
Term project

SD-WAN Topology Viewer

Eastern Switzerland University of Applied Sciences

Department of Computer Science

Period: 14.09.2020 - 18.12.2020

Authors Dominic Gabriel

Lars Barmettler

Supervisor Prof. Laurent Metzger

Co-Supervisor Jessica Hilti

Industry Partners KSAT Satellite Services

Insoft Services

Task description

SD-WAN Topology Viewer i

Abstract

Software defined WAN (SD-WAN) is a trending new technology that is emerging fast.
Many of the market leading network equipment providers, like Cisco, have developed
their own SD-WAN solution. For IT professionals using SD-WAN solutions in global
companies, the complexity of their network quickly becomes overwhelming. As a result,
it is even harder to keep track of the network topology.

Cisco’s SD-WAN solution vManage provides a web application that is primarily designed
for configuration. It provides a simple graphical overview of the distribution of the in-
dividual routers on a world map. Unfortunately, it is not designed for active monitoring
of the infrastructure and does not display the IPSec tunnels. With the rise of SD-WAN,
its products and non-existent monitoring solutions, the foundation for a solution to this
problem has already been laid.

In contrast to Ciscos vManage web application, the SD-WAN Topology Viewer (SDWANTV)
puts more emphasis on a visual representation of the topology. It not only displays both
devices and IPSec tunnels, but also the states of both and the metrics of the IPSec tunnels.
With a filter, the user is able to only display those resources they are interested in. Be-
cause of the simple user experience, a network administrator can quickly detect failures
and anomalies in the topology in one view.

With an internal topology state representation based of the information gathered over Cis-
cos vManage API and stored in a PostgreSQL database, the Django backend offers a REST
Application Programming Interface (API) for an improved user interface to a state-of-the-
art single page application written in React. Depending on the size of the topology, the
tool propagates vManage state changes to the frontend in under one minute and therefore
can be rated as a live monitoring.

SD-WAN Topology Viewer ii

Management Summary

Baseline

Globally distributed companies are often faced with an increasing complexity of their network
infrastructure. In the last years, new ideas have emerged to cope with this issue. Software-
Defined Wide Area Networks (SD-WAN) is one of those. SD-WAN brings the advantage of
managing the network by code and perform network segmentation and routing based on
policies and rules. This not only reduces the operational effort but also makes automation
and cloud-based management possible.

Our software has the goal to improve the monitoring experience of the network infrastructure
based on Ciscos vManage SD-WAN solution. Although there are already some tools which
achieve this, our solution takes a different approach and puts emphasis on a visual repre-
sentation of the network infrastructure itself. Professionals and non-professionals alike, can
watch the changes made to the network directly on a monitoring screen at the office and are
able to detect failures and anomalies nearly real-time.

The focus of our project is the construction of a monitoring software solution on top of the
widely known Ciscos SD-WAN solution. We fetch the data about the infrastructure from
Ciscos vManage and display the topology in a web application. The topology displayed is
updated automatically if it changes and displays anomalies.

Approach, Technologies

In the first phase we worked together with a domain expert to pinpoint the most important
features. Out of this we created a functional and non-functional requirement catalog, which
was the baseline for our software.

In the second step we analyzed the system our software is built upon. Our software heavily
relies on Ciscos vManage API. To figure out which data needs to be fetched and how to
efficiently query those, we put a lot of effort into studying the vManage API documentation.

Based on the information gathered we designed our software solution. We split the software
into two tiers. A backend implemented in Django Rest Framework and a frontend running in a
web browser with React. For performance reasons, we chose to have an internal representation
of the network topology. This topology is stored in a PostgreSQL database and is updated by
scheduled tasks which fetches the latest data from the vManage API.

Results

The software solution we created is able to monitor the topology of a network infrastructure
based on the vManage API from Cisco. The main focus on simplicity, robustness and efficiency
can be seen during the user experience and the code behind it.

The user can limit the complexity of the topology to only see a subset of it using a filter.
By clicking on a node or an edge the user can see detailed information about the resource.
In under one minute the changes in the SD-WAN are detected and propagated to the user
interface. If an error happens during the propagation or the fetching from vManage, a status
bar, containing the error message, in the frontend will inform the user.

To better embed our tool for the daily usage, we created features to enable the software to run
on a monitor positioned in the office. A toggle button removes all irrelevant elements of the
topology viewer and puts the page in a full screen mode. The ”keep me logged in” option
enhances the usability and extends the session time up to one week.

SD-WAN Topology Viewer iii

Figure 1: SD-WAN Topology Viewer

Forecast

SDWANTV is constructed with extendibility in mind. This makes it easy to add new features
to the existing codebase.

One of these features, which is interesting for companies with customers connected to their
network, is a multitenancy functionality. As a result, is is possible to add new users to the
system, who only have access to the subset of the topology they are allowed to see.

Next to the multitenancy support, more features could be added. For instance, it would be
helpful if a notification system for metric data directly informs the responsible person or the
path of the data flow from a source to a destination could be visualized.

If one would think even further, this tool could completely replace Ciscos vManage and pro-
vide a more user-friendly solution for the not only monitoring of the SD-WAN infrastructure
but also controlling and conguration of the SD-WAN infrastructure.

SD-WAN Topology Viewer iv

Acknowledgements

We thank the following people for their support during our term thesis:

• Supervisor: Prof. Laurent Metzger

• Co-Supervisor: Jessica Hilti

• Technical support: INS Team Members

• Possibility for this thesis: KSAT, Thomas Torsteinsen

• Knowledge support: Insoft Services

• Technical support: Mikro Stocker (IFS)

• Architecture documentation review: Prof. Olaf Zimmermann

• Proofreading: AnneMarie O’Neill

SD-WAN Topology Viewer v

Contents

Glossary and List of Abbreviations xi

List of Figures xiii

List of Tables xv

I Technical Report 1

1 Technical Report 2
1.1 Introduction and Overview . 2

1.1.1 Problem . 2
1.1.2 Goals . 2
1.1.3 Limitations . 3
1.1.4 Work structure . 3

1.2 Evaluation . 3
1.2.1 Information acquisition . 3

1.3 Concept . 4
1.4 Solution . 5

1.4.1 Implementation . 6
1.5 Conclusion . 6
1.6 Forecast . 7

1.6.1 Non-technical improvements . 7
1.6.2 Technical improvements . 7
1.6.3 Technical debt . 7

II Project Documentation 9

2 Requirements Specification 10
2.1 Thesis Requirements . 10
2.2 Actors . 10

2.2.1 Administrator . 10
2.2.2 Customer . 10
2.2.3 System . 10

2.3 Use Cases . 11
2.3.1 UC1: Monitoring the topology . 11
2.3.2 UC1.1: View the node information . 12
2.3.3 UC1.2: Display connection metrics . 12

SD-WAN Topology Viewer vi

Contents

2.3.4 UC1.3: Display bandwidth of IPsec Tunnels 12
2.3.5 UC1.4: Toggle full screen . 12
2.3.6 UC2: Apply customer filter . 13
2.3.7 UC3: Manage users for companies . 13
2.3.8 UC4: Apply Connection filter . 13
2.3.9 UC5: Display of the path from router to the destination 14
2.3.10 UC6: Manage Metric Alarms . 14
2.3.11 UC6.1: Send alarm to the external syslog server 14

2.4 Non functional requirements . 15
2.4.1 Functionality . 15
2.4.2 Reliability . 15
2.4.3 Usability . 15
2.4.4 Efficiency . 15
2.4.5 Supportability . 15
2.4.6 Portability . 16
2.4.7 Scalability . 16

3 Analysis 17
3.1 Domain model . 17
3.2 Data model . 18

3.2.1 auth user . 18
3.2.2 auth group . 18
3.2.3 edge . 19
3.2.4 metric . 19
3.2.5 node . 19
3.2.6 sync . 19
3.2.7 company . 19

3.3 Cisco vManage API analysis . 19
3.3.1 List devices . 20
3.3.2 OMP Services . 21
3.3.3 IPsec connections . 22
3.3.4 Events . 23
3.3.5 Metrics . 24

4 Architecture & Design Specification 25
4.1 Scope . 25
4.2 Design . 25

4.2.1 Container Diagram . 26
4.2.2 Goals . 26
4.2.3 Twelve Factors . 27

4.3 Design Decisions . 30
4.3.1 Django Backend . 30
4.3.2 React Frontend . 30
4.3.3 PostgreSQL Database . 30

4.4 Software Architecture . 31
4.4.1 Frontend . 31
4.4.2 Communication . 33
4.4.3 Backend . 33

4.5 Sequence Diagrams . 34
4.5.1 Fetch topology . 34
4.5.2 Fetching metrics . 35

4.6 Deployment . 36

SD-WAN Topology Viewer vii

Contents

4.6.1 Client & SDWANTV Frontend . 36
4.6.2 Traefik . 36
4.6.3 Frontend Server . 36
4.6.4 Backend Server . 37
4.6.5 PostgreSQL Database . 37
4.6.6 Beat . 37
4.6.7 Redis . 37
4.6.8 Celery Task Engine . 37
4.6.9 vManage API . 37
4.6.10 Deployment with Docker-compose . 37

4.7 Tools & Frameworks . 38
4.7.1 Frontend . 38
4.7.2 Backend . 38
4.7.3 Communication . 39
4.7.4 Deployment . 39

4.8 UI-Design . 39
4.8.1 Tools . 39
4.8.2 Mock-up . 39
4.8.3 MVP design . 40
4.8.4 Prototype end of construction . 40

5 Implementation & Testing 41
5.1 Implementation . 41

5.1.1 Python Django Backend . 41
5.1.2 Frontend . 47

5.2 Automated Testing . 50
5.2.1 Unit Tests . 50
5.2.2 Integration Tests . 50
5.2.3 Test Coverage . 50

5.3 Manual Testing . 51
5.3.1 System Tests . 51
5.3.2 Non functional Requirements Tests . 51

6 Project Management 52
6.1 Project organization . 52
6.2 Project Meetings . 52
6.3 Process Model . 53
6.4 Software Development Process . 53
6.5 Releases . 56
6.6 Milestones . 56
6.7 Project Plan . 57
6.8 Risk Analysis . 58
6.9 Logging . 59
6.10 Time Report . 59
6.11 Quality Control . 60

6.11.1 Linting . 60
6.11.2 Definition of Done . 61
6.11.3 Coding Guidelines . 61

6.12 MVP . 61

7 Project monitoring 62
7.1 Project reporting . 62

SD-WAN Topology Viewer viii

Contents

7.1.1 Working times . 62
7.1.2 Project phases . 63
7.1.3 Task types . 64
7.1.4 Milestones . 65

7.2 Code statistics . 66

III Appendix 67

A User Manual 68
A.1 Installation . 68
A.2 Deployment . 69
A.3 Deployment configuration . 69
A.4 Configure https certificates . 71
A.5 Operational tasks . 71
A.6 Docker configuration . 73
A.7 Termination . 73
A.8 Docker-compose Yaml . 74
A.9 Traefik config file . 76

B Systemtest protocol 77
B.1 UC1: Monitoring topology: Test 1 . 78
B.2 UC1: Monitoring topology: Test 2 . 80
B.3 UC1: Monitoring topology: Test 3 . 82
B.4 UC1: Monitoring topology: Test 4 . 83
B.5 UC1: Monitoring topology: Reported bugs . 84
B.6 UC1.1: View node information: Test 1 . 85
B.7 UC1.2: Display connection metrics: Test 1 . 86
B.8 UC1.4: Toggle fullscreen: Test 1 . 87
B.9 UC2: Apply customer filter: Test 1 . 88
B.10 UC4: Apply connecton filter: Test 1 . 89

C Non functional requirement testprotocol 90
C.1 Security . 91
C.2 Fault tolerance, user data . 92
C.3 Fault tolerance, vManage data . 93
C.4 Maturity . 93
C.5 Understandability . 93
C.6 Failure management . 94
C.7 Time behaviour . 95
C.8 Response time . 96
C.9 Supportability . 97
C.10 Portability . 97
C.11 Scalability . 97

D Mockup & Wireframe 98
D.1 First Mockup . 98
D.2 MVP Design Wireframe . 100

E Risk analysis 102
E.1 Risk Analysis Table . 102

F vManage API Request & Responses 104

SD-WAN Topology Viewer ix

Contents

F.1 Devices list response . 104
F.2 IPsec inbound response . 105
F.3 Event aggregation query . 106
F.4 Metrics aggregation query . 107
F.5 Metrics response . 108

SD-WAN Topology Viewer x

Glossary and List of Abbreviations

API Application Programming Interface. ii, xi, 6, 15, 19–21, 26, 28, 30, 33, 35–37, 44, 46, 47,
50, 58, 78, 92, see Application Programming Interface

Application Programming Interface Programming interface of a software. Can be used from
other system components or extended.. ii

CI Continous Integration is the practice of merging all developers’ working copies to a shared
mainline several times a day.. 29, 39, 50, 51, 53, 55, 60, 61

Cisco Cisco is the worldwide leader in IT, networking, and cybersecurity solutions.. ii–iv, 2,
3, 5, 19, 25, 26, 28, 29, 37, 42, 46

GitLab Git repository server to host our code on. 27–29, 39, 53, 55, 60, 66, 69

IFS Abbreviation for Institute for Software Rapperswil. 53

INS Abbreviation for Institute for Networked Solutions Rapperswil. 25, 90

Insoft Services Insoft Services is the other industry partner who may wants to form a whole
product out of our provided application and extend it to support multiple SD-WAN
solutions. 10

JSX Template language of React. 50

KSAT Industry partner KSAT who will use to product for their daily business. 10

MVP Abbreviation for Minimum viable Product, defines a minimal set of features an appli-
cation has to provide.. 40, 61

REST API This is a common used set of rules, on which application interface are designed..
2, 6

Scrum Agile project management method which breaks goals into small work packages
which are completed in sprints. 53

SD-WAN Technology to manage wide area networks (WAN) via software.. ii–iv, 2, 3, 5, 10,
25, 26, 37

SD-WAN Topology Viewer This is the name of the application which is being developed in
this thesis. ii

SD-WAN Topology Viewer xi

Glossary and List of Abbreviations

SDWANTV SD-WAN Topology Viewer. ii, iv, xii, 3, 6, 7, 10, 19, 25–27, 29, 30, 38, 41, 45, 59,
68, 69, 73, 77, 93, 94, see SD-WAN Topology Viewer

SIGTERM A signal that is sent by the process handler to the running program to safely shut
down the process.. 29

Single Page Application SPA are a way to implement web application. SPA is coded mainly
in Javascript. 30, 34–36

SonarCube Tool to measure Code metrics. 55

Stdout Standard output, which in a docker container is the container log. 15, 29, 59, 73, 91

Unified Process Agile project management method breaks a project into 4 phases (Inception,
Elaboration, Construction, Transition). 53

VCS Version Control System. xii, 27, see Version Control System

Version Control System Version Control Systems like GIT or Subversion which makes it pos-
sible to keep track of the code with history entries. 27

vManage The API of Ciscos SD-WAN solution vManage. The API can be queried to gather
information about the SD-WAN infrastructure.. ii–iv, 2, 4, 7, 15, 20, 25, 26, 46, 47, 78, 80,
83, 93, 95

vManage API The RESTful API of the vManage.. ii, iii, 2–7, 15, 18, 19, 21, 28, 29, 35, 37, 38,
41–44, 46, 47, 50, 56, 78, 84, 93, 94

YouTrack Issue tracking tool from JetBrains. 55

SD-WAN Topology Viewer xii

List of Figures

1 SD-WAN Topology Viewer . iv

1.1 Deploymentdiagram of the application . 4
1.2 Screenshot of the SDWAN Topology Viewer . 5

2.1 UseCase Diagram . 11

3.1 Domain model . 17
3.2 Data model . 18

4.1 SDWANTV Context Diagram . 25
4.2 SDWANTV Container Diagram . 26
4.3 System overview . 31
4.4 Sequence diagram . 34
4.5 Sequence diagram fetching metric . 35
4.6 Deployment Diagram . 36
4.7 Mockup design . 39
4.8 MVP design . 40
4.9 End of construction design . 40

5.1 OpenAPI Documentation Overview . 44
5.2 OpenAPI Documentation Request . 44
5.3 OpenAPI Documentation Response . 44
5.4 JWT mechanism if access token is outdated . 48

