24: A8-4-4 violation example
1 // remainder is passed by reference
2 int divide(int dividend, int divisor, int& remainder)
3 {
4 if(divisor==0){
5 return 0;
6 }
7 // Non-compliant remainder is modified and returned as side effect
8 remainder = dividend % divisor;
9 return dividend / divisor;

10 }

Analysis In a first step all function declarations are being checked, if they
have parameters passed by reference. Is that the case, they are put inside
a collection. In a second step the whole function body will be checked, if
something is written in the parameters passed by reference.

Checker The checker visits two different node types. First it visits all IAST-
Declaration, with the intention of finding an ICPPASTFunctionDefinition.
If a function definition has been found, its parameters are checked via the
ICPPASTFunctionDeclarator. All the parameters of type ICPPASTParame-
terDeclaration that are passed by reference are put into a Map. The Map
contains the names of the parameters and it’s ICPPASTFunctionDefinition.
In a second visitor all IASTExpression will be visited. If the expression is a
ICPPASTBinaryExpression, then it will be checked if the IASTExpression is
inside a function. In that case the Map will be checked, if it contains the the
first operand of the ICPPASTBinaryExpression and the return-type is not of
type void, then a marker will be set.

Visitor: MultipleOutputBeReturnedAsStructOrTupleVisitor.java
Tests: MultipleOutputBeReturnedAsStructOrTupleCheckerTest.rts

3.13 A11-01-03: Friend declarations shall not be used.

Rule The aim of this rule is to maintain encapsulation and force the pro-
grammer to produce code that is easier to maintain. There is one exception
to this rule. It is allowed to declare comparison operators as friend functions,
this is due to Autosar Guideline A13-05-05 [AUT18]

Safe C++ Guidelines 21

CHAPTER 3. IMPLEMENTED RULES

Listing 3.25: A11-1-3 violation example
1 class A {
2 public:
3 // Non-compliant
4 friend A const operator+(A const& lhs, A const& rhs);
5 // Compliant by excpetion (relational operator)
6 friend bool operator ==(A const& lhs, A const& rhs) {
7 return false;
8 }
9 void foo(int a) {}

10 };
11
12 class B {
13 // Non-compliant
14 friend void A::foo(int a);
15 };

Analysis Ignoring the exception to the rule, this rule is quite easy to check
for. We simply have to visit all declaration specifiers. Then we simply have
to check if the specifier is a friend or not. The corresponding interface offers
a method to check if the specifier is a friend [ref19b]. Now for the exception
it is a little bit trickier. First we have to check if any of the sibling nodes
of the specifier is a function declarator, because all operator declarations are
done using function declarators. Afterwards we have to extract the operator
name and match it’s raw signature to a regex which matches all comparison
operators. If it matches the node is not reported.

Checker First we check if the current IASTDeclSpecifier is part of the ex-
ception case or not. We do this by first looping through all it’s sibling nodes
and checking if any of them are of type ICPPASTFunctionDeclarator. If that
is the case, we then check if the declarator’s name is of type ICPPASTOpera-
torName. If yes, we use getRawSignature() and try to match the signature
with the correct regex. If the regex matches, the method returns without
marking a node.

If the declaration specifier is not part of the exception case, we simply use
the isFriend() method provided by the ICPPASTDeclSpecifier interface
and mark the node if it returns true.

Visitor: FriendDeclarationsShallNotBeUsedVisitor.java
Tests: FriendDeclarationsShallNotBeUsedCheckerTest.rts

Safe C++ Guidelines 22

CHAPTER 3. IMPLEMENTED RULES

3.14 A12-01-02: Both NSDMI and a non-static member
initializer in a constructor shall not be used in
the same type.

Rule According to AUTOSAR [AUT18] both NSDMI and non-static member
initialization in a constructor should never be used at the same time, no
matter what variable is initialized which way. However for the purpose
of this checker we have adjusted the rule together with Prof. Sommerlad
to only disallow non-static member initialization in a default constructor
and only if the same variable is initialized with NSDMI. An example of a
violation according to the original rule can be found below(see listing 3.26).
The rule exists to prevent confusion as to which values are actually used to
initialize a variable. [ref19c]

Listing 3.26: A12-1-2 violation according to autosar [AUT18] example
1 #include <cstdint>
2
3 class A {
4 public:
5 A(std::int32_t i1) : i1{10} {} //i1 is initialized using non static

member initialization
6
7 private:
8 std::int32_t i1{10}; //i1 is also initialized using NSDMI
9 std::int32_t i2{10}; //according to the autosar rule, this is also a

violating node
10 };

Listing 3.27: A12-1-2 violation example
1 #include <cstdint>
2
3 class A {
4 public:
5 A() : i1{10} {} //i1 is initialized using non static member initialization
6
7 private:
8 std::int32_t i1{10}; //i1 is also initialized using NSDMI
9 };

Analysis This rule proved to be a pretty hard one to analyse at first. There
were multiple possibilities as to how we could solve this problem and we
had to try over a few times. At first we thought visiting all initializers and
grouping by their composite type specifier was a good solution, however
we soon realized that without the binding from the index we would always
have performance problems as there were multiple for- and while-loops in
our checker. Next we tried to solve the problem by visiting each declaration
specifier and searching for ICPPASTCompositeTypeSpecifier.

