
Bachelor Thesis

OpenAPI 3 Code Binding Generator for

Haskell

And its Application to Generate a Library for the Stripe Payment

System

Hochschule für Technik Rapperswil

Department of Computer Science

17.02.2020 – 12.06.2020

Authors Joel Fisch

Remo Dörig

Supervisor Prof. Dr. Farhad Mehta

External examiner Tom Sydney Kerckhove

Internal reviewer Mirko Stocker

Abstract

At the moment, there is no up-to-date client library for the online payment provider

Stripe available in Haskell. Stripe provides an OpenAPI 3 specification for its API which

can be used to generate a client library. Currently, there is no sufficient OpenAPI 3 client

code generator for Haskell. The goal of this thesis is to create such a code generator im-

plemented in Haskell and to use it to generate and publish a client library for Stripe. To

demonstrate the usage of the generated code, a demo application was implemented

using this library. In addition, automated tests were conducted on over 2700 existing

OpenAPI 3 specifications. This approach allows easier updates in the future and lower

maintenance effort, as it enables maintainers to regenerate the library when the Open-

API specification is updated. In the future, the generator can be developed further to

support more features of the OpenAPI specification and to create libraries for other API

providers as well.

i

Lay Summary

Initial Situation Most applications (mobile apps, desktop applications, web applications)

used today communicate with so-called web services (also known as Web APIs). To make it

easier to implement an applicationwhich talks to aweb service, providers of Web APIs write

specifications which define in great detail what data should be sent to and can be received

from the service.

OpenAPI 3 is a format towrite such specifications. It allows todescribe anAPI formallywhich

makes it possible togenerateparts of the codeneeded to communicatewith thewebservice.

This could be done manually as well, but it is labour-intensive to update a so-called client

library every time the provider adds a new feature to the API. If a code generator is used

instead, the only thing which has to be done is to use (the newly published version of) the

API specification and transform it into code using the generator.

Haskell is a programming language for which no sufficient generator exists to fulfill this task.

A generator would help the Haskell community to keep the client code for APIs such as the

online payment provider Stripe up-to-date and to create libraries for other web services as

well. Therefore, the goal of this thesis is to create a code generator which can transform an

OpenAPI 3 specification into Haskell code.

Approach / Technology The code generator itself is implemented using Haskell as well.

This code generator was used to generate a client library for Stripe which can be used to

do online payments. To showcase the usage of this library, a small demo application was

implemented using this library.

Toensure the correctnessof thegenerated code, several typesof automated testswereused.

These tests check, for example, if the generated code can be transformed to an executable

application.

ii

Results All three parts (code generator, Stripe library anddemoapplication)were success-

fully developed within this thesis. There are some limitations to the generator which could

be addressed in the future to support more of the features provided by OpenAPI 3. To im-

prove the development flow using the generated code, a documentation for the code can be

generated which makes it easy to discover the possibilities of the API.

Conclusion The created code generator allows to update the generated Stripe library (and

other libraries using the generator) easily and with low maintenance effort. Additionally, it

can be used to create new libraries for Web API with an OpenAPI 3 specification. Different

members of the Haskell community either plan to use the library to implement commercial

software or plan to join forces to create an even better version of the code generator.

iii

Management Summary

Initial Situation Most applications used today communicate with web services. These

web services often use a formally defined format called OpenAPI 3 to specify the features

of the service which makes the implementation of client applications easier and cheaper.

An OpenAPI 3 specification can be transformed into client code using a code generator to

prevent repetitive development effort. For many languages there are such generators, but

for theprogramming languageHaskell there isnosufficientgenerator, resulting inhighmain-

tenance costs for client libraries and out-dated versions as it is the case for the community-

developed library for the online payment provider Stripe.

The goal of this thesis is to create a code generator which can be used to transform anOpen-

API 3 specification into Haskell code and generate an up-to-date version of a Stripe client

library.

Approach / Technology The code generator itself is implemented using Haskell as well.

This code generator was used to generate a client library for Stripe which can be used to

do online payments. To showcase the usage of this library, a small demo application was

implemented using this library. To ensure the correctness of the generated code, several

types of automated tests were used on around 2700 specifications.

Results All three parts (code generator, Stripe library anddemoapplication)were success-

fully developed within this thesis. There are some limitations to the generator which could

be addressed in the future to support more of the features provided by OpenAPI 3. To im-

prove the development flow using the generated code, a documentation for the code can be

generated which makes it easy to discover the possibilities of the API.

Conclusion The created code generator allows to update the generated Stripe library (and

other libraries using the generator) easily and with lowmaintenance effort.

iv

Acknowledgements

We thank the following people sincerely for their support:

• Prof. Dr. FarhadMehta for his constant support and feedback as supervisor, his time

answering our questions and interesting conversations, whether regarding the bach-

elor thesis or about something else.

• Tom Sydney Kerckhove for sharing his insights regarding Haskell and his constant

interest in the project.

• AnneMarie O’Neill for correcting the English parts of the documentation.

• Claudia Fisch for correcting the German parts of the documentation.

v

Contents

Abstract i

Lay Summary ii

Management Summary iv

Acknowledgements v

Contents vi

Glossary ix

Acronyms xi

List of Figures xii

List of Tables xiii

Listings xiv

I Technical Report 1

1 Introduction 2

1.1 Initial Situation . 2

1.2 Goals . 5

1.3 Requirements . 7

1.4 Research / Existing Work . 8

1.5 Involved People . 11

vi

2 Problem Analysis 12

2.1 Code Generation . 13

2.2 Stripe API . 23

3 Solution Design 29

3.1 OpenAPI 3 . 30

3.2 Code Generation . 44

3.3 HTTP Library . 48

3.4 Error Handling . 58

4 Results 60

4.1 Demo Server . 61

4.2 Publication . 63

4.3 Code Metrics . 64

4.4 Limitations . 66

5 Conclusion 69

5.1 Comparison to other Work . 70

5.2 Lessons Learned . 73

5.3 Result Discussion . 77

5.4 Future Scope . 79

II Appendix 83

A Requirements Specification for Code Generator 84

A.1 Prioritization . 84

A.2 Use Cases . 85

A.3 Non-functional Requirements . 86

B Requirements Specification for Generated Code 91

B.1 Prioritization . 91

B.2 Use Cases . 92

B.3 Non-functional Requirements . 93

C Requirements Specification for Stripe Library 97

vii

C.1 Use Cases . 98

C.2 Non-functional Requirements . 99

D Quality Measures 100

D.1 Code Style . 100

D.2 Automated Testing . 101

E Test Plan 104

E.1 Test Procedure . 105

E.2 Tests . 106

E.3 Protocol . 112

F Architecture Overview 113

F.1 Demo System . 113

F.2 Code Generator . 115

F.3 Stripe Library . 120

G Installation Instructions 122

G.1 Code Generator . 122

G.2 Stripe Library . 124

G.3 Generated Code . 125

H Task Description 126

H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell 126

I Listings 129

I.1 Scalar Type Examples . 130

I.2 Research HTTP Library . 132

I.3 OpenAPI Tools Code Generators . 134

J Domain Diagrams 135

Addendum 139

Bibliography 140

viii OpenAPI 3 Code Binding Generator for Haskell

Complete Content 142

ix OpenAPI 3 Code Binding Generator for Haskell

Glossary

Apache Apache as referenced in this thesis is a web server. See https://httpd.apache.org/.

62, 113

ASCII The American Standard Code for Information Interchange is a character encoding us-

ing seven bits. 86

AST An abstract syntax tree (AST) is the representation of a program as data (tree structure)

in contrast to a textual representation. 44, 45, 46, 47, 119

Cabal Cabal is a system for building and packaging Haskell libraries and programs. See

https://www.haskell.org/cabal/. 110, 112

GHC The Glasgow Haskell Compiler is the main compiler for Haskell. 4, 35, 44, 101

Hackage Hackage is a package repository for Haskell, used by tools like Stack and Cabal.

See http://hackage.haskell.org/. 63, 81, 109

Haddock A tool forautomaticallygeneratingdocumentation fromannotatedHaskell source

code. https://www.haskell.org/haddock/ 26, 44, 68, 78, 101

language extension A language extension of Haskell extends the languagewith some func-

tionality. Language extension can be activated on a file level. See https://wiki.haskell.

org/Language_extensions. xiv, 8, 35, 46, 73, 134

Monad Monads in Haskell can be thought of as composable computation descriptions. See

https://wiki.haskell.org/Monad for more information. 11, 59, 118

Nginx Nginx is a web server. See https://www.nginx.com/. 62

x

https://httpd.apache.org/
https://www.haskell.org/cabal/
http://hackage.haskell.org/
https://www.haskell.org/haddock/
https://wiki.haskell.org/Language_extensions
https://wiki.haskell.org/Language_extensions
https://wiki.haskell.org/Monad
https://www.nginx.com/

property-based testing Tests that focus on the properties of functions. These properties

are automatically tested with sophisticated random inputs. 5, 77, 79

SEPA The Single Euro Payments Area is a payment-integration initiative of the European

Union for simplificationofbank transfersdenominated ineuro. Seehttps://www.sepa.

ch/en/home.html. 62

Stack Stack isacross-platformprogramfordevelopingHaskell projects. It is aimedatHaskellers

bothnewandexperienced. Oftenused insteadof cabal. Seehttps://docs.haskellstack.

org/en/stable/README/. 85, 106

GLOSSARY xi OpenAPI 3 Code Binding Generator for Haskell

https://www.sepa.ch/en/home.html
https://www.sepa.ch/en/home.html
https://docs.haskellstack.org/en/stable/README/
https://docs.haskellstack.org/en/stable/README/

Acronyms

ADT Algebraic data type. 44, 59

API Application programming interface. 2, 24, 92, 115

CD Continuous Deployment. 73, 75

CI Continuous Integration. 63, 73, 75

CLI Command Line Interface. 58, 65, 85, 88, 102, 119

ERP Enterprise resource planning. 2

HSR Hochschule für Technik Rapperswil. 113

HTTP HyperText Transfer Protocol. 2, 20, 30, 48, 49, 54, 55, 59, 61, 94, 103, 113, 121, 145

HTTPS HyperText Transfer Protocol Secure. 30, 49, 61

JSON JavaScript Object Notation. 2, 9, 14, 30, 33, 35, 52, 61, 62, 66, 79, 85, 86

MIT Massachusetts Institute of Technology. 89

SPA Single-page application. 62

UML Unified Modeling Language. 21

XML Extensible Markup Language. 14, 25, 30, 66

YAML YAML Ain’t Markup Language. 64, 85, 86, 88, 106

xii

List of Figures

2.1 Workflow Code Generation . 14

2.2 Domain model of the OpenAPI schema . 15

2.3 Domain model of the OpenAPI Specification in regard to the operations 19

2.4 Informal domain model of the generated code 22

2.5 Sequence diagram of an online purchase with Stripe 28

D.1 Workflow Compile Test . 102

D.2 Workflow Client Test . 102

D.3 Workflow API Test . 103

F.1 Demo system deployment diagram . 113

F.2 Workflow Code Generation . 115

F.3 Phases of the code generator . 115

F.4 Flow of the code generation of models . 117

F.5 Layers for Code Generator . 118

F.6 Workflow Code Generator for Stripe Library . 120

F.7 Layers for Stripe Library . 120

J.1 Complete Domain model of the OpenAPI Specification 136

J.2 Domain model of the OpenAPI Specification without reference types 137

J.3 Informal domain model of the generated code as originally theorized 138

xiii

List of Tables

3.1 Code generation method comparison . 47

E.1 Test protocol . 112

xiv

Listings

3.1 OpenAPI example array . 32

3.2 OpenAPI Haskell example array . 32

3.3 OpenAPI example object . 34

3.4 OpenAPI Haskell example object . 34

3.5 OpenAPI Haskell example object (disregarded plan) 36

3.6 OpenAPI example oneOf . 37

3.7 OpenAPI Haskell example oneOf . 38

3.8 OpenAPI example allOf . 39

3.9 OpenAPI Haskell example allOf . 40

3.10 OpenAPI example anyOf . 41

3.11 OpenAPI Haskell example anyOf . 42

3.12 http-client example from http-client itself 49

3.13 http-client example from http-client itself 51

3.14 http-conduit example with Network.HTTP.Simple 53

3.15 http-conduit example with streaming interface 54

3.16 Servant Example . 56

I.1 OpenAPI example scalar types . 130

I.2 OpenAPI Haskell example scalar types . 131

I.3 Servant: Querying an API . 132

I.4 Language extensions used by the generated code from OpenAPI Tools 134

xv

Part I

Technical Report

1

Chapter 1

Introduction

1.1 Initial Situation

Most larger IT systems have a need to communicate with other systems. For example if a

customer makes an order in an online shop, then the online shop may send the order to a

ERP-systemor if a buttononamouse is pressed, a signal to the computer is sent. These com-

munications happenmostly over different interfaces, in case of (web-)applications these are

called API. For systems working within the web it is common to have an API using HTTP and

to send information in the form of JSON. How an API works, where it receives data, where it

sends data, which form the data has, etc. can be formally specified. Many companies specify

their APIs with OpenAPI, for example Stripe.

With an OpenAPI specification an API can be described in a standardized, machine readable

way. As a result, it is possible to generate code in a desired programming language which

can use the API. Code binding generators exist for a number of languages 1, but there is cur-

rently no suitable code generator for Haskell. See section 1.4 Research / Existing Work for

the reasonswhy they are not suitable for this project (Code does not compile, no support for

OpenAPI version 3.0).

The current Haskell library for Stripe 2 is hardcoded to an old version of the API 3. This li-

brary is coded manually, which makes it labor intensive to update. A Haskell library which

is automatically generated and supports the most recent Stripe API version is desired. And
1https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md
2https://github.com/dmjio/stripe
3https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md

2

https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md
https://github.com/dmjio/stripe
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md

therefore a Haskell code generator is desired. Stripe provides an OpenAPI 3.0 specification

for its API at https://github.com/stripe/openapi.

The development of an OpenAPI code binding generator for Haskell could be used to gen-

erate an easy to maintain Haskell library for Stripe and could also have much broader use

within the Haskell community.

The full original task description can be found in the appendix ??.

1.1.1 OpenAPI 3.0

TheOpenAPI Specification (originally known as the Swagger Specification) is a specification

for machine-readable interface files for describing, producing, consuming, and visualizing

web services. It is claimed to be a broadly adopted industry standard for describingmodern

APIs. The bachelor thesis works with the current OpenAPI version, which is 3.0.2, released

on 08.10.2018.

1.1.2 Code Generators

Code generators can be used to generate code in a programming language from an input

(typically a file / specification). Some code generators are used to create a basis of a project,

which then can bemanually extended. For this project the generated code is intended to be

a self contained package, so that it can be updated when the specification is updated. An

API defined by a OpenAPI specification has a client side and a server side. To work with the

existing Stripe API, only a client side code generator is needed.

CHAPTER 1. INTRODUCTION 3 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi

1.1.3 Haskell

Haskell is a general-purpose, statically typed, purely functional programming languagewith

type inference and lazy evaluation. Developed to be suitable for teaching, research and in-

dustrial application, Haskell has pioneered a number of advanced programming language

features, especially in the area of type systems. Haskell is used in a number of applications

where efficiency and reliability are valued, particularly in the financial sector. The bachelor

thesis works with the current version of the Haskell development environment GHC, which

is 8.8.2, released on 16.01.2020.

1.1.4 Stripe

Stripe is a company that provides technical, fraud prevention, and banking infrastructure

required to operate online payment systems. Stripe provides an API that web developers

can use to integrate payment processing into their websites andmobile applications. Stripe

provides an OpenAPI 3.0 specification for this API at https://github.com/stripe/openapi.

CHAPTER 1. INTRODUCTION 4 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi

1.2 Goals

The original goal description can be found in the appendix ??. The focus of this thesis is to

create a working solution and not only a feasibility study.

1.2.1 OpenAPI Code Binding Generator

The primary goal of the project is to create an OpenAPI code binding generator for Haskell

written inHaskell. With this tool, codebindings canbegenerated to interactwithanOpenAPI

specified API. The primary goal of the code binding generator is not to generate code for an

API server, but to generate code to talk to an API server.

1.2.2 Haskell Library for Stripe API

With the code binding generator, a library for the Stripe API should be implemented. It

should be possible to handle online payments with the library. The library should be easy to

update if the Stripe OpenAPI specification is changed.

1.2.3 Demo Application

To prove that the library works, a simple working demo application that uses the produced

Stripe API library for simple online payments should be implemented.

1.2.4 Requirements for the Implementation

Special caremust be taken to take advantage of the advanced features of Haskell’s type sys-

tem to enforce data consistency at compile time, as well as the current state of the art in

Haskell development (e.g. property-based testing). At the same time, the resulting tools

must be understandable, usable and maintainable by a wide community of Haskell devel-

opers.

While developing the OpenAPI code binding generator, priority should be given to parts of

the OpenAPI specification that are necessary to generate the code bindings required for the

CHAPTER 1. INTRODUCTION 5 OpenAPI 3 Code Binding Generator for Haskell

Haskell Library for Stripe API. This is the minimum subset of theOpenAPI specification that

must be supported 4.

All product documentation must be in English, and in a form that is appropriate for contin-

ued development, publicly or otherwise. Project documentation that is not relevant to the

continued development of the project may be in German.

4Note that the Stripe OpenAPI specification also uses Stripe specific extensions to the OpenAPI specifica-
tion.

CHAPTER 1. INTRODUCTION 6 OpenAPI 3 Code Binding Generator for Haskell

1.3 Requirements

For this project three different sets of requirements exist for the code generator, the gener-

ated code and the Stripe library.

• Appendix A Requirements Specification for Code Generator

• Appendix B Requirements Specification for Generated Code

• Appendix C Requirements Specification for Stripe Library

CHAPTER 1. INTRODUCTION 7 OpenAPI 3 Code Binding Generator for Haskell

1.4 Research / Existing Work

Previous work has been carried out in the field of OpenAPI, Stripe and Haskell. This chapter

looks at existing work and examines if something useful can be learned.

1.4.1 OpenAPI Tools Code Generators

OpenAPI Tools 5 already have an OpenAPI version 3.0 compatible Haskell code generator 6,7

[16].

1.4.1.1 Stripe OpenAPI file

OpenAPI Tools Code Generators can successfully build Stripe API clients and servers if the

OpenAPI validation is disabled, but for neither does the generated code compile. The server

code fails to generate valid names for anyOf expressions and the client code does not use

type names uniquely 8. The server uses Servant 9. Servant allows to define the API as a type

and looks very promising for this project as well. The client uses http-client [10] and creates

a custom function for every operation. Since this project is about building a client library,

the generated client is of more interest.

The client represents simple data structures as records with the lens-library [13] and gener-

ates functions to create a recordwith every nonMaybe value. Separate anyOf types are used

for the expandable fields, but the types are never declared. The client uses many language

extensions Listing I.4. QuickCheck [17] tests are generated to test the json serialization and

deserialization.