6.1 YouTrack Sprint Planning . 54
6.2 YouTrack Issue Overview . 55
6.3 Slack . 55
6.4 Project Plan . 57
6.5 Risk analysis matrix . 58

7.1 Hours spent per component per team member . 62
7.2 Cake diagram issues per phase . 63
7.3 Cake diagram hours spent per Issue type . 64
7.4 Cake diagram issues per milestone . 65

A.1 Html friendly backend healthcheck . 72

B.1 Topology view . 78
B.2 Edge down . 79
B.3 API Edge down . 79

SD-WAN Topology Viewer xiii

List of Figures

B.4 Edge is gone . 79
B.5 Miami-a up . 80
B.6 API Miami-a up . 80
B.7 Miami-a down . 80
B.8 API Miami-a down . 80
B.9 Miami-a red and edges gone . 81
B.10 Miami-a up again . 82
B.11 API Miami-a up again . 82
B.12 Full-mesh topology view . 83
B.13 Policy applied . 84
B.14 Edges cleaned after 5 minutes . 84
B.15 Full topology view . 85
B.16 View node information . 85
B.17 Full topology view . 86
B.18 Selected edge displays metrics . 86
B.19 Selected edge updated metrics . 86
B.20 Normal fullscreen . 87
B.21 Fullscreen view enabled . 87
B.22 Full topology view . 88
B.23 Customer filter applied . 88
B.24 Full topology view . 89
B.25 Site-id filter applied . 89

C.1 Password stored in DB . 91
C.2 Sample JWT payload . 91
C.3 Logs of the stdout stream . 91
C.4 Login failure message . 92
C.5 Sync state if system runs successful . 94
C.6 Sync is in error state . 94
C.7 Sync information could not be fetched . 94
C.8 Full match without policy applied . 95
C.9 Policy applied 50s later . 95
C.10 Render performance . 96
C.11 Full match fetching speed . 97
C.12 Applied policy fetching speed . 97

D.1 Topology Viewer for User . 98
D.2 Admin panel . 99
D.3 Add new user . 99
D.4 Login page . 100
D.5 Register page . 100
D.6 Full screen view . 100
D.7 Zoomed in view . 101
D.8 Click on connection . 101

SD-WAN Topology Viewer xiv

List of Tables

1.1 Use Case states . 5

2.1 Specification Use Case 1 . 11
2.2 Specification Use Case 1.1 . 12
2.3 Specification Use Case 1.2 . 12
2.4 Specification Use Case 1.3 . 12
2.5 Specification Use Case 1.4 . 12
2.6 Specification Use Case 2 . 13
2.7 Specification Use Case 3 . 13
2.8 Specification Use Case 4 . 13
2.9 Specification Use Case 5 . 14
2.10 Specification Use Case 6 . 14
2.11 Specification Use Case 6.1 . 14

3.1 vManage list devices response . 20
3.2 vManage OMP services response . 21
3.3 vManage IPsec connections response . 22
3.4 vManage events response . 23
3.5 vManage metrics response . 24

4.1 12 Factors . 27

6.1 Team Members and Responsibilities . 52
6.2 SDWANTV Releases . 56
6.3 Risk analysis . 58
6.4 Quality control measures . 60

7.1 Working times per team member . 62
7.2 Time spent per project phase . 63
7.3 Issues per phase . 63
7.4 Time spent per task type . 64
7.5 Time spent per milestone . 65
7.6 Issues per milestone . 66
7.7 Code statistics . 66

B.1 Systemtest protocol . 77

C.1 NFR test protocol . 90

SD-WAN Topology Viewer xv

List of Tables

Part I

Technical Report

SD-WAN Topology Viewer 1

Chapter 1

Technical Report

1.1 Introduction and Overview

With the trend to software defined networks (SDN) more and more globally operating compa-
nies choosing a SD-WAN solution for their infrastructure. SD-WAN makes the management
of the network easier because of features like network by code, network segmentation and
routing based on policies and rules.

Another big advantage of this approach is the monitoring capabilities. Since all routers are
connected with a service plane to the central controller, they can also send state information
and metrics to a central location. This functionality is especially interesting for network spe-
cialists, who need to monitor the infrastructure in real time and react to anomalies as fast as
possible.

At the moment the biggest vendor of SD-WAN solution is Cisco with their vManage. This
tool collects all data of the infrastructure and provides it to third parties via a REST API. So
far there is no software which can monitor a whole topology with the routers and the IPsec
tunnels.

A software, which is able to connect to the vManage API and display the topology state, would
be able to satisfy this need from the industry and embrace the software defined networking
on a global scale even more.

1.1.1 Problem

Cisco’s SD-WAN solution vManage is a well working networking product. It provides a web
application, which is primarily designed for configuration and also has a simple graphical
overview of the distribution of the individual routers on a world map. Unfortunately it is
not designed for active monitoring of the infrastructure. Especially the lack of a visual rep-
resentation of the IPsec tunnels between the routers is a missed opportunity by the existing
monitoring tool.

1.1.2 Goals

In the context of a term project, we want to create a simple web application, which realizes
the missed core features of the existing monitoring component of Cisco’s SD-WAN solution,
a topology view of the whole infrastructure.

Our application fetches in a regular interval the required information from the vManage API,
processes it and finally displays it on a so-called progressive web application. On the web
application itself, the user can view not only the status of the topology, but also the more

SD-WAN Topology Viewer 2

1.2. EVALUATION

detailed information of the individual resources. For instance, if one wants to check the
properties of an IPsec tunnel connection they can simply do it by clicking on the respective
visual representation of the connection.

On top of the base use case, we want to implement further functionality which enriches the
experience for a network administrator.

• To reassure that the topology is “live”, we will implement a sync status display, which
gives the user a short visual feedback about the systems status.

• The user should be able to filter the topology resources by certain criteria.

• User Login to restrict access to disallowed users.

• Displaying metrics (jitter, latency and package loss) of IPsec tunnels.

• A full screen functionality for the usage on a monitoring screen at the office.

If possible, we want to implement other features such as:

• Customer portal

• Notifications

• Display Routing paths

For a full overview of the requirements, we refer to the Use Case Section 2.3.

1.1.3 Limitations

Due to the term project the personal expenses are limited. We have approximately 480h
distributed between two people at our disposal.

Our application is heavily dependent on the vManage API. Consequently, we can only fetch
those resources which are accessible over this endpoint.

We also have a lot of technical limitations regarding the scalability of the SD-WAN monitoring.
The more routers and IPsec tunnels are part of a SD-WAN, the more computational resources
are required. This is especially a problem if we want to render the topology via a web browser
on a normal computer.

1.1.4 Work structure

Our project is split into two parts. The first part of the project is to gather all required infor-
mation together, becoming familiar with the SD-WAN technology and analysing the vManage
API. The second part of the project is to develop the SDWANTV web application.

The more detailed description of the project can be found in the chapter project management
6.

1.2 Evaluation

1.2.1 Information acquisition

In order to understand the problem domain of SD-WAN, an online research needed to be
carried out. Especially Cisco had good online video tutorials [11], which were very helpful in
the beginning.

The SDWANTV is heavily dependent on the vManage API. It is not only the baseline of the
whole functionality of our application, but also a big performance bottleneck. With the help

SD-WAN Topology Viewer 3

1.3. CONCEPT

of the vManage API documentation, we can locate the important endpoints. The requests
should be designed in a very efficient way and only query the required information.

During the development we will rely on the domain experts. They should show us the possi-
bilities and the important requirements. Especially the supervisor, who has set up the devel-
opment vManage environment should support us with tips for the testing.

1.3 Concept

After the evaluation of the vManage API we designed the infrastructure for our application.
First, we had to choose the architecture design type we wanted to use. Because of our pro-
fessional background and the recommendation from domain experts we went for a React
frontend and a Python backend using the Django Rest Framework.

Figure 1.1: Deploymentdiagram of the application

Next to the frontend and the backend we had to fetch the information from the vManage API
and store it in our internal database. We wanted to have this logic decoupled in our own error
boundaries from the rest of the application and implemented separated containers for that. In
the frontend we still wanted to get informed about the task execution. Due to that, we started
to store the status of the tasks in the database and access them from the Django backend. In
the header of the frontend the user can check the regularly updated status of the task.

Because we do not know how the environment, in which our application will run on, looks
like, it was very important to have everything containerized. We even went one step further
and applied the 12 factors that are essential to design a good cloud native web application.
For more information about the 12 factors and how we implemented them refer to section the
12 factor section in the architecture and design chapter 4.2.3.

SD-WAN Topology Viewer 4

1.4. SOLUTION

1.4 Solution

During the term project we implemented a functional web application, which is able to fetch
the topology of a normal sized SD-WAN infrastructure in a relatively small interval. The
system is able to map the Cisco vManage API to our own representation of the topology and
render it to a frontend application in the browser.

Figure 1.2: Screenshot of the SDWAN Topology Viewer

During the implementation we put a lot of emphasis on the performance. We finally ended
up fetching a topology with 25 routers and 700 IPsec tunnels from the vManage API to our
backend in 7 seconds and from the frontend to the backend in maximum 5 seconds.

In addition to the performance, the code quality was important as well, since the project might
be the basis for a further bachelor thesis. This fact is represented by our test coverage which
is more than 60% in the backend and in the frontend more than 80%.

The following table shows the state of the functional requirements. Further information about
the use cases is in the project documentation section 2.3:

Use Case State

UC1: Monitoring the topology Done

UC1.1: View the node information Done

UC1.2: Display connection metrics Done

UC1.3: Display bandwidth with IP-Sec Tunnels Open

UC1.4: Toggle full screen Done

UC2: Apply Customer filter Done

UC3: Manage users for companies Open

UC4: Apply connection filter Partly done

UC5: Display of the path from router to the destination Open

UC6: Manage metric alarms Open

UC6.1: Send alarm to external syslog server Open

Table 1.1: Use Case states

SD-WAN Topology Viewer 5

1.5. CONCLUSION

1.4.1 Implementation

Fetching of the vManage API

Our premonition of the performance bottleneck became true as we used the vManage API in
practice. The API for the IPsec tunnels needed to be queried for each device. As a result, we
parallelized the fetching tasks as much as possible.

As we implemented the backend with Python, we quickly realized that this programming
language is not the perfect fit for async tasks processing. Our first approach was to use the
task manager celery. This, however, was not as performant as we hoped, since it can only
parallelize up to eight tasks. The other, more performant approach was to use the python
coroutine. Although it just runs in one single thread and therefore on only one processor, it is
more performant if the resource fetching takes longer than the processing.

Rendering the topology

The core part of the frontend was the topology viewer itself. To achieve this, we used the
leaflet plugin and OpenStreetMap combined with react.

One of the biggest obstacles was the rendering of the resources on the map. We took advantage
of a react-leaflet library but ended up to implementing a big part on our own. Especially the
edge and node popups were not available by default and needed a lot of customization in
order to work.

Authentication

From the security perspective of SDWANTV using JWT token was appropriate. But how
we should store the token was not clear. Two tokens needed to be stored, one for accessing
the resources from the backend REST API and one refresh token. After some research and
discussions with a professional, we ended up storing both of them in the local storage of the
browser.

1.5 Conclusion

The terms of reference were clear and could be adapted according to the needs during the
project. Both project members were able to bring a lot of previous knowledge to the project
and so the overview was never lost. The cooperation in the team also worked very well, as we
complemented each other wonderfully.

We consider the functional scope to be rather small, which however benefits the quality. We
also invested a lot of time to understand the vManage API. Unfortunately, we found that the
vManage API was not really well tailored to our needs and therefore scaled poorly. Also in
the frontend we had problems with libraries that did not cover our needs and therefore had
to make our own adjustments.

We consider the application itself to be successful. However, we can not say at this moment
whether it can stand out from its competition. What we could well imagine, however, is that
it could serve as a supplement to the existing systems. There are also many possibilities to
expand the functionalities and make the application even more powerful.

SD-WAN Topology Viewer 6

1.6. FORECAST

1.6 Forecast

1.6.1 Non-technical improvements

Some non technical improvements to SDWANTV could be made. First of all the not yet
implemented UseCases could be implemented. Refer to the solutions section 1.4 to see which
of the UseCases have not been implemented yet.

Probably the most interesting use case would be to implement the use case manage user for
companies UC3 2.3.7 and redesign SDWANTV to make it customer friendly. This would make
it possible to register customers in the application and let them only see their own nodes and
edges.

Another interesting idea to implement would be to enhance the filter possibilities. For instance
new filters like VPN-id or up/down states of the nodes and edges could be added.

1.6.2 Technical improvements

WebGL

The frontend which runs on a browser engine is one major bottleneck in our application. We
already optimized our code to work as efficiently as possible under these circumstances, but
if we used the WebGL technology, it would be possible to take advantage of the GPU and
render more nodes and edges in a shorter time. There are already proof of concepts for leaflet
and WebGL.

WebSocket

The backend fetches the data for the topology from the vManage API. The frontend polls
in an interval from the backend. It is a simple solution, but it reduces the liveness. Using
WebSockets makes it possible to push our topology to the frontend whenever it changes.

Events fetching

The current implementation is designed to fetch the whole topology that is present in vMan-
age in a defined interval. However, as soon as the number of routers and IPsec tunnels in-
creases, the time to fetch the topology will rise. The vManage API also provides an endpoint
to fetch occuring events. To lower the time to fetch the topology, we could fetch the whole
topology only every hour and in between fetch the occuring events every 5 seconds. However,
this would still require a lot of analysis if it should really speed up the liveness time.

Metrics fetching

Another thing that might be of interest for users of SDWANTV would be to have the quality
of an IPsec tunnel displayed by colours on the world map. So if a tunnel has a bad quality
it will be displayed in a different kind of colour on the world map. This would require to
regularly query all the metrics from the vManage API and update them in the frontend.

1.6.3 Technical debt

Although SDWANTV has a good quality codebase, there are three small things that need to
be reported as technical debt. All of the bugs are addressed in the ticket management tool.

SD-WAN Topology Viewer 7

1.6. FORECAST

Admin panel without CSS

Unfortunately the admin panel has no CSS because Djangos static files are missing or the
path to the staticfiles is misconfigured. Because this was only detected in the transition phase,
the admin panel is only needed to add or remove new users and because it can also be used
without the CSS files, it was not fixed anymore.

Backend default log format without timestamp

The second bug is a problem with the backend logging messages format. The configured
log format is wrong and prints the log messages in the format as seen below instead of the
timestamp.

sdwantv_celery_1 | {asctime} django INFO Sync started

Due to the fact that the log format can be configured through the docker container parameters,
this can be fixed by setting DJANGO_LOG_FORMAT to
%(asctime)s %(name)-12s %(levelname)-8s %(message)s.

Fullscreen not closing correctly

After fullscreen mode was enabled and the fullscreen mode was left by pressing the ESC

button on the keyboard, the application remains in the fullscreen mode, displays browser
navigations again but not the applications header bar. After pressing on the fullscreen button
in the top right corner of the applications screen, it will end the fullscreen mode and will
display the header bar again but also bring up an error. This error can be safely ignored and
the application can be used as normal.

SD-WAN Topology Viewer 8

1.6. FORECAST

Part II

Project Documentation

SD-WAN Topology Viewer 9

Chapter 2

Requirements Specification

2.1 Thesis Requirements

Working on SDWANTV should bring out an application that is able to display all SD-WAN
IPsec tunnels and display their health. SDWANTV will be designed to run on a big shared TV
screen in an office, so everybody can monitor the connections. The developed product should
meet all the customer requirements from KSAT and Insoft Services.

2.2 Actors

2.2.1 Administrator

The administrator is the first user on the system. The administrator can see all information
from all companies and can apply filters on those. The administrator also can invite new users
to the system.

2.2.2 Customer

The customer is getting invited by the administrator. The customer can only see the company
topology. The filter can only be applied on the information concerning his company.

2.2.3 System

The system is the software system as an independent actor.

SD-WAN Topology Viewer 10

2.3. USE CASES

2.3 Use Cases

The use case diagram shows an overview over all our use cases. The core requirements are
marked in red and the optional requirements in blue.

Figure 2.1: UseCase Diagram

2.3.1 UC1: Monitoring the topology

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The administrator can monitor the nodes and edges of all
companies.

Alternative Success Scenario The customer can monitor the nodes and edges of their
company infrastructure.