Safe C++ Guidelines 23

CHAPTER 3. IMPLEMENTED RULES

If we did that we had troubles visiting possible inline constructors. Finally
we settled for checking all declarations and then simply finding all default-
constructors and afterwards checking whether the binding of it’s member
initializers had an initial value via the binding. If the binding does have one,
we create a marker for the non static member initializer in the constructor.

Checker In the checker we first try to find all ICPPASTFunctionDefinition
by visiting all IASTDeclaration then we check whether the function defini-
tion is a default constructor by checking the amount of parameters the the
function takes. If there are parameters we check everyone of them to see if
one of them has no initializer. If that is the case, it is not a default construc-
tor. Once we know whether our ICPPASTFunctionDefinition is a default
constructor we can then check each of it’s ICPPASTConstructorChainIni-
tializers.

CPPASTTranslationunit

CPPASTFunctionDefinition

CPPASTFunctionDeclarator CPPASTConstructorChainInitializer CPPASTConstructorChainInitializer

The first thing we do with each initializer is to save the owner, which repre-
sents the class in which the variable is defined, of their respective binding.
Next we save the content of the initializer into another local variable. Now
we have to check whether the move or copy constructor is used inside of the
initializers. If that is the case, the node is compliant by exception. Otherwise
we then try to get the binding from the index. Once we have the binding,
the last step is to compare the owner, as well as the content of each initial-
izer and it’s respective binding. If both the owner and the content match,
we create a marker for this node and add a flag to signal the availability of
a quickfix. If only the owner matches we create a marker for the node and
add a different flag to indicate that the quickfix can not be applied in this
case.

Quickfix The quickfix is quite simple, thanks to our preparatory work in the
visitor. We first decide whether the quickfix is even applicable by checking
the flags we’ve set during the reporting in the visitor. If both initializers
contain the same value, the quickfix is applicable, otherwise it is not. The
fix itself simply removes the ICPPASTConstructorChainInitializer node.
We only offer the quickfix if the same values are used because if there are
multiple values used to initialize the variable, as we cannot decide for the
user which of the two should stay.

Safe C++ Guidelines 24

CHAPTER 3. IMPLEMENTED RULES

Listing 3.28: A12-1-2 quickfix is not applicable example
1 #include <cstdint>
2
3 class A {
4 public:
5 A() : i1{10} {} //i1 is initialized with 10
6
7 private:
8 std::int32_t i1{20}; //i1 is initialized with 20 -> different value
9 };

Listing 3.29: A12-1-2 quickfix is applicable example
1 #include <cstdint>
2
3 class A {
4 public:
5 A() : i1{10} {} //i1 is initialized with 10
6
7 private:
8 std::int32_t i1{10}; //i1 is initialized with 10 -> same value
9 };

10
11 //after quickfix is applied
12
13 class A {
14 public:
15 A() {} //the constructor chain initializer is gone
16
17 private:
18 std::int32_t i1{10};
19 };

Quickfix: EitherNsdmiOrNsmiInTheSameTypeQuickFix.java
Tests: EitherNsdmiOrNsmiInTheSameTypeQuickFixTest.rts

3.15 A12-01-04: All constructors that are callable with
a single argument of fundamental type shall be
declared explicit.

Rule This rule is required to make sure, a constructor is not used to im-
plicitly convert a fundamental type into a class type. According to autosar
[AUT18] only constructors callable with a single argument of fundamental
type shall be declared explicit [ref19a], however after a discussion with Prof.
Sommerlad we have decided to include all constructors which are callable
with a single argument.

Safe C++ Guidelines 25

CHAPTER 3. IMPLEMENTED RULES

Listing 3.30: A12-1-4 violation example
1 #include <cstdint>
2
3 class A {
4 A(std::int32_t testVar) {...} //violation
5 }
6
7 class B {
8 B(std::int32_t testVar, std::int32_t testVar1 = 10) {...} //violation
9 }

10
11 class C {
12 explicit C(std::int32_t testVar) {...} //compliant
13 }

Analysis This rule only concerns constructors so we visit all declarators and
first check if they are function declarators without a return type only one
parameter declaration and not explicit yet. If all those checks are fullfilled
we then have to find out whether the function declarator is the one of the
declaration or the one of the implementation. If it is the one of the imple-
mentation we return because we only the declaration should be declared
explicit. If it is the one of the declaration we check the amount of param-
eters if the amount is one we report the node, if it is higher than one we
check all parameters to see if they have default values and report the node
if all other parameters have default values.

Checker First we check if the IASTDeclarator is of type ICPPASTFunction-
Declarator, if that is the case, we check the parent of the declarator to
determine whether we are handling the declarator of the declaration or of
the implementation. If it is the one of the declaration we then use get-
DeclSpecifier() to get the ICPPASTSimpleDeclSpecifier of the declarator
and continue to checking the parameters. To do this we first check if the dec-
laration specifier has an unspecified return type (means it is a constructor),
if the declaration specifier is not already explicit and the amount of param-
eters is exactly one. If all of this is the case we report the declarator. If the
amount of parameters if higher we check all parameters and see how many
of them do not use IASTEqualsInitializer to define a default value for the
parameter. Lastly we check the amount of total non-defaulted parameters,
if it is exactly one we report the declarator.
Visitor: SingleArgumentCtorsShallBeExplicitVisitor.java
Tests: SingleArgumentCtorsShallBeExplicitCheckerTest.rts

Quickfix The quickfix for this rule is very simple. We simply copy the
ICPPASTSimpleDeclSpecifier and set explicit to true. Finally we replace
the old simple decl specifier with the copied one.

