] HSR
HOCHSCHULE FUR TECHNIK

. . RAPPERSWIL

FHO Fachhochschule Ostschweiz

Bachelor Thesis

OpenAPI 3 Code Binding Generator for
Haskell

And its Application to Generate a Library for the Stripe Payment
System

Hochschule fiir Technik Rapperswil

Department of Computer Science

17.02.2020 - 12.06.2020

Authors Joel Fisch Supervisor Prof. Dr. Farhad Mehta
Remo Dorig External examiner Tom Sydney Kerckhove

Internal reviewer Mirko Stocker

Abstract

At the moment, there is no up-to-date client library for the online payment provider
Stripe available in Haskell. Stripe provides an OpenAPI 3 specification for its APl which
can be used to generate a client library. Currently, there is no sufficient OpenAPI 3 client
code generator for Haskell. The goal of this thesis is to create such a code generator im-
plemented in Haskell and to use it to generate and publish a client library for Stripe. To
demonstrate the usage of the generated code, a demo application was implemented
using this library. In addition, automated tests were conducted on over 2700 existing
OpenAPI 3 specifications. This approach allows easier updates in the future and lower
maintenance effort, as it enables maintainers to regenerate the library when the Open-
API specification is updated. In the future, the generator can be developed further to
support more features of the OpenAPI specification and to create libraries for other API

providers as well.

Lay Summary

Initial Situation Most applications (mobile apps, desktop applications, web applications)
used today communicate with so-called web services (also known as Web APIs). To make it
easier toimplement an application which talks to a web service, providers of Web APIs write
specifications which define in great detail what data should be sent to and can be received

from the service.

OpenAPI 3is aformat to write such specifications. It allows to describe an APl formally which
makes it possible to generate parts of the code needed to communicate with the web service.
This could be done manually as well, but it is labour-intensive to update a so-called client
library every time the provider adds a new feature to the API. If a code generator is used
instead, the only thing which has to be done is to use (the newly published version of) the

API specification and transform it into code using the generator.

Haskellis a programming language for which no sufficient generator exists to fulfill this task.
A generator would help the Haskell community to keep the client code for APIs such as the
online payment provider Stripe up-to-date and to create libraries for other web services as
well. Therefore, the goal of this thesis is to create a code generator which can transform an

OpenAPI 3 specification into Haskell code.

Approach [Technology The code generator itself is implemented using Haskell as well.
This code generator was used to generate a client library for Stripe which can be used to
do online payments. To showcase the usage of this library, a small demo application was

implemented using this library.

To ensure the correctness of the generated code, several types of automated tests were used.
These tests check, for example, if the generated code can be transformed to an executable

application.

Results Allthree parts (code generator, Stripe library and demo application) were success-
fully developed within this thesis. There are some limitations to the generator which could
be addressed in the future to support more of the features provided by OpenAPI 3. To im-
prove the development flow using the generated code, a documentation for the code can be

generated which makes it easy to discover the possibilities of the API.

Conclusion The created code generator allows to update the generated Stripe library (and
other libraries using the generator) easily and with low maintenance effort. Additionally, it
can be used to create new libraries for Web API with an OpenAPI 3 specification. Different
members of the Haskell community either plan to use the library to implement commercial

software or plan to join forces to create an even better version of the code generator.

Management Summary

Initial Situation Most applications used today communicate with web services. These
web services often use a formally defined format called OpenAPI 3 to specify the features

of the service which makes the implementation of client applications easier and cheaper.

An OpenAPI 3 specification can be transformed into client code using a code generator to
prevent repetitive development effort. For many languages there are such generators, but
forthe programming language Haskell there is no sufficient generator, resultingin high main-
tenance costs for client libraries and out-dated versions as it is the case for the community-

developed library for the online payment provider Stripe.

The goal of this thesis is to create a code generator which can be used to transform an Open-
API 3 specification into Haskell code and generate an up-to-date version of a Stripe client

library.

Approach [Technology The code generator itself is implemented using Haskell as well.
This code generator was used to generate a client library for Stripe which can be used to
do online payments. To showcase the usage of this library, a small demo application was
implemented using this library. To ensure the correctness of the generated code, several

types of automated tests were used on around 2700 specifications.

Results Allthree parts (code generator, Stripe library and demo application) were success-
fully developed within this thesis. There are some limitations to the generator which could
be addressed in the future to support more of the features provided by OpenAPI 3. To im-
prove the development flow using the generated code, a documentation for the code can be

generated which makes it easy to discover the possibilities of the API.

Conclusion The created code generator allows to update the generated Stripe library (and

other libraries using the generator) easily and with low maintenance effort.

Acknowledgements

We thank the following people sincerely for their support:

« Prof. Dr. Farhad Mehta for his constant support and feedback as supervisor, his time
answering our questions and interesting conversations, whether regarding the bach-

elor thesis or about something else.

« Tom Sydney Kerckhove for sharing his insights regarding Haskell and his constant

interest in the project.
+ AnneMarie O’Neill for correcting the English parts of the documentation.

« Claudia Fisch for correcting the German parts of the documentation.

Contents

Abstract i
Lay Summary ii
Management Summary iv
Acknowledgements v
Contents Vi
Glossary ix
Acronyms xi
List of Figures xii
List of Tables Xiii
Listings Xiv
I Technical Report 1
1 Introduction 2

1.1 Initial Situation L e e e e 2

1.2 Goals . . v e e e e e e e e e e e 5

1.3 Requirements e e e e e e e e 7

1.4 Research/ExistingWork 8

1.5 InvolvedPeople. e e 11

Vi

Problem Analysis

2.1 CodeGeneration @ e
2.2 Stripe APl . . e e

Solution Design

3.1 OpenAPI3 e e e e e
3.2 CodeGeneration
3.3 HTTPLibrary i e e .
34 ErrorHandling
Results

4.1 DemoServer
4.2 Publication e
43 CodeMetrics i v v i i e e e
4.4 Limitations e e e
Conclusion

5.1 ComparisontootherWork
522 Lessonslearned
5.3 ResultDiscussion
54 FutureScope e
Appendix

Requirements Specification for Code Generator

A.l Prioritization o o
A2 UseCases i i i i i it e e e e e e
A.3 Non-functional Requirements

Requirements Specification for Generated Code

B.1 Prioritization
B.2 UseCases i v i i ittt e et et e e
B.3 Non-functional Requirements

Requirements Specification for Stripe Library

vii

.........

.........

.........

.........

.........

12
13
23

29
30
44
48
58

60
61
63
64
66

69
70
73
7
79

83

84
84
85
86

91
91
92
93

97

C.2 Non-functional Requirements 99
D Quality Measures 100
D.1 CodeStyle. i i i i e e e e e e e 100
D.2 AutomatedTesting i i i i e e e e 101
E TestPlan 104
E.1 TestProcedure @ & i i i i i i e e e e e 105
E.2 Tests i e e e e e e e e 106
E3 Protocol i i e e e e e e e 112
F Architecture Overview 113
F.1 DemoSystem o i i i e e e e e e e e 113
F2 CodeGenerator v v v v i i e e e e e e e e e e e e e 115
F.3 StripeLibrary o . e e e e 120
G Installation Instructions 122
G.1 CodeGenerator v v v i i i i i e e e e e e e e e e e 122
G.2 StripelLibrary e e e e 124
G.3 GeneratedCode i i e e e e e e e e e 125
H Task Description 126
H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell 126
I Listings 129
.1 ScalarType Examples i i i i e 130
.2 ResearchHTTPLibrary i i et 132
.3 OpenAPlToolsCodeGenerators« v v i i v i i it iee . 134
J Domain Diagrams 135
Addendum 139
Bibliography 140

viii OpenAPI 3 Code Binding Generator for Haskell

Complete Content 142

ix OpenAPI 3 Code Binding Generator for Haskell

Glossary

Apache Apache as referenced in this thesis is a web server. See https://httpd.apache.org/.
62,113

ASCIl The American Standard Code for Information Interchange is a character encoding us-

ing seven bits. 86

AST An abstract syntax tree (AST) is the representation of a program as data (tree structure)

in contrast to a textual representation. 44, 45, 46,47, 119

Cabal Cabal is a system for building and packaging Haskell libraries and programs. See
https://www.haskell.org/cabal/. 110, 112

GHC The Glasgow Haskell Compiler is the main compiler for Haskell. 4, 35, 44, 101

Hackage Hackage is a package repository for Haskell, used by tools like Stack and Cabal.
See http://hackage.haskell.org/. 63, 81, 109

Haddock Atoolforautomatically generatingdocumentation from annotated Haskell source
code. https://www.haskell.org/haddock/ 26, 44, 68, 78, 101

language extension Alanguage extension of Haskell extends the language with some func-
tionality. Language extension can be activated on afile level. See https://wiki.haskell.

org/Language_extensions. xiv, 8, 35, 46, 73, 134

Monad Monads in Haskell can be thought of as composable computation descriptions. See

https://wiki.haskell.org/Monad for more information. 11,59, 118

Nginx Nginxis a web server. See https://www.nginx.com/. 62

https://httpd.apache.org/
https://www.haskell.org/cabal/
http://hackage.haskell.org/
https://www.haskell.org/haddock/
https://wiki.haskell.org/Language_extensions
https://wiki.haskell.org/Language_extensions
https://wiki.haskell.org/Monad
https://www.nginx.com/

property-based testing Tests that focus on the properties of functions. These properties

are automatically tested with sophisticated random inputs. 5, 77, 79

SEPA The Single Euro Payments Area is a payment-integration initiative of the European
Union for simplification of bank transfers denominated in euro. See https://www.sepa.
ch/en/home.html. 62

Stack Stackisacross-platform program fordevelopingHaskell projects. Itisaimed at Haskellers
both new and experienced. Often used instead of cabal. See https://docs.haskellstack.
org/en/stable/README/. 85, 106

GLOSSARY Xi OpenAPI 3 Code Binding Generator for Haskell

https://www.sepa.ch/en/home.html
https://www.sepa.ch/en/home.html
https://docs.haskellstack.org/en/stable/README/
https://docs.haskellstack.org/en/stable/README/

Acronyms

ADT Algebraic data type. 44, 59

API Application programming interface. 2, 24,92, 115

CD Continuous Deployment. 73,75
Cl Continuous Integration. 63,73, 75

CLI Command Line Interface. 58, 65, 85, 88,102, 119
ERP Enterprise resource planning. 2

HSR Hochschule fiir Technik Rapperswil. 113
HTTP HyperText Transfer Protocol. 2, 20, 30, 48, 49, 54, 55,59, 61, 94, 103, 113, 121, 145

HTTPS HyperText Transfer Protocol Secure. 30, 49, 61

JSON JavaScript Object Notation. 2,9, 14, 30, 33, 35,52, 61, 62, 66, 79, 85, 86
MIT Massachusetts Institute of Technology. 89

SPA Single-page application. 62

UML Unified Modeling Language. 21

XML Extensible Markup Language. 14, 25, 30, 66

YAML YAML Ain’t Markup Language. 64, 85, 86, 88, 106

Xii

List of Figures

2.1
2.2
2.3
2.4
2.5

D.1
D.2
D.3

F.1
F.2
F.3
F.4
F.5
F.6
F.7

J.1
J.2
J.3

Workflow Code Generation. i 14
Domain model of the OpenAPIschema 15
Domain model of the OpenAPI Specification in regard to the operations 19
Informal domain model of the generatedcode 22
Sequence diagram of an online purchase with Stripe 28
Workflow Compile Test o o i e e e e 102
Workflow ClientTest i i e e e e 102
Workflow APITest e 103
Demo system deploymentdiagram 113
Workflow Code Generation. o v i i it e 115
Phasesofthecodegenerator 115
Flow of the code generationofmodels 117
LayersforCode Generator o v v v v v i i i e e e e e e 118
Workflow Code Generator for Stripe Library 120
Layers for Stripe Library e e e e 120
Complete Domain model of the OpenAPI Specification 136
Domain model of the OpenAPI Specification without referencetypes 137
Informal domain model of the generated code as originally theorized 138

Xiii

List of Tables

3.1 Code generation method comparison

E.1 Testprotocol @ @ e e e

Xiv

Listings

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
l.1
1.2
1.3
1.4

OpenAPlexamplearray o v i i i i i e e e e e e e e 32
OpenAPl Haskellexamplearray 32
OpenAPlexampleobject 34
OpenAPl Haskell exampleobject 34
OpenAPI Haskell example object (disregarded plan) 36
OpenAPlexampleoneOf e 37
OpenAPl Haskell exampleoneOf 38
OpenAPlexampleallOf i e 39
OpenAPl Haskell exampleallOf 40
OpenAPlexampleanyOf e 41
OpenAPl Haskell exampleanyOf 42
http-client example from http-clientitself 49
http-client example from http-clientitself 51
http-conduit example with Network. HTTP.Simple 53
http-conduit example with streaminginterface 54
ServantExample L e 56
OpenAPlexamplescalartypes o i i i i e 130
OpenAPl Haskell example scalartypes 131
Servant: Queryingan APl e 132
Language extensions used by the generated code from OpenAPI Tools 134

XV

Part |

Technical Report

Chapter1

Introduction

1.1 Initial Situation

Most larger IT systems have a need to communicate with other systems. For example if a
customer makes an order in an online shop, then the online shop may send the order to a
ERP-system orif a button on a mouse is pressed, a signal to the computer is sent. These com-
munications happen mostly over different interfaces, in case of (web-)applications these are
called API. For systems working within the web it is common to have an APl using HTTP and
to send information in the form of JSON. How an APl works, where it receives data, where it
sends data, which form the data has, etc. can be formally specified. Many companies specify

their APIs with OpenAPI, for example Stripe.

With an OpenAPI specification an API can be described in a standardized, machine readable
way. As a result, it is possible to generate code in a desired programming language which
can use the API. Code binding generators exist for a number of languages *, but there is cur-
rently no suitable code generator for Haskell. See section 1.4 Research / Existing Work for
the reasons why they are not suitable for this project (Code does not compile, no support for

OpenAPI version 3.0).

The current Haskell library for Stripe ? is hardcoded to an old version of the API 3. This li-
brary is coded manually, which makes it labor intensive to update. A Haskell library which

is automatically generated and supports the most recent Stripe APl version is desired. And

Lhttps://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md
Zhttps://github.com/dmijio/stripe
3https://github.com/dmijio/stripe/blame/e00910f59b065bc68335¢3f91d956ec0c662b0b4/README.md

https://github.com/OAI/OpenAPI-Specification/blob/master/IMPLEMENTATIONS.md
https://github.com/dmjio/stripe
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md

therefore a Haskell code generator is desired. Stripe provides an OpenAPI 3.0 specification

for its API at https://github.com/stripe/openapi.

The development of an OpenAPI code binding generator for Haskell could be used to gen-
erate an easy to maintain Haskell library for Stripe and could also have much broader use

within the Haskell community.

The full original task description can be found in the appendix 2?2.

1.1.1 OpenAPI 3.0

The OpenAPI Specification (originally known as the Swagger Specification) is a specification
for machine-readable interface files for describing, producing, consuming, and visualizing
web services. Itis claimed to be a broadly adopted industry standard for describing modern
APIs. The bachelor thesis works with the current OpenAPI version, which is 3.0.2, released
on 08.10.2018.

1.1.2 Code Generators

Code generators can be used to generate code in a programming language from an input
(typically a file / specification). Some code generators are used to create a basis of a project,
which then can be manually extended. For this project the generated code is intended to be
a self contained package, so that it can be updated when the specification is updated. An
API defined by a OpenAPI specification has a client side and a server side. To work with the

existing Stripe API, only a client side code generator is needed.

CHAPTER 1. INTRODUCTION 3 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi

1.1.3 Haskell

Haskell is a general-purpose, statically typed, purely functional programming language with
type inference and lazy evaluation. Developed to be suitable for teaching, research and in-
dustrial application, Haskell has pioneered a number of advanced programming language
features, especially in the area of type systems. Haskell is used in a number of applications
where efficiency and reliability are valued, particularly in the financial sector. The bachelor
thesis works with the current version of the Haskell development environment GHC, which

is 8.8.2, released on 16.01.2020.

1.1.4 Stripe

Stripe is a company that provides technical, fraud prevention, and banking infrastructure
required to operate online payment systems. Stripe provides an API that web developers
can use to integrate payment processing into their websites and mobile applications. Stripe

provides an OpenAPI 3.0 specification for this APl at https://github.com/stripe/openapi.

CHAPTER 1. INTRODUCTION 4 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi

1.2 Goals

The original goal description can be found in the appendix ??. The focus of this thesis is to

create a working solution and not only a feasibility study.

1.2.1 OpenAPI Code Binding Generator

The primary goal of the project is to create an OpenAPI code binding generator for Haskell
written in Haskell. With this tool, code bindings can be generated to interact with an OpenAPI
specified API. The primary goal of the code binding generator is not to generate code for an

APl server, but to generate code to talk to an API server.

1.2.2 Haskell Library for Stripe API

With the code binding generator, a library for the Stripe API should be implemented. It
should be possible to handle online payments with the library. The library should be easy to

update if the Stripe OpenAPI specification is changed.

1.2.3 Demo Application

To prove that the library works, a simple working demo application that uses the produced

Stripe API library for simple online payments should be implemented.

1.2.4 Requirements for the Implementation

Special care must be taken to take advantage of the advanced features of Haskell’s type sys-
tem to enforce data consistency at compile time, as well as the current state of the art in
Haskell development (e.g. property-based testing). At the same time, the resulting tools
must be understandable, usable and maintainable by a wide community of Haskell devel-

opers.

While developing the OpenAPI code binding generator, priority should be given to parts of

the OpenAPI specification that are necessary to generate the code bindings required for the

CHAPTER 1. INTRODUCTION 5 OpenAPI 3 Code Binding Generator for Haskell

Haskell Library for Stripe API. This is the minimum subset of theOpenAPI specification that

must be supported *.

All product documentation must be in English, and in a form that is appropriate for contin-
ued development, publicly or otherwise. Project documentation that is not relevant to the

continued development of the project may be in German.

“Note that the Stripe OpenAPI specification also uses Stripe specific extensions to the OpenAPI specifica-
tion.

CHAPTER 1. INTRODUCTION 6 OpenAPI 3 Code Binding Generator for Haskell

1.3 Requirements

For this project three different sets of requirements exist for the code generator, the gener-

ated code and the Stripe library.

« Appendix A Requirements Specification for Code Generator
« Appendix B Requirements Specification for Generated Code

« Appendix C Requirements Specification for Stripe Library

CHAPTER 1. INTRODUCTION 7 OpenAPI 3 Code Binding Generator for Haskell

1.4 Research [Existing Work

Previous work has been carried out in the field of OpenAPI, Stripe and Haskell. This chapter

looks at existing work and examines if something useful can be learned.

1.4.1 OpenAPI Tools Code Generators

OpenAPI Tools ° already have an OpenAPI version 3.0 compatible Haskell code generator '
[16].

1.4.1.1 Stripe OpenAPI file

OpenAPI Tools Code Generators can successfully build Stripe API clients and servers if the
OpenAPI validation is disabled, but for neither does the generated code compile. The server
code fails to generate valid names for anyOf expressions and the client code does not use
type names uniquely &. The server uses Servant 7. Servant allows to define the APl as a type
and looks very promising for this project as well. The client uses http-client [10] and creates
a custom function for every operation. Since this project is about building a client library,

the generated client is of more interest.

The client represents simple data structures as records with the lens-library [13] and gener-
ates functions to create a record with every non Maybe value. Separate anyOf types are used
for the expandable fields, but the types are never declared. The client uses many language
extensions Listing |.4. QuickCheck [17] tests are generated to test the json serialization and

deserialization.