Success Guarantee The information and the topology are updated on a regu-
lar basis and the system displays the last successful sync.
The nodes are displayed on their geographic location on a
world map. The user is able to navigate the view on the
map (zoom out and zoom in).

Table 2.1: Specification Use Case 1

SD-WAN Topology Viewer 11

2.3. USE CASES

2.3.2 UC1.1: View the node information

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user can select a node and can see the name, reachability,
IP-Address and Site ID on the node popup on the topology.

Table 2.2: Specification Use Case 1.1

2.3.3 UC1.2: Display connection metrics

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user can select an edge of the topology and sees following
connection metrics: jitter, delay, loss.

Table 2.3: Specification Use Case 1.2

2.3.4 UC1.3: Display bandwidth of IPsec Tunnels

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user is able to see the bandwidth of each IPsec tunnel on the
topology.

Table 2.4: Specification Use Case 1.3

2.3.5 UC1.4: Toggle full screen

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user is on the main page. The user toggles the full screen
mode. The full screen mode makes the browser windows match
the screen of the device and removes the header of the applica-
tion. If the user toggles again the full screen mode the changes
are reverted.

Table 2.5: Specification Use Case 1.4

SD-WAN Topology Viewer 12

2.3. USE CASES

2.3.6 UC2: Apply customer filter

Use Case Section Description

Main Actor Administrator

Main Success Scenario The administrator sees the topology of all customers. The ad-
ministrator can filter by customer.

Success Guarantee The topology is updated according to the applied filter.

Table 2.6: Specification Use Case 2

2.3.7 UC3: Manage users for companies

Use Case Section Description

Main Actor Administrator

Main Success Scenario The administrator can add or remove users. If he wants to
add a user he needs to specify the company and the email
address of the new user.

Success Guarantee An email with a link including the register token is sent to
the given e-mail address.

Alternative Scenario A user with this email already exists. The administrator is
notified about that. He needs to delete the existing user to
assign him a new company.

Table 2.7: Specification Use Case 3

2.3.8 UC4: Apply Connection filter

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user can filter by the properties of their topology.

Success Guarantee The topology is updated according to the applied filter.

Table 2.8: Specification Use Case 4

SD-WAN Topology Viewer 13

2.3. USE CASES

2.3.9 UC5: Display of the path from router to the destination

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user can select the router the destination IP address and the
VPN to display the VPN tunnel, which is actually used for the
data transfer.

Success Guarantee The user can see the connection that is actually used, on the
topology.

Alternative Scenario The user input is incorrect. The system notifies the user about
this.

Table 2.9: Specification Use Case 5

2.3.10 UC6: Manage Metric Alarms

Use Case Section Description

Main Actor Customer & Administrator

Main Success Scenario The user can perform CRUD operations on alarms. He can add,
delete and update an alarm based on the bandwidth utilization
of a tunnel percentage of package loss, jitter or delay. He needs
to provide a percentage threshold of the metric and an IP address
of a syslog server.

Success Guarantee The user can see on the topology the connection that is actually
used.

Alternative Scenario The user input is incorrect. The system notifies the user about
this.

Table 2.10: Specification Use Case 6

2.3.11 UC6.1: Send alarm to the external syslog server

Use Case Section Description

Main Actor The System

Preconditions An metric threshold is getting violated

Main Success Scenario The system sends a syslog message to the given syslog server.

Success Guarantee The external syslog server receives the message.

Alternative Scenario The delivery of the message fails and the system receives an er-
ror. The system displays to the user that an alarm was triggered
and that it was not able to send the message to the external sys-
log server.

Table 2.11: Specification Use Case 6.1

SD-WAN Topology Viewer 14

2.4. NON FUNCTIONAL REQUIREMENTS

2.4 Non functional requirements

2.4.1 Functionality

Security The authorization should be 0Auth [1] conform. The passwords are never stored in
plain text and are hashed and encrypted. We use the provided functionality from the django
framework and do not implement the security features on our own. The database that stores
the user information, should only be accessible from our system.

We will keep a session in the frontend with a simple JWT [33]. The user can authenticate to
the backend with this token. The token has a limited lifetime.

To understand security problems, the system needs to log all relevant information to the
Stdout stream.

2.4.2 Reliability

Fault tolerance, user data The system should not fail because of an action done in the fron-
tend. This means the backend checks the data and only accepts valid ones from the API
endpoint. The frontend should also support the user in a way that he is able to insert the
correct values. If the frontend validation fails the user should be notified about that on the fly.

Fault tolerance, vManage data The system should not fail if the vManage data could not be
fetched correctly from the API. It should rather notify the user about the error and display the
other resources which could be fetched successfully.

Maturity The system should be able to fetch the API data under normal circumstances suc-
cessfully at least 90% of the times.

2.4.3 Usability

Understandability The user should be able to interact with our system without introduction
or tutorials. Therefore, we want to keep our design as simple as possible. The interaction flow
should not be interrupted with unnecessary design elements.

Failure management If an error occurs while synchronizing the data with the frontend, the
user should be notified about that.

2.4.4 Efficiency

Time behaviour The system should be able to propagate all relevant changes in the vManage
infrastructure to our frontend at least every 2 minutes.

Efficency compliance The system should be able to serve at least 100 user at the same time
with each of them having a topology of at least 10 connections. Thus our system should be
able to keep at least 1000 connection synchronized with the vManage API.

Response time If a customer visits the page and initializes the first page rendering, the web
application should not load longer than 5 seconds under normal conditions.

2.4.5 Supportability

A developer that is familiar with the technology and has some experience with the project,
should be able to track down a minor bug and fix it in at least 48h.

SD-WAN Topology Viewer 15

2.4. NON FUNCTIONAL REQUIREMENTS

2.4.6 Portability

The system should be portable and not be dependent on the physical device it runs on.

2.4.7 Scalability

It should be possible to assign more resources to the system. The system should scale in O(n).
That means if we double the resources, we should able to process twice as much data at the
same time.

SD-WAN Topology Viewer 16

Chapter 3

Analysis

3.1 Domain model

The domain model gives us a simple overview about our problem domain. The detailed
description of the entities can be found in the data model section 3.2 below.

Figure 3.1: Domain model

SD-WAN Topology Viewer 17

3.2. DATA MODEL

3.2 Data model

The data model shows us how we represent the topology in the PostgreSQL database. The
biggest part came from the Django default user management. However, we incorporated our
logic into it. The most important entities are located in the square.

The entries are going to be updated quite often and therefore we want to keep the flexible
parts as simple as possible.

Figure 3.2: Data model

3.2.1 auth user

The user is a entity that is created by Django and enables us to get the user management out
of the box.

3.2.2 auth group

As an entity it will be named auth group and it is also a default entity provided by the Django
framework. We will use this to restrict access to only those edges and nodes the user belongs
to. Those groups are fetched from the vManage API and are generated automatically.

SD-WAN Topology Viewer 18

3.3. CISCO VMANAGE API ANALYSIS

3.2.3 edge

The edge represent the connection between two nodes. This representation does not exist in
the vManage API. We artificially added this to suit our applications needs.

3.2.4 metric

A metric belongs to an edge and contains the package loss, the latency, and the jitter of the
edge. Every time an edge object is created it will also automatically create an associated metric
object.

3.2.5 node

A node is unique and only exists once in the topology. Every node belongs to one company.

3.2.6 sync

This entity is used for managing the fetching tasks. We want to know how long a task takes,
its execution time and in which state it is at every given time. Furthermore, we want to display
the state of the system in the frontend to reassure the user that the fetching works properly.
Because tasks run independently from the rest of the system, we have no relationship to it.

3.2.7 company

The company represents a customer, which owns some nodes on the topology. This field
is fetched from the device-groups attribute on the device. In the frontend we can filter the
topology based on this.

3.3 Cisco vManage API analysis

Due to the fact that SDWANTV heavily depends on Ciscos vManage API, this section de-
scribes the API analysis of the it. The following tables displaying the REST endpoints and
the attributes we require for our application to fetch the whole topology. Based on the API
endpoints and our restriction of the non functional requirements, we need to achieve to call
the List devices, OMP Servies, IP Sec Inbound, Events and the Metrics Endpoint.

The Events endpoint enables us to be close to live and therefore requires to be fetched at a
regular interval.

SD-WAN Topology Viewer 19

3.3. CISCO VMANAGE API ANALYSIS

3.3.1 List devices

The device API endpoint lists all existing devices present in vManage and can be retrieved
for the whole topology with one request.

Request

GET /dataservice/device

Response attribute Description

device-type We use this attribute to only filter for routers of the type vedges.

deviceId Is actually the System-IP address of this device. We will use it as
an unique identifier for the devices.

site-id The site-id helps us to identify the location of a customer. All
devices with the same site-id belong to the same location.

host-name The host-name will be used to display the edge in the GUI.

reachability Informs if the device is reachable and therefore operating nor-
mally or if it is unavailable.

device-groups Device groups helps us to decide which company the node be-
longs to.

latitude Will be used to place the node on the right horizontal spot on
the map.

longitude Will be used to place the node on the right vertical spot on the
map.

Table 3.1: vManage list devices response

Response body

Sample Response The most important fields of the response are shown in the sample re-
sponse below. The full response can be found in the appendix F.1.

[

{

"deviceId": "10.255.255.133",

"host-name": "Customer-king-Hawaii",

"reachability": "reachable",

"device-type": "vedge",

"device-groups": [

"\"king\""

],

"site-id": "32",

"latitude": "19.5429",

"longitude": "-155.6659",

},

...

]

Listing 3.1: Devices sample response

SD-WAN Topology Viewer 20

3.3. CISCO VMANAGE API ANALYSIS

3.3.2 OMP Services

The OMP Service API contains the vpn-id, which we need to group the devices to one com-
pany. Sadly we have to request the vpn-id in a separate request for each device. If we had 100
companies with at least 10 nodes each, we might do up to 1000 Requests to the vManage API.
We might be able to omit this request, if we ignore the vpn-id and group together the devices
by the device-group field of the node.

Request

GET /dataservice/device/omp/services?deviceId={{deviceId}}

Response attribute Description

originator We use this attribute to match the deviceId of the device.

vpn-id All devices with the same VPN-id belong to the same company.
A device can have multiple VPNs.

Table 3.2: vManage OMP services response

Response body

Sample Response The most important fields of the response are shown in the sample re-
sponse below.

[

{

"originator": "10.255.255.163",

"vpn-id": "20"

},

...

]

Listing 3.2: OMP services sample response

SD-WAN Topology Viewer 21

3.3. CISCO VMANAGE API ANALYSIS

3.3.3 IPsec connections

The IPsec inbound endpoint gives us the connections information between two devices. A
huge problem is that this needs to be executed for each device in the network. This fact makes
our application not very scalable. We need for 100 companies with 10 connection each 1000
requests and there is no way to fetch the connection information in another way.

Request

GET /dataservice/device/ipsec/inbound?deviceId={{deviceId}}

Response attribute Description

local-tloc-address Shows which device the connection originates from.

local-tloc-color This attribute is the transport protocol used by the originator. It
is used for displaying purposes.

remote-tloc-address Shows with which other device the current device has an in-
bound connection.

remote-tloc-color This attribute is the transport protocol used to reach the destina-
tion device. It is used for displaying purposes.

Table 3.3: vManage IPsec connections response

Response body

Sample Response The most important fields of the response are shown in the sample re-
sponse below. The full response can be found in the appendix F.2.

[

{

"local-tloc-address": "10.255.255.162",

"local-tloc-color": "mpls"

"remote-tloc-address": "10.255.255.111",

"remote-tloc-color": "mpls",

},

...

]

Listing 3.3: IPsec inbound sample response

SD-WAN Topology Viewer 22

3.3. CISCO VMANAGE API ANALYSIS

3.3.4 Events

The events endpoint provides a list of the most recent occurred events. This can be done with
just one single request, is scalable and very quick. For this request the HTML POST method
is used along with an aggregation query parameter. The aggregation query parameter can be
found in the attachment section F.3.

Request

POST /dataservice/event/aggregation

Response attribute Description

entry time Lets us decide if the event is outdated or relevant.

system ip Is the source node, from which the change happened.

details This is the string that contains the information of the topology
change.

Table 3.4: vManage events response

Response body

Sample Response The most important fields of the response are shown in the sample re-
sponse below.

[

{

"system_ip": "10.255.255.254",

"count": 1,

"entry_time": "2020-10-15T13:58:04.000Z",

"eventname": "bfd-state-change",

"details": "

host-name=SDWAN-1;

src-ip=152.96.9.247;

dst-ip=152.96.9.38;

proto=ipsec;

src-port=12426;

dst-port=12386;

local-system-ip=10.255.255.254;

local-color=biz-internet;

remote-system-ip=10.255.255.251;

remote-color=biz-internet;

new-state=up;

deleted=false;

flap-reason=na

"

},

...

]

Listing 3.4: Events sample response

SD-WAN Topology Viewer 23

3.3. CISCO VMANAGE API ANALYSIS

3.3.5 Metrics

The metrics can be fetched through a statistics aggregation endpoint. This endpoint accepts an
aggregation query which defines for which device and in which duration the statistics should
be returned. The endpoint returns a list of connections, with each connection containing the
connection metrics. A full example of the aggregation query can be found in the appendix
F.4.

Request

POST /dataservice/statistics/approute/fec/aggregation

Response attribute Description

loss percentage The percentage of lost packages on the connection.

latency The latency metric on the connection.

jitter The jitter metric on the connection.

name The name of the connection that the metrics belong to.

Table 3.5: vManage metrics response

Response body

Sample Response The most important fields of the response are shown in the sample re-
sponse below. The full response can be found in the appendix F.5.

[

{

"loss_percentage":0,

"latency":0,

"jitter":0,

"name":"10.255.255.133:mpls-10.255.255.255:mpls",

},

...

]

Listing 3.5: Metrics sample response

SD-WAN Topology Viewer 24

Chapter 4

Architecture & Design Specification

4.1 Scope

This chapter describes the architecture and design of the SDWANTV application. However,
the installation and configuration of Cisco vManage is not part of this thesis and will be
provided by the industry partner and for the development by the INS.

4.2 Design

The Software Architecture Design starts with an overview of the software components and
their primary functions.

Figure 4.1: SDWANTV Context Diagram

SDWANTV The user interacts with the SDWANTV application to observe the SD-WAN
Topology. Admin users can view the entire topology, while customers are only shown their
topology.

SD-WAN Topology Viewer 25

4.2. DESIGN

Cisco vManage The Cisco vManage system is the SD-WAN solution from Cisco. It provides
an API which we query to get the necessary data to build the topology and displays it in the
SDWANTV UI.

4.2.1 Container Diagram

The container diagram provides a brief overview of how each container interacts with the
other containers.

Figure 4.2: SDWANTV Container Diagram

4.2.2 Goals

SDWANTV is split into SDWANTV frontend and backend to enable flexibility and extensibil-
ity. The backend offers business services, holds the core logic and implements the persistence
layer. The frontend is only responsible for presenting the data gathered from the backend in
an accurate manner. This makes the core functionality independent from the frontend and
enables a high level of automation.

The dockerized SDWANTV frontend, backend, celery, redis and database will run on the same
server, however, could also be distributed on multiple servers.

SD-WAN Topology Viewer 26

4.2. DESIGN

4.2.3 Twelve Factors

Due to the fact that we decided to containerize our application, it is important to meet the
Twelve Factors [2] to design a good and clean cloud ready application. Our goal is to meet
the requirements of all of the Twelve Factors.

Factor Description How?

I. Codebase Code hosted in a Version Control System (VCS) 4.2.3

II. Dependencies Explicitly declare and isolate dependencies 4.2.3

III. Config Store config in the environment 4.2.3

IV. Backing Services Treat backing services as attached resources 4.2.3

V. Build, release, run Strictly separate build and run stages 4.2.3

VI. Processes Execute the app as one or more stateless processes 4.2.3

VII. Port binding Export services via port binding 4.2.3

VIII. Concurrency Scale out via the process model 4.2.3

IX. Disposability Maximize robustness with fast startup and graceful
shutdown

4.2.3

X. Dev/prod parity Keep development, staging and production as simi-
lar as possible

4.2.3

XI. Logs Treat logs as event streams 4.2.3

XII. Admin processes Run admin/management tasks as one-off processes 4.2.3

Table 4.1: 12 Factors

I. Codebase

This factor describes how the code of a cloud-native application should be hosted on a VCS.
There always needs to be a one-to-one correlation between the code repository and the app.
The frontend and the backend are both hosted in their own code repository on GitLab. There-
fore, we consider this factor as fulfilled.