Safe C++ Guidelines 26

CHAPTER 3. IMPLEMENTED RULES

Listing 3.31: A12-1-4 quickfix example
1 //before quickfix -> line number x is marked
2 class A {
3 A(int testArg) {}
4 };
5
6 //after quickfix
7 class A {
8 explicit A(int testArg) {
9 }

10 };

QuickFix: SingleArgumentCtorsShallBeExplicitQuickFix.java
Tests: SingleArgumentCtorsShallBeExplicitQuickFixTesr.rts

3.16 A12-01-06: Derived classes that do not need
further explicit initialization and require all the
constructors from the base class shall use
inheriting constructors.

Rule This rule says, that constructors of derived classes should not be re-
implemented if the derived constructors initialize the object exactly the same
way. Inherited constructors of the base class should be used instead. [AUT18]

Listing 3.32: A12-1-6 violation example
1 #include <cstdint>
2 class A
3 {
4 public:
5 A(std::int32_t x, std::int32_t y) : x(x), y(y) {}
6 explicit A(std::int32_t x) : A(x, 0) {}
7
8 private:
9 std::int32_t x;

10 std::int32_t y;
11 };
12
13 class B : public A
14 {
15 public:
16 // Non-compliant same constructor
17 B(std::int32_t x, std::int32_t y) : A(x, y) {}
18 // Non-compliant same constructor
19 explicit B(std::int32_t x) : A(x) {}
20 };

Safe C++ Guidelines 27

CHAPTER 3. IMPLEMENTED RULES

Analysis This rule is divided into two parts. In a first step all constructors
of a base classes need to be detected. This is done with a visitor to all base
specifiers.The found constructors are then saved in a collection. In a second
step, another visitor checks all declarations. If this is a constructor from a
derived class, it can be compared with those from the collection.

Checker This rule visits two different types. First, all ICPPASTBaseSpeci-
fier are vistited, for getting all constructors of a base and derived class.
The constructors as ICPPConstructor are detected with the binding on the
ICPPClassType. Both collections with the constructors of the base and de-
rived class are compared based on their signature. If the signatures are
identical, they are being put in a further collection.

In a second step in another visitor, that checks every IASTDeclaration, the
checks are more detailed. If a constructor in a derived class only calls the
constructor of a base class, the rule is violated and the constructor is marked.

Visitor: DerivedClassesShallUseInheritingCtorsVisitor.java
Tests: DerivedClassesShallUseInheritingCtorsCheckerTest.rts

Quickfix For this rule a quickfix is a good feature. The main implementation
of this quickfix was of medium difficulty, the more challenging part was the
avoidance of the abuse cases. For example the unique usage of the base
constructors.

Listing 3.33: A12-1-6 quickfix example
1 //before quickfix -> line 14 is marked
2 #include <cstdint>
3 class A {
4 public:
5 A(std::int32_t x, std::int32_t y) : x(x + 8), y(y) {}
6
7 private:
8 std::int32_t x;
9 std::int32_t y;

10 };
11
12 class B : public A {
13 public:
14 B(std::int32_t x, std::int32_t y) : A(x,y) {} // Non-compliant
15 };
16
17 //after quickfix
18 #include <cstdint>
19 class A {
20 public:
21 A(std::int32_t x, std::int32_t y) : x(x + 8), y(y) {}
22
23 private:
24 std::int32_t x;

Safe C++ Guidelines 28

CHAPTER 3. IMPLEMENTED RULES

25 std::int32_t y;
26 };
27
28 class B : public A {
29 public:
30 using A::A;
31 };

Quickfix: DerivedClassesShallUseInheritingCtorsQuickFix.java
Tests: DerivedClassesShallUseInheritingCtorsQuickFixTest.rts

Problems In a case with multiple inheritance structures (base, derived and
subderived) and the derived class using the constructors of base, problems
occur with the quickfix. The subderived class inherits from derived and has
it’s own constructor, which violate the rule.

Listing 3.34: A12-1-6 problem case multiple inheritance hierarchy
1 #include <cstdint>
2 class A
3 {
4 public:
5 A(std::int32_t x, std::int32_t y) : x(x + 8), y(y) {}
6
7 private:
8 std::int32_t x;
9 std::int32_t y;

10 };
11
12 class B : public A
13 {
14 public:
15 using A::A;
16 };
17
18 class C : public B
19 {
20 public:
21 C(std::int32_t x, std::int32_t y) : B(x, y) {} // Non-compliant
22 };

Unfortunately the constructor B(int,int) as shown in the example above, is
not listed in the AST, when the class C is analyzed. In consultation with
Prof. Sommerlad on this case no further efforts have to be done.

The same issue occurs, if the quick fix is applied on the following code
snippet with a multiple inheritance structure. The quick fix is only possible,
if it is utilised from bottom-up. Otherwise we ran into same situation as
shown above in the first problem case.

