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Introduction 

The strongSwan open source VPN solution has a Transport Layer Security (TLS) stack of its 

own implemented by the strongSwan libtls library [1]. TLS is used by the strongSwan IKEv2 

daemon for EAP-based authentication (EAP-TLS, EAP-TTLS, EAP-PEAP) as shown in the 

figure below but libtls could potentially be employed by any stand-alone TLS application. 

 

Due to several deficiencies the TLS 1.2 version supported by strongSwan has been deprecated 

and therefore an upgrade to the latest TLS 1.3 standard defined by RFC 8446 [2] is urgently 

required. 

In a preliminary semester project the strongSwan libtls library was extended with a minimal 

viable TLS 1.3 client without certificate-based client-side authentication. It is the goal of this 

bachelor thesis to enhance the strongSwan TLS 1.3 stack with the following features: 
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Objectives 

Mandatory: 

• Implementation of the TLS 1.3 server-side protocol. 

• Implementation of TLS 1.3 client authentication based on X.509 client certificates. 

• Interoperability testing of client- and server-side TLS 1.3 strongSwan libtls stack 

with third party implementations (e.g. OpenSSL, Google). 

Optional: 

• PSK-based TLS 1.3 session resumption (0-RTT). 

• Evaluation of EAP-TLS/EAP-TTLS/EAP-PEAP interoperability e.g. with an TLS 1.3-

enhanced FreeRADIUS server. 

 

 

 

Links 

[1] strongSwan libtls library, github source code repository 
https://github.com/strongswan/strongswan/tree/master/src/libtls  

[2] RFC 8446 “The Transport Layer Security (TLS) Protocol Version 1.3”, August 2018 
https://tools.ietf.org/html/rfc8446 
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1. Abstract

Introduction: The Transport Layer Security (TLS) protocol secures network connections

between a client and a server. It encrypts and authenticates data from higher-level

protocols such as the Hypertext Transfer Protocol (HTTP), and guarantees that the

information transmitted remains confidential and keeps its integrity. The most widely

used TLS version today still is version 1.2 released in 2008 (RFC 5246), even though 1.3

was released in 2018 (RFC 8446). The strongSwan project maintained by the University

of Applied Sciences Rapperswil (HSR) is an open-source IPsec implementation written

in C. strongSwan features its own TLS stack encapsulated in the library libtls. It

enables communication-authentication via various EAP authentication methods (TLS,

TTLS, PEAP) used to establish an IKEv2 connection. A client-side TLS 1.3 prototype

stack was implemented in the preliminary work before this thesis. However, libtls

does not yet fully support TLS 1.3 in the sense strongSwan requires.

Objective: The goal of this bachelor thesis is to implement the TLS 1.3 server-side protocol

stack, add support for mutual authentication to enable client authentication in a TLS

1.3 handshake and lastly add support for PSK-based session resumption with TLS 1.3.

The former two tasks are mandatory features to make the new TLS 1.3 implementation

useful for the strongSwan project and the latter is an optional feature. To achieve these

goals, it is necessary to integrate new or adapt existing messages that are exchanged

between client and server. In addition, TLS 1.3 requires fundamental changes to the

cryptographic mechanisms that enable a secure and authenticated encryption.

Until a connection is established, the handshake passes through various states in a

state machine. The state machine has considerably changed in the new version, which

also implies that the handshake flow and state machine must be adapted. Moreover,

the way cryptographic keys are generated and derived by each peer has fundamentally

changed, this also needs to be addressed in this work.

Results: TLS 1.3 was successfully implemented and provides a server-side stack and mutual

authentication. The TLS 1.3 client-side stack, which was implemented already in

the preliminary study term project, was improved significantly. Additionally, smaller

but important features such as support for KeyUpdate or HelloRetryRequest messages

were implemented. The client and server implementations have been extensively tested

against each other and also with external servers and tools such as OpenSSL. The

mandatory goals were achieved. The optional goal, the PSK-based session resumption,

was not implemented fully due to time constraints but the foundation has been laid:

The cryptographic logic encapsulated in the HKDF implementation is able to provide all

the necessary secrets. However, the communication protocol and logic implementation

remains open to further work. Nevertheless, the current implementation is usable and

provides TLS 1.3 secured communication for the strongSwan project.
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2. Introduction

This thesis is structured into six chapters: This introduction gives an overview of the topic in

which the thesis is set. The Transport Layer Security (TLS) protocol is discussed broadly, the

Open Source project strongSwan is introduced and how strongSwan uses the TLS protocol

is elaborated. The chapter ends with a definition of the project scope for this thesis.

In the second chapter the background theory of the covered TLS 1.3 topics is explained. This

part focuses mainly on RFC 8446 and illustrates and describes all the important handshakes

TLS 1.3 supports and which are covered in this work. It also examines how TLS 1.3 negotiates

the supported protocol versions and describes how the new HMAC-based key derivation

function is designed.

The third chapter focuses on concrete concepts that are used either in the strongSwan

code base or how the protocol acts in real world scenarios. It will give a brief architecture

overview of the strongSwan TLS library libtls and discuss some general implementation

design choices we made for this work. After this we discuss key aspects of this work that

are absolutely mandatory to understand before the actual implementation of these features

can take place. These are especially how PSK and PSK-based session resumption works in

TLS 1.3, how the HKDF state machine is designed for this project and finally how and when

session keys and IVs are derived and set for inbound and outbound traffic.

The implementation chapter gives an overview of the features that were implemented during

this thesis. We emphasise some essential code fragments that are important to the goals

of this work. We also point to the individual commits which implement each discussed

feature.

The achieved implementation was extensively tested. Unit tests guaranteed basic function-

alities were tested automatically. In addition, manual test cases were executed. The testing

chapter focuses on the latter and describes how and what was tested.

Finally, we summarise the whole work done and the goals achieved during this bachelor thesis

in the results chapter. Furthermore, we list some open tasks and future work that could be

done in libtls and close with a brief overview of which direction TLS is going to evolve

in.

We also add an extensive appendage that captures a list of abbreviations, the bibliography,

instructions to compile and execute the code of this work as well as the references to the

source code and the used OpenSSL commands for this work.

2.1. Overview

TLS is the protocol standard that secures connections between a client and a server. It is

located between the transport layer (ISO OSI layer 4) and the application layer (ISO OSI layer

11



7) in the network stack (see figure 2.1).1 The most popular TLS version 1.2 was defined

in 2008 (RFC 5246), but only found broad adoption around 2014.2 In that same year, work

on TLS 1.3 started. After several revisions, it was written down in RFC 8446 (2018), with

significant changes from its predecessor. It took thus roughly ten years to introduce a new

version of the TLS protocol.

TLS

Application

Transport

Network

Link

TLS

HTTP

TCP

IP

SMTP ...

Figure 2.1.: The location of TLS 1.3 in

the four layer TCP/IP reference

model defined by the ARPA of the

DoD.

The strongSwan project spans a similar time

frame and secures communications on net-

works as well. Its IPSec implementation

authenticates and encrypts network traffic

on the network layer (ISO OSI 3). Ori-

ginally, strongSwan was a 2005 fork of the

discontinued FreeS/WAN project by John

Gilmore.3 The project features its own TLS

stack, yet with client and server support only

up to TLS version 1.2. A client-side pro-

totype stack with support for TLS 1.3 was

implemented in a preliminary work4 and im-

proved in this work. The present work aims

to complete the implementation of RFC

8446 as required by strongSwan.

2.2. Transport

Layer Security Protocol (TLS)

The Transport Layer Security protocol

(TLS) secures communication between cli-

ent and server and is one of the fundamental elements in today’s Internet. It encrypts

and authenticates data from higher-level protocols such as the Hypertext Transfer Protocol

(HTTP), and guarantees that the information transmitted from one endpoint to another

remains confidential and unmodified.5

Communication between client and server is achieved by exchanging messages of the Record

Protocol, which in itself encapsulates the Handshake Protocol, the Application Data Protocol

to encapsulate actual payload data and the Alert Protocol. The three latter sub-protocols

are layered on top of the record protocol as illustrated in figure 2.2.6

In a typical TLS 1.2 session, the client initiates a connection with a ClientHello message

and sends its cryptographic capabilities to the server, notably the protocol version and cipher

suites it supports. The server sends its own information back in several messages and signals

the end of the negotiation with a ServerHelloDone. Then the client sends its cryptographic

1If not indicated otherwise, all illustrations are our own.
217.
320.
48.
5Cf. [1, p. 236] and [6, p. 876].
6Some sources[19, p. 190][26] also describes ChangeCipherSpec as a sub-protocol of TLS. In RFC 8446

ChangeCipherSpec is described as message type and not as a protocol. It is although noted that the record

protocol is typed and specifies six ContentTypes: invalid, change cipher spec, alert, handshake,

application data and heartbeat.[13, p. 122]
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information in a ClientKeyExchange message. Note that the messages exchanged up to

this point are still sent in plaintext as seen in figure 2.3.

Client Server
ClientHello

ServerHello

[ChangeCipherSpec]

Certificate*

ServerKeyExchange*

ServerHelloDone

Finished

Application DataApplication Data
encrypted traffic

ClientKeyExchange

[ChangeCipherSpec]

Finished

*   Optional Message
[ ] ChangeCipherSpec protocol message

Figure adapted from from Ristić 2017:27

Figure 2.3.: Full handshake in TLS 1.2 with server authentication.

Record Protocol

Handshake 
Protocol 

TCP

IP

Application
Data Protocol 

Alert
Protocol 

Figure 2.2.: Network protocol stack with the

four TLS sub-protocols (yellow).

If the handshake was successful so far,

enough cryptographic material is available

to encrypt the following traffic. The client

signals this state with a ChangeCipherSpec

message. A Finished message concludes

the handshake. After the server has respon-

ded with the same messages, secured ap-

plication data can flow between the two en-

dpoints, sent using the record protocol.7

TLS 1.2 was an important step towards

securing communication over the Internet,

yet it has also inherited several features

and design choices from its predecessor ver-

sions.8 The handshake flow above is only

one out of many and the complexity of TLS

1.2 made its implementation prone to errors,

bugs and security issues.910 The current version of TLS 1.3 presents a major overhaul of the

7We presume a basic knowledge of TLS here and note only the most important aspects here. A very good

introduction to TLS 1.2 can be found in [15].
81, p. 237.
9A cursory search lists 655 security vulnerabilities in Mitre’s CVE database, including Crime (2012), the no-

torious Heartbleed (2014), Poodle (2015) and other attacks. https://cve.mitre.org/cgi-bin/cvekey.

cgi?keyword=TLS, visited 2020-10-10.
10All major TLS development steps as well as the most important security flaws can be found in the “SSL/TLS

and PKI History” https://www.feistyduck.com/ssl-tls-and-pki-history/, visited 2020-10-20.
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previous TLS version 1.2. The two most notable changes relate to the handshake process,

and the encryption and authentication schemes to be used.

The handshake, which establishes a secure connection between client and server, has been

greatly simplified in TLS 1.3. This becomes most apparent in comparison with the state

machines of the two TLS versions: The official specification does not list any state machine

at all, with the various possible states in different handshakes flows.11 On the other hand,

TLS 1.3 devotes a whole appendix chapter that lists the various possible state machines.12

In comparison to figure 2.3, server and client exchange fewer messages:

Client Server
ClientHello

ServerHello

Application Data

Encrypted Extensions

Certificate

CertificateVerify

Finished

Finished

Application DataApplication Data

en
cr

yp
te

d 
tra

ffi
c

Figure 2.4.: Full handshake in TLS 1.3 with server authentication.

The client basically announces “Hello, I want to establish a connection” and provides the

necessary key material, the server answers with its own key material and other information

needed, and the handshake is over. Essentially, this is a major speed-up, since it eliminates a

full round-trip between client and server. The ChangeCipherSpec message, which formerly

announced the transition to encrypted application data, is now obsolete. It has only been

preserved in TLS 1.3 to improve interoperability with non-standard behaviour of middleboxes

such as firewalls and proxies and is not processed further.13 In addition to this speed-up,

TLS 1.3 even allows a zero-round-trip (0-RTT) connection establishment if the client has

previously connected to the server.

The other important improvement in figure 2.4: Data is encrypted much earlier in the whole

client-server message exchange. The encryption happens right after the ServerHello, since

the key material is ready earlier than in TLS 1.2. All following information such as the server

certificate are now encrypted, while being sent in plaintext in previous TLS versions.

What is not visible in figure 2.4 is the expanded use of extensions. They already existed in

previous TLS versions, but with the latest one a lot of information has been moved to new

or pre-existing extensions, notably also the supported TLS versions of client and server.

The major change in TLS 1.3 is only visible under the hood, however: Encryption algorithms,

hashing and signature algorithms have been pruned and reorganised. This change is most

112.
1213, p. 120.
1313, pp. 77, 140.
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visible in the list of cipher suites of which a client can offer a selection to the server. The page-

long cipher suite combinations14 have been reduced to five recommended cipher suites.15

Cipher suites in TLS 1.2 are of the following format, with an example just below:

TLS˙[key exchange]˙[authentication]˙with˙[cipher]˙[mac or prf]

TLS˙ECDHE˙RSA˙WITH˙AES˙128˙GCM˙SHA256

This is thus a cipher suite that uses elliptic curve ephemeral diffie-hellman (ECDHE) for

the key exchange, RSA for authentication, 128 bit advanced encryption standard (AES)

in galois/counter mode (GCM) mode as bulk cipher for encryption and decryption of the

application data, and SHA-256 as hash function. TLS 1.3 mandates the exclusive use of

authenticated encryption with associated data (AEAD)16 algorithms. Currently only five of

them exist thus we have a drastic reduction of cipher suites. For a more detailed description

of AEAD see:17

TLS˙[AEAD]˙[hash]

TLS˙AES˙128˙GCM˙SHA256

This is the 128 bit AES-GCM authenticated encryption algorithm together with a SHA256-

based pseudo-random function (PRF).18 The key exchange and signature algorithm field have

been moved to their own respective extension. In addition, the algorithms for key exchange

all support forward secrecy. If an attacker gains the private key of a server or client, they are

not able to decrypt past captured TLS sessions.

Another notable change is the key derivation: TLS 1.3 uses a new HMAC-based Key Deriv-

ation Function (HKDF) that has been defined in RFC 586919 in 2010.

TLS 1.3 brings many new advantages and implies a quick adoption. Holz et al. note that a

couple of providers and big Internet corporations were able to quickly implement TLS 1.3,

e.g. Cloudflare, Google and Facebook.20 Yet smaller providers have been rather slow in

adopting the new TLS version as the authors note. This work aims to lift the adoption of

TLS 1.3 further and let all strongSwan users use the new protocol version.

2.2.1. TLS 1.3

TLS 1.3 has many major and minor changes compared with older TLS versions. We list some

of the more important changes regarding this thesis here. A more elaborate list is found in

RFC 8446.21

14The IANA lists over more than 300 cipher suites: https://www.iana.org/assignments/tls-parameters/

tls-parameters.xhtml, visited on 2020-10-20.
1513, p. 133.
16We briefly discuss AEAD in section 4.4.1
171, p. 148.
18To be more precise: The hashing algorithm is used to build an HMAC (Keyed-Hash Message Authentication

Code) within the HKDF (Hash-based Key Derivation Function). The concept behind this is explained in

section 3.7.
199.
207.
2113, p. 8.
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• Supported symmetric cipher suites were reduced to non-legacy ciphers which all support

AEAD.

• Cipher suite concept has changed and does not include authentication and key exchange

algorithms any more.

• All public key based key exchange now provide forward secrecy.

• All handshake messages after the ServerHello are now encrypted.

• The key derivation function has been redesigned.

• The handshake state machine has been greatly redesigned.

• TLS 1.2 version negotiation mechanism has been deprecated.

• Session resumption has been replaced by a single new PSK exchange.