II. Dependencies

A twelve-factor app never relies on implicit existence of system-wide packages. All depen-
dencies need to be declared completely in a dependency declaration file. Furthermore, it
uses a dependency isolation tool to ensure that no implicit dependencies from the surround-
ing system affect the application. All components of SDWANTV are packed into their own
docker container and therefore are completely isolated from the surrounding system outside
the container. To manage compile time dependencies, the package managers pip for python
and npm for react are used. Therefore, this factor is considered to be fulfilled.

III. Config

A strict separation of the config from the code is required to meet this factor. Apps never store
config constants in code. We strictly separate configuration from the code. All configuration
parameters are passed to the application by docker environment variables. This makes it
possible to change the behaviour of the application from outside the container. Therefore, this
factor is considered to be fulfilled.

SD-WAN Topology Viewer 27

4.2. DESIGN

IV. Backing services

Backing services are services that the app consumes over the network as part of the normal
operation. For example, databases, messaging/queueing systems, caching systems or also
third party services like the Twitter API or Amazon S3 storage. A 12 factor app should
make no distinction between local and third party services. The access URL to these services
needs to be configurable and exchangeable. For example, it should be possible to change the
database from a local instance to a cloud hosted one without any changes to the code. We
developed the backend in the so named manner. The URLs of the PostgreSQL database, Redis
cache and Cisco vManage API can both be configured via environment variables. Therefore,
this factor is considered to be fulfilled.

V. Build, release, run

The code needs to be transformed into a production deploy through the stages build, release
and run. All 3 stages need to be separated strictly. The build stage takes the code and bundles
it into an executable object. The release stage takes the executable object and enriches it with
the configuration. The run stage takes the output of the release stage and runs it on the
execution environment. The GitLab pipeline we configured for both repositories takes the
Dockerfile and build the container image. In the docker-compose.yaml file we put the container
image and the needed configuration together. And finally, we execute the docker-compose.yaml
file manually on the destination server. Although we have not fully automated the deployment
process, we have strictly separated these 3 stages and therefore consider this factor to be
fulfilled.

VI. Processes

Twelve-factor processes are stateless and share nothing. Any data that needs to persist must
be stored in a stateful backing service, typically a database. The app never assumes that
anything cached or on disk will be available on a future request. All data is strictly stored
in the stateful PostgreSQL backing service. The disk for the database is handled by a docker
volume. If the app is started and no docker volume is available, a new one will be created.
The application does not share a state with each other. Therefore, this factor is considered to
be fulfilled.

VII. Port binding

The twelve-factor app is completely self-contained and does not rely on an external webserver
to run. The app exports HTTP as a service by binding to a port and listening to requests
coming in on that port. Both the frontend and the backend docker container already have a
production-ready webserver included and listen to HTTP requests on a defined port. There-
fore, this factor is considered to be fulfilled.

VIII. Concurrency

In a twelve-factor app, processes are meant to run concurrently. There may be a various
amount of process types of which a various amount of processes should be able to run con-
currently and do their tasks. When the traffic increases, the resources can also be increased to
scale up the application capacities. Gunicorn, the production webserver we use in the back-
end, uses a master/worker model where it is possible to define the number of workers [24]
that respond to http requests concurrently. The same is used in the frontend but with nodejs.
Therefore, this factor is considered to be fulfilled.

SD-WAN Topology Viewer 28

4.2. DESIGN

IX. Disposability

Processes are disposable, they need to be started or stopped at any moment. Processes should
minimize startup time and shut down gracefully if a SIGTERM signal is received. As soon as
a docker container receives the docker stop command, docker will send a SIGTERM signal to
the containers root process (PID 1). Because we use Docker for the container management,
this factor is considered to be fulfilled. Restarting the backend normally works, however it
may be possible that there will be a leftover of a sync tasks present. For this purpose there is
an admin task that can be executed within the backend docker container to clean this leftovers
up. Restarting the frontend is possible at any times. Error handling is implemented in the
core functionalities. Occured errors are captured and handled in an appropriate way. The
frontend is always aware of the sync status of the backend. Therefore, this factor is considered
to be fulfilled.

X. Dev/prod parity

Twelve-factor compliant apps should be designed for continuous deployment to have a min-
imal gap between development and production. The time between deployment should be
minimal. Additionally, the code authors should be the same people as the ones that deploy
the app. We use GitLab and SA pipelines to automatically build our application every time a
push into a branch happens. Testing in the development environment happens with an sqlite
database and requests to the external Cisco vManage API are mocked. Therefore, this factor
is considered to be fulfilled.

XI. Logs

A twelve-factor app should never need to manage the routing or storage of its output stream.
It should not write logs to files or manage logfiles but write log events to the Stdout stream.
All components of SDWANTV are configured to write log messages directly to the Stdout
stream and not into logfiles. Therefore, this factor is considered to be fulfilled. More about
logging can be found in the section logging 6.9.

XII. Admin processes

One-off admin tasks, such as database migrations, should be run in an identical environment
as the regular processes of the app. Admin code should be shipped together with the ap-
plication code. Django ships the admin code in the same repository with the normal code.
Admin tasks can be executed automatically at the startup or from a shell inside the container,
or with a scheduled timer. Admin tasks can only be executed by users with admin privileges.
Therefore, this factor is considered to be fulfilled.

SD-WAN Topology Viewer 29

4.3. DESIGN DECISIONS

4.3 Design Decisions

Below we listed the most important design decisions during our development process.

4.3.1 Django Backend

For the implementation of the backend API of SDWANTV, we decided to use Python. The
decision to use Python as programming language was pretty clear, as it was a suggestion
from the supervisor and also because we already had experience with it. In addition, the
employees of the institute can help us if we encounter problems, as they are also very familiar
with Python and its frameworks.

We finally decided to use the Django Rest framework. However, this decision was not easily
made. The other option to create the Rest API was to use Flask Restplus, which we were
already familiar with. We arranged a meeting with a domain expert to discuss this topic,
as he knows both of the frameworks. By using flask it would be easier to create an API. In
contrast, it is much easier to create the database model with Django. Because Django also
provides an easy way to setup API authentication, it has built-in user management and it
overall is easier to implement new features, we decided to use the Django Rest framework.

4.3.2 React Frontend

The decision to use a single page application written in React as the frontend was quite easy.
Like Python also React was proposed by the supervisor. In addition to that, we already
worked with React and as a result would be faster during the construction phase.

But React is also the right framework to use when it comes to dynamic updates. React itself
watches the state of the objects on in the Single Page Application and if an object receives a
new value React will detect this and update the object. This is exactly what we require to
always have an up to date representation of the data without reloading the whole website.

React also includes a good amount of security mechanisms. React automatically escapes the
input of form fields. This prevents Cross-Site-Scripting and Injection attacks.

Alternatives like Angular or VueJS are either too elaborated or are difficult to test.

4.3.3 PostgreSQL Database

For the database we decided to go with PostgreSQL because it is OpenSource and widely used
with Python applications. Due to the fact that we do not have any particular performance
requirements, we were open to use what we are familiar with.

In addition, we do not expect such a huge amount of data that we would encounter database
performance issues. But if this were the case we could still do some database tweaks or also
switch to use TimescaleDB, which is a database plugin for PostgreSQL and can be used with
docker as well.

SD-WAN Topology Viewer 30

4.4. SOFTWARE ARCHITECTURE

4.4 Software Architecture

We separate our application in a frontend and a backend. The frontend is located in the user’s
browser and the backend on our server. This setup is called a remote user interface and is a
common approach in modern web applications.

Figure 4.3: System overview

4.4.1 Frontend

Context

Notification Context The notification context is wrapped around the whole application.
With this context it is possible to add a notification wherever we like in the code. If a no-
tification has been set a notification consumer then reads the notification and displays it either
as a warning or as an info banner.

Presentation Layer

React recommends structuring the frontend in a hierarchical form. But how exactly we should
do this is not defined. Therefore, we decided to use a common approach to solve this problem.

SD-WAN Topology Viewer 31

4.4. SOFTWARE ARCHITECTURE

Pages The physical appearance on the screen. It is the container, which contains all the other
elements, such as modules, components, etc. Paging are mainly relevant for routing, because
they are accessible over the URL. Eg. HomePage, MonitoringPage.

Modules Independent Code-abstraction with its own state. Apart from the Session manage-
ment, we only communicate via the modules with the backend. One can think of the module
as the implementation of a feature in the frontend like DisplayMonitor, ListUsers.

Example file structure of a module:

Modules/

EventList/

- index.ts

- EventList.tsx

- EventListWithData.tsx

- EventList.test.tsx

- someStuffonlyThisComponentUses.ts

Components Reusable parts which can be used by multiple modules. For instance, a form
can be used in multiple modules or a header, which is used on every page.

Elements Those are small parts like buttons or form inputs. They are reused all over the
place, in modules, component and pages. You could also call them molecules, because they
consist of multiple fundamentals.

Fundamentals Is the smallest possible part of the abstraction. As a result, it is also called
Atom. It is something that cannot be separated any further for example Colors, Typography
or Spacing.

Utils

Authprovider We created the Authprovider in order to abstract the fetching logic away in a
separate service. The Authprovider is responsible for multiple tasks. JWT management, Error
handling and data converting.

Bulma It would be too much effort to create all the visual appealing UI Elements by our-
selves, hence we decided to use bulma [8] to get a beautifully aligned design out of the box.

Leaflet[29] Leaflet is a JS library to render elements on the Openstreetmap. We will use this
especially for the topology, which needs to be rendered on the map.

SD-WAN Topology Viewer 32

4.4. SOFTWARE ARCHITECTURE

4.4.2 Communication

REST API

Primarily we are using a rest API communication between the frontend and the backend. Rest
is a structured way to define API Endpoints and since we are using the Django rest framework,
this is the easiest way.

4.4.3 Backend

For the backend we will use the Django rest API Framework. Frameworks tend to structure
already a big chunk of the architecture on the server side. As a result, for more detailed
information we will refer to the Django rest framework documentation [17].

Urls

We need to register all endpoints from all apps in this file. It will decide which call will be
handled by which app.

Business & Data Access Layer

Views The views not only contain the functionality to correctly render the result, it also
contains the business logic. Depending on the complexity, we might outsource most of it into
a separate service.

Serializer The serializer translates the JSON into a model and back. It will extensively be
used by the view logic.

Model The model works as an OR Mapper. It is the in-code representation of the object
stored in the database. Only over the model will we access the database.

Utils & other Apps

The Django framework consists of several apps. Some of those app can run independently
from each other and some of them are only working embedded in another app. For instance
the Django.contrib.admin app, provides an out of the box admin panel. Again, we will not go
too much into detail of each of those apps, because those are given by the framework and are
better described in the documentations [15] [17].

Django.contrib.admin This gives us an out of the box admin and user management with
roles.

Rest-framework Is a helper app for our own logic. It enables us to easily create a REST API
with JSON.

Django.conrib Django.conrib.auth & Django.contrib.staticfiles & Django.contrib.contenttypes
& Django.contrib.sessions are all helper apps that Django uses to enable the basic functionality
of a modern web server.

SD-WAN Topology Viewer 33

4.5. SEQUENCE DIAGRAMS

4.5 Sequence Diagrams

4.5.1 Fetch topology

The sequence diagram below visualizes the process flow of fetching the topology.

Figure 4.4: Sequence diagram

1: Managing the Tasks

A task should only run if the previous task has either failed to execute or succeeded. To
implement this logic we created a database sync object that keeps track of the task state. As a
result we access the database before and after the execution of the topology fetch.

2: Fetching and compiling the whole Topology

We want to keep our topology as close to real time as possible. This is only possible if we
cache the topology in our own database. To achieve that, we will run a task in a separate
container in a regular interval, which fetches the whole topology. The runtime separation of
backend server and Task enables us to dynamically increase the resources for the task and
does not influence the normal runtime.

3: Update cached topology

After we fetched the resources, we will format the data in either edges or nodes and store
them into our database.

4: Initial render

Because we implement a Single Page Application, the initial render will hit the frontend
server. The frontend node server will serve all assets like JS, HTML, CSS and images and
passes environment variables to the frontend. We might use code splitting to speed up the
initial load.

5: Django REST API

Eventually we will access our endpoint with the SPA. The backend server will access the
required information from our PostgreSQL database and satisfy the request. It should not
take much longer than two seconds to answer a request, if the topology is not too big.

SD-WAN Topology Viewer 34

4.5. SEQUENCE DIAGRAMS

4.5.2 Fetching metrics

The sequence diagram below visualizes the process flow of fetching the metrics for an edge.

Figure 4.5: Sequence diagram fetching metric

1: Get metric

Due to the fact that we use a Single Page Application there is no need to first send a query
to the frontend server because the whole Single Page Application is already loaded into the
browser. By selecting an edge on the world map, the browser will perform a request to the
backend API metric endpoint and provide the id of the edge.

2: Fetch metric

After the backend has received the request from the browser, it will send a request to the
vManage API. The vManage API returns the requested metric which afterwards is processed
by the backend server. More about fetching the metric can be found in the implementation
section 5.1.1.

3: Store in the database

The third step is to store the result of the requested metric into the database. For every edge
there already is a matching metric object in the database. This metric object will be updated
and return the result of the operation.

4: Return metric to browser

In the end the requested metric will be returned to the browser which displays the result on
the edge information window.

SD-WAN Topology Viewer 35

4.6. DEPLOYMENT

4.6 Deployment

The deployment diagram describes which part of our system runs on which tier. As can be
seen, we took extensive use of the docker container. This decouples the underlying operation
system to our software components.

Figure 4.6: Deployment Diagram

4.6.1 Client & SDWANTV Frontend

The user first accesses the ”/”-Endpoint via https. The Traefik router forwards this kind of
request to the our nodejs server. The nodejs server delivers the required assets for a Single
Page Application application to run in the browser. From then on the client only accesses the
”/api”-Endpoint, which provides over a REST API the topology data.

4.6.2 Traefik

The Traefik service is the entry point to our system. It will route the request to and from the
services. The Traefik server also configures the SSL certificate to enable a secure communica-
tion over https with the frontend. It would also be possible to go without a Traefik reverse
Proxy but this is significantly cleaner and nicer solution to have one single entrypoint into
the whole system. Traffic between Traefik and the backend and frontend are not secured and
occur on http.

4.6.3 Frontend Server

As mentioned before, the frontend server delivers the assets, like html, css, graphics and js, to
the browser. Depending on the performance we will be required to add the so called dynamic

SD-WAN Topology Viewer 36

4.6. DEPLOYMENT

code splitting. The coding splitting enables us to reduce the amount of assets loaded in the
initial render.

4.6.4 Backend Server

The backend server provides the API to the topology data and the peripheral data for extra
functionalities such as user management. The backend server fetches the topology informa-
tion from the vManage API in a regular interval and stores them in the PostgreSQL database.
For a request from the client the backend then only needs to access the PostgreSQL database
and can answer the request much faster.

4.6.5 PostgreSQL Database

One database will represent our whole system. It will only be accessed by the backend server
and can therefore ignore request from all other sources. The database will be updated quite
often, because the topology metrics will change continuously. Hence we will not take advan-
tage of PostgreSQL specific optimization for indexing or other speedups that require stable
data.

4.6.6 Beat

Beat is a part of celery and is responsible to periodically schedule tasks at a defined time or
cron schedule.

4.6.7 Redis

Redis is the cache that is being used by both Celery and Beat to temporarily store the tasks
and the results.

4.6.8 Celery Task Engine

Fetching whole topology It fetches from the vManage API the whole topology and gives us
a full refresh. We need this to make sure that we are in sync with the main topology. Maybe
this task is not scalable and the schedule needs to be adjusted if the topology is becoming
more complex.

4.6.9 vManage API

The vManage API is an external API. It is the gate to the SD-WAN solution [10] of Cisco. The
vManage API is a full blown control tool to mutate and monitor the SD-WAN solution. We
will only need a subset of all the functionalities. In order to reduce the amount of request
to the vManage API, we decided to fetch all the topology information in scheduled job and
cache them afterwards in our PostgreSQL database.