1.4.1.2 Complex Example OpenAPI File

To explore how the generator generates complex types (oneOf, anyOf, allOf) and value con-

straints (minLength, maxLength), a custom OpenAPI file was created. Thefile is in the repos-

5https://github.com/OpenAPITools
6https://openapi-generator.tech/docs/generators/haskell-http-client
Thttps://openapi-generator.tech/docs/generators/haskell

8The type names also look wrongly generated but are valid.
https://docs.servant.dev/en/stable/index.html

CHAPTER 1. INTRODUCTION 8 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/OpenAPITools
https://openapi-generator.tech/docs/generators/haskell-http-client
https://openapi-generator.tech/docs/generators/haskell
https://docs.servant.dev/en/stable/index.html

itory.

AoneOf type gets represented as an Aeson '° value, which means it is not safely typed.

An anyOf type gets represented the same as a oneOf type, which means it is not safely

typed.

An allOf type generates a new type with the fields of all the subtypes.

Anot type gets represented the same as a oneOf type, which means it is not safely typed.

minLength, maxLength and other constraints are ignored.

date and date-time are represented as custom newtype for JSON serialization and dese-

rialization which wrap Data.Time types.

nullable types are represented with the help of a Maybe type.

enum are represented as algebraic data types with custom serialization and deserializa-

tion functions.

1.4.2 servant-swagger

servant-swagger ' can generate a Swagger specification (aka. OpenAPI version 2.0) from
Servant API definitions. An analysis of this tool is not very useful for this project because this

project generates code from a specification and not the other way around.

Ohttps://hackage.haskell.org/package/aeson
Uhttps://hackage.haskell.org/package/servant-swagger

CHAPTER 1. INTRODUCTION 9 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/aeson
https://hackage.haskell.org/package/servant-swagger

1.4.3 Stripe API Coverage for Haskell by dmjio

A Stripe API library for Haskell exists'?, but it does not support current versions . It does

not use auto generated code.

The library uses http-client [10] and http-streams ** for communication and hspec *° for test-
ing. For expandable types from an expand request, a custom expandable type family is
used. '® Other more complex types do not exist. JSON serialization and deserialization is
written manually. Some helper functions are written which use primitive types for ease of

use.

https://github.com/dmijio/stripe

Bhttps://github.com/dmijio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md

4https://hackage.haskell.org/package/http-streams

Bhttps://hackage.haskell.org/package/hspec

Bhttps://github.com/dmijio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/
Web/Stripe/Types.hs

CHAPTER 1. INTRODUCTION 10 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/dmjio/stripe
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md
https://hackage.haskell.org/package/http-streams
https://hackage.haskell.org/package/hspec
https://github.com/dmjio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/Web/Stripe/Types.hs
https://github.com/dmjio/stripe/blob/5dfc9b2a54f42a2e271f2d1535414016edd1c2a9/stripe-core/src/Web/Stripe/Types.hs

1.5 Involved People

Apart from the students conducting this bachelor thesis, there were four people involved:
the supervisor Prof. Dr. Farhad Mehta, the external examiner Tom Sydney Kerckhove, the

internal review Mirko Stocker and Markus Schirp.

Feedback from Prof. Dr. Farhad Mehta is documented in the meeting minutes and consists
mostly of project related advice (regarding planning and the process). Tom Sydney Kerck-
hove gave inputs in the form of several code reviews and conversations via e-mail. It is de-
noted where his inputs directly led to changes. Everything not referenced anywhere else is

listed below.

« Do not use MonadThrow and MonadCatch.

Use WriterT instead of StateT for logs.

Directly use a Reader monad instead of a ReaderT Monad transformer.

Use Text instead of String in the generated code.

Request to add an option to transform generated names to CamelCase.

Almost at the end of the project, Markus Schirp reached out to Tom Sydney Kerckhove and
because he was developing a code generator for OpenAPI 3 as well. Several e-mail and Slack

messages were exchanged. It is mentioned, whenever this material is used.

CHAPTER 1. INTRODUCTION 11 OpenAPI 3 Code Binding Generator for Haskell

Chapter 2

Problem Analysis

This chapter describes the different problem domains present in this thesis and analyzes

them.

12

2.1 Code Generation

To master the code generation domain, four different domains have to be discerned. The
Code-Generator takes an OpenAPI-Specification and generates Generated-Code. The Open-

API specification formulates its models in an OpenAPI-Schema.

The OpenAPI-Specification and OpenAPI-Schema are illustrations of existing domains for bet-
terunderstanding. The Code-Generator and Generated-Code are illustrations for solutions as

part of this project.

Inthe following sections these domain models are shown and theimportant parts explained.

2.1.1 Code Generator Workflow

This diagramin Figure 2.1 Workflow Code Generation gives an overview of the Code Genera-

tor and how it will be used in a typical workflow.

From an OpenAPI-Specification including Schemas the Generated Code is generated. The
Schemas get converted to Models. The Generated Code can be used by other Code (in the

case of this project a Stripe library).

CHAPTER 2. PROBLEM ANALYSIS 13 OpenAPI 3 Code Binding Generator for Haskell

Schema Models
yaml | ———— Code- hs | —— GHC
Generator

OpenAPI- Generated
Specification Code
T .hs
uses

Client-Code

Figure 2.1: Workflow Code Generation

2.1.2 OpenAPIl Schema

Theinformation of this section is from the OpenAPI specification [14] and the JSON Schema [12].

The OpenAPI specification uses a modified version of the JSON Schema, which is used to
validate and specify JSON and XML formats. For this project it is important how code can
be generated, which can hold models conforming the specification. The Figure 2.2 Domain

model of the OpenAPI schema draws the domain in an UML diagram.

CHAPTER 2. PROBLEM ANALYSIS 14 OpenAPI 3 Code Binding Generator for Haskell

BWAYDS [dyuadQ ay3 O |9pow urewo(

]
1
mEmEm‘me_@i

]
1
mEmEm‘mmE_@i

]
]
mEmEm‘mE:un@i

]
]
EBLBYIS _mu:@i

—

]
|
mEmSm memE©7

[|
mEm;um FELTITY] ©

|
|
BLIBLIS 3Ll L-3leq @_

]]
1 [1 [1 1
_mEm;um Smn©7 _mEmSmstﬁ“@i _mEmSm msg@i _mEmEm n._ssmmmn_©7

~

v

7'z2Indi4

Jozjdnnw
RS e e
wn wiw yiBua LW =
WNWIRNIAISN|3X3 yaBuaxew Buiddew 4
euiau3s wesieos (J) wnupe -
BLUBLIS BULIS| H I T
BLBYIS u__mE:z@ T
S s
— — — 10 v

19y mEmEm@

SuenAvadold
EEEE::E@
vt wo
10 10 Vi
[] |] []
[1 | 1 [1
_aemﬁﬂo_z.@_ _mgmsm Po%o©_ _mgguﬂoza@i

aiduexa
Augaim
Auopea
jou
alqe|inu
wnua
paunba

\
nalao mswzum@

usg

T paweu

=

sa(LzdogUIW
H sajuadod e

ssiuzdolgBuonIppe

1uadodd paiinbal

Swalxew

BLWBLYIS :mﬁo@

mEmEm)ﬂb&@

SEW3IS JO mEmEm@

sadAy uoipagod

OpenAPI 3 Code Binding Generator for Haskell

15

CHAPTER 2. PROBLEM ANALYSIS

2.1.2.1 Reference Types

A schema can either be a schema or a reference to another schema. These references can be
circular.

2.1.2.2 Schema Object

All other types inherit Schema Object which defines some meta information.

writeOnly [readOnly With these properties a schema may define thatitis only used when
sending or retrieving data from a service. This essentially splits up the parent schema into
two different models.

2.1.2.3 Scalar Types

There are a number of primitive types which should be easily expressible in their correspond-
ing Haskell primitive types. Contrary to the standard JSON schema one can specify if an

integer should be int32 oder int64, the same goes for the floating value types.

2.1.2.4 Array Schema

Defines a collection with items always corresponding to one single schema. If an array can

have two different types, a OneOf Schema can be used.

2.1.2.5 Object Schema

This defines an object and is not to be mistaken with the Schema Object. An object may
hold certain properties corresponding to a schema. Additional properties which cannot be

named directly all correspond to the same schema.

CHAPTER 2. PROBLEM ANALYSIS 16 OpenAPI 3 Code Binding Generator for Haskell

2.1.2.6 Inheritance / Polymorphism

Further information:

https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/

AUOf Schema This schema can be used for inheritance / model composition. The schema

incorporates all properties from the included schemas.

OneOf Schema This schema defines that a value must correspond to one schema of a col-
lection of schemas, but it cannot correspond to more than one schema. The type Any can be

represented as a OneOf Schema.

AnyOf Schema This schema is a mix of the AllOf Schema and the OneOf Schema. The
schema must at least match one of the subschemas, but additional properties from other

subschemas may be included.

Discriminator To differentiate better between subschemas, a discriminator property and

a mapping from values to subschemas may be defined.

CHAPTER 2. PROBLEM ANALYSIS 17 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/inheritance-and-polymorphism/

2.1.3 OpenAPI Specification

This model defines the OpenAPI specification [14] as is. This model will be transformed into

the Generated-Code model. The Schema corresponds to the the model of subsection 2.1.2.

The Figure J.1inthe appendix refers to the complete specification. Thisincludesinformation
which is targeted for humans and not tools, such as examples and documentation and some

meta information like server. This information may be useful to document generate code.

The Figure J.2 in the appendix refers to the complete specification without the reference
types. Reference types can be either a concrete entity or a reference to this entity. For the
purpose of modelling, it mostly distracts from more important information, but it should not

be dismissed. References can be circular.

The Figure 2.3 refers to the specification in regards to the operations. This model is most

useful to understand the problem domain for the generation of the code.

CHAPTER 2. PROBLEM ANALYSIS 18 OpenAPI 3 Code Binding Generator for Haskell

t Paramerer Object

‘©Cnnk\e Parameter omml

‘@Fa{h Parameter omeul

L—
Ro-1
=
‘@Headsr Parameter omenl

‘©Quer\/Parzmeler ObJeul

(©) rarameter
name
0.1 |in
famed /

‘@ Responses omeul

(©)operation Object

Schema Object]

er method

Security Requirement Object]
e | @ secumyea e
L
[)
(mh valuess
o

Figure 2.3: Domain model of the OpenAPI Specification in regard to the operations

(©)pann e

CHAPTER 2. PROBLEM ANALYSIS 19 OpenAPI 3 Code Binding Generator for Haskell

2.1.3.1 Operation

An operation entity encapsulates an action (GET, POST, PUT, etc...) to a path. It has parame-
tersin different places and a request body depending on the media type. It may produce dif-
ferent results depending on the HTTP status code and media type. Request body, response

body, parameters and header parameters can correspond to a schema.

2.1.3.2 Parameters

Parameters to an operation can be in the query, the path, in a cookie or in a header. Pa-
rameters can refer to a schema. Parameters can have different styles of serialization and

deserialization.

2.1.3.3 Link

Using links, one can describe how various values returned by one operation can be used as
input for other operations. Runtime expressions variables from the request and response

can be referenced.

2.1.3.4 Security

The OpenAPI specification allows different security authentication methods' specified for

different operations.

Basic Authentication is the normal Basic Authentication with base64 encoding. Uses the

standard Authorization header.

Bearer Authentication Uses the standard Authorization header. The format of the token
can be described, but in the scope of the OpenAPI specification is only used for documenta-

tion.

lhttps://swagger.io/docs/specification/authentication/

CHAPTER 2. PROBLEM ANALYSIS 20 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/authentication/

APl Keys APl keysare parameters which will be sent on every request requiring the security

schema. Similar normal parameters, they can appear in different locations.

OAuth and OpenID For OAuth and OpenlID one can specify how to get the credentials.
Some forms are entirely out of scope for this project since they require redirection of the
user. Other forms could be implemented optionally, but it is possible to use the obtained

credentials with the standard parameterization of the operations.

2.1.4 Generated Code

The model in Figure 2.4 should give an overview for how the generated code looks like. It
is not a UML specification and should be looked at informally. This does not represent the
model in which the generated code will be used. The model in Figure J.3 represents a more

correct solution. It was disregarded in favor of a simpler solution.

2.1.4.1 Operation

An operation is an action to a certain predefined path. Certain types of parameters/request

bodies and results are associated with an operation.

2.1.4.2 Domain Models

The domain models correspond to the schemas of the OpenAPI Specification. In the more
correct solution Figure J.3 the models are split up between receiving and sending data be-
cause the same schema may have different properties depending on whether it is sent or
received. Field research showed, that splitting up of models is rarely used. Those models

have to be parsed and serialized.

2.1.4.3 Call Result

A call result is either a domain result or a custom error for example when the server is not

reachable. A call result may have a result body corresponding to a model.

CHAPTER 2. PROBLEM ANALYSIS 21 OpenAPI 3 Code Binding Generator for Haskell

9p0od palelauas ay3 O |9pOoW UleWOop Jewloju] 'z 94n3i4

1
1
_mL_EmEEmn_ E_L_Emm@

"0
0
|

_:u_ﬁm‘_:m:cnu@

I
i
__”mmEmEn_ S|RPO UELLOQ @

AN

Apog nsay @ _a,n_n_m e @

yns=y (|ED :_mEuﬂ_@

—H_:mmm __mu_@

pluoelado

_:c_HmLmna@

OpenAPI 3 Code Binding Generator for Haskell

22

CHAPTER 2. PROBLEM ANALYSIS

2.2 Stripe API

See Stripe for an introduction to what Stripe is. With around 58 thousand lines, the Stripe
API OpenAPI specification is one of the largest found during research.

2.2.1 OpenAPI Features

This chapter describes some difficult OpenAPI features and if Stripe uses them [21] [20].

2.2.1.1 Security

Both basic authentication and bearer authentication can be used. They can be used for all

operations. Only basic authentication is referenced in the documentation 2.

More complex security schemas like OAuth and OpenlID can be ignored for the Stripe library.

2.2.1.2 Vendor Extensions

Stripe uses some vendor extensions [21].

x-resourceld and fixtures This extension can be ignored as it is only used in conjunction

with test fixtures which are not relevant for generating client code.

x-polymorphicResources This extension is described on the official GitHub page of the
OpenAPI specification®, but it is only used in the specs using version 2.0. Therefore, this

extension can be ignored.

x-expandableFields and x-expansionResources Many objects that hold IDs of other ob-

jects can automatically be expanded. x-expandableFields defines which fields can be ex-

Zhttps://stripe.com/docs/api/authentication
3https://github.com/stripe/openapi

CHAPTER 2. PROBLEM ANALYSIS 23 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api/authentication
https://github.com/stripe/openapi

panded. x-expansionResources defines to which resources an id can be expanded.

See https://stripe.com/docs/api/expanding_objects for a detailed explanation.

It is possible to implement the API without the help of these two extensions since the data
structures can be completely and correctly represented without them. They are useful to
validate the expand property and to document its semantics. They describe which expand
values expand which id properties to their corresponding resources. Without them it is not
clear which resources will be expanded.

2.2.1.3 Links

Links are not used and can be ignored.

2.2.1.4 Callbacks

Callbacks are not used and can be ignored.

2.2.1.5 Expressions

Expressions are not used and can be ignored.

2.2.1.6 Polymorphism

allof isnotused and can be ignored.

oneOf s used in conjunction with x-expansionResources, otherwise it is not used.

anyOf isoften usedin conjunction with x-expansionResources to either describe a resource
or an id of a resource but not solely. It is also used to give additional descriptions to refer-

enced resources.

CHAPTER 2. PROBLEM ANALYSIS 24 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api/expanding_objects

2.2.1.7 XML

XML is not used and can be ignored.

2.2.1.8 Schema Restrictions

The OpenAPI specification allows to define some restrictions on schemas which are not or
not practical to represent as types at compile time. Itis necessary to define how those restric-
tions are handled since the Haskell type system cannot support the programmer in those

cases without heavy expenses at usability.

The enforcement of the constraints has to be done on the server because clients can vio-
late them anyway. Therefore, it is generally not required to enforce them on the client. The
reason to process them anyway would be to deliver faster feedback to the user of the client
library. Since this does not help directly achieve the goals of this project, the following re-
strictions from Schema Object * are ignored within this project with the perspective that they

could be supported in the future. They are not used within the Stripe API definition.

« multipleOf

e maximum

« exclusiveMaximum
* minimum

« exclusiveMinimum
+ minLength

* maxltems

« minltems

« uniqueltems

« maxProperties

4http://spec.openapis.org/oas/v3.0.3#schema-object

CHAPTER 2. PROBLEM ANALYSIS 25 OpenAPI 3 Code Binding Generator for Haskell

http://spec.openapis.org/oas/v3.0.3#schema-object

« minProperties
* not

« readOnly

+ writeOnly

o« xml

The restrictions used in the Stripe APl and not needed for schema generation are:

+ maxLength

« pattern

The additional value generated by validating those restrictions on the client side (especially
in responses) can be neglected and therefore will only be taken into account if time allows.
At least the two restrictions used by the Stripe API should be reflected within the Haddock

documentation.

2.2.2 Demo Use Case

For the purpose of demonstration, a demo online payment must be handled.

There are two easy ways to pay online via Stripe, either using the Payments® or using the
Checkout® APIs’. With Payments an iframe is displayed and the customer does not leave the
website. With Checkout the customer is redirected to the website of Stripe and redirected
back again. Payments use Paymentintents®, Checkout uses Checkout-Sessions®. With this the
customer completes its purchase via Stripe and the website is notified if it was successful. To
securely verify that the payment is complete the status of a Paymentintent can be retrieved.

Webhooks' can be used in both cases to be independent of browser behavior.

Shttps://stripe.com/docs/payments
Bhttps://stripe.com/docs/payments/checkout

"Other ways exist, but are out of scope for the demo use case
8https://stripe.com/docs/api/payment_intents
Shttps://stripe.com/docs/api/checkout/sessions/create
Ohttps://stripe.com/docs/webhooks

CHAPTER 2. PROBLEM ANALYSIS 26 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/payments
https://stripe.com/docs/payments/checkout
https://stripe.com/docs/api/payment_intents
https://stripe.com/docs/api/checkout/sessions/create
https://stripe.com/docs/webhooks

The Figure 2.5 shows from where to where calls are made and how an online payment pro-

ceeds with Stripe.

To verify broader usage Payments and Checkout will be used. For the sake of simplicity, only

Checkout API will be used with a server side verification and both without webhooks.

CHAPTER 2. PROBLEM ANALYSIS 27 OpenAPI 3 Code Binding Generator for Haskell

Demo Website I Cemo backend Stripe-API Stripe-Webkpage
customer

alt [with webhooks]

set up webhook
POST /v1/webhook _endpoints

! ! ! 1
| | | 1
| | |]
| | | 1
| | |]
i i i i
| | __I]
I T Fall] i
| | |]
wants to pay something | | | '
i i i |
| customer intents payment ;_—: : X
| | |]
alt [Checkout] : : : '
: : : POST /v1/payment_intents ‘__: :
| | T |]
| | e id | :
| | = | 1
| L d I | |
| (I | | |
:{ redirects to Stripe | | | X
1] L 1
[Payment] | | | :
: : : POST vl/checkout/sessions ,__: :
I I T | i
)) | id) |
| | = 1]
| | id | | :
i [i i i
:_, shows iframe from Stripe | : : X
i i i i |
' completes payment ! ! ! !
| | | | 1
' redirects to Demo Website ! ! !
I--.L | | |]
| 1 _informs completion I I |
| [3 F t 1
| | | | 1
: alt : [verify payment in backend] : : :
\ | werify >: \ X
| | | |]
| | al | [Payment] | :
: : : GET Jvl/payment_intents/:id ‘: :
| | i i I
| | alt | [Checkout] | '
: : | GET /v1/checkout/session/ id ‘_: '
| | i i I
| | :_{ status ! '
i i
| | | | 1
\ | alt | with webhooks | ! !
\ \ i Motifies webhook X X
| | — |
| | 1

|
custormner Demo backend ‘ Stripe-API | | Stripe-Webpage

Figure 2.5: Sequence diagram of an online purchase with Stripe

CHAPTER 2. PROBLEM ANALYSIS 28 OpenAPI 3 Code Binding Generator for Haskell

Chapter 3

Solution Design

In this chapter, different areas needed for a working solution satisfying the requirements
are examined and solutions are worked out. Where needed, multiple options are weight up

against each other, and a decision is documented.