Safe C++ Guidelines 29

CHAPTER 3. IMPLEMENTED RULES

Listing 3.35: A12-1-6 problem case multiple inheritance hierarchy
1 #include <cstdint>
2 class A
3 {
4 public:
5 A(std::int32_t x, std::int32_t y) : x(x), y(y) {}
6
7 private:
8 std::int32_t x;
9 std::int32_t y;

10 };
11
12 class B : public A
13 {
14 public:
15 B(std::int32_t x, std::int32_t y) : A(x, y) {} // Non-compliant
16 };
17
18 class C : public B
19 {
20 public:
21 C(std::int32_t x, std::int32_t y) : B(x, y) {} // Non-compliant
22 };

3.17 A12-04-01: Destructor of a base class shall be
public virtual, public override or protected
non-virtual

Rule If a type is used as a base class, it’s destructor should be either public
and virtual, public and override or protected and non-virtual. This prevents
the destructors for derived types from not being invoked. [AUT18]

Listing 3.36: A12-4-1 violation example
1 class Base {
2 public:
3 ~Base() // Non-compliant destructor is not virtual
4 {
5 }
6 };
7 class Derived : public Base { // Marker will be set here
8 };

Problems The implementation for the checker of this rule caused us a lot
of difficulties. In our first try, we parsed all declarations and had issues
finding out which type is the base type. In the second attempt we parsed all
the Base Specifiers. In that case we did not find a relation between the base
specifier and the composite type specifier of the base specifier. In our next
approach, we tried to get the information from the class type.

Safe C++ Guidelines 30

CHAPTER 3. IMPLEMENTED RULES

We could make the checks successfully, but did not have the ability to report
the correct AST node for the marking process. We came to the agreement
with Prof. Sommerlad that marking the Base Specifier is the best possible
solution.

Analysis The easiest way to get all base classes, is to visit all ICPPASTBas-
eSpecifier. This makes the analysis of which class is derived and which
is a base class, obsolete. In our case only the the base class needs to be
analysed.

Checker The checker for this rule is very simple. With the Name Specifier
from the Base Specifier, we get the ICPPClassType from the base class. After
we iterate over all methods from the class. During the iteration it will be
checked if the method is a destructor and if it violates this guideline. All
these properties can be checked with member methods from ICPPMethod.
Visitor: DestructorShallBeVirtualOverrideProtectedVisitor.java
Tests: DestructorShallBeVirtualOverrideProtectedCheckerTest.rts

Safe C++ Guidelines 31

CHAPTER 3. IMPLEMENTED RULES

3.18 A13-02-02: A binary arithmetic operator and a
bitwise operator shall return a “prvalue”

Rule Returning a type “T” from binary arithmetic and bitwise operators is
consistent with the C++ Standard Library. [AUT18]

Listing 3.37: A13-2-2 violation example [AUT18]
1 #include <cstdint>
2
3 class A{
4 };
5
6 A operator+(A const&, A const&) noexcept // Compliant
7 {
8 return A{};
9 }

10
11 std::int32_t operator/(A const&, A const&) noexcept // Compliant
12 {
13 return 0;
14 }
15
16 A operator&(A const&, A const&)noexcept // Compliant
17 {
18 return A{};
19 }
20
21 const A operator-(A const&, std::int32_t) noexcept // Non-compliant
22 {
23 return A{};
24 }
25
26 A* operator|(A const&, A const&) noexcept // Non-compliant
27 {
28 return new A{};
29 }

Analysis For this rule every declaration needs to be visited. Of all declara-
tions, the function definitions are relevant for this rule. If a function is an
operator it will be checked, whether the return type is const or a pointer and
a class type.

Checker The checker vists all IASTDeclarator of a file. If a declaration is
of type ICPPASTFunctionDeclarator, then it proceeds with further analysis.
The next verification step is, if the function definition is a operator. This
is done with the getName() method of ICPPASTFunctionDeclarator. If the
result is an instanceof CPPASTOperatorName , then it is an operator. For get-
ting further information from the function, we resolve it’s binding of type
ICPPFunction.

Safe C++ Guidelines 32

CHAPTER 3. IMPLEMENTED RULES

Once we have the binding, we check the ICPPFunctionType and it’s return
type with the function getReturnType(). A violation of the rule is reported,
if ICPPFunctionType is instanceof CPPPointerType or CPPQualifierType
and it’s return type is instanceof ICPPClassType.

Visitor: BinaryArithOperatorShallReturnPrValueVisitor.java
Tests: BinaryArithOperatorShallReturnPrValueCheckerTest.rts

3.19 A18-01-02: The std::vector<bool> specialization
shall not be used

Rule The std::vector<bool> specialisation should not be used, because it
does not work with all STL algorithms as expected. Particularly the opera-
tor[]() does not return a contiguous sequence of elements as usual in the
default behavior of the std::vector<T>. The C++ Standard guarantees the
safe concurrent modification of distinct elements in STL containers. Only
the std::vector<bool> violates this guarantee. [AUT18] To be honest, in
our opinion std::vector<bool> shoud have never been implemented like
that, because it creates more trouble than benefits.