4.6.10 Deployment with Docker-compose

For the deployment of all containers we use the tool docker-compose. Docker-compose is a
tool to deploy multi-container docker applications. Applications, which are represented as
services inside docker-compose, are described in a YAML file together with persistent storage
and networks.

SD-WAN Topology Viewer 37

4.7. TOOLS & FRAMEWORKS

Backend Development The docker-compose file for the development of the SDWANTV
backend builds starts the PostgreSQL database, adminer to inspect the database, redis, cel-
ery, celery beat and the Python backend container with the Python development webserver
inside. All python containers are configured to run in debug mode. Additionally, the back-
end container is configured for hot reloading which means that changes on the application
will be replicated inside the container and the webserver restarted. This makes it perfect for
development.

Frontend development For the frontend development the backend development docker-
compose file is started. The development of the frontend occurs outside of a docker container
and connects to the backend python container. This is due to a faster development experience,
where we can omit the docker file sync.

Production To run SDWANTV in production mode the file docker-compose-production.yaml
is started. This starts the PostgreSQL database, backend python, celery, celery beat, redis and
the frontend container in production mode. Additionally, the Traefik proxy will also be started
which takes over the routing for all the containers and provides TLS encryption.

4.7 Tools & Frameworks

4.7.1 Frontend

In the frontend we decided to keep the tool chain as easy as possible and still have all the
functionality we need.

Nodejs We use the nodejs server to distribute our frontend assets. It also enables us to
fetch the environment variables and pass them down to the frontend. In the future we could
implement a so called Server Side rendering to further improve the initial load time of the
frontend.

React React is a commonly used frontend UI component library. The rest of our frontend is
chosen in a way that they work good together with React. Reacts virtual DOM enables us to
keep the re-rendering of the frontend as small as possible.

Typescript For maintainability and static type safety we have chosen typescript.

Jest/react-testing-library Is our frontend testing setup. They are the most common and easy
to use testing tools.

Eslint We use this tool to enforce code guidelines and improve the development experience.

Prettier This tool is used to maintain a clean code base, where indentation and order is the
same all over to frontend. The rules for prettier are stored in the same config file as eslint.

4.7.2 Backend

Django rest framework Our backend needs to fulfil several tasks. It should be able to
communicate with the vManage API. It should respond to the request from the frontend. In
addition to that, setting up a user management should be as easy as possible. Django offers
far more functionality than that, but we will only need a subset of those.

SD-WAN Topology Viewer 38

4.8. UI-DESIGN

4.7.3 Communication

HTTP Methods For the user management and other non-monitoring related tasks, we will
use simple http methods in the rest format.

vManage API Is an external REST endpoint where we gather all required data from.

4.7.4 Deployment

GitLab CI The automated testing, the linting, formatting and finally the deployment is exe-
cuted in the GitLab CI.

Docker We deploy our artifacts in a dockerized form. Because of that, we have the flexibility
to deploy wherever we want.

4.8 UI-Design

Similar to the agile principle we decided to work on the designs incremental. Therefore, we
will show in this chapter the incremental development of the designs.

4.8.1 Tools

For the the user interface design we used figma[22].

4.8.2 Mock-up

In order to have a base for further design discussions, we created a mock-up to roughly outline
our ideas visually. There are more screens in the attachment. D.1

Figure 4.7: Mockup design

SD-WAN Topology Viewer 39

4.8. UI-DESIGN

4.8.3 MVP design

The MVP is the result of the first construction iteration. The feature size is very small. D.2

Figure 4.8: MVP design

4.8.4 Prototype end of construction

At the end of construction the topology viewer added several new graphical elements.

Figure 4.9: End of construction design

SD-WAN Topology Viewer 40

Chapter 5

Implementation & Testing

5.1 Implementation

As can be seen in the deployment diagram located in the next section, we separate the SD-
WANTV application into several independent components. Because of our professional back-
ground and knowledge gained in the cloud solutions module in the spring semester 2020, we
decided to use docker containers to separate the components.

This section covers the most noteable parts of the implementation and testing of the SD-
WANTV application.

5.1.1 Python Django Backend

Fetching Nodes & Edges

The main purpose of the backend is to periodically query the Cisco vManage API and get all
devices (represented as nodes) and IPsec tunnels (represented as edges). All fetched nodes
and edges should than be processed and stored in the database.

To achieve the purpose mentioned above we decided to use Celery and Celery Beat. Celery is
a task queue engine which can be used to execute code on workers. Celery Beat is the Celery
component which is responsible to periodically schedule tasks. It either uses an interval
defined in seconds or a crontab schedule. Because we want to fetch all nodes and edges
periodically, Celery Beat is the perfect component for us.

We defined a Celery Beat schedule in the settings.py file which executes the main task to
fetch the nodes and edges. The schedule interval can be configured from the environment
variable VMANAGE_FULL_SYNC_INTERVALL_SECONDS.

full_sync_intervall_seconds = float(os.environ.get(’VMANAGE_FULL_SYNC_INTERVALL_SECONDS’, 30))

CELERY_BEAT_SCHEDULE = {

’sync_topology’: {

’task’: ’api.tasks.sync_topology’,

"schedule": full_sync_intervall_seconds,

},

}

Listing 5.1: Celery Beat schedule in settings.py

The task sync_topology determines if currently another task is already running and skips
fetching the import of nodes and edges or if it should execute it. The @shared_task annotation
marks this function as a task, so that Celery is able to detect and execute it. For reading
purposes, logging lines were removed.

SD-WAN Topology Viewer 41

5.1. IMPLEMENTATION

@shared_task

def sync_topology():

existing_sync = existing_syncs()

if existing_sync:

no_sync_running = not sync_running()

last_sync_older_than_sync_intervall = sync_older_than_sync_intervall()

sync = Sync.objects.create(name=’full_sync’)

sync.start()

if not existing_sync:

import_topology(sync)

return

if last_sync_older_than_sync_intervall:

if no_sync_running:

import_topology(sync)

else:

sync.skip(’skipped because another sync is running’)

else:

sync.skip(’skipped because sync_intervall is not reached yet’)

Listing 5.2: Sync topology Celery task

If it should fetch nodes and edges it will execute the function import_topology.

def import_topology(sync):

session = create_session(sync)

token_session = fetch_token(session, sync)

fetched_devices, fetched_nodes = fetch_devices(token_session, sync)

loop = asyncio.new_event_loop()

fetched_edges, errors = loop.run_until_complete(fetch_device_edges(token_session,

fetched_devices, sync))

loop.close()

if True in errors:

sync = Sync.objects.get(id=sync.id)

sync.warn()

cleanup_topology(fetched_edges, fetched_nodes)

sync = Sync.objects.get(id=sync.id)

sync.end()

Listing 5.3: Fetch topology function

This function performs the following actions:

1. Authenticating against Cisco vManage API using a username and password.

2. Obtaining a token for further communication with the vManage API.

3. Fetching all nodes and store them in the database.

4. Asynchronously and in parallel getting all edges of every node and storing them in the
database.

5. Cleanup old nodes and edges.

All of the above steps are implemented synchronously except fetching the edges for every
node. To speed up performance and make it halfway scalable we used asyncio [5]. Asyncio
is a library to write concurrent code using the async/await syntax. Furthermore, we used the
AIOHTTP [3] library which provides an asynchronous http client based on asyncio.

The function fetch_device_edges is executed asynchronously and executes the get_device_edges
function one time for every node in the devices list passed as a parameter to the function. It
than awaits the response of every concurrent execution and gathers the result together into
the result variable.

SD-WAN Topology Viewer 42

5.1. IMPLEMENTATION

async def fetch_device_edges(token_session, devices, sync):

result = await asyncio.gather(*[get_device_edges(token_session, device, sync) for device in

devices])

fetched_edges = []

errors = []

for device in result:

fetched_edges.append(device[’fetched_edges’])

errors.append(device[’error’])

return fetched_edges, errors

Listing 5.4: Asynchronously fetch edges for a device

The function get_device_edges creates a new aiohttp ClientSession and asynchronously gets
the edges for the device. After those were fetched the data is validated against a JSON schema.
If the data is valid the fetched edges are processed and saved in the database. For reading
purposes some lines were omitted and only the core functionality is documented.

async def get_device_edges(session, device, sync):

fetched_edges = []

error = False

device_url = vmanage_url + ’/dataservice/device/ipsec/inbound?deviceId=’ +

device[’system-ip’]

try:

timeout = aiohttp.ClientTimeout(connect=3, sock_read=10)

async with aiohttp.ClientSession() as client_session:

async with client_session.get(device_url, timeout=timeout, headers=session.headers,

cookies=session.cookies, ssl=False, raise_for_status=False) as response:

data = await response.json()

if ’data’ in data:

validate(instance=data[’data’], schema=device_edge_schema)

await client_session.close()

except aiohttp.ClientConnectionError:

error = True

else:

loop = asyncio.get_event_loop()

fetched_edges = await loop.run_in_executor(None, process_fetched_device_edges, data,

device)

finally:

result = {’fetched_edges’: fetched_edges, ’error’: error}

return result

Listing 5.5: Asynchronously perform the vManage API request

Sync objects

To keep track of fetching the topology we created a sync model. The model consists of the
following properties:

1. start time

2. fetch time

3. end time

4. the status of the sync

5. an optional error message field

This makes it possible to manage the sync tasks in order to have just one sync task running at
a time.

SD-WAN Topology Viewer 43

5.1. IMPLEMENTATION

Each time fetching topology is started, a sync object is created in the database. At the begin-
ning the sync object receives the start time and a status of running.

If during the fetching of the data from the vManage API, errors occur the sync status will be
set to failed and a corresponding error message will be written into the sync object.

If no errors occur and the sync finishes without any problems, the end time of the sync will
be updated and the status set to successful.

If a sync starts and another sync with the status running is still present in the database the
new sync will get the status skipped and the sync is ended.

Those sync objects can also be queried by the frontend under the api/v1/syncs/ endpoint.

API Documentation

The Django backend is a Rest API and therefore offers several endpoints for interaction. The
API documentation provides an overview over the available routes in the backend. OpenAPI
was used to document all API endpoints. For our convenience there already is a Django
module which brings everything out of the box.

In a first step it is possible to see all available API endpoints.

Figure 5.1: OpenAPI Documentation Overview

By selecting a specific endpoint it is possible to also see the required request parameters to
interact with this endpoint and the response format the endpoint will produce.

Figure 5.2: OpenAPI Documentation Request

Figure 5.3: OpenAPI Documentation Response

SD-WAN Topology Viewer 44

5.1. IMPLEMENTATION

Authentication

Due to the fact that SDWANTV should not be accessible for everybody, we decided to use
an authentication mechanism. In a first step we used the TokenAuthentication module of the
Django Rest Framework. We quickly realised that this module could not meet our require-
ments and therefore in a second step switched to Simple JWT [33], the de-facto standard for
Django authentication. It uses the JSON Web Token technology commonly used today and
the internet standard for creating data.

Simple JWT not only fully satisfies our needs for authentication, but it is simple to use and
configure. It requires to install the pip module djangorestframework-simplejwt and include it in
the Django Rest Framework settings.

REST_FRAMEWORK = {

...

’DEFAULT_AUTHENTICATION_CLASSES’: (

...

’rest_framework_simplejwt.authentication.JWTAuthentication’,

)

...

}

Listing 5.6: DRF configuration in settings.py

It furthermore requires to expose a token authentication and a token-refresh endpoint.

urlpatterns = [

path(’api/v1/token/’, TokenObtainPairView.as_view(), name=’token_obtain_pair’),

path(’api/v1/token/refresh/’, TokenRefreshView.as_view(), name=’token_refresh’),

]

Listing 5.7: Include the path for obtaining Tokens

Simple JWT also provides some possibilities to configure the access and refresh token. This
can easily be done in the settings.py file. We have configured the access token lifetime to 1
day and the refresh token lifetime to 7 days. Furthermore, we have configured the algorithm
for signing/verification of the tokens to be HS512, the strongest symmetric HMAC algorithm
available.

Access tokens can be obtained by a user if he provides the correct username and password to
the api/v1/token/ endpoint. A request and response using curl could look like the following.

curl \

-X POST \

-H "Content-Type: application/json" \

-d ’{"username": "admin", "password": "changeme"}’ \

http://localhost:8000/api/token/

...

{

"access":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX3BrIjoxLCJ0b2tlbl90e

XBlIjoiYWNjZXNzIiwiY29sZF9zdHVmZiI6IuKYgyIsImV4cCI6MTIzNDU2LCJqdGk

iOiJmZDJmOWQ1ZTFhN2M0MmU4OTQ5MzVlMzYyYmNhOGJjYSJ9.NHlztMGER7UADHZJ

lxNG0WSi22a2KaYSfd1S-AuT7lU",

"refresh":"eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ1c2VyX3BrIjoxLCJ0b2tlbl90

eXBlIjoicmVmcmVzaCIsImNvbGRfc3R1ZmYiOiLimIMiLCJleHAiOjIzNDU2Nywia

nRpIjoiZGUxMmY0ZTY3MDY4NDI3ODg5ZjE1YWMyNzcwZGEwNTEifQ.aEoAYkSJjoW

H1boshQAaTkf8G3yn0kapko6HFRt7Rh4"

}

Listing 5.8: Obtain an access token

SD-WAN Topology Viewer 45

5.1. IMPLEMENTATION

An access token is returned which afterwards can be used by the user to authenticate to all
other endpoints of the API without providing the username and password every time.

Fetching metrics

An optional requirement was to be able to display metrics for edges. If we handled the metrics
in the same fashion as we did for the other resources and load them in the scheduled task
directly, it would require an enormous amount of Cisco vManage API request. Due to these
performance reasons we decided not to fetch metrics periodically but rather requested it lazily
as needed. To do so, we created the api/v1/metric/ API endpoint which accepts a single
integer parameter as the edge-id. When this endpoint is called, the request is being processed
by the MetricViewSet class. Normally a view consists a queryset which just performs a query
to the database and returns the corresponding objects. Since we decided to fetch the metrics
of an Edge lazily we had to override the get_queryset function of the MetricViewSet class.

To strictly separate the fetching of the metric from the MetricViewSet class, we implemented
these functions in another file and imported them into the views.py file.

from api.tasks import create_session, fetch_token

from api.views_helper import get_metric, process_metric

class MetricViewSet(DetailViewSet):

"""

This viewset automatically provides ‘detail‘ action.

"""

permission_classes = [permissions.IsAuthenticated]

def get_serializer_class(self):

if self.request.version == ’v1’:

return MetricSerializerVersion1

return MetricSerializerVersion1

def get_queryset(self, *args, **kwargs):

edge_id = int(self.kwargs.get(’pk’))

self.fetch_metric(edge_id)

return Metric.objects.all()

def fetch_metric(self, edge_id):

edge = Edge.objects.get(id=edge_id)

session = create_session()

token_session = fetch_token(session)

metrics = get_metric(token_session, edge)

process_metric(edge, metrics)

Listing 5.9: MetricViewSet Class to return metrics for an Edge

The get_queryset function calls the fetch_metric function. This function gets the requested
edge out of the database and updates the corresponding metrics object in the database after it
has retrieved the latest metrics from the Cisco vManage API.

Retrieving the metrics for an edge is not as easy as it could be. vManage does not store the
metrics for an edge (IPsec tunnel) on the IPsec tunnel itself but on the node (device) that it is
connected to. This means that if we want to get the metrics for an edge we need to get all the
metrics from a device and filter the metrics that relate to the requested edge.

After this function has done its job, the get_queryset function queries the database and
returns the updated metrics for the requested edge. If it was not possible to get the requested
metrics the endpoint will return an internal server error.

SD-WAN Topology Viewer 46

5.1. IMPLEMENTATION

vManage API response validation

While developing the application, the topic of upgrading the vManage to a newer version
came up several times. This could mean that the API will change its behaviour or change
the response format. To ensure that the response from the vManage has the correct format,
we decided to use a json schema validator. After some research we came up with the Python
library jsonschema. It provides an easy way to define a json schema and validate the re-
sponse from the vManage API against that schema. If the validation of the response fails, a
ValidationError is raised.