29

3.1 OpenAPI3

This chapter evaluates the required Haskell features for the OpenAPI specification. This anal-
ysis stems mainly from the analysis in subsection 1.1.1 OpenAPI 3.0 as also from section 2.1
Code Generation, especially chapters 2.1.2 and 2.1.3. The feature set of a generator from

openapi-generato.tech [15] was also used.

3.1.1 HTTPCalls

Since OpenAPI specification is a specification on top of HTTP, the code generators need to
be able to execute and understand HTTP calls. Because the generator will be used for client
applications only, outgoing calls need to be supported. There are numerous HTTP libraries

for Haskell, see section 3.3 HTTP Library for more information.

1. AlLHTTP methods and custom methods need to be supported.

2. HTTPS needs to be supported.

3.1.2 Data Formats

As default datais sentas JSON but can also be sent as XML. Extensions for OpenAPI specifica-
tion can also allow other formats, for example Protocol Buffers*. Stripe also uses application/x-
www-form-urlencoded and multipart/form-data for sending data, however multipart/form-

data is used seldom.

3.1.3 Data Models

OpenAPI data models are defined by schemas. See 2.1.2 for their domain model. These

schemas should be represented in an easy to use type safe way.

For the following sections there are code examples after the text when applicable. Because

of their size, they are mostly on the next page respectively. The code examples are not gen-

!Protocol Buffers and specification language developed by Google: https://developers.google.com/
protocol-buffers

CHAPTER 3. SOLUTION DESIGN 30 OpenAPI 3 Code Binding Generator for Haskell

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers

erated, they put emphasis on the logic of implementation and understandability.

3.1.3.1 References

References will be represented as a reference to a type, only concrete schemas will create
new types. This means that the name of a type must be discoverable from the reference. For
anyOf, oneOf, allOf references will have to be resolved. The integrity of references will not
be checked.

3.1.3.2 Naming and Ordering

For the created Haskell types meaningful names are needed which are valid Haskell type-
names, type-constructors or record-field-names. An OpenAPI type can have a title attribute
which is not required to be unique. Another variant is to use the path/component in which
the type was declared. Different existing code generator [15] provide the user with the pos-

sibility of configuring naming and ordering information.

3.1.3.3 Scalar Types

Mapping the scalar OpenAPI types to Haskell types is relatively straightforward, it must be
considered that per default numbers do not have a fixed size and that strings are unicode
strings. JSON encoding and decoding should also be straightforward. Examples for scalar

types can be found in the appendix I.1.

date and date-time are strings but they represent “time” types. The time ? library seems

to be the canonical library for time management [23] and will therefore be used.

2http://hackage.haskell.org/package/time

CHAPTER 3. SOLUTION DESIGN 31 OpenAPI 3 Code Binding Generator for Haskell

http://hackage.haskell.org/package/time

3.1.3.4 Arrays

OpenAPI arrays can be mapped to Haskell lists and because they are polymorphic there is

no need to differentiate between lists of different items.

1# ["hello”,”world”]
2 type: array
3 items:

4 type: string

Listing 3.1: OpenAPIl example array

1 {-# LANGUAGE OverloadedStrings #-}

3 module ExampleArray where

5 import qualified Data.Text as T

7 example :: [T.Text]

s example = [”hello”, "world”]

Listing 3.2: OpenAPI Haskell example array

CHAPTER 3. SOLUTION DESIGN 32 OpenAPI 3 Code Binding Generator for Haskell

3.1.3.5 Objects

OpenAPI Objects can be mapped to Haskell records.

Duplicate record-fields are not possible in the same module, since a field generates a func-
tion in the namespace of the module. This is crucial for auto generated code. Each field has

to be prefixed with the record name to avoid name collision.

Code for JSON encoders and decoders has to be generated. Encoders and decoders for other
formats can rely on JSON encoders and decoders. They could be autogenerated with either

Template Haskell or deriving Generics, but the penalty in compilation time is too high.

For this project using simple records is the least complex and most manageable variant.

CHAPTER 3. SOLUTION DESIGN 33 OpenAPI 3 Code Binding Generator for Haskell

1

2

3

4

5

(o))

16

17

18

19

20

21

22

23

24

25

type: object
properties:
id :
type: integer
trustworthy:
type: boolean

nullable: true

Listing 3.3: OpenAPl example object

{-# LANGUAGE OverloadedStrings #-}

module ExampleObject where

import Data.Aeson

data Example
= Example

{ exampleId

Maybe Integer,

exampleTrustworthy :: Bool

}

deriving (Show,

Eq)

instance ToJSON Example where

toJSON obj =
object
[7id” .= exampleId obj,
trustworthy” .= exampleTrustworthy obj
]

instance FromJSON
parseJSON =
withObject

”Example”

(\obj -> (Example <$> obj

Example where

2?7 7id”) <*> obj .: ”"trustworthy”)

Listing 3.4: OpenAPI Haskell example object

CHAPTER 3. SOLUTION DESIGN

34

OpenAPI 3 Code Binding Generator for Haskell

Disregarded Plans Throughout development the object implementation plan has under-

gone drastic changes.

Since GHC version 8.0, there is a language extension DuplicateRecordFields [6] to solve the
problem of duplicate record fields. Prefixing all fields has the disadvantage that it is verbose.
But even with DuplicateRecordFields, the compiler often complains about ambiguous usage
of the record access functions and the types have to be made explicit, either with a separate
helper function or by annotating the object with its type every time it is used. During de-
velopment DuplicateRecordFields has been used for the models of the generated code. The
overhead for generating helper functions compared to the verbosity of prefixed fields turned

out to be too large.

Deriving JSON encoders and decoders with prefixed data structuresis possible. The function
fieldLabelModifier* can for example be used with the aeson package. During development
the compilation effort was so high, that the computers * used for development could not
finish the compilation. To decrease compilation time, code for JSON encoders and decoders

has to be generated.

Another problem is that nested updates use a verbose syntax. The Haskell community has
already created libraries to work around this, most notably lens [13]. The lens library can
automatically generate lenses for both prefixed (makeFields) and not prefixed ° (makeField-
sNoPrefix) version °. Because of feedback from Tom Sydney Kerckhove [3] and the compila-

tion effort necessary for lens, lens got disregarded.

For this project using the lens library in conjunction with the Haskell language extension
DuplicateRecordFields seemed the least verbose and complex variant in the beginning but
prefixed field names were much more practical in the end due to the reasons mentioned

above.

3‘https://hackage.haskell.org/package/aeson—1.4.6.O/docs/Data—Aeson.html
4The computers have at least 24gb of RAM

5The ”not” prefixed variant still needs an underscore as a prefix
®https://hackage.haskell.org/package/lens-4.16/docs/Control-Lens-TH.html

CHAPTER 3. SOLUTION DESIGN 35 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/aeson-1.4.6.0/docs/Data-Aeson.html
https://hackage.haskell.org/package/lens-4.16/docs/Control-Lens-TH.html

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3

4

11

12

13

module ExampleObject where

data ExampleObject
= ExampleObject
{ id :: Integer,
trustworthy :: Maybe Bool
}
deriving (Show, Eq, Ord)

exampleObj :: ExampleObject

exampleObj = ExampleObject 7 (Just True)

Listing 3.5: OpenAPI Haskell example object (disregarded plan)

CHAPTER 3. SOLUTION DESIGN

36

OpenAPI 3 Code Binding Generator for Haskell

1

2

3

4

(¢4}

10

11

12

13

3.1.3.6 oneOf

The oneOf OpenAPI type can be mapped to algebraic Haskell data types. OpenAPI subtypes

are always uniquely identifiable, it is not possible that a data structure can be of more than

one subtype. If discriminators and a mapping is present, they can be used to name the type

constructors.

one0f:
- type: object
properties:
bark:
type: boolean
age:
type: integer
- type: object
properties:
length:
type: integer
height:

type: integer

Listing 3.6: OpenAPl example oneOf

CHAPTER 3. SOLUTION DESIGN

37

OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}

2
3 module ExampleObject where
4

5 data ExampleObjectOne

6 = ExampleObjectOne

7 { bark :: Bool,
8 age :: Integer
9 }

10 deriving (Show, Eq, Ord)
11

12 data ExampleObjectTwo

13 = ExampleObjectTwo

14 { length :: Integer,
15 height :: Integer
16 }

17 deriving (Show, Eq, Ord)

18

19 data ExampleOne0Of = One ExampleObjectOne

20 deriving (Show, Eq, Ord)
21

22 exampleObj :: ExampleOneOf

23 exampleObj = One (ExampleObjectOne True 7)

Two ExampleObjectTwo

Listing 3.7: OpenAPI Haskell example oneOf

CHAPTER 3. SOLUTION DESIGN

38

OpenAPI 3 Code Binding Generator for Haskell

1

2

3

4

©

10

11

12

13

14

3.1.3.7 allof

The allOf OpenAPI type can represent inheritance, a feature Haskell does not have. Every
new allOf type will be a new Haskell type without a connection to the other Haskell types. It
is important that the merging of the OpenAPI subtypes to one OpenAPI type happens at the
level of the OpenAPI schema because it is also possible to merge two scalar schemas. After

the merging, no information about the allOf type exists and can be treated as a normal type.

type: object
properties:
bark:
type: boolean
age:
type: integer
allOf:
- $ref: '/components/....'
- type: object
properties:
length:
type: integer
height:

type: integer

Listing 3.8: OpenAPI example allOf

CHAPTER 3. SOLUTION DESIGN 39 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}
2

3 module ExampleObject where

4

5 data ExampleObjectOne

6 = ExampleObjectOne

7 { bark :: Bool,
8 age :: Integer
9 }

10 deriving (Show, Eq, Ord)

12 data ExampleAll0f

13 = ExampleAll0f

14 { bark :: Bool,

15 age :: Integer,

16 length :: Integer,
17 height :: Integer
18 }

19 deriving (Show, Eq, Ord)

20

21 exampleObj :: ExampleAllOf

22 exampleObj = ExampleAll0f True 7 6 5

Listing 3.9: OpenAPI Haskell example allOf

CHAPTER 3. SOLUTION DESIGN 40 OpenAPI 3 Code Binding Generator for Haskell

1

2

3

4

11

12

13

14

15

3.1.3.8 anyOf

The anyOf OpenAPI type is a mixture of oneOf and allOf. Its OpenAPI subtypes are not nec-
essarily all of the same OpenAPI type, for example Stripe uses anyOf to represent either an
id to a resource or the resource itself. To represent an anyOf, it needs to be converted to a
oneOf type with all subtypes being allOf types with all other fields nullable. Only subtypes

of the same primitive type (objects with objects, ints with ints) can be merged.

type: object
properties:
bark:
type: boolean
age:
type: integer
anyOf :
- type: integer
- $ref: '/components/....'
- type: object
properties:
length:
type: integer
height:

type: integer

Listing 3.10: OpenAPI example anyOf

CHAPTER 3. SOLUTION DESIGN 41 OpenAPI 3 Code Binding Generator for Haskell

1 {-# LANGUAGE DuplicateRecordFields #-}

2

3

4

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

module ExampleObject where

data ExampleObjectOne

= ExampleObjectOne
{ bark Bool,
age :: Integer,
length Maybe Integer,

height
}

deriving (Show,

Maybe Integer

Eq, Ord)

data ExampleObjectTwo

= ExampleObjectTwo
{ length Integer,
height Integer,
bark Maybe Bool,

age :: Maybe Integer

}

deriving (Show, Eq, Ord)

data ExampleAnyOf

= I Integer

| One ExampleObjectOne

| Two ExampleObjectTwo

exampleObj

ExampleAnyOf

exampleObj = One (ExampleObjectOne

True 7 (Just 6) Nothing)

Listing 3.11: OpenAPI Haskell example anyOf

CHAPTER 3. SOLUTION DESIGN

42

OpenAPI 3 Code Binding Generator for Haskell

3.1.3.9 anyType

The special OpenAPI type anyType can represent any value and is defined as a special case
of the anyOf type . This would be possible but a bit unpractical so it is easier to work with

JSON data types directly.

Thttps://swagger.io/docs/specification/data-models/data-types/#any

CHAPTER 3. SOLUTION DESIGN 43 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/data-types/#any

3.2 Code Generation

One of the main goals of this project is to generate Haskell code. Therefore, it is important
to investigate the different options of code generation in this language and its correspond-
ing eco system. This section describes the evaluated features and libraries and explains the

reason for the final choice.

3.2.1 Criteria

The code generation library / method should be evaluated using the following criteria:

« Comments (Haddock): It must be possible to generate Haddock comments as this is
the main way of documenting the generated code and is necessary for the use of the

generated code.

+ Correct code generation (parsable and type-safe): The generated code should be com-
pilable by GHC (version 8.8). For this purpose there are several levels of support a li-
brary can give, reaching from generating parsable code up to type-safe code with the

intended types.

« Future support: The library should be actively maintained to increase the probability

of long-term support for a continued development of the code generator.

+ Options for code generation: Typically an AST is represented in Haskell using algebraic
data types. These can be constructed with the typical data constructor invocation (as
one would do with any ADT). Some libraries offer helper functions to allow easier con-
struction of more complex ASTs. But a Haskell AST can also be represented using ac-
tual Haskell code. This criteria evaluatesifitis possible to construct the whole or parts
of an AST using Haskell code literals (regardless if these are inlined or loaded from ex-

ternal source files).

+ Usability: This includes how easy it is to use and especially to get started.

The speed of the code generation is a criteria which is specified in the requirements specifi-

cation. Since the goal in this area is not very difficult to reach and not crucial for the useful-

CHAPTER 3. SOLUTION DESIGN 44 OpenAPI 3 Code Binding Generator for Haskell

ness of the generator, it is not covered here as it would be very time-consuming to check the

speed of all of the libraries.

3.2.2 Candidates

The following options have been investigated in order to decide which one should be used

for this project.

Plain text manipulation This option is the simplest method and allows the generation of
arbitrary strings. Therefore, the generation of Haddock comments is easy but there is no
extra support toit. Thereis absolutely no support in the generation of correct code with this
method but this option will be supported as long as Haskell exists. Speed should be of no

concern as it is simple Text manipulation.

Haskell Source Extensions Haskell Source Extensions [7] is a standalone parser for Haskell
which can be used to parse and manipulate Haskell code as well as pretty-print it. The main
focus does not lie on code generation but nevertheless, it could be used in such a way. It is

currently only maintained and not developed any further.

The generation of comments could be be done using haskell-src-exts-sc [9]. It makes com-
ment generation easier with convenience functions such as preComment. Unfortunately, it
was not possible to build a compiling application using this module and neither did the pro-

vided example compile. Therefore, it is questionable how well maintained this package is.

With this method it is possible to guarantee the generation of parsable code but it is not
ensured thatit will type check. The extension haskell-generate [8] claims to be able to ensure

this, but this library is not well maintained (the last commit was in 2016).

Sinceitis a parser at the same time, existing source code could be parsed to an AST and used
for code generation. A wild mix of both creating an AST and parsing is likely to be inconve-

nient but possible.

CHAPTER 3. SOLUTION DESIGN 45 OpenAPI 3 Code Binding Generator for Haskell

ghc-source-gen ghc-source-gen [5]isalibrary whichis designed to generate whole Haskell
files or code fragments. Under the hood, it uses the AST of the GHC library API to represent

the code which should be generated.

It does not seem to support the generation of comments. Since itis only possible to generate
a string of the AST, the comment generation would have to be performed the same way as

plain text manipulation.

The generated code should be parsable but will not necessarily type check. With this method,

it is not possible to create code from existing code.

Regarding maintenance it can be said that the example is working and the code base has

been updated multiple times this year.

Template Haskell Template Haskell [22] is a language extension which can be used to gen-
erate Haskell code at compile time. It can be used for code generation too because the AST
can be pretty-printed instead of being used in the program (typically with splicing). The
pretty-printingis donevia a special Doc type which can be used to combine multiple snippets

and generate items like module headers and comments.

One interesting feature of Template Haskell is the use of quotation brackets which can be
used to create an AST out of Haskell code. This allows mixing regular Haskell code with AST

creation.

With regular Template Haskell it is ensured that parsable code will be generated. With the
help of typed Template Haskell expressions it is possible to support type-safety within ex-

pressions. This does not apply to declarations.

Itis closely linked to GHC as it is a GHC extension and is widely used (e. g. in the lens pack-
age [13]). Therefore, it can be assumed that it will be supported well enough in the future.

Furthermore, there are numerous tutorials and guides available.

Other options ghc-exactprint and ghc-lib were studied but discarded. ghc-exactprint did
not look promising because the main focus is on refactoring existing source code and there

are no helpful examples for code generation. ghc-lib could probably be used to generate

CHAPTER 3. SOLUTION DESIGN 46 OpenAPI 3 Code Binding Generator for Haskell

source code but includes way too many other modules and to little information about code
generation. In this case, ghc-source-gen would be a better option since itis based on the AST
of GHC.

Overview Thefollowingtable gives a short overview resulting of the evaluation presented

above. The respective ratings should not be used without the corresponding evaluation.

| Criteria | Comments | Correctness| Support | Options | Usability |
Plain text 0 - + + +
haskell-src-exts | + 0 0 0/+ 0
ghc-source-gen | - 0 + 0 +
Template 0 + + + +
Haskell

Table 3.1: Code generation method comparison

3.2.3 Decision

For this project, Template Haskell will be used. In comparison to Haskell Source Extensions
with haskell-generate and haskell-src-exts-sc, it is very likely to be actively maintained in the

future and to support new Haskell features.

ghc-source-gen would probably be the second best option. But Template Haskell has a ma-
jor advantage when it comes to generating code at compile time and using regular Haskell
code as part of the generation (with quotation brackets) as well as typed expressions to en-
sure type safety. The former feature would enable to relatively easily create a QuasiQuoter
which would enable the transformation of a inlined OpenAPI specification into Haskell code

at compile time.

As a first step, Template Haskell will be used to generate source code files. But as a second

step, the option with the QuasiQuoter could be explored and implemented if desired.

In the prototype, Template Haskell could easily satisfy the speed requirement. Therefore,

this is not likely going to be a problem.

CHAPTER 3. SOLUTION DESIGN 47 OpenAPI 3 Code Binding Generator for Haskell

3.3 HTTP Library

The handling of HTTP calls affects the code generation greatly. Depending on the HTTP li-
brary and the level of abstraction the generated code offers, the usage of the generated code
is affected too. This section describes an evaluation of different approaches. The evaluation

was conducted in the first week of April 2020.

3.3.1 Criteria

The handling of HTTP calls should be compared in the following areas:

+ Ease of Use:

- How easy is the library to use?

- Is it easy enough so that it can leak outside the generated code and directly be

used by the users of the library?

- How can the usage be documented?
+ Code Generation: Can code for the library be generated?

» Featurerichness: How many features are provided by the library and how many have

to be implement yourself?
« Type safety: How much is the type system of Haskell used for type safety?

« Support / Future: The library should be actively maintained to increase the probabil-

ity of long-term support for a continued development of the code generator.

+ Future possibilities: Does the approach give additional possibilities for future use?

The following options have been investigated in order to decide which one should be used

for this project.

