

SR-App Analytics

Department of Computer Science

OST – University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2020

Author(s): Michel Bongard, Dominique Illi

Advisor: Prof. Laurent Metzger

Project Partner: Cisco Systems Belgium

External Co-Examiner: Laurent Billas

Internal Co-Examiner: Prof. Frank Koch

Project Thesis: SR-App Analytics

1

SR-App Analytics

A – Content

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

Project Thesis: SR-App Analytics

2

A – Content ... 1

B – Abstract .. 3

C – Management Summary .. 7

D – Technical Report ... 11

E – Attachments ... 62

E-1 – Requirement Analysis .. 63

E-2 – Project Plan ... 82

E-3 – Software Architecture Document .. 96

Project Thesis: SR-App Analytics

3

SR-App Analytics

B – Abstract

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

4

Abstract

SR-App Analytics

Author(s) Michel Bongard, Dominique Illi

Advisor Prof. Laurent Metzger

External Co-Examiner Laurent Billas

Topic Software Engineering, Segment Routing

Project Partner Cisco Systems Belgium

5

Initial Situation:

With the emergence of the segment routing technology and the development of the "Jalapeño" data

collection framework by Cisco, there are many opportunities for application development that offer a

benefit to network engineers and network operators. By using the network data provided by the

framework, a variety of different features and use cases may be implemented. The field of application

of those so-called SR-Apps is huge and can be anything from basic monitoring functionality to in depth

analytics of load distribution and simulation of network changes.

This thesis focuses on the development of an application in the field of analytics to provide information

about the general network health state and link saturation in case of topology changes.

Approach / Technology:

It was decided to build the application using a monolithic architecture with ASP.Net Core, because this

is what the development team is most familiar with. The programming languages chosen are C# for

the backend and JavaScript for client-side functionality, along with HTML and SCSS for markup and

styling.

For the client-server communication the web socket library SignalR (C#) was chosen.

To be able to display a map of a network in the web browser a graph visualization library was required.

Different such libraries and toolkits were considered and compared before the library vis.js was

chosen. It offers many features, its documentation is clear and easy to use and the community seems

quite active.

After having implemented a rudimentary UI prototype that was capable of displaying the topology, the

focus was switched to the business logic.

In order to calculate of the link saturation in case of topology changes, the traffic between any two

routers had to be redistributed on the network. This is possible thanks to the traffic matrix provided by

the SR protocol. The traffic matrix contains information on how much traffic flows between any two SR

routers.

Since traffic in a SR network flows along the shortest paths, the Dijkstra algorithm was implemented to

calculate them. Afterwards, a custom algorithm was implemented to redistribute the traffic along those

paths and with that, calculate the saturation of each link in the topology.

The final step, now that the core business logic was implemented, was to improve the UI and adding

some additional features.

Result:

The application built during this thesis covers all requested features and use cases. It is scalable for

topologies consisting of up to one thousand routers. The response time for a topology change (until

the UI displays the updated topology with the recalculated link saturation) is less than six seconds with

the hardware at hand (Quad Core Multithreaded CPU at 4GHz on the server). A sample network is

shown in Figure 1.

6

Figure 1: Sample network

Source: own creation

Project Thesis: SR-App Analytics

7

SR-App Analytics

C – Management Summary

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

8

Management Summary

SR-App Analytics

Author(s) Michel Bongard, Dominique Illi

Advisor Prof. Laurent Metzger

External Co-Examiner Laurent Billas

Topic Software Engineering, Segment Routing

Project Partner Cisco Systems Belgium

9

Initial Situation:

Network infrastructures of service providers and big companies consist of thousands of devices which are

strongly interconnected. This results in highly complex network designs with the need of knowing exactly

how the health state of the network looks like. In this thesis a software was developed that shows crucial

information about those connections through a visual web interface and that allows the network operators

to simulate the consequences of device and connection failures.

Approach / Technology:

The software consists of three components, the frontend, the backend and the database. The backend

and the database can run on private servers or in the cloud, while the frontend runs in the browser of the

user.

The user can interact with the application using a web browser. He or she can view the devices and

connections to get detailed information about their health state. The user can also simulate certain events

through the browser, such as the loss of a connection or the adding of a new one. The quality of

connections is displayed using different colors allowing an operator to quickly gain an overview of the

health state of the connections.

To be able to react to changes in the network (such as a lost connection) and accurately predict the

behavior of the changed network, certain algorithms were implemented. The results are shown in the

user's browser. The calculations are all made on the server which provides much more resources to

handle multiple requests from different users.

Result:

The application built during this thesis covers all requested features and use cases. It is scalable for

networks consisting of up to one thousand routers. A user of the application can see all devices and

connections such as their current health state and simulate changes in the network (see Figure 1).

10

Figure 1: Sample network

Source: own creation

Project Thesis: SR-App Analytics

11

SR-App Analytics

D – Technical Report

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

12

1 Content
1 Content ... 12

2 Introduction .. 14

2.1 Overview ... 14

2.2 Starting position and motivation .. 14

2.3 Problem Definition .. 14

3 Client-server communication .. 16

3.1 REST vs WebSocket ... 16

3.2 ASP.NET Core SignalR .. 16

4 Network Visualization Toolkit ... 17

4.1 NeXt UI .. 17

4.2 Vis.js .. 18

4.3 Comparison – NeXt UI vs. Vis.js .. 19

4.4 Testing UI scalability of vis.js... 20

5 Issues with Vis.js ... 23

5.1 Updating the Map ... 23

5.2 Multiple edges between two nodes ... 23

6 Clustering .. 25

6.1 Requirements of clustering ... 25

6.2 Approach ... 26

6.2.1 Step 1 – Assign grades to links .. 28

6.2.2 Step 2 – Assign grades to routers ... 28

6.2.3 Step 3 – Cluster Factory .. 29

6.3 Disjointed networks .. 31

7 Regions .. 33

8 Calculation of Shortest Paths .. 36

8.1 ArangoDB .. 36

8.1.1 Shortest-Path .. 36

8.1.2 K-shortest-paths .. 36

8.1.3 Time Complexity of K-Shortest-Paths ... 37

8.1.4 Performance Analysis .. 37

8.1.5 Why does k-shortest-paths perform so poorly? ... 38

8.2 C# Implementation ... 38

8.2.1 Time Complexity ... 38

8.2.2 Approach ... 39

13

8.2.3 Space Complexity .. 40

8.2.4 Shortest Path reconstruction .. 41

8.2.5 Priority Queue ... 42

8.2.6 Performance Analysis .. 42

8.2.7 Estimating the duration for any N number of nodes .. 43

8.2.8 Conclusion ... 44

9 Managing space requirements ... 45

9.1 Why is it necessary to store anything? ... 45

9.2 Storing parent lists .. 45

9.3 Storing path identifiers on links .. 46

9.3.1 Estimating kaverage ... 47

9.4 Space requirements depending on network size ... 48

9.5 Estimating space requirements for larger networks .. 49

9.6 Conclusion ... 50

10 Results ... 51

10.1 Feature coverage .. 51

10.2 Use Case Coverage .. 51

10.3 Non-functional requirements ... 52

11 Conclusion ... 54

11.1 Outlook ... 57

11.1.1 Support Layer 3 EtherChannel .. 57

11.1.2 Allow the user to adjust the link grading dynamically .. 57

11.1.3 Interface providing region data .. 57

12 Glossary ... 58

13 Illustration index ... 59

14 Sources .. 60

14

2 Introduction

2.1 Overview

This document presents the outcome of the thesis SR-App Analytics.

Chapters 4 to 9 discuss the key findings, such as the handling of the network visualization and

approaches to the implementation of algorithms and their time and space complexity.

Chapters 10 and 11 show the results of this thesis.

2.2 Starting position and motivation

With the emergence of the segment routing technology and the development of the "Jalapeño" data

collection framework by Cisco, there are many opportunities for application development that offer

a benefit to network engineers and network operators. By using the network data provided by the

framework, a variety of different features and use cases may be implemented. The field of

application of those so-called SR-Apps is huge and can be anything from basic monitoring

functionality to in depth analytics of load distribution and simulation of network changes.

Segment-routing is a new way of routing packets. Unlike other routing protocols segment-routing

performs source-based routing. This simplifies traffic engineering and management across network

domains. The destination of a packet is known at the ingress router and stored in the packet header.

"Jalapeño" is an application collecting data from a SR topology. The data collected reaches from link

metrics like bandwidth, delay and packet loss to specific SR metrics displaying the amount of traffic

sent between different SR enabled routers. All the data is made accessible in a graph database

(ArangoDB) and queried by SR-Apps.

2.3 Problem Definition

During this thesis, a software application is to be developed providing monitoring and analytics

functionality for a SR network. The application is to be able to show the health state of links and

simulate effects of network changes in the topology. The health state of links shall be indicated by

some sort of grading logic dividing the links in “Good”, “Moderate” and “Critical” links.

Further, the usage of links must be shown by counting the number of paths a link is used in. To

simulate network traffic, an algorithm must be designed which can calculate the bandwidth

utilization of each link upon network modifications such as the adding or removing of nodes and

links. The results must be visualized allowing a quick identification of problem spots in the network.

Meeting these requirements presents the following main tasks and problems.

1. Find a suitable framework to visualize a network topology that can provide good

performance and a high degree of customization.

2. Group nodes and links belonging to the same region to reduce the flood of information for

the user.

3. Plan a software architecture which can handle thousands of nodes and is easily expandable

and scalable.

4. Decide on a client-server communication model that is able to handle high traffic loads and

that allows the pushing of data from the server to the client.

5. Define some sort of logic and metrics to grade links.

15

6. Implement an algorithm that can calculate the shortest paths between nodes providing high

performance.

7. Implement an algorithm that can calculate the link saturation upon network changes.

The solutions to those problems and problems evolved during the project and are discussed and

described in detail in Chapters 4 to 9.

16

3 Client-server communication
The SR-App is to be configured to poll new data from the database at certain intervals. To be able to

inform the connected clients that new data is available, the server must be able to send messages to

clients.

A simple REST API is therefore not sufficient for this application. To cover all use cases bidirectional

communication is required, which is possible using web sockets.

3.1 REST vs WebSocket

REST is used for calls to an API with the client being the active part. The client initiates a call to the

API (through a HTTP request) and waits for a response from the server.

Web sockets are used for bidirectional communication. Both the server and the client can invoke

functions on their counterpart. This allows the server to push messages to a client.

3.2 ASP.NET Core SignalR

For this application, the WebSocket library SignalR is chosen, which provides the required

functionality.

“ASP.NET Core SignalR is an open-source library that simplifies adding real-time web

functionality to apps. Real-time web functionality enables server-side code to push content to

clients instantly.”

- Cited from Microsoft Documentation [1]

17

4 Network Visualization Toolkit
To be able to display a map of a network in the web browser a graph visualization library is required.

Elise Devaux compiled a large list of such libraries in a post on Medium [2]. From a cursory glance at

each of these libraries, vis.js [3] seems to be the most promising one, due to its open-source nature

and active community, as well as its comprehensive set of features.

Not listed in Elise Devaux’ post is the toolkit called “NeXt UI” [4], probably because it does not

appear to still be actively maintained. But because Cisco is listed as one of the companies using the

NeXt UI framework as their topology visualization tool [5] (Cisco actually developed NeXt UI itself

[6]) and because Cisco is a major Stakeholder in this project, this toolkit is also taken into

consideration.

This chapter compares the two libraries vis.js and NeXt UI in more detail.

4.1 NeXt UI

Setting up a working example of NeXt UI is easy, thanks to the tutorials from Alexei Zverev [7], who

used to work on the team that developed NeXt UI. Figure 1 shows what the graph looks like when

some sample data is added.

Figure 1: Prototype for graph visualization with NeXt UI

Source: own creation

The graph looks very good with default configurations and the popup windows to show detailed

information on nodes and links (displayed in Figure 2) are very useful and also preconfigured.

The library offers useful features such as layering, path drawing and grouping (see the tutorials page

[7]).

18

Figure 2: Popup window in NeXt UI

Source: own creation

Unfortunately, according to Alexei Zverev the NeXt UI is no longer under active development since

25.11.2019. Also, at a first glance, the NeXt UI community does not appear to be very active.

4.2 Vis.js

While NeXt UI offers functionality for only network graphs, vis.js supports network graphs, charts,

timelines, 3D-graphs and more. Its community seems to be very active, the documentation [8] is

clear and easy to understand and the library is still actively maintained (almost daily push to GitHub

repository for vis-network [9] alone).

Setting up a working example for vis.js is easy by using the example on the GitHub page [9]. Figure 3

shows what the graph looks like, when populated with the same data as was the prototype for NeXt

UI in Chapter 4.1.

19

Figure 3: Prototype for graph visualization with vis.js

Source: own creation

It does not look quite as good as the default implementation of NeXt UI and there is no handy popup

window to show detailed information on nodes or links, but this can be configured and implemented

manually.

4.3 Comparison – NeXt UI vs. Vis.js

Table 1 summarizes the differences between NeXt UI and vis.js.

 NeXt UI vis.js

Can display network graphs Yes Yes

Open source Yes Yes

Actively maintained No Yes

Documentation Detailed [10] Detailed and easy to use [8]

Community Not very active Quite active

Table 1: Comparison: NeXt UI vs. vis.js

The two libraries are actually very similar in how they are used and what they can do, though vis.js

supports a larger variety of graphs. However, mainly because NeXt UI is no longer actively

maintained, vis.js will be used for graph visualization for this project.

20

4.4 Testing UI scalability of vis.js

To test how well vis.js handles very large maps, different sets of random sample data is generated.

Vis.js has support for physics implemented [11], which handles the stabilization of the map, meaning

it moves the nodes and edges around to show them more clearly. This calculation is done on the

client side and can take long times for large maps. Vis.js allows physics to be disabled.

Each set of sample data is therefore tested with and without physics enabled. Each time

measurement is repeated three times and then averaged. The results are shown in Table 2.

Test Parameters File size Load time with

Physics enabled

Load time with

Physics disabled

Comments

#1 100 Nodes

150 Links

9KB 1,4 sec 0,8 sec

#2 200 Nodes

300 Links

18KB 5,2 sec 0,8 sec

#3 500 Nodes

750 Links

42KB 22,0 sec 1,0 sec

#4 1000 Nodes

1500 Links

84KB 33,8 sec 1,5 sec For test with larger

data sets, physics is no

longer enabled, since it

would take

impractically long.

#5 10’000 Nodes

15’000 Links

0,9MB - 6,0 sec Interactions (zooming

in & out and on click

behavior) are very

responsive. Barley any

delay is noticeable.