1.4.1.2 Complex Example OpenAPI File

To explore how the generator generates complex types (oneOf, anyOf, allOf) and value con-

straints (minLength,maxLength), a customOpenAPI file was created. The file is in the repos-
5https://github.com/OpenAPITools
6https://openapi-generator.tech/docs/generators/haskell-http-client
7https://openapi-generator.tech/docs/generators/haskell
8The type names also look wrongly generated but are valid.
9https://docs.servant.dev/en/stable/index.html

CHAPTER 1. INTRODUCTION 8 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/OpenAPITools
https://openapi-generator.tech/docs/generators/haskell-http-client
https://openapi-generator.tech/docs/generators/haskell
https://docs.servant.dev/en/stable/index.html

itory.

A oneOf type gets represented as an Aeson 10 value, which means it is not safely typed.

An anyOf type gets represented the same as a oneOf type, which means it is not safely

typed.

An allOf type generates a new type with the fields of all the subtypes.

A not type gets represented the same as a oneOf type, which means it is not safely typed.

minLength,maxLength and other constraints are ignored.

date and date-time are represented as custom newtype for JSON serialization and dese-

rialization which wrap Data.Time types.

nullable types are represented with the help of aMaybe type.

enum are represented as algebraic data types with custom serialization and deserializa-

tion functions.

1.4.2 servant-swagger

servant-swagger 11 can generate a Swagger specification (aka. OpenAPI version 2.0) from

Servant API definitions. An analysis of this tool is not very useful for this project because this

project generates code from a specification and not the other way around.
10https://hackage.haskell.org/package/aeson
11https://hackage.haskell.org/package/servant-swagger

CHAPTER 1. INTRODUCTION 9 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/servant-swagger

1.4.3 Stripe API Coverage for Haskell by dmjio

A Stripe API library for Haskell exists12, but it does not support current versions 13. It does

not use auto generated code.

The library uses http-client [10] and http-streams 14 for communication and hspec 15 for test-

ing. For expandable types from an expand request, a custom expandable type family is

used. 16 Other more complex types do not exist. JSON serialization and deserialization is

written manually. Some helper functions are written which use primitive types for ease of

use.

12https://github.com/dmjio/stripe
13https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md
14https://hackage.haskell.org/package/http-streams
15https://hackage.haskell.org/package/hspec
16https://github.com/dmjio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/

Web/Stripe/Types.hs

CHAPTER 1. INTRODUCTION 10 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/dmjio/stripe
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md
https://hackage.haskell.org/package/http-streams
https://hackage.haskell.org/package/hspec
https://github.com/dmjio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/Web/Stripe/Types.hs
https://github.com/dmjio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/Web/Stripe/Types.hs

1.5 Involved People

Apart from the students conducting this bachelor thesis, there were four people involved:

the supervisor Prof. Dr. Farhad Mehta, the external examiner Tom Sydney Kerckhove, the

internal review Mirko Stocker and Markus Schirp.

Feedback from Prof. Dr. Farhad Mehta is documented in the meeting minutes and consists

mostly of project related advice (regarding planning and the process). Tom Sydney Kerck-

hove gave inputs in the form of several code reviews and conversations via e-mail. It is de-

noted where his inputs directly led to changes. Everything not referenced anywhere else is

listed below.

• Do not useMonadThrow andMonadCatch.

• UseWriterT instead of StateT for logs.

• Directly use a Readermonad instead of a ReaderT Monad transformer.

• Use Text instead of String in the generated code.

• Request to add an option to transform generated names to CamelCase.

Almost at the end of the project, Markus Schirp reached out to Tom Sydney Kerckhove and

because hewas developing a code generator for OpenAPI 3 aswell. Several e-mail and Slack

messages were exchanged. It is mentioned, whenever this material is used.

CHAPTER 1. INTRODUCTION 11 OpenAPI 3 Code Binding Generator for Haskell

Chapter 2

Problem Analysis

This chapter describes the different problem domains present in this thesis and analyzes

them.

12

2.1 Code Generation

To master the code generation domain, four different domains have to be discerned. The

Code-Generator takes an OpenAPI-Specification and generates Generated-Code. The Open-

API specification formulates its models in an OpenAPI-Schema.

TheOpenAPI-Specification andOpenAPI-Schema are illustrations of existing domains for bet-

ter understanding. TheCode-Generator andGenerated-Codeare illustrations for solutions as

part of this project.

In the following sections thesedomainmodels are shownand the importantparts explained.

2.1.1 Code Generator Workflow

This diagram in Figure 2.1 Workflow Code Generation gives an overview of the Code Genera-

tor and how it will be used in a typical workflow.

From an OpenAPI-Specification including Schemas the Generated Code is generated. The

Schemas get converted to Models. The Generated Code can be used by other Code (in the

case of this project a Stripe library).

CHAPTER 2. PROBLEM ANALYSIS 13 OpenAPI 3 Code Binding Generator for Haskell

.yaml

OpenAPI-
Specification

Schemas

Code-
Generator .hs

Generated
Code

Models

GHC

.hs

Client-Code

uses

Figure 2.1: Workflow Code Generation

2.1.2 OpenAPI Schema

The informationof this section is fromtheOpenAPI specification [14]and theJSONSchema[12].

The OpenAPI specification uses a modified version of the JSON Schema, which is used to

validate and specify JSON and XML formats. For this project it is important how code can

be generated, which can hold models conforming the specification. The Figure 2.2 Domain

model of the OpenAPI schema draws the domain in an UML diagram.

CHAPTER 2. PROBLEM ANALYSIS 14 OpenAPI 3 Code Binding Generator for Haskell

Fi
gu

re
2.
2:

Do
m
ai
n
m
od

el
of

th
e
O
pe

nA
PI

sc
he

m
a

CHAPTER 2. PROBLEM ANALYSIS 15 OpenAPI 3 Code Binding Generator for Haskell

2.1.2.1 Reference Types

A schema can either be a schema or a reference to another schema. These references can be

circular.

2.1.2.2 Schema Object

All other types inherit Schema Object which defines somemeta information.

writeOnly / readOnly With theseproperties a schemamaydefine that it is only usedwhen

sending or retrieving data from a service. This essentially splits up the parent schema into

two different models.

2.1.2.3 Scalar Types

Thereareanumberofprimitive typeswhich shouldbeeasily expressible in their correspond-

ing Haskell primitive types. Contrary to the standard JSON schema one can specify if an

integer should be int32 oder int64, the same goes for the floating value types.

2.1.2.4 Array Schema

Defines a collection with items always corresponding to one single schema. If an array can

have two different types, a OneOf Schema can be used.

2.1.2.5 Object Schema

This defines an object and is not to be mistaken with the Schema Object. An object may

hold certain properties corresponding to a schema. Additional properties which cannot be

named directly all correspond to the same schema.

CHAPTER 2. PROBLEM ANALYSIS 16 OpenAPI 3 Code Binding Generator for Haskell

2.1.2.6 Inheritance / Polymorphism

Further information:

https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/

AllOf Schema This schema can be used for inheritance /model composition. The schema

incorporates all properties from the included schemas.

OneOf Schema This schema defines that a valuemust correspond to one schema of a col-

lection of schemas, but it cannot correspond tomore than one schema. The type Any can be

represented as a OneOf Schema.

AnyOf Schema This schema is a mix of the AllOf Schema and the OneOf Schema. The

schema must at least match one of the subschemas, but additional properties from other

subschemas may be included.

Discriminator To differentiate better between subschemas, a discriminator property and

amapping from values to subschemas may be defined.

CHAPTER 2. PROBLEM ANALYSIS 17 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/

2.1.3 OpenAPI Specification

This model defines the OpenAPI specification [14] as is. This model will be transformed into

the Generated-Codemodel. The Schema corresponds to the the model of subsection 2.1.2.

TheFigureJ.1 in theappendix refers to the complete specification. This includes information

which is targeted for humans and not tools, such as examples and documentation and some

meta information like server. This information may be useful to document generate code.

The Figure J.2 in the appendix refers to the complete specification without the reference

types. Reference types can be either a concrete entity or a reference to this entity. For the

purpose ofmodelling, itmostly distracts frommore important information, but it should not

be dismissed. References can be circular.

The Figure 2.3 refers to the specification in regards to the operations. This model is most

useful to understand the problem domain for the generation of the code.

CHAPTER 2. PROBLEM ANALYSIS 18 OpenAPI 3 Code Binding Generator for Haskell

Fi
gu

re
2.
3:

Do
m
ai
n
m
od

el
of

th
e
O
pe

nA
PI

Sp
ec
ifi
ca
tio

n
in

re
ga
rd

to
th
e
op

er
at
io
ns

CHAPTER 2. PROBLEM ANALYSIS 19 OpenAPI 3 Code Binding Generator for Haskell

2.1.3.1 Operation

An operation entity encapsulates an action (GET, POST, PUT, etc…) to a path. It has parame-

ters in different places and a request body depending on themedia type. Itmay produce dif-

ferent results depending on the HTTP status code and media type. Request body, response

body, parameters and header parameters can correspond to a schema.

2.1.3.2 Parameters

Parameters to an operation can be in the query, the path, in a cookie or in a header. Pa-

rameters can refer to a schema. Parameters can have different styles of serialization and

deserialization.

2.1.3.3 Link

Using links, one can describe how various values returned by one operation can be used as

input for other operations. Runtime expressions variables from the request and response

can be referenced.

2.1.3.4 Security

The OpenAPI specification allows different security authentication methods1 specified for

different operations.

Basic Authentication is the normal Basic Authentication with base64 encoding. Uses the

standard Authorization header.

Bearer Authentication Uses the standard Authorization header. The format of the token

can be described, but in the scope of the OpenAPI specification is only used for documenta-

tion.
1https://swagger.io/docs/specification/authentication/

CHAPTER 2. PROBLEM ANALYSIS 20 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/authentication/

APIKeys API keysareparameterswhichwill be sentonevery request requiring the security

schema. Similar normal parameters, they can appear in different locations.

OAuth and OpenID For OAuth and OpenID one can specify how to get the credentials.

Some forms are entirely out of scope for this project since they require redirection of the

user. Other forms could be implemented optionally, but it is possible to use the obtained

credentials with the standard parameterization of the operations.

2.1.4 Generated Code

The model in Figure 2.4 should give an overview for how the generated code looks like. It

is not a UML specification and should be looked at informally. This does not represent the

model in which the generated code will be used. The model in Figure J.3 represents a more

correct solution. It was disregarded in favor of a simpler solution.

2.1.4.1 Operation

An operation is an action to a certain predefined path. Certain types of parameters/request

bodies and results are associated with an operation.

2.1.4.2 Domain Models

The domain models correspond to the schemas of the OpenAPI Specification. In the more

correct solution Figure J.3 the models are split up between receiving and sending data be-

cause the same schema may have different properties depending on whether it is sent or

received. Field research showed, that splitting up of models is rarely used. Those models

have to be parsed and serialized.

2.1.4.3 Call Result

A call result is either a domain result or a custom error for example when the server is not

reachable. A call result may have a result body corresponding to a model.

CHAPTER 2. PROBLEM ANALYSIS 21 OpenAPI 3 Code Binding Generator for Haskell

Fi
gu

re
2.
4:

In
fo
rm

al
do

m
ai
n
m
od

el
of

th
e
ge
ne

ra
te
d
co
de

CHAPTER 2. PROBLEM ANALYSIS 22 OpenAPI 3 Code Binding Generator for Haskell

2.2 Stripe API

See Stripe for an introduction to what Stripe is. With around 58 thousand lines, the Stripe

API OpenAPI specification is one of the largest found during research.

2.2.1 OpenAPI Features

This chapter describes some difficult OpenAPI features and if Stripe uses them [21] [20].

2.2.1.1 Security

Both basic authentication and bearer authentication can be used. They can be used for all

operations. Only basic authentication is referenced in the documentation 2.

More complex security schemas like OAuth and OpenID can be ignored for the Stripe library.

2.2.1.2 Vendor Extensions

Stripe uses some vendor extensions [21].

x-resourceId and fixtures This extension can be ignored as it is only used in conjunction

with test fixtures which are not relevant for generating client code.

x-polymorphicResources This extension is described on the official GitHub page of the

OpenAPI specification3, but it is only used in the specs using version 2.0. Therefore, this

extension can be ignored.

x-expandableFields and x-expansionResources Many objects that hold IDs of other ob-

jects can automatically be expanded. x-expandableFields defines which fields can be ex-
2https://stripe.com/docs/api/authentication
3https://github.com/stripe/openapi

CHAPTER 2. PROBLEM ANALYSIS 23 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api/authentication
https://github.com/stripe/openapi

panded. x-expansionResources defines to which resources an id can be expanded.

See https://stripe.com/docs/api/expanding_objects for a detailed explanation.

It is possible to implement the API without the help of these two extensions since the data

structures can be completely and correctly represented without them. They are useful to

validate the expand property and to document its semantics. They describe which expand

values expand which id properties to their corresponding resources. Without them it is not

clear which resources will be expanded.

2.2.1.3 Links

Links are not used and can be ignored.

2.2.1.4 Callbacks

Callbacks are not used and can be ignored.

2.2.1.5 Expressions

Expressions are not used and can be ignored.

2.2.1.6 Polymorphism

allOf is not used and can be ignored.

oneOf is used in conjunction with x-expansionResources, otherwise it is not used.

anyOf is oftenused in conjunctionwith x-expansionResources to eitherdescribea resource

or an id of a resource but not solely. It is also used to give additional descriptions to refer-

enced resources.

CHAPTER 2. PROBLEM ANALYSIS 24 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api/expanding_objects

2.2.1.7 XML

XML is not used and can be ignored.

2.2.1.8 Schema Restrictions

The OpenAPI specification allows to define some restrictions on schemas which are not or

notpractical to representas typesat compile time. It is necessary todefinehowthose restric-

tions are handled since the Haskell type system cannot support the programmer in those

cases without heavy expenses at usability.

The enforcement of the constraints has to be done on the server because clients can vio-

late them anyway. Therefore, it is generally not required to enforce them on the client. The

reason to process them anyway would be to deliver faster feedback to the user of the client

library. Since this does not help directly achieve the goals of this project, the following re-

strictions fromSchemaObject 4 are ignoredwithin this projectwith theperspective that they

could be supported in the future. They are not used within the Stripe API definition.

• multipleOf

• maximum

• exclusiveMaximum

• minimum

• exclusiveMinimum

• minLength

• maxItems

• minItems

• uniqueItems

• maxProperties
4http://spec.openapis.org/oas/v3.0.3#schema-object

CHAPTER 2. PROBLEM ANALYSIS 25 OpenAPI 3 Code Binding Generator for Haskell

http://spec.openapis.org/oas/v3.0.3#schema-object

• minProperties

• not

• readOnly

• writeOnly

• xml

The restrictions used in the Stripe API and not needed for schema generation are:

• maxLength

• pattern

The additional value generated by validating those restrictions on the client side (especially

in responses) can be neglected and therefore will only be taken into account if time allows.

At least the two restrictions used by the Stripe API should be reflected within the Haddock

documentation.

2.2.2 Demo Use Case

For the purpose of demonstration, a demo online payment must be handled.

There are two easy ways to pay online via Stripe, either using the Payments5 or using the

Checkout6 APIs7. With Payments an iframe is displayed and the customer does not leave the

website. With Checkout the customer is redirected to the website of Stripe and redirected

back again. PaymentsusePaymentIntents8, Checkout usesCheckout-Sessions9. With this the

customer completes its purchase via Stripe and thewebsite is notified if it was successful. To

securely verify that the payment is complete the status of a PaymentIntent can be retrieved.

Webhooks10 can be used in both cases to be independent of browser behavior.
5https://stripe.com/docs/payments
6https://stripe.com/docs/payments/checkout
7Other ways exist, but are out of scope for the demo use case
8https://stripe.com/docs/api/payment_intents
9https://stripe.com/docs/api/checkout/sessions/create

10https://stripe.com/docs/webhooks

CHAPTER 2. PROBLEM ANALYSIS 26 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/payments
https://stripe.com/docs/payments/checkout
https://stripe.com/docs/api/payment_intents
https://stripe.com/docs/api/checkout/sessions/create
https://stripe.com/docs/webhooks

The Figure 2.5 shows from where to where calls are made and how an online payment pro-

ceeds with Stripe.

To verify broader usage Payments and Checkoutwill be used. For the sake of simplicity, only

Checkout API will be used with a server side verification and both without webhooks.

CHAPTER 2. PROBLEM ANALYSIS 27 OpenAPI 3 Code Binding Generator for Haskell

Figure 2.5: Sequence diagram of an online purchase with Stripe

CHAPTER 2. PROBLEM ANALYSIS 28 OpenAPI 3 Code Binding Generator for Haskell

Chapter 3

Solution Design

In this chapter, different areas needed for a working solution satisfying the requirements

are examined and solutions are worked out. Where needed, multiple options are weight up

against each other, and a decision is documented.

29

3.1 OpenAPI 3

This chapter evaluates the requiredHaskell features for theOpenAPI specification. This anal-

ysis stemsmainly from the analysis in subsection 1.1.1 OpenAPI 3.0 as also from section 2.1

Code Generation, especially chapters 2.1.2 and 2.1.3. The feature set of a generator from

openapi-generato.tech [15] was also used.

3.1.1 HTTP Calls

Since OpenAPI specification is a specification on top of HTTP, the code generators need to

be able to execute and understand HTTP calls. Because the generator will be used for client

applications only, outgoing calls need to be supported. There are numerous HTTP libraries

for Haskell, see section 3.3 HTTP Library for more information.

1. All HTTPmethods and custommethods need to be supported.

2. HTTPS needs to be supported.

3.1.2 Data Formats

Asdefault data is sent as JSONbut canalsobe sent as XML. Extensions forOpenAPI specifica-

tioncanalsoallowother formats, forexampleProtocolBuffers1. Stripealsousesapplication/x-

www-form-urlencoded and multipart/form-data for sending data, however multipart/form-

data is used seldom.

3.1.3 Data Models

OpenAPI data models are defined by schemas. See 2.1.2 for their domain model. These

schemas should be represented in an easy to use type safe way.

For the following sections there are code examples after the text when applicable. Because

of their size, they are mostly on the next page respectively. The code examples are not gen-
1Protocol Buffers and specification language developed by Google: https://developers.google.com/

protocol-buffers

CHAPTER 3. SOLUTION DESIGN 30 OpenAPI 3 Code Binding Generator for Haskell

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

erated, they put emphasis on the logic of implementation and understandability.

3.1.3.1 References

References will be represented as a reference to a type, only concrete schemas will create

new types. Thismeans that the name of a typemust be discoverable from the reference. For

anyOf, oneOf, allOf references will have to be resolved. The integrity of references will not

be checked.

3.1.3.2 Naming and Ordering

For the created Haskell types meaningful names are needed which are valid Haskell type-

names, type-constructors or record-field-names. An OpenAPI type can have a title attribute

which is not required to be unique. Another variant is to use the path/component in which

the type was declared. Different existing code generator [15] provide the user with the pos-

sibility of configuring naming and ordering information.