Listing 3.38: A18-1-2 violation examples
1 #include <vector>
2 int main(){
3 std::vector<bool> v2{}; // Non-compliant as declaration
4 }
5 void testFunc(std::vector<bool>) {} // Non-compliant as function parameter
6
7 std::vector<bool> testFunc() // Non-compliant as return type
8 {
9 std::vector<bool> v2{};

10 return v2;
11 }

Analysis For this rule the declarations and parameter declarations need to
be visited. Declarations can be a simple declaration or a function definition.
In both cases, the system checks whether a vector of bools is used. For
functions, the parameters and the return value are also checked.

Checker The checker visits all declarations and distinguishes between IAST-
SimpleDeclaration and IASTFunctionDefinition. For both cases it will be
checked, whether the a std::vector<bool> is used. The same checks will
be done on parameter declarations.
Visitor: VectorBoolSpecializationShallNotBeUsedVisitor.java
Tests: VectorBoolSpecializationShallNotBeUsedCheckerTest.rts

Safe C++ Guidelines 33

CHAPTER 3. IMPLEMENTED RULES

3.20 A18-05-01: Functions malloc, calloc, realloc and
free shall not be used

Rule All of the functions mentioned in the rule are used for C-style memory-
allocation / -deallocation. The use of these functions is discouraged because
invoking them is not type safe and the class’s constructors and destructors
are not invoked. There are two exceptions to this rule according to the AU-
TOSAR document [AUT18], one of them being the use of the functions in
user-defined overloads of the new and delete operators. The other excep-
tion mentioned is the use of custom implementations of the malloc and free
functions. Together with Prof. Sommerlad we have decided to not imple-
ment the second exception, because it doesn’t make sense for C++ and is
most likely a relic from earlier C programming guidelines.

Listing 3.39: A18-5-1 violation examples
1 #include <cstdint>
2 class A {
3 std::int32_t* p1 =

static_cast<std::int32_t*>(malloc(sizeof(std::int32_t)));
//non-compliant

4 std::int32_t* array1 = static_cast<std::int32_t*>(calloc(10,
sizeof(std::int32_t))); // non-compliant

5 std::int32_t* array2 = static_cast<std::int32_t*>(realloc(10 *
sizeof(std::int32_t))) // non-compliant;

6 free(p1); //non-compliant
7 }

Listing 3.40: A18-5-1 exception example
1 void operator delete(void* ptr) noexcept {
2 free(ptr); //compliant by exception
3 }

Analysis A function call is always an expression, so we visit all expressions
and check if it is a function call expression. If that is the case we then
check whether a predefined array of function-names("malloc", "std::malloc",
"::malloc", "calloc", ...) contains the function call expressions name-string.
To account for the exception we do the above and afterwards we check all
parents up to the translation unit and check if one of them is a function
definition and then check that definiton’s declarator if it is equal to "operator
new" or "operator delete".

Checker As mentioned above we visit all IASTExpressions and check if they
are of type ICPPASTFunctionCallExpression. If this is the case we then com-
pare the IASTName of the function with a predefined array of strings using
the toString() method of the IASTName.

Safe C++ Guidelines 34

CHAPTER 3. IMPLEMENTED RULES

Now to account for the exception we check each ICPPASTFunctionCallEx-
pression’s parents up to the IASTTranlationUnit and if one of them is a
ICPPASTFunctionDefinition and if they are we check if their name is of
type IASTOperatorName if they are we check if they override the new or the
delete operator.

Visitor: DoNotUseMallocCallocReallocFreeVisitor.java
Tests: DoNotUseMallocCallocReallocFreeCheckerTest.rts

3.21 A18-09-03: The std::move shall not be used on
objects declared const or const&

Rule With std::move the programmer is able to "push" an object into an-
other data-structure with the original object being empty afterwards. If this
function is used on const or const& objects the move-constructor is never
called, instead the copy-constructor is implicitly called.

Listing 3.41: A18-9-3 violation example
1 #include <string>
2 #include <utility>
3 #include <vector>
4 int main() {
5 std::string const& str{"Hello"};
6 std::vector<std::string> vectorTest{};
7 vectorTest.push_back(std::move(str)); // Non-compliant
8 }

Analysis To check for this rule we will have to check all expressions, as
std::move is a ICPPASTFunctionCallExpression. Afterwards we will check
the contained IASTIdExpression for it’s raw signature. After we have made
sure, that the function call is to "std::move", we can check the second IASTId-
Expression which is the argument. We check it’s type for whether it is of
type IQualifierType and const.

Checker The checker for this rule turned out a little more complicated than
expected because first we have to check whether the used expression is
std::move. We achieve this by first comparing the expression to ICPPAST-
FunctionCallExpression, if they match we check whether the raw signature
of the function expression matches std::move. Once we have confirmed,
that the expression is std::move we then have to check whether the operand
is defined as const. We do this by checking every child of the base expres-
sion. To be more precise, we try to find a IASTIdExpression and check it’s
expression type with the isConst() function.
Visitor: DoNotUseStdMoveOnConstObjectsVisitor.java
Tests: DoNotUseStdMoveOnConstObjectsCheckerTest.rts

Safe C++ Guidelines 35

CHAPTER 3. IMPLEMENTED RULES

3.22 A26-05-01: Pseudorandom numbers shall not be
generated using std::rand()

Rule This rule is required due to some implementations of std::rand()
having comparatively short cycles, which can allow exploiters to predict the
outcome of the function.