#6 100’000 Nodes

150’000 Links

9,5MB - 83,0 sec Interactions are very

sluggish; it takes about

2 seconds for the UI to

respond to each

interaction.

Table 2: Testing of vis.js scaling

These tests show that, for an acceptable user experience the map should not exceed the parameters

of test #2 with physics enabled or the parameters of test #5 with physics disabled. This meets the

requirements of this project, since the number of nodes handled by SR-Apps does not exceed 10’000
nodes.

The longer load times for maps with 100’000 nodes and upwards can technically be rendered by

vis.js and may still be acceptable for certain use cases but should be avoided, since each interaction

becomes increasingly sluggish.

Such large maps are of limited use anyway, because there really cannot be any information gathered

from them. While for test #5 the individual nodes can just be seen (Figure 4), test #6 just shows a

blue circle (Figure 5), requiring the user to zoom in a lot before any nodes become visible.

21

Figure 4: Test #5

Source: own creation

Figure 5: Test #6

Source: own creation

22

23

5 Issues with Vis.js
During the course of this project, some issue with vis.js came up. The more noticeable ones are

described in this chapter.

5.1 Updating the Map

Vis.js offers methods that allow making changes to the map, such as updating nodes and edges or

moving nodes to a new position. While these are great for making small changes, it was discovered

that they run quite slow when making multiple changes at once, especially for large topologies.

These methods seem to have an O(N) runtime.

Because of that, in most cases it is orders of magnitude faster to simply redraw the entire map

instead of making incremental changes. For this reason, the entire map is redrawn to display

changes.

5.2 Multiple edges between two nodes

By default, vis.js shows multiple edges between two nodes only when physics is enabled. The

resulting graph is shown in Figure 6.

Figure 6: Two Edges, Physics enabled

Source: own creation

When physics are disabled however, vis.js overlaps the two edges, resulting in the graph in Figure 7.

Figure 7: Two Edges, Physics disabled

Source: own creation

Unfortunately, enabling physics is not an option for this project, since this feature becomes unusable

with networks that contain more than just a few hundred nodes (this is discussed in more detail in

Chapter 4.4).

24

In 2017, GitHub user wimrijnders has proposed a workaround for this problem Es ist eine ungültige

Quelle angegeben.. His suggestion is to use the roundness option on edges as shown in Figure 8 and

to use a different roundness for each edge, which is a way to manually curve individual edges.

Figure 8: Solution suggested by wimrijnders

Source: own creation

It is not a very neat solution, but it is the only way to show multiple edges between two nodes while

leaving physics disabled.

25

6 Clustering
The networks that will ultimately be handled by SR-Apps can grow quite large with up to a thousand

nodes. Displaying so many nodes in a single network map can be very overwhelming and confusing.

Some form of mechanism must exist to filter irrelevant data and to show only information that is of

interest to the user.

One way to do that is by clustering. Combining multiple nodes to larger clusters and omitting

unimportant links, the complexity of the network map can be greatly reduced while retaining

accuracy.

This chapter describes the multilevel clustering that was initially implemented for SR-Apps. The

clustering has been simplified for the current version of SR-Apps, allowing only one level of clusters

(regions) because it seemed to be sufficient for topologies up to one thousand nodes.

Multilevel clustering may need to be revisited though, if the application needs to be able to handle

even larger topologies.

Vis.js offers clustering natively, as can be gathered from their examples for vis-network [12] (see

Figure 9).

Figure 9: Vis.js clustering example

Source: visjs.github.io [13]

Unfortunately, the options for how the clusters are made are somewhat limited and not applicable

to the requirements of this project. For the SR-Apps, the links are much more important than the

nodes and vis.js clustering works by simply combining certain nodes (the links are secondary and

simply connect the clusters).

For that reason, the clustering has to be implemented from scratch, to give more control over how

nodes are combined, and which links remain visible.

6.1 Requirements of clustering

First the requirements of the clustering need to be defined. Table 3 describes the characteristics of

the resulting clustering.

26

Requirement Description

R1 There must be multiple levels of clusters, meaning the network map can for

example be:

 Level 0: Not clustered, to show all nodes & links

 Level 1: Clustered, to show only important and very important nodes & links

 Level 2: Strongly clustered, to show only very important nodes & links

R2 Which nodes & links are considered important or very important is entirely

based on the metrics of the links, because it is the links that are of importance to

the user. How the importance of a link is calculated depends on the use case.

R3 Each cluster-node is aware of which nodes are in its cluster and can display

detailed information on each of them if requested.

R4 The user can set the cluster level of the entire network map through a slider or

via buttons or something similar.

R5 By clicking on a cluster-node the user can reduce the cluster level of the nodes in

the selected cluster, essentially zooming into that cluster. All other clusters

remain at their original cluster level.

Table 3: Clustering requirements

6.2 Approach

For orientation purposes Figure 10 shows the architecture of a possible implementation of the

clustering described in this chapter and Figure 11 the accompanying sequence diagram.

27

Figure 10: Simplified package diagram - clustering

Source: own creation

28

Figure 11: Sequence diagram - clustering

Source: own creation

6.2.1 Step 1 – Assign grades to links

When a new ViewTopology is created, it is passed an algorithm that determines how the grades of

the links are calculated. A grade is a measure of how important the specific link is. The ViewTopology

first passes each link to the algorithm which calculates grade based on predefined logic.

Example:

• Grade 0, if bandwidth utilization is below 50%.

• Grade 1, if bandwidth utilization is between 50% and 80%.

• Grade 2, if bandwidth utilization is between 80% and 95%.

• Grade 3, if bandwidth utilization is above 100%.

6.2.2 Step 2 – Assign grades to routers

Each router is assigned a grade based on its links. A router receives the highest grade of all its

connected links.

Example:

As an example, consider Figure 12. Node 3 has three links, where:

• Link A is grade 1

• Link B is grade 3

• Link C is grade 1

 Therefore, Node 3 is considered to be of grade 3.

29

Figure 12: Example of router grade assignment

Source: own creation

6.2.3 Step 3 – Cluster Factory

Now that all grades have been calculated, the ViewTopology passes all its routers and links to the

ClusterFactory.

The ClusterFactory creates several ClusterGroups, one per grade (aka zoom level). Each

ClusterGroup takes the entire ViewTopology and creates all Clusters and ClusterLinks (links between

two clusters) for their grade.

The concept of clustering is best explained on an example.

Example of ClusterGroups:

To clarify the concept, consider the example in Figure 13. The user can adjust the grade of the map

through the slider. Figure 13 shows the map at grade 0, meaning it is not clustered. The entire

topology is shown.

30

Figure 13: Sample Topology – Grade 0

Source: own creation

Because the grade directly references the metric of the link quality, it can be color coded

accordingly. In this example, the links are color coded as follows:

• Grade 0: blue

• Grade 1: orange

• Grade 2: red

• Grade 3: black (no link of grade 3 exists in this topology)

If the user chooses to view the map at grade 1, as shown in Figure 14, ClusterGroup 1 is shown.

• ClusterGroup 1 shows only nodes and links that have a grade equal to or higher than 1.

• All routers with a grade lower than 1 were aggregated to its closest (number of hops)

neighbor.

• Multiple links between two clusters are aggregated to ClusterLinks.

• A ClusterLink receives the grade (and therefor the color) of its link with the highest grade.

31

Figure 14: Sample Topology – Grade 1

Source: own creation

If the user chooses to view the map at grade 2, ClusterGroup 2 would be used to show only nodes

and links with grade 2 or higher (see Figure 15).

Figure 15: Sample Topology – Grade 2

Source: own creation

6.3 Disjointed networks

At this point clustering is fully implemented. However, there is a small issue, which can be seen in

Figure 14 in Chapter 6.2.3. In most cases, the networks will appear disjointed, because they are

connected only by links of lower grades.

To remedy that, links of lower grades are displayed in the map as dashed lines. For Figure 14 it

would result in the new map shown in Figure 16.

32

Figure 16: Sample Topology – Grade 1 - as a single network

Source: own creation

33

7 Regions
Besides clustering, SR-Apps offers another way to minimize the overwhelming amount of

information of a full topology: Regions.

A user can choose to view only a specific region or even multiple regions and all their interregional

links. Unfortunately, vis.js does not offer support for grouping nodes by region on a map. This

means, that a map containing all nodes of the two regions “Zürich” and “Genf” (from a mocked and
completely randomized topology) would look like a complete mess (see Figure 17). Vis.js simply

places the nodes as best it can, without concern for region grouping.

Figure 17: Topology Genf - Zürich (ungrouped)

Source: own creation

Ideally, all nodes of one region would be on the left and all nodes of the other region would be on

the right. Such a feature has been discussed on GitHub before [14], and user Muntaner has even

implemented a solution for this and was kind enough to make it publicly available on GitHub [15].

Muntaners solution, implemented in JavaScript, looks like the map displayed in Figure 18.

34

Figure 18: Muntaners implementation of districts

Source: screenshot of Muntaners sample application [15]

Muntaners algorithm works by manually calculating the exact coordinates of each node, which can

then be passed to vis.js as shown in Figure 19.

Figure 19: Passing coordinates to vis.js

Source: own creation

The algorithm first spreads out the regions evenly on a circle around the center of the map. Then for

each district it spreads out all nodes from this district evenly on a circle around its center.

Arranging nodes in a circle is not always the best option, but it is a simple solution that is quick to

implement.

For a more evenly distributed calculation of the coordinates a closer look would have to be taken at

more complex algorithms. Vis.js for example uses the KamadaKawai algorithm to pre-calculate the

coordinates, as is evident from their implementation [16], which is a force-directed graph drawing

algorithm [17]. Such an algorithm would have to be implemented in C# and modified so regions may

be grouped together.

For this project however, the simpler approach of arranging the regions in circles is chosen. After

implementing Muntaners algorithm in C#, the resulting graph (Figure 20) looks already a lot better

than the original one from Figure 17. The C# implementation is a modified and improved version of

35

Muntaners algorithm. It dynamically matches the spacings between nodes and regions more evenly

for any size topologies, whereas before it used hardcoded values that would either result in regions

overlapping (for large topologies) or regions being too far apart (for small topologies).

Figure 20: Topology Genf - Zürich (grouped by regions)

Source: own creation

36

8 Calculation of Shortest Paths
To get the number of shortest paths going through a specific link, all shortest paths of the entire

network need to be calculated first.

ArangoDB [18] is specifically designed for graphs and provides its own query language, allowing the

user to directly query for shortest paths between two nodes. Since ArangoDB is optimized for graph

calculations, this seems to be the easiest and most promising approach.

8.1 ArangoDB

ArangoDB provides two methods to receive shortest paths. One is called shortest-path [19] and

returns exactly one shortest path between two nodes. The other one is called k-shortest-paths [20]

and returns all paths between two nodes, sorted in ascending order by their weight.

8.1.1 Shortest-Path

This method returns exactly one shortest path between two given nodes [19]. Figure 21 shows an

example of a query for shortest-path from node ‘1.1.1.1’ to node ’98.98.98.98’.

Figure 21: Example query shortest-path

Source: own creation

By default, the shortest path is found by using a depth-first search algorithm. Optionally, a breadth-

first search algorithm can be used instead. The website clicage.com provides an excellent PDF on

ArangoDB and its shortest path calculation which explains this in more detail [21]. Unfortunately, no

information regarding the time complexity about the algorithms was found. However, regardless of

how well it performs, this method is not an option for this project, because for the LQA use case the

software needs to be able to handle multiple equal cost paths.

8.1.2 K-shortest-paths

The second option to calculate shortest paths is by using the k-shortest-paths method [20]. This

method calculates all possible paths between two nodes. These paths are then returned in

ascending order of their weight. It is highly recommended to use the LIMIT option, to limit the

number of shortest paths returned, because otherwise it performs very poorly. If the option is set to

LIMIT 5 for example, the method will return only the five shortest paths between the two nodes.

Figure 22 shows an example of a query for k-shortest-paths from node ‘3.3.3.3’ to node ‘5.5.5.5’
with the limit set to 5.

37

Figure 22: Example query k-shortest-paths

Source: own creation

8.1.3 Time Complexity of K-Shortest-Paths

According to the GitHub page from ArangoDB [22] the k-shortest-paths method uses a slightly

modified version of the Yen’s k-shortest-paths algorithm. The Yen’s algorithm has the following time
complexity [23]:

 𝑂(𝑘𝑁 ∗ (𝑀 + 𝑁 ∗ log(𝑁)) (1)

• k = number of paths to return

• N = number of nodes

• M = number of edges

Since the number of equal cost shortest paths should generally be a rather small number in the

scope of this project, k can be assumed to be constant.

Also, because in a realistic network the average number of edges per node does not depend on the

size of the network, M can be expressed as c * N, where c is a constant. Therefore, the time

complexity of k-shortest-paths can be expressed as follows:

 𝑂(𝑁2 ∗ log(𝑁)) (2)

As a reminder, this is the time complexity for the calculation of all shortest paths from only one node

to one other. Because this project requires knowing all shortest paths from each node to each node,

the k-shortest-paths algorithm would have to be called N2 times, resulting in the following final time

complexity:

 𝑂(𝑁4 ∗ log(𝑁)) (3)

8.1.4 Performance Analysis

To see how the k-shortest-paths algorithm performs and how well it scales, a few test queries were

run, now shown in Table 4. As expected, with a time complexity of O(N4*log(N)), k-shortest-paths

does not scale well at all.

38

Number of

nodes

Number of

edges

K Duration for a single execution

of k-shortest-paths

Estimated duration for the

entire network (N2)

100 300 10 15ms 10'000 * 15ms = 2.5min

1’000 3000 10 80ms 1'000'000 * 80ms = 22.2h

Table 4: Performance of k-shortest-paths algorithm

Even though the server running ArangoDB only has two single threaded CPU cores running at 2.2GHz

each and has just 2GB of RAM, these results are very poor. Even with better hardware, anything

upwards of 1’000 Nodes would take too long to calculate.

8.1.5 Why does k-shortest-paths perform so poorly?

The reason why Yen’s k-shortest-paths algorithm performs so poorly for this use case is because it is

designed to find all possible paths and to do so in ascending order.

The first thing the Yen’s algorithm does is calculate Dijkstra for the start node. Dijkstra already
provides the necessary information to determine all shortest paths to all other nodes for this start

node. Yen’s algorithm however ignores most of that and only stores one shortest path to a single

target node.

Because SR-Apps requires to do this N2-times, it results in a lot of redundant calculation.