CHAPTER 3. SOLUTION DESIGN 48 OpenAPI 3 Code Binding Generator for Haskell

3.3.2 Traditional HTTP libraries

The following candidates are traditional HTTP libraries in the sense that they abstract the
use of HTTP away. The Code Generator would generate functions which use one of these
candidates. Users of the generated code would only notice on the outskirts of the generated
code which library is used under the hood and the abstraction would not leak outside. Since
the users of the generated code see only the generated code, the documentation can be fully

controlled.

3.3.2.1 http-client
“An HTTP client engine, intended as a base layer for more user-friendly packages” [10].

1 import Network.HTTP.Client

2 import Network.HTTP.Types.Status (statusCode)

3

4 main :: 10 Q)

5 main = do

6 manager <- newManager defaultManagerSettings

7 request <- parseRequest “http://httpbin.org/get”
8 response <- httplLbs request manager

9 putStrLn §$

10 "The status code was: 7
11 ++ show (statusCode $ responseStatus response)
12 print $§ responseBody response

Listing 3.12: http-client example from http-client itself
This is a relatively small library, and some other candidates like http-conduit depend on it.
For HTTPS http-client-tls can be used.

The code generation should be straightforward. It does not have many features and helpers.

It does not provide any advanced type safety systems, a request body is a text.

CHAPTER 3. SOLUTION DESIGN 49 OpenAPI 3 Code Binding Generator for Haskell

The library is actively maintained ¢, and since it is the base for many other libraries, no con-

cern about its future maintenance is raised.

Decision This library seems too low level for the usage in this project. There are better

alternatives with more features.

3.3.2.2 wreq

“Aweb client library that is designed for ease of use” [25].

8Last commit was in March 2020.

CHAPTER 3. SOLUTION DESIGN 50 OpenAPI 3 Code Binding Generator for Haskell

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-1}

module WreqExample where

import Control.Lens ((&), (.~), (T.), (77))
import Data.Aeson (FromJSON)

import Data.Aeson.Lens (key)

import Data.Map (Map)

import Data.Text (Text)

import GHC.Generics (Generic)

import Network.Wreq

data GetBody

= GetBody
{ args :: Map Text Text,
url :: Text
}

deriving (Show, Generic)

instance FromJSON GetBody

basicAsJSON :: 10 ()
basicAsJSON = do
let opts = defaults & param "foo” .~ ["bar”]

r <- asJSON =<< getWith opts “http:// httpbin.org/get”

putStrLn $ ”args: ” ++ show (args (r ~. responseBody))
lensAeson :: 10 ()
lensAeson = do

let opts = defaults & param "foo” .~ ["bar”]

v <- asValue =<< getWith opts “http:// httpbin.org/get”

print $§ v "7 responseBody . key ”args” . key ”"foo”

Listing 3.13: http-client example from http-client itself

CHAPTER 3. SOLUTION DESIGN 51 OpenAPI 3 Code Binding Generator for Haskell

wreq builds on top of http-client and is easier to use. It integrates well with lens [13]. The

ease of use comes from its simplicity.

It has some helpful features like OAuth bearer authentication build in, connection keep-alive,

handling of JSON deserialization against a schema and tls support.
It uses the type system to deserialize JSON and for error handling.

It is not very actively maintained “ but it has its own website with tutorials and examples *°
and it has over 350 stars on github.com. Most blog entries about wreq are around 5 years
old.

Decision wreq is very easy to use. It would be the more suitable solution for this project
than http-conduit if it were more often used and maintained. If the features of wreq were not
enough, the switch to another library would be costly.

3.3.2.3 http-conduit

“HTTP client package with conduit interface and HTTPS support.” [11]

9Last commit was on Jan 25, 2019.
Ohttp://www.serpentine.com/wreq/

CHAPTER 3. SOLUTION DESIGN 52 OpenAPI 3 Code Binding Generator for Haskell

http://www.serpentine.com/wreq/

10

11

12

13

{-# LANGUAGE OverloadedStrings #-}

import Data.Aeson (Value)

import Network.HTTP.Simple

main :: 10 ()
main = do
response <- httpJSON ”http:// httpbin.org/get”
putStrLn $
"The status code was: 7
++ show (getResponseStatusCode response)
print $§ getResponseHeader ”Content—Type” response

print (getResponseBody response :: Value)

Listing 3.14: http-conduit example with Network.HTTP.Simple

CHAPTER 3. SOLUTION DESIGN 53 OpenAPI 3 Code Binding Generator for Haskell

10

11

12

13

14

15

16

17

18

19

20

21

22

import Data.Aeson.Parser (json)

import Data.Conduit ((.|), runConduit)

import Data.Conduit.Attoparsec (sinkParser)

import Network.HTTP.Client

import Network.HTTP.Client.Conduit (bodyReaderSource)
import Network.HTTP.Client.TLS (tlsManagerSettings)
import Network.HTTP.Types.Status (statusCode)

main :: 10 ()
main = do
manager <- newManager tlsManagerSettings
request <- parseRequest “http:// httpbin.org/get”
withResponse request manager $ \response -> do
putStrLn $
"The status code was: ”
++ show (statusCode $ responseStatus response)
value <-
runConduit
(bodyReaderSource (responseBody response)
.| sinkParser json

)

print value

Listing 3.15: http-conduit example with streaming interface

http-conduit builds on top of http-client and uses conduit **. It provides a simple and a
streaming interface. The simple interface is simple to use as its name suggests. The stream-
ing interface is a bit more complicated to use. http-conduit claims to be efficient. http-client
provides http-conduit as an example of a simpler library. The code generation should be

straightforward.

Itis very feature rich in the processing of streams. For normal HTTP calls it does not provide

many higher level features like OAuth authentication.

Hhttps://hackage.haskell.org/package/conduit

CHAPTER 3. SOLUTION DESIGN 54 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/conduit

It is relatively actively maintained *? and is maintained together with http-client.

Decision The streaminginterface adds unnecessary complications for this project and will
therefore not be used. The simple interface is easier to use than raw http-client but has all
its possibilities. The switch from the simple interface to http-client would not be that hard
if necessary. The future of the simple interface is predictably stable. Because of this reason

http-conduit with the simple interface is the best traditional http-library for this project.

3.3.3 Servant

“Servant is a set of Haskell libraries for writing type-safe web applications but also deriving

clients (in Haskelland other languages) or generating documentation for them, and more” [18].

Compared to the traditional HTTP libraries servant does more than just abstract HTTP. It ab-
stracts whole APl endpoints, meaning that parameters, body types and response types are
predefined. The Code Generator would define an APl as a type, servant would generate meth-
ods for this type. This gives away some control but adds many possibilities. In this category,

servant is the only real possibility discovered.

12 ast commit was in November 2020.

CHAPTER 3. SOLUTION DESIGN 55 OpenAPI 3 Code Binding Generator for Haskell

1 {—# LANGUAGE DataKinds #—}

2 {—# LANGUAGE DeriveGeneric #-}
3 {—# LANGUAGE TypeOperators #—}
4

5 module ServantExample where

7 import Data.Aeson
g import Data.Proxy

9 import GHC. Generics

10 import Network.HTTP. Client (defaultManagerSettings, newManager)

11 import Servant.API
12 import Servant.Client
13

14 data Position

15 = Position

16 { xCoord :: Int,
17 yCoord :: Int
18 }

19 deriving (Show, Generic)
20
21 instance FromJSON Position

22

23 newtype HelloMessage = HelloMessage {msg :: String}

24 deriving (Show, Generic)
25

26 instance FromJSON HelloMessage

27
28 newtype Email = Email String

29

30 newtype Clientinfo = ClientIinfo String

31

32 type API =

33 "position” :> Capture ”x” Int :> Capture ”y” Int :> Get ’[JSON] Position
34 :<|> ”hello” :> QueryParam ”name” String :> Get ’'[JSON] HelloMessage
35 :<|> "marketing” :> ReqBody ’[JSON] Clientinfo :> Post ’[JSON] Email

Listing 3.16: Servant Example

A full example can be found at section |.2.

CHAPTER 3. SOLUTION DESIGN

56 OpenAPI 3 Code Binding Generator for Haskell

To gain insights about the development with Servant, the development server 4.1 is devel-
oped with it. Servant has an initial learning curve and can not simply be used by everyone
without prior knowledge. After a short learning phase and when the APl is defined the usage
is simple. Itis clear enough to use that it would be possible to let the users of the generated
code directly use the servant API. It would also be possible to create an interface and use

servant only internally.

Code generation could be hard because servant uses a lot of type-“magic”. The type system

of Haskell is extensively used to provide good type safety.
If a servant APl is defined it could also be a possible code stub for a server.

servant is actively maintained °* and has its own website *. Many blog posts which were
written this or last year can be found. The usage of servant in the community seems good

enough for the library to have a stable future.

3.3.4 Decision

From the traditional category http-conduit with the simple interface is the best decision for
this project because of the reasons mentioned in the section above. The decision now is
between http-conduit and servant. These are two fundamentally different approaches. With
servant the future possibilities would be better but there is an overhead in writing and using
servant code. For the success of this project so that many people can use type safe OpenAPI

libraries in Haskell http-conduit is the better approach and therefore will be used.

13| ast commit was in March 2020.
Yhttps://www.servant.dev/

CHAPTER 3. SOLUTION DESIGN 57 OpenAPI 3 Code Binding Generator for Haskell

https://www.servant.dev/

3.4 Error Handling

This section explains how errors are handled within the code generator and the generated

code.

3.4.1 Code Generator

If the code generator cannot generate code for a part of the specification (either because of
unsupported features or misconfigurations), it should still generate code for the other parts.
In order to be able to use the generated code and to develop the code generator, it is neces-
sary to know which parts of the specification could not be processed. This leads to two goals

for the error handling:

« Traceability A.3.4: Users are able to identify which parts of the OpenAPI specification

caused an error or warning and why.

+ Error tolerance A.3.1: The generator is able to generate some code even if some parts
of the specification contain errors. In some cases, this is not possible to achieve rea-

sonably.

3.4.1.1 Command Line Arguments

If non-existing arguments are used or no specification is passed, the user is informed accord-

ingly. A help page is provided by the CLI to ensure all available options can be discovered.

3.4.1.2 Parsing

The process of parsing the OpenAPI specification into a Haskell data model sets the minimal
requirement regarding to the strictness of the specification. The parsing allows some mis-
configurations (i.e. violating the OpenAPI specification) to slip through, either because it is
not easily detectable (e. g. does a reference exist?) or because it is not necessary to enforce

these constraints.

The parser used in this project already produces reasonable messages including the location

CHAPTER 3. SOLUTION DESIGN 58 OpenAPI 3 Code Binding Generator for Haskell

of the failure and therefore those messages are used.

3.4.1.3 Generating

While generating the code, some constraints (such as enforcing OpenAPl compliance on the
whole specification) can be loosened in favor of generating more useful results (e. g. gener-
ate some of the functions instead of just failing) for reliability (A.3.1). The user still has to be
notified if some parts were left out or have been transformed in a way which cannot be as-
sumed. This is achieved using a WriterT Monad transformer in conjunction with a Reader
Monad which store the currently processed path and produced messages for traceability
(A.3.4). If a function is not able to process the information to a reasonable output, ADT like
Either and Maybe are used to indicate the failure. Functions on a higher level can then in
turn decide if this is an error they can recover from or not (and probably log an according

message either way).

3.4.2 Generated Code

The error handling within the generated code is done using ADT to ensure a clear control
flow. The generated functions never throw an exception and catch exceptions thrown by
used packages (like the HTTP client). To prevent loss of information, an appropriate ADT like

Either is used.

CHAPTER 3. SOLUTION DESIGN 59 OpenAPI 3 Code Binding Generator for Haskell

Chapter 4

Results

This chapter contains the results worked out in this thesis in order to solve the problems

presented by the task description.

60

4.1 Demo Server

For the purpose of properly demonstrating the code generator and the Stripe API, a demo
server is used. The demo use case is documented at 2.2.2. An deployment diagram can be

found at Figure F.1.

4.1.1 Deployment

The demo server is dockerized to the GitLab registry at registry.gitlab.com/hsr-ba-openapi-
3/hsr-ba-openapi-3:latest. A Watchtower * is running on the demo server and automatically
updates a demo server container via a docker-compose.yml file. The demo server uses certs
from Let’s Encrypt ? for HTTPS communication. The deployment is verified with a test HTTP

call to the server, which checks the git revision hash.

4.1.2 Endpoints

/version returns JSON with information about the git revision. This endpoint is used to

verify that the correct version is deployed.

/time returns JSON with the current time and the start up time. This endpointis used as a

proof of concept that IO operations can be done.

/inventory returns JSON with a result to the petstore demo server. This endpoint is used

to verify that the generated code from the petstore can be used.

/paymentintent returnsplaintext with debuginformation fora paymentintent from Stripe.

/newPaymentintentSecret returns JSON with a new secret that can be used for normal

payments.

Lhttps://github.com/containrrr/watchtower
Zhttps://letsencrypt.org/

CHAPTER 4. RESULTS 61 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/containrrr/watchtower
https://letsencrypt.org/

/newPaymentintentSepaSecret returns JSON with a new secret that can be used for SEPA

payments.

/getCheckoutSessionld returns JSON with a new session ID that can be used for check-

outs.

/showSuccess Needs a sessionid as a query parameter. Returns JSON with information
about the payment after a checkout. It is used to verify that the success from a checkpoint

succeeded without relying on browser behavior.

Everything else Serves static files from a directory. /index.html displays some debug in-
formation. payments/index.html displays the demo page used in the demonstration. Itis the

entry point for a normal payment, SEPA payment and a checkout.

4,1.3 Architecture

The demo server uses servant [18] and because of that warp-tls >. warp-tls is used directly
without any Apache or Nginx server in front of it. Servant was chosen as it is a potential
candidate to be used in the generated code. However the development with servant high-
lighted that it is too complex for the purpose of this project, more information can be found
at section 3.3 HTTP Library and subsection 3.3.3 Servant. The web page is a Single-page

application (SPA) statically delivered without any server side rendering.

3https://hackage.haskell.org/package/warp-tls

CHAPTER 4. RESULTS 62 OpenAPI 3 Code Binding Generator for Haskell

https://hackage.haskell.org/package/warp-tls

4.2 Publication

Instructions on how the published code can be used are available at Appendix G Installation
Instructions. The Stripe library and code generator are published on GitHub and Hackage.

GitHub was chosen because of its popularity with other Haskell libraries.

Code Generator on GitHub
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator

Code Generator on Hackage

https://hackage.haskell.org/package/openapi3-code-generator

Stripe Library on GitHub
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

Stripe Library on Hackage
https://hackage.haskell.org/package/stripeapi
42,1 CI/CD

4.2.1.1 Code Generator

AlLCl jobs from the private GitLab repository related to the code generator alone and linting

were ported to CircleCl . The deployment to Hackage is done manually when necessary.

4.2.1.2 Stripe Library

As the generator is always tested with the Stripe OpenAPI definition as well, the generated
code should always compile. But to ensure the code checked in into the repository does
compile with the provided example, the Stripe library repository has a pipeline as well °.

The repository and Hackage are updated when necessary.

4https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/
Haskell-OpenAPI-Client-Code-Generator
Shttps://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

CHAPTER 4. RESULTS 63 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://hackage.haskell.org/package/openapi3-code-generator
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library
https://hackage.haskell.org/package/stripeapi
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://app.circleci.com/pipelines/github/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

4.3 Code Metrics

This chapter gives an overview of how much code was written and generated in this thesis.

To get an architectural overview, see Appendix F Architecture Overview.

All line counts are without empty lines.

4.3.1 Code Generator

The code of the code generator is written by hand. It consists of around ~3100 lines (~3500
including comments) which are tested by roughly ~1500 lines of test code (consisting of ~500
lines unit tests and ~1000 lines system tests). The productive code is split into 19 modules

which contain about ~175 top-level functions.

4.3.1.1 Code Coverage

The tests cover about ~85% of the expressions. The coverage is calculated with a combina-
tion of the unit/property tests and the system tests. Additionally, a coverage overlay [2] is
used to exclude Show and Eq instances as well as the Common module which is never eval-

uated at all while generating code.

4.3.1.2 Extended Compile Tests

To measure how well suited the generator is for generating code from a wide variety of Open-
API specifications, around ~2700 specifications have been collected. They were used as in-
put to the generator and the resulting code was compiled. Around ~0.7% of them failed dur-
ing the code generation and ~3.5% during compilation. The main reason for generation fail-
ure is that some specifications do not quote the strings true and false and therefore are in-
terpreted as booleans instead of strings ©. The two reasons for compilation failure are name

conflicts (~80%) and not supported reference schemes (~20%).

®This is an issue in the specification files as they do not correctly encode their values as strings. The used
YAML parser Aeson strictly interprets true and false as booleans and does not convert them silently to strings if
needed.

CHAPTER 4. RESULTS 64 OpenAPI 3 Code Binding Generator for Haskell

4.3.2 Generated Code

As it is possible to generate code from an arbitrary number of specifications, not all gener-
ated code can be analyzed here. Exemplary, the Stripe library is used to demonstrate what

code results of an OpenAPI specification.

The Stripe specifications has a little less than ~59 000 lines. For this specification, around
~110000 lines of code are generated (~145 000 lines including comments, ~91 000 excluding
imports, language pragmas and module definitions). This code is split into 554 modules

which contain about ~1400 functions.

4.3.3 CLI Options

The output of the generated code can be configured using the CLI options. There are 14

options (excluding the help option) which can be discovered using the --help option.

CHAPTER 4. RESULTS 65 OpenAPI 3 Code Binding Generator for Haskell

4.4 Limitations

This section describes the known limitations of the code generator, they are in no particular

order.

4.4,.1 Parameter Limitations

Parameters are only supported in query and path and only scalar types are serialized.

4.4.2 XML and other Transport Data Protocols

JSON is supported for both sending and receiving data. application/x-www-form-urlencoded
is supported for sending data, but not receiving data. All other transport data protocols such

as XML are not supported .

4.4.3 Links and Callbacks

Links ® and callbacks ° are currently not supported in the code generation. They are not
implemented because Stripe API does not use them and they would add significant devel-
opment and maintenance effort compared to the benefits theirimplementation would offer.
The runtime-expressions *° parsing of links would have added too much development effort
for the scope of this project, but for a future use case they could be beneficial. Callbacks
should be integrated in an already existing environment and therefore an implementation
from the code generator would most likely not be usable. Models for callbacks are generated

if they are in components.schemas.

"Note: OpenAPI 3 does not specify a limited set of supported media types and it is therefore impossible to
fully implement every possible media type.
8https://swagger.io/docs/specification/links/
https://swagger.io/docs/specification/callbacks/
Ohttps://swagger.io/docs/specification/links/#runtime-expressions

CHAPTER 4. RESULTS 66 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/links/
https://swagger.io/docs/specification/callbacks/
https://swagger.io/docs/specification/links/#runtime-expressions

4.4.4 Only local References

Only references to components parts are supported. It is possible to reference other files
from an OpenAPI specification. From our test-set of 2710 specifications only 18 specifica-

tions used references which are not supported.

+ 2 have references directly under components.schemas.
+ 1 has references which reference deeper nested elements.

« 15 have references to external specification files.

4.4.5 Object Constructors and Default Values

Currently, every field including fields which are optional or have a default value have to be
specified to create an object.

4.4.6 Lengthof Namesis limited by the File System

The names used for modules (model and operation names) from the specification are not
limited by OpenAPI and therefore can be very long, even exceeding the file systems limit.
4.4.7 Circular References inside the Specification

Not all kinds of circular references inside the schemas can be solved. For example an allOf
which references itself. From our test-set of 2710 specifications only 1 specification has such

a circular reference.