2.3. strongSwan

The strongSwan project is an open-source IPsec implementation. Originally, it was based

on FreeS/WAN, but was completely rewritten in an object-oriented coding style in the pro-

gramming language C.22 IPsec features so-called “Security Associations” (SA), with which

two peers establish security attributes, for example encryption algorithm and keys. In strong-

Swan, IKE and IKEv2 (Internet Key Exchange) are the protocols to create these Security

Associations. In strongSwan, the charon library implements the IKEv2 protocol and acts as a

keying daemon.23 Since strongSwan version 4.5.0, charon supports EAP-TLS24 to mutually

authenticate client and server with X.509 certificates.25

2.3.1. TLS in strongSwan

The Extensible Authentication Protocol (EAP)26 is a framework that allows a broad set of

methods to authenticate peers. In terms of TLS, the methods EAP-TLS, EAP-TTLS and

EAP-PEAP are relevant:

EAP Transport Layer Security (EAP-TLS) as defined in RFC 5216 uses the handshake

protocol of TLS to authenticate both peers with certificates, while the TLS encryption

functionality itself is not used.27 A Public Key Infrastructure (PKI) is required and

must be able to provide a client certificate.28

2221.
2323.
2418.
2522.
2625.
2719, p. 165.
286, p. 838, Note that EAP-TTLS and PEAP do not need client certificates for authentication.
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EAP Tunneled Transport Layer Security (EAP-TTLS) as defined in RFC 5281 first es-

tablishes a TLS connection between client and server and then authenticates each

other in a second step over this encrypted channel. A certificate is only mandatory for

the server, but optional for the client. After the secured tunnel is established, other

authentication mechanisms can be used such as EAP.29

Protected EAP (PEAP) as developed by Cisco Systems, Microsoft and RSA Security30, is

similar to EAP-TTLS and only requires a server-side certificate and optionally client-

side certificate to establish a secure TLS connection. Afterwards EAP messages are

sent encrypted over the connection.31

strongSwan itself implements a range of EAP methods and currently supports all TLS meth-

ods that are offered by EAP and listed above. The TLS library of strongSwan is further used

for the “Posture Transport Protocol over TLS” (PT-TLS).32 These use cases are the main

reason why a TLS stack is present in strongSwan.

2.4. Project Scope

This is a follow-up work of the term project “TLS 1.3 for strongSwan: A Client-Side Proto-

type”33 which was accomplished in the previous term.

This bachelor thesis builds directly on the achievements reached within the previous work

and has the goal to enhance the missing features to get a solid TLS 1.3 stack usable for

strongSwan’s needs.

The goals for this thesis are:

Server implementation The current TLS implementation in strongSwan covered the client-

and the server-side up to TLS 1.2. Since large parts of the client-side TLS 1.3 imple-

mentation were already achieved in the aforementioned term project it is mandatory

to achieve the server-side TLS 1.3 implementation in this thesis. This is required to

facilitate integration testing also for the TLS 1.3 protocol in the strongSwan project.

Mutual authentication The current TLS implementation supports mutual authentication

up to TLS 1.2. It is a mandatory goal for this thesis to implement this also for TLS

1.3 because the use case of TLS in strongSwan is to authenticate clients with the

EAP protocols that relay on TLS. This also covers additions and improvements in the

client-site TLS 1.3 implementation.

PSK-based resumption The current TLS implementation makes use of the session resump-

tion capabilities older TLS versions provide. Such a feature is especially useful in cases

where several sequential connections are used between the same client-server pair. The

speed-up of the connection establishment is notable since CPU intensive cryptographic

key generation can be omitted. In TLS 1.3 these old session resumption features are

2919, p. 165.
30https://en.wikipedia.org/wiki/Extensible˙Authentication˙Protocol#PEAP, visited 2020-10-20.
31https://security.stackexchange.com/questions/147344/eap-tls-vs-eap-ttls-vs-eap-peap/

149643, visited on 2020-10-20.
3216.
338.
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completely redesigned. It is therefore an optional goal in this thesis to also implement

PSK-based session resumption.

As mentioned above, the term project prior to this thesis covered the implementation of a

client-side prototype of a TLS 1.3 stack34. Concerning the documentation, this introduction

and the description of the HKDF in 3.7 and 4.4 were taken over and improved. During this

bachelor thesis several important additions were implemented, various factors improved and

fixed on all components of the predecessor work.

2.4.1. Out of Scope

The TLS specification is comprehensive and covers a broad set of application scenarios. It

is not the goal to implement the full RFC 8446 specification. In this thesis we will focus

on the strongSwan relevant topics, as elaborated in 2.4. For example, the feature “Early

Data” is not of interest for strongSwan since it is not the goal to facilitate performant data

transmission over TLS but rather to cover authentication related aspects.

34d5e7aea9: libtls: Implement HKDF for TLS 1.3 and 8f097fbb: libtls: Implement TLS 1.3 handshake on

client-side
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3. Theory

This chapter lays the theoretical foundation for this thesis. It focuses heavily on RFC 8446.

First, the basic concept of TLS handshakes is captured and the notation for the illustrations

is described. Then, the usual TLS handshake scenarios are briefly described. These cover

the regular 1-RTT handshake, the client authenticating mutual handshake as well as the

PSK-based session resumption handshake. Also a handshake scenario with incorrect DHE

shares is described. Since the TLS version negotiation process has changed in TLS 1.3 we

address this in a separate section. Lastly, we describe the theoretical background of the

HMAC-based key derivation function which replaces the way keys are generated in TLS 1.3

compared to its predecessor versions.

3.1. TLS handshakes

In TLS the handshake protocol is the most important one. Its purpose is to establish a secure

channel between two peers. Therefore we discuss some of the important properties of the

TLS 1.3 handshake protocol in this chapter. Different types of handshake communication

are illustrated by several figures.

First, a regular TLS 1.3 handshake is described. The second handshake type is a mutual

authentication communication, where a client authenticates itself to the server. Next, we

discuss the pre-shared key (PSK) based handshake between to peers that already had a

connection to each other in the past. Finally, we describe how a handshake needs an additional

round in case the two peers have no common key exchange algorithm in the first messages.

Each TLS handshake is started by a client which sends a ClientHello message to a server.

The handshake communication establishment consists of the three phases Key Exchange,

Server Params and Authentication.

Key Exchange In this phase shared keying material is established between both peers. All

messages after this phase are encrypted with the handshake traffic secret.

Server Params Communicate whether a client needs to authenticate itself or establish other

handshake parameters.

Authentication Authenticates the server and optionally the client and verifies the integrity

of the handshake.

In the illustrations in this chapter, differently shaped boxes are used to emphasise the type and

purpose of messages and extensions sent between both peers. These shapes are explained in

figure 3.1.
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Plaintext
Encrypted 
Handshake

Secret

Encrypted 
Application

Secret

Message Message Message

Extension

Message Message

Extension
messages or extensions in italics

are optional or situation-dependent.

Figure 3.1.: Explanation of shape use for messages and extensions.

3.2. 1-RTT TLS 1.3 handshake

This generic type of a handshake covers most of the messages and extensions which can

be used in a TLS handshake. We describe the mandatory messages and the message flow

briefly here.
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Client Server

ClientHello
key_share

signature_algorithms
psk_key_exchange_modes

pre_shared_key

ServerHello
key_share

pre_shared_key
EncryptedExtensions

CertificateRequest
Certificate

CertificateVerify
Finished

Application Data

Certificate
CertificateVerify

Finished
Application Data

Application Data Application Data

Key
Exchange

Server Params

Authentication

Figure 3.2.: Regular 1-RTT TLS 1.3 handshake.

The client initiates the handshake with a ClientHello message and several extensions.

The server parses the appropriate extensions and message properties and responds with a

ServerHello message with a subset of unencrypted extensions.

Now both parties share the same cryptographic key material and are able to derive the

handshake traffic secret. Next, the server sends the EncryptedExtensions message

followed by the Finished message. The latter builds a cryptographic signature over the

whole handshake so far. Also this message indicates the end of the handshake from the

server’s point of view. The client parses the ServerHello message and switches after

this to the handshake traffic secret to successfully decrypt EncryptedExtensions and

Finished messages.

The client verifies the signature received in the Finished message. It also sends a crypto-

graphic signature from its perspective of the whole handshake within a Finished message

back to the server. Both peers derive the application traffic secret and switch the keys

after each sent the Finished message. Application data can be sent by each peer as soon as

the corresponding Finished has been sent and the handshake application secret keys

are derived. Section 4.5 describes key derivation and switching in detail.
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3.3. Mutual authentication TLS 1.3 handshake

In this handshake the server asks the client to authenticate itself with a X.509 certificate.

Client Server

EncryptedExtensions
CertificateRequest

Certificate
CertificateVerify

Finished
Application Data

Certificate
CertificateVerify

Finished
Application Data

Application Data Application Data

Key
Exchange

Server Params

Authentication

ClientHello
key_share

signature_algorithms

ServerHello
key_share

Figure 3.3.: Mutual authentication TLS 1.3 handshake.

Whereas in figure 3.2 the CertificateRequest message was optional it is mandatory now.

The message has to be sent by the server directly after the EncryptedExtensions and just

before the Certificate message. The client is now requested to authenticate itself. It does

so by sending a Certificate and CertificateVerify just before the Finished message

back to the server. The server verifies the signature from within the CertificateVerify

message with the client certificate from the client’s Certificate message.

3.4. PSK session resumption TLS 1.3 handshake

TLS 1.3 provides two separate ways to use PSKs: Either use an external generated PSK on

both peers or establish a connection bases on the PSK derived in a previous TLS session.

This chapter describes the latter which is also known as “session resumption” or “session

resuming” with PSK.
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The way how TLS sessions can be reused in a follow-up connection has changed significantly

in TLS 1.3 compared to predecessor versions. In TLS 1.2 and below this was achieved by

using the “session ID” and “session tickets”. Both of these handshake fields are obsolete in

TLS 1.3.1

Client Server

EncryptedExtensions
CertificateRequest

Certificate
CertificateVerify

Finished
Application Data

Certificate
CertificateVerify

Finished

Application Data Application Data

Key
Exchange

Server Params

Authentication

ClientHello
key_share

ServerHello
key_share

NewSessionTicket

Figure 3.4.: Initial session to use PSK in the following TLS 1.3 connection.

After a TLS 1.3 connection is established the server may send one or multiple NewSessionTicket

messages over the secured channel to the client as illustrated in figure 3.4. Its content allows

both peers to speed-up the subsequent connection.

113, p. 15.
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EncryptedExtensions
Finished

Application Data

Finished

Application Data Application Data

Key
Exchange

Server Params

Authentication

ClientHello
key_share

ServerHello
pre_shared_key

pre_shared_key

key_share

Figure 3.5.: PSK session resumption TLS 1.3 handshake.

If the client in the future opens a new connection to the server and supports PSK-based

session resumption it sends the data received from the server in the first connection in the

pre shared key extension within the ClientHello message as described in figure 3.5.2

The client should also send a regular key share extension in case the server is not able to

proceed with the PSK session resumption mode and a fall back to a regular full handshake

is needed.

The server also sends back a pre shared key in its ServerHello message to negoti-

ate the PSK key. It can also send a key share extension to provide forward secrecy for

the current connection.3 However, no authentication messages such as Certificate and

CertificateVerify are used in the second handshake.

3.5. Incorrect DHE Share

If a client sends a key share generated with a DH group, e.g. secp256r1 but the server

does not support this DH group, it may send a HelloRetryRequest as response to the

ClientHello. In this message the server asks for an alternative DH group, e.g. x25519,

based on the values the client sent in the supported groups extension in the initial mes-

sage.

The client follows the instruction and generates new asymmetric key material and sends

the new public key again in a second ClientHello message. From this point onward the

handshake is as described in 3.2.

2Noteworthy the pre shared key extension must be the last extension within the ClientHello message.
3To negotiate the wish for forward secrecy, the extension psk key exchange modes is used.
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Figure 3.6.: Incorrect DHE Share.

3.6. TLS 1.3 version negotiation

In all TLS versions the supported version negotiation between client and server is exchanged

in the first two messages. The client offers the versions it is able to speak and the server

chooses its maximal capable version.

In contrast, in predecessor versions of TLS 1.3 the negotiation took place directly in the

ClientHello respectively ServerHello handshake messages as “version” field in which the

client sets the two byte TLS version value it maximally supports. The server answered with

the same field and value if it agreed or suggested a smaller version value if it was not able

to speak the same TLS version as the client.

In TLS 1.3 the “version” fields in the two messages have been deprecated and the version

negotiation has been moved to the extensions in form of the supported version extension.
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This allows the client to send a list of TLS versions it speaks. The server chooses one of the

offered values.

RFC 8446 also reflects this change back to TLS 1.2 implementation. If an implement-

ation does support TLS 1.3 it should also be able to negotiate TLS 1.2 by using the

supported version extension.

3.7. HMAC-based Key Derivation Function

In TLS it is necessary to generate keys which encrypt the traffic exchanged by the peers.

However, the algorithm differs between TLS versions. TLS 1.2 uses a pseudo-random func-

tion (PRF) to generate keys from the Master-Key.4 TLS 1.3 on the other hand uses an

HMAC-based Key Derivation Function (HKDF) to generate traffic keys.5

A HKDF has two fundamental functions: HKDF-Extract and HKDF-Expand.6 However, TLS

1.3 introduces two new additional functions, HKDF-Expand-Label and Derive-Secret.7

This results in these four functions:

• HKDF-Extract extracts a pseudo-random key (PRK) from the source key8. The ex-

traction function is based on an HMAC, hence the name HKDF. This function takes

two parameters: An input key material IKM and a salt.

• HKDF-Expand is a second step in which the generated pseudo-random key is fed to an

HMAC. The HMAC in turn acts as a pseudo-random function to extract the required

amount of bits. This function takes three parameters: A Secret, a HkdfLabel and

the desired output key material (OKM) Length.

• HKDF-Expand-Label transforms Label and Context into a HkdfLabel structure9 and

calls HKDF-Expand to derive an OKM. This function takes the four arguments Secret,

Label, Context and Length.

– Context contains the handshake messages of the current state or an empty string

as a hash.

– Length specifies the desired output length in bytes.

• Derive-Secret hashes the raw handshake message bytes and calls HKDF-Extract-Label

to derive an OKM. This function takes the three arguments Secret, Label and

Messages.

– Secret: The PRK secret from the HKDF-Extract function.

– Label: An indicator to generate a specific secret. All relevant labels are defined

in 3.7.1.

414, p. 26.
513, p. 95.
69.
7The basic concepts of an HKDF are described in chapter 7.1, “Key Schedule”, and chapter 7.3, “Traffic

Key Calculation” [13, 91ff].
8Dan Boneh has an excellent video explaining HKDF in detail. See [4].
913, p. 91.
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– Messages specifies the unencrypted handshake bytes, without record headers, of

client and server up to the current state of the TLS handshake.

The hashing algorithm used for the HKDF is specified in the negotiated TLS cipher suite.

Since the number of cipher suites in TLS 1.3 is reduced to five, only two possible hashing

algorithms currently remain: SHA-256 or SHA-384.

Figure 3.7 illustrates how the HKDF is used in TLS, and is directly drawn from the illustration

in RFC 8446.10 It suggests that the HKDF in TLS 1.3 can also be interpreted as a state

machine: Starting from a phase 0, every call to HKDF-Extract is a one-way transition into

the next phase. This results in a state machine with four phases.11

Figure 3.7.: Each HKDF-Extract signals a one-way state transition.

3.7.1. HKDF Labels

The above-mentioned labels play an important role in the HKDF. Unfortunately, RFC 8446

does not provide a single overview and description of all possible labels. It is therefore

important to mention these other labels and where they can be used as well.