8.2 C# Implementation

To remedy the issues discussed in Chapter 8.1.5 a custom implementation of the shortest path

calculation is necessary. Using the fact that Dijkstra already provides the necessary information for

all equal cost shortest paths, the performance can be greatly increased.

8.2.1 Time Complexity

When implemented with a priority queue based on a Fibonacci heap, the Dijkstra algorithm has the

following time complexity:

 𝑂(𝑀 + 𝑁 ∗ log(𝑁)) (4)

As discussed in Chapter 8.1.2, M can be expressed as c * N, where c is a constant. Therefore, the

time complexity can be expressed as follows:

 𝑂(𝑁 ∗ log(𝑁)) (5)

The Dijkstra algorithm must be calculated N times to get all shortest paths of the entire network, so

the overall time complexity would be the following:

39

 𝑂(𝑁2 ∗ log(𝑁)) (6)

This will still not scale very well, but it is orders of magnitude better than the 𝑂(𝑁4 ∗ log(𝑁)) that

the solution with ArangoDB would result in.

Unfortunately, the solution with 𝑂(𝑁4 ∗ log(𝑁)) cannot be improved upon any further, for two

simple reasons.

1. The N2 is unavoidable, because to know N paths for N nodes, N2 steps are required just to

store all the paths, regardless of how efficient the calculation is.

2. The log(N) is also unavoidable. It comes from adding and removing from the heap-based

priority queue, which is the most efficient data structure for the Dijkstra algorithm.

8.2.2 Approach

The typical use of the Dijkstra algorithm is to get only one shortest path, as the pseudo code in

Figure 23 shows.

Figure 23: Pseudo code of the Dijkstra algorithm

Source: Wikipedia [24]

The code on line 18 checks if the new distance alt is smaller than the old distance dist[v] and

replaces it, if it is the case. To capture all shortest paths, one must simply handle the case that they

are equal, so if alt == dist[v].

If this pseudo code is implemented, the paths do not actually get stored, only the distances do. To be

able to recreate the shortest paths afterwards, each node must store its parent node. Figure 24

shows an example where Dijkstra has been calculated for node A. The shortest path to node E can

40

be reconstructed by starting at node E, and then going backwards up the tree, visiting each parent

until node A is reached.

Figure 24: Example - Shortest path from A to E

Source: own creation

How the shortest path reconstruction works is discussed in more detail in Chapter 8.2.4.

8.2.3 Space Complexity

Storing only the parent for each node instead of the entire path saves a huge amount of space. If

only the parent is stored for each node, the space complexity is as follows:

 𝑂(𝑁) (7)

Of course, this is only the space complexity for a single Dijkstra, so for the entire network the space

complexity will be the following:

 𝑂(𝑁2) (8)

If on the other hand the entire paths were stored, the space complexity would depend on how

balanced the resulting tree from the Dijkstra calculation is.

In the best case, when the starting node has a direct link to every other node, the space complexity

would still be O(N).

In the worst case, when the tree is completely unbalanced and basically just a long chain, the space

the paths would require would be as follows:

 1 + 2 + 3 + ⋯ + 𝑁 = 𝑛(𝑛 + 1)2
(9)

41

This means the space complexity for a single Dijkstra that stores all complete paths is O(N2). Doing

this for the entire network would result in the following time complexity:

 𝑂(𝑁3) (10)

Therefore, only the parents are stored for each node, which lowers the space complexity to O(N2).

How these memory requirements can be managed is discussed in Chapter 9.

8.2.4 Shortest Path reconstruction

To be able to reconstruct the shortest paths, a target router needs to know its parents through

which any given start router can reach it.

Figure 25: Example - Shortest path from A to E

Source: own creation

Consider the example in Figure 25. At this point Dijkstra has been calculated for start router “A” and
each router knows its parent router that leads back to “A”.
This information is stored in hash tables. Each router has a hash table, where the key is the start

router, and the value is the parent router (in other words the “previous hop router”). Figure 26

shows the implementation in C# using a dictionary. Every router has a “StartRouterToParentRouter”-

mapping.

Figure 26: C# Implementation of hash map for shortest path reconstruction

Source: own creation

42

To reconstruct the shortest path from the start router “A” to the target router “E”, the
reconstruction algorithm will begin at target router “E”. Router “E” can look up the desired start
router “A” in its hash table and will find that its parent router (previous hop) is router “C”. Router
“C” in turn can look up the start router “A” in its own hash table and find that its parent router is
router “B”. This process repeats until the start router “A” has been reached, at which point the
shortest path is reconstructed.

Because for this project multiple equal cost shortest paths are possible and all of them need to be

considered, there are multiple possible parent routers for each step. This means that the value of

the hash table is not a single parent router but rather a list of parent routers. Figure 27 shows the

updated implementation in C#.

Figure 27: Updated implementation to support multiple equal cost shortest paths

Source: own creation

8.2.5 Priority Queue

C# does not have a native implementation of a heap-based priority queue. However, there are

plenty of implementations available online.

The one chosen for this project is the FastPriorityQueue from the GitHub repository of BlueRaja

[25]. They provide several priority queue implementations for C#. The FastPriorityQueue [26] is

designed to be as fast as possible, especially for pathfinding, which means it is perfectly design for

this project.

8.2.6 Performance Analysis

To test the custom implementation of the shortest path calculation, several mock topologies were

created. Because these tests run on a more powerful machine than the ArangoDB, a direct

comparison to the results in Chapter 8.1.4 cannot be made. Still, it is obvious that this solution scales

a lot better.

The tests were run on a computer with a CPU with 4 cores and 8 threads, each core running at 4GHz,

and 32GB of RAM. Since the implementation is parallelized, it was able to take full advantage of the

8 threads, utilizing 100% of the CPU. The results are shown in Table 5.

43

Nodes Edges (Bidirectional) Duration

500 1’500 0.10 seconds

1’000 3’000 0.52 seconds

1’000 10’000 1.10 seconds

3’000 9’000 8.98 seconds

Table 5: Results of testing custom implementation for shortest path calculation

These results look a lot more promising than those from the ArangoDB.

The reconstruction of the shortest paths between two specific nodes can be done very quickly, as

discussed in Chapter 8.2.4. Reconstructing all shortest paths of the entire network however (in case

this is necessary) would take a lot longer with the following time complexity.

 𝑂(𝑁2 ∗ 𝑃∅−𝑙𝑒𝑛𝑔𝑡ℎ) (11)

PØ-length = The average length of a path

This is because there are at least N2 shortest paths (assuming no equal cost shortest paths exist) and

for each path its entire length needs to be traversed. Reconstructing all shortest paths of the

topologies from Table 5 result in the measurements shown in Table 6.

Nodes Edges (Bidirectional) Duration

1’000 3’000 0.66 seconds

1’000 10’000 0.56 seconds

3’000 9’000 4.59 seconds

3’000 27’000 5.76 seconds

10’000 30’000 60.0 seconds

Table 6: Reconstructing all shortest paths

8.2.7 Estimating the duration for any N number of nodes

Estimating the duration for N number of nodes may be useful for larger N, when testing it would

take too much time. This is possible with some mathematics.

Since the time complexity of the algorithm directly correlates to the duration, the duration can be

expressed as follows:

 𝑝𝑁 = 𝑁2 ∗ log (𝑁) (12)

44

To find the duration 𝑝𝑘𝑁 for any k, the formula looks like this:

 𝑝𝑘𝑁 = (𝑘𝑁)2 ∗ log (𝑘𝑁) (13)

This can also be written as follows:

 𝑝𝑘𝑁 = 𝑘2𝑁2 ∗ log(𝑘𝑁) ∗ log (𝑁)log (𝑁)
(14)

 𝑝𝑘𝑁 = 𝑘2 ∗ log(𝑘𝑁)log(𝑁) ∗ 𝑁2 ∗ log (𝑁)
(15)

Replacing N2*log(N) with pN results in the final formula:

 𝑝𝑘𝑁 = 𝑘2 ∗ log(𝑘𝑁)log(𝑁) ∗ 𝑝𝑁
(16)

This formula holds true if the number of edges relative to the number of nodes stays consistent. So,

to calculate the duration for 100’000 Nodes and 300’000 Edges, the result from 10’000 Nodes and
30’000 Edges can be taken as a baseline. The calculation is as follows:

 𝑝𝑁 = 62.7𝑠 | 𝑁 = 10′000 | 𝑘 = 10

 𝑝𝑘𝑁 = 𝑘2 ∗ log(𝑘 ∗ 𝑁)log(𝑁) ∗ 𝑝𝑁 = 7′837.5𝑠 = 2.18ℎ
(17)

This means with the same hardware used for the performance analysis in Chapter 8.2.6, it would

take the algorithm roughly 2.18 hours to complete for 100’000 Nodes and 300’000 Edges. To speed
up this computation, more powerful hardware would be required.

8.2.8 Conclusion

The fact that ArangoDB has a time complexity of O(N4*log(N)) and the custom implementation only

O(N2*log(N)) makes it clear that ArangoDB is not a viable option, so the custom C# implementation

will be used for this project. The test results presented in Chapters 8.1.4 and 8.2.6 support that

decision.

For reasons discussed in Chapter 8.2.1, the C# implementation cannot be significantly improved

upon anymore, so this is as fast as it is going to get.

45

9 Managing space requirements
During the course this project it became apparent, that just like the time complexity, the space

complexity might pose an issue. Requiring O(N2) memory becomes unfeasible for large N.

This thesis only requires the SR-Apps application to handle up to 1’000 nodes. Since the
implementations of the shortest path calculation and the link saturation both run very fast, no data

(besides the Dijkstra parent mapping) currently needs to be stored, since everything is simply

recalculated when needed.

Nevertheless, this chapter discusses the space requirements and how it can be managed in case of

larger topologies.

There are two types of information that need to be stored for this project. The first are the parent

lists for each router, as discussed in Chapter 8.2.4 for the shortest path reconstruction.

The other information is associated to the links. The use case Link Saturation Prediction requires the

app to allow the user to remove a link and to update the modified network. With a link removed, the

shortest paths that previously passed through it need to be recalculated.

This means that in addition to knowing how many shortest paths pass through it, a link must also be

able to identify these paths. This can be done by storing a mapping of start routers and target

routers on each link.

The space requirements of storing these two types of information are discussed in the subsequent

chapters.

9.1 Why is it necessary to store anything?

One of the two reasons to why the shortest paths calculation is done at all is to determine the

importance of a link. The more shortest paths pass through a link, the more important it is. For this,

no other information needs to be stored than a simple 32-bit counter per link that represents the

number of shortest paths passing through it.

The other reason why the shortest paths calculation is done is to allow the user to simulate a link

failure. If the user wishes to know how the network would react if a specific link went down, the

modified topology needs to recalculate all shortest paths. This in itself also does not require storing

anything more than the 32-bit counter per link.

However, if a link goes down, its traffic is redirected through other links. To calculate this the

shortest path calculation of the modified network needs to be compared to the original one. For this

purpose, the shortest path calculation of the original network needs to be stored.

9.2 Storing parent lists

As discussed in Chapter 8.2.3, storing the parent routers to be able to reconstruct the shortest paths

presents a space complexity of O(N2). As shown in Figure 27 in Chapter 8.2.4, the data structure

required to store the information needed for path reconstruction is a hash table with a router as key

and a list of routers as value.

Because the space requirements may become an issue, it is more space efficient to only store the

router ids (which are 32 bit integer values) instead of the router references (which are 32 bit long on

a 32-bit machine, but are 64 bit long on a 64-bit machine). This means that the smallest possible

46

data structure to store the necessary information is a hash table with 32-bit integers as keys and a

list of 32-bit integers as values. The C# implementation of this is shown in Figure 28.

Figure 28: Most space efficient implementation of parent storing

Source: own creation

Since each router needs such a dictionary there will be N dictionaries, and because each router

needs to know the shortest paths to every other there will be N entries in each dictionary. The

number of entries in the parent list depends on the number of shortest paths. Chapter 9.4 shows the

required space for different network sizes. For these examples it is assumed that these lists only

contain one parent (so the network in question does not happen to have any multiple equal cost

shortest paths). It is also assumed that the software is running on a 64-bit machine.

Under these assumptions a single entry would have a size of 128 bit (see Figure 29).

Figure 29: Space requirement per entry

Source: own creation

In generalized form, this results in the following space requirement for an entire network with N

nodes:

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝑝𝑎𝑟𝑒𝑛𝑡 𝑙𝑖𝑠𝑡𝑠 = 128𝑏𝑖𝑡 ∗ 𝑁2 (18)

9.3 Storing path identifiers on links

To be able to know which shortest paths pass through any given link, each link needs to have a hash

table with the start router as key and the target router as value. With this information all paths

passing through this link can be reconstructed. Figure 30 shows the implementation in C#, using a

dictionary.

47

Figure 30: Dictionary storing path identifiers - one per link

Source: own creation

This results in MU dictionaries (MU being the number of links) with 64 bit per entry. The number of

entries (henceforth represented by the variable “k”) depends on the number of shortest paths going
through a particular link. The average number of entries in the dictionaries is represented by the

variable “kaverage”.
In generalized form this results in the following space requirement for an entire network with MU

edges:

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝑝𝑎𝑡ℎ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 = 64𝑏𝑖𝑡 ∗ 𝑀𝑈 ∗ 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (19)

The value for kaverage varies greatly and directly correlates to the size of the network. Unfortunately,

the average k of a network not only depends on the size of the network but also varies depending on

how exactly the topology looks like, which means there is no definitive way to calculate it in

generalized form. However, Chapter 9.3.1 goes into more detail of what kaverage is and how it can be

estimated.

The values chosen for kaverage for the space calculations done in Chapter 9.4 are empirical values

based on mocked topologies with random routers and links.

9.3.1 Estimating kaverage

As discussed in Chapter 9.3, kaverage is the average number of shortest paths going through a

particular link. This can be expressed with the following equation.

 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐾𝑡𝑜𝑡𝑎𝑙𝑀𝑈
(20)

Ktotal = Sum of the k-values of all unidirectional links

MU = Number of unidirectional links

Ktotal can be expressed in the following way.

 𝐾𝑡𝑜𝑡𝑎𝑙 = 𝑃∅−𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑃𝑡𝑜𝑡𝑎𝑙 (21)

PØ-length = Average length of a path (number of links visited)

Ptotal = Total number of (shortest) paths in the network

48

Combining Equations (20) and (21) results in the following formula for kaverage.

 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑃∅−𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑃𝑡𝑜𝑡𝑎𝑙𝑀𝑈
(22)

Combining Equations (19) and (22) results in the following updated formula for the calculation of the

required space for path identifiers.