4.4.8 Naming Conflicts

Depending on the naming used in the specification, it is not possible for the code generator
to generate meaningful differentiable names. For example, if two names differentiate each
other only by the casing of the first letter. From our test-set of 2710 specifications 79 resulted

in naming conflicts.

CHAPTER 4. RESULTS 67 OpenAPI 3 Code Binding Generator for Haskell

4.4.9 OtherLimitations

There are some other limitations which are mostly constraints which are not easily enforce-
able using the type system. They are reflected in the automatically generated Haddock doc-

umentation.

. additionalProperties '! is not supported.
« not ' is not supported.

» writeOnly and readOnly (2.1.2.2) are not supported.
« multipleOf is not supported

« maximum is not supported

« exclusiveMaximum is not supported

« minimum is not supported

+ exclusiveMinimum is not supported

« minLength is not supported

« maxltems is not supported

« minltems is not supported

+ uniqueltems is not supported

« maxProperties is not supported

« minProperties is not supported

« xmlis not supported

Uhttps://swagger.io/docs/specification/data-models/dictionaries/
Lhttps://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/#not

CHAPTER 4. RESULTS 68 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/docs/specification/data-models/dictionaries/
https://swagger.io/docs/specification/data-models/oneof-anyof-allof-not/#not

Chapter5

Conclusion

In this chapter the achieved results are compared to other solutions, discussed and future

possibilities are introduced.

69

5.1 Comparison to other Work

An overview of existing work can be found at section 1.4 Research / Existing Work. The most
important difference to other published products is that compilable code can be generated

from the Stripe OpenAPI specification.

5.1.1 Markus Schirp’s OpenAPI Code Binding Generator

During the development it was possible to communicate with Markus Schirp [4] (1.5) about
his yet not fully published code generator. A parallel evolution between the two projects
was discovered where both projects had the same problems and similar solutions for most

problems. Here are the differences:

Stages His code generator works in three stages.

1. Modify the OpenAPI specification itself
2. Generate code

3. Modify the generated code

The code generator from this project uses only the second stage. The first and third stages

are done on a per specification basis and are not fully applicable to other specifications.

AST Another difference is that this code generator uses Template Haskell not directly. se-
mantic * as an AST is/was in evaluation, it would make it possible to generate code for other

languages as well.

Servant One of the biggest differences is that servant is used. During the thesis servant
was considered but disregarded because of reasons mentioned in subsection 3.3.3 Servant.
Markus Schirpis not entirely satisfied with servant because of mostly the same reasons why it

was disregarded in this projectand would probably use http-client directly like in this project.

https://github.com/github/semantic

CHAPTER 5. CONCLUSION 70 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/github/semantic

Cyclic Dependencies Markus Schirp’s code generator uses .hs-boot ? files to solve cyclic
dependencies, which allows the compile time to be roughly halved. Memory consumption
was not measured butis probably less than half. This method solves a problem of this project

and is considered for future adoption in Resolve Cyclic Dependencies.

Conclusion Markus Schirp’s code generator is very interesting for the future scope of this
project, and a possible cooperation could be beneficial. More information about a coopera-

tion is in subsection 5.4.7 Cooperation with Markus Schirp and Future Maintainance.

5.1.2 OpenAPI Tools for Haskell

The most direct comparable product is OpenAPI Tools 3, which was updated since the tests
from 1.4 to version 4.3.1 (commit 003165c). The code it produces for the Stripe API specifi-
cation does still not compile because of invalid names (AnyOf<accountBusinessProfile>)

but a comparison can still be made.

Modules OpenAPI Tools generate only two modules (Types and AP/). The code generator
from this project generates over 500 modules but reexports them to one single module. The
Types module is around 10000 lines long, while the combined modules for types from this

projects generator are at around 40000 lines.

JSON Both products use Aeson “. To reduce compilation effort most toJSON and fromJSON

instances are generated, OpenAPI Tools use Generic for serialization.

Types Complextypes like enum, anyOf, oneOf or allOf are not supported by OpenAPI Tools
for Haskell (they are the reason the code does not compile). Floatingpoint type and types

for date or date-time are not configurable.

Zhttps://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#
how-to-compile-mutually-recursive-modules

3https://github.com/OpenAPITools

“https://hackage.haskell.org/package/aeson

CHAPTER 5. CONCLUSION 71 OpenAPI 3 Code Binding Generator for Haskell

https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#how-to-compile-mutually-recursive-modules
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/separate_compilation.html#how-to-compile-mutually-recursive-modules
https://github.com/OpenAPITools
https://hackage.haskell.org/package/aeson

Operations [HTTP Calls OpenAPI Tools uses Servant like Markus Schirp code generator.

Conclusion OpenAPI Tools does not mainly generate Haskell code. The code generator

from this project is better suited for Haskell code generation in nearly all aspects.

CHAPTER 5. CONCLUSION 12 OpenAPI 3 Code Binding Generator for Haskell

5.2 Lessons Learned

5.2.1 Learnings from Failure

5.2.1.1 Compilation Time

For the compilation time and especially the compilation time of the generated code not
enough attention was paid. In the requirements specification compilation time of the gen-
erated code is not covered at all. We expected it to have an impact on our CI/CD pipelines

and made sure that a short feedback loop is possible locally (D.2.4).

We did not expect:

The compilation time increases exponentially with module size.

The compilation to run out of memory on a modern computer.

The compilation time of our very simple demo server to take up to 45 minutes.

L]

The way codeis written even if it results in the same results can make a huge difference

in compilation time. For example toJSON manually written instead of using Generic.

Our lessons learned are:

+ Compilation effort needs to be considered from the start when dealing with such an

amount of code
« Compilation effort needs to be addressed in the requirements specification

« Compilation time is not just different between programming languages, the actions to

reduce the effort are vastly different

5.2.1.2 DuplicateRecordFields and Servant

The Haskell language extension DuplicateRecordFields seemed like a good idea to make the
code less verbose. The reasons why this extension was not useful for our project are de-

scribed at 3.1.3.5 Disregarded Plans. We further think that we would not use this extension

CHAPTER 5. CONCLUSION 73 OpenAPI 3 Code Binding Generator for Haskell

in other projects. We used DuplicateRecordFields in the code generator as a test which led to
a fast disregarding of our original plan, but our code generator uses some boilerplate code

around the extensions limitation.

Servant was also a technological choice which we thought about using for the generated
code. Like DuplicateRecordFields we adapted it very early on as it was used in the demo
application. The development effort and the complexity in its usage were the key points
why we disregarded Servant. More information can be found at subsection 3.3.3 Servant.

We think that Servant is a very useful technology but that it was not best suited for our case.

This project solidified our understanding that:

+ Adapting technology early on gives good real world experience and the cost to disre-

gard a technology is much smaller early on.

« Simpler solutions - even if they are less powerful and more verbose - are often better

suited because they are easier to reason about.

5.2.1.3 Use Records instead of Tuples

We worked a lot with tuples especially in return types. They are very simple to introduce, es-
pecially when additional information needs to be returned from an existing function, and
they provide many typeclass instances out of the box. Tuples are problematic to reason
about because they and their content do not have names. A fst or snd provides very little
information to the reader compared to the name of a field of a record, the same is true for

type declarations.

Every time a tuple is used across functions it needs to be reconsidered to use a record in-

stead.

5.2.1.4 Property Tests

We tried to use property tests in the beginning of the project and realized that it is very hard
to come up with properties for code generation. This led to fewer property tests at the end

of the project. Still, there were areas where property tests added real value to the project.

CHAPTER 5. CONCLUSION 74 OpenAPI 3 Code Binding Generator for Haskell

One exampleis the generation of the identifiers were the property tests discovered problems

with some unicode characters which are lowercase but cannot be converted to uppercase.

We realized that:

+ There are probably domains better suited to property testing than code generation.
This is related to the “one-way” nature of generation as properties typically arise from

reverse functions.

+ There are still areas where property testing, even in a domain not best suited, can be

very helpful and they should therefore not be forgotten as a valuable tool.

5.2.2 Learnings from Success
5.2.2.1 Golden Tests

Golden tests ° were introduced to the project relatively late upon the recommendations of
Tom Sydney Kerckhove [3]. They have been very helpful. Merge requests could be under-

stood far better with the changes in the resulting generated code directly visible.

5.2.2.2 Fast Feedback Loop

A custom-made fast feedback loop was essential, especially because the compilation times
turned out to be very long. To have a custom-made specification which could be extended
alongside newly developed features helped not only for a faster feedback loop, but it was

also simpler to reason about new features.

5.2.2.3 Early and strong Cl / CD Pipeline

The introduction of the pipeline jobs was not that hard, the complex part were fine adjust-
ments for faster execution times. From our earlier project we already had a good pipeline for

our documentation. During development the Cl / CD jobs evolved alongside the code gen-

Shttps://softwareengineering.stackexchange.com/questions/358786/what-is-golden-files

CHAPTER 5. CONCLUSION 75 OpenAPI 3 Code Binding Generator for Haskell

https://softwareengineering.stackexchange.com/questions/358786/what-is-golden-files

erator and the demo project and made its changes more visible. The pipeline has prevented

numerous bugs.

System Tests Probably the mostvaluable thingin our pipelines were the system tests. The
code generator can very easily be tested end-to-end as it is a command-line tool and not
a classic user interface. These tests led to a very high confidence that the code is actually

correct and runs.

Anothervaluable thingwasto divide theminto threelevels. This led to little effortin adapting
the tests and still provided much information about the state of the generator (for example

the APl had no breaking changes and actual HTTP calls can be made).

CHAPTER 5. CONCLUSION 76 OpenAPI 3 Code Binding Generator for Haskell

5.3 Result Discussion

The results worked out in this thesis satisfy the goals of the task description. As explained in
the section 4.4 Limitations, there are some limitations in the current version of the generator
which could be addressed in the future. This is mainly due to the limitation of resources (es-
pecially time) within this thesis and cannot be directly connected to bad planning or major

issues during implementation.

The biggest delay was introduced by the issues regarding compilation time (see 5.2.1.1).
These issues could not be resolved completely, but their impact could be limited in a way

that compilation is possible in a reasonable time.

Therefore, the project team views the results as satisfying and the project as successful.

5.3.1 Detailed Goals Resolution

The main goals of this project are:

+ OpenAPI code binding generator: To implement an OpenAPI code binding generator
for Haskell in Haskell. This goal is fulfilled.

+ Haskell Library for Stripe API: To use this generator to generate code bindings that
can be used to implement a Haskell library for the Stripe API. This goal is fulfilled.

+ Demo Application: To implement a simple working demo application that uses the
Haskell Stripe APl library for online payments to demonstrate the use of the developed

tools. This goal is fulfilled.

Special care must be taken to take advantage of the advanced features of Haskell’s type sys-
tem to enforce data consistency at compile time, as well as the current state of the art in
Haskell development (e.g. property-based testing). This goal is fulfilled. Data inconsistency
is prevented at compile time. Property-based testing is used albeit not that often. Advanced

system tests are used additionally.

At the same time, the resulting tools must be understandable, usable and maintainable by

a wide community of Haskell developers. This goal is fulfilled. The usage of the generated

CHAPTER 5. CONCLUSION 77 OpenAPI 3 Code Binding Generator for Haskell

code needs no advanced Haskell knowledge. The code generator and the generated code
is documented with Haddock. An installation guide and examples how to use are online
available (4.2).

While developing the “OpenAPI code binding generatoe”, priority should be given to parts of
the OpenAPI specification that are required to generate the code bindings required for the
“Haskell Library for Stripe API”. This is the minimum subset of the OpenAPI specification that
must be supported. This goal is fulfilled. The generated code has successfully been used to

call various Stripe APl endpoints.

All product documentation must be in English, and in a form that is appropriate for contin-
ued development, publicly or otherwise. Project documentation that is not relevant to the

continued development of the project may be in German. This goal is fulfilled.

CHAPTER 5. CONCLUSION 78 OpenAPI 3 Code Binding Generator for Haskell

5.4 Future Scope

5.4.1 Resolve Cyclic Dependencies

As noted in the comparison to Markus Schirps product in item 5.1.1 Cyclic Dependencies
cyclicdependencies could be resolved with a.hs-boot file, which would result in significantly

shorter compilation time because CyclicTypes.hs would not be needed anymore.

5.4.2 Resolve Limitations

All limitations described in section 4.4 Limitations could be resolved in future work on this
project. Especially non-scalar parameters (4.4.1) as they would be useful for expand with

Stripe.

5.4.3 Auto Generated Tests for Generated Code

To automatically generate tests for the generated code would increase trust in the generated
code. Especially property-based testing would be a possibility, for example JSON serializa-
tion and deserialization could be tested this way. Property-tests for the generated models

would make it possible to use them in other property tests outside the generated code.

5.4.4 Code Separation and Server Code Generation

Currently, only client code is generated. Most of the code could be reused to generate server

code stubs. These stubs could also be used to support callbacks.

To make server code generation possible a better code separation could be preferable. This

split up would have to be evaluated in detail but it could look something like this.

« OpenAPI data containers (already separated)

+ Extract relevant information into separate data structures specialized for code gener-

ation

+ Code generation for code used by client and server

CHAPTER 5. CONCLUSION 79 OpenAPI 3 Code Binding Generator for Haskell

Models

SecuritySchemas

Configuration

Common Code (static)
+ Code generation for client code (mostly Operations)

+ Code generation for server code

5.4.5 JSON Schema

The code generator uses a for OpenAPI modified version of JSON Schema [12]. A standalone
Haskell code generator for JSON Schemas or only a validator could be beneficial for a wide

range of projects.

5.4.6 Quasiquotation

With Quasiquotation © it would be possible to embed OpenAPI specifications inside Haskell
source code. This could be interesting if only parts of the specification could be specified.
In conjunction with 5.4.5 it would be possible to generate data types in the form of a JSON

Schema inside a Haskell file.

5.4.7 Cooperation with Markus Schirp and Future Maintainance

Asnotedinsubsection5.1.1 Markus Schirp’s OpenAP| Code Binding Generator, a cooperation
with Markus Schirp could be beneficial. Some discussion around this subject have already
been carried out. Unifying some aspects such as the handling of OpenAPI data seems like
the best first step. It could reduce maintenance effort for both products. It is possible that
Markus Schirp’s generator will also support other programming languages and that the code

generator from this project will provide some language specific features.

The development team is interested to develop and maintain this project after the thesis if

the product gets some usage. A cooperation with Markus Schirp is interesting for the devel-

®https://wiki.haskell.org/Quasiquotation

CHAPTER 5. CONCLUSION 80 OpenAPI 3 Code Binding Generator for Haskell

https://wiki.haskell.org/Quasiquotation

opment team. The end of the thesis marks an important point in the life of the team mem-

bers with a lot of change so that no future promises about maintenance can be made.

5.4.8 Viability

This project has no commercial goals. The future maintenance of the library depends mostly
on free work. This free work may come from the project team because they have personal
interest in the longevity and usage of this product. Other people may take up interest in de-
veloping and maintaining the project further because they have some usage of the library
(5.4.9) or some other personal interest (e. g. a bachelor thesis). Interest in cooperation al-
ready exists as described in 5.4.7. Tom Sydney Kerckhovewill probably use the productin a

project of his. To make it easy for other people to work on this project:

The project is published with a non-restrictive licence.

Most of the code is documented well. Advanced Haskell features were used with care

to make the code easier to understand.

The code is published on Hackage and the installation instructions are very easy.

The project team is open to questions and willing to help.

5.4.9 Future Use Cases

People may take up interest in this project because of the following use cases. This listis not

complete and people may be interested by other reasons.

« Use Stripe APl in Haskell
+ Generate code for another OpenAPI specification to connect to an API

+ Generate code for a self-written OpenAPI specification to provide code for other devel-

opers
+ Renew an existing library with the code generator to reduce maintenance cost

+ Modify the code generator to generate server code (Models could be reused) (5.4.4)

CHAPTER 5. CONCLUSION 81 OpenAPI 3 Code Binding Generator for Haskell

+ Modify the code generator for generalised JSON Schema usage (5.4.5)

CHAPTER 5. CONCLUSION 82 OpenAPI 3 Code Binding Generator for Haskell

Part il

Appendix

83

Appendix A

Requirements Specification for Code

Generator

A.1 Prioritization

Reliability A.3.1 and Changeability A.3.4 are the most important parts of the non-functional

requirements.

84

A.2 Use Cases

A.2.1 Generate Code

The Code Generator has only one use case: To generate code out of a OpenAPI specifica-
tion. The OpenAPI specification may be ina JSON or YAML file. The Code Generator must be

callable and parameterizable over a CLI.

Typically this is not done very often and started manually, but for frequently changing spec-

ification this could be part of a build process.

Output Directory An output directory must be declarable.

Stack Project It must be possible to declare if a Stack project should be generated or not.

Project name For the generated code a name must be declarable. The name can be used

for the Stack project and the namespace.

Dry run It must be possible to call the code-generator without actually generating code.

Types Some OpenAPIl-schema-types can be mapped to different Haskell-types with differ-
ent trade offs. For example a number can be either mapped to a Double or
Numeric.Decimals.GeneralDecimal. The user of the code generator must be able to decide

which type to use in these cases.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 85 OpenAPI 3 Code Binding Generator for Haskell

A.3 Non-functional Requirements

These requirements are the basis for the architectural decisions of the code generator.

A.3.1 Reliability
A.3.1.1 Error Tolerance

Description Additional data structures in the specification should be ignored. If the data
structures in the specification are invalid (type which does not exists, missing mandatory
fields, etc.) an error message should be produced. If the specification is not valid JSON or

YAML, an error message should be produced.

Measure of Fulfilment A valid specification with invalid and additional data inside the
document root, the paths object and a schema can still generate valid Haskell code and

warns about invalid data structures.

Status This requirement is fulfilled.

A.3.1.2 Naming Tolerance
Description Naming possibilities in the specification should not be reduced by program-

ming language restrictions.

Measure of Fulfilment All names conflicting with Haskell-keywords get either prefixed or
postfixed. All non ASCII or non-alphabetic characters get ignored or converted to alphabetic

characters.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 86 OpenAPI 3 Code Binding Generator for Haskell

A.3.2 Usability
A.3.2.1 Understandability

Description Allerror messages and information are understandable. Error messages from

third party libraries are excluded from this requirement.

Measure of Fulfilment All error messages use whole english sentences and use the same

naming as OpenAPI.

Status This requirement is fulfilled.

A3.2.2 Learnability

Description Allthe functionality of the code generator should be learnable in ashort time.

Measure of Fulfilment If the argument --help is given to the code generator a message

describing all the functionality is shown.

Status This requirement is fulfilled.

A.3.2.3 Accessibility

Description People with hearingimpairments, visualimpairments or mobility impairments

should be able to use the code generator

Measure of Fulfilment No sound is used and all information is available as text. Color is

just used for visualization of information.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 87 OpenAPI 3 Code Binding Generator for Haskell

A.3.2.4 Automation

Description The code generator should be easily integrated in automatic processes.

Measure of Fulfilment The code generator can be called and parameterized over a CLI.

Status This requirement is fulfilled.

A.3.3 Efficiency

A.3.3.1 Response Time

Description The code should be generated in a reasonable time.

Measure of Fulfilment Per 1000 lines of specification and not exceeding 58000 in YAML

format not more than 2 seconds should be used to generate the code. For example: For

5000 lines of specification not more than 10 seconds should be used to generate the code.

Status This requirement is fulfilled.

A.3.3.2 Memory Consumption

Description The generation of the code should use a reasonable amount of memory.

Measure of Fulfilment Per 1000 lines of specification and not exceeding 58000 in YAML
format not more than 25 mb should be used to generate the code. For example: For 5000

lines of specification not more than 125 mb should be used to generate the code.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 88 OpenAPI 3 Code Binding Generator for Haskell

A.3.4 Changeability
A.3.4.1 Traceability
Description The code generation outputs enough information to understand what hap-

pened and importantly why it happened, so that problems can be identified.