3.1.3.3 Scalar Types

Mapping the scalar OpenAPI types to Haskell types is relatively straightforward, it must be

considered that per default numbers do not have a fixed size and that strings are unicode

strings. JSON encoding and decoding should also be straightforward. Examples for scalar

types can be found in the appendix I.1.

date and date-time are strings but they represent ”time” types. The time 2 library seems

to be the canonical library for timemanagement [23] and will therefore be used.

2http://hackage.haskell.org/package/time

CHAPTER 3. SOLUTION DESIGN 31 OpenAPI 3 Code Binding Generator for Haskell

http://hackage.haskell.org/package/time

3.1.3.4 Arrays

OpenAPI arrays can be mapped to Haskell lists and because they are polymorphic there is

no need to differentiate between lists of different items.

1 # [” h e l l o ”,” world ”]

2 type: array

3 items:

4 type: string

Listing 3.1: OpenAPI example array

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module ExampleArray where

4

5 import qua l i f i ed Data.Text as T

6

7 example :: [T.Text]

8 example = [” h e l l o ”, ” world ”]

Listing 3.2: OpenAPI Haskell example array

CHAPTER 3. SOLUTION DESIGN 32 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.5 Objects

OpenAPI Objects can bemapped to Haskell records.

Duplicate record-fields are not possible in the same module, since a field generates a func-

tion in the namespace of the module. This is crucial for auto generated code. Each field has

to be prefixed with the record name to avoid name collision.

Code for JSONencoders anddecoders has tobe generated. Encoders anddecoders for other

formats can rely on JSON encoders and decoders. They could be autogenerated with either

Template Haskell or deriving Generics, but the penalty in compilation time is too high.

For this project using simple records is the least complex andmost manageable variant.

CHAPTER 3. SOLUTION DESIGN 33 OpenAPI 3 Code Binding Generator for Haskell

1 type: object

2 properties:

3 id:

4 type: integer

5 trustworthy:

6 type: boolean

7 nullable: true

Listing 3.3: OpenAPI example object

1 {-# LANGUAGE OverloadedStrings #-}

2

3 module ExampleObject where

4

5 import Data.Aeson

6

7 data Example

8 = Example

9 { exampleId :: Maybe Integer ,

10 exampleTrustworthy :: Bool

11 }

12 der iv ing (Show, Eq)

13

14 instance ToJSON Example where

15 toJSON obj =

16 object

17 [” id ” .= exampleId obj,

18 ” t r u s two r thy ” .= exampleTrustworthy obj

19]

20

21 instance FromJSON Example where

22 parseJSON =

23 withObject

24 ” Example ”

25 (\obj -> (Example <$> obj .:? ” id ”) <*> obj .: ” t r u s two r thy ”)

Listing 3.4: OpenAPI Haskell example object

CHAPTER 3. SOLUTION DESIGN 34 OpenAPI 3 Code Binding Generator for Haskell

Disregarded Plans Throughout development the object implementation plan has under-

gone drastic changes.

Since GHC version 8.0, there is a language extension DuplicateRecordFields [6] to solve the

problemof duplicate record fields. Prefixing all fields has the disadvantage that it is verbose.

But even with DuplicateRecordFields, the compiler often complains about ambiguous usage

of the record access functions and the types have to bemade explicit, either with a separate

helper function or by annotating the object with its type every time it is used. During de-

velopment DuplicateRecordFields has been used for the models of the generated code. The

overhead for generating helper functions compared to the verbosity of prefixed fields turned

out to be too large.

Deriving JSONencoders anddecoderswithprefixeddata structures is possible. The function

fieldLabelModifier3 can for example be used with the aeson package. During development

the compilation effort was so high, that the computers 4 used for development could not

finish the compilation. To decrease compilation time, code for JSONencoders and decoders

has to be generated.

Another problem is that nested updates use a verbose syntax. The Haskell community has

already created libraries to work around this, most notably lens [13]. The lens library can

automatically generate lenses for both prefixed (makeFields) and not prefixed 5 (makeField-

sNoPrefix) version 6. Because of feedback from Tom Sydney Kerckhove [3] and the compila-

tion effort necessary for lens, lens got disregarded.

For this project using the lens library in conjunction with the Haskell language extension

DuplicateRecordFields seemed the least verbose and complex variant in the beginning but

prefixed field names were much more practical in the end due to the reasons mentioned

above.
3https://hackage.haskell.org/package/aeson-1.4.6.0/docs/Data-Aeson.html
4The computers have at least 24gb of RAM
5The ”not” prefixed variant still needs an underscore as a prefix
6https://hackage.haskell.org/package/lens-4.16/docs/Control-Lens-TH.html

CHAPTER 3. SOLUTION DESIGN 35 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/aeson-1.4.6.0/docs/Data-Aeson.html
https://hackage.haskell.org/package/lens-4.16/docs/Control-Lens-TH.html

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3 module ExampleObject where

4

5 data ExampleObject

6 = ExampleObject

7 { id :: Integer ,

8 trustworthy :: Maybe Bool

9 }

10 der iv ing (Show, Eq, Ord)

11

12 exampleObj :: ExampleObject

13 exampleObj = ExampleObject 7 (Just True)

Listing 3.5: OpenAPI Haskell example object (disregarded plan)

CHAPTER 3. SOLUTION DESIGN 36 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.6 oneOf

The oneOf OpenAPI type can bemapped to algebraic Haskell data types. OpenAPI subtypes

are always uniquely identifiable, it is not possible that a data structure can be of more than

one subtype. If discriminators and amapping is present, they can be used to name the type

constructors.

1 oneOf:

2 - type: object

3 properties:

4 bark:

5 type: boolean

6 age:

7 type: integer

8 - type: object

9 properties:

10 length:

11 type: integer

12 height:

13 type: integer

Listing 3.6: OpenAPI example oneOf

CHAPTER 3. SOLUTION DESIGN 37 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3 module ExampleObject where

4

5 data ExampleObjectOne

6 = ExampleObjectOne

7 { bark :: Bool ,

8 age :: Integer

9 }

10 der iv ing (Show, Eq, Ord)

11

12 data ExampleObjectTwo

13 = ExampleObjectTwo

14 { length :: Integer ,

15 height :: Integer

16 }

17 der iv ing (Show, Eq, Ord)

18

19 data ExampleOneOf = One ExampleObjectOne | Two ExampleObjectTwo

20 der iv ing (Show, Eq, Ord)

21

22 exampleObj :: ExampleOneOf

23 exampleObj = One (ExampleObjectOne True 7)

Listing 3.7: OpenAPI Haskell example oneOf

CHAPTER 3. SOLUTION DESIGN 38 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.7 allOf

The allOf OpenAPI type can represent inheritance, a feature Haskell does not have. Every

new allOf type will be a newHaskell type without a connection to the other Haskell types. It

is important that themerging of the OpenAPI subtypes to one OpenAPI type happens at the

level of the OpenAPI schema because it is also possible to merge two scalar schemas. After

themerging, no information about the allOf type exists and can be treated as a normal type.

1 type: object

2 properties:

3 bark:

4 type: boolean

5 age:

6 type: integer

7 allOf:

8 - $ref: '/components/....'

9 - type: object

10 properties:

11 length:

12 type: integer

13 height:

14 type: integer

Listing 3.8: OpenAPI example allOf

CHAPTER 3. SOLUTION DESIGN 39 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3 module ExampleObject where

4

5 data ExampleObjectOne

6 = ExampleObjectOne

7 { bark :: Bool ,

8 age :: Integer

9 }

10 der iv ing (Show, Eq, Ord)

11

12 data ExampleAllOf

13 = ExampleAllOf

14 { bark :: Bool ,

15 age :: Integer ,

16 length :: Integer ,

17 height :: Integer

18 }

19 der iv ing (Show, Eq, Ord)

20

21 exampleObj :: ExampleAllOf

22 exampleObj = ExampleAllOf True 7 6 5

Listing 3.9: OpenAPI Haskell example allOf

CHAPTER 3. SOLUTION DESIGN 40 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.8 anyOf

The anyOf OpenAPI type is a mixture of oneOf and allOf. Its OpenAPI subtypes are not nec-

essarily all of the same OpenAPI type, for example Stripe uses anyOf to represent either an

id to a resource or the resource itself. To represent an anyOf, it needs to be converted to a

oneOf type with all subtypes being allOf types with all other fields nullable. Only subtypes

of the same primitive type (objects with objects, ints with ints) can bemerged.

1 type: object

2 properties:

3 bark:

4 type: boolean

5 age:

6 type: integer

7 anyOf:

8 - type: integer

9 - $ref: '/components/....'

10 - type: object

11 properties:

12 length:

13 type: integer

14 height:

15 type: integer

Listing 3.10: OpenAPI example anyOf

CHAPTER 3. SOLUTION DESIGN 41 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3 module ExampleObject where

4

5 data ExampleObjectOne

6 = ExampleObjectOne

7 { bark :: Bool ,

8 age :: Integer ,

9 length :: Maybe Integer ,

10 height :: Maybe Integer

11 }

12 der iv ing (Show, Eq, Ord)

13

14 data ExampleObjectTwo

15 = ExampleObjectTwo

16 { length :: Integer ,

17 height :: Integer ,

18 bark :: Maybe Bool ,

19 age :: Maybe Integer

20 }

21 der iv ing (Show, Eq, Ord)

22

23 data ExampleAnyOf

24 = I Integer

25 | One ExampleObjectOne

26 | Two ExampleObjectTwo

27

28 exampleObj :: ExampleAnyOf

29 exampleObj = One (ExampleObjectOne True 7 (Just 6) Nothing)

Listing 3.11: OpenAPI Haskell example anyOf

CHAPTER 3. SOLUTION DESIGN 42 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.9 anyType

The special OpenAPI type anyType can represent any value and is defined as a special case

of the anyOf type 7. This would be possible but a bit unpractical so it is easier to work with

JSON data types directly.

7https://swagger.io/docs/specification/data-models/data-types/#any

CHAPTER 3. SOLUTION DESIGN 43 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/data-types/#any

3.2 Code Generation

One of the main goals of this project is to generate Haskell code. Therefore, it is important

to investigate the different options of code generation in this language and its correspond-

ing eco system. This section describes the evaluated features and libraries and explains the

reason for the final choice.

3.2.1 Criteria

The code generation library / method should be evaluated using the following criteria:

• Comments (Haddock): It must be possible to generate Haddock comments as this is

the main way of documenting the generated code and is necessary for the use of the

generated code.

• Correct code generation (parsable and type-safe): The generated code should be com-

pilable by GHC (version 8.8). For this purpose there are several levels of support a li-

brary can give, reaching from generating parsable code up to type-safe code with the

intended types.

• Future support: The library should be actively maintained to increase the probability

of long-term support for a continued development of the code generator.

• Options for code generation: Typically an AST is represented inHaskell using algebraic

data types. These can be constructed with the typical data constructor invocation (as

onewould dowith any ADT). Some libraries offer helper functions to allow easier con-

struction of more complex ASTs. But a Haskell AST can also be represented using ac-

tual Haskell code. This criteria evaluates if it is possible to construct thewhole or parts

of an AST using Haskell code literals (regardless if these are inlined or loaded from ex-

ternal source files).

• Usability: This includes how easy it is to use and especially to get started.

The speed of the code generation is a criteria which is specified in the requirements specifi-

cation. Since the goal in this area is not very difficult to reach and not crucial for the useful-

CHAPTER 3. SOLUTION DESIGN 44 OpenAPI 3 Code Binding Generator for Haskell

ness of the generator, it is not covered here as it would be very time-consuming to check the

speed of all of the libraries.

3.2.2 Candidates

The following options have been investigated in order to decide which one should be used

for this project.

Plain text manipulation This option is the simplest method and allows the generation of

arbitrary strings. Therefore, the generation of Haddock comments is easy but there is no

extra support to it. There is absolutely no support in the generation of correct codewith this

method but this option will be supported as long as Haskell exists. Speed should be of no

concern as it is simple Textmanipulation.

Haskell Source Extensions Haskell Source Extensions [7] is a standalone parser for Haskell

which can be used to parse andmanipulate Haskell code as well as pretty-print it. Themain

focus does not lie on code generation but nevertheless, it could be used in such a way. It is

currently only maintained and not developed any further.

The generation of comments could be be done using haskell-src-exts-sc [9]. It makes com-

ment generation easier with convenience functions such as preComment. Unfortunately, it

was not possible to build a compiling application using thismodule and neither did the pro-

vided example compile. Therefore, it is questionable howwell maintained this package is.

With this method it is possible to guarantee the generation of parsable code but it is not

ensured that itwill type check. Theextensionhaskell-generate [8] claims tobeable to ensure

this, but this library is not well maintained (the last commit was in 2016).

Since it is a parser at the same time, existing source code could be parsed to an AST andused

for code generation. A wild mix of both creating an AST and parsing is likely to be inconve-

nient but possible.

CHAPTER 3. SOLUTION DESIGN 45 OpenAPI 3 Code Binding Generator for Haskell

ghc-source-gen ghc-source-gen [5] is a librarywhich is designed togeneratewholeHaskell

files or code fragments. Under the hood, it uses the AST of the GHC library API to represent

the code which should be generated.

It does not seem to support the generation of comments. Since it is only possible to generate

a string of the AST, the comment generation would have to be performed the same way as

plain text manipulation.

Thegeneratedcodeshouldbeparsablebutwill notnecessarily typecheck. With thismethod,

it is not possible to create code from existing code.

Regarding maintenance it can be said that the example is working and the code base has

been updatedmultiple times this year.

TemplateHaskell TemplateHaskell [22] is a language extensionwhich can be used to gen-

erate Haskell code at compile time. It can be used for code generation too because the AST

can be pretty-printed instead of being used in the program (typically with splicing). The

pretty-printing isdoneviaa specialDoc typewhichcanbeused tocombinemultiple snippets

and generate items like module headers and comments.

One interesting feature of Template Haskell is the use of quotation brackets which can be

used to create an AST out of Haskell code. This allows mixing regular Haskell code with AST

creation.

With regular Template Haskell it is ensured that parsable code will be generated. With the

help of typed Template Haskell expressions it is possible to support type-safety within ex-

pressions. This does not apply to declarations.

It is closely linked to GHC as it is a GHC extension and is widely used (e. g. in the lens pack-

age [13]). Therefore, it can be assumed that it will be supported well enough in the future.

Furthermore, there are numerous tutorials and guides available.

Other options ghc-exactprint and ghc-lib were studied but discarded. ghc-exactprint did

not look promising because the main focus is on refactoring existing source code and there

are no helpful examples for code generation. ghc-lib could probably be used to generate

CHAPTER 3. SOLUTION DESIGN 46 OpenAPI 3 Code Binding Generator for Haskell

source code but includes way toomany other modules and to little information about code

generation. In this case, ghc-source-genwould be a better option since it is based on the AST

of GHC.

Overview The following table gives a short overview resulting of the evaluation presented

above. The respective ratings should not be used without the corresponding evaluation.

Criteria Comments Correctness Support Options Usability
Plain text 0 - + + +
haskell-src-exts + 0 0 0/+ 0
ghc-source-gen - 0 + 0 +
Template
Haskell

0 + + + +

Table 3.1: Code generation method comparison

3.2.3 Decision

For this project, Template Haskell will be used. In comparison to Haskell Source Extensions

with haskell-generate and haskell-src-exts-sc, it is very likely to be activelymaintained in the

future and to support new Haskell features.

ghc-source-gen would probably be the second best option. But Template Haskell has a ma-

jor advantage when it comes to generating code at compile time and using regular Haskell

code as part of the generation (with quotation brackets) as well as typed expressions to en-

sure type safety. The former feature would enable to relatively easily create a QuasiQuoter

which would enable the transformation of a inlined OpenAPI specification into Haskell code

at compile time.

As a first step, Template Haskell will be used to generate source code files. But as a second

step, the option with the QuasiQuoter could be explored and implemented if desired.

In the prototype, Template Haskell could easily satisfy the speed requirement. Therefore,

this is not likely going to be a problem.

CHAPTER 3. SOLUTION DESIGN 47 OpenAPI 3 Code Binding Generator for Haskell

3.3 HTTP Library

The handling of HTTP calls affects the code generation greatly. Depending on the HTTP li-

brary and the level of abstraction the generated code offers, the usage of the generated code

is affected too. This section describes an evaluation of different approaches. The evaluation

was conducted in the first week of April 2020.

3.3.1 Criteria

The handling of HTTP calls should be compared in the following areas:

• Ease of Use:

– How easy is the library to use?

– Is it easy enough so that it can leak outside the generated code and directly be

used by the users of the library?

– How can the usage be documented?

• Code Generation: Can code for the library be generated?

• Feature richness: Howmany features are provided by the library and howmany have

to be implement yourself?

• Type safety: Howmuch is the type system of Haskell used for type safety?

• Support / Future: The library should be activelymaintained to increase the probabil-

ity of long-term support for a continued development of the code generator.

• Future possibilities: Does the approach give additional possibilities for future use?

The following options have been investigated in order to decide which one should be used

for this project.

CHAPTER 3. SOLUTION DESIGN 48 OpenAPI 3 Code Binding Generator for Haskell

3.3.2 Traditional HTTP libraries

The following candidates are traditional HTTP libraries in the sense that they abstract the

use of HTTP away. The Code Generator would generate functions which use one of these

candidates. Users of the generated codewould only notice on the outskirts of the generated

codewhich library is used under the hood and the abstractionwould not leak outside. Since

the users of the generated code see only the generated code, the documentation canbe fully

controlled.

3.3.2.1 http-client

“An HTTP client engine, intended as a base layer for more user-friendly packages” [10].

1 import Network.HTTP.Client

2 import Network.HTTP.Types.Status (statusCode)

3

4 main :: IO ()

5 main = do

6 manager <- newManager defaultManagerSettings

7 request <- parseRequest ” h t tp : / / h t tpb in . org / get ”

8 response <- httpLbs request manager

9 putStrLn $

10 ”The s t a t u s code was : ”

11 ++ show (statusCode $ responseStatus response)

12 pr in t $ responseBody response

Listing 3.12: http-client example from http-client itself

This is a relatively small library, and some other candidates like http-conduit depend on it.

For HTTPS http-client-tls can be used.

The code generation should be straightforward. It does not havemany features and helpers.

It does not provide any advanced type safety systems, a request body is a text.

CHAPTER 3. SOLUTION DESIGN 49 OpenAPI 3 Code Binding Generator for Haskell

The library is actively maintained 8, and since it is the base for many other libraries, no con-

cern about its future maintenance is raised.

Decision This library seems too low level for the usage in this project. There are better

alternatives with more features.

3.3.2.2 wreq

“A web client library that is designed for ease of use” [25].
8Last commit was in March 2020.

CHAPTER 3. SOLUTION DESIGN 50 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DeriveGeneric #-}

2 {-# LANGUAGE OverloadedStrings #-}

3 {-# LANGUAGE ScopedTypeVariables #-}

4

5 module WreqExample where

6

7 import Control.Lens ((&), (.~), (^.), (^?))