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝑝𝑎𝑡ℎ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 = 64𝑏𝑖𝑡 ∗ 𝑃∅−𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑃𝑡𝑜𝑡𝑎𝑙 (23)

The total number of paths Ptotal has a minimum value of N2 (for the case that no multiple equal cost

shortest paths exist) whereas the average path length PØ-length may be guessed through experience or

existing data.

9.4 Space requirements depending on network size

To get a feeling of how much space is required for specific network sizes, Table 7 shows some

sample calculations. The topologies analyzed are the same ones as those chosen for the

performance analysis in Chapter 8.2.6. The values for kaverage are empirical. They were gathered by

simply adding up the k-values of each link and then dividing by M.

For the calculations the Equations (18) and (19) from Chapters 9.2 and 9.3 are applied, which are as

follows:

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝑝𝑎𝑟𝑒𝑛𝑡 𝑙𝑖𝑠𝑡𝑠 = 128𝑏𝑖𝑡 ∗ 𝑁2 (18)

 𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝑓𝑜𝑟 𝑝𝑎𝑡ℎ 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 = 64𝑏𝑖𝑡 ∗ 𝑀𝑈 ∗ 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (19)

N

(Nodes)

MU

(U-Dir-Links)

kaverage

(empirical)

Space required

for parent lists

Space required for

path identifiers

Total space

required

1’000 6’000 1’850 15.26 MB 84.69 MB 89.95 MB

1’000 20’000 416 15.26 MB 63.48 MB 78.74 MB

3’000 18’000 6’309 137.3 MB 866.4 MB 1.004 GB

3’000 54’000 2’596 137.3 MB 1.044 GB 1.178 GB

10’000 60’000 23’388 1.490 GB 10.43 GB 11.92 GB

Table 7: Examples for space requirement

49

9.5 Estimating space requirements for larger networks

Estimating the space requirements of larger networks can be done based on existing sample data.

Analyzing the topologies used in Table 7 in more detail presents the information detailed in Table 8.

Pratio is a value that expresses the number of all paths Ptotal in relationship to the minimum number of

paths Pmin in a network, which is always N2 (see Equation (18)). Pratio is a measure of what percentage

of Ptotal are equal cost shortest paths.

 𝑃𝑟𝑎𝑡𝑖𝑜 = 𝑃𝑡𝑜𝑡𝑎𝑙𝑃𝑚𝑖𝑛
(18)

Ptotal = Total number of shortest paths in the network

Pmin = N2 (minimum number of shortest paths, if no equal cost shortest paths exist)

N MU Ptotal PØ-length Pratio

1’000 6’000 1’467’735 7.56 1.47

1’000 20’000 1’899’111 4.38 1.90

3’000 18’000 13’026’867 8.72 1.45

3’000 54’000 20’695’717 6.77 2.30

10’000 60’000 135’977’501 10.3 1.36

Table 8: Detailed information on sample topologies

Because these topologies were created randomly, these results may not properly reflect reality. But

because no real data for such information is available, the randomized data is used to estimate

space requirements for larger networks.

Comparing the results in Table 8 implies the following:

• Increasing the number of links while keeping the number of nodes the same results in a

lower average path length PØ-length.

• When increasing the number of nodes, PØ-length increases only very slowly.

• With a constant ratio of N:MU the ratio Pratio also seems to remain constant at roughly 1.43

for a N:MU ratio of 1:6.

Using this information allows making predictions on space requirements for larger networks. Table 9

shows possible values for such topologies assuming a N:MU ratio of 1:6 with Pratio = 1.43. Ptotal is

calculated by multiplying Pratio and N2.

N MU Ptotal (calculated) PØ-length Pratio

50’000 300’000 3’575’000’000 12 1.43

100’000 600’000 14’300’000’000 15 1.43

Table 9: Estimated values for large topologies

50

With Equation (22) from Chapter 9.3.1 the average k-value can be calculated.

 𝑘𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑃∅−𝑙𝑒𝑛𝑔𝑡ℎ ∗ 𝑃𝑡𝑜𝑡𝑎𝑙𝑀𝑈
(22)

Table 10 shows the estimated space requirements for the larger topologies based on previous

guesswork.

N

(Nodes)

MU

(U-Dir-Links)

kaverage

(estimated)

Space required

for parent lists

Space required for

path identifiers

Total space

required

50’000 300’000 143’000 37.25 GB 319.6 GB 356.9 GB

100’000 600’000 357’500 149.0 GB 1.567 TB 1.706 TB

Table 10: Estimated space requirements for large topologies

9.6 Conclusion

For larger topologies it should be considered splitting the topology into several smaller ones,

because the amount of data required for such large networks becomes quickly very impractical to

handle, reaching approximately 1.7 TB for 100’000 nodes.

An alternative would be to store neither the parent lists nor the path identifiers, and then

recalculating the shortest paths when needed. This would pretty much eliminate any space

requirements for the handling of shortest paths but would essentially double the time required to

do the calculations.

51

10 Results
This chapter lists the results of the thesis by comparing the features, use cases and non-functional

requirements defined in the requirements analysis with the final state of the application.

10.1 Feature coverage

The covered features are shown in Table 11.

Feature Covered Comment

Link Grading Fully The grading of links uses three different link metrics (link

delay, packet loss and link saturation). The user can switch

between different maps showing the links graded by these

metrics.

Adding new maps based on different link metrics is very

quick and easy to implement.

The importance of a link is calculated by counting the

number of shortest paths going through the link. The

count is used to display the thickness of the drawn link

inside the UI (the more shortest paths go through a link,

the thicker it is drawn).

Link Saturation

Prediction

Fully The link saturation is calculated for the whole topology

upon topology changes. Topology modifications (adding or

removing nodes and links) can be done by the user. The

recalculated topology with potentially different link

gradings.

Table 11: Feature Coverage

10.2 Use Case Coverage

Table 12 shows the use case coverage.

Use Case Status Comment

01 – Load Map Fully implemented The user is able to load different maps

showing the link grading based on

three different metrics.

02 – Zoom In Fully implemented The user can either use the "Expand"

button or a double click on a region to

view all underlying nodes and links.

03 – Zoom Out Fully implemented The user can either use the "Collapse"

button or double click a router to

collapse them into a region.

04 – Show Details Fully implemented The user can click on a node or link to

view details. The details list the most

52

important information like name, ip-

addresses and link metrics.

05 – Remove Link Fully implemented The user can remove a link from the

topology and see the effect it has on

the topology.

06 – Add Link Fully implemented The user can add a link to the topology

and see the changes in terms of link

grading and thickness.

07 – Remove Node Fully implemented The user can remove a node from the

topology and see the effect it has on

the topology.

08 – Add Node Fully implemented The user can add a node to the

topology and see the effect it has on

the topology.

09 – Change Link Attributes Fully implemented The uer can select a link and edit ist

properties. This results in potentially

new graded links and modified link

thickness.

10 – Load Latest Topology Fully implemented The user updates the view inside the UI

to display the latest data the server

polled from the database.

11 – Manually Poll Topology Fully implemented The user can initiate polling new data

from the database and view the

adapted topology.

Table 12: Use Case Coverage

10.3 Non-functional requirements

Table 13 show which non-functional requirements were fulfilled.

NFR (response measure) Fulfilled Comment

All UI components are fully

displayed when the application is

accessed with Google Chrome 83.0

or higher or Firefox 80.0 or higher.

All use cases can still be executed.

Yes Use cases were tested with both versions and are

fully functional.

The application must be scalable

for topologies with up to 1'000

enabled routers.

Yes The architecture, client-server communication

and calculation inside the business logic works

very well for 1’000 nodes.

The response time in the UI of the

application must not exceed 10

seconds in 90% of all interactions

that involve server calls. In the

remaining 10% the response is

within 15 seconds.

Yes The response time for all use case walkthroughs is

never > 10 seconds.

53

The operator can switch between

the different maps with two clicks

and gets additional information

about nodes and links with one

click.

Yes By opening a dropdown menu (one click) and

selecting the desired map (one click) a new map

can be displayed.

By clicking on a node or link (one click) the details

about the component are shown.

Only one software component

needs to be adjusted to

implement a new map algorithm

or change an existing one. The

changes can be made in less than

4 hours.

Yes Due to a high level of abstraction a new map

algorithm can be easily implemented and requires

adjusting the DefaultMapConfigurator

component.

Table 13: Non-functional requirements

54

11 Conclusion
During this thesis, a fully functioning application was built covering all defined features and use

cases. A user can monitor the link state of SR topologies and simulate network changes to see their

effects on the network.

Different maps are used to display the link quality based on different link metrics. The more often a

link is used the thicker it is drawn in the UI. The calculation of link saturation (which is performed

when the user makes changes to the topology) is very performant allowing fast simulations of

potential link failures.

The application can be deployed using docker-compose. This allows the deployment on most target

systems.

The SR-App is a tool to easily identify weak points in a network. Figure 31 - Figure 34 show the UI of

the application.

Figure 31: Final version SR-App

Source: own creation

55

Figure 32: Map in main view

Source: own creation

Figure 33: Details of a (unidirectional) link

Source: own creation

56

Figure 34: Map options

Source: own creation

57

11.1 Outlook

While the current version of the application covers all predefined features and use cases, there is

still a lot more that can be done to improve it. This chapter discusses possible additional features

that may be of interest.

11.1.1 Support Layer 3 EtherChannel

Some networks make use of network-layer EtherChannels, which are logical links consisting of

multiple physical links. The reason for this is it to provide redundancy to a connection between two

routers. The IP-address is assigned to the logical link, which ensures connectivity even if some

physical connections in the aggregated link fail.

To support this kind of link, the data model in the business logic and frontend would have to be

updated. Further, it would have to be evaluated what kind of impact this change has on the business

logic.

11.1.2 Allow the user to adjust the link grading dynamically

In the current version of the application the thresholds to grade links are fixed values. To give the

user more control over the grading system the UI could contain controls to change these thresholds.

This would result in the user having control for which threshold a link is shown as orange or as red.

The implementation of this feature would have only a minimal impact on the business logic.

11.1.3 Interface providing region data

Region data is the information of which router belongs to which region. This information might come

from various sources such as the name of the router, external systems or provided by the user in

textual form. External systems may even contain exact coordinates of the routers.

To properly process and use this information the application would have to be extended accordingly.

58

12 Glossary

Term Description

API Application Programming Interface

CPU Central Processing Unit

GB Gigabyte

HTTP Hypertext Transfer Protocol

KB Kilobyte

MB Megabyte

RAM Random Access Memory

REST Representational State Transfer

SR Segment Routing

TB Terabyte

Table 14: Glossary

59

13 Illustration index
Figure 1: Prototype for graph visualization with NeXt UI ... 17

Figure 2: Popup window in NeXt UI .. 18

Figure 3: Prototype for graph visualization with vis.js .. 19

Figure 4: Test #5 .. 21

Figure 5: Test #6 .. 21

Figure 6: Two Edges, Physics enabled ... 23

Figure 7: Two Edges, Physics disabled .. 23

Figure 8: Solution suggested by wimrijnders .. 24

Figure 9: Vis.js clustering example .. 25

Figure 10: Simplified package diagram - clustering .. 27

Figure 11: Sequence diagram - clustering ... 28

Figure 12: Example of router grade assignment ... 29

Figure 13: Sample Topology – Grade 0 ... 30

Figure 14: Sample Topology – Grade 1 ... 31

Figure 15: Sample Topology – Grade 2 ... 31

Figure 16: Sample Topology – Grade 1 - as a single network ... 32

Figure 17: Topology Genf - Zürich (ungrouped) .. 33

Figure 18: Muntaners implementation of districts ... 34

Figure 19: Passing coordinates to vis.js .. 34

Figure 20: Topology Genf - Zürich (grouped by regions) .. 35

Figure 21: Example query shortest-path... 36

Figure 22: Example query k-shortest-paths .. 37

Figure 23: Pseudo code of the Dijkstra algorithm .. 39

Figure 24: Example - Shortest path from A to E.. 40

Figure 25: Example - Shortest path from A to E.. 41

Figure 26: C# Implementation of hash map for shortest path reconstruction..................................... 41

Figure 27: Updated implementation to support multiple equal cost shortest paths........................... 42

Figure 28: Most space efficient implementation of parent storing .. 46

Figure 29: Space requirement per entry ... 46

Figure 30: Dictionary storing path identifiers - one per link ... 47

Figure 31: Final version SR-App .. 54

Figure 32: Map in main view ... 55

Figure 33: Details of a (unidirectional) link ... 55

Figure 34: Map options ... 56

60

14 Sources

[1] "Microsoft Documentation - SignalR," [Online]. Available: https://docs.microsoft.com/en-

us/aspnet/core/signalr/introduction?view=aspnetcore-5.0. [Accessed 22 12 2020].

[2] "Medium - List of graph visualization libraries," [Online]. Available:

https://medium.com/@Elise_Deux/the-list-of-graph-visualization-libraries-7a7b89aab6a6.

[Accessed 24 09 2020].

[3] "VisJS Homepage," [Online]. Available: https://visjs.org/. [Accessed 24 09 2020].

[4] "NeXt UI GitHub page," [Online]. Available: https://github.com/NeXt-UI. [Accessed 24 09

2020].

[5] "NeXt UI - GitHub - Next," [Online]. Available: https://github.com/NeXt-UI/next. [Accessed 24

09 2020].

[6] "Vinllen NeXT UI Tutorial - Who developed NexT UI," [Online]. Available:

http://vinllen.com/next-ui-tutorial-supplement/. [Accessed 24 09 2020].

[7] "NeXt UI Tutorials," [Online]. Available: https://github.com/NeXt-UI/next-tutorials. [Accessed

24 09 2020].

[8] "Vis.js documentation for network graphs," [Online]. Available: https://visjs.github.io/vis-

network/docs/network. [Accessed 24 09 2020].

[9] "VisJs Network - GitHub," [Online]. Available: https://github.com/visjs/vis-network. [Accessed

24 09 2020].

[10] "NeXt UI API Reference," [Online]. Available:

https://developer.cisco.com/codeexchange/github/repo/NeXt-UI/next-tutorials/. [Accessed 13

12 2020].

[11] "Vis.js documentation on physics," [Online]. Available: https://visjs.github.io/vis-

network/docs/network/physics.html. [Accessed 28 09 2020].

[12] "Vis-Network Examples," [Online]. Available: https://visjs.github.io/vis-network/examples/.

[Accessed 24 09 2020].

[13] "Vis.js Examples - Changing clustered edges and nodes," [Online]. Available:

https://visjs.github.io/vis-

network/examples/network/other/changingClusteredEdgesNodes.html. [Accessed 24 09

2020].