Listing 3.42: A26-5-1 violation example
1 #include <cstdlib>
2 int main(){
3 int randNumber{std::rand() % 100}; // Non-compliant
4 }

Analysis std::rand() is a IdExpression, which allows us to compare the raw
signature to std::rand, as the function doesn’t accept any parameters.

Checker We visit all expression and check whether they are of type IASTId-
Expression. Once we have found one we compare it’s raw signature to
std::rand by using getRawSignature().

Visitor: DoNotUseStdRandToGenerateNumbersVisitor.java
Tests: DoNotUseStdRandToGenerateNumbersCheckerTest.rts

Safe C++ Guidelines 36

Chapter 4

Quality Measures

4.1 Performance Tests

This section covers the different measures we took to ensure the quality of
our code.
Analysis To ensure that our implemented rules, would not have a bad im-
pact on the performance of the plug-in, we decided to execute performance
tests. We used the same projects, as our predecessors [PV19], juCi++ [juC19]
and LevelDB [Goo19]. With the support of Hansruedi Patzen, we were able
to make peformance analysis with a professional profiler [EJT19]. We let the
profiler run with following settings:

• All Autosar guidelines

• Only our implemented guidelines

The results were very satisfactory. The code analysis process for our imple-
mented rules was even slightly faster than with the already existing rules.

4.2 Quality Tests

To ensure that our checkers work correctly we executed quality inspections.
We took the same projects juCi++ [juC19] and LevelDB [Goo19] and let the
AUTOSAR code analysis run only with our implemented rules activated.
We checked the findings of the code analysis, if they are correct or whether
they are false positives. Fortunately we have done this check, we found
some false positives which we could fix.

Safe C++ Guidelines 37

CHAPTER 4. QUALITY MEASURES

4.2.1 A8-4-4 Correction

This rule (see 3.12) says that multiple output values from a function should
be returned as a struct or tuple. Function parameters passed as reference
should not be processed as side effect to allow multiple return values.
Finding In this case we had an issue with a nested lambda inside a function.
The checker has not realized that a further nested scope existed inside the
function. This leaded to faulty markings inside the juCi++ project. The
fault was, that our method, which should find the function definition of a
expression, had a small issue.

Correction We corrected the method and made the code much simpler and
clearer.

Listing 4.1: A2-10-1 corrected checker code snippet
1 public ICPPASTFunctionDefinition checkIfParentIsFunctionDefinition(IASTNode

node) {
2 while (!(node instanceof ICPPASTFunctionDefinition) && node != null) {
3 node = node.getParent();
4 }
5 return node != null ? (ICPPASTFunctionDefinition) node : null;
6 }

4.2.2 A2-10-1 Correction

The rule A2-10-1 (see 3.2) says that an identifier declared in an inner scope
shall not hide an identifier declared in an outer scope.
Finding In the juCi++ project we found a strange violation of this rule. The
following function with a void * parameter was marked as a violation.

Listing 4.2: A2-10-1 juCi++ false positive [juC19]
1 void log(const char *msg, void *) {
2 std::cout << "debugger log: " << msg << std::endl;
3 }

This was one case, which we simply did not expect during the development
of the checker.

Safe C++ Guidelines 38

CHAPTER 4. QUALITY MEASURES

Correction The fault was that we did not check if the parameter name is
empty. The fix for this problem was really simple, we just added an addi-
tional isEmpty() check.

Listing 4.3: A2-10-1 corrected checker code snippet
1 if (!(declaration.getName().toString().isEmpty()) &&
2 /* further condition checks */) {
3 reportRuleForNode(declaration);
4 }

4.2.3 A2-10-6 Correction

The rule A2-10-6 (see 3.3) says that class or enumeration names shall not be
hidden by a variable, function or enumerator declaration in the same scope.
Finding When we analyzed the results from the code analysis, we realized
that the rule marks false positives. The problem was in the checker inside a
if() statement, where the conditions for the rule violation are checked. The
conditions were too complex and nested and a edge cases were not covered.
Resulting from a faulty checker, constructors have been marked in some non
determinstic cases.
Correction To solve this problem, we reduced the complexity of the if con-
dition and took the check, if it is a constructor one level higher.

Listing 4.4: A2-10-6 corrected checker code snippet
1 if (!(declarator.getName().resolveBinding() instanceof ICPPConstructor)) {
2 if(/* further condition checks */){
3 reportRuleForNode(declaration);
4 }
5 }

4.3 Automated Test Compilation Checker

Motivation During a meeting with our supervisor, we were confronted with
the fact that one of our tests do not compile. This was a bitter issue and we
saw a need for action. So we decided to write a script which compiles all test
cases. Results We have developed a script using the Linux scripting shell
bash. The script writes every single test into a separate file and compiles
it afterwards. In this way all implemented rules are checked for compile
errors.It was frightening how many test cases don’t compile. As a result,
developing an automated solution in this area was the only right thing to
do.
File: /com.cevelop.codeanalysator.autosar.tests/resources/com.cevelop.
codeanalysator.autosar.tests/checker/compilecheck.sh