In the code below we defined the json schema for the expected response from the /devices/

endpoint in a separate file and import it. After the /devices/ endpoint was called and the
response has returned, the returned data is validated against the imported json schema. If
the validation fails, the error is raised and the fetch of the topology will abort. For readability
some lines of code were ommited.

from jsonschema import validate

from jsonschema.exceptions import ValidationError

from api.json_schemas import device_schema

def get_devices(session, sync):

device_url = vmanage_url + ’/dataservice/device?device-type=vedge’

try:

result = session.get(device_url, timeout=(3, 5), verify=False)

response = result.json()

if ’data’ in response:

validate(instance=response[’data’], schema=device_schema)

except ValidationError as e:

raise e

return response

Listing 5.10: vManage response Validation

User Management

The built-in user management [18] solution was one of the major criteria why we have chosen
Django. It is already present in the list of installed Django apps by default when creating a
Django project. It provides user, group, permissions and some other features which can be
used out of the box.

INSTALLED_APPS = [

’django.contrib.auth’,

’django.contrib.contenttypes’,

...

]

Listing 5.11: User management configuration in settings.py

5.1.2 Frontend

JWT client side management

As described in the backend authentication section 5.1.1, we are fetching both tokens but store
either just one token (access) or two (access and refresh) at the client. If a refresh token exists
and the access token is outdated, the frontend automatically queries a new access token and
continues with the request of the resources.

SD-WAN Topology Viewer 47

5.1. IMPLEMENTATION

Figure 5.4: JWT mechanism if access token is outdated

With this approach the user can use the application without sensing an interruption.

Another aspect is security. What is the best way to store JWT [33] locally over a single page
application like React? Mainly two attacks could harm us if we handle our authentication
over JWT. Cross-side-request-forgery (CSRF) and Cross side scripting (XSS). While the danger
from a cross-side scripting attack is limited due the built-in protection features by React, the
CSRF is trickier.

To protect against CSRF attacks, the web application must prevent another website from ac-
cessing a stored JWT. Due to this, the question of how to protect against a CSRF attack boils
down to how we store the JWT on the client. In a browser environment we can choose be-
tween the session storage, the local storage and a cookie. Based on some research [35] we
came to the conclusion that the easiest and safest way is to use the local storage and omit the
traditionally used CSRF-token.

State management

A frontend consists of two type of states, a local state and a global state. The local state is to be
preferred over a global state, because it reduces the complexity and improves the modularity.
However, there is some data that is accessed all over the place and as a result needs to be
stored globally. For this problem there are a lot of different ways how to solve this. Most
of them include an external package to be installed. Nevertheless, we think a clean frontend
solution only has a small global state and does not need an extra technology to manage it.
Especially after the release of React 16.8, which includes react hooks[32], simple solutions are
preferable.

In the frontend we have a global notification management, which is required by a lot of
components scattered all over the application. In combination with react hooks we used a
so-called context. The context is a singleton with a state and a set of functions to modify
it. Components nested in such a context can now access the resources. This reduces the
amount of parameters which would be needed to pass down to the respective component. On
the other hand, a context complicates the testing, because an extra mock context needs to be
added.

SD-WAN Topology Viewer 48

5.1. IMPLEMENTATION

Lazy loading on click

During the development of the application, we already encountered performance problems in
the beginning. Especially during the initial render of the page. The cause of this problem is
the amount of data fetched from the backend. Depending on the internet speed even 350KB
of data can lead to disturbance of the user experience.

Inspired by the dynamic proxy pattern, which we learned in one of our lectures, we decided
to create a trimmed version of the topology. This trimmed version only contains enough
information to render the resources on the screen. If the user now clicks on an edge or
node, he triggers a separate request to the backend to fetch the detailed information about the
respective resource. The response payload to this request however is much smaller and does
not interrupt the user experience.

After we fetched the resources once, we cache the result in memory so that we do not need to
request the same details on the same resource again.

Visualization of the edges

The render of the edges was one of the most complicated challenges in the frontend.

To make an edge visually appealing, we wanted to implement them as curves. Although we
used a leaflet plugin which provides us with a Brézier curve [7], we still had to calculate the
shifted middle point ourselves.

We have two points, the one from the origin node and the one from the destination node. In
the first step we removed the global offset of the two coordinates. The distance between point
A to point B could now be viewed as a vector.

const offsetX = to[1] - from[1]

const offsetY = to[0] - from[0]

Listing 5.12: Remove offset

Then we mapped the Cartesian vector to a polar representation.

const r = Math.sqrt(offsetX ** 2 + offsetY ** 2)

const theta = Math.atan2(offsetY, offsetX)

Listing 5.13: Map to polar representation

If we now select the middle of the polar vector, add a random offset to the angle and calculate
the new sinus and cosines, we will receive the coordinates of the shifted middle point. Finally,
we only needed to convert the polar vector back to the Cartesian and add the global offset to
the middle point.

const thetaOffset = 3.14 / 10

const r2 = r / 2 / Math.cos(thetaOffset)

const theta2 = theta + thetaOffset

const midpointX = r2 * Math.cos(theta2) + from[1]

const midpointY = r2 * Math.sin(theta2) + from[0]

Listing 5.14: Add offset and map back to Cartesian space

Since multiple edges share the same nodes, we had the problem of overlaying edges. We did
not realize this issue until we did the system tests at the end of the term project.

The solution was now to multiply the middle point by a random factor, so that the edges
spread a little bit and do not share the exact same path. But the randomness needed a seed
in order to produce the same curve for the same edge. Otherwise, every new topology render

SD-WAN Topology Viewer 49

5.2. AUTOMATED TESTING

would cause a change to the path for all curves. This is not feasible since this is really irritating
for the user.

Eventually we had built a function which calculates the middle point of the Brézier curve
for all edges. We are aware that this function could be enhanced, but we did not have the
resources to apply the improvements.

const midPoint = (from: [number, number], to: [number, number], seed: string) => {

const randomGenerator = seedrandom(seed)

const offsetX = to[1] - from[1]

const offsetY = to[0] - from[0]

const radius = Math.sqrt(offsetX ** 2 + offsetY ** 2)

const theta = Math.atan2(offsetY, offsetX)

const thetaOffset = 3.14 / 10

const radius2 = radius / 2 / Math.cos(thetaOffset)

const theta2 = theta + thetaOffset

const midpointX = radius2 * Math.cos(theta2) + from[1]

const midpointY = radius2 * Math.sin(theta2) + from[0]

return [midpointY + midpointY * (randomGenerator() - 0.5) * 0.1, midpointX + midpointX *

(randomGenerator() - 0.5) * 0.7]

}

Listing 5.15: Full function for edge path

5.2 Automated Testing

5.2.1 Unit Tests

Frontend Testing For the frontend testing we are going to use the most common test setup
for react applications. The foundation of our test setup builds the Jest [27] testing framework.
On top of that we use the react-testing-library [36], which simplifies the testing with JSX. Similar
to the hot-module-replacement of nodejs [30] we can use the watch functionality of jest, which
speeds up the building process for the tests. The test will be located next to the code under
test.

Backend Testing The backend uses the built-in testing library from Django [16], which is
pytest. Similar to the frontend we decided to locate the unit tests in the same folder as the code
under test. This helps us to find the tests suites easily and enables us to clearly differentiate
between unit and integration tests.

5.2.2 Integration Tests

Integration tests will be conducted before every merge into the master branch. Those test
cases are automated to a reasonable level. The purpose of these tests is to ensure that the
interface between the front- and backend is working. For each business service of the API,
at least one test case is required. The integration tests are going to be located in a separate
folder.

Since the integration test must run on the CI pipeline, we need to create fakes for the database
and the vManage API.

5.2.3 Test Coverage

To ensure our code quality, we decided to stick to test coverage thresholds. With the coverage
threshold we can let the CI pipeline fail if the committed code does not have the required

SD-WAN Topology Viewer 50

5.3. MANUAL TESTING

percentage covered. For the frontend and the backend, we decided to go with following
thresholds:

• branches: 75%

• functions 75%

• lines: 75%

• statements: 75%

5.3 Manual Testing

In addition to the unit tests that will be triggered by the CI pipeline every time a push into a
branch is done, manual testing is limited to branches with either the prefix feature- or bugfix-.
Whenever a new feature is added or a bug will be fixed the affected part of the application
will be tested manually on the personal notebook before the branch will be merged into the
master branch.

5.3.1 System Tests

System tests will be completed mainly manually, due to the extensive amount of time an au-
tomated system test would require. They focus on the scenarios in the use cases and require-
ments. System tests are run before every major release to ensure that the software maturity
has reached production readiness.

Non-functional requirements will also mainly be tested on this test level. For each use case, at
least one test is required (may contain multiple test steps). The testing protocol is produced
in the process.

We are going to use a system test specification, which will help us to conduct the tests and
write the test protocol down in a structured way. The systemtest protocol can be found in the
appendix B.

5.3.2 Non functional Requirements Tests

At the same time as system tests are being done, we are also doing non functional require-
ments testing. These tests are being done manually and should make sure that the non-
functional requirements are applied and therefore taken into consideration for the implemen-
tation. The non-function requirements test protocol can be found in the appendix C.

SD-WAN Topology Viewer 51

Chapter 6

Project Management

6.1 Project organization

The project organisation is made up as follows:

Name Role Responsibilities

Prof. Laurent Metzger Supervisor Responsible for the thesis and supervision
of the team.

Jessica Hilti Co Supervisor Assistant of Laurent and also responsible
for the thesis.

Thomas Torsteinsen Industry Partner Responsible for bringing in his require-
ments and feedback about the product.

Ali Manzoor Industry Partner Responsible for bringing in his require-
ments and field expertise.

Dominic Gabriel Developer Responsible for the architecture as well as
the Python backend and supporting with
React.

Lars Barmettler Developer Responsible for the testing, database and
the React frontend and supporting with
Python.

Table 6.1: Team Members and Responsibilities

6.2 Project Meetings

The supervisor agreed with us on having a weekly project meeting every Tuesday morning.
Whenever possible the industry partner should also participate. If we are in the middle of
a project phase and there is no need for a meeting, we would skip the meeting. Due to the
COVID-19 pandemic the meetings mostly take place remotely on Microsoft Teams. For the
meetings in which the advisor participates we will create minutes.

Besides the official meeting with the advisor we decided to have a sprint planning and review
meeting on Tuesday morning. We also agreed to make a short meeting every Sunday evening
to synchronize each other about the status of the project. Of course, these meetings are not
necessary every week so we will skip them sometimes as well. Because of the increased
communication effort at the beginning of the project we decided to have extra meetings in the

SD-WAN Topology Viewer 52

6.3. PROCESS MODEL

inception and elaboration phase whenever needed.

6.3 Process Model

Because we are familiar with Scrum plus from previous lectures, we decided to use this
workflow in our thesis as well. Scrum plus is a combination of Scrum and Unified Process.
From the Unified Process we are taking the concept of the phases: Inception, Elaboration,
Construction and Transition. And from Scrum we take the agile development with sprints.
The time frame of each phase can be found in the list below. In each project phase we do agile
sprints of 2 weeks which allows us to work efficiently and react on unexpected events.

Each sprint is planned in the bi-weekly sprint planning meeting and closed with a sprint
review meeting. Sprints always start and finish on Tuesdays.

Phases:

• Inception: 15.09.2020 - 29.09.2020 (2 weeks)

• Elaboration: 29.09.2020 - 20.10.2020 (3 weeks)

• Construction: 20.10.2020 - 08.12.2020 (7 weeks)

• Transition: 08.12.2020 - 18.12.2020 (1.5 weeks)

Sprints:

• Sprint 1: 15.09.2020 - 29.09.2020

• Sprint 2: 29.09.2020 - 13.10.2020

• Sprint 3: 13.10.2020 - 27.10.2020

• Sprint 4: 27.10.2020 - 10.11.2020

• Sprint 5: 10.11.2020 - 24.11.2020

• Sprint 6: 24.11.2020 - 08.12.2020

• Sprint 7: 08.12.2020 - 18.12.2020

6.4 Software Development Process

To make the development process as easy as possible, we decided to use the provided GitLab
instance by the IFS. We created two Git repositories to separate the frontend (React) and
backend (Pyhton) code from each other. With this approach we have two completely separated
CI pipelines. On every push into the git repositories the CI pipeline automatically runs fully
automated tests and will build the docker containers.

For the development of the code we use the GitHub Flow [23] recommendations. This contains
the following steps:

• For every issue a dedicated new Git branch is to be created. Issues regarding features
have a feature- prefix and issues regarding bugfixes will be prefixed with bugfix-. The
branch name should consist of the number and the title of the corresponding issue.

– Format: <type>-<issue number>_<issue title>

– Example: feature-23_implement_login_screen

• Once all changes for an issue are complete, a merge request will be created. The merge
request should be assigned to the other team member.

SD-WAN Topology Viewer 53

6.4. SOFTWARE DEVELOPMENT PROCESS

• The other team member will review the merge request and merge it into the master
branch if everything is fine. Otherwise, he will decline the merge request and give his
feedback.

• Working directly on the master branch is normally not allowed except for work that is
not possible to be completed on other branches efficiently.

Because of our negative experiences with time tracking in the engineering project using GitLab
issues and GTT, we decided to go with YouTrack. It enables us to manage all epics, tasks and
bugs in one place. All resources are tagged for the phase, milestone and component.

YouTrack offers agile scrum boards which we use for the sprint planning and review meetings
in order to keep track of the work packages per sprint.

Figure 6.1: YouTrack Sprint Planning

To create our issues we decided to use the 3 issue types Bug, Task and Epic. We use issue type
task to create simple issues and issues that belong to a higher level epic. Furthermore, we use
bugs to document problems occuring with the software. To be able to generate time reports
we introduce three new custom fields which are required before creating new issues. The
fields Milestone, Phase and Component define some project management topics for every issue.

SD-WAN Topology Viewer 54

6.4. SOFTWARE DEVELOPMENT PROCESS

Figure 6.2: YouTrack Issue Overview

In order to distinguish the activities done we can label our work items with Development,
Meeting, Documentation, Testing and Project Management. This enables us to see at the end of
the project how much time we have spent on which activities. The time reports can be found
in chapter 7.1.1.

To have all messages at one location, we use a Slack Channel. Messages from YouTrack about
issue tracking and from GitLab about CI pipeline runs and merge request are sent directly to
Slack which informs us about new events.

Figure 6.3: Slack

To measure and check the quality of the code we use SonarCube. This makes it possible to see
issues in our code and correct them. The code staticstic collected by SonarCube are defined in
the project monitoring chapter 7.2.

SD-WAN Topology Viewer 55

6.5. RELEASES

6.5 Releases

In the process of the Semester Thesis we create four releases.

Nr. Name Version Date

P1 Prototype 0.0.1 14.10.2020

R1 Alpha Release 0.1.0 04.11.2020

R2 Beta Release 0.2.0 01.12.2020

R3 Final Release 1.0.0 08.12.2020

Table 6.2: SDWANTV Releases

6.6 Milestones

M1 - End of Inception - 29.09.2020 Project plan is created, basic requirements are written
down, a mockup and risk analysis are created. Moreover the toolchain is defined.

M2 - End of Elaboration - 20.10.2020 Requirements fine-tuned, software architecture design
defined, C4 and deployment diagrams are generated, domain analysis is completed, toolchain
is setup and the prototype is ready. Furthermore, the vManage API was analysed and docu-
mented. After this phase we also have the whole knowledge to start constructing the software.

M3 - Alpha Release - 10.11.2020 Submission of the MVP including Usability Tests.

M4 - Beta Release - 01.12.2020 Submission of the Beta release and feature freeze which
means that no additional features are going to be added to the software.

M5 - End of Construction - 08.12.2020 All open bugs are fixed and the software is ready for
the transition phase.

M6 - Project Closure - 18.12.2020 All documents are finalized and ready to be handed in.

SD-WAN Topology Viewer 56

6.7. PROJECT PLAN

6.7 Project Plan

Figure 6.4: Project Plan

SD-WAN Topology Viewer 57

6.8. RISK ANALYSIS

6.8 Risk Analysis

For the risk analysis we created a matrix as an overview. While the events in the white areas
are unproblematic, we should reduce the impact of the events in the orange area. In the red
area we should avoid the occurrence of an event at all.

Figure 6.5: Risk analysis matrix

The full list with the preventions and the behaviour on entry can be found in the attachment
E.