Measure of Fulfilment For every stage of the code generation, the start and the end is
discoverable from the output. The original path in the specification is discoverable from
the output for every operation and schema. Every error message gives a reason why it was
created. For this requirement to be fulfilled, the output can be log-information, cli-output

or the generated code.

Status This requirement is fulfilled.

A.3.4.2 Availability

Description The source code is available as open source.

Measure of Fulfilment The source code is available at an open source hosting platform

(e.g. gitlab.com) under an open source licence (e.g. MIT licence).

Status This requirement is fulfilled.

A.3.5 Portability
A.3.5.1 Building Process

Description The code generator should be buildable on different platforms.

Measure of Fulfilment The code generator can be built on Windows (version 10), Mac OS
(version 10.15) and Ubuntu (version 18.04).

REQUIREMENTS SPECIFICATION FOR CODE GENERATOR 89 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

A.3.5.2 Usage

Description The code generator should be usable on different platforms.

Measure of Fulfilment The code generator can be used on Windows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

Status This requirement is fulfilled.

A.3.6 Scalability
A.3.6.1 OpenAPI Specification Size

Description Code should be able to be generated from large specification files.

Measure of Fulfilment The code generator can generate code from specifications with up
to 50000 lines.

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 90 OpenAPI 3 Code Binding Generator for Haskell

Appendix B

Requirements Specification for

Generated Code

B.1 Prioritization

Usability B.3.2 and Reliability B.3.1 are the most important parts of the non-functional re-

quirements.

91

B.2 Use Cases

The requirements for the generated code have no traditionally defined use cases. The gen-

erated code can be used to call an API conforming to the specification used for generating

the code.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 92 OpenAPI 3 Code Binding Generator for Haskell

B.3 Non-functional Requirements

These requirements are the basis for the architectural decisions of the generated code.

B.3.1 Reliability
B.3.1.1 Error Tolerance

Description Invalid APl answers or network errors should not crash the program.

Measure of Fulfilment An arbitrary answer can be given to an API call and the program

does not crash.

Status This requirement is fulfilled.

B.3.1.2 Static Analysis

Description Invalid Request not conforming to the specification should be prohibited at

compile time.

Measure of Fulfilment All Requests must conform to a type restriction the values accord-

ing to the specification.

Status This requirementis fulfilled.

B.3.2 Usability
B.3.2.1 Understandability

Description All error messages and information are understandable.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 93 OpenAPI 3 Code Binding Generator for Haskell

Measure of Fulfilment All error messages use whole english sentences and use the same

naming as OpenAPI.

Status This requirement is fulfilled.

B.3.2.2 Learnability

Description The usage of the generated code should be understandable.

Measure of Fulfilment From the generated code a documentation can be generated and

a general documentation about the usage of the generated code is available.

Status This requirement is fulfilled.

B.3.3 Efficiency
B.3.3.1 Time Efficiency

Description The generated code should be fast.

Measure of Fulfilment The difference between a HTTP call over the library compared to a

HTTP call with static data should be under 10 ms.

Status This requirementis fulfilled.

B.3.3.2 Memory Consumption

Description The generated code should use little memory.

Measure of Fulfilment The overhead of using the generated code to send a plain message

without body and receiving an answer without a body should be under 1 mb.

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 94 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

B.3.4 Changeability
B.3.4.1 Traceability

Description |If an error occurs it is possible to identify the problem. Error messages from

third party libraries are excluded from this requirement.

Measure of Fulfilment All error messages give information about what and why.

Status This requirement is fulfilled.

B.3.4.2 Availability

Description The generated code can be used in a commercial application.

Measure of Fulfilment The generated code is not bound to a license that prohibits com-

mercial use.

Status This requirement is fulfilled.

B.3.5 Portability

B.3.5.1 Building Process

Description The generated code should be buildable on different platforms.

Measure of Fulfilment The generated code can be built on Windows (version 10), Mac OS
(version 10.15) and Ubuntu (version 18.04).

REQUIREMENTS SPECIFICATION FOR GENERATED CODE 95 OpenAPI 3 Code Binding Generator for Haskell

Status This requirement is fulfilled.

B.3.5.2 Usage

Description The generated code should be usable on different platforms.

Measure of Fulfilment The generated code can be used on Windows (version 10), Mac OS

(version 10.15) and Ubuntu (version 18.04).

Status This requirement is fulfilled.

B.3.6 Scalability

B.3.6.1 Parallelization

Description The generated code should be usable in a threaded environment.

Measure of Fulfilment Parallel requests can be issued with the generated code. This does

not mean, that the generated code should give functionality to issue requests parallel, but

that it can be used in a parallel environment

Status This requirement is fulfilled.

REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARY 96 OpenAPI 3 Code Binding Generator for Haskell

Appendix C

Requirements Specification for Stripe

Library

The Appendix B Requirements Specification for Generated Code also applies to the Stripe

library. Only additional requirements are listed in this chapter.

97

C.1 Use Cases

All relevant API endpoints from https://stripe.com/docs/api to perform an online payment

can be called.

REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARY 98 OpenAPI 3 Code Binding Generator for Haskell

https://stripe.com/docs/api

C.2 Non-functional Requirements

C.2.1 Usability
C.2.1.1 Learnability

Description The usage of the library should be understandable.

Measure of Fulfilment A documentation about the library is online available.

Status This requirement is fulfilled.

APPENDIX C. REQUIREMENTS SPECIFICATION FOR STRIPE LIBRARYD9 OpenAPI 3 Code Binding Generator for Haskell

Appendix D

Quality Measures

D.1 Code Style

D.1.1 Programming Guidelines/Linting

As a source of inspiration, https://wiki.haskell.org/Programming_guidelines can be used re-
garding programming guidelines. But the main source of programming guidelines is hlint*
which is used to automatically lint the source code. This ensures consistency to a reasonable

degree. If hints of hlint are ignored, this should be done with care and documented.

D.1.2 Formatting

To ensure a consistent formatting, Ormolu? is used. The formatting is applied during Git pre-

commit hooks.

Lhttps://hackage.haskell.org/package/hlint
2https://github.com/tweag/ormolu

100

https://wiki.haskell.org/Programming_guidelines
https://hackage.haskell.org/package/hlint
https://github.com/tweag/ormolu

D.2 Automated Testing

Before accepting a merge request, all tests must be successful. If applicable, the tests for the
new code should already be included in the merge request. The code coverage of the code

generator should be at least 80% for the property/unit test and system tests combined.

D.2.1 Property Tests

Property tests allow testing with randomly generated input data to ensure some properties
of a function always holds. For this, the library Validity® will be used, will be used in conjunc-

tion with the widely used testing libraries hspec* and QuickCheck®.

D.2.2 Unit Tests

Unit tests are created in addition to property tests and test Haskell functions as well. These
tests are useful for cases whereitis not possible to find good properties. Unit tests are written

with hspec.

D.2.3 System Tests

System tests test the code generator from a user perspective as they run the executable and
check the created output. These tests are created on three different levels. On the first level
are the Compile tests, on the second the Client tests and on the third the AP/ tests. Every level

is based on the previous level, therefore there are many Compile tests and fewer API tests.

D.2.3.1 Compile Test

The compile tests use valid OpenAPI specifications which are transformed to Haskell code
with the code generator. The output is compiled with GHC and the Haddock documentation

is generated. This workflow is shown in Figure D.1. These tests are successful if the compi-

3https://github.com/NorfairKing/validity
*https://hackage.haskell.org/package/hspec
Shttps://hackage.haskell.org/package/QuickCheck

APPENDIX D. QUALITY MEASURES 101 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/NorfairKing/validity
https://hackage.haskell.org/package/hspec
https://hackage.haskell.org/package/QuickCheck

lation and the generation of the documentation succeeded. The generation is tested with
different CLI configurations and the documentation has to cover all of the exported elements

(functions, types etc.).

aml | ———| cod hs |———| GHC
Y generator NS

OpenAPI Generated

specification code

Figure D.1: Workflow Compile Test

D.2.3.2 Client Test

The client tests extend the Compile tests with additional client code which uses the gener-
ated code, as shown in Figure D.2. The client code calls functions of the generated code and
therefore checks, if the types are still compatible. To achieve more confidence, those calls
are done within unit tests which can check the results as well. Those tests are successful if

the test executable can be built and runs successfully.

Code
yaml [———— .hs | —— GHC
generator
OpenAPI Generated
specification code
A~
e .hs
uses
Client code

Figure D.2: Workflow Client Test

APPENDIX D. QUALITY MEASURES 102 OpenAPI 3 Code Binding Generator for Haskell

D.2.3.3 API Test

As shown in Figure D.3, the API tests go one step further as they execute the actual HTTP
calls the generated code is intended to do. The client code checks if the results match the
expected response. Those tests are successful if the test executable can be built and runs

successfully.

calls and
checks result

Code
yaml | ——— .hs | —— GHC —— | .exe | ———| HTTPAPI
generator
OpenAPI Generated Executable
specification code
EN
JRRREECR. .hs
uses
Client code

Figure D.3: Workflow API Test

D.2.4 FeedbackLoop

Duringlocal developmentitisimportant to get fast feedback if the changes made are correct.
Therefore, itis desirable to have a fast feedback loop. On afirst level, this is achieved through
property and unit tests which only test if single functions work as expected. Local system
tests provide a second level of confidence. If the speed of these tests becomes too slow for

local development, it is necessary to create a smaller sample set just for local execution.

APPENDIX D. QUALITY MEASURES 103 OpenAPI 3 Code Binding Generator for Haskell

Appendix E

Test Plan

This chapter serves the purpose of declaring manual tests. For automatic testing see sec-

tion D.2 Automated Testing.

104

E.1 Test Procedure

E.1.1 When will tests be carried out?

During construction the tests are informally without a protocol carried out. During Construc-
tion: Stabilization all tests are carried out with a protocol.

E.1.2 Non-Functional Requirements

During the test at the end of the Construction: Feature Freeze iteration all non-functional
requirements are tested. The success is documented directly in the requirements specifica-

tions (Appendix A, Appendix B and Appendix C).

APPENDIX E. TEST PLAN 105 OpenAPI 3 Code Binding Generator for Haskell

E.2 Tests

E.2.1 TestSYS.LIN System Test Linux

Test if code can be built and used on a Linux (Ubuntu version 18.04) platform. The linux

distribution Ubuntu was chosen, as one of the team members is using Ubuntu.

Prerequisites

Stripe-API YAML file available

« Code Generator source is available

Helper Code which uses the Generated Code is available

+ Ubuntu version 18.0 or higher is available

Procedure

Build an executable from the Code Generator from source with Stack

Use the executable with the Stripe-API YAML file to generate code

Build an executable from the Generated Code and Helper Code

« Run the executable.

Expectations

« Every build process works without error

« Every executable can be called

E.2.2 Test SYS.WIN System Test Windows

Testif code can be builtand used on a Windows (version 10) platform. Repeat test SYS.LINE.2.1

with Windows in place of Ubuntu.

APPENDIX E. TEST PLAN 106 OpenAPI 3 Code Binding Generator for Haskell

E.2.3 Test SYS.MAC System Test macOS

Test if code can be builtand used on a macOS (version 10.15) platform. Repeat test SYS.LINE.2.1

with macOS in place of Ubuntu.

E.2.4 Test DOC.CGE Documentation Test Code Generator

Test if the Code Generator can build a good documentation.

Prerequisites

+ Code Generator source is available

Procedure

« Build documentation from source

Expectations

« Documentation can be built

+ Mostimportant parts are well documented. This expectation is up to human interpre-

tation.

E.2.5 Test DOC.GCO Documentation Test Generated Code

Test if the Generated Code can build a good documentation.

Prerequisites

+ Generated Code from the Stripe-API source is available

APPENDIX E. TEST PLAN 107 OpenAPI 3 Code Binding Generator for Haskell

Procedure

« Build documentation from source

Expectations

« Documentation can be built

+ Most important parts are well documented. This expectation is up to human interpre-

tation.

E.2.6 Test DEM.PAY Demo Test Payments API

Test Demo Use Case 2.2.2 with the Payments API.

Prerequisites

« Demo serveris up and running

Procedure

« Declare intent to pay over Payments API
« Fillin payment details like amount and a test card

+ Complete payment

Expectations

+ User never left the page
+ Success Message is displayed

+ Inthe log-information the status is available from a server to server call

APPENDIX E. TEST PLAN 108 OpenAPI 3 Code Binding Generator for Haskell

E.2.7 Test DEM.CHE Demo Test Payments API

Test Demo Use Case 2.2.2 with the Checkout API. This test is optional.

Prerequisites

+ Demo serveris up and running

Procedure

« Declare intent to pay over Checkout API
+ Fillin payment details like amount and a test card

+ Complete payment

Expectations

+ User was redirected to Stripe and back again

+ Success message is displayed

+ In the log-information the status is available from a server to server call

E.2.8 Test PAC.HAC Package Test Hackage

Test if the package can be used from Hackage.

Prerequisites

+ Package is on Hackage

APPENDIX E. TEST PLAN 109

OpenAPI 3 Code Binding Generator for Haskell

Procedure

+ Install the package from Hackage via Cabal.

Expectations

+ Package can successfully be used

E.2.9 Test PAC.NIX Package Test Nix

Test if the package can be used from Nix. This test is optional.

Prerequisites

« Package is on Nix

Procedure

« Install the package from nix via nix package manager.

Expectations

« Package can successfully be used

E.2.10 Test USA:COD Usability Test

In this test a person which has no prior knowledge of this project tries to use the product on

his own. Help from the team members is prohibited, only the online available instructions

can be used. The person needs to:

+ Install the code generator

APPENDIX E. TEST PLAN 110 OpenAPI 3 Code Binding Generator for Haskell

+ Generate code with the help of the code generator

The test person does not need to use the generated code in a project. The reason for this is

the lack of testing personal available.

APPENDIX E. TEST PLAN 111 OpenAPI 3 Code Binding Generator for Haskell

E.3 Protocol

Table E.1: Test protocol

Test Date | Tester Result

SYS.LIN 20.05.2020 | Remo Dorig Test was successful
SYS.WIN 20.05.2020 | Remo Dorig Test was successful
SYS.MAC | 20.05.2020 | Joel Fisch Test was successful
DOC.CGE | 20.05.2020 | Remo Dorig Test was successful
DOC.GCO | 20.05.2020 | Remo Dorig

DEM.PAY | 20.05.2020 | Remo Dorig Test was successful
DEM.CHE | 20.05.2020 | Remo Dorig Test was successful
PAC.HAC 20.05.2020 | Remo Dorig

PAC.NIX 20.05.2020 | Remo Dorig

DOC.GCO | 27.05.2020 | Remo Dorig Test was successful
PAC.HAC | 27.05.2020 | Remo Dorig Test was successful
PAC.NIX 27.05.2020 | Remo Dorig

USA.DOC | 01.06.2020 | Remo Dorig & Flavio F. | Test was successful

E.3.1 Notes about USA.DOC

The test USA.DOC was conducted at a later time, because the code first needed to be pub-

lished. Flavio could not install Cabal himself on Windows. After some help installing cabal,

he could finish the test himself.

E.3.2 Conclusion

All tests which are not optional were successful. The optional test PAC.NIX is the only test

which is not implemented. DOC.GCO and PAC.HAC were not implemented on the 20.05.2020

because the code was not published at the time.

APPENDIX E. TEST PLAN

112

OpenAPI 3 Code Binding Generator for Haskell

Appendix F

Architecture Overview

F.1 Demo System

The demo system is used to demonstrate the Code Generator with the Stripe API [19].

«devices wdevices
Client SEWEI'
-:'-:'[::'.S:':' .;'.:'DS:-:-
any OS5 Ubuntu

«Browsers HTTF protocel ||| demo backend
any browser —

1| HTTF protocol
— HTTF prgtocol

demo page E_H“'“-a___

Figure F.1: Demo system deployment diagram

As can be seenin the Figure F.1 the demo runs in the browser. The backend runs on a server
provided by the HSR on an Ubuntu system *. Forthe HTTP communication warp [24] as a part

ofthe backend is used without any dedicated web server like Apache. The web page is served

'For development or presentation the server may run directly on the development computer.

113

by the backend. The demo page and the backend both communicate with the external Stripe
API.

For more information see section 4.1.

APPENDIX F. ARCHITECTURE OVERVIEW 114 OpenAPI 3 Code Binding Generator for Haskell

F.2 Code Generator

The figure F.2 gives an overview of how the Code Generator can be used. The Code Generator
takes any OpenAPI specification [14] and generates code for Haskell. The Generated Code
can be used by any Haskell code (Client-Code) to communicate with the API specified by the
OpenAPI specification.

Code-

yaml [—— .hs | —— GHC
Generator
OpenAPI- Generated
Specification Code
LT .hs
uses
Client-Code

Figure F.2: Workflow Code Generation

F.2.1 Phases

To simplify and minimize the scope the code generation is split up into differentindependent
phases, as visualized in Figure F.3. The generated code from the different phases references

each other, but the generation is independent of each other and could therefore run in any

order.
{ Models } { Operations }
{ SecuritySchemes } { Configurationinformation }

Figure F.3: Phases of the code generator

APPENDIX F. ARCHITECTURE OVERVIEW 115 OpenAPI 3 Code Binding Generator for Haskell

Operations Transforms pathsto different operations. Models directly specified in the paths

are generated in this phase, other models are only referenced.

Configurationinformation Transforms servers to different configurations. Configurations

are used by Operations and contain server information including SecuritySchemes.

Models Transforms components.schemas to different types/models. Models are used by

Operations. Overview about the models can be found at F.2.2

SecuritySchemes Transforms components.securitySchemas to securitySchemes, which can

be part of a configuration defined in ConfigurationInformation.

F.2.2 Models

More detailed information about the different types for the models can be found at subsec-
tion 3.1.3 Data Models. The Figure F.4 Flow of the code generation of models gives a rough
overview over the different kind of models that are generated, in which steps they are cre-
ated and depending on which conditions they are created. If a schema is a reference, no
model is created, only the referenced type is used. The referenced type is created when the
generator encounters the concrete type. For primitive OpenAPI-types no type is created nor-

mally, if it needs to be referencable, a Haskell type-alias is created.

The generation of a model typically results in:

+ Type: The type of the generated model
» Docs: The declarations used to define the Type
+ Dependencies: A set of dependencies (all the types which are referenced).

If the dependencies form a cyclic dependency, a model is put together with the others in the

CyclicTypes module or in its own module otherwise.

APPENDIX F. ARCHITECTURE OVERVIEW 116 OpenAPI 3 Code Binding Generator for Haskell

Define model for schema

yes
—

define ADT with
each enum value

<

no |

define model for
items schema

define array type

fuse subschemas | —

define model for object

define model for
subschemas

yes
type=array? > —
no|
‘yes
_)
no|
yes
has oneOf? > —
no|
yes
H

fuse subschemas

<

no|

es
type=object? Y

no |

define primitive
type

define model for
properties schema

define ADT for
submodels
unrequire define model
. d .
all properties for object

define record type

Figure F.4: Flow of the code generation of models

APPENDIX F. ARCHITECTURE OVERVIEW

117

OpenAPI 3 Code Binding Generator for Haskell

F.2.3 Layering

The layering is visualised in the image Layers for Code Generator. OpenAPI Data represents
the OpenAPI data structure in Haskell types. Utils, Flags, Docs, Monad are helpfull utils which
nearly all of the code depends on. Models, Operations, SecuritySchemes and SecuritySchemes
are four independent phases of the code generation. See F.2.1 for more information about

the phases. In the end, Generate depends on all four phases and constructs the end result.