Safe C++ Guidelines 39

Chapter 5

Conclusion and Outlook

5.1 Conclusion

The goal of our thesis was to implement many new checkers and quick fixes
for AUTOSAR guidelines to extend the functionality of the CodeAnalysator
plug-in for Cevelop. We continued the work of our predecessors [PV19]
who refactored a lot of the architecture surrounding the plug-in and had al-
ready implemented a lot of rules and more importantly for us, had already
looked at all AUTOSAR guideline and started to classify each rule as well
as checking whether they were a candidate for future implementation. Ad-
ditionally they also created a developer guide to help future developers in
finding their way around the plug-in. All of those helped us immensely as
we both had no previous experience developing plug-ins.
In total we implemented 22 rules and 5 quick fixed during the course of this
thesis. This number at first seemed quite low to us, but we also had to take
into account the fact, that we both had not learned anything about the AST
before. This led to us having to use the first weeks to get to know our way
around the AST as well as getting to know our programming environment
consisting of Eclipse itself and the Eclipse CDT API. After these first slow
weeks we were able to implement a lot of guidelines and quick fixes and we
are pretty satisfied with the quantity of checkers as well as with the perfor-
mance and cleanliness of our code.

To complement our checkers and quick fixes we also implemented 238 unit
tests and performed an extensive performance check using two real open-
source projects. The two projects used were juCi++ [juC19] and LevelDB
[Goo19]. While the performance of our checkers was very satisfying, we
found some false positives during our performance checks which led us to
reevalute a lot or checkers and improving those which were not quite cov-
ering the AUTOSAR guidelines.

Safe C++ Guidelines 40

CHAPTER 5. CONCLUSION AND OUTLOOK

To conclude, we have achieved the goals we set for ourselves at the start
of this thesis. We implemented the amount of guidelines we wanted to and
the performance and quality of our code satisfies our standards. We were
able to test our work with real projects and were able to fix the checkers
which did not work yet.

5.2 Outlook

There are several possibilities to extend the plug-in in future projects:

• Implement further guidelines: As there are still a lot of guidelines left
which are not yet implemented, it is a very obvious possiblity to offer
a simliar term project to this one.

• Compare AUTOSAR and MISRA guidelines: As of now there are
two separate lists of guidelines, one consisting of all AUTOSAR guide-
lines, with the ones considered candidates for implementation marked,
and another one which contains all the new MISRA guidelines. It
would be very helpful to evaluate both lists and merge them together
to get an overview of the rules which both agree on.

• Implement further MISRA guidelines: As of now there are very few
MISRA Guidelines implemented. In a further project it would be pos-
sible to extend the functionality of the plug-in with additional MISRA
guidelines. Especially when the new set of guidelines will be released
in the future.

5.3 What we have learned / Tips for future projects

When looking back there were several things we could have and should
have done better. Firstly we should have clarified our understanding of a
few documents with our supervisor Prof. Sommerlad. For example we mis-
understood the purpose of a project plan and thus had to rewrite it after
sending it to Prof. Sommerlad.
Another thing we definetly should have started earlier was writing compil-
ing unit tests. Early on we just wrote unit tests which seemed correct to us
but we soon realized these were not of much use, as they would not hold
up in a real compiler. To ensure we would write compiling test from the on,
we created a shell script which would automatically try to compile all of our
unit tests and return an error message if one did not.

Safe C++ Guidelines 41

CHAPTER 5. CONCLUSION AND OUTLOOK

Overall we should have started the testing with real projects earlier as to
determine checkers which were creating markers for false positives. If our
performance test had had worse results we would have been in a lot of stress
towards the end of the term, as we would have to fix those performance is-
sues of course.

In contrast there were also things we are pretty happy to have done. The
biggest one of those is including the documentation of a checker or quick fix
in the definition of done. This forced us to continously document everything
we have done, where as otherwise the documentation tends to be forgotten
about.
Another great idea was to start with only one rule and to implement it using
pair-programming. This way we both got to know the environment and we
were able to help and bounce ideas off eachother.

Safe C++ Guidelines 42

Bibliography

[AUT18] AUTOSAR. Guidelines for the use of the C++14 Language in ciritcal
and safety-related systems. 2018.

[AUT19] AUTOSAR. AUTOSAR Homepage. Dec. 10, 2019. url: https :
//www.autosar.org/about/ (visited on 12/10/2019).

[EJT19] EJ-Technologies. JPROFILER. Dec. 2, 2019. url: https://www.
ej- technologies.com/products/jprofiler/overview.html
(visited on 12/02/2019).

[Gam+94] Erich Gamma et al. Design Patterns: Elements of Reusable Object-
Oriented Software. 1st ed. Addison-Wesley Professional, 1994. isbn:
0201633612. url: http://www.amazon.com/Design-Patterns-
Elements-Reusable-Object-Oriented/dp/0201633612/ref=
ntt_at_ep_dpi_1.

[Goo19] Google. LevelDB. Dec. 2, 2019. url: https : / / github . com /
google/leveldb (visited on 12/02/2019).

[IEE08] IEEE. IEEE 754-2008 - IEEE Standard for Floating-Point Arithmetic.
Second. Aug. 2008, p. 70. isbn: 978-0-7381-5752-8. url: https:
//ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
4610935.