1013, p. 93.
11The illustration in figure 3.7 is a courtesy of David Wong, https://www.davidwong.fr/tls13/

#section-7.1, visited on 2020-12-1.
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As mentioned, eleven labels are defined in section 7.1 of the RFC and associated to different

stages in the HKDF state machine.12 The label “tls13 derived” is only used during state

transitions. These labels are all passed as arguments to the Derive-Secret function:

The four phase 1 labels are all derived from the Early Secret:

• “tls13 ext binder” To get a binder key with an external provided PSK.13

• “tls13 res binder” To get a binder key for a resumption PSK.14

• “tls13 c e traffic” To get the client early traffic secret in PSK resumption hand-

shake scenarios.15

• “tls13 e exp master” To get the early exporter master secret which provides cryp-

tographic material for third-party protocols.16

The two phase 2 labels are all derived from the Handshake Secret:

• “tls13 c hs traffic” To get the client handshake traffic secret which is used to

encrypt handshake data from the client to the server.

• “tls13 s hs traffic” To get the server handshake traffic secret which is used to

encrypt handshake data from the server to the client.

The four phase 3 labels are all derived from the Master Secret:

• “tls13 c ap traffic” To get the client application traffic secret which is used to

encrypt handshake data from the client to the server.

• “tls13 s ap traffic” To get the server application traffic secret which is used to

encrypt handshake data from the server to the client.

• “tls13 exp master” To get the exporter master secret which provides cryptographic

material for third-party protocols.17

• “tls13 res master” To get the resumption master secret which is used and stored

locally for PSK-based session resumptions.18

There are a couple of labels that are used directly on HKDF-Expand-Label. These two

provide actual keying material19 and can be called on all states of the KDF state machine

except phase 0:

• “tls13 key” To get the phase and secret corresponding encryption and decryption

key.

• “tls13 iv” To get the phase and secret corresponding IV.

Generate the secret to authenticate the handshake Finished messages20:

1213, p. 93.
1313, p. 94.
1413, p. 94.
1513, p. 73.
1613, p. 97.
1713, p. 97.
1813, pp. 75, 92.
19Section 7.3 of [13, p. 95].
20Section 4.4.4 of [13, p. 71].

28



• “tls13 finished”

Key and initialisation vector (IV) are used in the AEAD ciphers to actually encrypt and

decrypt traffic, be it for the handshake or application data. The label “tls13 finished” is

only called once on each side, after a Finished message is received.

To generate actual PSK resumption secrets, the label “tls13 resumption” is defined and

used directly on the HKDF-Expand-Label function with the resumption master secret from

phase 2. Multiple resumption secrets can be generated by using a per ticket nonce.21

2113, p. 75.
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4. Concept

This chapter covers strongSwan’s TLS design concept as well as the more practical aspects

of the theory discussed in the last chapter.

First, an overview of the architecture of the strongSwan TLS library libtls is given. Second,

some of the important implementation design choices for this thesis are elaborated. Then,

we focus on more complex key aspects of TLS 1.3. In the section PSK, the new session

resumption approach of TLS 1.3 is explained. Section HKDF describes how the state machine

to derive keys was designed and, lastly, the topic of key switching during the handshake is

covered.

4.1. Architecture Overview of libtls

The TLS stack of the strongSwan libtls library has been written from scratch based on the

corresponding TLS RFCs. TLS version 1.0, 1.1 and 1.2 and most of the associated cipher

suites and cryptographic primitives are currently supported.

Figure 4.1 shows which components rely on this TLS stack:

libtls

libcharon / eap tls_test libpttls

pt-tls-client

Figure 4.1.: Package diagram of the components libcharon, libpttls and tls test which

rely on libtls.

• The eap plug-in within the library libcharon uses TLS to implement mutual authen-

tication over TLS (EAP-TLS, EAP-TTLS and PEAP).
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• tls test is a simple command-line executable that allows to set up a TLS connection

as client or server. Once a TLS channel is set up, it allows each side to transfer data

to each other similar to a telnet session.

• libpttls is the library that implements the Posture Transport Protocol over TLS

(PT-TLS).

• pt-tls-client is a concrete client that uses libpttls and libttls.

The last three components use TLS in a “regular” way, which means a client builds an

encrypted connection to a server and then communicates over this secured channel.

4.2. Implementation design choice

4.2.1. Protocol version separation

TLS 1.3 behaves differently over legacy TLS versions in many ways. For example, the state

machine of both, client and server, was simplified by reducing the amount of possible states.

This leads to the question of how this new TLS version shall be implemented in the existing

code base.

In principle, two different approaches are possible: a) completely separate the new code

from the existing code or b) integrate the new code in the existing code. Both have their

advantages and disadvantages.

Approach a) leads to new implementations of existing functions specifically to TLS 1.3. As

the programming language is C in an object-oriented style, the easiest way would be to

generalise the common methods in a header file and create separate files for the existing

legacy TLS implementation and the new TLS 1.3 implementation. Existing code would be

only minimally touched but this in turn leads to much duplicate code.

Regarding approach b) the existing file structure would be mainly kept. Existing functions

and methods which should behave differently in both legacy and future TLS versions would

on trend grow in length since they need to distinguish between the sets of TLS versions.

Also it has to be guaranteed that existing functionality is not affected by new code.

In this work we follow the design choice made in the preliminary work1 and continue with

approach b because existing code can be easier reused and code splitting over multiple files

for the legacy TLS version and TLS 1.3 version can be omitted.

Listing 1 shows an example of how a version splitting can easily be done. A comparison

like greater than or equal is absolutely possible because the TLS versions translate into a

sequence of values in which newer protocol versions are larger then older ones, as seen in

listing 2.2 By using this greater than or equal another notable aspect is considered: Future

versions of TLS 1.3 are more likely to behave similar to TLS 1.3 than legacy TLS versions

and therefore already choose the branch that is more likely the one that is correct. This

goes hand in hand with the fact that older TLS versions, such as TLS 1.0 and TLS 1.1 are

18.
2strongSwan does not support SSL 2.0.
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going to be deprecated soon.3 This version branching allows to remove code related to those

versions without affecting TLS 1.3 and newer versions code.

1 if (this-¿tls-¿get˙version˙max(this-¿tls) ¿= TLS˙1˙3)

2 –

3 /* new TLS 1.3 branch */

4 ˝

5 else

6 –

7 /* existing legacy TLS branch */

8 ˝

Listing 1: Example TLS version branching

1 /**

2 * TLS/SSL version numbers

3 */

4 enum tls˙version˙t –

5 SSL˙2˙0 = 0x0200, /* 512d */

6 SSL˙3˙0 = 0x0300, /* 768d */

7 TLS˙1˙0 = 0x0301, /* 769d */

8 TLS˙1˙1 = 0x0302, /* 770d */

9 TLS˙1˙2 = 0x0303, /* 771d */

10 TLS˙1˙3 = 0x0304, /* 772d */

11 ˝;

Listing 2: TLS version numbers

4.2.2. State machine separation

Towards the end of the preliminary work4 of this thesis, it became more and more clear

that the state machine, which initially was shared between all TLS versions, was getting too

complicated. So it was separated into a state machine for legacy TLS versions and one for

TLS 1.3. This made the program flow much more clear and easier to debug.

One of the key points of choosing this approach was the asymmetric character of the protocol

versions: In legacy TLS versions, for example, the client is the first party who sends the

Finished message whereas in TLS 1.3 the server sends this message first as illustrated in

figures 2.3 and 2.4. Nevertheless, the new TLS 1.3 state machine shares the same state

definition in the code for the common stats of both machines but adds its new state definitions

as listed in listing 3.

312.
48.
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1 typedef enum –

2 STATE˙INIT,

3 STATE˙HELLO˙SENT,

4 STATE˙HELLO˙RECEIVED,

5 STATE˙HELLO˙DONE,

6 STATE˙CERT˙SENT,

7 STATE˙CERT˙RECEIVED,

8 STATE˙KEY˙EXCHANGE˙RECEIVED,

9 STATE˙CERTREQ˙RECEIVED,

10 STATE˙KEY˙EXCHANGE˙SENT,

11 STATE˙VERIFY˙SENT,

12 STATE˙CIPHERSPEC˙CHANGED˙OUT,

13 STATE˙FINISHED˙SENT,

14 STATE˙CIPHERSPEC˙CHANGED˙IN,

15 STATE˙FINISHED˙RECEIVED,

16 /* new states in TLS 1.3 */

17 STATE˙HELLORETRYREQ˙RECEIVED,

18 STATE˙ENCRYPTED˙EXTENSIONS˙RECEIVED,

19 STATE˙CERT˙VERIFY˙RECEIVED,

20 STATE˙FINISHED˙SENT˙KEY˙SWITCHED,

21 STATE˙KEY˙UPDATE˙REQUESTED,

22 STATE˙KEY˙UPDATE˙SENT,

23 STATE˙CERT˙VERIFY˙SENT,

24 ˝ peer˙state˙t;

Listing 3: TLS peer state machine states

4.3. PSK

This section provides, first, an overview of the message flow to describe the general concept

of PSK-based resumption. Second, the generation of the necessary secrets is described in

more detail.

4.3.1. Handshake Overview

A concrete PSK handshake consists of the following messages and contents. The shown

example is achieved with an OpenSSL client and server as described in E.7.
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Figure 4.2.: First NewSessionTicket message from the server.

Figure 4.3.: Second NewSessionTicket message from the server.

After the handshake is completed, the OpenSSL server transmits two “New Session Ticket”

messages shown in figure 4.2 and 4.3.

Figure 4.4.: ClientHello message with pre shared key extension in the second connec-

tion.

In the second connection from the same client to the same server, the OpenSSL client sends

the pre shared key extension with two PSK Identities as shown in figure 4.4. The first

contains data from the first NewSessionTicket shown in figure 4.3.
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Figure 4.5.: ServerHello message with pre shared key extension in the second connec-

tion.

The server responds with the chosen identity as shown in figure 4.5. It chose the first identity

of the two identities provided by the client.

Figure 4.6.: The whole ServerHello message in PSK mode in the second connection.

Figure 4.6 shows that the pre shared key extension is the last message within the ServerHello

message.

Figure 4.7.: Both handshakes with all messages in PSK mode.

Figure 4.7 shows that the PSK handshake transmits less messages than the regular full

handshake. In the first handshake, it needed five messages of a total of 2’191 TLS protocol

bytes before the first data could be transmitted from the client to the server. The second

handshake took four messages of a total of 1’168 TLS protocol bytes before the first data

could be transmitted from the client to the server. In the above example handshake, this is
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a reduction of 20% in the amount of messages and a reduction of 46.69% regarding TLS

protocol payload.

RFC 8446 describes in section 2.25 the handshake in a “Resumption and Pre-Shared Key

(PSK)” scenario and in section 2.36 the handshake in a “0-RRT Data” scenario. For both

handshakes, the extension key share is described as optional or situation-dependent.

RFC 8446 suggests to add the key share in a PSK scenario to provide a fallback method to

establish a secure connection, in case the server is unable to proceed in the PSK handshake

path.7 Another reason to add this extension is to provide forward secrecy in subsequent

connections.8

In the two RFC 8446 sections, the PSK feature is described as a method to authenticate the

peers to each other9 and to provide a solution for 0-RTT (also called early data) support.10

The CPU intensive key share extension is suggested in both cases as a fallback solution or

to provide forward secrecy.

This leads to the conclusion that PSK-based handshakes mainly reduce the amount of data

transmitted by the peers by omitting the need for CertificateRequest and CertificateVerify

messages as described above.

4.3.2. Secret Generation

The simplified handshake is illustrated in figure 4.8 with two TLS sessions. The handshake

was completed, therefore both peers are in the third HKDF state (the master secret was

successfully generated).

513, p. 15.
613, p. 17.
7rfc8846.
813, p. 19.
913, pp. 16, 17.
1013, p. 17.
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Client Server

EncryptedExtensions
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Session 
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ServerHello
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psk_key_exchange_modes
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Figure 4.8.: PSK key generation.

1. The server generates the resumption master secret by using the label “tls13 res master”

on its HKDF first and then generates a session ticket11 for the NewSessionTicket

message. The session ticket is an opaque label.12 To associate a PSK with a session

ticket, the HKDF is used with the label “tls13 resumption” together with a nonce.

Also, two 32 bit integers need to be generated to indicate the lifetime of the ticket.

Transmitted to the client within the NewSessionTicket message are ticket lifetime,

11In the illustration “ST” stands for “session ticket”.
1213, p. 75.
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ticket age add, ticket nonce and session ticket. The PSK is not transmitted.

2. The client received the NewSessionTicket message and generates the PSK as de-

scribed above. Because multiple tickets can be transmitted from the server to the

client, each ticket has its own nonce. The client needs this nonce only to generate the

same PSK.

3. This step takes place on either side of the connection. Both peers need to memorise

the session ticket, the ticket age add and the generated PSK to reuse this information

in a subsequent session. In other words, this is the only information that survives a

session and can be used to establish a further connection.

4. The client sends two extensions in its ClientHellomessage: psk key exchange modes

and pre shared key. In the latter extension, the client sends the session ticket called

PSK identity together with the ticket age add and the PSK binder. To get the PSK

binder, the following steps are required: The client first initialises its HKDF with the

PSK from the previous session and generates the binder key by using the label “tls13

res binder”. Subsequently, it uses a hash of the ClientHello message it is about to

send, until and with the PSK identities, to generate the PSK binder.13

5. A client could send multiple PSK identities and PSK binders, so the server finally

chooses the identity to use and confirms this to the client.

6. The rest of the handshake is as already described in chapter 3.

4.4. HKDF

strongSwan did not bring a ready-to-use HKDF implementation the way TLS 1.3 requires.

Such an implementation was one of the key achievements of the preliminary work14 of this

thesis. During this bachelor thesis the HKDF implementation was improved, enhanced and

tested with additional unit tests. This section describes the design choices of the HKDF

implementation used in this thesis.

The HKDF is used in different stages of the handshake process and functions like a state

machine itself. Therefore, the design uses four distinct phases. They are fully encapsulated

within the HKDF module (tls hkdf.h and tls hkdf.c). It is also important to understand

that states move from lower phase numbers to higher ones as the arrows illustrate in figure

4.9.

The HKDF design chosen in this work has these four phases:

• Phase 0: the initial state

• Phase 1: generate pre-shared keys

• Phase 2: generate handshake keys

• Phase 3: generate application data keys

13At this stage not all length fields of the ClientHello message are set.
148.
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These phases have an internal flow, the logic is illustrated in figure 4.9. This design cor-

responds to the HKDF design as of RFC 8446 which was illustrated and discussed in figure

3.7.

Phase 0

Phase 1

Phase 2

Phase 3

HKDF-Extract(IKM, Salt) -> PRKEarly Secret
IKM == PSK

Salt == 0...

HKDF-Extract(IKM, Salt) -> PRKHandshake Secret

HKDF-Extract(IKM, Salt) -> PRKMaster Secret

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv], Length) -> OKM

Derive-Secret(PRK, "derived", "") -> OKM

Derive-Secret(PRK, "derived", "") -> OKM

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv], Length) -> OKM

Derive-Secret(PRK, Label, Msg) -> OKM
HKDF-Expand-Label(OKM, [key | iv | finished], Length) -> OKM

IKM == 0...

Salt == OKM

IKM == (EC)DHE

Salt == OKM

Labels: ext binder,
res binder, c e
traffic, e exp
master

Labels: c hs traffic,
s hs traffic

OKM for both labels are
cached to reuse on labels
key and iv

Labels: c ap traffic,
s ap traffic, exp
master, res master

OKM for c ap traffic
and s ap traffic are
cached to reuse on labels
key, iv and finished

Figure 4.9.: The state machine for our HKDF implementation with the four phases.