[14] "GitHub Vis.js - Discussion on grouping," [Online]. Available: https://github.com/visjs/vis-

network/issues/203. [Accessed 17 10 2020].

[15] "GitHub - Muntaner visjs districts implementation," [Online]. Available:

https://github.com/Muntaner/visjs_districts/tree/master/js. [Accessed 17 10 2020].

61

[16] "GitHub - vis.js KamadaKawai implementation," [Online]. Available:

https://github.com/visjs/vis-network/blob/master/lib/network/modules/KamadaKawai.js.

[Accessed 17 10 2020].

[17] "Wikipedia - Force-directed graph drawing," [Online]. Available:

https://en.wikipedia.org/wiki/Force-directed_graph_drawing. [Accessed 17 10 2020].

[18] "ArangoDB Homepage," [Online]. Available: https://www.arangodb.com/. [Accessed 17 10

2020].

[19] "ArangoDB - Shortest-Path," [Online]. Available:

https://www.arangodb.com/docs/stable/aql/graphs-shortest-path.html. [Accessed 17 10

2020].

[20] "ArangoDB - K-Shortest-Path," [Online]. Available:

https://www.arangodb.com/docs/stable/aql/graphs-kshortest-paths.html. [Accessed 17 10

2020].

[21] "Clicage - ArangoDB PDF," [Online]. Available:

http://www.clicage.com/ilyatoo/objets/oeuvres/ARANGODB.pdf. [Accessed 17 10 2020].

[22] "ArangoDB GitHub," [Online]. Available: https://github.com/arangodb/arangodb/pull/8715.

[Accessed 17 10 2020].

[23] "Wikipedia - Yen's algorithm," [Online]. Available:

https://en.wikipedia.org/wiki/Yen%27s_algorithm. [Accessed 17 10 2020].

[24] "Wikipedia - Dijkstra Algorithm," [Online]. Available:

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm. [Accessed 17 10 2020].

[25] "GitHub - BlueRaja PriorityQueue," [Online]. Available: https://github.com/BlueRaja/High-

Speed-Priority-Queue-for-C-Sharp. [Accessed 17 10 2020].

[26] "GitHub - BlueRaja FastPriorityQueue," [Online]. Available: https://github.com/BlueRaja/High-

Speed-Priority-Queue-for-C-Sharp/wiki/Using-the-FastPriorityQueue. [Accessed 17 10 2020].

[27] "Microsoft SignalR documentation," [Online]. Available: https://docs.microsoft.com/en-

us/aspnet/core/signalr/introduction?view=aspnetcore-5.0. [Accessed 17 12 2020].

[28] "Juniper - What is segment routing?," [Online]. Available:

https://www.juniper.net/us/en/products-services/what-is/segment-routing/. [Accessed 20 09

2020].

[29] "Jalapeño GitHub repository," [Online]. Available: https://github.com/cisco-ie/jalapeno.

[Accessed 17 12 2020].

[30] "GitHub BlueRaja - High Speed Priority Queue," [Online]. Available:

https://github.com/BlueRaja/High-Speed-Priority-Queue-for-C-Sharp. [Accessed 14 12 2020].

Project Thesis: SR-App Analytics

62

SR-App Analytics

 E – Attachments

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

Project Thesis: SR-App Analytics

63

SR-App Analytics
E-1 – Requirements Analysis

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

Project Thesis: SR-App Analytics

64

1 Content

1 Content .. 64

2 General description ... 65

2.1 Product perspective .. 65

2.2 Product functionality ... 65

2.3 User characteristics ... 65

2.4 External Dependencies .. 65

3 Features ... 66

3.1 Feature 1 – Link Quality Assessment ... 66

3.2 Feature 2 – Link Saturation Prediction .. 66

4 Use Cases ... 67

4.1 Actors & stakeholders ... 67

4.2 Description (fully dressed) ... 68

4.2.1 Use case 01 – Load Map .. 68

4.2.2 Use case 02 – Zoom In ... 69

4.2.3 Use case 03 – Zoom out .. 70

4.2.4 Use case 04 – Show Details ... 71

4.2.5 Use case 05 – Remove Link ... 72

4.2.6 Use case 06 – Add Link .. 73

4.2.7 Use case 07 – Remove Node ... 74

4.2.8 Use case 08 – Add Node .. 75

4.2.9 Use case 09 – Change Link Attributes ... 76

4.2.10 Use case 10 – Load Latest Topology .. 77

Use case 11 – Manually Poll Topology .. 78

5 Non-functional Requirements ... 79

5.1 NFR01 - Compatibility .. 79

5.2 NFR02 - Scalability ... 79

5.3 NFR03 - Efficiency .. 79

5.4 NFR04 - Usability ... 80

5.5 NFR05 - Changeability ... 80

6 Glossary ... 81

Project Thesis: SR-App Analytics

65

2 General description

2.1 Product perspective

The SR-App allows a user to monitor an SR topology and to simulate changes in the network, such as

adding or removing links and nodes. The application displays a simple and understandable view of an

existing segment routing topology to visualize and cover the features Link Saturation Prediction and

Link Quality Assessment which are defined in this document.

Possible applications for this software are the following:

• Monitoring of the health state of an existing SR network.

• Predicting the consequences of a link or node failure by simulating it through the UI.

• Better predicting the benefits of adding a specific new link or node to the network by

simulating it through the UI. This is especially useful to decide which investment would

improve the network the most.

2.2 Product functionality

The product should provide the following functionality:

• Display an existing SR topology with all its nodes and links.

• Grade links based on certain attributes such as packet loss, link delay and link saturation and

display this information visually.

• Allow the user to simulate network changes in case of link and node failures.

• Allow the user to simulate network changes in case of adding links and nodes.

2.3 User characteristics

The primary users of the application are network operators and network engineers.

2.4 External Dependencies

This application depends on the Jalapeño software system, which is provided by the industry partner

Cisco.

Jalapeño collects data of an SR topology. The data is sent by the routers via BMP and streaming

telemetry to Jalapeño and processed there further before it is stored in a database. The SR-App

directly queries this database.

Project Thesis: SR-App Analytics

66

3 Features
The required features are derived from the problem definition provided by the advisor and the

project partner. The following chapters describe two features called Link Saturation Prediction and

Link Quality Assessment. The use cases discussed in Chapter 4 are derived from these features.

3.1 Feature 1 – Link Quality Assessment

The Link Quality Assessment feature grades all links in a topology based on predefined metrics. The

grading is shown to the user using different color codes indicating the quality of a link. This allows the

user to quickly gain an overview of the topologies health state and to identify critical links.

3.2 Feature 2 – Link Saturation Prediction

The Link Saturation (bandwidth utilization) Prediction feature allows the SR-Operator to simulate

topology changes. Topology changes can be the removal or adding of links and nodes.

Because any such alteration to a network would in most cases result in changed shortest paths, the

saturation of the individual links would change as well. Therefore, to accurately predict the

saturation of links, the path of all traffic in the topology must be recalculated so the traffic can be

redistributed.

Project Thesis: SR-App Analytics

67

4 Use Cases
This chapter describes all use cases derived from the requested features. Figure 1 shows all use cases

in a use case diagram. Optional use cases are displayed in yellow color.

Figure 1: Use case diagram

Source: own creation

4.1 Actors & stakeholders

The only actor is the user of the application (SR-Operator). The interaction between the actor and the

application is limited to the interaction needed to perform the use cases.

Project Thesis: SR-App Analytics

68

4.2 Description (fully dressed)

4.2.1 Use case 01 – Load Map

The user can switch between different maps of a topology. The different maps (heat maps) are

highlighted by either packet loss, link delay, link saturation, or a combination of them.

Use Case ID 01

Use Case name Load Map

Actors SR-Operator

Description The operator loads a specific map (Packet Loss, Link Delay, Link Quality,

Link Saturation) in the UI.

Preconditions SR-App is fully loaded, and the default map (Link Quality) is displayed.

Postconditions The requested map of the topology is shown to the SR-Operator.

Normal Flow • The SR-Operator loads the SR-App website.

• The website displays the default map (Link Quality).

• The SR-Operator would like to see another map and selects the

desired map in the drop-down menu.

• The topology is loaded from the server and displayed in the

browser

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

Priority High

Frequency of Use High

Special Requirements Connection to the database needs to be established

Assumptions -

Notes and Issues -

Table 1: Use case 01

Project Thesis: SR-App Analytics

69

4.2.2 Use case 02 – Zoom In

By default, only regions (clusters of routers) are shown. To view the routers in a particular region, the

user can zoom into it (expanding the cluster).

Use Case ID 02

Use Case name Zoom In

Actors SR-Operator

Description The operator zooms into a specific cluster (region)

Preconditions The user can see the topology in the browser. At least one cluster is

visible.

Postconditions The cluster is no longer visible, but all its routers are shown instead.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator double-clicks a specific cluster or selects a

cluster and clicks the "Expand" button.

• The expanded cluster is shown in more detail with all its routers

and links.

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 2: Use case 02

Project Thesis: SR-App Analytics

70

4.2.3 Use case 03 – Zoom out

To zoom out of a region, the user can collapse the cluster.

Use Case ID 03

Use Case name Zoom Out

Actors SR-Operator

Description The operator zooms out of a cluster (region) to collapse it.

Preconditions The user can see the topology in the browser. At least one cluster is

expanded.

Postconditions The routers of the region are no longer visible, but all its cluster is shown

instead.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator double-clicks a specific router or selects a router

and clicks the "Collapse" button.

• The collapsed cluster is shown and all its routers and links are

removed.

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 3: Use case 03

Project Thesis: SR-App Analytics

71

4.2.4 Use case 04 – Show Details

The user can view the details of a node or link by selecting it in the UI.

Use Case ID 04

Use Case name Show Details

Actors SR-Operator

Description The user selects a node or link, and its details are displayed in the

browser.

Preconditions The user can see the topology in the browser.

Postconditions The details about the selected component are shown to the user.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator selects a link or node.

• The browser displays its details.

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 4: Use case 04

Project Thesis: SR-App Analytics

72

4.2.5 Use case 05 – Remove Link

The user can remove a link from the topology.

Use Case ID 05

Use Case name Remove Link

Actors SR-Operator

Description The user removes a link from the topology.

Preconditions The user can see the topology in the browser. At least one cluster is

expanded, so a link is shown on the map.

Postconditions The SR-Operator sees the map without the deleted link and the

saturation of all links has been updated to reflect the change in the

topology.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator selects a link.

• The SR-Operator clicks the "Remove Link" button.

• The browser displays a loading screen.

• The updated map is displayed.

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 5: Use case 05

Project Thesis: SR-App Analytics

73

4.2.6 Use case 06 – Add Link

The user can add a link to the topology.

Use Case ID 06

Use Case name Add Link

Actors SR-Operator

Description The user adds a link to the topology.

Preconditions The user can see the topology in the browser. The clusters are expanded,

such that at least two routers are visible on the map.

Postconditions The SR-Operator sees the map with the newly created link and the

saturation of all links has been updated to reflect the change in the

topology.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator clicks the "Add Link" button.

• The SR-Operator draws a link between two nodes.

• The browser displays a loading screen.

• The updated map is displayed.

Alternative Flow -

Exceptions • Connectivity to the database is lost -> Error Message "Connection

to database lost"

• The SR-Operator tries to draw a link between two clusters or

between a cluster and a router. This is not allowed, and the user

will be shown an error message.

• The SR-Operator tries to draw a loopback link on a router. This is

not allowed, and the user will be shown an error message.

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 6: Use case 06

Project Thesis: SR-App Analytics

74

4.2.7 Use case 07 – Remove Node

The user can delete a router from the topology.

Use Case ID 07

Use Case name Remove Node

Actors SR-Operator

Description The user deletes a router from the topology.

Preconditions The user can see the topology in the browser. The clusters are expanded,

such that at least one router is visible on the map.

Postconditions The SR-Operator sees the map without the deleted router and the

saturation of all links has been updated to reflect the change in the

topology.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator selects a router.

• The SR-Operator clicks the "Remove Node" button.

• The updated map is displayed.

Alternative Flow -

Exceptions Connectivity to the database is lost -> Error Message "Connection to

database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 7: Use case 07

Project Thesis: SR-App Analytics

75

4.2.8 Use case 08 – Add Node

The user can add a router to the topology.

Use Case ID 08

Use Case name Add Node

Actors SR-Operator

Description The user adds a router to the topology.

Preconditions The user can see the topology in the browser.

Postconditions The SR-Operator sees the map with the newly created router and the

saturation of all links has been updated to reflect the change in the

topology.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator clicks on the “Add Node” button.
• The updated map is displayed, with the newly created router

placed on the center of the users field of view.

Alternative Flow -

Exceptions Connectivity to the database is lost -> Error Message "Connection to

database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 8: Use case 08

Project Thesis: SR-App Analytics

76

4.2.9 Use case 09 – Change Link Attributes

The user can change certain attributes of links.

Use Case ID 09

Use Case name Change Link Attributes

Actors SR-Operator

Description The user changes link attributes.

Preconditions The user can see the topology in the browser. The clusters are expanded,

such that at least one link is visible on the map.

Postconditions The SR-Operator sees the updated map which reflects the changes made

to the link. The saturation of all links has been updated to reflect the

change in the topology.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator expands a region.

• The SR-Operator selects a link and clicks the "Edit" button.

• The SR-Operator changes the attribute values of the link.

• The updated map is displayed.

Alternative Flow -

Exceptions Connectivity to the database is lost -> Error Message "Connection to

database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 9: Use case 09

Project Thesis: SR-App Analytics

77

4.2.10 Use case 10 – Load Latest Topology

The user can update his or her snapshot of the topology to the latest version available on the server.

Use Case ID 10

Use Case name Load Latest Topology

Actors SR-Operator

Description The user updates his or her snapshot of the topology to the latest version

available on the server.

Preconditions The user can see the topology in the browser.

Postconditions The SR-Operator sees the latest topology available on the server.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator has been using the application for several

minutes or more.

• The SR-Operator would like to see the latest topology snapshot.

• The SR-Operator clicks the "Get Latest Snapshot" button.

• The same map is shown with the latest data available on the

server.

Alternative Flow -

Exceptions Connectivity to the database is lost -> Error Message "Connection to

database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 10: Use case 10

Project Thesis: SR-App Analytics

78

Use case 11 – Manually Poll Topology

The user can trigger a fresh poll from the database on the server.

Use Case ID 11

Use Case name Manually Poll Topology

Actors SR-Operator

Description The user triggers a fresh poll from the database on the server.

Preconditions The user can see the topology in the browser.

Postconditions The SR-Operator sees the latest topology available on the database.