8 import Data.Aeson (FromJSON)

9 import Data.Aeson.Lens (key)

10 import Data.Map (Map)

11 import Data.Text (Text)

12 import GHC.Generics (Generic)

13 import Network.Wreq

14

15 data GetBody

16 = GetBody

17 { args :: Map Text Text,

18 url :: Text

19 }

20 der iv ing (Show, Generic)

21

22 instance FromJSON GetBody

23

24 basicAsJSON :: IO ()

25 basicAsJSON = do

26 l e t opts = defaults & param ” foo ” .~ [” bar ”]

27 r <- asJSON =<< getWith opts ” h t tp : / / h t tpb in . org / get ”

28 putStrLn $ ” a rgs : ” ++ show (args (r ^. responseBody))

29

30 lensAeson :: IO ()

31 lensAeson = do

32 l e t opts = defaults & param ” foo ” .~ [” bar ”]

33 v <- asValue =<< getWith opts ” h t tp : / / h t tpb in . org / get ”

34 pr in t $ v ^? responseBody . key ” a rgs ” . key ” foo ”

Listing 3.13: http-client example from http-client itself

CHAPTER 3. SOLUTION DESIGN 51 OpenAPI 3 Code Binding Generator for Haskell

wreq builds on top of http-client and is easier to use. It integrates well with lens [13]. The

ease of use comes from its simplicity.

It has somehelpful features likeOAuthbearerauthenticationbuild in, connectionkeep-alive,

handling of JSON deserialization against a schema and tls support.

It uses the type system to deserialize JSON and for error handling.

It is not very actively maintained 9 but it has its own website with tutorials and examples 10

and it has over 350 stars on github.com. Most blog entries about wreq are around 5 years

old.

Decision wreq is very easy to use. It would be the more suitable solution for this project

than http-conduit if it weremore often used andmaintained. If the features ofwreqwere not

enough, the switch to another library would be costly.

3.3.2.3 http-conduit

“HTTP client package with conduit interface and HTTPS support.” [11]
9Last commit was on Jan 25, 2019.

10http://www.serpentine.com/wreq/

CHAPTER 3. SOLUTION DESIGN 52 OpenAPI 3 Code Binding Generator for Haskell

http://www.serpentine.com/wreq/

1 {-# LANGUAGE OverloadedStrings #-}

2

3 import Data.Aeson (Value)

4 import Network.HTTP.Simple

5

6 main :: IO ()

7 main = do

8 response <- httpJSON ” h t tp : / / h t tpb in . org / get ”

9 putStrLn $

10 ”The s t a t u s code was : ”

11 ++ show (getResponseStatusCode response)

12 pr in t $ getResponseHeader ” Content−Type ” response

13 pr in t (getResponseBody response :: Value)

Listing 3.14: http-conduit example with Network.HTTP.Simple

CHAPTER 3. SOLUTION DESIGN 53 OpenAPI 3 Code Binding Generator for Haskell

1 import Data.Aeson.Parser (json)

2 import Data.Conduit ((.|), runConduit)

3 import Data.Conduit.Attoparsec (sinkParser)

4 import Network.HTTP.Client

5 import Network.HTTP.Client.Conduit (bodyReaderSource)

6 import Network.HTTP.Client.TLS (tlsManagerSettings)

7 import Network.HTTP.Types.Status (statusCode)

8

9 main :: IO ()

10 main = do

11 manager <- newManager tlsManagerSettings

12 request <- parseRequest ” h t tp : / / h t tpb in . org / get ”

13 withResponse request manager $ \response -> do

14 putStrLn $

15 ”The s t a t u s code was : ”

16 ++ show (statusCode $ responseStatus response)

17 value <-

18 runConduit

19 (bodyReaderSource (responseBody response)

20 .| sinkParser json

21)

22 pr in t value

Listing 3.15: http-conduit example with streaming interface

http-conduit builds on top of http-client and uses conduit 11. It provides a simple and a

streaming interface. The simple interface is simple to use as its name suggests. The stream-

ing interface is a bit more complicated to use. http-conduit claims to be efficient. http-client

provides http-conduit as an example of a simpler library. The code generation should be

straightforward.

It is very feature rich in the processing of streams. For normal HTTP calls it does not provide

many higher level features like OAuth authentication.
11https://hackage.haskell.org/package/conduit

CHAPTER 3. SOLUTION DESIGN 54 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/conduit

It is relatively actively maintained 12 and is maintained together with http-client.

Decision The streaming interface adds unnecessary complications for this project andwill

therefore not be used. The simple interface is easier to use than raw http-client but has all

its possibilities. The switch from the simple interface to http-client would not be that hard

if necessary. The future of the simple interface is predictably stable. Because of this reason

http-conduit with the simple interface is the best traditional http-library for this project.

3.3.3 Servant

“Servant is a set of Haskell libraries for writing type-safe web applications but also deriving

clients (inHaskell andother languages)orgeneratingdocumentation for them, andmore” [18].

Compared to the traditional HTTP libraries servant doesmore than just abstract HTTP. It ab-

stracts whole API endpoints, meaning that parameters, body types and response types are

predefined. TheCodeGeneratorwoulddefineanAPI asa type, servantwouldgeneratemeth-

ods for this type. This gives away some control but addsmany possibilities. In this category,

servant is the only real possibility discovered.
12Last commit was in November 2020.

CHAPTER 3. SOLUTION DESIGN 55 OpenAPI 3 Code Binding Generator for Haskell

1 {−# LANGUAGE DataK inds #−}

2 {−# LANGUAGE De r i v eG en e r i c #−}

3 {−# LANGUAGE TypeOpera to r s #−}

4

5 module ServantExample where

6

7 import Data . Aeson

8 import Data . Proxy

9 import GHC . Gene r i c s

10 import Network . HTTP . C l i e n t (de fau l tManage rSe t t i ngs , newManager)

11 import Servant . API

12 import Servant . C l i e n t

13

14 data Po s i t i o n

15 = Po s i t i o n

16 { xCoord : : Int ,

17 yCoord : : I n t

18 }

19 der iv ing (Show , Gener i c)

20

21 instance FromJSON Po s i t i o n

22

23 newtype Hel loMessage = Hel loMessage {msg : : Str ing }

24 der iv ing (Show , Gener i c)

25

26 instance FromJSON Hel loMessage

27

28 newtype Emai l = Emai l Str ing

29

30 newtype C l i e n t I n f o = C l i e n t I n f o Str ing

31

32 type API =

33 ” po s i t i o n ” : > Capture ” x ” I n t : > Capture ” y ” I n t : > Get ’ [JSON] Po s i t i o n

34 : < | > ” h e l l o ” : > QueryParam ”name” Str ing : > Get ’ [JSON] Hel loMessage

35 : < | > ” market ing ” : > ReqBody ’ [JSON] C l i e n t I n f o : > Post ’ [JSON] Emai l

Listing 3.16: Servant Example

A full example can be found at section I.2.

CHAPTER 3. SOLUTION DESIGN 56 OpenAPI 3 Code Binding Generator for Haskell

To gain insights about the development with Servant, the development server 4.1 is devel-

oped with it. Servant has an initial learning curve and can not simply be used by everyone

without prior knowledge. After a short learning phase andwhen the API is defined the usage

is simple. It is clear enough to use that it would be possible to let the users of the generated

code directly use the servant API. It would also be possible to create an interface and use

servant only internally.

Code generation could be hard because servant uses a lot of type-“magic”. The type system

of Haskell is extensively used to provide good type safety.

If a servant API is defined it could also be a possible code stub for a server.

servant is actively maintained 13 and has its own website 14. Many blog posts which were

written this or last year can be found. The usage of servant in the community seems good

enough for the library to have a stable future.

3.3.4 Decision

From the traditional category http-conduit with the simple interface is the best decision for

this project because of the reasons mentioned in the section above. The decision now is

between http-conduit and servant. These are two fundamentally different approaches. With

servant the future possibilities would be better but there is an overhead in writing and using

servant code. For the success of this project so thatmany people can use type safe OpenAPI

libraries in Haskell http-conduit is the better approach and therefore will be used.

13Last commit was in March 2020.
14https://www.servant.dev/

CHAPTER 3. SOLUTION DESIGN 57 OpenAPI 3 Code Binding Generator for Haskell

https://www.servant.dev/

3.4 Error Handling

This section explains how errors are handled within the code generator and the generated

code.

3.4.1 Code Generator

If the code generator cannot generate code for a part of the specification (either because of

unsupported features ormisconfigurations), it should still generate code for the other parts.

In order to be able to use the generated code and to develop the code generator, it is neces-

sary to knowwhich parts of the specification could not be processed. This leads to two goals

for the error handling:

• Traceability A.3.4: Users are able to identify which parts of the OpenAPI specification

caused an error or warning and why.

• Error tolerance A.3.1: The generator is able to generate some code even if some parts

of the specification contain errors. In some cases, this is not possible to achieve rea-

sonably.

3.4.1.1 Command Line Arguments

If non-existing arguments are usedor no specification is passed, the user is informedaccord-

ingly. A help page is provided by the CLI to ensure all available options can be discovered.

3.4.1.2 Parsing

The process of parsing the OpenAPI specification into a Haskell datamodel sets theminimal

requirement regarding to the strictness of the specification. The parsing allows some mis-

configurations (i.e. violating the OpenAPI specification) to slip through, either because it is

not easily detectable (e. g. does a reference exist?) or because it is not necessary to enforce

these constraints.

Theparser used in this project alreadyproduces reasonablemessages including the location

CHAPTER 3. SOLUTION DESIGN 58 OpenAPI 3 Code Binding Generator for Haskell

of the failure and therefore those messages are used.

3.4.1.3 Generating

While generating the code, some constraints (such as enforcing OpenAPI compliance on the

whole specification) can be loosened in favor of generating more useful results (e. g. gener-

ate some of the functions instead of just failing) for reliability (A.3.1). The user still has to be

notified if some parts were left out or have been transformed in a way which cannot be as-

sumed. This is achieved using a WriterT Monad transformer in conjunction with a Reader

Monad which store the currently processed path and produced messages for traceability

(A.3.4). If a function is not able to process the information to a reasonable output, ADT like

Either and Maybe are used to indicate the failure. Functions on a higher level can then in

turn decide if this is an error they can recover from or not (and probably log an according

message either way).

3.4.2 Generated Code

The error handling within the generated code is done using ADT to ensure a clear control

flow. The generated functions never throw an exception and catch exceptions thrown by

used packages (like theHTTP client). To prevent loss of information, an appropriate ADT like

Either is used.

CHAPTER 3. SOLUTION DESIGN 59 OpenAPI 3 Code Binding Generator for Haskell

Chapter 4

Results

This chapter contains the results worked out in this thesis in order to solve the problems

presented by the task description.

60

4.1 Demo Server

For the purpose of properly demonstrating the code generator and the Stripe API, a demo

server is used. The demo use case is documented at 2.2.2. An deployment diagram can be

found at Figure F.1.

4.1.1 Deployment

The demo server is dockerized to the GitLab registry at registry.gitlab.com/hsr-ba-openapi-

3/hsr-ba-openapi-3:latest. A Watchtower 1 is running on the demo server and automatically

updates a demo server container via a docker-compose.yml file. The demo server uses certs

from Let’s Encrypt 2 for HTTPS communication. The deployment is verified with a test HTTP

call to the server, which checks the git revision hash.

4.1.2 Endpoints

/version returns JSON with information about the git revision. This endpoint is used to

verify that the correct version is deployed.

/time returns JSONwith the current time and the start up time. This endpoint is used as a

proof of concept that IO operations can be done.

/inventory returns JSON with a result to the petstore demo server. This endpoint is used

to verify that the generated code from the petstore can be used.

/paymentIntent returnsplaintextwithdebug information forapaymentIntent fromStripe.

/newPaymentIntentSecret returns JSON with a new secret that can be used for normal

payments.
1https://github.com/containrrr/watchtower
2https://letsencrypt.org/

CHAPTER 4. RESULTS 61 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/containrrr/watchtower
https://letsencrypt.org/

/newPaymentIntentSepaSecret returns JSONwith a new secret that can be used for SEPA

payments.

/getCheckoutSessionId returns JSON with a new session ID that can be used for check-

outs.

/showSuccess Needs a sessionid as a query parameter. Returns JSON with information

about the payment after a checkout. It is used to verify that the success from a checkpoint

succeeded without relying on browser behavior.

Everything else Serves static files from a directory. /index.html displays some debug in-

formation. payments/index.htmldisplays the demopageused in the demonstration. It is the

entry point for a normal payment, SEPA payment and a checkout.

4.1.3 Architecture

The demo server uses servant [18] and because of that warp-tls 3. warp-tls is used directly

without any Apache or Nginx server in front of it. Servant was chosen as it is a potential

candidate to be used in the generated code. However the development with servant high-

lighted that it is too complex for the purpose of this project, more information can be found

at section 3.3 HTTP Library and subsection 3.3.3 Servant. The web page is a Single-page

application (SPA) statically delivered without any server side rendering.

3https://hackage.haskell.org/package/warp-tls

CHAPTER 4. RESULTS 62 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/warp-tls

4.2 Publication

Instructions on how the published code can be used are available at Appendix G Installation

Instructions. The Stripe library and code generator are published on GitHub and Hackage.

GitHub was chosen because of its popularity with other Haskell libraries.

Code Generator on GitHub

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator

Code Generator on Hackage

https://hackage.haskell.org/package/openapi3-code-generator

Stripe Library on GitHub

https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

Stripe Library on Hackage

https://hackage.haskell.org/package/stripeapi

4.2.1 CI/CD

4.2.1.1 Code Generator

All CI jobs from the private GitLab repository related to the code generator alone and linting

were ported to CircleCI 4. The deployment to Hackage is donemanually when necessary.

4.2.1.2 Stripe Library

As the generator is always tested with the Stripe OpenAPI definition as well, the generated

code should always compile. But to ensure the code checked in into the repository does

compile with the provided example, the Stripe library repository has a pipeline as well 5.

The repository and Hackage are updated when necessary.

4https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/
Haskell-OpenAPI-Client-Code-Generator

5https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

CHAPTER 4. RESULTS 63 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://hackage.haskell.org/package/openapi3-code-generator
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library
https://hackage.haskell.org/package/stripeapi
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

4.3 Code Metrics

This chapter gives an overview of how much code was written and generated in this thesis.

To get an architectural overview, see Appendix F Architecture Overview.

All line counts are without empty lines.

4.3.1 Code Generator

The code of the code generator is written by hand. It consists of around ~3100 lines (~3500

including comments)which are tested by roughly ~1500 lines of test code (consisting of ~500

lines unit tests and ~1000 lines system tests). The productive code is split into 19 modules

which contain about ~175 top-level functions.

4.3.1.1 Code Coverage

The tests cover about ~85% of the expressions. The coverage is calculated with a combina-

tion of the unit/property tests and the system tests. Additionally, a coverage overlay [2] is

used to exclude Show and Eq instances as well as the Commonmodule which is never eval-

uated at all while generating code.

4.3.1.2 Extended Compile Tests

Tomeasure howwell suited the generator is for generating code fromawide variety ofOpen-

API specifications, around ~2700 specifications have been collected. They were used as in-

put to the generator and the resulting codewas compiled. Around ~0.7% of them failed dur-

ing the code generation and ~3.5% during compilation. Themain reason for generation fail-

ure is that some specifications do not quote the strings true and false and therefore are in-

terpreted as booleans instead of strings 6. The two reasons for compilation failure are name

conflicts (~80%) and not supported reference schemes (~20%).

6This is an issue in the specification files as they do not correctly encode their values as strings. The used
YAML parser Aeson strictly interprets true and false as booleans and does not convert them silently to strings if
needed.

CHAPTER 4. RESULTS 64 OpenAPI 3 Code Binding Generator for Haskell

4.3.2 Generated Code

As it is possible to generate code from an arbitrary number of specifications, not all gener-

ated code can be analyzed here. Exemplary, the Stripe library is used to demonstrate what

code results of an OpenAPI specification.

The Stripe specifications has a little less than ~59 000 lines. For this specification, around

~110 000 lines of code are generated (~145 000 lines including comments, ~91 000 excluding

imports, language pragmas and module definitions). This code is split into 554 modules

which contain about ~1400 functions.

4.3.3 CLI Options

The output of the generated code can be configured using the CLI options. There are 14

options (excluding the help option) which can be discovered using the --help option.

CHAPTER 4. RESULTS 65 OpenAPI 3 Code Binding Generator for Haskell

4.4 Limitations

This section describes the known limitations of the code generator, they are in no particular

order.

4.4.1 Parameter Limitations

Parameters are only supported in query and path and only scalar types are serialized.

4.4.2 XML and other Transport Data Protocols

JSON is supported for both sending and receiving data. application/x-www-form-urlencoded

is supported for sending data, but not receiving data. All other transport data protocols such

as XML are not supported 7.

4.4.3 Links and Callbacks

Links 8 and callbacks 9 are currently not supported in the code generation. They are not

implemented because Stripe API does not use them and they would add significant devel-

opment andmaintenance effort compared to the benefits their implementationwould offer.

The runtime-expressions 10 parsing of linkswould have added toomuch development effort

for the scope of this project, but for a future use case they could be beneficial. Callbacks

should be integrated in an already existing environment and therefore an implementation

from the code generatorwouldmost likely not be usable. Models for callbacks are generated

if they are in components.schemas.

7Note: OpenAPI 3 does not specify a limited set of supportedmedia types and it is therefore impossible to
fully implement every possible media type.

8https://swagger.io/docs/specification/links/
9https://swagger.io/docs/specification/callbacks/

10https://swagger.io/docs/specification/links/#runtime-expressions

CHAPTER 4. RESULTS 66 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/links/
https://swagger.io/docs/specification/callbacks/
https://swagger.io/docs/specification/links/#runtime-expressions

4.4.4 Only local References

Only references to components parts are supported. It is possible to reference other files

from an OpenAPI specification. From our test-set of 2710 specifications only 18 specifica-

tions used references which are not supported.

• 2 have references directly under components.schemas.

• 1 has references which reference deeper nested elements.

• 15 have references to external specification files.

4.4.5 Object Constructors and Default Values

Currently, every field including fields which are optional or have a default value have to be

specified to create an object.

4.4.6 Length of Names is limited by the File System

The names used for modules (model and operation names) from the specification are not

limited by OpenAPI and therefore can be very long, even exceeding the file systems limit.

4.4.7 Circular References inside the Specification

Not all kinds of circular references inside the schemas can be solved. For example an allOf

which references itself. Fromour test-set of 2710 specifications only 1 specification has such

a circular reference.

4.4.8 Naming Conflicts

Depending on the naming used in the specification, it is not possible for the code generator

to generate meaningful differentiable names. For example, if two names differentiate each

other only by the casing of the first letter. Fromour test-set of 2710 specifications 79 resulted

in naming conflicts.

CHAPTER 4. RESULTS 67 OpenAPI 3 Code Binding Generator for Haskell

4.4.9 Other Limitations

There are some other limitations which are mostly constraints which are not easily enforce-

able using the type system. They are reflected in the automatically generated Haddock doc-

umentation.

• additionalProperties 11 is not supported.

• not 12 is not supported.

• writeOnly and readOnly (2.1.2.2) are not supported.