These two aspects – repeated use and internal states – encourage a design which encapsulates

the whole implementation in an HKDF class. The design of the public interface of the HKDF

class is illustrated in figure 4.10:

HKDF

+ tls_hkdf_create(hash_algorithm_t, chunk_t): tls_hkdf_t
+ set_shared_secret(tls_hkdf_t *, chunk_t *): void
+ generate_secret(tls_hkdf_t *, tls_hkdf_labels_t, chunkt, chunk_t *): bool
+ derive_key(tls_hkdf_t *, bool, size_t, chunk_t *): bool
+ derive_iv(tls_hkdf_t *, bool, size_t, chunk_t *): bool
+ derive_finished(tls_hkdf_t *, bool, chunk_t *): bool
+ export(tls_hkdf_t *, char *, chunk_t, chunk_t, size_t, chunk_t *): bool
+ allocate_bytes(tls_hkdf_t *, chunk_t, chunk_t, chunk_t *): bool
+ destroy(tls_hkdf_t *): void

Figure 4.10.: UML class diagram of the current HKDF implementation.
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Its functionality is verified by a broad set of unit tests (test hkdf.c). The unit tests also

give a good idea on how the class is used in the code. The constructor tls hkdf create()

as well as all methods are documented using Doxygen, in accordance with the rest of the

documentation.

The main idea of this design is to encapsulate all the HKDF functionality and internal state lo-

gic and provide an easier-to-use interface. A user may set a PSK secret when initialising a con-

crete HKDF object or leave it blank when not using secrets from the first phase. By providing

one of the labels discussed in 3.7.1 and defined in enum tls hkdf labels t, a user sets the

HKDF state machine into the appropriate state using the function generate secrets.

As one may notice from figure 4.9, a state transition always consists of the two steps

Derive-Secret with the derived label and HKDF-Extract using the OKM from the former

function. In the current implementation this fact is considered and these steps are encapsu-

lated into the function generate secret. Therefore, the label derived is not exposed to

the caller and is solely used as internal label.

The states, as described earlier, provide different encryption keys and IVs derived with the

corresponding public methods derive key and derive iv. To verify handshake authentica-

tion, the public method derive finished is used.

While derive key and derive iv can be called in all three non-zero states, derive finished

is only called in phase 3 of the internal HKDF state machine.

4.4.1. HKDF and AEAD

The idea behind AEAD is to encrypt the payload of a message and additionally authenticate

the plaintext packet headers used to route the packet.15 This allows the receiver to discover

if the whole packet has been secretly modified in transit. All five cipher suites in TLS 1.3

are AEAD ciphers.16 The key and initialisation vector (IV) are provided by the HKDF.

Associated Data Encrypted Data

encrypted

authenticated

Figure 4.11.: Basic concept of authenticated encryption with associated data (AEAD).

strongSwan has already built-in support for AEAD, since TLS 1.2 standardised it.17 However,

TLS 1.3 uses AEAD somewhat differently, and one of the maintainers adapted the code to

allow the current AEAD implementation to work with TLS 1.3. A new class was added,

tls aead seq.c, and other changes happened in:

15See also illustration 4.11. It is heavily inspired by Dan Bonehs video explaining authenticated encryption.[3]
16This can also be recognised by the block cipher mode CCM and GCM respectively ChaCha20-Poly1305 for

the stream cipher.
1714, p. 24.
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• The public interface tls aead.h

• All AEAD implementations of the interface:

– tls aead.c

– tls aead.c

– tls aead expl.c

– tls aead impl.c

– tls aead null.c

• tls protection.c with implements tls aead.h

Because TLS 1.3 encrypts the actual content type within the TLSInnerPlaintext struc-

ture and always sets the TLSCiphertext structure content type to Application Data, the

interface had to be modified.18 This led to changes in all current existing AEAD implement-

ations. Because tls protection.c also uses the concrete AEAD object, it also required

minimal changes there.

The new tls aead seq.c class is to be used with TLS 1.3 and its constructor has been

added to the public interface in tls aead.h. The class mainly differs in the the way how

key material is handled. According to RFC 8446, the nonce and initialisation vector (IV) is

calculated differently than in the prior TLS version.19

4.5. Key Derivation and Switching

In section 4.4 the idea behind the HKDF design, functionality and implementation is de-

scribed. For a concrete TLS 1.3 implementation, it is important to derive key material based

on appropriate handshake data and at the correct state of the state machine. In figure 4.9

the key derivation and switching in a basic handshake is illustrated.

1813, p. 81.
1913, p. 83.
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Figure 4.12.: Key material derivation and switching in TLS 1.3.

To derive the same keys, both client and server need the same handshake input data. The

yellowish area indicates the handshake data to generate the hs traffic secret. This is

the ClientHello message and the ServerHello message.20 The purplish area highlights

the handshake data to generate the application traffic secret. This area covers all

messages up and including to the server-side Finished message. Both peers use this to

derive their symmetric key material as follows:

1. The server generates its asymmetric key material and derives the common secret, the

(EC)DHE secret, from it. The public key is sent to the client in the ServerHello

message within the key share extension. From this common secret a peer is able to

generate the handshake traffic secret at this stage of the handshake. From this secret

it now can derive and set keys and IVs for both channels “outbound” and “inbound”.

2. The server sends all following handshake messages, in this example EncryptedExtensions

to Finished, encrypted with the key and IV derived from the first stage handshake

traffic secret. After the Finished is sent the server may send already encrypted pay-

load data which requires the application traffic secret from the second encryption stage

to derive keys and IVs from. This is the reason why the server implementation at this

20A HelloRetryRequest message would also be within these two messages and therefore lies in this yellowish

area.
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stage has to switch to the second stage of encryption, the application traffic secret,

and derive the key and IV for this stage and use it for “outbound” data.

3. The client parses the plain text ServerHello message and now possesses the public

key of the server and therefore is able to get the common secret between the two peers

in this session. From this (EC)DHE secret a peer is able to generate the handshake

traffic secret and move to the first encryption stage respectively phase 1 in the HKDF

state machine. From this handshake traffic secret it is now able to derive the keys and

IVs to set both, the “inbound” and “outbound” channels. It is now able to encrypt

the other messages up to the Finished message from the server.

4. As described in 2, it is possible21 that the server already answers with encrypted payload

at this stage, the client has to switch to the second encryption stage respectively phase

2 in the HKDF state machine by generating the application traffic secret and at this

point needs to derive a key and IV for the “inbound” channel.

5. The client uses the handshake traffic secret of the first encryption stage to send its

handshake messages, in this example Certificate to Finished, and switches to the

second encryption phase on the “outbound” channel as soon as these messages are

sent. For this switch it only needs to derive a key and an IV from the already generated

application traffic secret.

6. The server derives and switches to the new key and IV on the “inbound” channel as

soon as it received the client Finished message.

After these six steps, the handshake is completed and a secured session is established between

both peers.

21in an early data scenario
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5. Implementation

This chapter focuses on the concrete implementation achieved in this bachelor thesis. It

discusses single code snippets of special interest. All topics reference to the involved commits

which are publicly available on GitHub, in the repository described in D.

First, the server-side TLS 1.3 stack is described since this was the first goal achieved in this

thesis. The second section focuses on the mutual authentication handshake which is the

second goal achieved in this thesis.

5.1. Server-side implementation

Most changes and additions took place in tls server.c, where the missing messages for

building and processing were added. Most notable is, of course, the newly added state

machine for processing, as listed in listing 4, and building, as in listing 5.1

15edbe102: tls-server: TLS 1.3 support for TLS server implementation
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1 if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

2 –

3 /* removed */

4 ˝

5 else

6 –

7 switch (this-¿state)

8 –

9 case STATE˙INIT:

10 if (type == TLS˙CLIENT˙HELLO)

11 –

12 return process˙client˙hello(this, reader);

13 ˝

14 expected = TLS˙CLIENT˙HELLO;

15 break;

16 case STATE˙CIPHERSPEC˙CHANGED˙IN:

17 case STATE˙FINISHED˙SENT:

18 if (type == TLS˙FINISHED)

19 –

20 return process˙finished(this, reader);

21 ˝

22 return NEED˙MORE;

23 case STATE˙FINISHED˙RECEIVED:

24 return INVALID˙STATE;

25 default:

26 DBG1(DBG˙TLS, ”TLS %N not expected in current state”,

27 tls˙handshake˙type˙names, type);

28 this-¿alert-¿add(this-¿alert, TLS˙FATAL, TLS˙UNEXPECTED˙MESSAGE);

29 return NEED˙MORE;

30 ˝

31 ˝

Listing 4: TLS 1.3 server-side process state machine.

Another important change was made in tls crypto.c. strongSwan is able to verify signa-

tures in both encodings, RSA and RSA-PSS, but only allows to sign in RSA-PSS. Therefore

we had, at this stage of the project, to exclude all three RSA-PSS schemes, as shown on

line 10 to 19 in listing 6.
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1 if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

2 –

3 /* removed */

4 ˝

5 else

6 –

7 switch (this-¿state)

8 –

9 case STATE˙HELLO˙RECEIVED:

10 return send˙server˙hello(this, type, writer);

11 case STATE˙HELLO˙SENT:

12 case STATE˙CIPHERSPEC˙CHANGED˙OUT:

13 return send˙encrypted˙extensions(this, type, writer);

14 case STATE˙ENCRYPTED˙EXTENSIONS˙SENT:

15 return send˙certificate(this, type, writer);

16 case STATE˙CERT˙SENT:

17 return send˙certificate˙verify(this, type, writer);

18 case STATE˙CERT˙VERIFY˙SENT:

19 return send˙finished(this, type, writer);

20 case STATE˙FINISHED˙SENT:

21 return INVALID˙STATE;

22 default:

23 return INVALID˙STATE;

24 ˝

25 ˝

Listing 5: TLS 1.3 server-side build state machine.

1 /**

2 * Get the signature parameters from a TLS signature scheme

3 */

4 static signature˙params˙t *params˙for˙scheme(tls˙signature˙scheme˙t sig)

5 –

6 int i;

7

8 for (i = 0; i ¡ countof(schemes); i++)

9 –

10 /* strongSwan supports only RSA˙PSS˙RSAE schemes for signing but can

11 * verify public keys in rsaEncryption as well as rsassaPss encoding.

12 * Current implementation does not distinguish between signing and

13 * verifying. */

14 if (sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA256 ——

15 sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA384 ——

16 sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA512)

17 –

18 continue;

19 ˝

20 if (schemes[i].sig == sig)

21 –

22 return &schemes[i].params;

23 ˝

24 ˝

25 return NULL;

26 ˝

Listing 6: Remove RSA-PSS signature schemes.
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We later2 enhanced the function signature to distinguish if a signing or verifying operation is

required and allow RSA-PSS schemes for signing again, as shown in line 5 and 13 in listing

7.

1 /**

2 * Get the signature parameters from a TLS signature scheme

3 */

4 static signature˙params˙t *params˙for˙scheme(tls˙signature˙scheme˙t sig,

5 bool sign)

6 –

7 int i;

8

9 for (i = 0; i ¡ countof(schemes); i++)

10 –

11 /* strongSwan supports only RSA˙PSS˙RSAE schemes for signing but can

12 * verify public keys in rsaEncryption as well as rsassaPss encoding. */

13 if (sign && (sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA256 ——

14 sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA384 ——

15 sig == TLS˙SIG˙RSA˙PSS˙PSS˙SHA512))

16 –

17 continue;

18 ˝

19 if (schemes[i].sig == sig)

20 –

21 return &schemes[i].params;

22 ˝

23 ˝

24 return NULL;

25 ˝

Listing 7: Allow RSA-PSS signature schemes for verifying.

5.1.1. KeyUpdate

KeyUpdate requests and responses are an important part in TLS connections to allow rekey-

ing. Because the strongSwan TLS library is interoperable with any TLS library, this feature

was also implemented3 together with the TLS 1.3 server-side implementation.

The two new states STATE KEY UPDATE REQUESTED and STATE KEY UPDATE SENT were in-

troduced in tls server.c alongside with functions to generate and process these messages.

In the process state machine, handling for messages of type TLS KEY UPDATE is inserted, as

seen in listing 8. In the build state machine, the two new states are also covered, as of listing

9

2d9058b2a: tls-crypto: Distinguish between signing and verifying signature schemes
32478aa03: tls-server: Support KeyUpdate requests and answers
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1 case STATE˙FINISHED˙RECEIVED:

2 if (type == TLS˙KEY˙UPDATE)

3 –

4 return process˙key˙update(this, reader);

5 ˝

Listing 8: Server-side process state machine with KeyUpdate support.

1 case STATE˙KEY˙UPDATE˙REQUESTED:

2 return send˙key˙update(this, type, writer);

3 case STATE˙KEY˙UPDATE˙SENT:

4 if (!this-¿crypto-¿update˙app˙keys(this-¿crypto, FALSE))

5 –

6 this-¿alert-¿add(this-¿alert, TLS˙FATAL, TLS˙INTERNAL˙ERROR);

7 return NEED˙MORE;

8 ˝

9 this-¿crypto-¿change˙cipher(this-¿crypto, FALSE);

10 this-¿state = STATE˙FINISHED˙RECEIVED;

Listing 9: Server-side build state machine with KeyUpdate support.

5.1.2. HelloRetryRequest (HRR)

HelloRetryRequest messages are an important part in TLS connections to negotiate DH

groups. Because the strongSwan TLS library is interoperable with any TLS library, this

feature was also implemented4 together with the TLS 1.3 server-side implementation.

Multiple additions and changes had to be implemented in tls server.c to achieve HRR

support. We discuss some of the important aspects in short here.

From the server’s point of view, it is important to know whether the client is currently on its

first or second ClientHello message. Therefore, we added a new function to easily answer

this question based on memorised session stats in form of the chunk requested curve and

the current state of the state machine as seen in listing 10.

1 /**

2 * Check if client is currently retrying to connect to the server.

3 */

4 static bool retrying(private˙tls˙server˙t *this)

5 –

6 return this-¿state == STATE˙INIT && this-¿requested˙curve;

7 ˝

Listing 10: Server-side HRR retrying function.

The object field requested curve is set in the static process client hello() function.