Nr. Title

R1 Interpersonal conflicts

R2 Outage of team member

R3 Not testable

R4 Customer requirements not met

R5 Overstrain of the technical complexity

R6 Lifecycle of dependencies

R7 Lack of security

R8 Repository not accessible

R9 Vmanage API is not deterministic

R10 Software is too slow

R11 vManage is not scaleable

R12 Faulty State of Topology

R13 Our time getting out of sync

Table 6.3: Risk analysis

SD-WAN Topology Viewer 58

6.9. LOGGING

6.9 Logging

SDWANTV consists of mulitple docker containers for which logging need to be configured
separately. Overall, the goal is to implement logging based on the best practices from the
12-factor criteria which means that logs should be written to the Stdout stream so they can be
collected by docker. For all docker containers the loglevel is adjustable with docker environ-
ment parameters and the default loglevel is INFO.

Django Logging Logging in Django is configured in the settings.py file. A global log handler
is configured which will write the logs to the console (Stdout stream). The loglevel can be set
by providing the docker environment parameter DJANGO LOG LEVEL.

Gunicorn webserver The Gunicorn production webserver logs all the http access and error
requests. The webserver is configured to also write log messages to the Stdout stream.

Treafik reverse proxy The Traefik reverse proxy inspects the incoming traffic and forward
it to the frontend or backend server. These requests are logged. Moreover, the Traefik proxy
needs to be configured to write those access and error requests to the Stdout stream.

Nodejs Webserver Log messages from the frontend webserver are also configured to be sent
to the Stdout stream. This webserver does not have a lot of log messages anyway.

React SPA Because the react single page application runs locally in the client’s browser log,
messages are directly sent to the console of the browser. These logs are not forwarded to a
containers Stdout stream.

6.10 Time Report

We manage the time reporting with YouTrack. All epics, tasks and bugs have assigned tags
for the phase, milestone and working area (backend, frontend, documentation, meeting). This
makes it easy for us to get time reports per milestone, sprint, phase and working area. The
time reports can be found in the project monitoring chapter 7.

SD-WAN Topology Viewer 59

6.11. QUALITY CONTROL

6.11 Quality Control

Some Quality control measures are briefly listed in the table below. The important measures
are described in more detail further down.

Measure Time Range Goal

Code re-
views

On every
merge request

Merge requests into the master branch need to be approved
by the other team member. This improves not only the code
quality, it also promotes knowledge sharing.

Unit test-
ing

On every push
By building and running the code through the GitLab CI
pipeline all tests will be executed and failures will be detected
before they get into the master branch.

Integration
testing

Before every
merge request

Automated tests with a personal computer with both the fron-
tend and backend software components is executed.

Supervisor
meetings

On every su-
pervisor meet-
ing

The meetings with the supervisor ensure that the project is on
track.

Weekly
team-
meeting

Weekly on
Tuesday

Prevent or correct wrong planning and assign competences
and tasks.

Code lint-
ing

On every
merge request

During every GitLab CI run the code will be linted. This en-
sures that syntax errors will be detected and are corrected
before merging into the master branch.

Definition
of done

On every issue
For those issues, whereby the description does not make it
implicitly clear as to what needs to be done, we will create a
separate definition of done.

Table 6.4: Quality control measures

6.11.1 Linting

We consider the code base to be very important and should be as maintainable as possible.
Because of that, we decided to use linting tools with some predefined public rules. The most
important ones for the frontend are listed below. The linting will be run during the continuous
integration with a |warnings 0 flag, which prevents the pipeline from running through when
we just have one single warning.

• React-app

• Airbnb

• Prettier/@typescript-eslint

• Prettier/recommended

• flake8

• pep8

SD-WAN Topology Viewer 60

6.12. MVP

6.11.2 Definition of Done

The following criteria have to be met before an epic, task or bug is considered finished.

• Successful CI run

• Documentation updated

• Successful run of unit tests

6.11.3 Coding Guidelines

The Code Styleguide for Python is the official PEP8 [31] - Style Guide for Python Code. A
tool called pycodestyle should be used to observe violations of the style guide and if possible
autopep8 to automatically format code in the PEP8 style.

For the front-end technologies we are using eslint and prettier. The rule set for eslint is based
on the AirBnB-Guidlines [4].

6.12 MVP

The MVP will include all the features of Use Case 1 defined in the requirements section 2.3.1.
This will bring the following features:

• The whole topology can be monitored on the website after a successful login. All connec-
tions will be displayed with simple lines between the customer location and the remote
stations of KSAT.

• The displayed connections will be updated on a regular basis.

• It is possible to zoom in on the map to get a closer look.

All other features and functions are not included in the MVP and will only be developed if
the time allows it.

SD-WAN Topology Viewer 61

Chapter 7

Project monitoring

7.1 Project reporting

In the following sections some project reports for the process of the semester thesis are dis-
played as charts or metrics.

7.1.1 Working times

Figure 7.1: Hours spent per component per team member

Member Time spent

Dominic Gabriel 252h

Lars Barmettler 241h

Total 494h

Table 7.1: Working times per team member

SD-WAN Topology Viewer 62

7.1. PROJECT REPORTING

7.1.2 Project phases

Time spent per phase

Phase Time estimated Time spent

Inception 63h 63h

Elaboration 124h 145h

Construction 234h 247h

Transition 45h 58h

Table 7.2: Time spent per project phase

Issues per phase

Figure 7.2: Cake diagram issues per phase

Phase Number of issues

Inception 24

Elaboration 42

Construction 80

Transition 30

Table 7.3: Issues per phase

SD-WAN Topology Viewer 63

7.1. PROJECT REPORTING

7.1.3 Task types

Figure 7.3: Cake diagram hours spent per Issue type

Type Time estimated Time spent

Backend 154h 161h

Frontend 105h 114h

Documentation 103h 125h

Meetings 87h 76h

Project Management 6h 30m 7h 40m

No type 11h 10h

Table 7.4: Time spent per task type

SD-WAN Topology Viewer 64

7.1. PROJECT REPORTING

7.1.4 Milestones

Time spend per milestone

Type Time estimated Time spent

M1 63h 63h

M2 113h 111h

M3 103h 123h

M4 110h 101h

M5 30h 30h

M6 41h 58h

Table 7.5: Time spent per milestone

Issues per Milestone

Figure 7.4: Cake diagram issues per milestone

SD-WAN Topology Viewer 65

7.2. CODE STATISTICS

Milestone Number of issues

M1 24

M2 41

M3 33

M4 31

M5 16

M6 30

Table 7.6: Issues per milestone

7.2 Code statistics

The code metrics are obtained with Sonarqube [34] and GitLab repository statistics.

Tier/Metric Backend Frontend Total

Lines of Code 1500 2700 4200

Statements 867 835 1702

Comments (%) 7.8% 3.1% 5.45%

Commits 103 66 169

Testing coverage 64% 81% 72.5%

Docker image size 35.82 MiB 42.00 MiB 77.82 MiB

Cyclomatic complexity 135 419 554

LoC Docker configuration 799 83 882

Table 7.7: Code statistics

SD-WAN Topology Viewer 66

7.2. CODE STATISTICS

Part III

Appendix

SD-WAN Topology Viewer 67

Appendix A

User Manual

The installation guide provides information about how to install and configure SDWANTV.
SDWANTV can be installed on every system that has docker [19] and docker-compose [20]
installed. Furthermore it describes some operational tasks that may be necessary.

A.1 Installation

The installation section describes the steps how to install docker [19] and docker-compose [20]
on the system, as the requirements to run SDWANTV. The installation guide is based on a
Ubuntu 20.04 server.

Install docker

The installation guide is based on the offical docker installation guide [25].

Update the system.

sudo apt update

Install all docker dependencies.

sudo apt install apt-transport-https ca-certificates curl software-properties-common

Download and add the docker repository key.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Add the docker repository.

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu

$(lsb_release -cs) stable"

Update the package list.

sudo apt update

Check which version of docker is installed or will be installed.

apt-cache policy docker-ce

Install docker

sudo apt install docker-ce

SD-WAN Topology Viewer 68

A.2. DEPLOYMENT

Add the current logged in user to the docker group. This will allow the user to run docker
commands without sudo.

sudo usermod -aG docker ${USER}

After the user was added to the group, re-login to make it effective. Check if the user was
added to the user group. This should list the docker group.

id -nG

At this point docker was successfully installed.

Install docker-compose

The installation guide is based on the DigitalOcean docker-compose installation guide [26].

Check the latest release of docker-compose on the docker-compose release GitHub page [21].
At the time of this writing the latest version was 1.27.4.

Download the docker-compose binary and place it in /usr/local/bin/docker-compose.

sudo curl -L "https://github.com/docker/compose/releases/download/1.27.4/docker-compose-$(uname

-s)-$(uname -m)" -o /usr/local/bin/docker-compose

Make the docker-compose binary executable.

sudo chmod +x /usr/local/bin/docker-compose

Check the version of docker-compose.

docker-compose --version

At this point all requirements for running SDWANTV were successfully installed.

A.2 Deployment

To deploy SDWANTV first login to the container registry of the GitLab server.

docker login gitlab.dev.ifs.hsr.ch:45023

After the login succeeded get the docker-compose.yaml file from the docker compose yaml
section A.8 and place it in a file on the server. Customize the docker containers if needed with
the parameters from the deployment configuration section A.3.

Start SDWANTV in the deamon mode.

docker-compose up -d

If this finishes successfully, SDWANTV is available on the systems hostname or ip address on
port 80 and 443. However, port 80 will be redirected to 443. The single entrypoint is served
by a traefik container, which by default creates a default traefik certificate for serving https
traffic. To see how to use own ssl certificates see section configure https certificates A.4.

A.3 Deployment configuration

Both SDWANTV images, backend and frontend can be configured with environment vari-
ables. The environment variables are described in this section.

SD-WAN Topology Viewer 69

A.3. DEPLOYMENT CONFIGURATION

Backend

The following table lists the configurable parameters of the backend container. Also configure
the same parameters for the sdwantv_beat and sdwantv_celery\ container.

DEBUG Activate debug mode for django. Only for development!
Default: 0

DB CONNECTION STRING Conenction string to connect to the database.
Format: <db-type>://<username>:<password>@<host>:<port>/<databse-name>
Example: postgres://sdwantv:sdwanTV2020@sdwantv_db_local:5432/sdwantv
Default: nil

CELERY BROKER URL URL for the celery broker backend. Typically redis or local.
Example: redis://sdwantv_redis:6379/0
Default: nil

SECRET KEY Secret key to be used for Django.
Default: changeme

WEBSERVER ARGS Additional Gunicorn webserver argruments to start the webserver with.
Example: --log-level info

Default: nil

ALLOWED HOSTS Comma separated string of allowed hosts which are able to interact with
the backend API.
Example: 127.0.0.1,localhost
Default: nil

DJANGO LOG LEVEL Change the Log Level.
Default: INFO
Possible values: DEBUG, INFO, WARNING, ERROR, CRITICAL

DJANGO LOG FORMAT Define another Log Format for log messages.
Default: ’{asctime} %(name)-12s %(levelname)-8s %(message)s’

VMANAGE URL URL to the Cisco vManage API.
Example: https://vmanage:8443
Default: nil

VMANAGE USERNAME Username to authenticate at Cisco vManage API.
Default: nil

VMANAGE PASSWORD Password to authenticate at Cisco vManage API.
Default: nil

VMANAGE FULL SYNC INTERVALL SECONDS How often to query the Cisco vManage
API for topology changes.
Default: 30 seconds

KEEP DOWN NODES EDGES Set to False if nodes and edges should be removed from the
topology immidiately when reachability: down. Otherwise they will be present in the
topology for KEEP_DOWN_NODES_EDGES_TIME_SECONDS seconds and after that deleted.
Default: True
Possible values: True, False

KEEP DOWN NODES EDGES TIME SECONDS Define how long nodes and edges with
reachability: down should be present in the topology until removed.
Default: 3600 seconds

SD-WAN Topology Viewer 70

A.4. CONFIGURE HTTPS CERTIFICATES

Frontend

The following table lists the configurable parameters of the frontend container.

PORT Port on which the frontend runs
Default: 3000

TOPOLOGY UPDATE INTERVAL Interval how often the backend is queried and therefore
the topology updated. Note, that defining this value too low may cause delay on the
backend and therefore negatively influence the performance of the backend.
Default: 30000 milliseconds

SYNC UPDATE INTERVAL Interval how often the sync status field should be updated.
Default: 10000 milliseconds

SYNC THRESHOLD WARNING Threshold after how many milliseconds without a suc-
cessful sync the sync status will display a warning.
Default: 120000 milliseconds

API URL URL of the backend API. The URL needs to be accessible from the browser where
the frontend is accessed.
Example: https://localhost/api/v1 Default: http://localhost:8000/api/v1

A.4 Configure https certificates

If no ssl certificates are provided, traefik creates self-signed certifiactes. Traefik will create a
folder with the same name in the directory where the docker-compose.yaml is located and
one level deeper two subfolders called config and certs.

Add the own certificate and the key to that certificate into the folder traefik/certs/ and
place the certs.toml, which can be found in the traefik config file A.9 section, into the folder
traefik/config/.

sdwantv/

- docker-compose.yaml

traefik/

certs/

- cert.crt

- privkey.key

config/

- certs.toml

To create an own self-signed certificate use the command below.

openssl req -newkey rsa:4096 -nodes -sha256 -keyout certs/privkey.key \

-x509 -days 365 -out certs/cert.crt

A.5 Operational tasks

Change docker image parameters

To change the configuration of the docker images the application needs to be stopped. See
section termination A.7 how to stop the application. After the application was stopped and
the environment parameters of the docker images have been adjusted, it can be started again.

SD-WAN Topology Viewer 71

A.5. OPERATIONAL TASKS

Cleanup sync tasks

If the application was stopped because docker environment parameters needed to be changed
or because of a server restart, it may happen that the backend was in the middle of a topol-
ogy fetch. This will leave the created sync object in a running state. Execute the following
command in the backend docker container to cleanup all running sync objects.

docker exec -it be_sdwantv_backend_1 sh

~/app $

~/app $ python manage.py cleanup_syncs

Info: Using postgresql Database on Host sdwantv_db

Info: Using Celery broker redis://sdwantv_redis:6379/0

Successfully cleaned up running syncs

Backend healthcheck

The backend container features a healthcheck endpoint that can be accessed to check if the
backend components are running as expected.

https://localhost/api/ht

This displays the healthcheck in a html readable presentation and is good for using in browsers.

Figure A.1: Html friendly backend healthcheck

Or to see the status of the backend components in a json format.

https://localhost/api/ht?format=json

This produces the json output below.

{

"Cache backend: default": "working",

"DatabaseBackend": "working",

"DefaultFileStorageHealthCheck": "working",

"MigrationsHealthCheck": "working",

"RedisHealthCheck": "working"

}

User management

To change a users password or to add new users, use the Django administration endpoint
/admin can be used. Only administrative users are able to login and add new users.

Unfortunately, because of a bug, there is no CSS available at the moment. For more informa-
tion refer to the technical debt section 1.6.3.

SD-WAN Topology Viewer 72

A.6. DOCKER CONFIGURATION

Default admin user

By default a user with the username admin and the password changeme exists. This user has
administrative rights and is able to login to the admin panel.

A.6 Docker configuration

Using docker as docker engine is great. But without also using an application orchestration
engine like Kubernetes it is hard to use in production. To make docker usable in production
it is possible to configure docker.

Logging

By default container logs are written to the Stdout stream and collected by docker. Container
logs can be check with the docker logs <container-name> command. For further investiga-
tion, monitoring or also alerting this is not enough. Due to this it is possible to forward the
container logs to another log system. This could be for example syslog or also into a file to
be read by a monitoring system. The docker logging website [13] provides more information
about how to configure logging for docker.

Backup

Docker uses docker volumes to store data persistent on the file system and make them avail-
able again after a container has crashed or restarted. However, these volumes should also get
backuped. This blogpost [6] describes how to backup docker volumes.

Systemd

On Ubuntu the docker daemon is managed by systemd. To make sure docker and containers
are automatically started if the system reboots configure the docker systemd daemon like
described here [14] [12].