[ISO17] ISO. ISO/IEC 14882:2017 Information technology — Programming
languages — C++. Fifth. Dec. 2017, p. 1605. isbn: ???? url: https:
//www.iso.org/standard/68564.html.

[juC19] juCi++. juCi++ - C++ IDE. Nov. 25, 2019. url: https://gitlab.
com/cppit/jucipp (visited on 11/25/2019).

[PV19] Viktor Puselja and Gabriel Vlasek. “Safe C++ Guidelines for
Cevelop (AUTOSAR)”. 2019. url: http://eprints.hsr.ch/
783/.

Safe C++ Guidelines 43

https://www.autosar.org/about/
https://www.autosar.org/about/
https://www.ej-technologies.com/products/jprofiler/overview.html
https://www.ej-technologies.com/products/jprofiler/overview.html
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612/ref=ntt_at_ep_dpi_1
https://github.com/google/leveldb
https://github.com/google/leveldb
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4610935
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://gitlab.com/cppit/jucipp
https://gitlab.com/cppit/jucipp
http://eprints.hsr.ch/783/
http://eprints.hsr.ch/783/

Bibliography

[ref19a] C++ reference. C++ reference - explicit keyword. Nov. 4, 2019. url:
https://en.cppreference.com/w/cpp/language/explicit
(visited on 11/04/2019).

[ref19b] C++ reference. C++ reference - Friend. Nov. 5, 2019. url: https:
//en.cppreference.com/w/cpp/language/friend (visited on
11/05/2019).

[ref19c] C++ reference. C++ reference - NSDMI. Nov. 20, 2019. url: https:
//en.cppreference.com/w/cpp/language/data_members (vis-
ited on 11/20/2019).

[ref19d] C++ reference. C++ reference - PODType. Oct. 29, 2019. url: https:
//en.cppreference.com/w/cpp/named_req/PODType (visited on
10/29/2019).

[ref19e] C++ reference. C++ reference - RAII. Oct. 18, 2019. url: https:
//en.cppreference.com/w/cpp/language/raii (visited on
10/18/2019).

[ref19f] C++ reference. C++ reference - Variadic Arguments. Oct. 29, 2019.
url: https://en.cppreference.com/w/cpp/language/variadic_
arguments (visited on 10/29/2019).

Safe C++ Guidelines 44

https://en.cppreference.com/w/cpp/language/explicit
https://en.cppreference.com/w/cpp/language/friend
https://en.cppreference.com/w/cpp/language/friend
https://en.cppreference.com/w/cpp/language/data_members
https://en.cppreference.com/w/cpp/language/data_members
https://en.cppreference.com/w/cpp/named_req/PODType
https://en.cppreference.com/w/cpp/named_req/PODType
https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/language/raii
https://en.cppreference.com/w/cpp/language/variadic_arguments
https://en.cppreference.com/w/cpp/language/variadic_arguments

	Glossary and List of Abbreviations
	List of Figures
	Introduction
	Initial situation
	Task description
	Code Analysator
	Safe C++ with AUTOSAR

	Infrastructure and Environment
	Implemented Rules
	A00-04-02: Type long double shall not be used
	A02-10-01: An identifier declared in an inner scope shall not hide an identifier declared in an outer scope
	A02-10-06: A class or enumeration name shall not be hidden by a variable, function or enumerator declaration in the same scope
	A02-11-01: Volatile keyword shall not be used
	A02-13-01: Only those escape sequences that are defined in ISO/IEC 14882:2014 ISO14882:2017 shall be used.
	A02-13-03: Type wchar_t shall not be used
	A05-07-01: A lamdbda shall not be an operand to decltype or typeid
	A06-02-02: Expression statements shall not be explicit calls to constructors of temporary objects only.
	A06-05-02: A for loop shall contain a single loop-counter which shall not have floating-point type.
	A07-01-09: A class, structure, or enumeration shall not be declared in the definition of its type.
	A08-04-01: Functions shall not be defined using the ellipsis notation.
	A08-04-04: Multiple output values from a function should be returned as a struct or tuple
	A11-01-03: Friend declarations shall not be used.
	A12-01-02: Both NSDMI and a non-static member initializer in a constructor shall not be used in the same type.
	A12-01-04: All constructors that are callable with a single argument of fundamental type shall be declared explicit.
	A12-01-06: Derived classes that do not need further explicit initialization and require all the constructors from the base class shall use inheriting constructors.
	A12-04-01: Destructor of a base class shall be public virtual, public override or protected non-virtual
	A13-02-02: A binary arithmetic operator and a bitwise operator shall return a “prvalue”
	A18-01-02: The std::vector<bool> specialization shall not be used
	A18-05-01: Functions malloc, calloc, realloc and free shall not be used
	A18-09-03: The std::move shall not be used on objects declared const or const&
	A26-05-01: Pseudorandom numbers shall not be generated using std::rand()

	Quality Measures
	Performance Tests
	Quality Tests
	A8-4-4 Correction
	A2-10-1 Correction
	A2-10-6 Correction

	Automated Test Compilation Checker

	Conclusion and Outlook
	Conclusion
	Outlook
	What we have learned / Tips for future projects

	Bibliography