4a503a278: tls-server: Handle HelloRetryRequest (HRR)
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5.2. Mutual authentication

We split the concrete mutual authentication support into two commits, first the server-side:

New state STATE FINISHED SENT KEY SWICHED was added that addresses the situation when

the server Finishedmessage is sent and the application traffic keys are in-place. The process

state machine is listed in listing 11 and the build state machine in listing 12.5

5bcad44bc: tls-server: Mutual authentication support for TLS 1.3
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1 if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

2 –

3 /* removed */

4 ˝

5 else

6 –

7 switch (this-¿state)

8 –

9 case STATE˙INIT:

10 if (type == TLS˙CLIENT˙HELLO)

11 –

12 return process˙client˙hello(this, reader);

13 ˝

14 expected = TLS˙CLIENT˙HELLO;

15 break;

16 case STATE˙CIPHERSPEC˙CHANGED˙IN:

17 case STATE˙FINISHED˙SENT:

18 case STATE˙FINISHED˙SENT˙KEY˙SWITCHED:

19 if (type == TLS˙CERTIFICATE)

20 –

21 return process˙certificate(this, reader);

22 ˝

23 if (this-¿peer)

24 –

25 expected = TLS˙CERTIFICATE;

26 break;

27 ˝

28 /* otherwise fall through to next state */

29 case STATE˙CERT˙RECEIVED:

30 if (type == TLS˙CERTIFICATE˙VERIFY)

31 –

32 return process˙cert˙verify(this, reader);

33 ˝

34 if (this-¿peer)

35 –

36 expected = TLS˙CERTIFICATE˙VERIFY;

37 break;

38 ˝

39 /* otherwise fall through to next state */

40 case STATE˙CERT˙VERIFY˙RECEIVED:

41 if (type == TLS˙FINISHED)

42 –

43 return process˙finished(this, reader);

44 ˝

45 return NEED˙MORE;

46 case STATE˙FINISHED˙RECEIVED:

47 if (type == TLS˙KEY˙UPDATE)

48 –

49 return process˙key˙update(this, reader);

50 ˝

51 return INVALID˙STATE;

52 default:

53 DBG1(DBG˙TLS, ”TLS %N not expected in current state”,

54 tls˙handshake˙type˙names, type);

55 this-¿alert-¿add(this-¿alert, TLS˙FATAL, TLS˙UNEXPECTED˙MESSAGE);

56 return NEED˙MORE;

57 ˝

58 ˝

Listing 11: Server-side process state machine with mutual authentication support.
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1 if (this-¿tls-¿get˙version˙max(this-¿tls) ¡ TLS˙1˙3)

2 –

3 switch (this-¿state)

4 –

5 /* removed */

6 ˝

7 else

8 –

9 switch (this-¿state)

10 –

11 case STATE˙HELLO˙RECEIVED:

12 return send˙server˙hello(this, type, writer);

13 case STATE˙HELLO˙SENT:

14 case STATE˙CIPHERSPEC˙CHANGED˙OUT:

15 return send˙encrypted˙extensions(this, type, writer);

16 case STATE˙ENCRYPTED˙EXTENSIONS˙SENT:

17 if (this-¿peer)

18 –

19 return send˙certificate˙request(this, type, writer);

20 ˝

21 /* otherwise fall through to next state */

22 case STATE˙CERTREQ˙SENT:

23 return send˙certificate(this, type, writer);

24 case STATE˙CERT˙SENT:

25 return send˙certificate˙verify(this, type, writer);

26 case STATE˙CERT˙VERIFY˙SENT:

27 return send˙finished(this, type, writer);

28 case STATE˙FINISHED˙SENT:

29 if (!this-¿crypto-¿derive˙app˙keys(this-¿crypto))

30 –

31 this-¿alert-¿add(this-¿alert, TLS˙FATAL, TLS˙INTERNAL˙ERROR);

32 return NEED˙MORE;

33 ˝

34 /* inbound key switches after process client finished message */

35 this-¿crypto-¿change˙cipher(this-¿crypto, FALSE);

36 this-¿state = STATE˙FINISHED˙SENT˙KEY˙SWITCHED;

37 return INVALID˙STATE;

38 case STATE˙KEY˙UPDATE˙REQUESTED:

39 return send˙key˙update(this, type, writer);

40 case STATE˙KEY˙UPDATE˙SENT:

41 if (!this-¿crypto-¿update˙app˙keys(this-¿crypto, FALSE))

42 –

43 this-¿alert-¿add(this-¿alert, TLS˙FATAL, TLS˙INTERNAL˙ERROR);

44 return NEED˙MORE;

45 ˝

46 this-¿crypto-¿change˙cipher(this-¿crypto, FALSE);

47 this-¿state = STATE˙FINISHED˙RECEIVED;

48 default:

49 return INVALID˙STATE;

50 ˝

51 ˝

Listing 12: Server-side build state machine with mutual authentication support.

In TLS 1.3 there is a static byte chunk that is used by both peers. It consists of 64 space

characters, the string “TLS 1.3, client CertificateVerify” and a single zero byte delimiter.
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We encapsulated this chunk of byte in tls crypto.c because both peers need those chunks,

see listing 13.

1 /**

2 * TLS 1.3 static part of the data the peer signs (64 spaces followed by the

3 * context string ”TLS 1.3, client CertificateVerify” and a 0 byte).

4 */

5 static chunk˙t tls13˙sig˙data˙client = chunk˙from˙chars(

6 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

7 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

8 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

9 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

10 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

11 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

12 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

13 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,

14 0x54, 0x4c, 0x53, 0x20, 0x31, 0x2e, 0x33, 0x2c,

15 0x20, 0x63, 0x6c, 0x69, 0x65, 0x6e, 0x74, 0x20,

16 0x43, 0x65, 0x72, 0x74, 0x69, 0x66, 0x69, 0x63,

17 0x61, 0x74, 0x65, 0x56, 0x65, 0x72, 0x69, 0x66,

18 0x79, 0x00,

19 );

Listing 13: Static blob to generate client certificate verify signature.

The second commit6 addresses the client implementation of mutual authentication in TLS

1.3. Here, alongside with message processing and building code, the process state ma-

chine had to be adapted slightly to parse messages of type TLS CERTIFICATE REQUEST, as

shown in listing 14. The build state machine also needed only a few enhancements to send

Certificate and CertificateVerify messages, as of listing 15.

1 if (type == TLS˙CERTIFICATE˙REQUEST)

2 –

3 return process˙certreq(this, reader);

4 ˝

5 /* no cert request, server does not want to authenticate us */

6 DESTROY˙IF(this-¿peer);

7 this-¿peer = NULL;

8 /* otherwise fall through to next state */

9 case STATE˙CERTREQ˙RECEIVED:

Listing 14: Client-side process state machine with mutual authentication support.

66849c0a1: tls-peer: Mutual authentication support for TLS 1.3
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1 if (this-¿peer)

2 –

3 return send˙certificate(this, type, writer);

4 ˝

5 /* otherwise fall through to next state */

6 case STATE˙CERT˙SENT:

7 if (this-¿peer)

8 –

9 return send˙certificate˙verify(this, type, writer);

10 ˝

11 /* otherwise fall through to next state */

12 case STATE˙VERIFY˙SENT:

Listing 15: Client-side build state machine with mutual authentication support.

5.3. PSK-based resumption

The PSK-based resumption feature was not completed within this bachelor thesis. However,

the foundation of generating the necessary cryptographic keys has been laid. The HKDF

implementation now provides the interface to generate the resumption secret at the end of

the first session and the PSK binder used to initiate a subsequent session. The generated

keys were verified by additional HKDF unit tests that were added to the test suite.

The two newly added methods resume() and binder, as shown in 5.1, provide the ability

to generate the PSK secrets.

HKDF

+ tls_hkdf_create(hash_algorithm_t, chunk_t): tls_hkdf_t 
+ set_shared_secret(tls_hkdf_t *, chunk_t *): void
+ generate_secret(tls_hkdf_t *, tls_hkdf_labels_t, chunkt, chunk_t *): bool
+ derive_key(tls_hkdf_t *, bool, size_t, chunk_t *): bool
+ derive_iv(tls_hkdf_t *, bool, size_t, chunk_t *): bool 
+ derive_finished(tls_hkdf_t *, bool, chunk_t *): bool
+ export(tls_hkdf_t *, char *, chunk_t, chunk_t, size_t, chunk_t *): bool
+ resume(tls_hkdf_t *, chunk_t, chunk_t, chunk_t *): bool 
+ binder(tls_hkdf_t *, chunk_t, chunk_t *): bool 
+ allocate_bytes(tls_hkdf_t *, chunk_t, chunk_t, chunk_t *): bool
+ destroy(tls_hkdf_t *): void

Figure 5.1.: HKDF with new interface for PSK.

Listing 16 shows the newly added methods with the describing Doxygen documentation.

53



1 /**

2 * Generate resumption PSKs.

3 *

4 * @param messages handshake messages

5 * @param nonce nonce to use for this PSK

6 * @param psk generated PSK

7 * @return TRUE if PSK successfully generated

8 */

9 bool (*resume)(tls˙hkdf˙t *this, chunk˙t messages, chunk˙t nonce, chunk˙t *psk);

10

11 /**

12 * Generate a PSK binder.

13 *

14 * @param seed transcript-hash of client˙hello to seed the PRF

15 * @param psk˙binder generated psk binder

16 * @return TRUE if output was generated

17 */

18 bool (*binder)(tls˙hkdf˙t *this, chunk˙t seed, chunk˙t *psk˙binder);

Listing 16: HKDF interface with resume() and binder().

The implementation of resume() was added in listing 17 and binder() in listing 18.
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1 METHOD(tls˙hkdf˙t, resume, bool,

2 private˙tls˙hkdf˙t *this, chunk˙t messages, chunk˙t nonce, chunk˙t *key)

3 –

4 chunk˙t resumption˙master;

5

6 if (this-¿phase != HKDF˙PHASE˙3)

7 –

8 DBG1(DBG˙TLS, ”unable to generate resumption key material”);

9 return FALSE;

10 ˝

11 if (!nonce.len)

12 –

13 DBG1(DBG˙TLS, ”no nonce provided”);

14 return FALSE;

15 ˝

16

17 /**

18 * PSK associated with the ticket according to RFC 8446, section 4.6.1

19 *

20 * HKDF-Expand-Label(resumption˙master˙secret,

21 * ”resumption”, ticket˙nonce, Hash.length)

22 */

23 if (!generate˙secret(this, TLS˙HKDF˙RES˙MASTER, messages,

24 &resumption˙master))

25 –

26 DBG1(DBG˙TLS, ”unable to derive resumption master secret”);

27 return FALSE;

28 ˝

29

30 if (!expand˙label(this, resumption˙master, chunk˙from˙str(”resumption”),

31 nonce, this-¿hasher-¿get˙hash˙size(this-¿hasher), key))

32 –

33 chunk˙free(&resumption˙master);

34 DBG1(DBG˙TLS, ”unable to expand key material”);

35 return FALSE;

36 ˝

37 chunk˙free(&resumption˙master);

38 return TRUE;

39 ˝

Listing 17: HKDF resume() implementation.
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1 METHOD(tls˙hkdf˙t, binder, bool,

2 private˙tls˙hkdf˙t *this, chunk˙t seed, chunk˙t *out)

3 –

4 chunk˙t binder˙key, finished˙key;

5

6 if (!generate˙secret(this, TLS˙HKDF˙RES˙BINDER, chunk˙empty, &binder˙key))

7 –

8 DBG1(DBG˙TLS, ”unable to derive binder key”);

9 return FALSE;

10 ˝

11

12 if (!expand˙label(this, binder˙key, chunk˙from˙str(”finished”), chunk˙empty,

13 this-¿hasher-¿get˙hash˙size(this-¿hasher), &finished˙key))

14 –

15 chunk˙free(&binder˙key);

16 return FALSE;

17 ˝

18 chunk˙free(&binder˙key);

19

20 if (!this-¿prf-¿set˙key(this-¿prf, finished˙key) ——

21 !this-¿prf-¿allocate˙bytes(this-¿prf, seed, out))

22 –

23 chunk˙free(&finished˙key);

24 return FALSE;

25 ˝

26 chunk˙free(&finished˙key);

27 return TRUE;

28 ˝

Listing 18: HKDF binder() implementation.

As described in 4.3, it is crucial that information from a previous session persists to a sub-

sequent session. strongSwan’s libtls has already implemented such a persistency feature

in the cache module (tls cache.h and tls cache.c). However, it was designed for use

in legacy TLS versions. Also, the cache module, from the peers’ perspective, is encapsu-

lated entirely in the crypto module (tls crypto.h and tls crypto.c). For a final PSK

implementation, the steps described in 5.3.1 are suggested.

5.3.1. Next steps

For a final PSK-based resumption implementation, the following steps would be needed:

1. Key-value oriented cache module can be reused untouched, when the session ticket

is used as searchable key and the PSK session secret (generated with the nonce) is

concatenated with the age add and stored as value.

2. The crypto module needs additional interfaces to allow peers to add and receive TLS

1.3 related resumption information.

3. Client and server need additional message building and processing logic as well as a

review of the state machine when a PSK-based resumption is required. It is important

that the HKDF object initialised with the PSK is not reinitialised without the PSK as

it was used in the past.
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5.4. Unit Tests

During this thesis, multiple new unit test cases were added, as a comparison of figure 5.2 to

figure 5.3 shows.

Figure 5.2.: Unit tests before this bachelor

thesis.

Figure 5.3.: Unit tests after this bachelor

thesis.

Here, the newly added test cases are discussed:

’RFC 8448’ : The ’RFC 8448’ test suite provides already two test cases for testing the

HKDF implementation. These test cases cover a simple TLS 1.3 handshake provided

on keys and handshake data by https://tls13.ulfheim.net/. There also exists RFC

84487 which provides handshake data and keys for a broad set of TLS 1.3 handshake

use cases. Here, additional tests were added that cover a larger set of functions of the

implemented HKDF especially for 0-RTT and 1-RTT handshake scenarios.

’TLS [1.0..1.3] client to TLS 1.3 server’ : Test client to server TLS connection

where the client tries each TLS version from 1.0, 1.1, 1.2 and 1.3 to a TLS server has

been fixed to TLS 1.3.

’TLS 1.3 client to TLS [1.0..1.3] server’ : Test client fixed to TLS 1.3 to connect

to a server with support for TLS 1.0, 1.1, 1.2 or 1.3.

724.
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’TLS [1.0..1.3] client to TLS 1.2 server’ : Test client to server TLS connection

where the client tries each TLS version from 1.0, 1.1, 1.2 and 1.3 to a TLS server

fixed to TLS 1.2.

’TLS 1.3/curves’ : Tests all supported TLD DH groups in a TLS 1.3 connection between

client and server.

’TLS 1.3/anon’ : Test TLS 1.3 connection from client to server without client authentic-

ation.

’TLS 1.3/mutl’ : Test TLS 1.3 connection from client to server with client authentication.

’TLS 1.3/ed25519’ : Test client to server TLS connection with either an RSA or an

Ed25519 key with all supported TLS 1.3 cipher suites.

’TLS 1.2/ed25519’ : Test client to server TLS connection with either an RSA or an

Ed25519 key with all supported TLS 1.2 cipher suites.

’TLS 1.1/ed25519’ : Test client to server TLS connection with either an RSA or an

Ed25519 key with all supported TLS 1.1 cipher suites.

’TLS 1.0/ed25519’ : Test client to server TLS connection with either an RSA or an

Ed25519 key with all supported TLS 1.0 cipher suites.

’TLS 1.3/ed448’ : Test client to server TLS connection with either an RSA or an Ed448

key with all supported TLS 1.3 cipher suites.

’TLS 1.2/ed448’ : Test client to server TLS connection with either an RSA or an Ed448

key with all supported TLS 1.2 cipher suites.

’TLS 1.1/ed448’ : Test client to server TLS connection with either an RSA or an Ed448

key with all supported TLS 1.1 cipher suites.

’TLS 1.0/ed448’ : Test client to server TLS connection with either an RSA or an Ed448

key with all supported TLS 1.0 cipher suites.

Before, libtls had eight test cases and 165 test asserts (indicated as green ’+’ character)

in three test suites. Now it provides 23 test cases and 300 test asserts. This makes a plus

of 15 test cases and 135 test asserts within the libtls test suites.

These newly added unit tests slightly increase the coverage of libtls:

Figure 5.4.: Unit test coverage of libtls before this thesis (lines/functions/branches).

Figure 5.5.: Unit test coverage of libtls after this thesis (lines/functions/branches).

Line coverage increased by 7.7% to 61.9%, function coverage by 7.4% to 81.8% and branch

coverage by 9.8% to 52.1%. The detailed file comparison follows:
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Figure 5.6.: Unit test coverage of libtls before this thesis in detail.

Figure 5.7.: Unit test coverage of libtls after this thesis in detail.

How the coverage was measured is described in C.1.1.
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6. Testing

This chapter describes how the implementation in libtls is tested throughout this thesis.

First, client functionality was tested, followed by server-side and mutual authentication func-

tionality.

For this manual testing and functionality proofing, the strongSwan tool tls test was used.

The compilation steps described in appendix C also built additional executables. tls test

was built, among various other programmes, in the “scripts” directory. This executable

provides TLS client and server functionality similar to OpenSSL’s “s client” and “s server”.

This CLI tool provides several parameters that were used to manually test client and server

functionality. Listing 19 shows all parameters and their description.

$ ./scripts/tls˙test --help

usage:

/home/pascal/Documents/Bildung/fh/hsr/sem7/BA/build/scripts/.libs/tls˙test --connect

¡address¿ --port ¡port¿ [--key ¡key] [--cert ¡file¿] [--cacert ¡file¿]+ [--times

¡n¿]

↪→

↪→

/home/pascal/Documents/Bildung/fh/hsr/sem7/BA/build/scripts/.libs/tls˙test --listen

¡address¿ --port ¡port¿ --key ¡key¿ --cert ¡file¿ [--cacert ¡file¿]+ [--times ¡n¿]↪→

options:

--help print help and exit

--connect ¡address¿ connect to a server on dns name or ip address

--listen ¡address¿ listen on dns name or ip address

--port ¡port¿ specify the port to use

--cert ¡file¿ certificate to authenticate itself

--key ¡file¿ private key to authenticate itself

--cacert ¡file¿ certificate to verify other peer

--times ¡n¿ specify the amount of repeated connection establishments

--ipv4 use IPv4

--ipv6 use IPv6

--min-version ¡version¿ specify the minimum TLS version, supported versions:

1.0 (default), 1.1, 1.2 and 1.3

--max-version ¡version¿ specify the maximum TLS version, supported versions:

1.0, 1.1, 1.2 and 1.3 (default)

--version ¡version¿ set one specific TLS version to use, supported versions:

1.0, 1.1, 1.2 and 1.3

--debug ¡debug level¿ set debug level, default is 1

Listing 19: Help output of tls test utile tool.