Generate

Models Operations SecuritySchemes Configuration

OpenAPI Data Utils, Flags, Docs, Monad

Figure F.5: Layers for Code Generator

F.2.4 Generator Monad

During code generation itis necessary to resolve references in the OpenAPI specification and
to trace information. For this purpose an environment in the form of the Generator Monad is

used. This monad combines the WriterT and Reader design pattern.

Reader isused to read from:

+ current path: Used for tracing.

APPENDIX F. ARCHITECTURE OVERVIEW 118 OpenAPI 3 Code Binding Generator for Haskell

+ references: Used to resolve references

« flags: CLI options

WriterT isused to write log-information.

F.2.5 Resulting Modules

All symbols are globally unique and are reexported in the module OpenAPI (Module name
can be changed with CLI option --module-name). To reduce compile time, the code is split
up into multiple modules. Mainly for every operation and for every schema. Schemas with

cyclic dependencies are in the module OpenAPI.CyclicTypes.

F.2.6 Actual Code Generation

Forthe actual code generation, an AST is generated with Template Haskell and pretty printed
to generate code. Information about code generation can be found at 3.2 and for Template
Haskell at 3.2.2.

APPENDIX F. ARCHITECTURE OVERVIEW 119 OpenAPI 3 Code Binding Generator for Haskell

F.3 Stripe Library

The Stripe library provides an interface for client code to call the Stripe AP, for this the gen-
erated code is used. The figure F.6 demonstrates the full workflow of how the Stripe Library

can be used, usually client code only uses the Stripe Library.

Code-
yam| | ——
4 Generator A -hs
Stripe- ," Generated
Specification uses Code

S

\\J ,,/
\;J

Stripe
' Librar
uses ' y calls the API

s | ——— GHC —— | .exe | —— | Stripe-API

Client Executable
Code

Figure F.6: Workflow Code Generator for Stripe Library

F.3.1 Layers

The following layers visualized in F.7 are present in a program using the Stripe Library.

Client Code
4

Stripe Library

+

Generated Code

N

HTTP Library

Figure F.7: Layers for Stripe Library

APPENDIX F. ARCHITECTURE OVERVIEW 120 OpenAPI 3 Code Binding Generator for Haskell

Client Code can be any code which wants to use Stripe.

Stripe Library is provided by this project. It uses the Generated Code for Stripe and ex-

tends it with some package information and formatting.

Generated Code is generated by the Code Generator.

HTTP Library is provided by the Haskell eco system. It is used by the Generated Code to
make HTTP calls. Apart from the HTTP library, some other common utilities will be present

in any generated code, but they are of no concern for the greater picture.

F.3.2 Design Pattern

The generated code uses the ReaderT design pattern [1]. This allows users to execute multi-

ple requests using the same configuration instead of passing it explicitly every time.

APPENDIX F. ARCHITECTURE OVERVIEW 121 OpenAPI 3 Code Binding Generator for Haskell

Appendix G

Installation Instructions

G.1 Code Generator

The installation instructions are also available online at

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#
readme. The code is available at:

« https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator

« https://gitlab.com/hsr-ba-openapi-3/hsr-ba-openapi-3/

(Not public) in the directory openapi3-code-generator.

« https://hackage.haskell.org/package/openapi3-code-generator

G.1.1 Install from Source

+ cd openapi3-code-generator if the private GitLab repository is used.

« Install stack *

e stack run --my_specification.yml

https://docs.haskellstack.org/en/stable/install_and_upgrade/

122

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#readme
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator#readme
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator
https://gitlab.com/hsr-ba-openapi-3/hsr-ba-openapi-3/
https://hackage.haskell.org/package/openapi3-code-generator
https://docs.haskellstack.org/en/stable/install_and_upgrade/

G.1.2 Install from Hackage

« Install cabal 2

e cabal install openapi3-code-generator

This may take a while.

e openapi3-code-generator-exe my_specification.yml

2https://www.haskell.org/cabal/

APPENDIX G. INSTALLATION INSTRUCTIONS 123 OpenAPI 3 Code Binding Generator for Haskell

https://www.haskell.org/cabal/

G.2 Stripe Library

The library is available at:

« https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library

« https://hackage.haskell.org/package/stripeapi

G.2.1 Install from Hackage

Run cabal install stripeapi in the root of a project that wants to use the library.

G.2.2 Example Usage

An example can be found at:
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/
example/src/StripeHandling.hs

APPENDIX G. INSTALLATION INSTRUCTIONS 124 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library
https://hackage.haskell.org/package/stripeapi
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/example/src/StripeHandling.hs
https://github.com/Haskell-OpenAPI-Code-Generator/Stripe-Haskell-Library/blob/master/example/src/StripeHandling.hs

G.3 Generated Code

An example how generated code can be used directly from the file system, can be found at
https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator/

in the directory example.

APPENDIX G. INSTALLATION INSTRUCTIONS 125 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/Haskell-OpenAPI-Code-Generator/Haskell-OpenAPI-Client-Code-Generator/

Appendix H

Task Description

H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell

And its Application to Generate a Library for the Stripe Payment System

H.1.1 Supervisor

Prof. Dr. Farhad Mehta, HSR Rapperswil

H.1.2 Students

« Joel Fisch

« Remo Dorig

H.1.3 Setting

The OpenAPI Specification (originally known as the Swagger Specification) is a specification
for machine-readable interface files for describing, producing, consuming, and visualizing
RESTful web services. It is claimed to be a broadly adopted industry standard for describ-
ing modern APIs. The current version of OpenAPlI is 3.0.2, released on 08.10.2018. Unless
otherwise specified, this will be the version of OpenAPI referred to in this project. Haskell is

a general-purpose, statically typed, purely functional programming language with type in-

126

ference and lazy evaluation. Developed to be suitable for teaching, research and industrial
application, Haskell has pioneered a number of advanced programming language features,
especially in the area of type systems. Haskell is increasingly used in a number of applica-
tions where efficiency and reliability are valued, particularly in the financial sector. The cur-
rent version of the Haskell development environment GHC is 8.8.2, released on 16.01.2020.
Unless otherwise specified, this will be the version of Haskell referred to in this project. Stripe
is a company that provides technical, fraud prevention, and banking infrastructure required
to operate online payment systems. Stripe provides an API that web developers can use
to integrate payment processing into their websites and mobile applications. Stripe pro-
vides an OpenAPI 3.0 specification for this APl at https://github.com/stripe/openapi. There
is interest within the Haskell community to use Stripe. The current Haskell library (https:
//github.com/dmjio/stripe) only supports the older Stripe API version 2014-10-071. Since
this * library is coded manually, itis labour-intensive to keep up to date. A Haskell library that
supports the most recent Stripe APl version is desired. Stripe provides an OpenAPI 3.0 spec-
ification for its API at https://github.com/stripe/openapi. Since the OpenAPI specification
is machine-readable, it is possible to use it to automatically generate code bindings in the
programming language used to develop a target application, making this task more efficient
and less error-prone. Code binding generators for a number of languages exist2, but there
is currently no such code binding generator for Haskell 3. The development of an OpenAPI
code-binding generator for Haskell could be used to generate an easy to maintain Haskell

library for Stripe and would also have much broader use within the Haskell community.

H.1.4 Goals

The main goals of this project are:
+ OpenAPI code binding generator: To implement an OpenAPI code binding generator
for Haskell in Haskell.

+ Haskell Library for Stripe API: To use this generator to generate code bindings that

can be used to implement a Haskell library for the Stripe API.

lhttps://github.com/d mjio/stripe/blame/e00910f59b065bc68335¢c3f91d956ec0c662b0b4/README.md#
L81

APPENDIX H. TASK DESCRIPTION 127 OpenAPI 3 Code Binding Generator for Haskell

https://github.com/stripe/openapi
https://github.com/dmjio/stripe
https://github.com/dmjio/stripe
https://github.com/stripe/openapi
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md#L81
https://github.com/dmjio/stripe/blame/e00910f59b065bc68335c3f91d956ec0c662b0b4/README.md#L81

+ Demo Application: To implement a simple working demo application that uses the
Haskell Stripe APl library for online payments to demonstrate the use of the developed

tools.

Special care must be taken to take advantage of the advanced features of Haskell’s type sys-
tem to enforce data consistency at compile time, as well as the current state of the art in
Haskell development (e.g. property-based testing). At the same time, the resulting tools
must be understandable, usable and maintainable by a wide community of Haskell devel-
opers. While developing the “OpenAPI code binding generatoe”, priority should be given to
parts of the OpenAPI specification that are required to generate the code bindings required
for the “Haskell Library for Stripe API”. This is the minimum subset of the OpenAPI specifica-
tion that must be supported. All product documentation must be in English, and in a form
that is appropriate for continued development, publicly or otherwise. Project documenta-

tion that is not relevant to the continued development of the project may be in German.

H.1.5 Workload

A successful bachelor thesis project counts towards 12 ECTS credit points per student. One
ECTS credit point corresponds to a work effort of 30 hours. All time spent on the project must

be recorded and documented.

APPENDIX H. TASK DESCRIPTION 128 OpenAPI 3 Code Binding Generator for Haskell

Appendix |

Listings

129

1

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

.1 Scalar Type Examples

”"foo bar”

type: string

”"U3dhz2dlciByb2Nrcw=="
type: string
format: byte

”"U3dhz2dlciByb2Nrcw=="
type: string

format: binary

7.4

type: number

7.4
type: number

format: float

7.4
type: number

format: double

7
type: integer

7
type: integer

format: int32

7
type: integer

format: int64

false

type: boolean

Listing I.1: OpenAPl example scalar types

APPENDIX . LISTINGS

130

OpenAPI 3 Code Binding Generator for Haskell

{—# LANGUAGE OverloadedStrings #—}
module ExampleScalarTypes where
import qualified Data.ByteString as B
import qualified Data.Int as |

import qualified Data.Text as T

exampleString :: [T.Text]

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

exampleString = ["hello”, "world”]

exampleByte

exampleByte =

exampleBinary

exampleBinary

— note, that this

exampleNumber

exampleNumber

exampleFloat

exampleFloat =

exampleDouble

exampleDouble

examplelnteger

examplelnteger

examplelnt32

examplelnt32 =

examplelnt64

examplelnt64

exampleBoolean

exampleBoolean

APPENDIX . LISTINGS

B.ByteString

B.ByteString

is not actually an infinite number.

Listing 1.2: OpenAPI Haskell example scalar types

OpenAPI 3 Code Binding Generator for Haskell

.2 Research HTTP Library

Thefollowing code exampleis copied from https://docs.servant.dev/en/stable/tutorial/Client.
htmland only slightly modified to better demonstrate, that the functions are autogenerated.

{—# LANGUAGE DataKinds #-}
{—# LANGUAGE DeriveGeneric #-—}
{—# LANGUAGE TypeOperators #—}

module Main where

import Data.Aeson

import Data.Proxy

© 0 N O U W N e

import GHC. Generics

e
o

import Network.HTTP.Client (defaultManagerSettings, newManager)

e
[N

import Servant.API

[ure
N

import Servant.Client

[y
w

import qualified Servant.Client.Streaming as S

-
'S

import Servant.Types.SourceT (foreach)

=
() I

data Position
= Position
{ xCoord :: Int,

e
© 0 N

yCoord :: Int
}

deriving (Show, Generic)

N NN
N = O

instance FromJSON Position

N NN
o b W

newtype HelloMessage = HelloMessage {msg :: String}

N
[}

deriving (Show, Generic)

NN
o N

instance FromJSON HelloMessage

w N
o ©

data Clientinfo

= ClientInfo

w w
N

{ clientName :: String,

w
w

clientEmail :: String,

w
S

clientAge :: Int,

w
a1

clientinterestedln :: [String]
}
37 deriving (Generic)
38
39 instance ToJSON Clientinfo
40

w
[}

41 data Email

42 = Email
43 { from :: String,
44 to :: String,

APPENDIX 1. LISTINGS 132 OpenAPI 3 Code Binding Generator for Haskell

https://docs.servant.dev/en/stable/tutorial/Client.html
https://docs.servant.dev/en/stable/tutorial/Client.html

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91

subject :: String,
body :: String
}

deriving (Show, Generic)

instance FromJSON Email

type API =
”position”

»

:> Capture ”x” Int
:> Capture ”"y” Int
:> Get ’'[JSON] Position

:<|> ”hello”

:> QueryParam ”name” String
:> Get ’'[JSON] HelloMessage

:<|> "marketing”

:> ReqBody ’[JSON] Clientinfo

:> Post ’[JSON] Email

api :: Proxy API
api = Proxy

— functions position, hello and marketing are autogenerated

position :<|> hello :<|> marketing = client api

queries :: ClientM (Position, HelloMessage, Email)

queries = do

pos <— position 10 10

message <— hello (Just "servant”)

em <—

marketing

(Clientinfo ”"Alp” ”alp@foo.com” 26 [”haskell”, ”"mathematics”])

return (pos, message, em)

main :: 10 ()

main = do

manager’ <— newManager defaultManagerSettings

res <—
runClientM
queries
(mkClientEnv manager’

case res of

Left err —> putStrLn $ “Error:

(BaseUrl Http ”localhost” 8081 ””))

»

++ show err

Right (pos, message, em) —> do

print pos
print message

print em

Listing 1.3: Servant: Querying an API

APPENDIX . LISTINGS

133

OpenAPI 3 Code Binding Generator for Haskell

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1.3 OpenAPI Tools Code Generators

{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE
{-# LANGUAGE

ConstraintKinds #-}

CPP #-}

DefaultSignatures #-}
DeriveDataTypeable #-}
DeriveFoldable #-}
DeriveFunctor #-}
DeriveGeneric #-F
DeriveTraversable #-}
EzistentialQuantification #-}
FlezibleContexts #-}
FlezibleInstances #-}
GeneralizedNewtypeDeriving #-}
KindSignatures #-}
LambdaCase #-F}
MonoLocalBinds #-}
MultiParamTypeClasses #-}
NamedFieldPuns #-}
OverloadedStrings #-}
PartialTypeSignatures #-}
RankNTypes #-}
RecordWildCards #-}
ScopedTypeVariables #-}
TupleSections #-}
TypeFamilies #-}
TypeOperators #-}

Listing 1.4: Language extensions used by the generated code from OpenAPI Tools

APPENDIX . LISTINGS

134 OpenAPI 3 Code Binding Generator for Haskell

Appendix J

Domain Diagrams

The following domain models are included here for completeness. The domain should be

understandable too with only the information presented in section 2.1 Code Generation.

135

uoled110ads |dyuadQ ay3 jo japow ulewoq 919)dwo) 11 aindi4

e (@) @)

) -

vofm @ @

o] B

oo mnns 10@)| [v @)

o

o) rrosuena@)| [prmas@)

pauey

OpenAPI 3 Code Binding Generator for Haskell

136

APPENDIX J. DOMAIN DIAGRAMS

a0 sassweed veasay ()|

sadA3 aduaiagal Inoym uoned1dads |dyuado ay3 jo japow urewoq

Y y Y
]]]
13(00 JarRUEIEg W,V_uuu@i __:Eo mBueiRy ;E@i _:mﬁo laweey mnmw:@i

1
|

_:mEo BB EIED AJBID) @7

__;Eo soAL EpaN ©7

ey

D3O uoeaWNI0g

o

u
a0 £21 ()

0

)

paurey

urg fur 0
paureu/ usiuoo pawel
0 .

D

w2190 voneszao ()

poIaw 2

2T 24n314

cotan e s @)

ug
pauwey|

ondyasap

un

naiao Janszs (3)

ug

uoissaidxe sad

e

OpenAPI 3 Code Binding Generator for Haskell

137

APPENDIX J. DOMAIN DIAGRAMS

paz1103y3 Ajjeui31io se 3pod pajesauss ay) JO |9POoW ulewop jewJdoju| i€ aindi4

A354Bd [BPOW

c_mEon_@

(SELUBYIS) 5|30 UBLIOT 3313y @

\

Apog unsay @

13ZI[BL3S 3P :_mEoo@

(SELWBYIL) S|2P0 W Uewod U:mm@

N

Slzlaweled ._m.\(_mm@

s1ecwiz | ._wP_mm@

(SBLUSYIG) S|3PO | UEwWog @

Unsay wolsno| ”

ynsay (e c_mEon_@

sgnis Hmm._.@

Apog (e @

sizlawered B3 @

EEEIENT-H] Ecsumm@

unsay 1123 (J)

0

pluoielado

:o_:&mno@

RL (=] @

apede4 dnodo __mu@

OpenAPI 3 Code Binding Generator for Haskell

138

APPENDIX J. DOMAIN DIAGRAMS

Addendum

139

Bibliography

(1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

[9]

Michael Snoyman. The ReaderT Design Pattern. June 12, 2017. URL: https://tech.
fpcomplete.com/blog/2017/06/readert-design-pattern (visited on 06/03/2020).

Matthias Benkort. Continuous integration in Haskell. Apr. 19,2020. UrL: https://medium.
com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46 (visited on 05/29/2020).

Tom Sydney Kerckhove. Private Correspondence. May 18, 2020.
Markus Schirp. Private Correspondence. June 6, 2020.
ghc-source-gen. URL: https://github.com/google/ghc-source-gen (visited on 03/05/2020).

Glasgow Haskell Compiler User’s Guide: Language options. URL: https://downloads.
haskell.org/~ghc/latest/docs/html/users _guide/glasgow _exts.html#extension-
DuplicateRecordFields (visited on 03/06/2020).

Haskell Source Extensions. URL: https://github.com/haskell-suite/haskell-src-exts
(visited on 03/05/2020).

haskell-generate. URL: https://github.com/bennofs/haskell - generate (visited on
03/05/2020).

haskell-src-exts-sc: Pretty print haskell code with comments. URL: https://github.com/
achirkin/haskell-src-exts-sc (visited on 03/17/2020).

http-client: An HTTP client engine. URL: https://hackage.haskell.org/package/http-
client (visited on 03/12/2020).

http-conduit: HTTP client package with conduit interface and HTTPS support. URL: http:
//hackage.haskell.org/package/http-conduit (visited on 03/25/2020).

JSON Schema. URL: https://json-schema.org/ (visited on 04/01/2020).
lens: Lenses, Folds and Traversals. URL: https://hackage.haskell.org/package/lens

(visited on 03/05/2020).

140

https://tech.fpcomplete.com/blog/2017/06/readert-design-pattern
https://tech.fpcomplete.com/blog/2017/06/readert-design-pattern
https://medium.com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46
https://medium.com/@_KtorZ_/continuous-integration-in-haskell-9ad2a73e8e46
https://github.com/google/ghc-source-gen
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#extension-DuplicateRecordFields
https://github.com/haskell-suite/haskell-src-exts
https://github.com/bennofs/haskell-generate
https://github.com/achirkin/haskell-src-exts-sc
https://github.com/achirkin/haskell-src-exts-sc
https://hackage.haskell.org/package/http-client
https://hackage.haskell.org/package/http-client
http://hackage.haskell.org/package/http-conduit
http://hackage.haskell.org/package/http-conduit
https://json-schema.org/
https://hackage.haskell.org/package/lens

[14] OpenAPI Specification Version 3.0.3. URL: https://swagger.io/specification/ (visited on
02/28/2020).

[15] openapi-generator.tech feature set. URL: https://openapi- generator . tech / docs /

generators/javascript#feature-set (visited on 02/28/2020).

[16] openapi-generator.tech from OpenAPI Tools. URL: https://openapi- generator.tech/
(visited on 03/11/2020).

[17] QuickCheck: Automatic testing of Haskell programs. URL: https://hackage.haskell.org/
package/QuickCheck (visited on 03/12/2020).