• multipleOf is not supported

• maximum is not supported

• exclusiveMaximum is not supported

• minimum is not supported

• exclusiveMinimum is not supported

• minLength is not supported

• maxItems is not supported

• minItems is not supported

• uniqueItems is not supported

• maxProperties is not supported

• minProperties is not supported

• xml is not supported

11https://swagger.io/docs/specification/data-models/dictionaries/
12https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/#not

CHAPTER 4. RESULTS 68 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/dictionaries/
https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/#not

Chapter 5

Conclusion

In this chapter the achieved results are compared to other solutions, discussed and future

possibilities are introduced.

69

5.1 Comparison to other Work

An overview of existing work can be found at section 1.4 Research / Existing Work. Themost

important difference to other published products is that compilable code can be generated

from the Stripe OpenAPI specification.

5.1.1 Markus Schirp’s OpenAPI Code Binding Generator

During the development it was possible to communicate with Markus Schirp [4] (1.5) about

his yet not fully published code generator. A parallel evolution between the two projects

was discovered where both projects had the same problems and similar solutions for most

problems. Here are the differences:

Stages His code generator works in three stages.

1. Modify the OpenAPI specification itself

2. Generate code

3. Modify the generated code

The code generator from this project uses only the second stage. The first and third stages

are done on a per specification basis and are not fully applicable to other specifications.

AST Another difference is that this code generator uses Template Haskell not directly. se-

mantic 1 as an AST is/was in evaluation, it wouldmake it possible to generate code for other

languages as well.

Servant One of the biggest differences is that servant is used. During the thesis servant

was considered but disregarded because of reasonsmentioned in subsection 3.3.3 Servant.

MarkusSchirp isnotentirely satisfiedwith servantbecauseofmostly the samereasonswhy it

wasdisregarded in thisproject andwouldprobablyusehttp-clientdirectly like in thisproject.
1https://github.com/github/semantic

CHAPTER 5. CONCLUSION 70 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/github/semantic

Cyclic Dependencies Markus Schirp’s code generator uses .hs-boot 2 files to solve cyclic

dependencies, which allows the compile time to be roughly halved. Memory consumption

wasnotmeasuredbut isprobably less thanhalf. Thismethodsolvesaproblemof thisproject

and is considered for future adoption in Resolve Cyclic Dependencies.

Conclusion Markus Schirp’s code generator is very interesting for the future scope of this

project, and a possible cooperation could be beneficial. More information about a coopera-

tion is in subsection 5.4.7 Cooperation with Markus Schirp and Future Maintainance.

5.1.2 OpenAPI Tools for Haskell

The most direct comparable product is OpenAPI Tools 3, which was updated since the tests

from 1.4 to version 4.3.1 (commit 003165c). The code it produces for the Stripe API specifi-

cation does still not compile because of invalid names (AnyOf<accountBusinessProfile>)

but a comparison can still be made.

Modules OpenAPI Tools generate only two modules (Types and API). The code generator

from this project generates over 500modules but reexports them to one singlemodule. The

Typesmodule is around 10000 lines long, while the combined modules for types from this

projects generator are at around 40000 lines.

JSON Bothproducts use Aeson 4. To reduce compilation effortmost toJSON and fromJSON

instances are generated, OpenAPI Tools use Generic for serialization.

Types Complex types like enum, anyOf, oneOf or allOf are not supported byOpenAPI Tools

for Haskell (they are the reason the code does not compile). Floatingpoint type and types

for date or date-time are not configurable.
2https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#

how-to-compile-mutually-recursive-modules
3https://github.com/OpenAPITools
4https://hackage.haskell.org/package/aeson

CHAPTER 5. CONCLUSION 71 OpenAPI 3 Code Binding Generator for Haskell

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#how-to-compile-mutually-recursive-modules
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#how-to-compile-mutually-recursive-modules
https://github.com/OpenAPITools
https://hackage.haskell.org/package/aeson

Operations / HTTP Calls OpenAPI Tools uses Servant likeMarkus Schirp code generator.

Conclusion OpenAPI Tools does not mainly generate Haskell code. The code generator

from this project is better suited for Haskell code generation in nearly all aspects.

CHAPTER 5. CONCLUSION 72 OpenAPI 3 Code Binding Generator for Haskell

5.2 Lessons Learned

5.2.1 Learnings from Failure

5.2.1.1 Compilation Time

For the compilation time and especially the compilation time of the generated code not

enough attention was paid. In the requirements specification compilation time of the gen-

erated code is not covered at all. We expected it to have an impact on our CI/CD pipelines

andmade sure that a short feedback loop is possible locally (D.2.4).

We did not expect:

• The compilation time increases exponentially with module size.

• The compilation to run out of memory on amodern computer.

• The compilation time of our very simple demo server to take up to 45 minutes.

• Theway code iswritten even if it results in the same results canmakeahugedifference

in compilation time. For example toJSONmanually written instead of using Generic.

Our lessons learned are:

• Compilation effort needs to be considered from the start when dealing with such an

amount of code

• Compilation effort needs to be addressed in the requirements specification

• Compilation time is not just different between programming languages, the actions to

reduce the effort are vastly different

5.2.1.2 DuplicateRecordFields and Servant

The Haskell language extension DuplicateRecordFields seemed like a good idea to make the

code less verbose. The reasons why this extension was not useful for our project are de-

scribed at 3.1.3.5 Disregarded Plans. We further think that we would not use this extension

CHAPTER 5. CONCLUSION 73 OpenAPI 3 Code Binding Generator for Haskell

in other projects. We used DuplicateRecordFields in the code generator as a test which led to

a fast disregarding of our original plan, but our code generator uses some boilerplate code

around the extensions limitation.

Servant was also a technological choice which we thought about using for the generated

code. Like DuplicateRecordFields we adapted it very early on as it was used in the demo

application. The development effort and the complexity in its usage were the key points

why we disregarded Servant. More information can be found at subsection 3.3.3 Servant.

We think that Servant is a very useful technology but that it was not best suited for our case.

This project solidified our understanding that:

• Adapting technology early on gives good real world experience and the cost to disre-

gard a technology is much smaller early on.

• Simpler solutions - even if they are less powerful and more verbose - are often better

suited because they are easier to reason about.

5.2.1.3 Use Records instead of Tuples

Weworked a lot with tuples especially in return types. They are very simple to introduce, es-

pecially when additional information needs to be returned from an existing function, and

they provide many typeclass instances out of the box. Tuples are problematic to reason

about because they and their content do not have names. A fst or snd provides very little

information to the reader compared to the name of a field of a record, the same is true for

type declarations.

Every time a tuple is used across functions it needs to be reconsidered to use a record in-

stead.

5.2.1.4 Property Tests

We tried to use property tests in the beginning of the project and realized that it is very hard

to come up with properties for code generation. This led to fewer property tests at the end

of the project. Still, there were areas where property tests added real value to the project.

CHAPTER 5. CONCLUSION 74 OpenAPI 3 Code Binding Generator for Haskell

Oneexample is the generationof the identifierswere theproperty tests discoveredproblems

with some unicode characters which are lowercase but cannot be converted to uppercase.

We realized that:

• There are probably domains better suited to property testing than code generation.

This is related to the “one-way” nature of generation as properties typically arise from

reverse functions.

• There are still areas where property testing, even in a domain not best suited, can be

very helpful and they should therefore not be forgotten as a valuable tool.

5.2.2 Learnings from Success

5.2.2.1 Golden Tests

Golden tests 5 were introduced to the project relatively late upon the recommendations of

Tom Sydney Kerckhove [3]. They have been very helpful. Merge requests could be under-

stood far better with the changes in the resulting generated code directly visible.

5.2.2.2 Fast Feedback Loop

A custom-made fast feedback loop was essential, especially because the compilation times

turned out to be very long. To have a custom-made specification which could be extended

alongside newly developed features helped not only for a faster feedback loop, but it was

also simpler to reason about new features.

5.2.2.3 Early and strong CI / CD Pipeline

The introduction of the pipeline jobs was not that hard, the complex part were fine adjust-

ments for faster execution times. Fromour earlier projectwe already had a good pipeline for

our documentation. During development the CI / CD jobs evolved alongside the code gen-
5https://softwareengineering.stackexchange.com/questions/358786/what-is-golden-files

CHAPTER 5. CONCLUSION 75 OpenAPI 3 Code Binding Generator for Haskell

https://softwareengineering.stackexchange.com/questions/358786/what-is-golden-files

erator and the demo project andmade its changesmore visible. The pipeline has prevented

numerous bugs.

SystemTests Probably themost valuable thing in our pipelineswere the system tests. The

code generator can very easily be tested end-to-end as it is a command-line tool and not

a classic user interface. These tests led to a very high confidence that the code is actually

correct and runs.

Another valuable thingwas todivide theminto three levels. This led to littleeffort inadapting

the tests and still provided much information about the state of the generator (for example

the API had no breaking changes and actual HTTP calls can bemade).

CHAPTER 5. CONCLUSION 76 OpenAPI 3 Code Binding Generator for Haskell

5.3 Result Discussion

The results worked out in this thesis satisfy the goals of the task description. As explained in

the section 4.4 Limitations, there are some limitations in the current version of the generator

which could be addressed in the future. This is mainly due to the limitation of resources (es-

pecially time) within this thesis and cannot be directly connected to bad planning or major

issues during implementation.

The biggest delay was introduced by the issues regarding compilation time (see 5.2.1.1).

These issues could not be resolved completely, but their impact could be limited in a way

that compilation is possible in a reasonable time.

Therefore, the project team views the results as satisfying and the project as successful.

5.3.1 Detailed Goals Resolution

Themain goals of this project are:

• OpenAPI code binding generator: To implement anOpenAPI code binding generator

for Haskell in Haskell. This goal is fulfilled.

• Haskell Library for Stripe API: To use this generator to generate code bindings that

can be used to implement a Haskell library for the Stripe API. This goal is fulfilled.

• Demo Application: To implement a simple working demo application that uses the

Haskell Stripe API library for online payments to demonstrate the use of thedeveloped

tools. This goal is fulfilled.

Special caremust be taken to take advantage of the advanced features of Haskell’s type sys-

tem to enforce data consistency at compile time, as well as the current state of the art in

Haskell development (e.g. property-based testing). This goal is fulfilled. Data inconsistency

is prevented at compile time. Property-based testing is used albeit not that often. Advanced

system tests are used additionally.

At the same time, the resulting tools must be understandable, usable and maintainable by

a wide community of Haskell developers. This goal is fulfilled. The usage of the generated

CHAPTER 5. CONCLUSION 77 OpenAPI 3 Code Binding Generator for Haskell

code needs no advanced Haskell knowledge. The code generator and the generated code

is documented with Haddock. An installation guide and examples how to use are online

available (4.2).

While developing the “OpenAPI code binding generatoe”, priority should be given to parts of

the OpenAPI specification that are required to generate the code bindings required for the

“Haskell Library for Stripe API”. This is theminimumsubset of theOpenAPI specification that

must be supported. This goal is fulfilled. The generated code has successfully been used to

call various Stripe API endpoints.

All product documentation must be in English, and in a form that is appropriate for contin-

ued development, publicly or otherwise. Project documentation that is not relevant to the

continued development of the project may be in German. This goal is fulfilled.

CHAPTER 5. CONCLUSION 78 OpenAPI 3 Code Binding Generator for Haskell

5.4 Future Scope

5.4.1 Resolve Cyclic Dependencies

As noted in the comparison to Markus Schirps product in item 5.1.1 Cyclic Dependencies

cyclic dependencies couldbe resolvedwith a .hs-boot file, whichwould result in significantly

shorter compilation time because CyclicTypes.hswould not be needed anymore.

5.4.2 Resolve Limitations

All limitations described in section 4.4 Limitations could be resolved in future work on this

project. Especially non-scalar parameters (4.4.1) as they would be useful for expand with

Stripe.

5.4.3 Auto Generated Tests for Generated Code

To automatically generate tests for the generated codewould increase trust in the generated

code. Especially property-based testing would be a possibility, for example JSON serializa-

tion and deserialization could be tested this way. Property-tests for the generated models

would make it possible to use them in other property tests outside the generated code.

5.4.4 Code Separation and Server Code Generation

Currently, only client code is generated. Most of the code could be reused to generate server

code stubs. These stubs could also be used to support callbacks.

To make server code generation possible a better code separation could be preferable. This

split up would have to be evaluated in detail but it could look something like this.

• OpenAPI data containers (already separated)

• Extract relevant information into separate data structures specialized for code gener-

ation

• Code generation for code used by client and server

CHAPTER 5. CONCLUSION 79 OpenAPI 3 Code Binding Generator for Haskell

– Models

– SecuritySchemas

– Configuration

– Common Code (static)

• Code generation for client code (mostly Operations)

• Code generation for server code

5.4.5 JSON Schema

The code generator uses a for OpenAPImodified version of JSON Schema [12]. A standalone

Haskell code generator for JSON Schemas or only a validator could be beneficial for a wide

range of projects.

5.4.6 Quasiquotation

With Quasiquotation 6 it would be possible to embed OpenAPI specifications inside Haskell

source code. This could be interesting if only parts of the specification could be specified.

In conjunction with 5.4.5 it would be possible to generate data types in the form of a JSON

Schema inside a Haskell file.

5.4.7 Cooperation with Markus Schirp and Future Maintainance

Asnoted in subsection5.1.1MarkusSchirp’sOpenAPICodeBindingGenerator, a cooperation

with Markus Schirp could be beneficial. Some discussion around this subject have already

been carried out. Unifying some aspects such as the handling of OpenAPI data seems like

the best first step. It could reduce maintenance effort for both products. It is possible that

Markus Schirp’s generatorwill also support other programming languages and that the code

generator from this project will provide some language specific features.

The development team is interested to develop and maintain this project after the thesis if

the product gets some usage. A cooperation with Markus Schirp is interesting for the devel-
6https://wiki.haskell.org/Quasiquotation

CHAPTER 5. CONCLUSION 80 OpenAPI 3 Code Binding Generator for Haskell

https://wiki.haskell.org/Quasiquotation

opment team. The end of the thesis marks an important point in the life of the teammem-

bers with a lot of change so that no future promises about maintenance can bemade.

5.4.8 Viability

This project has no commercial goals. The futuremaintenanceof the library dependsmostly

on free work. This free work may come from the project team because they have personal

interest in the longevity and usage of this product. Other people may take up interest in de-

veloping and maintaining the project further because they have some usage of the library

(5.4.9) or some other personal interest (e. g. a bachelor thesis). Interest in cooperation al-

ready exists as described in 5.4.7. Tom Sydney Kerckhovewill probably use the product in a

project of his. To make it easy for other people to work on this project:

• The project is published with a non-restrictive licence.

• Most of the code is documented well. Advanced Haskell features were used with care

to make the code easier to understand.

• The code is published on Hackage and the installation instructions are very easy.

• The project team is open to questions and willing to help.

5.4.9 Future Use Cases

Peoplemay take up interest in this project because of the following use cases. This list is not

complete and people may be interested by other reasons.

• Use Stripe API in Haskell

• Generate code for another OpenAPI specification to connect to an API

• Generate code for a self-writtenOpenAPI specification to provide code for other devel-

opers

• Renew an existing library with the code generator to reduce maintenance cost

• Modify the code generator to generate server code (Models could be reused) (5.4.4)

CHAPTER 5. CONCLUSION 81 OpenAPI 3 Code Binding Generator for Haskell

• Modify the code generator for generalised JSON Schema usage (5.4.5)

CHAPTER 5. CONCLUSION 82 OpenAPI 3 Code Binding Generator for Haskell

Part II

Appendix

83

Appendix A

Requirements Specification for Code

Generator

A.1 Prioritization

Reliability A.3.1 and Changeability A.3.4 are the most important parts of the non-functional

requirements.

84

A.2 Use Cases

A.2.1 Generate Code

The Code Generator has only one use case: To generate code out of a OpenAPI specifica-

tion. The OpenAPI specificationmay be in a JSON or YAML file. The Code Generatormust be

callable and parameterizable over a CLI.

Typically this is not done very often and startedmanually, but for frequently changing spec-

ification this could be part of a build process.

Output Directory An output directory must be declarable.

Stack Project It must be possible to declare if a Stack project should be generated or not.

Project name For the generated code a namemust be declarable. The name can be used

for the Stack project and the namespace.

Dry run It must be possible to call the code-generator without actually generating code.

Types SomeOpenAPI-schema-types can bemapped to different Haskell-typeswith differ-

ent trade offs. For example a number can be either mapped to a Double or

Numeric.Decimals.GeneralDecimal. The user of the code generator must be able to decide

which type to use in these cases.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 85 OpenAPI 3 Code Binding Generator for Haskell

A.3 Non-functional Requirements

These requirements are the basis for the architectural decisions of the code generator.

A.3.1 Reliability

A.3.1.1 Error Tolerance

Description Additional data structures in the specification should be ignored. If the data

structures in the specification are invalid (type which does not exists, missing mandatory

fields, etc.) an error message should be produced. If the specification is not valid JSON or

YAML, an error message should be produced.

Measure of Fulfilment A valid specification with invalid and additional data inside the

document root, the paths object and a schema can still generate valid Haskell code and

warns about invalid data structures.

Status This requirement is fulfilled.

A.3.1.2 Naming Tolerance

Description Naming possibilities in the specification should not be reduced by program-

ming language restrictions.

Measure of Fulfilment All names conflicting with Haskell-keywords get either prefixed or

postfixed. All non ASCII or non-alphabetic characters get ignored or converted to alphabetic

characters.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 86 OpenAPI 3 Code Binding Generator for Haskell

A.3.2 Usability

A.3.2.1 Understandability

Description All errormessages and information are understandable. Errormessages from

third party libraries are excluded from this requirement.

Measure of Fulfilment All error messages use whole english sentences and use the same

naming as OpenAPI.

Status This requirement is fulfilled.

A.3.2.2 Learnability

Description All the functionality of the codegenerator shouldbe learnable in a short time.

Measure of Fulfilment If the argument --help is given to the code generator a message

describing all the functionality is shown.

Status This requirement is fulfilled.

A.3.2.3 Accessibility

Description Peoplewithhearing impairments, visual impairmentsormobility impairments

should be able to use the code generator

Measure of Fulfilment No sound is used and all information is available as text. Color is

just used for visualization of information.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 87 OpenAPI 3 Code Binding Generator for Haskell

A.3.2.4 Automation

Description The code generator should be easily integrated in automatic processes.

Measure of Fulfilment The code generator can be called and parameterized over a CLI.

Status This requirement is fulfilled.

A.3.3 Efficiency

A.3.3.1 Response Time

Description The code should be generated in a reasonable time.

Measure of Fulfilment Per 1000 lines of specification and not exceeding 58000 in YAML

format not more than 2 seconds should be used to generate the code. For example: For

5000 lines of specification not more than 10 seconds should be used to generate the code.

Status This requirement is fulfilled.

A.3.3.2 Memory Consumption

Description The generation of the code should use a reasonable amount of memory.