For space reasons, only the output of tls test is listed here. All OpenSSL commands used

here can be found in appendix E. The used self-signed RSA 2048 bit X.509 certificate and its

private key are included in F. All used wireshark packet captures – and some additional ones
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from appendix E – with included decryption keys1 are provided on my web server https:

//www.addere.ch/ba/wireshark/.

6.1. Client

This section focuses on client-side test scenarios.

6.1.1. tls test with TLS 1.3 to OpenSSL server

Here, tls test restricted to require TLS 1.3 was used to establish a secured connection to

an OpenSSL server.

OpenSSL server:

“openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-keyform der -key caKey.der -certform der -cert cert.der”

$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

ˆC

Listing 20: tls test connection to OpenSSL using TLS 1.3.

Figure 6.1.: tls test with TLS 1.3 to OpenSSL server.

6.1.2. tls test with TLS 1.2 to OpenSSL server

Here, tls test restricted to require TLS 1.2 was used to establish a secured connection to

an OpenSSL server.

OpenSSL server:

1I would like to take this opportunity to thank Peter Wu for providing the very useful tool “inject-

tls-secrets.py” https://gist.github.com/Lekensteyn/f64ba6d6d2c6229d6ec444647979ea24 visited

2020-12-10.
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“openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-keyform der -key caKey.der -certform der -cert cert.der”

$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

--version 1.2↪→

negotiated TLS 1.2 using suite TLS˙ECDHE˙RSA˙WITH˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

ˆC

Listing 21: tls test limited to TLS 1.2 connection to OpenSSL.

Figure 6.2.: tls test with TLS 1.2 to OpenSSL server.

6.1.3. tls test to Google server on IPv4

Here, tls test without restrictions was used to connect to a Google server. TLS 1.3 was

negotiated.

./scripts/tls˙test --connect www.google.com --port 443 --debug 1 --ipv4 --cert

/usr/share/ca-certificates/mozilla/GlobalSign˙Root˙CA˙-˙R2.crt↪→

negotiated TLS 1.3 using suite TLS˙AES˙128˙GCM˙SHA256

server requests key exchange with CURVE25519

negotiated TLS 1.3 using suite TLS˙AES˙128˙GCM˙SHA256

received TLS server certificate 'C=US, ST=California, L=Mountain View, O=Google LLC,
CN=www.google.com'↪→

received TLS intermediate certificate 'C=US, O=Google Trust Services, CN=GTS CA 1O1'
using certificate ”C=US, ST=California, L=Mountain View, O=Google LLC,

CN=www.google.com”↪→

using untrusted intermediate certificate ”C=US, O=Google Trust Services, CN=GTS CA

1O1”↪→

using trusted ca certificate ”OU=GlobalSign Root CA - R2, O=GlobalSign, CN=GlobalSign”

reached self-signed root ca with a path length of 1

ˆC

Listing 22: TLS connection to Google on IP v4 and port 443/tcp using tls test.

Establish a TLS 1.3 connection to the host “www.google.com” on port “443” over IP version

4. Use the certificate “/usr/share/ca-certificates/mozilla/GlobalSign Root CA - R2.crt” to
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verify the TLS authentication. Use debugging level 1 instead of -1.

6.1.4. tls test to Google server on IPv6

Here, tls test without restrictions was used to connect to a Google server. TLS 1.3 was

negotiated.

$ ./scripts/tls˙test --connect www.google.com --port 443 --debug 1 --ipv6 --cert

/usr/share/ca-certificates/mozilla/GlobalSign˙Root˙CA˙-˙R2.crt --max-version 1.2↪→

negotiated TLS 1.2 using suite TLS˙ECDHE˙ECDSA˙WITH˙AES˙128˙GCM˙SHA256

received TLS server certificate 'C=US, ST=California, L=Mountain View, O=Google LLC,
CN=www.google.com'↪→

received TLS intermediate certificate 'C=US, O=Google Trust Services, CN=GTS CA 1O1'
using certificate ”C=US, ST=California, L=Mountain View, O=Google LLC,

CN=www.google.com”↪→

using untrusted intermediate certificate ”C=US, O=Google Trust Services, CN=GTS CA

1O1”↪→

using trusted ca certificate ”OU=GlobalSign Root CA - R2, O=GlobalSign, CN=GlobalSign”

reached self-signed root ca with a path length of 1

ˆC

Listing 23: TLS connection to Google on IP v6 and port 443/tcp using tls test.

Establish a TLS 1.2 connection to the host “www.google.com” on port “443” over IP version

6. Use the certificate “/usr/share/ca-certificates/mozilla/GlobalSign Root CA - R2.crt” to

verify the TLS authentication. Use debugging level 1 instead of -1.

6.1.5. tls test to tls13.id-pw server

Here, tls test without restrictions was used to connect to the tls13.id.pw2 server. TLS

1.3 was negotiated.

2This is a good TLS client testing website because it randomly uses different TLS configuration on each

connection.
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$ (echo -e ”GET / HTTP/1.1“nHost: tls13.1d.pw“n”; cat) — scripts/tls˙test --connect

tls13.1d.pw --port 443 --cert

/usr/share/ca-certificates/mozilla/Comodo˙AAA˙Services˙root.crt --times 1

↪→

↪→

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

server requests key exchange with CURVE25519

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'CN=tls13.1d.pw'
received TLS intermediate certificate 'C=GB, ST=Greater Manchester, L=Salford, O=Sectigo

Limited, CN=Sectigo ECC Domain Validation Secure Server CA'↪→

received TLS intermediate certificate 'C=US, ST=New Jersey, L=Jersey City, O=The
USERTRUST Network, CN=USERTrust ECC Certification Authority'↪→

using certificate ”CN=tls13.1d.pw”

using untrusted intermediate certificate ”C=GB, ST=Greater Manchester, L=Salford,

O=Sectigo Limited, CN=Sectigo ECC Domain Validation Secure Server CA”↪→

using untrusted intermediate certificate ”C=US, ST=New Jersey, L=Jersey City, O=The

USERTRUST Network, CN=USERTrust ECC Certification Authority”↪→

using trusted ca certificate ”C=GB, ST=Greater Manchester, L=Salford, O=Comodo CA

Limited, CN=AAA Certificate Services”↪→

reached self-signed root ca with a path length of 2

received TLS close notify

sending TLS close notify

...

Listing 24: TLS connection to tls13.1d.pw on port 443/tcp using tls test.

Establish a TLS 1.3 connection to the host “tls13.1d.pw” on port “443”. Use the certific-

ate “/usr/share/ca-certificates/mozilla/Comodo AAA Services root.crt” to verify the TLS

authentication. Do not connect multiple times but only once. Once connected send the pay

load “GET / HTTP/1.1“nHost: tls13.1d.pw“n”.

6.2. Server

This section focuses on server-side test scenarios.

6.2.1. OpenSSL to tls test

Here, OpenSSL without any version restriction was used to connect to tls test. TLS 1.3

was negotiated.

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys”
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$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

127.0.0.1[53872] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange CURVE25519

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

127.0.0.1[53872] disconnected

sending TLS close notify

ˆC

Listing 25: OpenSSL connection to tls test using TLS 1.3.

Figure 6.3.: OpenSSL to tls test.

6.2.2. OpenSSL 1.2 to tls test

Here, OpenSSL restricted to TLS 1.2 was used to connect to tls test. TLS 1.2 was

negotiated.

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-tls1˙2”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

127.0.0.1[53902] connected

using key of type RSA

negotiated TLS 1.2 using suite TLS˙ECDHE˙RSA˙WITH˙AES˙256˙GCM˙SHA384

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

127.0.0.1[53902] disconnected

sending TLS close notify

ˆC

Listing 26: OpenSSL limited to TLS 1.2 connection to tls test.
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Figure 6.4.: OpenSSL 1.2 to tls test.

6.2.3. OpenSSL to tls test TLS 1.2

Here, OpenSSL without any version restriction was used to connect to tls test restricted

to TLS 1.2. TLS 1.2 was negotiated.

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

--version 1.2↪→

127.0.0.1[53920] connected

using key of type RSA

negotiated TLS 1.2 using suite TLS˙ECDHE˙RSA˙WITH˙AES˙256˙GCM˙SHA384

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

127.0.0.1[53920] disconnected

sending TLS close notify

ˆC

Listing 27: OpenSSL connection to tls test limited TLS 1.2.

Figure 6.5.: OpenSSL to tls test TLS 1.2.

6.2.4. tls test to tls test

Here, tls test without any version restriction was used to connect to tls test. TLS 1.3

was negotiated.
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$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

ˆC

Listing 28: tls test connection to tls test using TLS 1.3 client side.

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

127.0.0.1[53944] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange SECP256R1

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'

ping

pong

127.0.0.1[53944] disconnected

sending TLS close notify

ˆC

Listing 29: tls test connection to tls test using TLS 1.3 server side.

Figure 6.6.: tls test to tls test.

6.2.5. KeyUpdate

libtls does not actively request key updates to its peers but it supports the messages and

key switching and it answers requests for updates. The tests in this section are accomplished

with OpenSSL as peer because it supports key update requests as described in E.4.

Both tests follow this test procedure:

1. Connection establishment

2. Client sends “ping”

3. Server sends “pong”

4. OpenSSL peer sends a key update message to tls test peer “k”

5. Client sends “ping ping”

67



6. Client sends “pong pong”

7. OpenSSL peer sends a key update message and a key update request to tls test peer

“K”

8. Client sends “ping ping ping”

9. Client sends “pong pong pong”

A connection from tls test client to an OpenSSL server is listed in 30, where the server

updates its key first and then asks for a key update by the peer3 once the connection is

established.

OpenSSL server:

“openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-keyform der -key caKey.der -certform der -cert cert.der”

$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

--debug 2↪→

connecting to 127.0.0.1[8443]

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

sending TLS ApplicationData record (22 bytes)

processing TLS ApplicationData record (22 bytes)

pong

processing TLS ApplicationData record (22 bytes)

received TLS KeyUpdate handshake (1 bytes)

ping ping

sending TLS ApplicationData record (27 bytes)

processing TLS ApplicationData record (27 bytes)

pong pong

processing TLS ApplicationData record (22 bytes)

received TLS KeyUpdate handshake (1 bytes)

server requested KeyUpdate

sending TLS KeyUpdate handshake (1 bytes)

sending TLS ApplicationData record (22 bytes)

ping ping ping

sending TLS ApplicationData record (32 bytes)

processing TLS ApplicationData record (32 bytes)

pong pong pong

ˆC

Listing 30: Key update message and key update request from the OpenSSL server.

3See also appendix E.4
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Figure 6.7.: KeyUpdate with OpenSSL server.

OpenSSL client connects to a libtls server. The client updates its own key first and then

asks for a key update as of listing 31.

OpenSSL client:

“$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

--debug 2↪→

127.0.0.1[52432] connected

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

ping

pong

sending TLS ApplicationData record (22 bytes)

processing TLS ApplicationData record (22 bytes)

received TLS KeyUpdate handshake (1 bytes)

processing TLS ApplicationData record (27 bytes)

ping ping

pong pong

sending TLS ApplicationData record (27 bytes)

processing TLS ApplicationData record (22 bytes)

received TLS KeyUpdate handshake (1 bytes)

client requested KeyUpdate

sending TLS KeyUpdate handshake (1 bytes)

sending TLS ApplicationData record (22 bytes)

processing TLS ApplicationData record (32 bytes)

ping ping ping

pong pong pong

sending TLS ApplicationData record (32 bytes)

127.0.0.1[52432] disconnected

sending TLS close notify

sending TLS ApplicationData record (19 bytes)

ˆC

Listing 31: Key update message and key update request from the OpenSSL client.
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Figure 6.8.: KeyUpdate with OpenSSL client.

In order to save space, both outputs were shortened.

6.2.6. HRR

First, a connection from tls test client to an OpenSSL server is listed in 32 where the server

requests a key share of X but the client sent Y, so a HelloRetryRequest was returned by

the server.

OpenSSL server:

“openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-keyform der -key caKey.der -certform der -cert cert.der --curves secp521r1”

$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

server requests key exchange with SECP521R1

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

ˆC

Listing 32: HRR message by OpenSSL server.

Figure 6.9.: HRR with OpenSSL server.

Second, an OpenSSL client connects to libtls server. The client sends a key share of

sect233k1 and provides sect233k1 (0x0006) and secp521r1 (0x0019) as supported groups
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extension. The server supports the latter and therefore sent a HelloRetryRequest in return

33.

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--curves sect233k1:secp521r1”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

127.0.0.1[46148] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

requesting key exchange with SECP521R1

resumed TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange SECP521R1

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

127.0.0.1[46148] disconnected

sending TLS close notify

Listing 33: HRR message by tls test server.

Figure 6.10.: HRR with OpenSSL client.

If the client provides only unsupported DH groups, the server terminates the connection, as

of listing 34.

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--curves sect233k1”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

127.0.0.1[46022] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

no mutual supported group in client hello

sending fatal TLS alert 'illegal parameter'
127.0.0.1[46022] disconnected

Listing 34: Connection termination by server due to missing supported groups in client hello.
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Figure 6.11.: HRR with OpenSSL server.

6.3. Mutual Authentication

Four test scenarios are described here. The first three tests are all permutations of a combin-

ation of OpenSSL and tls test. In the last scenario, the OpenSSL client does not provide

a certificate and the server terminates the connection.

6.3.1. OpenSSL to tls test

OpenSSL client:

“openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

-keyform DER -key caKey.der -certform DER -cert cert.der”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

--cacert cert.der↪→

127.0.0.1[53514] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange CURVE25519

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
received TLS peer certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

127.0.0.1[53514] disconnected

sending TLS close notify

ˆC

Listing 35: Mutual authentication with OpenSSL to tls test.

Figure 6.12.: OpenSSL to tls test.

6.3.2. tls test to OpenSSL

OpenSSL server:

“openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der --verify 1”
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$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

--cacert cert.der↪→

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

sending TLS client certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

ˆC

Listing 36: Mutual authentication with tls test to OpenSSL.

Figure 6.13.: tls test to OpenSSL.

6.3.3. tls test to tls test

$ ./scripts/tls˙test --connect localhost --port 8443 --key caKey.der --cert cert.der

--cacert cert.der↪→

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

received TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

sending TLS client certificate 'C=CH, O=strongSwan, CN=localhost'
ping

pong

ˆC

Listing 37: Mutual authentication with tls test to tls test client side.
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$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

--cacert cert.der↪→

127.0.0.1[53560] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange SECP256R1

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
received TLS peer certificate 'C=CH, O=strongSwan, CN=localhost'
using trusted certificate ”C=CH, O=strongSwan, CN=localhost”

ping

pong

127.0.0.1[53560] disconnected

sending TLS close notify

ˆC

Listing 38: Mutual authentication with tls test to tls test server side.

Figure 6.14.: tls test to tls test.

6.3.4. Client does not provide certificate

OpenSSL client:

“$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys”

$ ./scripts/tls˙test --listen localhost --port 8443 --key caKey.der --cert cert.der

--cacert cert.der↪→

127.0.0.1[53256] connected

using key of type RSA

negotiated TLS 1.3 using suite TLS˙AES˙256˙GCM˙SHA384

using key exchange CURVE25519

sending TLS server certificate 'C=CH, O=strongSwan, CN=localhost'
no certificate sent by peer

sending fatal TLS alert 'decode error'
127.0.0.1[53256] disconnected

ˆC

Listing 39: Client does not provide certificate and server terminates connection.