Normal Flow • The SR-Operator has loaded a map.

• The SR-Operator has been using the application for several

minutes or more.

• The SR-Operator would like to see the latest data available on the

database.

• The SR-Operator clicks the "Take Snapshot Now" button

• The same map is shown with the latest data available in the

database.

Alternative Flow -

Exceptions Connectivity to the database is lost -> Error Message "Connection to

database lost"

Priority High

Frequency of Use High

Special Requirements -

Assumptions -

Notes and Issues -

Table 11: Use case 11

Project Thesis: SR-App Analytics

79

5 Non-functional Requirements

5.1 NFR01 - Compatibility

NFR Compatibility

Business

objective

Use of the application on different browsers

Stimulus Operator accesses the application on different browsers.

Response The operator gets the same results on each supported browser as soon the page

is loaded.

Response

Measure

All UI components are fully displayed when the application is accessed with

Google Chrome 83.0 or higher or Firefox 80.0 or higher. All use cases can still be

executed.

Table 12: NFR01

5.2 NFR02 - Scalability

NFR Scalability

Business

objective

The operator can use the application for small to medium sized topologies.

Stimulus The operator accesses the application.

Response The operator sees the correct topology with all information with the

performance corresponding to what is defined in Chapter 5.3 for small and

medium sized topologies.

Response

Measure

The application must be scalable for topologies with up to 1'000 enabled routers.

Table 13: NFR02

5.3 NFR03 - Efficiency

NFR Efficiency

Business

objective

Good efficiency and real advantage for the operator.

Stimulus Operator opens the browser and navigates to the sites displaying topology

information.

Response The operator sees the topology and all associated data within the set deadline.

Response

Measure

The response time in the UI of the application must not exceed 10 seconds in

90% of all interactions that involve API calls. In the remaining 10% the response is

within 15 seconds.

Table 14: NFR03

Project Thesis: SR-App Analytics

80

5.4 NFR04 - Usability

NFR Usability

Business

objective

Easy to use and intuitive application.

Stimulus The operator navigating the web application. During browsing he or she wants to

see another topology.

Response The operator can switch between maps easily.

Response

Measure

The operator can switch between the different maps with two clicks and gets

additional information about nodes and links with one click.

Table 15: NFR04

5.5 NFR05 - Changeability

NFR Changeability

Business

objective

Changes and improvements of the business logic can be made fast and easily.

Stimulus Developer wants to change or implement a new map algorithm for link grading

to be able to add additional heat maps to the application.

Response There are no side effects on other system components.

Response

Measure

Only one software component needs to be adjusted to implement a new map

algorithm or change an existing one. The changes can be made in less than 4

hours.

Table 16: NFR05

Project Thesis: SR-App Analytics

81

6 Glossary
Term Description

BMP BGP (Border Gateway Protocol) Monitoring Protocol

SR Segment Routing

UI User Interface

Table 17: Glossary

Project Thesis: SR-App Analytics

82

SR-App Analytics
E-2 – Project Plan

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

Project Thesis: SR-App Analytics

83

1 Content
1 Content .. 83

2 Introduction ... 84

2.1 Purpose .. 84

2.2 Validity scope .. 84

3 Project overview .. 85

3.1 Purpose and aim .. 85

3.2 Delivery .. 85

3.2.1 Results ... 85

3.2.2 Project management ... 85

4 Project organization .. 86

4.1 Organizational structure .. 86

4.2 External persons .. 86

5 Management procedures .. 87

5.1 Time management .. 87

5.2 Milestones ... 87

5.3 Phases / Iterations ... 87

5.3.1 Inception .. 88

5.3.2 Elaboration .. 88

5.3.3 Construction .. 88

5.3.4 Transition ... 88

5.4 Meetings .. 88

6 Risk management .. 89

6.1 Risks ... 89

7 Work packages .. 90

8 Infrastructure .. 91

8.1 General .. 91

8.2 CI/CD Pipeline .. 91

9 Quality measures ... 93

9.1 Documentation .. 93

9.2 Project management ... 93

9.3 Development ... 93

10 Illustration index .. 94

11 Glossary ... 95

Project Thesis: SR-App Analytics

84

2 Introduction

2.1 Purpose

This document contains all necessary documentation for the thesis SR-App Analytics. It contains the

planning of this project and acts as a guideline to comprehend the methods used. This project plan

contains a summary of the project and an overview of the project organization.

2.2 Validity scope

This document is valid as part of the thesis SR-App Analytics.

Project Thesis: SR-App Analytics

85

3 Project overview

3.1 Purpose and aim

“Segment routing (SR) is a source-based routing technique that simplifies traffic engineering

and management across network domains. It removes network state information from transit

routers and nodes in the network and places the path state information into packet headers at

an ingress node.”

 - Cited from Juniper.net [1]

SR-App provides a user with monitoring functionality for a segment-routing topology. The App

displays a simple and understandable view of an existing segment routing topology to visualize and

cover the use cases Link Saturation Prediction and Link Quality Assessment which are defined in the

document “Requirements Analysis”.

For the user, the app is intended to create added value in monitoring the health of a segment-routing

network as well as simulating changes in the topology.

3.2 Delivery

3.2.1 Results

• Source code

• Software architecture document

• Requirement analysis documentation

3.2.2 Project management

• Project plan

• Time tracking evaluation

• Project statistics

Project Thesis: SR-App Analytics

86

4 Project organization
The project will contain four phases: Inception, Elaboration, Construction and Transition. Within

these phases scrum will be utilized in order to remain agile.

4.1 Organizational structure

Name Position Email Responsibilities and Tasks

Dominique Illi Developer dominique.illi@ost.ch - Development

- Takes times

Michel Bongard Developer michel.bongard@ost.ch - Development

- Jira, Bamboo & GitHub admin
Table 1: Organizational structure

4.2 External persons

Name Position Email Responsibilities and Tasks

Laurent Metzger Supervisor laurent.metzger@ost.ch - Supervisor

- Primary contact Person

Urs Baumann Supervisor urs.baumann@ost.ch - Supervisor

- Contact Person

Francois Clad Supervisor fclad@cisco.com - Define Scope

- Primary liaison to Cisco
Table 2: External Persons

Project Thesis: SR-App Analytics

87

5 Management procedures

5.1 Time management

The following timetable provides an overview of the project phases, iterations and milestones.

Figure 1: Project timetable

Source: own creation

5.2 Milestones

M# Date Description Products

M1 21.09.2020 Inception

Project plan

Requirement analysis

Definition of scope

Work environment setup

- CI/CD pipeline setup

M2 05.10.2020 UI PoC UI PoC

- Definition of interfaces

M3 12.10.2020 Data access PoC Data access PoC

List of required data

- Class diagram

M4 19.10.2020 Business Logic PoC Business logic PoC

Class diagram

- SAD

M5 26.10.2020 App LQA Implementation of LQA including tests

- Packet Loss Map, Delay Map,

Combined Map

M6 16.11.2020 App LSP Core

Functionality

Implementation of LSP including tests

- Link Saturation Map

M7 14.12.2020 App LSP - Implementation of additional use

cases

M8 08.01.2020 Delivery - All delivery items uploaded to AVT

Table 3: Milestones

5.3 Phases / Iterations

The project will consist of the four phases called Inception, Elaboration, Construction and Transition.

A phase consists of iterations. Each iteration lasts one week. At the end of each iteration the progress

is reviewed at a meeting. It will be checked, if all planned tasks were completed and discuss the

difficulties and problems that arose during the iteration. Subsequently, the next iteration is planned

by deciding on which work packages need to be attended to next.

Project Thesis: SR-App Analytics

88

5.3.1 Inception

The inception phase lasts one week. In this phase the scope of the project will be defined, and the

work environment will be set up.

5.3.2 Elaboration

The elaboration phase lasts four weeks. This phase contains the following:

• Determine how the required data from Jalapeño can be accessed and how it will be loaded

into the SR-Apps.

• Create a prototype for the UI

• Create a prototype for the business logic and define all interfaces

• Create a class and package diagram to show the planned software architecture

5.3.3 Construction

During the construction phase, which will be taking eight weeks, the SR-Apps will be developed. All

three Apps will be combined to a single application.

5.3.4 Transition

The last three weeks is reserved for the transition phase. This phase will contain final code clean up

and the finalizing of all documentation.

5.4 Meetings

Day of

Week

Time Topic Who Where

Monday 09:00 –

10:00

Review and planning with

supervisor

Dominique Illi

Michel Bongard

Laurent Metzger

HSR, Room

8.125

Monday 13:00 –

14:00

Sprint review, grooming &

planning

Dominique Illi

Michel Bongard

HSR, Room

1.258

Table 4: Meetings

Project Thesis: SR-App Analytics

89

6 Risk management

6.1 Risks

The risk assessment is shown in Figure 2.

Figure 2: Risk Assessment

Source: own creation

Project Thesis: SR-App Analytics

90

7 Work packages
All work packages are managed by Jira.

Project Thesis: SR-App Analytics

91

8 Infrastructure

8.1 General

Tool Description

Computer Every developer needs a computer for development.

Visual Studio Every developer needs Visual Studio for development.

Atlassian Jira A cloud-hosted instance of Jira is used to create and manage work packages

and to log time.

Atlassian Bamboo An instance of Bamboo is hosted on a private server to handle CI/CD.

GitHub The repository of the source code as well as version control is managed by

GitHub.

OneDrive OneDrive will be used for collaborative editing of documents.

Table 5: General Infrastructure

8.2 CI/CD Pipeline

Figure 3: CI/CD Pipeline

Source: own creation

Figure 3 shows the CI/CD pipeline.

Project Thesis: SR-App Analytics

92

• GitHub: is used for version control. The source code is pushed to GitHub if all tests and the

style checker are green.

• Bamboo: is the build server. The source code is built every night. With each build all tests are

executed and reported.

• Jira: is used for time tracking and sprint planning.

• OneDrive: is used to exchange files and store the documentation.

Project Thesis: SR-App Analytics

93

9 Quality measures

9.1 Documentation

The project documentation is stored on OneDrive which allows for collaborative editing.

9.2 Project management

The work packages are created and managed on Jira. This tool is also used to log the time spent on

each package. Every week a grooming meeting is held, where packages are defined, estimated and

prioritized.

9.3 Development

The code is located on a repository on GitHub.

Project Thesis: SR-App Analytics

94

10 Illustration index
Figure 1: Project timetable .. 87

Figure 2: Risk Assessment ... 89

Figure 3: CI/CD Pipeline ... 91

Project Thesis: SR-App Analytics

95

11 Glossary
Term Description

CI/CD Continuous Integration / Continuous Deployment

SR Segment Routing

Table 6: Glossary

Project Thesis: SR-App Analytics

96

SR-App Analytics
E-3 – Software Architecture Document

Authors: Dominique Illi, Michel Bongard

Fall Term 2020

Bachelor Thesis

Project: SR-Apps

Seite 97 von 42

97

1 Content
1 Content .. 97

2 Feature implementation ... 99

2.1 Feature 1 - Link Grading .. 99

2.2 Feature 2 – Link Saturation Prediction .. 100

3 Use Case Coverage .. 101

3.1 Use case 01 – Load Map .. 101

3.2 Use case 02 – Zoom in ... 102

3.3 Use case 03 – Zoom Out .. 104

3.4 Use case 05 – Remove Link ... 105

3.5 Use case 06 – Add Link .. 107

3.6 Use case 07 – Remove Node ... 108

3.7 Use case 09 – Change Link Attributes ... 109

3.8 Use case 11 – Manually Poll Topology .. 111

4 Core Logic .. 113

4.1 Shortest Path Calculation .. 113

4.1.1 Introduction ... 113

4.1.2 Modifications ... 113

4.1.3 Time & Space Complexity .. 113

4.2 Link Saturation Calculation .. 114

4.2.1 Example ... 114

4.2.2 Time Complexity .. 116

4.3 Clustering ... 116

4.3.1 Introduction ... 116

4.3.2 Approach ... 116

4.4 Positioner .. 116

5 System overview ... 117

5.1 System Context Diagram ... 118

5.2 Container Diagram .. 118

6 Logical Architecture ... 120

6.1 Core Architecture .. 120

6.2 Client-Server Communication ... 120

6.3 Architectural overview .. 121

7 Presentation Layer .. 123

7.1 Hubs ... 123

7.2 Handlers .. 124

7.3 Converters ... 124

Bachelor Thesis

Project: SR-Apps

Seite 98 von 42

98

7.4 Model .. 124

8 Business Layer ... 125

8.1 Views ... 127

8.2 Maps .. 127

8.3 Topologies ... 128

8.4 Algorithms ... 128

8.5 Services .. 128

8.6 Model .. 129

8.7 Converter ... 129

9 Data Access Layer .. 130

9.1 Services .. 130

9.2 DatabaseModel ... 130

9.3 AccessTypes ... 131

9.3.1 Most important operations ... 131

10 Libraries ... 133

11 Processes and Threads .. 134

11.1 Processes ... 134

11.2 Parallelization .. 134

11.2.1 Polling Task .. 134

12 Deployment ... 135

13 Illustration index .. 136

14 Glossary ... 137

Bachelor Thesis

Project: SR-Apps

Seite 99 von 42

99

2 Feature implementation
This chapter describes the scope of the implemented features.

2.1 Feature 1 - Link Grading

The feature Link Grading allows the user to view the quality and importance of links. Through UI

controls, the user can choose between the four different views (maps) listed in Table 1.

Map Description

Packet Loss Highlights the map according to the packet loss values of the links.

Higher is worse.

Link Delay Highlights the map according to how frequently the delay values of the

links change.

The more frequently the delay changes, the worse.

Link Saturation Highlights the map according to the saturation of the links (how much of

the available bandwidth is used).

The more saturated, the worse.

Link Quality Combines the maps “Packet Loss” and “Link Delay”, highlighting the

individual links according to the worse value of the two.

Table 1: Maps

The highlighting of the map is achieved by coloring the links according to the code shown in Figure 1.

Figure 1: Map color codes

Source: own creation

The importance of a link is determined by how many shortest paths are using it. The more shortest

paths use a specific link, the more important it is considered to be. This is because, if a link fails that

is used by many shortest paths, its absence has a higher impact on the topology than one that is used

by only a few shortest paths.

Figure 2 shows an example of a Packet Loss map. Figure 3 shows the same topology but with the Link

Saturation map instead.

Bachelor Thesis

Project: SR-Apps

Seite 100 von 42

100

Figure 2: Packet Loss map

Source: own creation

Figure 3: Link Saturation map

Source: own creation

2.2 Feature 2 – Link Saturation Prediction

The application allows the user to make changes to the topology through the UI, such as removing

and adding links or nodes. This, of course, may impact certain shortest paths and therefore also

change the distribution of traffic in the network.