Measure of Fulfilment Per 1000 lines of specification and not exceeding 58000 in YAML

format not more than 25 mb should be used to generate the code. For example: For 5000

lines of specification not more than 125 mb should be used to generate the code.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 88 OpenAPI 3 Code Binding Generator for Haskell

A.3.4 Changeability

A.3.4.1 Traceability

Description The code generation outputs enough information to understand what hap-

pened and importantly why it happened, so that problems can be identified.

Measure of Fulfilment For every stage of the code generation, the start and the end is

discoverable from the output. The original path in the specification is discoverable from

the output for every operation and schema. Every error message gives a reason why it was

created. For this requirement to be fulfilled, the output can be log-information, cli-output

or the generated code.

Status This requirement is fulfilled.

A.3.4.2 Availability

Description The source code is available as open source.

Measure of Fulfilment The source code is available at an open source hosting platform

(e.g. gitlab.com) under an open source licence (e.g. MIT licence).

Status This requirement is fulfilled.

A.3.5 Portability

A.3.5.1 Building Process

Description The code generator should be buildable on different platforms.

Measure of Fulfilment The code generator can be built on Windows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 89 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

A.3.5.2 Usage

Description The code generator should be usable on different platforms.

Measure of Fulfilment The code generator can be used on Windows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

Status This requirement is fulfilled.

A.3.6 Scalability

A.3.6.1 OpenAPI Specification Size

Description Code should be able to be generated from large specification files.

Measure of Fulfilment The code generator can generate code from specifications with up

to 50000 lines.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 90 OpenAPI 3 Code Binding Generator for Haskell

Appendix B

Requirements Specification for

Generated Code

B.1 Prioritization

Usability B.3.2 and Reliability B.3.1 are the most important parts of the non-functional re-

quirements.

91

B.2 Use Cases

The requirements for the generated code have no traditionally defined use cases. The gen-

erated code can be used to call an API conforming to the specification used for generating

the code.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 92 OpenAPI 3 Code Binding Generator for Haskell

B.3 Non-functional Requirements

These requirements are the basis for the architectural decisions of the generated code.

B.3.1 Reliability

B.3.1.1 Error Tolerance

Description Invalid API answers or network errors should not crash the program.

Measure of Fulfilment An arbitrary answer can be given to an API call and the program

does not crash.

Status This requirement is fulfilled.

B.3.1.2 Static Analysis

Description Invalid Request not conforming to the specification should be prohibited at

compile time.

Measure of Fulfilment All Requests must conform to a type restriction the values accord-

ing to the specification.

Status This requirement is fulfilled.

B.3.2 Usability

B.3.2.1 Understandability

Description All error messages and information are understandable.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 93 OpenAPI 3 Code Binding Generator for Haskell

Measure of Fulfilment All error messages use whole english sentences and use the same

naming as OpenAPI.

Status This requirement is fulfilled.

B.3.2.2 Learnability

Description The usage of the generated code should be understandable.

Measure of Fulfilment From the generated code a documentation can be generated and

a general documentation about the usage of the generated code is available.

Status This requirement is fulfilled.

B.3.3 Efficiency

B.3.3.1 Time Efficiency

Description The generated code should be fast.

Measure of Fulfilment The difference between a HTTP call over the library compared to a

HTTP call with static data should be under 10 ms.

Status This requirement is fulfilled.

B.3.3.2 Memory Consumption

Description The generated code should use little memory.

Measure of Fulfilment The overhead of using the generated code to send a plainmessage

without body and receiving an answer without a body should be under 1 mb.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 94 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

B.3.4 Changeability

B.3.4.1 Traceability

Description If an error occurs it is possible to identify the problem. Error messages from

third party libraries are excluded from this requirement.

Measure of Fulfilment All error messages give information about what and why.

Status This requirement is fulfilled.

B.3.4.2 Availability

Description The generated code can be used in a commercial application.

Measure of Fulfilment The generated code is not bound to a license that prohibits com-

mercial use.

Status This requirement is fulfilled.

B.3.5 Portability

B.3.5.1 Building Process

Description The generated code should be buildable on different platforms.

Measure of Fulfilment The generated code can be built on Windows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 95 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

B.3.5.2 Usage

Description The generated code should be usable on different platforms.

Measure of Fulfilment The generated code can be used onWindows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

Status This requirement is fulfilled.

B.3.6 Scalability

B.3.6.1 Parallelization

Description The generated code should be usable in a threaded environment.

Measure of Fulfilment Parallel requests can be issuedwith the generated code. This does

not mean, that the generated code should give functionality to issue requests parallel, but

that it can be used in a parallel environment

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARY 96 OpenAPI 3 Code Binding Generator for Haskell

Appendix C

Requirements Specification for Stripe

Library

The Appendix B Requirements Specification for Generated Code also applies to the Stripe

library. Only additional requirements are listed in this chapter.

97

C.1 Use Cases

All relevant API endpoints from https://stripe.com/docs/api to perform an online payment

can be called.

REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARY 98 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api

C.2 Non-functional Requirements

C.2.1 Usability

C.2.1.1 Learnability

Description The usage of the library should be understandable.

Measure of Fulfilment A documentation about the library is online available.

Status This requirement is fulfilled.

APPENDIX C. REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARY99 OpenAPI 3 Code Binding Generator for Haskell

Appendix D

Quality Measures

D.1 Code Style

D.1.1 Programming Guidelines/Linting

As a source of inspiration, https://wiki.haskell.org/Programming_guidelines can be used re-

garding programming guidelines. But the main source of programming guidelines is hlint1

which is used to automatically lint the source code. This ensures consistency to a reasonable

degree. If hints of hlint are ignored, this should be done with care and documented.

D.1.2 Formatting

To ensure a consistent formatting,Ormolu2 is used. The formatting is applied during Git pre-

commit hooks.

1https://hackage.haskell.org/package/hlint
2https://github.com/tweag/ormolu

100

https://wiki.haskell.org/Programming_guidelines
https://hackage.haskell.org/package/hlint
https://github.com/tweag/ormolu

D.2 Automated Testing

Before accepting amerge request, all testsmust be successful. If applicable, the tests for the

new code should already be included in the merge request. The code coverage of the code

generator should be at least 80% for the property/unit test and system tests combined.

D.2.1 Property Tests

Property tests allow testing with randomly generated input data to ensure some properties

of a function always holds. For this, the library Validity3will be used, will be used in conjunc-

tion with the widely used testing libraries hspec4 and QuickCheck5.

D.2.2 Unit Tests

Unit tests are created in addition to property tests and test Haskell functions as well. These

testsareuseful for caseswhere it isnotpossible to findgoodproperties. Unit testsarewritten

with hspec.

D.2.3 System Tests

System tests test the code generator from a user perspective as they run the executable and

check the created output. These tests are created on three different levels. On the first level

are the Compile tests, on the second the Client tests and on the third the API tests. Every level

is based on the previous level, therefore there are many Compile tests and fewer API tests.

D.2.3.1 Compile Test

The compile tests use valid OpenAPI specifications which are transformed to Haskell code

with the code generator. The output is compiledwith GHC and the Haddock documentation

is generated. This workflow is shown in Figure D.1. These tests are successful if the compi-
3https://github.com/NorfairKing/validity
4https://hackage.haskell.org/package/hspec
5https://hackage.haskell.org/package/QuickCheck

APPENDIX D. QUALITY MEASURES 101 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/NorfairKing/validity
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/QuickCheck

lation and the generation of the documentation succeeded. The generation is tested with

differentCLI configurations and thedocumentationhas to cover all of the exportedelements

(functions, types etc.).

.yaml

OpenAPI
specification

Code
generator .hs

Generated
code

GHC

Figure D.1: Workflow Compile Test

D.2.3.2 Client Test

The client tests extend the Compile tests with additional client code which uses the gener-

ated code, as shown in Figure D.2. The client code calls functions of the generated code and

therefore checks, if the types are still compatible. To achieve more confidence, those calls

are done within unit tests which can check the results as well. Those tests are successful if

the test executable can be built and runs successfully.

.yaml

OpenAPI
specification

Code
generator .hs

Generated
code

GHC

.hs

Client code

uses

Figure D.2: Workflow Client Test

APPENDIX D. QUALITY MEASURES 102 OpenAPI 3 Code Binding Generator for Haskell

D.2.3.3 API Test

As shown in Figure D.3, the API tests go one step further as they execute the actual HTTP

calls the generated code is intended to do. The client code checks if the results match the

expected response. Those tests are successful if the test executable can be built and runs

successfully.

.yaml

OpenAPI
specification

Code
generator .hs

Generated
code

GHC

.hs

Client code

.exe

Executable

HTTP API

calls and
checks result

uses

Figure D.3: Workflow API Test

D.2.4 Feedback Loop

During localdevelopment it is important toget fast feedback if the changesmadearecorrect.

Therefore, it is desirable tohavea fast feedback loop. Ona first level, this is achieved through

property and unit tests which only test if single functions work as expected. Local system

tests provide a second level of confidence. If the speed of these tests becomes too slow for

local development, it is necessary to create a smaller sample set just for local execution.

APPENDIX D. QUALITY MEASURES 103 OpenAPI 3 Code Binding Generator for Haskell

Appendix E

Test Plan

This chapter serves the purpose of declaring manual tests. For automatic testing see sec-

tion D.2 Automated Testing.

104

E.1 Test Procedure

E.1.1 Whenwill tests be carried out?

During construction the tests are informallywithout a protocol carried out. During Construc-

tion: Stabilization all tests are carried out with a protocol.

E.1.2 Non-Functional Requirements

During the test at the end of the Construction: Feature Freeze iteration all non-functional

requirements are tested. The success is documented directly in the requirements specifica-

tions (Appendix A, Appendix B and Appendix C).

APPENDIX E. TEST PLAN 105 OpenAPI 3 Code Binding Generator for Haskell

E.2 Tests

E.2.1 Test SYS.LIN System Test Linux

Test if code can be built and used on a Linux (Ubuntu version 18.04) platform. The linux

distribution Ubuntu was chosen, as one of the teammembers is using Ubuntu.

Prerequisites

• Stripe-API YAML file available

• Code Generator source is available

• Helper Codewhich uses the Generated Code is available

• Ubuntu version 18.0 or higher is available

Procedure

• Build an executable from the Code Generator from source with Stack

• Use the executable with the Stripe-API YAML file to generate code

• Build an executable from the Generated Code and Helper Code

• Run the executable.

Expectations

• Every build process works without error

• Every executable can be called

E.2.2 Test SYS.WIN System Test Windows

Test if codecanbebuilt andusedonaWindows (version10)platform. Repeat testSYS.LINE.2.1

with Windows in place of Ubuntu.

APPENDIX E. TEST PLAN 106 OpenAPI 3 Code Binding Generator for Haskell

E.2.3 Test SYS.MAC System Test macOS

Test if codecanbebuilt andusedonamacOS (version10.15)platform. Repeat testSYS.LINE.2.1

with macOS in place of Ubuntu.

E.2.4 Test DOC.CGE Documentation Test Code Generator

Test if the Code Generator can build a good documentation.

Prerequisites

• Code Generator source is available

Procedure

• Build documentation from source

Expectations

• Documentation can be built

• Most important parts are well documented. This expectation is up to human interpre-

tation.

E.2.5 Test DOC.GCO Documentation Test Generated Code

Test if the Generated Code can build a good documentation.

Prerequisites

• Generated Code from the Stripe-API source is available

APPENDIX E. TEST PLAN 107 OpenAPI 3 Code Binding Generator for Haskell

Procedure

• Build documentation from source

Expectations

• Documentation can be built

• Most important parts are well documented. This expectation is up to human interpre-

tation.

E.2.6 Test DEM.PAY Demo Test Payments API

Test Demo Use Case 2.2.2 with the Payments API.

Prerequisites

• Demo server is up and running

Procedure

• Declare intent to pay over Payments API

• Fill in payment details like amount and a test card

• Complete payment

Expectations

• User never left the page

• Success Message is displayed

• In the log-information the status is available from a server to server call

APPENDIX E. TEST PLAN 108 OpenAPI 3 Code Binding Generator for Haskell

E.2.7 Test DEM.CHE Demo Test Payments API

Test Demo Use Case 2.2.2 with the Checkout API. This test is optional.

Prerequisites

• Demo server is up and running

Procedure

• Declare intent to pay over Checkout API

• Fill in payment details like amount and a test card

• Complete payment

Expectations

• User was redirected to Stripe and back again

• Success message is displayed

• In the log-information the status is available from a server to server call

E.2.8 Test PAC.HAC Package Test Hackage

Test if the package can be used from Hackage.

Prerequisites

• Package is on Hackage

APPENDIX E. TEST PLAN 109 OpenAPI 3 Code Binding Generator for Haskell

Procedure

• Install the package from Hackage via Cabal.

Expectations

• Package can successfully be used

E.2.9 Test PAC.NIX Package Test Nix

Test if the package can be used from Nix. This test is optional.

Prerequisites

• Package is on Nix

Procedure

• Install the package from nix via nix package manager.

Expectations

• Package can successfully be used

E.2.10 Test USA:COD Usability Test

In this test a person which has no prior knowledge of this project tries to use the product on

his own. Help from the team members is prohibited, only the online available instructions

can be used. The person needs to:

• Install the code generator

APPENDIX E. TEST PLAN 110 OpenAPI 3 Code Binding Generator for Haskell

• Generate code with the help of the code generator

The test person does not need to use the generated code in a project. The reason for this is

the lack of testing personal available.

APPENDIX E. TEST PLAN 111 OpenAPI 3 Code Binding Generator for Haskell

E.3 Protocol

Table E.1: Test protocol

Test Date Tester Result
SYS.LIN 20.05.2020 Remo Dörig Test was successful
SYS.WIN 20.05.2020 Remo Dörig Test was successful
SYS.MAC 20.05.2020 Joel Fisch Test was successful
DOC.CGE 20.05.2020 Remo Dörig Test was successful
DOC.GCO 20.05.2020 Remo Dörig This feature is not implemented yet
DEM.PAY 20.05.2020 Remo Dörig Test was successful
DEM.CHE 20.05.2020 Remo Dörig Test was successful
PAC.HAC 20.05.2020 Remo Dörig This feature is not implemented yet
PAC.NIX 20.05.2020 Remo Dörig This feature is not implemented yet
DOC.GCO 27.05.2020 Remo Dörig Test was successful
PAC.HAC 27.05.2020 Remo Dörig Test was successful
PAC.NIX 27.05.2020 Remo Dörig This feature is not implemented yet
USA.DOC 01.06.2020 Remo Dörig & Flavio F. Test was successful

E.3.1 Notes about USA.DOC

The test USA.DOC was conducted at a later time, because the code first needed to be pub-

lished. Flavio could not install Cabal himself on Windows. After some help installing cabal,

he could finish the test himself.

E.3.2 Conclusion

All tests which are not optional were successful. The optional test PAC.NIX is the only test

which is not implemented. DOC.GCO and PAC.HACwere not implemented on the 20.05.2020

because the code was not published at the time.

APPENDIX E. TEST PLAN 112 OpenAPI 3 Code Binding Generator for Haskell

Appendix F

Architecture Overview

F.1 Demo System

The demo system is used to demonstrate the Code Generator with the Stripe API [19].

Figure F.1: Demo system deployment diagram

As can be seen in the Figure F.1 the demo runs in the browser. The backend runs on a server

providedby theHSRonanUbuntu system 1. For theHTTPcommunicationwarp [24] asapart

of thebackend isusedwithoutanydedicatedwebserver likeApache. Thewebpage is served
1For development or presentation the server may run directly on the development computer.

113

by thebackend. Thedemopageand thebackendboth communicatewith theexternal Stripe

API.

For more information see section 4.1.

APPENDIX F. ARCHITECTURE OVERVIEW 114 OpenAPI 3 Code Binding Generator for Haskell

F.2 Code Generator

The figure F.2 gives an overview of how the CodeGenerator can be used. The CodeGenerator

takes any OpenAPI specification [14] and generates code for Haskell. The Generated Code

can be used by any Haskell code (Client-Code) to communicate with the API specified by the

OpenAPI specification.

.yaml

OpenAPI-
Specification

Code-
Generator .hs

Generated
Code

GHC

.hs

Client-Code

uses

Figure F.2: Workflow Code Generation

F.2.1 Phases

Tosimplify andminimize the scope the codegeneration is split up intodifferent independent

phases, as visualized in Figure F.3. The generated code from the different phases references

each other, but the generation is independent of each other and could therefore run in any

order.

Operations

ConfigurationInformation

Models

SecuritySchemes

Figure F.3: Phases of the code generator

APPENDIX F. ARCHITECTURE OVERVIEW 115 OpenAPI 3 Code Binding Generator for Haskell

Operations Transformspaths todifferentoperations. Modelsdirectly specified in thepaths

are generated in this phase, other models are only referenced.

ConfigurationInformation Transforms servers to different configurations. Configurations

are used by Operations and contain server information including SecuritySchemes.

Models Transforms components.schemas to different types/models. Models are used by

Operations. Overview about the models can be found at F.2.2

SecuritySchemes Transforms components.securitySchemas to securitySchemes,whichcan

be part of a configuration defined in ConfigurationInformation.

F.2.2 Models

More detailed information about the different types for the models can be found at subsec-

tion 3.1.3 Data Models. The Figure F.4 Flow of the code generation of models gives a rough

overview over the different kind of models that are generated, in which steps they are cre-

ated and depending on which conditions they are created. If a schema is a reference, no

model is created, only the referenced type is used. The referenced type is created when the

generator encounters the concrete type. For primitive OpenAPI-types no type is created nor-

mally, if it needs to be referencable, a Haskell type-alias is created.

The generation of a model typically results in:

• Type: The type of the generatedmodel

• Docs: The declarations used to define the Type

• Dependencies: A set of dependencies (all the types which are referenced).

If the dependencies form a cyclic dependency, amodel is put together with the others in the

CyclicTypesmodule or in its ownmodule otherwise.

APPENDIX F. ARCHITECTURE OVERVIEW 116 OpenAPI 3 Code Binding Generator for Haskell

Define model for schema

has enum? define ADT with
each enum value

type=array? define model for
items schema

define array type

has allOf? fuse subschemas define model for object

has oneOf? define model for
subschemas

define ADT for
submodels

has anyOf? fuse subschemas
unrequire

all properties
define model
for object

type=object? define model for
properties schema define record type

define primitive
type

yes

no

yes

no

yes

no

yes

no

yes

no

yes

no

Figure F.4: Flow of the code generation of models

APPENDIX F. ARCHITECTURE OVERVIEW 117 OpenAPI 3 Code Binding Generator for Haskell

F.2.3 Layering

The layering is visualised in the image Layers for Code Generator. OpenAPI Data represents

theOpenAPI data structure inHaskell types. Utils, Flags, Docs, Monad are helpfull utilswhich

nearlyall of thecodedependson. Models,Operations,SecuritySchemesandSecuritySchemes

are four independent phases of the code generation. See F.2.1 for more information about

the phases. In the end, Generate depends on all four phases and constructs the end result.

OpenAPI Data Utils, Flags, Docs, Monad

Models Operations SecuritySchemes Configuration

Generate

Figure F.5: Layers for Code Generator

F.2.4 Generator Monad

During code generation it is necessary to resolve references in theOpenAPI specification and

to trace information. For this purpose an environment in the form of the Generator Monad is

used. This monad combines theWriterT and Reader design pattern.