[18] Servant. urL: https://www.servant.dev/ (visited on 06/05/2020).
[19] Stripe. URL: https://stripe.com/ (visited on 03/28/2020).
[20] Stripe APl documentation. URL: https://stripe.com/docs/api/ (visited on 03/04/2020).

[21] Stripe OpenAPI specification. URL: https://github.com /stripe /openapi (visited on
03/04/2020).

[22] Template Haskell. urL: http://hackage.haskell.org/package/template-haskell (visited
on 03/05/2020).

[23] Time - HaskellWiki. urL: https://wiki.haskell.org/Time (visited on 03/06/2020).

[24] warp: Afast, light-weight web server for WAl applications. URL: https://hackage.haskell.
org/package/warp (visited on 03/28/2020).

[25] wreq: An easy-to-use HTTP client library. URL: https://hackage.haskell.org/package/
wreq (visited on 03/25/2020).

APPENDIX J. DOMAIN DIAGRAMS 141 OpenAPI 3 Code Binding Generator for Haskell

https://swagger.io/specification/
https://openapi-generator.tech/docs/generators/javascript#feature-set
https://openapi-generator.tech/docs/generators/javascript#feature-set
https://openapi-generator.tech/
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://www.servant.dev/
https://stripe.com/
https://stripe.com/docs/api/
https://github.com/stripe/openapi
http://hackage.haskell.org/package/template-haskell
https://wiki.haskell.org/Time
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/warp
https://hackage.haskell.org/package/wreq
https://hackage.haskell.org/package/wreq

Complete Content

Abstract i
Lay Summary ii
Management Summary iv
Acknowledgements v
Contents Vi
Glossary ix
Acronyms xi
List of Figures xii
List of Tables xiii
Listings Xiv
I Technical Report 1
1 Introduction 2
1.1 InitialSituation L e 2
1.1.1 OpenAPI3.0 o e e e e e e e e e e e e e 3

1.1.2 CodeGenerators . . . v v v v v v it e e e e e e e e e 3

1.1.3 Haskell e e 4

1.1.4 Stripe . . . o e e e e e e e e e e e e e 4

1.2 Goals . . v e e e e e e e e e e e e 5

1.2.1 OpenAPICode BindingGenerator 5

1.2.2 Haskell Library for Stripe APl, 5

1.2.3 DemoApplication e 5

1.2.4 Requirements for the Implementation 5

1.3 Requirements o i i e e e e e e e e e e e 7
1.4 Research/ExistingWork 8
1.41 OpenAPlTools CodeGenerators 8
1.4.1.1 StripeOpenAPIfile 8

1.4.1.2 Complex Example OpenAPIFile 8

AoneOf . . . 9

AnanyOf e e e e e 9

AnallOf o e e e 9

Anot . .. e 9
minLength,maxLength 9

dateanddate-time e 9

nullable 9

ENUM v v v v v v e e e e e e e e e e e e e e e e 9

142 servant-swagger i it i e e e e e e e 9

1.4.3 Stripe APl Coverage for Haskellby dmjio 10

1.5 InvolvedPeople. o o e e e 11
2 Problem Analysis 12
2.1 CodeGeneration i i i i i i e e e e e e 13
2.1.1 CodeGeneratorWorkflow 13

2.1.2 OpenAPISchema. i i 14
2.1.2.1 ReferenceTypes i i i v i i i it e e 16

2122 SchemaObject, 16

writeOnly /readOnly o 16

2123 ScalarTypes . . v v v v i e e e e e e e e e 16

2.1.24 ArraySchema e 16

2.12.5 ObjectSchema, 16

2.1.2.6 Inheritance /Polymorphism 17
AllOfSchema e 17

APPENDIX J. DOMAIN DIAGRAMS 143 OpenAPI 3 Code Binding Generator for Haskell

OneOfSchema 0 o i e 17

AnyOfSchema 17

Discriminator L o o 17

2.1.3 OpenAPISpecification e 18
2.1.3.1 Operation i e e e e 20
2.1.3.2 Parameters e 20
2133 Link ... e e e e e 20
2.1.34 SeCurity e e e e e e e e e e e e e 20
Basic Authentication 20

Bearer Authentication, 20

APLKeys e e e e e e e 21
OAuthandOpenID o ittt 21

214 GeneratedCode e 21
2.14.1 Operation e e e 21
2.142 DomainModels 21
2143 CallResult, 21

2.2 Stripe APl . L e e e e e e e e e 23
2.2.1 OpenAPlFeatures i i e 23
2211 SeCUrity . . v e e e e e e e e e e e e e e e 23
2.2.1.2 VendorExtensions, 23
x-resourceld andfixtures oL oL 23
x-polymorphicResources 0o 23
x-expandableFields and x-expansionResources 23

2213 Links e e e 24
2214 Callbacks 24
2.2.1.5 EXPressions i i i e e e e e e e e e e e e e 24
2.2.1.6 Polymorphism., 24
allof . o 24

0NeOf . o o e e e 24

anyOf . . e e e e e e e e e e 24

2217 XML ..o e e e 25
2.2.1.8 SchemaRestrictions 25
222 DemoUseCase. ot i i i it it e e 26

APPENDIX J. DOMAIN DIAGRAMS 144 OpenAPI 3 Code Binding Generator for Haskell

3 Solution Design 29

3.1 OpenAPI 3 . . L e 30
3.1.1 HTTPCalls oo e e e s e e e e e 30
3.1.2 DataFormats e 30
3.1.3 DataModels e 30

3131 References. i 31
3.1.3.2 NamingandOrdering 31
3.1.33 ScalarTypes . . . v . v i e e e e e e 31

dateanddate-time o 31
3134 Arrays ..o e e e e e e e e e e 32
3.135 Objects e e e e 33

DisregardedPlans 35
3136 0oneOf . . . 37
3.1.3.7 allof e e e e 39
3.1.3.8 anyOf . . o e e e e e e 41
3.1.39 anyType . . . oo e e e e e 43

3.2 CodeGeneration i i i it e e e e 44
321 Criteria e e e e e e 44
322 Candidates e e e e e e e 45

Plain text manipulation 45
Haskell Source Extensions 45
ghc-source-gen oL 46
TemplateHaskell 46
Otheroptions 46
OVerview o o i e e e e e e 47
3.23 Decision e e e e 47

3.3 HTTPLibrary i e e e e e e e e e e e 48
331 Criteria . . . o oo e 48
3.3.2 TraditionalHTTP libraries 49

3321 httpclient e 49
Decision 50
3322 WIBH « v v v v e 50
Decision 52

APPENDIX J. DOMAIN DIAGRAMS 145 OpenAPI 3 Code Binding Generator for Haskell

3323 http-conduit. o 52

Decision e e 55

333 Servant e e e e e 55
3344 DecCision e e e e 57
34 ErrorHandling e e e e e 58
34.1 CodeGenerator 58
34.1.1 CommandLineArguments 58

3412 Parsing. e e e e 58

3413 Generating. e 59

342 GeneratedCode e 59

4 Results 60
4.1 DemO Server o i i e e e e e e e e e e e e 61
4.1.1 Deployment e e e 61
4.1.2 Endpoints e e e e 61
JVEISION © v v v v e e e e e e e e e e e e e e e e 61

Jtme . . e e e e e e e e e e e e 61

/INVeNntory o o e e e e e e e e e e e 61

/paymentintent L e e e e e 61
/newPaymentintentSecret 61
/newPaymentintentSepaSecret 62
/getCheckoutSessionld 62

JShOWSUCCESS . . v v v o e e e e e e e 62

Everythingelse 62

4.1.3 Architecture e e e 62
4.2 Publication e e 63
42.1 CI/CD . . ot e e e e e e e 63
42.1.1 CodeGenerator it i i 63

42.1.2 Stripelibrary e e 63

43 CodeMetrics v v i i i e e e e e e 64
43.1 CodeGenerator it e e 64
43.1.1 CodeCoVerage v v v v i i it 64

43.1.2 Extended CompileTests 64

APPENDIX J. DOMAIN DIAGRAMS 146 OpenAPI 3 Code Binding Generator for Haskell

43.2 GeneratedCode i e e e 65

433 CLIOptions i i e e e e e e e e e 65

4.4 Limitations e e e 66
4.4.1 ParameterLimitations L oo 66

4.4.2 XML and other Transport Data Protocols 66

443 LinksandCallbacks 66

444 OnlylocalReferences 67

445 Object Constructors and DefaultValues 67

4.4.6 Lengthof Namesis limited by the FileSystem 67

4.4.7 Circular References inside the Specification 67

448 NamingConflicts. 67

449 OtherlLimitations 68

5 Conclusion 69
5.1 ComparisontootherWork e 70
5.1.1 Markus Schirp’s OpenAPI Code Binding Generator 70
Stages e e e 70

AST o 70

Servant e 70
CyclicDependencies o v i i vt i i e 71

Conclusion o i i i e 71

5.1.2 OpenAPlToolsforHaskell 71
Modules e 71

JSON . . e 71

TYPES « v o e e e e e e e e e 71

Operations /HTTPCalls 72

Conclusion o e 72

52 LessonslLearned e e e e 73
5.2.1 LearningsfromFailure 73
5.2.1.1 CompilationTime 73

5.2.1.2 DuplicateRecordFieldsand Servant 73

5.2.1.3 UseRecordsinsteadof Tuples 74

5214 PropertyTests o e 74

APPENDIX J. DOMAIN DIAGRAMS 147 OpenAPI 3 Code Binding Generator for Haskell

5.2.2 LearningsfromSuccess 75

5221 GoldenTests. 75

5.2.2.2 FastFeedbackloop 75

5.2.2.3 EarlyandstrongCl/CDPipeline 75
SystemTests e 76

53 ResultDiscussion i i e e e e e e 77
5.3.1 Detailed GoalsResolution 77

5.4 Future Scope i e e e e e e e e e e e e e e e e e 79
5.4.1 Resolve CyclicDependencies 79

5.4.2 Resolvelimitations 79

5.4.3 Auto Generated Tests for GeneratedCode 79

5.4.4 Code Separation and Server Code Generation 79

545 JSONSchema 80

5.4.6 Quasiquotation. e e e 80

5.4.7 Cooperation with Markus Schirp and Future Maintainance 80

548 Viability 81

549 FutureUseCases vt i i i it i i ittt 81

Il Appendix 83
A Requirements Specification for Code Generator 84
Al Prioritization e e e e 84
A2 UseCases . . . o v i v i it e e e e e e e 85
A2.1 GenerateCode i i i e 85
OutputDirectory o v i it e e e 85

StackProject 85

Projectname L e 85

Dryrun o e e e e e e 85

TYpes . . . e e e e e e e e e e 85

A.3 Non-functional Requirements 86
A3.1 Reliability. 86
A3.1.1 ErrorTolerance i 86

Description e e e 86

APPENDIX J. DOMAIN DIAGRAMS 148 OpenAPI 3 Code Binding Generator for Haskell

Status L e e e 86

A3.1.2 NamingTolerance 86
Description e e e e 86
Measure of Fulfilment 86

Status L e 86

A3.2 Usability e e e e e 87
A.3.2.1 Understandability 87
Description e e 87
Measure of Fulfilment 87

Status L e 87

A3.2.2 Learnability e 87
Description e e e e 87
Measure of Fulfilment 87

Status L e 87

A3.2.3 Accessibility o e 87
Description e e e e 87
Measure of Fulfilment 87

Status L e 87
A3.24 Automation Lo e 88
Description e e e e 88
Measure of Fulfilment 88

Status L e 88

A33 Efficiency o e e e 88
A3.3.1 ResponseTime i i 88
Description e e e e 88
Measure of Fulfilment 88

Status oL e 88

A.3.3.2 MemoryConsumption 88
Description e e e 88
Measure of Fulfilment 88

Status L e 88

A3.4 Changeability e 89

APPENDIX J. DOMAIN DIAGRAMS 149 OpenAPI 3 Code Binding Generator for Haskell

A3.4.1 Traceability 89

Description e e e e e 89

Measure of Fulfilment 89

Status L e 89

A3.42 Availability. e 89

Description e e e 89

Measure of Fulfilment 89

Status L e 89

A3.5 Portability 89
A.3.5.1 BuildingProcess 0. 89

Description e e e 89

Measure of Fulfilment 89

Status L e 90

A352 Usage e 90

Description e e e e e 90

Measure of Fulfilment 90

Status L e 90

A3.6 Scalability e 90
A.3.6.1 OpenAPI SpecificationSize 90

Description e e e e e 90

Measure of Fulfilment 90

Status L e 90

B Requirements Specification for Generated Code 91
B.1 Prioritization L. e 91
B.2 UseCases o i i i i i e e e 92
B.3 Non-functional Requirements, 93
B.3.1 Reliability e e 93
B.3.1.1 ErrorTolerance 93

Description e e e e 93

Measure of Fulfilment 93

Status L e 93

B.3.1.2 StaticAnalysis e e 93

APPENDIX J. DOMAIN DIAGRAMS 150 OpenAPI 3 Code Binding Generator for Haskell

Description e 93

Measure of Fulfilment 93

Status L e e 93

B.3.2 Usability e e 93
B.3.2.1 Understandability 93
Description e e e 93

Measure of Fulfilment 94

Status . . . L L e 94

B.3.2.2 Learnability oL %4
Description e e e e %4

Measure of Fulfilment 94

Status e 94

B.3.3 Efficiency e 94
B.3.3.1 TimekEfficiency 94
Description e e e e e 94

Measure of Fulfilment 94

Status L e 94

B.3.3.2 MemoryConsumption %94
Description e e e e e 94

Measure of Fulfilment 94

Status L e 95

B.3.4 Changeability e 95
B.3.4.1 Traceability 95
Description e e e e e 95

Measure of Fulfilment 95

Status L e 95

B.3.42 Availability. 95
Description e e e e e 95

Measure of Fulfilment 95

Status L e 95

B.3.5 Portability 95
B.3.5.1 BuildingProcess 95
Description e e e 95

APPENDIX J. DOMAIN DIAGRAMS 151 OpenAPI 3 Code Binding Generator for Haskell

Status L e e e 96

B.3.5.2 Usage e 96
Description e e e e 96

Measure of Fulfilment 96

Status L e 96

B.3.6 Scalability e 96
B.3.6.1 Parallelization 96
Description e e e e e 96

Measure of Fulfilment 96

Status L e 96

C Requirements Specification for Stripe Library 97
C.l UseCases v i i i it it e e e e e e e e e e e 98
C.2 Non-functional Requirements e 99
C.2.1 Usability i i e e e 99
C.2.1.1 Learnability e 99
Description e e e e e 99

Measure of Fulfilment 99

Status L e 99

D Quality Measures 100
D.1 CodeStyle. i i e e e e e 100
D.1.1 Programming Guidelines/Linting 100
D.1.2 Formatting i i e e e e e e e e 100
D.2 AutomatedTesting i i i e e e e 101
D.2.1 PropertyTests o i i i i it e e e e 101
D.2.2 UnitTests o o i e e 101
D.2.3 SystemTests e e e 101
D.2.3.1 CompileTest it e 101

D.2.32 ClientTest i 102

D.233 APITest e 103

D.2.4 FeedbackLoop e e 103

APPENDIX J. DOMAIN DIAGRAMS 152 OpenAPI 3 Code Binding Generator for Haskell

E TestPlan 104
E.1 TestProcedure e e 105
E.1.1 Whenwilltestsbecarriedout? 105
E.1.2 Non-Functional Requirements 105
E2 Tests. . . . o i e e 106
E.2.1 TestSYS.LINSystem TestLinux 106
Prerequisites e 106

Procedure e 106

Expectations o L 106

E.2.2 TestSYS.WIN System TestWindows 106
E.2.3 TestSYS.MAC SystemTestmacOS 107
E.2.4 Test DOC.CGE Documentation Test Code Generator 107
Prerequisites e e e e 107

Procedure e 107

Expectations 107

E.2.5 Test DOC.GCO Documentation Test GeneratedCode 107
Prerequisites e e e e 107

Procedure 108

Expectations 108

E.2.6 Test DEM.PAY Demo Test PaymentsAPl 108
Prerequisites e e e 108

Procedure e 108

Expectations e 108

E.2.7 TestDEM.CHE Demo Test PaymentsAPI 109
Prerequisites e e e 109

Procedure e 109

Expectations 109

E.2.8 TestPAC.HAC Package TestHackage. 109
Prerequisites e e e 109

Procedure e 110

Expectations 110

E.2.9 TestPAC.NIXPackageTestNix 110
Prerequisites e 110

APPENDIX J. DOMAIN DIAGRAMS 153 OpenAPI 3 Code Binding Generator for Haskell

Procedure

Expectations
E.2.10 Test USA:COD Usability Test
E3 Protocol
E.3.1 NotesaboutUSA.DOC
E.3.2 Conclusion
F Architecture Overview
F.1 DemoSystem
F2 CodeGenerator.................
F2.1 Phases
Operations
Configurationinformation
Models
SecuritySchemes
F22 Models
F2.3 Layering
F.2.4 GeneratorMonad
Reader
WriterT
F.2.5 ResultingModules
F.2.6 Actual Code Generation
F.3 Stripelibrary oL,
F3.1 Layers.
ClientCode
StripeLibrary
GeneratedCode
HTTP Library
F.3.2 DesignPattern
G Installation Instructions
G.1 CodeGenerator.
G.1.1 InstallfromSource
G.1.2 InstallfromHackage
APPENDIX J. DOMAIN DIAGRAMS 154

OpenAPI 3 Code Binding Generator for Haskell

G.2 Stripelibrary e e e e e e e e 124
G.2.1 InstallfromHackage e 124

G.2.2 ExampleUsage o v i i i e e e e e e e 124

G.3 GeneratedCode i e e e e e e 125

H Task Description 126
H.1 Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell 126
H.1.1 SUPErvisor o i i i e e e e e e e e e e e e e e e 126

H.1.2 Students i i e e e e e e 126

H1.3 Setting e 126

H1.4 Goals e 127

H.1.5 Workload o o e e e e e e e e 128

I Listings 129
.1 ScalarTypeExamples i it e e 130

.2 ResearchHTTPLibrary 132

.3 OpenAPlToolsCodeGenerators v v v i i i i it i e e 134

J Domain Diagrams 135
Addendum 139
Bibliography 140
Complete Content 142

APPENDIX J. DOMAIN DIAGRAMS 155

OpenAPI 3 Code Binding Generator for Haskell

	Abstract
	Lay Summary
	Management Summary
	Acknowledgements
	Contents
	Glossary
	Acronyms
	List of Figures
	List of Tables
	Listings
	Technical Report
	Introduction
	Initial Situation
	Goals
	Requirements
	Research / Existing Work
	Involved People

	Problem Analysis
	Code Generation
	Stripe API

	Solution Design
	OpenAPI 3
	Code Generation
	HTTP Library
	Error Handling

	Results
	Demo Server
	Publication
	Code Metrics
	Limitations

	Conclusion
	Comparison to other Work
	Lessons Learned
	Result Discussion
	Future Scope

	Appendix
	Requirements Specification for Code Generator
	Prioritization
	Use Cases
	Non-functional Requirements

	Requirements Specification for Generated Code
	Prioritization
	Use Cases
	Non-functional Requirements

	Requirements Specification for Stripe Library
	Use Cases
	Non-functional Requirements

	Quality Measures
	Code Style
	Automated Testing

	Test Plan
	Test Procedure
	Tests
	Protocol

	Architecture Overview
	Demo System
	Code Generator
	Stripe Library

	Installation Instructions
	Code Generator
	Stripe Library
	Generated Code

	Task Description
	Bachelor Thesis OpenAPI 3 Code Binding Generator for Haskell

	Listings
	Scalar Type Examples
	Research HTTP Library
	OpenAPI Tools Code Generators

	Domain Diagrams

	Addendum
	Bibliography
	Complete Content