Figure 6.15.: Client does not provide certificate.
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7. Results

All the mandatory goals in this bachelor thesis were achieved. The TLS library libtls within

strongSwan now supports the TLS 1.3 protocol both on the client and the server side. It

is also possible to authenticate a connecting client by using X.509 certificates in a mutual

authentication handshake scenario. The code was heavily tested in existing and new unit

tests, with OpenSSL as TLS reference implementation and with external web services such

as Google.

The optional goal, PSK-based TLS 1.3 session resumption, was not completely implemented

within this theses. However, the foundation has been laid: It is possible to generate all the

necessary cryptographic secrets and keys with the HKDF implementation. The added unit

test cases for 1-RTT as well as 0-RTT handshake scenarios prove the correctness of the

HKDF implementation for PSK-based requirements.

Although FreeRADIUS version 3.0.20 from November 14th 2019 states that it does not

currently support TLS 1.31, integration and regression tests2 with the latest FreeRADIUS

version behave correctly. Also, the master session key (MSK), derived by the HKDF imple-

mentation, is computed correctly and compatible with FreeRADIUS. Nevertheless, additions

in the strongSwan EAP layer for the use of TLS 1.3 in accordance with the EAP-TLS 1.3

draft34 are required.

Section 7.1 provides more specific information about the tasks accomplished during this

bachelor thesis.

7.1. Achievements

Implementation of the TLS 1.3 server-side protocol The TLS 1.3 server-side protocol

stack was successfully implemented and tested. In addition, support for HelloRetryRequest

(HRR) messages was implemented to allow two peers to negotiate a common DH

group. Also, passive support for rekeying was implemented by supporting KeyUpdate

messages. If another peer likes to set new keys, libtls can handle this on inbound

and outbound channels. Several new unit tests verify correct functionality of all TLS

versions’ interconnection between libtls client and server.

Implementation of TLS 1.3 client authentication based on X.509 client certificates The

libtls client implementation was enhanced to support X.509 based client authentica-

tion to achieve TLS 1.3 mutual authentication. In addition to existing support for RSA

1because of draft status of the standards[11],[5] https://freeradius.org/release˙notes/ visited 2020-

12-16
2https://wiki.strongswan.org/projects/strongswan/wiki/TestingEnvironment visited 2020-12-16
311.
45.
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and ECDSA keys, support for Ed25519 and Ed448 keys were implemented, both for cli-

ent and server authentication. All these features were supplemented by corresponding

unit tests to prove correct behaviour and functionality.

Interoperability testing of TLS 1.3 libtls stack with 3rd party implementations Client and

server implementation of libtls were heavily tested with OpenSSL. Not only correct

handshakes were tested but also incorrect behaviour as described in the manual testing

chapter 6.

PSK-based TLS 1.3 session resumption (0-RTT) Session resumption in TLS 1.2 saves

key computing time and speeds connection establishment up. This goal was inspired

by these thoughts. However, RFC 8446’s PSK-based resumption mainly focuses on

the 0-RTT early data feature which is not a requirement for strongSwan. It is possible

though to use PSK-based resumption without the burden of computing new (EC)DHE

keys and establish a connection without a key share extension and therefore without

forward secrecy, but RFC 8446 does recommend to always send a key share extension

and therefore compute (EC)DHE keys as described in section 4.3.1. During this thesis,

it became clear that PSK-based resumption is rather understood as a long term authen-

tication feature that omits the need of sending potentially many bytes long certificates

over the wire. Further discussion and reevaluation is required to determine the need

for this feature in the strongSwan context. However, the cryptographic foundation in

the HKDF has been laid to generate all the needed key material.

Also many smaller additions, improvements and fixes were achieved:

• Rework cipher suite preference order

• Support multiple client exchange key shares

• Support Edwards-curve Digital Signature Algorithm (EdDSA) keys in ECDSA cipher

suites

• config file support for DH group

• Refactor writing of key share extensions

• Add signature scheme constants

• Check if peer sent signature algorithms extension

• Generalise trusted public and private key search

• Terminate connection if peer certificate is required but not sent

• Implement resumption key and binder PSK generation in HKDF

• new TLS 1.2 features:

– support three additional cipher suites5

– support three additional extensions6

– Make CertificateRequest conditional in old TLS versions

5TLS˙ECDHE˙RSA˙WITH˙CHACHA20˙POLY1305˙SHA256,

TLS˙ECDHE˙ECDSA˙WITH˙CHACHA20˙POLY1305˙SHA256 &

TLS˙DHE˙RSA˙WITH˙CHACHA20˙POLY1305˙SHA256
6Encrypt then MAC, Extended master secret & Session ticket
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• Fixes:

– Fix invalid signature algorithm list building

– Fix invalid signature algorithm and supported groups parsing

– Fix typo in HKDF label

– Fix missing client finished handshake bytes

7.2. Further work

A lot was achieved during the past 16 weeks of this bachelor thesis. However, some of the

optional tasks were not accomplished due to the lack of time. The following list provides an

overview of open tasks:

• PSK-based resumption7 The implementation achieved during this work covers the cryp-

tographic part. The HKDF is able to generate all the needed secrets and was tested

against test data provided by RFC 8448.8 The message communication protocol in

tls peer.c and texttttls server.c however has not been implemented yet.

• Downgrade protection9 TLS 1.3 defines a downgrade attack protection embedded in

the server’s ServerHello message random value as described in.10

• Configure ciphers by configuration file11 Allows the configuration of cipher suites avail-

able to strongSwan by configuration file.

• Configure signature algorithms by configuration file12 Allows the configuration of sig-

nature algorithms available to strongSwan by configuration file.

• Apply order of DH groups configured in configuration file13 The available DH groups

can be configured by the configuration file but the ordering of the entries in the con-

figuration file is not considered.

• Enhance Diffie-Hellman group to TLS group mapping with finite field groups14 Since

other TLS 1.3 implementations such as Firefox offer also finite field groups, it would

make sense to also provide these groups in our implementation.

• Rename “curve” to be more accurate with the changes in TLS 1.3 “supported” group

naming convention15 This is a more cosmetic change to improve readability and con-

sistency with RFC 8446.

• Implement missing CHACHA20 POLY1305 TLS 1.2 cipher suites16 The three CHACHA20

POLY1305 ciphers could be implemented as described in RFC 7905.17

7Implement PSK resumption #4
824.
9Implement downgrade protection #1
1013, pp. 32–33.
11Configure ciphers via configuration file for TLS 1.3 #15
12Configure signature algorithms via config file #27
13Apply config order of DH groups #23
14Enhance diffie hellman group to tls group mapping with finit field groups #20
15Rename curve to be more accurate with the changes in TLS 1.3 supported group naming convention #22
16Implement missing CHACHA20 POLY1305 TLS 1.2 cipher suites #13
1710.
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As discussed in section 2.3.1, the main use for the TLS stack in strongSwan is for the EAP

authentication scenarios. Since TLS 1.3 works differently than predecessor versions, EAP

needs adjustments to work with the new TLS version. However, currently no finished RFC

exists that specifies EAP with TLS 1.3. The two relevant drafts are “Using EAP-TLS with

TLS 1.3”18 and “TLS-based EAP types and TLS 1.3”.19

7.3. Outlook to TLS 1.4?

TLS 1.2 was released in 200820 and it took ten years to release the RFC describing TLS 1.3

in 2018,21 so TLS in version 1.4 does not lurk around the corner yet. However, the TLS-

WG22 which standardises the development in the TLS ecosystem is continuously working on

TLS 1.3 related updates and improvements. The following list23 of working titles gives the

reader an impression in what direction the upcoming improvements will lead.

TLS Ticket Requests “TLS session tickets enable stateless connection resumption for cli-

ents without server-side, per-client, state. Servers vend an arbitrary number of session

tickets to clients, at their discretion, upon connection establishment. Clients store and

use tickets when resuming future connections.”24

A Flags Extension for TLS 1.3 “A number of extensions are proposed in the TLS working

group that carry no interesting information except the 1-bit indication that a certain

optional feature is supported. Such extensions take 4 octets each. This document

defines a flags extension that can provide such indications at an average marginal cost

of 1 bit each.”25

Importing External PSKs for TLS “This document describes an interface for importing

external Pre-Shared Keys (PSKs) into TLS 1.3.”26

Encrypted Server Name Indication for TLS 1.3 “This document describes a mechanism

in Transport Layer Security (TLS) for encrypting a ClientHello message under a server

public key.”27

TLS Certificate Compression “In TLS handshakes, certificate chains often take up the

majority of the bytes transmitted. This document describes how certificate chains

can be compressed to reduce the amount of data transmitted and avoid some round

trips.”28

Exported Authenticators in TLS “This document describes a mechanism in Transport Layer

Security (TLS) for peers to provide a proof of ownership of an identity, such as an X.509

1811.
195.
2014.
2113.
22https://datatracker.ietf.org/wg/tls/about/ visited 2020-12-15
23https://datatracker.ietf.org/wg/tls/charter/ visited 2020-11-28
24https://datatracker.ietf.org/doc/draft-ietf-tls-ticketrequests/ visited 2020-11-28
25https://datatracker.ietf.org/doc/draft-ietf-tls-tlsflags/ visited 2020-11-28
26https://datatracker.ietf.org/doc/draft-ietf-tls-external-psk-importer/ visited 2020-11-28
27https://datatracker.ietf.org/doc/draft-ietf-tls-esni/ visited 2020-11-28
28https://datatracker.ietf.org/doc/rfc8879/ visited 2020-12-15
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certificate. This proof can be exported by one peer, transmitted out-of-band to the

other peer, and verified by the receiving peer.”29

Applying Generate Random Extensions And Sustain Extensibility (GREASE) to TLS Extensibility

“This document describes GREASE (Generate Random Extensions And Sustain Ex-

tensibility), a mechanism to prevent extensibility failures in the TLS ecosystem. It

reserves a set of TLS protocol values that may be advertised to ensure peers correctly

handle unknown values.”30

Delegated Credentials for TLS “The organizational separation between the operator of

a TLS endpoint and the certification authority can create limitations. For example,

the lifetime of certificates, how they may be used, and the algorithms they support

are ultimately determined by the certification authority. This document describes a

mechanism by which operators may delegate their own credentials for use in TLS,

without breaking compatibility with peers that do not support this specification.”31

Importing External PSKs for TLS “This document describes an interface for importing

external Pre-Shared Keys (PSKs) into TLS 1.3.”32

Deprecating TLSv1.0 and TLSv1.1 “This document, if approved, formally deprecates Trans-

port Layer Security (TLS) versions 1.0 (RFC 2246) and 1.1 (RFC 4346).”33

In addition, the new transport protocol QUIC, currently standardised by the QUIC-WG34, is

based on TLS 1.3.

In summary, TLS 1.3 is standardised in RFC 8446 and is used in the wild. However, its

ecosystem is constantly developed and improved as the list of RFC’s and drafts above shows.

TLS 1.3 is also a very important foundation for other protocols on the application layer, such

as HTTP or DNS, but also on the transport layer as in QUIC. TLS 1.3 is a solid ground to

build the future of secure transport communication protocols.

29https://datatracker.ietf.org/doc/draft-ietf-tls-exported-authenticator/ visited 2020-12-15
30https://datatracker.ietf.org/doc/rfc8701/ visited 2020-12-15
31https://datatracker.ietf.org/doc/draft-ietf-tls-subcerts/ visited 2020-12-15
32https://datatracker.ietf.org/doc/draft-ietf-tls-external-psk-importer/ visited 2020-12-15
33https://datatracker.ietf.org/doc/draft-ietf-tls-oldversions-deprecate/ visited 2020-12-15
34https://datatracker.ietf.org/wg/quic/about/ visited 2020-12-15
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A. List of Abbreviations

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

CA Certificate Authority

DHE Ephemeral Diffie-Hellman

DSA Digital Signature Algorithm

EAP Extensible Authentication Protocol

EAP-PEAP EAP with Protected Extensible Authentication Protocol

EAP-TLS EAP with Transport Layer Security

EAP-TTLS EAP with Tunneled Transport Layer Security

ECDHE Elliptic Curve DHE

ECDSA Elliptic Curve DSA

EdDSA Edwards-curve DSA

GCM Galois/Counter Mode

HKDF HMAC-based Extract-and-Expand Key Derivation Function (RFC 5869)

HMAC Keyed-Hash Message Authentication Code

HRR Hello Retry Request is a TLS 1.3 message type

IETF Internet Engineering Task Force

IKE Internet Key Exchange

IKM Input Key Material

IP Internet Protocol

IPsec IP Security

IV Initialisation Vector

MAC Message Authentication Code

MSK Master Session Key

Nonce Number used only once

OKM Output Key Material

OSI Open Systems Interconnection Model

PKI Public Key Infrastructure
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PRF Pseudo-Random Function

PSK Pre-Shared Key

PT-TLS Posture Transport Protocol over TLS

RFC Request For Comment

RSA Rivest-Shamir-Adleman

RSA-PSS RSA Probabilistic Signature Scheme

RTT Round-Trip Time

SHA Secure Hash Algorithm

TCP Transmission Control Protocol

TLS Transport Layer Security
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C. Compile Instructions

In this bachelor thesis we worked with the code base of the official strongSwan GitHub

repository. Initially we created a fork in my GitHub name space and followed the official

compile instructions of the strongSwan wiki.

C.1. Compile and Unit Tests

On our Ubuntu 20.04.1 LTS machine the following additional packages had to be installed

in order to compile the project:

• autoconf

• autogen

• build-essential

• libtool

• gperf

• libssl-dev

• lcov

1 $ sudo apt install autoconf autogen build-essential libtool gperf libssl-dev

Listing 40: Installation of required packages.

The following steps clone the project source code, build it and run all unit tests.
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$ git clone https://github.com/ryru/strongswan.git

$ mkdir build

$ cd strongswan/

$ git checkout tls13

$ ./autogen.sh

$ cd ../build/

$ ../strongswan/configure --prefix=/usr --sysconfdir=/etc --disable-defaults “

--enable-silent-rules --enable-leak-detective --enable-scripts --enable-openssl “

--enable-wolfssl --enable-botan --enable-x509 --enable-pkcs1 --enable-pkcs8 “

--enable-pem --enable-eap-tls

$ make -j

$ sudo make install

$ make check

Listing 41: Building steps to compile the project.

The above procedure is slightly different than described in the strongSwan wiki. We built

the project in a separate build directory outside of the project source code to keep generated

object and binary files outside of the source tree.

The used configure flags are an absolute minimum configuration to develop and run all

the relevant components in this thesis. A short description based on ./configure --help

follows:

• --prefix=/usr Install architecture-independent files in /usr. This is relevant in com-

bination with sudo make install.

• --sysconfdir=/etc Read-only single-machine data shall be stored under /usr/etc.

This is relevant in combination with sudo make install.

• --disable-defaults Disable all default plug-ins. This allows faster initial compile

time and a smaller binary footprint.

• --enable-silent-rules Less verbose build output which is a personal preference.

• --enable-leak-detective Enable malloc hooks to find memory leaks.

• --enable-scripts Enable additional utilities. This is relevant for the tls test ap-

plication.

• --enable-openssl Enables the OpenSSL crypto plug-in which is used for its crypto-

graphic primitives.

• --enable-wolfssl Enable WolfSSL as crypto backend. This flag is not required for

a minimal setup and requires libwolfssl-dev installed on your system.

• --enable-botan Enable Botan as crypto backend. This flag is not required for a

minimal setup and requires libbotan-2-dev installed on your system.

• --enable-x509 Enable support for X.509 encoded certificates. This flag is not required

for a minimal setup and only is required when OpenSSL is not used.