Reader is used to read from:

• current path: Used for tracing.

APPENDIX F. ARCHITECTURE OVERVIEW 118 OpenAPI 3 Code Binding Generator for Haskell

• references: Used to resolve references

• flags: CLI options

WriterT is used to write log-information.

F.2.5 Resulting Modules

All symbols are globally unique and are reexported in the module OpenAPI (Module name

can be changed with CLI option --module-name). To reduce compile time, the code is split

up into multiple modules. Mainly for every operation and for every schema. Schemas with

cyclic dependencies are in the module OpenAPI.CyclicTypes.

F.2.6 Actual Code Generation

For the actual code generation, an AST is generatedwith TemplateHaskell andpretty printed

to generate code. Information about code generation can be found at 3.2 and for Template

Haskell at 3.2.2.

APPENDIX F. ARCHITECTURE OVERVIEW 119 OpenAPI 3 Code Binding Generator for Haskell

F.3 Stripe Library

The Stripe library provides an interface for client code to call the Stripe API, for this the gen-

erated code is used. The figure F.6 demonstrates the full workflow of how the Stripe Library

can be used, usually client code only uses the Stripe Library.

.yaml

Stripe-
Specification

Code-
Generator .hs

Generated
Code

.hs

Stripe
Library

.hs

Client
Code

GHC .exe

Executable

Stripe-API

calls the API

uses

uses

Figure F.6: Workflow Code Generator for Stripe Library

F.3.1 Layers

The following layers visualized in F.7 are present in a program using the Stripe Library.

Client Code

Stripe Library

Generated Code

HTTP Library

Figure F.7: Layers for Stripe Library

APPENDIX F. ARCHITECTURE OVERVIEW 120 OpenAPI 3 Code Binding Generator for Haskell

Client Code can be any code which wants to use Stripe.

Stripe Library is provided by this project. It uses the Generated Code for Stripe and ex-

tends it with some package information and formatting.

Generated Code is generated by the Code Generator.

HTTP Library is provided by the Haskell eco system. It is used by the Generated Code to

make HTTP calls. Apart from the HTTP library, some other common utilities will be present

in any generated code, but they are of no concern for the greater picture.

F.3.2 Design Pattern

The generated code uses the ReaderT design pattern [1]. This allows users to executemulti-

ple requests using the same configuration instead of passing it explicitly every time.

APPENDIX F. ARCHITECTURE OVERVIEW 121 OpenAPI 3 Code Binding Generator for Haskell

Appendix G

Installation Instructions

G.1 Code Generator

The installation instructions are also available online at

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#

readme. The code is available at:

• https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator

• https://gitlab.com/hsr-ba-openapi-3/hsr-ba-openapi-3/

(Not public) in the directory openapi3-code-generator.

• https://hackage.haskell.org/package/openapi3-code-generator

G.1.1 Install from Source

• cd openapi3-code-generator if the private GitLab repository is used.

• Install stack 1

• stack run --my_specification.yml

1https://docs.haskellstack.org/en/stable/install_and_upgrade/

122

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#readme
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#readme
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://gitlab.com/hsr-ba-openapi-3/hsr-ba-openapi-3/
https://hackage.haskell.org/package/openapi3-code-generator
https://docs.haskellstack.org/en/stable/install_and_upgrade/

G.1.2 Install fromHackage

• Install cabal 2

• cabal install openapi3-code-generator

This may take a while.

• openapi3-code-generator-exe my_specification.yml

2https://www.haskell.org/cabal/

APPENDIX G. INSTALLATION INSTRUCTIONS 123 OpenAPI 3 Code Binding Generator for Haskell

https://www.haskell.org/cabal/

G.2 Stripe Library

The library is available at:

• https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

• https://hackage.haskell.org/package/stripeapi

G.2.1 Install fromHackage

Run cabal install stripeapi in the root of a project that wants to use the library.

G.2.2 Example Usage

An example can be found at:

https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/

example/src/StripeHandling.hs

APPENDIX G. INSTALLATION INSTRUCTIONS 124 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library
https://hackage.haskell.org/package/stripeapi
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/example/src/StripeHandling.hs
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/example/src/StripeHandling.hs

G.3 Generated Code

An example how generated code can be used directly from the file system, can be found at

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator/

in the directory example.

APPENDIX G. INSTALLATION INSTRUCTIONS 125 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator/

Appendix H

Task Description

H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell

And its Application to Generate a Library for the Stripe Payment System

H.1.1 Supervisor

Prof. Dr. Farhad Mehta, HSR Rapperswil

H.1.2 Students

• Joel Fisch

• Remo Dörig

H.1.3 Setting

TheOpenAPI Specification (originally known as the Swagger Specification) is a specification

for machine-readable interface files for describing, producing, consuming, and visualizing

RESTful web services. It is claimed to be a broadly adopted industry standard for describ-

ing modern APIs. The current version of OpenAPI is 3.0.2, released on 08.10.2018. Unless

otherwise specified, this will be the version of OpenAPI referred to in this project. Haskell is

a general-purpose, statically typed, purely functional programming language with type in-

126

ference and lazy evaluation. Developed to be suitable for teaching, research and industrial

application, Haskell has pioneered a number of advanced programming language features,

especially in the area of type systems. Haskell is increasingly used in a number of applica-

tions where efficiency and reliability are valued, particularly in the financial sector. The cur-

rent version of the Haskell development environment GHC is 8.8.2, released on 16.01.2020.

Unlessotherwise specified, thiswill be theversionofHaskell referred to in thisproject. Stripe

is a company that provides technical, fraud prevention, and banking infrastructure required

to operate online payment systems. Stripe provides an API that web developers can use

to integrate payment processing into their websites and mobile applications. Stripe pro-

vides an OpenAPI 3.0 specification for this API at https://github.com/stripe/openapi. There

is interest within the Haskell community to use Stripe. The current Haskell library (https:

//github.com/dmjio/stripe) only supports the older Stripe API version 2014-10-071. Since

this 1 library is codedmanually, it is labour-intensive to keepup todate. AHaskell library that

supports themost recent Stripe API version is desired. Stripe provides an OpenAPI 3.0 spec-

ification for its API at https://github.com/stripe/openapi. Since the OpenAPI specification

is machine-readable, it is possible to use it to automatically generate code bindings in the

programming language used to develop a target application,making this taskmore efficient

and less error-prone. Code binding generators for a number of languages exist2, but there

is currently no such code binding generator for Haskell 3. The development of an OpenAPI

code-binding generator for Haskell could be used to generate an easy to maintain Haskell

library for Stripe and would also have much broader use within the Haskell community.

H.1.4 Goals

Themain goals of this project are:

• OpenAPI code binding generator: To implement anOpenAPI code binding generator

for Haskell in Haskell.

• Haskell Library for Stripe API: To use this generator to generate code bindings that

can be used to implement a Haskell library for the Stripe API.
1https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md#

L81

APPENDIX H. TASK DESCRIPTION 127 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi
https://github.com/dmjio/stripe
https://github.com/dmjio/stripe
https://github.com/stripe/openapi
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md#L81
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md#L81

• Demo Application: To implement a simple working demo application that uses the

Haskell Stripe API library for online payments to demonstrate the use of thedeveloped

tools.

Special caremust be taken to take advantage of the advanced features of Haskell’s type sys-

tem to enforce data consistency at compile time, as well as the current state of the art in

Haskell development (e.g. property-based testing). At the same time, the resulting tools

must be understandable, usable and maintainable by a wide community of Haskell devel-

opers. While developing the “OpenAPI code binding generatoe”, priority should be given to

parts of the OpenAPI specification that are required to generate the code bindings required

for the “Haskell Library for Stripe API”. This is theminimum subset of the OpenAPI specifica-

tion that must be supported. All product documentation must be in English, and in a form

that is appropriate for continued development, publicly or otherwise. Project documenta-

tion that is not relevant to the continued development of the project may be in German.

H.1.5 Workload

A successful bachelor thesis project counts towards 12 ECTS credit points per student. One

ECTS credit point corresponds to awork effort of 30 hours. All time spent on theprojectmust

be recorded and documented.

APPENDIX H. TASK DESCRIPTION 128 OpenAPI 3 Code Binding Generator for Haskell

Appendix I

Listings

129

I.1 Scalar Type Examples

1 # ” foo bar ”

2 type : s t r i n g

3

4 # ” U3dhZ2dlciByb2Nrcw== ”

5 type : s t r i n g

6 format : byte

7

8 # ” U3dhZ2dlciByb2Nrcw== ”

9 type : s t r i n g

10 format : b ina r y

11

12 # 7 . 4

13 type : number

14

15 # 7 . 4

16 type : number

17 format : f l o a t

18

19 # 7 . 4

20 type : number

21 format : double

22

23 # 7

24 type : i n t e g e r

25

26 # 7

27 type : i n t e g e r

28 format : i n t 3 2

29

30 # 7

31 type : i n t e g e r

32 format : i n t 6 4

33

34 # f a l s e

35 type : boolean

Listing I.1: OpenAPI example scalar types

APPENDIX I. LISTINGS 130 OpenAPI 3 Code Binding Generator for Haskell

1 {−# LANGUAGE Ove r l oadedS t r i n g s #−}

2

3 module ExampleSca larTypes where

4

5 import qua l i f i ed Data . B y t eS t r i n g as B

6 import qua l i f i ed Data . I n t as I

7 import qua l i f i ed Data . Text as T

8

9 exampleSt r ing : : [T . Text]

10 exampleSt r ing = [” h e l l o ” , ” world ”]

11

12 exampleByte : : B . B y t eS t r i n g

13 exampleByte = B . empty

14

15 exampleBinary : : B . B y t eS t r i n g

16 exampleBinary = B . empty

17

18 −− note , t ha t t h i s i s not a c t u a l l y an i n f i n i t e number .

19 exampleNumber : : Double

20 exampleNumber = 7 . 4

21

22 exampleF loat : : Float

23 exampleF loat = 7 . 4

24

25 exampleDouble : : Double

26 exampleDouble = 7 . 4

27

28 example In teger : : Integer

29 example In teger = 7

30

31 example Int32 : : I . I n t 3 2

32 example Int32 = 7

33

34 example Int64 : : I . I n t 6 4

35 example Int64 = 7

36

37 exampleBoolean : : Bool

38 exampleBoolean = False

Listing I.2: OpenAPI Haskell example scalar types

APPENDIX I. LISTINGS 131 OpenAPI 3 Code Binding Generator for Haskell

I.2 Research HTTP Library

The followingcodeexample is copied fromhttps://docs.servant.dev/en/stable/tutorial/Client.

html andonly slightlymodified to better demonstrate, that the functions are autogenerated.

1 {−# LANGUAGE DataK inds #−}

2 {−# LANGUAGE De r i v eG en e r i c #−}

3 {−# LANGUAGE TypeOpera to r s #−}

4
5 module Main where

6
7 import Data . Aeson

8 import Data . Proxy

9 import GHC . Gene r i c s

10 import Network . HTTP . C l i e n t (de fau l tManage rSe t t i ngs , newManager)

11 import Servant . API

12 import Servant . C l i e n t

13 import qua l i f i ed Servant . C l i e n t . Streaming as S

14 import Servant . Types . SourceT (fo reach)

15
16 data Po s i t i o n

17 = Po s i t i o n

18 { xCoord : : Int ,

19 yCoord : : I n t

20 }

21 der iv ing (Show , Gener i c)

22
23 instance FromJSON Po s i t i o n

24
25 newtype Hel loMessage = Hel loMessage {msg : : Str ing }

26 der iv ing (Show , Gener i c)

27
28 instance FromJSON Hel loMessage

29
30 data C l i e n t I n f o

31 = C l i e n t I n f o

32 { c l ientName : : Str ing ,

33 c l i e n t Ema i l : : Str ing ,

34 c l i e n t A g e : : Int ,

35 c l i e n t I n t e r e s t e d I n : : [Str ing]

36 }

37 der iv ing (Gener i c)

38
39 instance ToJSON C l i e n t I n f o

40
41 data Emai l

42 = Emai l

43 { from : : Str ing ,

44 to : : Str ing ,

APPENDIX I. LISTINGS 132 OpenAPI 3 Code Binding Generator for Haskell

https://docs.servant.dev/en/stable/tutorial/Client.html
https://docs.servant.dev/en/stable/tutorial/Client.html

45 sub j e c t : : Str ing ,

46 body : : Str ing

47 }

48 der iv ing (Show , Gener i c)

49
50 instance FromJSON Emai l

51
52 type API =

53 ” po s i t i o n ”

54 : > Capture ” x ” I n t

55 : > Capture ” y ” I n t

56 : > Get ’ [JSON] Po s i t i o n

57 : < | > ” h e l l o ”

58 : > QueryParam ”name” Str ing

59 : > Get ’ [JSON] Hel loMessage

60 : < | > ” market ing ”

61 : > ReqBody ’ [JSON] C l i e n t I n f o

62 : > Post ’ [JSON] Emai l

63
64 ap i : : Proxy API

65 ap i = Proxy

66
67 −− f u n c t i o n s p o s i t i o n , h e l l o and market ing are autogenerated

68 po s i t i o n : < | > h e l l o : < | > market ing = c l i e n t ap i

69
70 que r i e s : : C l i en tM (Pos i t i on , Hel loMessage , Emai l)

71 que r i e s = do

72 pos <− po s i t i o n 10 10

73 message <− he l l o (Just ” se r van t ”)

74 em <−
75 market ing

76 (C l i e n t I n f o ” Alp ” ” alp@foo . com” 26 [” h a s k e l l ” , ”mathematics ”])

77 return (pos , message , em)

78
79 main : : IO ()

80 main = do

81 manager ’ <− newManager de f au l tManage rSe t t i ng s

82 r e s <−
83 runC l i en tM

84 que r i e s

85 (mkCl ientEnv manager ’ (BaseUr l Http ” l o c a l h o s t ” 8081 ” ”))

86 case r e s of

87 Lef t e r r −> putStrLn $ ” E r r o r : ” ++ show e r r

88 Right (pos , message , em) −> do

89 pr in t pos

90 pr in t message

91 pr in t em

Listing I.3: Servant: Querying an API

APPENDIX I. LISTINGS 133 OpenAPI 3 Code Binding Generator for Haskell

I.3 OpenAPI Tools Code Generators

1 {-# LANGUAGE ConstraintKinds #-}

2 {-# LANGUAGE CPP #-}

3 {-# LANGUAGE DefaultSignatures #-}

4 {-# LANGUAGE DeriveDataTypeable #-}

5 {-# LANGUAGE DeriveFoldable #-}

6 {-# LANGUAGE DeriveFunctor #-}

7 {-# LANGUAGE DeriveGeneric #-}

8 {-# LANGUAGE DeriveTraversable #-}

9 {-# LANGUAGE ExistentialQuantification #-}

10 {-# LANGUAGE FlexibleContexts #-}

11 {-# LANGUAGE FlexibleInstances #-}

12 {-# LANGUAGE GeneralizedNewtypeDeriving #-}

13 {-# LANGUAGE KindSignatures #-}

14 {-# LANGUAGE LambdaCase #-}

15 {-# LANGUAGE MonoLocalBinds #-}

16 {-# LANGUAGE MultiParamTypeClasses #-}

17 {-# LANGUAGE NamedFieldPuns #-}

18 {-# LANGUAGE OverloadedStrings #-}

19 {-# LANGUAGE PartialTypeSignatures #-}

20 {-# LANGUAGE RankNTypes #-}

21 {-# LANGUAGE RecordWildCards #-}

22 {-# LANGUAGE ScopedTypeVariables #-}

23 {-# LANGUAGE TupleSections #-}

24 {-# LANGUAGE TypeFamilies #-}

25 {-# LANGUAGE TypeOperators #-}

Listing I.4: Language extensions used by the generated code from OpenAPI Tools

APPENDIX I. LISTINGS 134 OpenAPI 3 Code Binding Generator for Haskell

Appendix J

Domain Diagrams

The following domain models are included here for completeness. The domain should be

understandable too with only the information presented in section 2.1 Code Generation.

135

Fi
gu

re
J.
1:

Co
m
pl
et
e
Do

m
ai
n
m
od

el
of

th
e
O
pe

nA
PI

Sp
ec
ifi
ca
tio

n

APPENDIX J. DOMAIN DIAGRAMS 136 OpenAPI 3 Code Binding Generator for Haskell

Fi
gu

re
J.
2:

Do
m
ai
n
m
od

el
of

th
e
O
pe

nA
PI

Sp
ec
ifi
ca
tio

n
w
ith

ou
tr
ef
er
en

ce
ty
pe

s

APPENDIX J. DOMAIN DIAGRAMS 137 OpenAPI 3 Code Binding Generator for Haskell

Fi
gu

re
J.
3:

In
fo
rm

al
do

m
ai
n
m
od

el
of

th
e
ge
ne

ra
te
d
co
de

as
or
ig
in
al
ly
th
eo

riz
ed

APPENDIX J. DOMAIN DIAGRAMS 138 OpenAPI 3 Code Binding Generator for Haskell

Addendum

139

Bibliography

[1] Michael Snoyman. The ReaderT Design Pattern. June 12, 2017. URL: https : / / tech .

fpcomplete.com/blog/2017/06/readert-design-pattern (visited on 06/03/2020).

[2] MatthiasBenkort.Continuous integration inHaskell. Apr. 19, 2020.URL:https://medium.

com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46 (visitedon05/29/2020).

[3] Tom Sydney Kerckhove. Private Correspondence. May 18, 2020.

[4] Markus Schirp. Private Correspondence. June 6, 2020.

[5] ghc-source-gen. URL:https://github.com/google/ghc-source-gen (visitedon03/05/2020).

[6] Glasgow Haskell Compiler User’s Guide: Language options. URL: https : / /downloads .

haskell .org/~ghc/latest/docs/html/users_guide/glasgow_exts .html#extension-

DuplicateRecordFields (visited on 03/06/2020).

[7] Haskell Source Extensions. URL: https://github.com/haskell- suite/haskell- src- exts

(visited on 03/05/2020).

[8] haskell-generate. URL: https : / / github . com /bennofs / haskell - generate (visited on

03/05/2020).

[9] haskell-src-exts-sc: Pretty print haskell code with comments. URL: https://github.com/

achirkin/haskell-src-exts-sc (visited on 03/17/2020).

[10] http-client: An HTTP client engine. URL: https://hackage.haskell.org/package/http-

client (visited on 03/12/2020).

[11] http-conduit: HTTP client packagewith conduit interface andHTTPS support.URL: http:

//hackage.haskell.org/package/http-conduit (visited on 03/25/2020).

[12] JSON Schema. URL: https://json-schema.org/ (visited on 04/01/2020).

[13] lens: Lenses, Folds and Traversals. URL: https : / /hackage.haskell .org/package/ lens

(visited on 03/05/2020).