To allow the user to simulate such changes to the topology, all shortest paths are recalculated after

any alteration to the network and the traffic distribution is recalculated.

This is possible thanks to the traffic data provided by the SR protocol. Through its traffic matrix, the

amount of traffic between any two nodes can be extracted.

For a more detailed description on how the traffic is redistributed, see Chapter 4.2.

Bachelor Thesis

Project: SR-Apps

Seite 101 von 42

101

3 Use Case Coverage
This chapter describes to what extent the use cases are covered (see Table 2) and which architectural

components they use. Due to similarity in some use cases, not all are described in detail.

Use Case Status

01 – Load Map Fully implemented

02 – Zoom In Fully implemented

03 – Zoom Out Fully implemented

04 – Show Details Fully implemented

05 – Remove Link Fully implemented

06 – Add Link Fully implemented

07 – Remove Node Fully implemented

08 – Add Node Fully implemented

09 – Change Link Attributes Fully implemented

10 – Load Latest Topology Fully implemented

11 – Manually Poll Topology Fully implemented

Table 2: Use case coverage

3.1 Use case 01 – Load Map

All maps are created during the session initialization (when a new user connects to the server) and

continuously updated when the user makes changes to the topology.

The use case is triggered by switching the map from the drop-down menu in the UI (see Figure 4).

Figure 4: Map selector

Source: own creation

Figure 5 shows the sequence which is triggered by the user selection.

Bachelor Thesis

Project: SR-Apps

Seite 102 von 42

102

Figure 5: Sequence diagram – Use case 01

Source: own creation

1. Using SignalR [1], the client invokes the method GetMap() in the TopologyHub on the server.

2. The TopologyHub first retrieves the session of the user which contains the session specific

topology.

3. Because the user can move nodes around on the map, the node coordinates may have

changed. To prevent resetting the positions of the nodes after every API call, all node

coordinates (such as they are positioned by the user) need to be sent along with the API call

and adopted by the server.

4. Retrieves the requested Map and then converts the Map into a UiTopology which will be

sent back to the client and rendered by Vis.js.

5. Using SignalR, the server invokes the method onTopologyReturned() on the client.

For more details on client-server communication see Chapter 6.2.

3.2 Use case 02 – Zoom in

By default, only regions (clusters) are shown (see Figure 6).

1

2

3

4

5

Bachelor Thesis

Project: SR-Apps

Seite 103 von 42

103

Figure 6: Default view - showing only regions

Source: own creation

To see the routers in a region the cluster can be expanded by simply double-clicking on a region. This

triggers the sequence shown in Figure 8, which removes the cluster node from the map and instead

places all routers in a circular fashion around the region center. This results in the map shown in

Figure 7.

Figure 7: Expanded region ZRH

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 104 von 42

104

Figure 8: Sequence diagram – Use case 02

Source: own creation

The client-server communication and node adoption process is analog to the use case 01 in Chapter

3.1.

1. The View class keeps track of all nodes and links which are visible and get rendered by the UI.

2. The cluster and cluster links are removed from the View. In their stead, the routers and links

from that cluster are added to the lists.

3. The Positioner is called to calculate the coordinates of the now visible routers.

4. Finally, the updated map is retrieved and sent back to the client as a UiTopology analog to

Chapter 3.1.

3.3 Use case 03 – Zoom Out

The logic behind this use case is nearly identical to use case 02 (zoom in) in Chapter 3.2.

The user can collapse a region by double-clicking on a router. In this case the cluster and cluster links

are added to the View and the actual routers and links are removed from the View. The view is then

converted into a UI Topology and sent to the client (see Figure 9).

1

2

3

4

Bachelor Thesis

Project: SR-Apps

Seite 105 von 42

105

Figure 9: Sequence diagram – Use case 03

Source: own creation

3.4 Use case 05 – Remove Link

The user can remove a link by selecting it in the UI and then clicking the “Delete Link” button in the
map header (see Figure 10).

Figure 10: Map header

Source: own creation

Figure 11 shows the Link Saturation map of the original topology and Figure 12 shows the Link

Saturation map after the link between XR1 and XR2 (the red one) has been deleted. Because the

traffic was redistributed after the change to the topology (see Chapter 4.2 for more information), the

map is now highlighted differently, showing the link saturation prediction.

Bachelor Thesis

Project: SR-Apps

Seite 106 von 42

106

Figure 11: Original topology

Source: own creation

Figure 12: Topology after link XR1-XR2 is removed

Source: own creation

Figure 13 shows the sequence triggered when the user clicks the “Delete Link” button.

Bachelor Thesis

Project: SR-Apps

Seite 107 von 42

107

Figure 13: Sequence diagram – Use case 05

Source: own creation

1. The link is removed from the session specific topology and a recalculation of the shortest

paths and the link saturation is triggered.

2. The link is removed from the View class and the grading of links and nodes on each map is

recalculated to represent the changed topology.

3.5 Use case 06 – Add Link

The user can add a link to the network by clicking the “Add Link” button in the map header and then

clicking and dragging the new link from the start to the target router. Adding a link triggers the

sequence shown in Figure 14.

1

2

Bachelor Thesis

Project: SR-Apps

Seite 108 von 42

108

Figure 14: Sequence diagram – Use case 06

Source: own creation

1. The link is added to the session specific topology and a recalculation of the shortest paths

and the link saturation is triggered.

2. The link is added to the View class and the grading of links and nodes on each map is

recalculated to represent the changed topology.

3.6 Use case 07 – Remove Node

The user can delete a router from the network by selecting it first and then clicking the “Delete
Node” button in the map header. Figure 15 shows the sequence that is triggered by this action.

1

2

Bachelor Thesis

Project: SR-Apps

Seite 109 von 42

109

Figure 15: Sequence diagram – Use case 07

Source: own creation

1. The router is removed from the session specific topology and a recalculation of the shortest

paths and the link saturation is triggered.

2. The router is removed from the View class and the grading of links and nodes on each map is

recalculated to represent the changed topology.

3.7 Use case 09 – Change Link Attributes

The user can change link attributes by selecting a link and then clicking the “Edit” button in the
details view (see Figure 16) to enter the “Edit” mode (see Figure 17). Fields that are eligible for

editing are highlighted with an orange border. The two tabs marked with arrows allow switching

between the two unidirectional links that the link consists of.

1

2

Bachelor Thesis

Project: SR-Apps

Seite 110 von 42

110

Figure 16: Link details view

Source: own creation

Figure 17: Link details view in "Edit" mode

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 111 von 42

111

Saving the changes triggers the sequence shown in Figure 18.

Figure 18: Sequence diagram – Use case 09

Source: own creation

1. The updated link values are transferred to the session specific topology and a recalculation of

the shortest paths and the link saturation is triggered.

2. The View class triggers the re-grading of links and nodes on each map to represent the

changed topology.

3.8 Use case 11 – Manually Poll Topology

The user can force the server to immediately poll the latest data from the database by clicking the

"Take New Snapshot" button (see Figure 19). This resets the periodic polling task running in the

background on the server, which periodically polls data from the database every 15 minutes.

Figure 19: Snapshot buttons

Source: own creation

Clicking this button triggers the sequence shown in Figure 20.

1

2

Bachelor Thesis

Project: SR-Apps

Seite 112 von 42

112

Figure 20: Sequence diagram – Use case 11

Source: own creation

1. The task which periodically polls data from the database every 15 minutes is cancelled. A

single poll is then executed, after which the periodic polling task is restarted

2. The TopologyHub then resets the session, loading the latest topology snapshot to the

session.

1

2

Bachelor Thesis

Project: SR-Apps

Seite 113 von 42

113

4 Core Logic
This chapter provides short descriptions of the implemented algorithms and concepts.

4.1 Shortest Path Calculation

4.1.1 Introduction

Both to be able to display the importance of links for the link quality assessment (Chapter 2.1) and to

calculate the saturation of the links (Chapter 2.2) all shortest paths of the entire topology need to be

calculated.

For this purpose, a modified version of Dijkstra is implemented, using the FastPriorityQueue from

the GitHub user BlueRaja [2], which is a C# implementation of a heap-based priority queue that has

been optimized for speed when used for path-finding algorithms.

The shortest path calculation is discussed in more detail in the document “Technical Report”.

4.1.2 Modifications

The two modifications to the classic Dijkstra algorithm are the following:

1. From the resulting tree structure calculated by Dijkstra, each node remembers its parent.

This allows the reconstruction of the shortest paths.

2. The classic Dijkstra algorithm disregards equal cost shortest paths. Through an additional if-

clause, these paths can be taken into consideration as well.

4.1.3 Time & Space Complexity

The calculation of all shortest paths of a topology has the following time complexity: 𝑂(𝑁2 ∗ log(𝑁))

This results in the real-life performance measurements shown in Table 3. These tests were run on an

Intel i7-6700k (4GHz Quad-Core, Multithreaded) and 32GB of RAM.

Nodes Edges (Bidirectional) Duration (best of 5)

500 1’500 0.10 seconds

1’000 3’000 0.52 seconds

1’000 10’000 1.10 seconds

3’000 9’000 8.98 seconds

Table 3: Results of testing custom implementation for shortest path calculation

Storing all shortest paths of a topology has the following space complexity: 𝑂(𝑁2)

Bachelor Thesis

Project: SR-Apps

Seite 114 von 42

114

Because in order to store the shortest paths, only references to the parents need to be saved, the

space requirement of any topology is simply 𝑁2 ∗ 64𝑏𝑖𝑡 on a 64-bit system, which results in roughly

8MB for 1’000 Nodes.

4.2 Link Saturation Calculation

To accurately predict the behavior of a network in case of a change in the topology (such as a link

failure), the saturation of every single link in the network needs to be recalculated.

For this purpose, SR-Apps uses the traffic data provided by the segment routing protocol, which

indicate the amount of traffic flowing between any two SR-routers in the network.

4.2.1 Example

As an example, consider the topology in Figure 21. The numbers on the links represent the IGP metric

used for the shortest path calculation.

Figure 21: Sample Topology

Source: own creation

For this example, only the traffic from router R4 to router R1 is distributed. Figure 22 shows all four

shortest paths from R4 to R1, which are highlighted as red, green, blue and orange.

Bachelor Thesis

Project: SR-Apps

Seite 115 von 42

115

Figure 22: All shortest paths from R4 to R1

Source: own creation

Assuming that the traffic flowing from R4 to R1 is 1.2 Gbps, the traffic would be distributed as shown

in Figure 23. The numbers on the links show the distributed traffic in Mbps.

Figure 23: Distributed traffic from R4 to R1

Source: own creation

Traffic is always split evenly among all possible next hops. Therefore, the same amount of traffic

flows from R4 to R2 as it does from R4 to R3, even though there are three shortest paths going from

R4 to R3.

Traffic is also split evenly again among all equal cost links between two routers. Therefore, the 300

Mbps flowing from R3 to R2 is split in two, half flowing in one link, the other half in the other link.

To recalculate the link saturation of the entire topology, the process illustrated in this chapter needs

to be repeated for every possible router combination, so it needs to be done N2 times.

Bachelor Thesis

Project: SR-Apps

Seite 116 von 42

116

4.2.2 Time Complexity

The calculation of the link saturation of a topology has the following time complexity: 𝑂(𝑁2 ∗ log(𝑁))

This results in the real-life performance measurements shown in Table 4. These tests were run on an

Intel i7-6700k (4GHz Quad-Core, Multithreaded) and 32GB of RAM.

Nodes Edges (Bidirectional) Duration (best of 5)

500 1’500 0.21 seconds

1’000 3’000 0.97 seconds

1’000 10’000 1.19 seconds

3’000 9’000 10.77 seconds

Table 4: Results of testing implementation for link saturation calculation

4.3 Clustering

4.3.1 Introduction

Because for large topologies the flood of information for the user can be overwhelming, a way to

cluster nodes is implemented.

The current version of the application only implements a single level of clusters, which are the

regions, since this has been determined to be sufficient for topologies up to 1’000 nodes. For larger
topologies however, multilevel clustering may need to be considered. This is discussed in the

document “Technical Report”.

4.3.2 Approach

The clusters are created by grouping the routers according to their regions (IATA airport codes).

The individual links between regions are combined to a single cluster link, which gets assigned the

same grade (importance metric) as the link with the highest grade it contains.

4.4 Positioner

To provide better orientation for the user, the topology in the UI is drawn on top of a static image of

a world map.

The positioner is responsible for placing the regions on the correct coordinates, which are predefined

in advance. The regions then stay on a fixed place on the map, even when zooming in and out.

The positioner also calculates the coordinates of routers, when a region is expanded. The routers are

positioned in a circular fashion around the center of the region.

Bachelor Thesis

Project: SR-Apps

Seite 117 von 42

117

5 System overview
The project consists of two software systems. One system is called "Jalapeño" and is provided by the

industry partner. The second system, called SR-App, is developed for this bachelor thesis.

The SR-App system relies on Jalapeño to get data on the monitored SR topology. The network

information is sent by the routers using BGP Monitoring Protocol (BMP) and Streaming Telemetry to

Jalapeño. Jalapeño uses Kafka to aggregate the received data and stores it in two databases (InfluxDB

for performance data and ArangoDB for topology data). The SR applications gets the required data

directly from ArangoDB. The data can then be used to perform calculations and provide the results to

the user. The data flow is shown in Figure 24.

Figure 24: Data flow Jalapeño and SR-App

Source: Private GitHub repository of Jalapeño [3]

Because the current version of Jalapeño does not provide all information required to implement the

defined use cases (such as the SR traffic matrix) and some minor problems with the router to

Jalapeño communication occurred, no real data is used for the SR-App. Instead, all topology data is

mocked and loaded to ArangoDB manually. By using the mocked database new data attributes can

be easily added and topologies of any size and complexity can be generated.

The use of a mocked database has no impact on the software development and software

architecture because the SR-App only communicates with the ArangoDB.

Bachelor Thesis

Project: SR-Apps

Seite 118 von 42

118

5.1 System Context Diagram

The System Context as shown in Figure 25 illustrates how the user (SR-Topology operator) and the

software systems SR-App and Jalapeño are interconnected.

Figure 25: System Context Diagram

Source: own creation

5.2 Container Diagram

Figure 26 shows the container diagram of the application.