• --enable-pkcs1 Enable support for PKCS1 encoding. This flag is not required for a

minimal setup and only is required when OpenSSL is not used.
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• --enable-pem Enable PEM decoding plug-in, which is used to handle certificates in

the PEM format.

• --enable-eap-tls Enable EAP TLS authentication module, this is used to build the

TLS library (libtls) itself.

• --enable-coverage Used to generate local coverage reports. Requires lcov.

To use all cores on my Lenovo ThinkPad T470 I use the -j flag while building with make.

This reduces compilation from one minute in single job mode to about 23 seconds in multi

jobs mode.

For a minimal setup with OpenSSL as cryptographic back-end, it is not required to install the

project via sudo make install. This is only required if other back-ends such as “Botan”

or “WoflSSL” are used. Because both do not ship with X.509 support, strongSwan’s own

implementation x509 is needed which has to be installed before it can be referenced.

To easily switch between cryptographic back-ends one can use the environment variable

PLUGINS with tls test:

• export PLUGINS=”pem openssl” this is the default when using a minimal setup.

• export PLUGINS=”pem x509 pkcs1 wolfssl” to use WolfSSL

• export PLUGINS=”pem x509 pkcs1 botan” to use Botan

To test more specifically make check can be parametrised as described in the official Wiki.

We used combinations of the following flags:

• TESTS RUNNERS=libtls only run the “libtls” test runner with all its test suites.

• TESTS SUITES=’HKDF TLS 1.3’ only run the test suite “HKDF TLS 1.3” which is

within the libtls test runner.

• TESTS CASES=’TLS 1.2/anon’ only run the test case “TLS 1.2/anon” which is part

of the “socket” test suite within the “libtls” test runner.

• LEAK DETECTIVE DISABLE=1 deactivates the memory leak detection mechanism for

faster test execution time and fewer output to the console.

• TESTS VERBOSITY=-1 specify how detailed the output to “STDOUT” is. This is a

very important debugging flag with these possible values:

– -1 absolutely silent no output to “STDOUT”. This also represents the default

value when this flag is not specified.

– 0 very basic auditing logs.

– 1 generic control flow with errors.

– 2 more detailed debugging control flow.

– 3 including raw data dumps in hex.

– 4 also include sensitive material in dumps, e.g. keys.
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C.1.1. Code Coverage

To render code coverage results loyally, one follows these steps in the build directory:

../workspace/configure --prefix=/usr --sysconfdir=/etc --enable-silent-rules

--enable-scripts --enable-pem --enable-eap-tls --enable-x509 --enable-pkcs1

--enable-openssl --enable-coverage

↪→

↪→

make clean

make coverage

Listing 42: Generate code coverage report.

The output is generated in the new directories coverage/html.
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D. Source Code

D.1. Code-Repository

The complete source code of this implementation can be found online here:

https://github.com/ryru/strongswan/

Interesting branches are:

• tls13: the final code
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E. OpenSSL Commands

$ openssl version

OpenSSL 1.1.1f 31 Mar 2020

Listing 43: OpenSSL version used in this chapter.

E.1. Handshake TLS 1.3 client to TLS 1.3 server

$ openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys -keyform

der -key caKey.der -certform der -cert cert.der↪→

Listing 44: TLS 1.3 server.

$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der↪→

Listing 45: TLS 1.3 client.

E.2. Handshake TLS 1.2 client to TLS 1.3 server

$ openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys -keyform

der -key caKey.der -certform der -cert cert.der↪→

Listing 46: TLS 1.3 server.

$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der -tls1˙2↪→

Listing 47: TLS 1.2 client.
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E.3. Handshake TLS 1.3 client to TLS 1.2 server

$ openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys -keyform

der -key caKey.der -certform der -cert cert.der -tls1˙2↪→

Listing 48: TLS 1.2 server.

$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der↪→

Listing 49: TLS 1.3 client.

E.4. KeyUpdate messages

The commands are the same as in section E.1. Once the connection is established the two

interactive commands k and K are used:

• k Send a key update message to the client.

• K Send a key update message to the client and request one back.

E.5. HelloRetryRequest

$ openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys -keyform

der -key caKey.der -certform der -cert cert.der --curves secp521r1↪→

Listing 50: TLS 1.3 server expects secp521r1 key share DH group.

$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der↪→

Listing 51: TLS 1.3 client by default sends x25519 key share DH group.
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E.6. Mutual authentication

$ openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der --verify 3↪→

Listing 52: TLS 1.3 server expects client to authenticate itself.

$ openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys

--keyform der --key caKey.der --certform der --cert cert.der↪→

Listing 53: TLS 1.3 client authenticates itself with the key material.

E.7. PSK session resumption

openssl s˙server -accept localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys -keyform

der -key caKey.der -certform der -cert cert.der↪→

Listing 54: Starts an OpenSSL server instance.

The file client.session needs to exist.

openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys --keyform

der --key caKey.der --certform der --cert cert.der -sess˙out client.session↪→

Listing 55: Starts an OpenSSL client instance and writes session ticket into client.session

file.

openssl s˙client -connect localhost:8443 -debug -keylogfile ˜/tls13-secrets.keys --keyform

der --key caKey.der --certform der --cert cert.der -sess˙out client.session -sess˙in

client.session -psk˙session client.session

↪→

↪→

Listing 56: Starts an OpenSSL client instance and reads session ticket from client.session

file.
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-----BEGIN SSL SESSION PARAMETERS-----

MIIEaQIBAQICAwQEAhMCBCCGBJgwqsovf3gvDBtnBliLkZDqOBBf+ur634b3I8mx

3QQwr/y+PLB3u0dnWtm+AgL4fGRyjZrrcdszr9zGJWuZJlMp+rIkEp1ezRhZ8zkQ

KEmMoQYCBF+1JKeiBAICHCCjggMKMIIDBjCCAe6gAwIBAgIIA4zomyXxsXswDQYJ

KoZIhvcNAQELBQAwNjELMAkGA1UEBhMCQ0gxEzARBgNVBAoTCnN0cm9uZ1N3YW4x

EjAQBgNVBAMTCWxvY2FsaG9zdDAeFw0yMDA5MTEwODQxMjNaFw0yMzA5MTEwODQx

MjNaMDYxCzAJBgNVBAYTAkNIMRMwEQYDVQQKEwpzdHJvbmdTd2FuMRIwEAYDVQQD

Ewlsb2NhbGhvc3QwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCxgIvf

Fb+IhtpKpbI+tfAbAyazNbZP8yH3jjzawxkCK40d89HtboJRLsZvztVmH9hy8j3A

vorDT0Rj2PPJT9M3iLRHBj216C4MsxZ4Hq90mVLQpvlbrKDxQyyPbk/Q/MdtpeSC

GD/7w3GBtSyoQcuReEJ32dQ4a6iMJ138Ai01bIlWBFfvDYzDM8TM0fL45gdN9RHL

YiEovj9BZ3tgb+85yWdYWiOtyvsbMXj/23cIV9kS+GnxhUw/PnMeDQPGheo7fnoL

5P1WMQh1vfoQH91xEo9XBQoKAf96hoG0A3fjD3P7Ab7xLvSqyNxjPRLmMmXp1IYU

0cILbSCcsqKn3dUjAgMBAAGjGDAWMBQGA1UdEQQNMAuCCWxvY2FsaG9zdDANBgkq

hkiG9w0BAQsFAAOCAQEAiFqVRHMkdRwTz07ilxBFkMhqniEifGMVnVLCj/4uoF1o

ns6dgi7wjwiDNwrgUCXE3wB3SHSDAmuUzfrq/g+WWOMkBfRa+cb2JBUfsOE6CiF4

giDC8JcDdqeFVaKGbYVwgNTntSh0Q/cbHFXNrCf11dQLInTEmdLeuvWml517vDXh

oUuw25xIcM69NBvIe5IiSnTxF21dNEhaxyynb0nXhIUeL+kYrecoCjm1wzh0BWzW

pU6tQdCBaPYv7O9YuQww1lU7rT43LBCz3Aeb8WmMm6vwJSWovrD/nLeLicBsEmV0

rNomxIkR1FnNFQaBjk0F4gcJON0g3RfglPNnGs/nIaQCBAClAwIBEqkEAgIcIKqB

0wSB0Mv1R8thifw0Vn8BGFJ/wM9CqNgcWgck3C6yoVs0lVMG8j5+01tCs3W+PAZe

o8pNmLx2m2TiNZ0CxpFAvTjdJ4m0R1I//oo1/Ugbv3TWvGVNJ8lOrzqhOoupJKET

Y2GYfuuEEHyg7OPLwl1OWLg0YJnDv+0/W1YnNig9RxokfECp3M3Qj+pvhJH290Qq

4pLwOfaJy1mo5kPXJJt3GMkyebsqQ++wksSzSkBJeARYtmuSH+eMD6Qt4+rXzoWA

DIvuLfWqpnmASFM9+/rNHY7wXmGuBwIFALwg4Es=

-----END SSL SESSION PARAMETERS-----

Listing 57: Content of the session ticket in file client.session.
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F. Key material

This chapter describes how key material used mainly for testing purpose was generated.

Additionally, the concrete private key and X.509 certificate used during this thesis is included

due to traceability and reproduction purpose.

pki --gen --type rsa

pki --self --in rsa.key --dn ”C=CH, O=strongSwan, CN=localhost”

Listing 58: Key generation using strongSwan’s pki tool.

$ openssl rsa -inform der -in caKey.der

writing RSA key

-----BEGIN RSA PRIVATE KEY-----

MIIEowIBAAKCAQEAsYCL3xW/iIbaSqWyPrXwGwMmszW2T/Mh94482sMZAiuNHfPR

7W6CUS7Gb87VZh/YcvI9wL6Kw09EY9jzyU/TN4i0RwY9teguDLMWeB6vdJlS0Kb5

W6yg8UMsj25P0PzHbaXkghg/+8NxgbUsqEHLkXhCd9nUOGuojCdd/AItNWyJVgRX

7w2MwzPEzNHy+OYHTfURy2IhKL4/QWd7YG/vOclnWFojrcr7GzF4/9t3CFfZEvhp

8YVMPz5zHg0DxoXqO356C+T9VjEIdb36EB/dcRKPVwUKCgH/eoaBtAN34w9z+wG+

8S70qsjcYz0S5jJl6dSGFNHCC20gnLKip93VIwIDAQABAoIBAQCBCOulXs//1dh2

j4HGKMjFOkM14AQKlrrIlbQTa+SQOUy6y3Z+XemKTrCeswNa3CejWAogRePmG4eh

9iMy4z6ujkhPoW/W/1QKk13wMI5n+tXDLL71L8dH3AdWtWB8kmX/hataD3rj8K5h

Fm3CWyI7O+tF6SpnYYwDZtLh0ks/G9Ij2prdZzM96yMpCKVtjOdFAQkeb/0zKC9F

6JOlpp4FbeD70okDIfuOa4iZ/4H2Gq6zjBkEGArwuEVq8hPHxjhELy60VzBZDdMs

OnjcOKa4LmEL3VIkkCO8mHjOw7GwMLwc+rL+KYsiFd6vTbEEHgDPPHG+XoDLp0hX

3Jhwsu7hAoGBAOwsMDNezfCarwrEkk3aP8T/tIdN0/qs85lNhLcvYYsEu8/Ajzjd

c4mi6pKRal00z49/bxtQdQfyI6SeeOZ6/R2t6ZVKSwWOcDFMBnYLEJaV8eznAV9k

Uc494P3f1M7khKe1E95mlwJlu3EcXaljIq8o0L3HAOwcKaamA/ua1rx5AoGBAMBn

aiohWghv7dXl1p0k/8EN3cQr5R2UO7EV/HxkEehL0L3Pa7epJ0A0SWYNaz58XIhj

5vOwQ70PIc1UxtXk2/fsz+kL+xKMn5PuOXBcL9AnIkLt481e7f7lFJCnZcc0SOWV

XYamfUmL8ZzmPDsQsvE+A9o27Hhh+YcOzcYR6797AoGAHLBNdqAIkjaoFr3EK/Lc

Fjkdm+YHXwcNXEz/VyVJSxLbIaR5gWXdOBXzOrSxX/sfT4YiYAYJAVsXm1Koyw6b

mrRakIkCzfz8gfCDRGmZrUEvryBsmULdcRkxMIW1GyDFQH4NmNGLfH4RI+9XLVFe

kDp8COGYqhXNtXGrQDAR77kCgYBPsIWAPaAUrodLeI6TN6fWRe/8OFIFFkhC6GBT

BP+FvyEN/MMYpq7jIMTlx9kLYGbS9s3JUNA9le7iJKLWJJwW67aRR60N2cCefKS9

rPEAvbSrE+yuOwtH74m9ABhfkYA/1sWN55csxxGjcpivvhLfaFggIW9/zNSU48TG

rNV/0QKBgBvgExpW2wOVoId7JpQabIq1tUfKDwDEZvdOEJQAv4ZVKS2BQ4+3nms2

Yq4N7h/c/85l0W0DvrY/j0TgbQ9nTCNNVPMoOoh78HJECUxvHqWcjrR08A+Vc9Qo

j98yP0UCUXUYU3a6j0GgzmSWWTMa89kXif1ftfhzoP/rgixuUA2v

-----END RSA PRIVATE KEY-----

Listing 59: RSA private key used during this bachelor thesis.
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$ openssl x509 -inform der -in cert.der

-----BEGIN CERTIFICATE-----

MIIDBjCCAe6gAwIBAgIIA4zomyXxsXswDQYJKoZIhvcNAQELBQAwNjELMAkGA1UE

BhMCQ0gxEzARBgNVBAoTCnN0cm9uZ1N3YW4xEjAQBgNVBAMTCWxvY2FsaG9zdDAe

Fw0yMDA5MTEwODQxMjNaFw0yMzA5MTEwODQxMjNaMDYxCzAJBgNVBAYTAkNIMRMw

EQYDVQQKEwpzdHJvbmdTd2FuMRIwEAYDVQQDEwlsb2NhbGhvc3QwggEiMA0GCSqG

SIb3DQEBAQUAA4IBDwAwggEKAoIBAQCxgIvfFb+IhtpKpbI+tfAbAyazNbZP8yH3

jjzawxkCK40d89HtboJRLsZvztVmH9hy8j3AvorDT0Rj2PPJT9M3iLRHBj216C4M

sxZ4Hq90mVLQpvlbrKDxQyyPbk/Q/MdtpeSCGD/7w3GBtSyoQcuReEJ32dQ4a6iM

J138Ai01bIlWBFfvDYzDM8TM0fL45gdN9RHLYiEovj9BZ3tgb+85yWdYWiOtyvsb

MXj/23cIV9kS+GnxhUw/PnMeDQPGheo7fnoL5P1WMQh1vfoQH91xEo9XBQoKAf96

hoG0A3fjD3P7Ab7xLvSqyNxjPRLmMmXp1IYU0cILbSCcsqKn3dUjAgMBAAGjGDAW

MBQGA1UdEQQNMAuCCWxvY2FsaG9zdDANBgkqhkiG9w0BAQsFAAOCAQEAiFqVRHMk

dRwTz07ilxBFkMhqniEifGMVnVLCj/4uoF1ons6dgi7wjwiDNwrgUCXE3wB3SHSD

AmuUzfrq/g+WWOMkBfRa+cb2JBUfsOE6CiF4giDC8JcDdqeFVaKGbYVwgNTntSh0

Q/cbHFXNrCf11dQLInTEmdLeuvWml517vDXhoUuw25xIcM69NBvIe5IiSnTxF21d

NEhaxyynb0nXhIUeL+kYrecoCjm1wzh0BWzWpU6tQdCBaPYv7O9YuQww1lU7rT43

LBCz3Aeb8WmMm6vwJSWovrD/nLeLicBsEmV0rNomxIkR1FnNFQaBjk0F4gcJON0g

3RfglPNnGs/nIQ==

-----END CERTIFICATE-----

Listing 60: Corresponding X.509 certificate.
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