140

https://tech.fpcomplete.com/blog/2017/06/readert-design-pattern
https://tech.fpcomplete.com/blog/2017/06/readert-design-pattern
https://medium.com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46
https://medium.com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46
https://github.com/google/ghc-source-gen
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://github.com/haskell-suite/haskell-src-exts
https://github.com/bennofs/haskell-generate
https://github.com/achirkin/haskell-src-exts-sc
https://github.com/achirkin/haskell-src-exts-sc
https://hackage.haskell.org/package/http-client
https://hackage.haskell.org/package/http-client
http://hackage.haskell.org/package/http-conduit
http://hackage.haskell.org/package/http-conduit
https://json-schema.org/
https://hackage.haskell.org/package/lens

[14] OpenAPI Specification Version 3.0.3. URL: https://swagger.io/specification/ (visited on

02/28/2020).

[15] openapi-generator.tech feature set. URL: https : / / openapi - generator . tech / docs /

generators/javascript#feature-set (visited on 02/28/2020).

[16] openapi-generator.tech from OpenAPI Tools. URL: https : / / openapi - generator . tech/

(visited on 03/11/2020).

[17] QuickCheck: Automatic testing of Haskell programs. URL: https://hackage.haskell.org/

package/QuickCheck (visited on 03/12/2020).

[18] Servant. URL: https://www.servant.dev/ (visited on 06/05/2020).

[19] Stripe. URL: https://stripe.com/ (visited on 03/28/2020).

[20] Stripe API documentation. URL: https://stripe.com/docs/api/ (visited on 03/04/2020).

[21] Stripe OpenAPI specification. URL: https : / / github . com / stripe / openapi (visited on

03/04/2020).

[22] Template Haskell. URL: http://hackage.haskell.org/package/template-haskell (visited

on 03/05/2020).

[23] Time - HaskellWiki. URL: https://wiki.haskell.org/Time (visited on 03/06/2020).

[24] warp: A fast, light-weightweb server forWAI applications.URL: https://hackage.haskell.

org/package/warp (visited on 03/28/2020).

[25] wreq: An easy-to-use HTTP client library. URL: https://hackage.haskell.org/package/

wreq (visited on 03/25/2020).

APPENDIX J. DOMAIN DIAGRAMS 141 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/specification/
https://openapi-generator.tech/docs/generators/javascript#feature-set
https://openapi-generator.tech/docs/generators/javascript#feature-set
https://openapi-generator.tech/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://www.servant.dev/
https://stripe.com/
https://stripe.com/docs/api/
https://github.com/stripe/openapi
http://hackage.haskell.org/package/template-haskell
https://wiki.haskell.org/Time
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/wreq
https://hackage.haskell.org/package/wreq

Complete Content

Abstract i

Lay Summary ii

Management Summary iv

Acknowledgements v

Contents vi

Glossary ix

Acronyms xi

List of Figures xii

List of Tables xiii

Listings xiv

I Technical Report 1

1 Introduction 2

1.1 Initial Situation . 2

1.1.1 OpenAPI 3.0 . 3

1.1.2 Code Generators . 3

1.1.3 Haskell . 4

1.1.4 Stripe . 4

1.2 Goals . 5

142

1.2.1 OpenAPI Code Binding Generator . 5

1.2.2 Haskell Library for Stripe API . 5

1.2.3 Demo Application . 5

1.2.4 Requirements for the Implementation 5

1.3 Requirements . 7

1.4 Research / Existing Work . 8

1.4.1 OpenAPI Tools Code Generators . 8

1.4.1.1 Stripe OpenAPI file . 8

1.4.1.2 Complex Example OpenAPI File 8

A oneOf . 9

An anyOf . 9

An allOf . 9

A not . 9

minLength,maxLength . 9

date and date-time . 9

nullable . 9

enum . 9

1.4.2 servant-swagger . 9

1.4.3 Stripe API Coverage for Haskell by dmjio 10

1.5 Involved People . 11

2 Problem Analysis 12

2.1 Code Generation . 13

2.1.1 Code Generator Workflow . 13

2.1.2 OpenAPI Schema . 14

2.1.2.1 Reference Types . 16

2.1.2.2 Schema Object . 16

writeOnly / readOnly . 16

2.1.2.3 Scalar Types . 16

2.1.2.4 Array Schema . 16

2.1.2.5 Object Schema . 16

2.1.2.6 Inheritance / Polymorphism 17

AllOf Schema . 17

APPENDIX J. DOMAIN DIAGRAMS 143 OpenAPI 3 Code Binding Generator for Haskell

OneOf Schema . 17

AnyOf Schema . 17

Discriminator . 17

2.1.3 OpenAPI Specification . 18

2.1.3.1 Operation . 20

2.1.3.2 Parameters . 20

2.1.3.3 Link . 20

2.1.3.4 Security . 20

Basic Authentication . 20

Bearer Authentication . 20

API Keys . 21

OAuth and OpenID . 21

2.1.4 Generated Code . 21

2.1.4.1 Operation . 21

2.1.4.2 Domain Models . 21

2.1.4.3 Call Result . 21

2.2 Stripe API . 23

2.2.1 OpenAPI Features . 23

2.2.1.1 Security . 23

2.2.1.2 Vendor Extensions . 23

x-resourceId and fixtures . 23

x-polymorphicResources . 23

x-expandableFields and x-expansionResources 23

2.2.1.3 Links . 24

2.2.1.4 Callbacks . 24

2.2.1.5 Expressions . 24

2.2.1.6 Polymorphism . 24

allOf . 24

oneOf . 24

anyOf . 24

2.2.1.7 XML . 25

2.2.1.8 Schema Restrictions . 25

2.2.2 Demo Use Case . 26

APPENDIX J. DOMAIN DIAGRAMS 144 OpenAPI 3 Code Binding Generator for Haskell

3 Solution Design 29

3.1 OpenAPI 3 . 30

3.1.1 HTTP Calls . 30

3.1.2 Data Formats . 30

3.1.3 Data Models . 30

3.1.3.1 References . 31

3.1.3.2 Naming and Ordering . 31

3.1.3.3 Scalar Types . 31

date and date-time . 31

3.1.3.4 Arrays . 32

3.1.3.5 Objects . 33

Disregarded Plans . 35

3.1.3.6 oneOf . 37

3.1.3.7 allOf . 39

3.1.3.8 anyOf . 41

3.1.3.9 anyType . 43

3.2 Code Generation . 44

3.2.1 Criteria . 44

3.2.2 Candidates . 45

Plain text manipulation . 45

Haskell Source Extensions . 45

ghc-source-gen . 46

Template Haskell . 46

Other options . 46

Overview . 47

3.2.3 Decision . 47

3.3 HTTP Library . 48

3.3.1 Criteria . 48

3.3.2 Traditional HTTP libraries . 49

3.3.2.1 http-client . 49

Decision . 50

3.3.2.2 wreq . 50

Decision . 52

APPENDIX J. DOMAIN DIAGRAMS 145 OpenAPI 3 Code Binding Generator for Haskell

3.3.2.3 http-conduit . 52

Decision . 55

3.3.3 Servant . 55

3.3.4 Decision . 57

3.4 Error Handling . 58

3.4.1 Code Generator . 58

3.4.1.1 Command Line Arguments 58

3.4.1.2 Parsing . 58

3.4.1.3 Generating . 59

3.4.2 Generated Code . 59

4 Results 60

4.1 Demo Server . 61

4.1.1 Deployment . 61

4.1.2 Endpoints . 61

/version . 61

/time . 61

/inventory . 61

/paymentIntent . 61

/newPaymentIntentSecret . 61

/newPaymentIntentSepaSecret 62

/getCheckoutSessionId . 62

/showSuccess . 62

Everything else . 62

4.1.3 Architecture . 62

4.2 Publication . 63

4.2.1 CI/CD . 63

4.2.1.1 Code Generator . 63

4.2.1.2 Stripe Library . 63

4.3 Code Metrics . 64

4.3.1 Code Generator . 64

4.3.1.1 Code Coverage . 64

4.3.1.2 Extended Compile Tests 64

APPENDIX J. DOMAIN DIAGRAMS 146 OpenAPI 3 Code Binding Generator for Haskell

4.3.2 Generated Code . 65

4.3.3 CLI Options . 65

4.4 Limitations . 66

4.4.1 Parameter Limitations . 66

4.4.2 XML and other Transport Data Protocols 66

4.4.3 Links and Callbacks . 66

4.4.4 Only local References . 67

4.4.5 Object Constructors and Default Values 67

4.4.6 Length of Names is limited by the File System 67

4.4.7 Circular References inside the Specification 67

4.4.8 Naming Conflicts . 67

4.4.9 Other Limitations . 68

5 Conclusion 69

5.1 Comparison to other Work . 70

5.1.1 Markus Schirp’s OpenAPI Code Binding Generator 70

Stages . 70

AST . 70

Servant . 70

Cyclic Dependencies . 71

Conclusion . 71

5.1.2 OpenAPI Tools for Haskell . 71

Modules . 71

JSON . 71

Types . 71

Operations / HTTP Calls . 72

Conclusion . 72

5.2 Lessons Learned . 73

5.2.1 Learnings from Failure . 73

5.2.1.1 Compilation Time . 73

5.2.1.2 DuplicateRecordFields and Servant 73

5.2.1.3 Use Records instead of Tuples 74

5.2.1.4 Property Tests . 74

APPENDIX J. DOMAIN DIAGRAMS 147 OpenAPI 3 Code Binding Generator for Haskell

5.2.2 Learnings from Success . 75

5.2.2.1 Golden Tests . 75

5.2.2.2 Fast Feedback Loop . 75

5.2.2.3 Early and strong CI / CD Pipeline 75

System Tests . 76

5.3 Result Discussion . 77

5.3.1 Detailed Goals Resolution . 77

5.4 Future Scope . 79

5.4.1 Resolve Cyclic Dependencies . 79

5.4.2 Resolve Limitations . 79

5.4.3 Auto Generated Tests for Generated Code 79

5.4.4 Code Separation and Server Code Generation 79

5.4.5 JSON Schema . 80

5.4.6 Quasiquotation . 80

5.4.7 Cooperation with Markus Schirp and Future Maintainance 80

5.4.8 Viability . 81

5.4.9 Future Use Cases . 81

II Appendix 83

A Requirements Specification for Code Generator 84

A.1 Prioritization . 84

A.2 Use Cases . 85

A.2.1 Generate Code . 85

Output Directory . 85

Stack Project . 85

Project name . 85

Dry run . 85

Types . 85

A.3 Non-functional Requirements . 86

A.3.1 Reliability . 86

A.3.1.1 Error Tolerance . 86

Description . 86

APPENDIX J. DOMAIN DIAGRAMS 148 OpenAPI 3 Code Binding Generator for Haskell

Measure of Fulfilment . 86

Status . 86

A.3.1.2 Naming Tolerance . 86

Description . 86

Measure of Fulfilment . 86

Status . 86

A.3.2 Usability . 87

A.3.2.1 Understandability . 87

Description . 87

Measure of Fulfilment . 87

Status . 87

A.3.2.2 Learnability . 87

Description . 87

Measure of Fulfilment . 87

Status . 87

A.3.2.3 Accessibility . 87

Description . 87

Measure of Fulfilment . 87

Status . 87

A.3.2.4 Automation . 88

Description . 88

Measure of Fulfilment . 88

Status . 88

A.3.3 Efficiency . 88

A.3.3.1 Response Time . 88

Description . 88

Measure of Fulfilment . 88

Status . 88

A.3.3.2 Memory Consumption . 88

Description . 88

Measure of Fulfilment . 88

Status . 88

A.3.4 Changeability . 89

APPENDIX J. DOMAIN DIAGRAMS 149 OpenAPI 3 Code Binding Generator for Haskell

A.3.4.1 Traceability . 89

Description . 89

Measure of Fulfilment . 89

Status . 89

A.3.4.2 Availability . 89

Description . 89

Measure of Fulfilment . 89

Status . 89

A.3.5 Portability . 89

A.3.5.1 Building Process . 89

Description . 89

Measure of Fulfilment . 89

Status . 90

A.3.5.2 Usage . 90

Description . 90

Measure of Fulfilment . 90

Status . 90

A.3.6 Scalability . 90

A.3.6.1 OpenAPI Specification Size 90

Description . 90

Measure of Fulfilment . 90

Status . 90

B Requirements Specification for Generated Code 91

B.1 Prioritization . 91

B.2 Use Cases . 92

B.3 Non-functional Requirements . 93

B.3.1 Reliability . 93

B.3.1.1 Error Tolerance . 93

Description . 93

Measure of Fulfilment . 93

Status . 93

B.3.1.2 Static Analysis . 93

APPENDIX J. DOMAIN DIAGRAMS 150 OpenAPI 3 Code Binding Generator for Haskell

Description . 93

Measure of Fulfilment . 93

Status . 93

B.3.2 Usability . 93

B.3.2.1 Understandability . 93

Description . 93

Measure of Fulfilment . 94

Status . 94

B.3.2.2 Learnability . 94

Description . 94

Measure of Fulfilment . 94

Status . 94

B.3.3 Efficiency . 94

B.3.3.1 Time Efficiency . 94

Description . 94

Measure of Fulfilment . 94

Status . 94

B.3.3.2 Memory Consumption . 94

Description . 94

Measure of Fulfilment . 94

Status . 95

B.3.4 Changeability . 95

B.3.4.1 Traceability . 95

Description . 95

Measure of Fulfilment . 95

Status . 95

B.3.4.2 Availability . 95

Description . 95

Measure of Fulfilment . 95

Status . 95

B.3.5 Portability . 95

B.3.5.1 Building Process . 95

Description . 95

APPENDIX J. DOMAIN DIAGRAMS 151 OpenAPI 3 Code Binding Generator for Haskell

Measure of Fulfilment . 95

Status . 96

B.3.5.2 Usage . 96

Description . 96

Measure of Fulfilment . 96

Status . 96

B.3.6 Scalability . 96

B.3.6.1 Parallelization . 96

Description . 96

Measure of Fulfilment . 96

Status . 96

C Requirements Specification for Stripe Library 97

C.1 Use Cases . 98

C.2 Non-functional Requirements . 99

C.2.1 Usability . 99

C.2.1.1 Learnability . 99

Description . 99

Measure of Fulfilment . 99

Status . 99

D Quality Measures 100

D.1 Code Style . 100

D.1.1 Programming Guidelines/Linting . 100

D.1.2 Formatting . 100

D.2 Automated Testing . 101

D.2.1 Property Tests . 101

D.2.2 Unit Tests . 101

D.2.3 System Tests . 101

D.2.3.1 Compile Test . 101

D.2.3.2 Client Test . 102

D.2.3.3 API Test . 103

D.2.4 Feedback Loop . 103

APPENDIX J. DOMAIN DIAGRAMS 152 OpenAPI 3 Code Binding Generator for Haskell

E Test Plan 104

E.1 Test Procedure . 105

E.1.1 When will tests be carried out? . 105

E.1.2 Non-Functional Requirements . 105

E.2 Tests . 106

E.2.1 Test SYS.LIN System Test Linux . 106

Prerequisites . 106

Procedure . 106

Expectations . 106

E.2.2 Test SYS.WIN System Test Windows 106

E.2.3 Test SYS.MAC System Test macOS . 107

E.2.4 Test DOC.CGE Documentation Test Code Generator 107

Prerequisites . 107

Procedure . 107

Expectations . 107

E.2.5 Test DOC.GCO Documentation Test Generated Code 107

Prerequisites . 107

Procedure . 108

Expectations . 108

E.2.6 Test DEM.PAY Demo Test Payments API 108

Prerequisites . 108

Procedure . 108

Expectations . 108

E.2.7 Test DEM.CHE Demo Test Payments API 109

Prerequisites . 109

Procedure . 109

Expectations . 109

E.2.8 Test PAC.HAC Package Test Hackage 109

Prerequisites . 109

Procedure . 110

Expectations . 110

E.2.9 Test PAC.NIX Package Test Nix . 110

Prerequisites . 110

APPENDIX J. DOMAIN DIAGRAMS 153 OpenAPI 3 Code Binding Generator for Haskell

Procedure . 110

Expectations . 110

E.2.10 Test USA:COD Usability Test . 110

E.3 Protocol . 112

E.3.1 Notes about USA.DOC . 112

E.3.2 Conclusion . 112

F Architecture Overview 113

F.1 Demo System . 113

F.2 Code Generator . 115

F.2.1 Phases . 115

Operations . 116

ConfigurationInformation . 116

Models . 116

SecuritySchemes . 116

F.2.2 Models . 116

F.2.3 Layering . 118

F.2.4 Generator Monad . 118

Reader . 118

WriterT . 119

F.2.5 Resulting Modules . 119

F.2.6 Actual Code Generation . 119

F.3 Stripe Library . 120

F.3.1 Layers . 120

Client Code . 121

Stripe Library . 121

Generated Code . 121

HTTP Library . 121

F.3.2 Design Pattern . 121

G Installation Instructions 122

G.1 Code Generator . 122

G.1.1 Install from Source . 122

G.1.2 Install from Hackage . 123

APPENDIX J. DOMAIN DIAGRAMS 154 OpenAPI 3 Code Binding Generator for Haskell

G.2 Stripe Library . 124

G.2.1 Install from Hackage . 124

G.2.2 Example Usage . 124

G.3 Generated Code . 125

H Task Description 126

H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell 126

H.1.1 Supervisor . 126

H.1.2 Students . 126

H.1.3 Setting . 126

H.1.4 Goals . 127

H.1.5 Workload . 128

I Listings 129

I.1 Scalar Type Examples . 130

I.2 Research HTTP Library . 132

I.3 OpenAPI Tools Code Generators . 134

J Domain Diagrams 135

Addendum 139

Bibliography 140

Complete Content 142

APPENDIX J. DOMAIN DIAGRAMS 155 OpenAPI 3 Code Binding Generator for Haskell

	Abstract
	Lay Summary
	Management Summary
	Acknowledgements
	Contents
	Glossary
	Acronyms
	List of Figures
	List of Tables
	Listings
	Technical Report
	Introduction
	Initial Situation
	Goals
	Requirements
	Research / Existing Work
	Involved People

	Problem Analysis
	Code Generation
	Stripe API

	Solution Design
	OpenAPI 3
	Code Generation
	HTTP Library
	Error Handling

	Results
	Demo Server
	Publication
	Code Metrics
	Limitations

	Conclusion
	Comparison to other Work
	Lessons Learned
	Result Discussion
	Future Scope

	Appendix
	Requirements Specification for Code Generator
	Prioritization
	Use Cases
	Non-functional Requirements

	Requirements Specification for Generated Code
	Prioritization
	Use Cases
	Non-functional Requirements

	Requirements Specification for Stripe Library
	Use Cases
	Non-functional Requirements

	Quality Measures
	Code Style
	Automated Testing

	Test Plan
	Test Procedure
	Tests
	Protocol

	Architecture Overview
	Demo System
	Code Generator
	Stripe Library

	Installation Instructions
	Code Generator
	Stripe Library
	Generated Code

	Task Description
	Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell

	Listings
	Scalar Type Examples
	Research HTTP Library
	OpenAPI Tools Code Generators

	Domain Diagrams

	Addendum
	Bibliography
	Complete Content