Bachelor Thesis

Project: SR-Apps

Seite 119 von 42

119

Figure 26: Container Diagram

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 120 von 42

120

6 Logical Architecture
This section documents the logical architecture and design decisions made during the project.

6.1 Core Architecture

The SR-App follows a classic client-server architecture. All calculations are made in the backend and

published to the clients using a web socket. The client itself is only used to display the data but does

not perform any calculations on its own, except for some visual tweaks through JavaScript. As

foundation an ASP.NET Core 3.1 web application is used. The application follows a monolithic

architecture. It was decided to use a monolithic architecture instead of a microservice architecture

because it is a lot easier to test and debug and easier to deploy.

6.2 Client-Server Communication

The client-server communication is display in Figure 27. For communication, a web socket is used. It

was decided not to use a REST API but a WebSocket, because there is much more data sent by the

server to the client than the other way round. Data can be generated at any point during the lifecycle

of the application and needs to be sent to the client without any prior requests made by the client.

ASP.NET Core offers an open-source library called SignalR which was used to push content to clients

instantly. SignalR supports real-time data transmission and requires JavaScript on the client to

establish the WebSocket connection. This allows the client to call C# backend methods and the

server to invoke JavaScript methods on the client.

Figure 27: sequence diagram client-server communication

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 121 von 42

121

6.3 Architectural overview

SR-App is structured into three layers (see Table 5) and multiple packages per layer.

Layer Description

Web For UI components and the communication to the client. Depends on the

ApplicationCore layer.

ApplicationCore Contains business logic and functionality. Depends on the Infrastructure layer.

Infrastructure Performs data access to the ArangoDB.

Table 5: Application Layers

An overview of all layers and packages is given by Figure 28.

Bachelor Thesis

Project: SR-Apps

Seite 122 von 42

122

Figure 28: Package diagram

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 123 von 42

123

7 Presentation Layer
The presentation layer is the starting point of the application. It contains the main method to startup

all other components. Its package diagram is illustrated in Figure 29. It also contains a wwwroot

folder which holds everything that is sent to the client, such as the markup code, style sheets and

JavaScript files.

Figure 29: Package diagram – presentation layer

Source: own creation

7.1 Hubs

This package contains all hubs which are needed to communicate to the clients using SignalR (see

Table 6). The hub allows bidirectional communication between clients and the server by invoking

either C# methods through the client or JavaScript methods through the server.

Class Description

TopologyHub.cs Gets instantiated as soon the application starts up. The hub contains all

methods a client can invoke and is also capable of invoking methods on the

client side.

The TopologyHub does not itself process the requests but passes them on to

the RequestHandler.

Table 6: Hubs package - class description

Bachelor Thesis

Project: SR-Apps

Seite 124 von 42

124

7.2 Handlers

This package contains important classes to handle different type of operations (see Table 7). It

handles the individual sessions and their requests, as well as updates that are to be pushed from the

server to the clients, for example in case of database connectivity loss.

Class Description

RequestHandler.cs Instantiated as singleton. It is responsible of processing all client requests.

ServerPushHandler.cs Instantiated as singleton. Provides callback methods to send notifications

to clients.

SessionHandler.cs Instantiated as singleton. Holds and manages all established sessions and

saves session information.

Table 7: Handlers package - class description

7.3 Converters

This package holds classes which are responsible for the conversion between server-side and client-

side objects (see Table 8).

Class Description

UiConverters.cs This class converts a server-side Topology to a client-side UiTopology.

Table 8: Converters package - class description

7.4 Model

This package contains all classes which are used to represent a topology in the UI, as well as the class

to represent a Session (see Table 9). These models contain specific attributes which are needed by

the frontend framework vis.js to draw the topology.

Class Description

Session.cs Holds all necessary information on a session. Each Session has a reference to

its own copy of a topology.

UiTopology.cs The UiTopology contains converted objects for nodes and edges, which

directly represent the objects passed to the vis.js library.

Table 9: Model package - class description

Bachelor Thesis

Project: SR-Apps

Seite 125 von 42

125

8 Business Layer
The business layer is the heart of the application and contains the main logic needed for the

predefined use cases. Its package diagram is illustrated in Figure 30.

Bachelor Thesis

Project: SR-Apps

Seite 126 von 42

126

Figure 30: Package diagram – business layer

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 127 von 42

127

8.1 Views

The Views package contains three classes (see Table 10), which are responsible for what the user

sees in the UI.

Class Description

View.cs The View represents what the user sees in the UI, so which nodes and edges

of the topology are displayed and where they are positioned.

• Each session gets its own instance of a View.

• The View contains all routers, clusters, links and cluster links from

the current user selection.

• A View contains several Maps, which describe how (styling) the

nodes and edges are displayed.

Clustering.cs This class handles all clustering operations. It is called by the View when the

user makes any changes to the nodes of the topology.

Positioner.cs This class calculates the positions (coordinates) of the nodes. It is called by

the View whenever clusters are expanded or collapsed.

Table 10: Views package - class description

8.2 Maps

The Maps package contains everything required for how the nodes and edges are displayed in the UI,

meaning the different heat maps. The most important classes are described in Table 11.

Class Description

Map.cs The Map class represents a specific heat map.

• It is called by the View whenever the user makes changes to

the topology. It then triggers the recalculation of the edge

and node grading.

• Each Map uses a specific Algorithm (such as

LinkDelayAlgorithm) to grade the edges and nodes.

MapStyling.cs The MapStyling defines the color assignment of edges based on

their grades.

LinkDelayAlgorithm.cs

LinkQualityAlgorithm.cs

LinkSaturationAlgorithm.cs

PacketLossAlgorithm.cs

These algorithms grade links based on predefined thresholds. As an

example, the LinkSaturationAlgorithm grades links as follows:

- Link saturation > 88% => Grade 2

- Link saturation > 50% => Grade 1

- Else => Grade 0

Table 11: Maps package - class description

Bachelor Thesis

Project: SR-Apps

Seite 128 von 42

128

8.3 Topologies

This package only contains the class Topology. It is described in Table 12.

Class Description

Topology.cs This class represents an entire topology, containing all its routers and links.

- Each session gets a deep copy of the original topology, so all

topology changes by the user affect only his or her session.

- When a user makes any changes to the topology, such as removing

or adding links or nodes, these changes will be reflected in this class.

- After changes to the topology, this class triggers the recalculation of

all shortest paths and the link saturation

Table 12: Topologies package - class description

8.4 Algorithms

This package contains the algorithms for the shortest path calculation and the link saturation, which

are responsible for the core features of the application (see Table 13).

Class Description

Dijkstra.cs This is a static class that calculates all shortest path of a given topology.

LinkSaturation.cs This is a static class that distributes all traffic of a topology based on the

traffic data provided by segment routing. It requires the shortest paths to

have already been calculated in advance.

Table 13: Algorithms package - class description

For more detail on how these algorithms are implemented, see Chapter 4.

8.5 Services

The Services package contains service classes (see Table 14).

Class Description

TopologyService.cs The TopologyService is started as a singleton from the ASP.NET startup class.

It manages the original topology and provides deep copies to new sessions.

PollingService.cs The PollingService is instantiated in the ASP.NET startup class. This service is

responsible for polling data from the database and converting it to a

Topology object. It does so once on system startup and then periodically

every 15 minutes.

DelayHandler.cs The DelayHandler tracks changes in the link delay values. Every time a new

snapshot of the topology is taken from the database, this handler compares

Bachelor Thesis

Project: SR-Apps

Seite 129 von 42

129

the new link delay values with the existing ones. It then keeps track of how

often the value has changed for each specific link, so fluctuations can be

shown in the UI.

Table 14: Services package - class description

8.6 Model

This package contains all the classes used to represent a Topology like Routers and Links (see Table

15).

Class Description

Cluster.cs Represents a cluster. Contains all nodes which belong to the cluster.

Router.cs Represents a router with all its bidirectional links.

TrafficData.cs The TrafficData object holds the number of bytes sent from a router to a

specific prefix SID.

ClusterLink.cs A ClusterLink represent a connection between two clusters. It contains a

list of all BidirectionalLink belonging to the ClusterLink.

BidirectionalLink.cs Represents a bidirectional connection between two routers. A

BidirectionalLink consists of two unidirectional links. The

BidirectionalLink also holds references to the two routers it connects to.

UnidirectionalLink.cs Represents a unidirectional connection between two Routers. It holds

all the properties which are used in the business logic and the UI such as

bandwidth utilization, link delay, number of shortest paths, IGP metric

and packet loss.

Table 15: Model package - class description

8.7 Converter

This package handles the conversion of the data retrieved from the database by the Infrastructure

layer to the domain model classes used in the ApplicationCore layer (see Table 16).

Class Description

Converter.cs Static class which provides convertion methods. The methods are

invoked by the PollingService. After converting all links and routers a

Topology can be created using the convertet data.

Table 16: Converter package - class description

Bachelor Thesis

Project: SR-Apps

Seite 130 von 42

130

9 Data Access Layer
The data access layer is responsible for accessing the ArangoDB. It contains the C# library performing

the requests to the database and implements methods which can be called by the ApplicationCore

Layer to retrieve the data. Its package diagram is shown in Figure 31.

Figure 31: Package diagram - data access layer

Source: own creation

The layer consists of three packages. The Services package contains a service used by the upper

layers to access the database, the DatabaseModel package contains the classes which model the

data fetched from the database and the AccessTypes package contains the concrete implementation

of the access to the ArangoDB.

9.1 Services

This package contains the DbAccessService class (see Table 17). The class abstracts the methods used

for the data access from the implementation.

Class Description

DbAccessService.cs Contains methods to fetch data from the ArangoDB. The PollingService

instantiates a new DbAccessService to fetch data from the database.

Table 17: Services package - class description

9.2 DatabaseModel

The DatabaseModel package contains the data model used to create objects from the data in the

ArangoDB (see Table 18).

Bachelor Thesis

Project: SR-Apps

Seite 131 von 42

131

Class Description

Document.cs Represents a document as stored inside a collection of the ArangoDB.

Holds the unique key attribute.

LSLink.cs Contains the properties retrieved from the data inside one LSLink

document.

LSNode.cs Contains the properties retrieved from the data inside one LSNode

document.

Table 18: DatabaseModel package - class description

9.3 AccessTypes

The AccessTypes package contains the concrete implementation of the data access (see Table 19).

The ArangoDBNetStandard driver is used to access the database.

Class Description

ArangoDBAcces.cs Contains async methods to access the ArangoDB. The ArangoDBAccess

is used in the PollingService. When the DbAccessService is instantiated a

reference to the ArangoDBAccess instance is provided following the

Strategy Pattern.

Table 19: AccessTypes package - class description

9.3.1 Most important operations

The most important operation is the initial retrieving of data from the ArangoDB upon application

start. Figure 32 displays the interaction between the PollingService in the business layer and the

ArangoDBAccess in the data access layer.

Bachelor Thesis

Project: SR-Apps

Seite 132 von 42

132

Figure 32: sequence diagram data access

Source: own creation

Bachelor Thesis

Project: SR-Apps

Seite 133 von 42

133

10 Libraries
Table 20 lists all external libraries used in the project which do not belong to .NET Core.

Layer Library Description

Infrastructure ArangoDBNetStandard

(1.0.0)

This library was installed using the C# NuGet package

manager. It contains the assemblies which provide the

classes and methods to access the ArangoDB. Internally

all calls to the database are made using the API

ArangoDB provides.

Table 20: External libraries

Bachelor Thesis

Project: SR-Apps

Seite 134 von 42

134

11 Processes and Threads
This chapter describes the processes and threads used inside the SR-App.

11.1 Processes

Due to the monolithic architecture of SR-App the whole application runs inside a single process. The

main method in the Program.cs class of the Web layer is called first and starts all other components

of the application.

11.2 Parallelization

The application uses the C# Task Parallel Library to perform the polling of data from the ArangoDB

and some parts of the algorithms for Shortest Path and Link Saturation calculation asynchronously.

The tasks used for polling data are started inside the Startup.cs class

11.2.1 Polling Task

A dedicated task is used for periodically polling new data from the database. It ensures that the

business logic works with current data and to provides a responsive application while the data is

loaded from the database. The task is started on system startup and runs for the lifetime of the

application. It polls data from the database every 15 minutes.

Bachelor Thesis

Project: SR-Apps

Seite 135 von 42

135

12 Deployment
SR-App is a classic client-server application. The deployment is simple and can be containerized to

scale the application. Figure 33 displays a sample deployment on a Linux Server using docker-

compose. The deployment consists of two containers one containing the SR-App instance and the

other the ArangoDB database containing the topology data.

Figure 33: Deployment diagram

Bachelor Thesis

Project: SR-Apps

Seite 136 von 42

136

13 Illustration index
Figure 1: Map color codes ... 99

Figure 2: Packet Loss map ... 100

Figure 3: Link Saturation map ... 100

Figure 4: Map selector ... 101

Figure 5: Sequence diagram – Use case 01 ... 102

Figure 6: Default view - showing only regions .. 103

Figure 7: Expanded region ZRH ... 103

Figure 8: Sequence diagram – Use case 02 ... 104

Figure 9: Sequence diagram – Use case 03 ... 105

Figure 10: Map header .. 105

Figure 11: Original topology .. 106

Figure 12: Topology after link XR1-XR2 is removed .. 106

Figure 13: Sequence diagram – Use case 05 ... 107

Figure 14: Sequence diagram – Use case 06 ... 108

Figure 15: Sequence diagram – Use case 07 ... 109

Figure 16: Link details view ... 110

Figure 17: Link details view in "Edit" mode ... 110

Figure 18: Sequence diagram – Use case 09 ... 111

Figure 19: Snapshot buttons ... 111

Figure 20: Sequence diagram – Use case 11 ... 112

Figure 21: Sample Topology .. 114

Figure 22: All shortest paths from R4 to R1 .. 115

Figure 23: Distributed traffic from R4 to R1 .. 115

Figure 24: Data flow Jalapeño and SR-App ... 117

Figure 25: System Context Diagram .. 118

Figure 26: Container Diagram ... 119

Figure 27: sequence diagram client-server communication ... 120

Figure 28: Package diagram .. 122

Figure 29: Package diagram – presentation layer ... 123

Figure 30: Package diagram – business layer .. 126

Figure 31: Package diagram - data access layer .. 130

Figure 32: sequence diagram data access ... 132

Figure 33: Deployment diagram .. 135

Bachelor Thesis

Project: SR-Apps

Seite 137 von 42

137

14 Glossary
Term Description

API Application Programming Interface

GHz GigaHertz

IATA International Air Transport Association

IGP Interior Gateway Protocol

Prefix SID Prefix Segment Identifier

RAM Random Access Memory

SR Segment Routing

UI User Interface

Table 21: Glossary