A.7 Termination

To stop the application the docker-compose.yaml file is required to be present on the system.
If the file is available simply run the command below. This will stop all running containers of
SDWANTV but not removing the containers, images, networks or volumes.

docker-compose -f docker-compose.yaml down

However if it is required to not stop the containers but also delete the containers, images,
networks and also volumes, this can be achieved with the command below.

docker-compose -f docker-compose.yaml down --rmi all -v

SD-WAN Topology Viewer 73

A.8. DOCKER-COMPOSE YAML

A.8 Docker-compose Yaml

This is the docker-compose.yaml that can be used for a production environment.

version: ’3.7’

services:

sdwantv_traefik:

container_name: sdwantv_traefik

image: traefik:v2.3.1

restart: always

ports:

- 80:80

- 443:443

- 8080:8080

command: >

--api.insecure=true

--log.level=INFO

--providers.docker=true

--providers.docker.exposedByDefault=false

--providers.file.directory=/config

--providers.file.watch=true

--entrypoints.http.address=:80

--entrypoints.websecure.address=:443

--entrypoints.http.http.redirections.entryPoint.to=websecure

--entrypoints.http.http.redirections.entryPoint.scheme=https

--entrypoints.http.http.redirections.entrypoint.permanent=true

volumes:

- /var/run/docker.sock:/var/run/docker.sock

- ./traefik/config/:/config:ro

- ./traefik/certs/:/certs:ro

networks:

- transit

- transit_sdwantv

sdwantv_frontend:

image: gitlab.dev.ifs.hsr.ch:45023/sa-sdwan/fe:v1-0-0

restart: always

ports:

- "3000:3000"

environment:

- TOPOLOGY_UPDATE_INTERVAL=20000

- API_URL=https://10.20.1.16/api/v1

labels:

- traefik.enable=true

- traefik.docker.network=transit_sdwantv

- traefik.http.services.frontend.loadbalancer.server.port=3000

- traefik.http.routers.frontend.entrypoints=websecure

- traefik.http.routers.frontend.tls=true

- traefik.http.routers.frontend.rule=PathPrefix(‘/‘)

networks:

- intern_sdwantv

- transit_sdwantv

depends_on:

- sdwantv_backend

sdwantv_backend:

image: gitlab.dev.ifs.hsr.ch:45023/sa-sdwan/be/backend:latest

restart: always

ports:

- "8000:8000"

environment:

- DB_CONNECTION_STRING=postgres://sdwantv:sdwanTV2020@sdwantv_db:5432/sdwantv

- CELERY_BROKER_URL=redis://sdwantv_redis:6379/0

SD-WAN Topology Viewer 74

A.8. DOCKER-COMPOSE YAML

- ALLOWED_HOSTS=10.20.1.16

- DJANGO_LOG_FORMAT=%(name)-12s %(levelname)-8s %(message)s

- VMANAGE_URL=https://152.96.9.236:8443

- VMANAGE_USERNAME=sdwan

- VMANAGE_PASSWORD=ins@sdwan

labels:

- traefik.enable=true

- traefik.docker.network=transit_sdwantv

- traefik.http.services.backend.loadbalancer.server.port=8000

- traefik.http.routers.backend.entrypoints=websecure

- traefik.http.routers.backend.tls=true

- traefik.http.routers.backend.rule=PathPrefix(‘/api/v1‘) || PathPrefix(‘/api/ht‘) ||

PathPrefix(‘/admin‘) || PathPrefix(‘/swagger‘)

networks:

- intern_sdwantv

- transit_sdwantv

- transit

depends_on:

- sdwantv_db

- sdwantv_redis

- sdwantv_celery

sdwantv_db:

image: postgres:13.0-alpine

ports:

- 5432:5432

restart: always

environment:

- POSTGRES_USER=sdwantv

- POSTGRES_PASSWORD=sdwanTV2020

- POSTGRES_DB=sdwantv

volumes:

- postgres_data:/var/lib/postgresql/data

networks:

- intern_sdwantv

sdwantv_redis:

image: redis

restart: always

ports:

- 6379:6379

networks:

- intern_sdwantv

sdwantv_celery:

image: gitlab.dev.ifs.hsr.ch:45023/sa-sdwan/be/celery:latest

restart: always

volumes:

- celery-state:/var/run/celery/

environment:

- DB_CONNECTION_STRING=postgres://sdwantv:sdwanTV2020@sdwantv_db:5432/sdwantv

- CELERY_BROKER_URL=redis://sdwantv_redis:6379/0

- ALLOWED_HOSTS=10.20.1.16

- DJANGO_LOG_FORMAT=%(name)-12s %(levelname)-8s %(message)s

- VMANAGE_URL=https://152.96.9.236:8443

- VMANAGE_USERNAME=sdwan

- VMANAGE_PASSWORD=ins@sdwan

depends_on:

- sdwantv_redis

- sdwantv_db

networks:

- transit

- intern_sdwantv

SD-WAN Topology Viewer 75

A.9. TRAEFIK CONFIG FILE

sdwantv_beat:

image: gitlab.dev.ifs.hsr.ch:45023/sa-sdwan/be/beat:latest

restart: always

environment:

- DB_CONNECTION_STRING=postgres://sdwantv:sdwanTV2020@sdwantv_db:5432/sdwantv

- CELERY_BROKER_URL=redis://sdwantv_redis:6379/0

- ALLOWED_HOSTS=10.20.1.16

- DJANGO_LOG_FORMAT=%(name)-12s %(levelname)-8s %(message)s

- VMANAGE_URL=https://152.96.9.236:8443

- VMANAGE_USERNAME=sdwan

- VMANAGE_PASSWORD=ins@sdwan

depends_on:

- sdwantv_redis

- sdwantv_celery

- sdwantv_db

networks:

- intern_sdwantv

volumes:

postgres_data:

celery-state:

networks:

transit:

name: transit

transit_sdwantv:

name: transit_sdwantv

internal: true

intern_sdwantv:

name: intern_sdwantv

internal: true

Listing A.1: docker-compose.yaml

A.9 Traefik config file

This is the certs.toml that can be used for a production environment.

[[tls.certificates]]

certFile = "/certs/cert.crt"

keyFile = "/certs/privkey.key"

[tls.stores]

[tls.stores.default]

[tls.stores.default.defaultCertificate]

certFile = "/certs/cert.crt"

keyFile = "/certs/privkey.key"

Listing A.2: Traefik config certs.toml

SD-WAN Topology Viewer 76

Appendix B

Systemtest protocol

The systemtest protocol covers all tests that are relevant for the Use Cases. They test the whole
application and show that the application is doing what it is intended to do. The test results
can be found in the appendix and is linked in the result column in the table.

The requirements for performing these tests are to have an instance of the SDWANTV appli-
cation running. It can be started using the docker compose files. How to setup an instance of
the SDWANTV can be found in the installation guide A.

UseCase Implemented Result Status

UC1: Monitoring topology yes result B.1 passed

UC1.1: View node information yes result B.6 passed

UC1.2: Display connection metrics yes result B.7 passed

UC1.3: Display bandwidth of IP-sec tunnels no no result not tested

UC1.4: Toggle Fullscreen yes result B.8 passed

UC2: Apply customer filter yes result B.9 passed

UC3: Manage Users for companies no no result not tested

UC4: Apply connection filter yes result B.10 passed

UC5, UC6, UC6.1 no no result not tested

Table B.1: Systemtest protocol

SD-WAN Topology Viewer 77

B.1. UC1: MONITORING TOPOLOGY: TEST 1

B.1 UC1: Monitoring topology: Test 1

Pull out the ethernet cable of Miami-a

Initial state

All connections and all nodes, except the 4 nodes that are not connected to vManage, are up
and available.

Figure B.1: Topology view

Test procedure

Pulling the cable from port XXX of node Miami-a simulates a network connection failure and
brings the port down. As soon as a new API call to the vManage API occurs the backend real-
izes that the connection is gone and mark it as down in the database. The backend represents
the gone connection in the API with a reachability set to down. The frontend marks the down
connection red.

SD-WAN Topology Viewer 78

B.1. UC1: MONITORING TOPOLOGY: TEST 1

Test results

The frontend reports the down edges and marks them as red. After 5 minutes the edges are
deleted from the backend which shows up in the logs and afterwards also in the frontend.

The test was successful!

Figure B.2: Edge down Figure B.3: API Edge down

Figure B.4: Edge is gone

SD-WAN Topology Viewer 79

B.2. UC1: MONITORING TOPOLOGY: TEST 2

B.2 UC1: Monitoring topology: Test 2

Power outage of node Miami-a.

Initial state

All connections and all nodes, except the 4 nodes that are not connected to vManage, were up
and available.

Figure B.5: Miami-a up

Figure B.6: API Miami-a up

Test procedure

Pulling the power cable of node Miami-a simulates a power outage. The node will be unavail-
able and unreachable for vManage.

Figure B.7: Miami-a down
Figure B.8: API Miami-a down

SD-WAN Topology Viewer 80

B.2. UC1: MONITORING TOPOLOGY: TEST 2

Test results

Miami-a and all edges associated with it will be marked red.

After 5 minutes the edges associated with node Miami-a will be removed from the map. But
Miami-a will remain on the map and marked red.

The test was successful!

Figure B.9: Miami-a red and edges gone

SD-WAN Topology Viewer 81

B.3. UC1: MONITORING TOPOLOGY: TEST 3

B.3 UC1: Monitoring topology: Test 3

Give the power back to node Miami-a.

Initial state

Miami-a is down and marked as red. All connections are already removed from the map.

Test procedure

Turn on the node miami-a.

Test results

The node status is up again and Miami-a will be marked orange again.

The test was successful!

Figure B.10: Miami-a up again
Figure B.11: API Miami-a up again

SD-WAN Topology Viewer 82

B.4. UC1: MONITORING TOPOLOGY: TEST 4

B.4 UC1: Monitoring topology: Test 4

Apply a more restrictive policy.

Initial state

There is no policy active in vManage and therefore every node can speak to each other, which
is represented in a full-mesh topology.

Figure B.12: Full-mesh topology view

Test procedure

In vManage, the policy which prevents that each node can communicate with the others is
applied. Customer nodes will only be able to communicate with a set of defined nodes. This
results in a lot of edges being deleted and therefore in the status down on those.

SD-WAN Topology Viewer 83

B.5. UC1: MONITORING TOPOLOGY: REPORTED BUGS

Test results

Down edges are marked red in the frontend.

After 5 minutes all red edges that were reported down are removed.

The test was successful!

Figure B.13: Policy applied
Figure B.14: Edges cleaned after 5 minutes

B.5 UC1: Monitoring topology: Reported bugs

Despite all 3 tests were successful we also encountered 2 errors.

1. The frontend sometimes displays mpls and biz-internet edges from and to the same
nodes over each other. This means that one edge is covered by the other and therefore
is invisible and unclickable.

2. The second bug we reported was an uncatched ServerTimeout exception that occured
when the backend was querying the vManage API for edges of node Miami-a.

Both bugs were reported and a respective task was opened to fix them as soon as possible.
Both of these bugs do not exist anymore and were successfully fixed.

SD-WAN Topology Viewer 84

B.6. UC1.1: VIEW NODE INFORMATION: TEST 1

B.6 UC1.1: View node information: Test 1

Initial state

All nodes and edges are rendered. No node or edge is selected.

Test procedure

Selecting a node.

Test results

After a node is selected, a popup opens and displays the name and some other useful infor-
mation of the node.

The test was successful!

Figure B.15: Full topology view Figure B.16: View node information

SD-WAN Topology Viewer 85

B.7. UC1.2: DISPLAY CONNECTION METRICS: TEST 1

B.7 UC1.2: Display connection metrics: Test 1

Initial state

All nodes and edges are rendered. No node or edge is selected.

Figure B.17: Full topology view

Test procedure

Selecting an edge.

Test results

After an edge is selected a popup opens and displays the name and some other useful infor-
mation of the edge. When selecting the same edge again the metrics will be queried again
and updated. The new metric values are displayed.

The test was successful!

Figure B.18: Selected edge displays metrics Figure B.19: Selected edge updated metrics

SD-WAN Topology Viewer 86

B.8. UC1.4: TOGGLE FULLSCREEN: TEST 1

B.8 UC1.4: Toggle fullscreen: Test 1

Initial state

All buttons and the application header as well as the browser navigation are displayed.

Test procedure

Click on the fullscreen button in the top right corner the application.

Test results

The application will switch into fullscreen mode and hide the browser navigations and the
application header.

After clicking again on the fullscreen button in the top right corner, the application will end
the fullscreen mode. Browser navigations and the application header are back again.

The test was successful!

Figure B.20: Normal fullscreen

Figure B.21: Fullscreen view enabled

SD-WAN Topology Viewer 87

B.9. UC2: APPLY CUSTOMER FILTER: TEST 1

B.9 UC2: Apply customer filter: Test 1

Initial state

All edges and nodes are displayed and no filter is applied.

Test procedure

After opening the filter panel, by pressing on the button in the left top corner, a filter can be
applied. A company is chosen from the list of available companies and the apply button is
pressed.

Test results

After the filter is applied only nodes and edges that belong to this company are displayed.

The test was successful!

Figure B.22: Full topology view Figure B.23: Customer filter applied

SD-WAN Topology Viewer 88

B.10. UC4: APPLY CONNECTON FILTER: TEST 1

B.10 UC4: Apply connecton filter: Test 1

Initial state

The initial state is that all edges and nodes are displayed and no filter is applied.

Test procedure

After opening the filter panel, by pressing on the button in the left top corner, a filter can be
applied. A site-id is chosen from the list of available site-ids and the apply button is pressed.

Test results

After the filter is applied only nodes from this site-id and edges that go to the site or away
from the site are displayed.

The test was successful!

Figure B.24: Full topology view Figure B.25: Site-id filter applied

SD-WAN Topology Viewer 89

Appendix C

Non functional requirement testprotocol

All test are executed on a Macbook Pro in the network of the lab environment of the INS.

Non functional requirement Implemented Result Status

Security yes result C.1 passed

Fault tolerance, user data yes result C.2 passed

Fault tolerance, vManage data yes result C.3 passed

Maturity yes result C.4 passed

Understandability yes result C.5 passed

Failure management yes result C.6 passed

Time behaviour yes result C.7 passed

Efficiency compliance maybe no result could not be tested

Response time yes result C.8 passed

Supportability yes result C.9 passed

Portability yes result C.10 passed

Scalability yes result C.11 passed

Table C.1: NFR test protocol

SD-WAN Topology Viewer 90

C.1. SECURITY

C.1 Security

To be tested

1. Passwords are never stored in plain text.

2. JWT token has limited lifetime.

3. System logs relevant information to the Stdout stream.

Test result

Password is encrypted The python default user management uses the PBKDF2 algorithm
with SHA256 hashes to encrypt passwords.

Figure C.1: Password stored in DB

JWT has limited lifetime The lifetime of the JWT token is embedded in the token body itself.
We let the system run for over a day and tested the token devaluation. It was successful.

Figure C.2: Sample JWT payload

System logs all relevant infromation The backend displays all requests made from the fron-
tend into the Stdout. This is sufficient for security checking at the current state of the project.

Figure C.3: Logs of the stdout stream

SD-WAN Topology Viewer 91

C.2. FAULT TOLERANCE, USER DATA

C.2 Fault tolerance, user data

To be tested

1. Frontend is not able to bring the system into failed state.

2. JWT token has limited lifetime.

3. User receives feedback if he makes an invalid input.

Test result

No failed state There is no frontend feature that modifies backend data because the backend
only provides read-only API endpoints. Therefore, the backend can not fall into a failed state
based on the frontend input.

Feedback if input is invalid The only input that needs to be checked is on the login page.
We created two kind of inputs. A direct feedback if a field is missing or an authentication
failed notification if the credentials are wrong.

Figure C.4: Login failure message

SD-WAN Topology Viewer 92

C.3. FAULT TOLERANCE, VMANAGE DATA

C.3 Fault tolerance, vManage data

To be tested

1. vManage response validation.

2. Exception management during the vManage fetch.

Test result

vManage response validation The response body of vManage API calls is validated in the
code with the Python jsonschema [28] library before we access the property.

Exception management All exceptions thrown are handled directly in a multiple except
statements. We ensure with a finally block, that the task is aborted in a proper manner.

...code

except aiohttp.ClientConnectionError:

except aiohttp.ClientResponseError:

except ValueError:

except ValidationError:

finally:

return result

Listing C.1: Exception management backend tasks

C.4 Maturity

To be tested

1. Ratio of successful requests.

Test result

Ration of successful requests If vManage is correctly configured and SDWANTV has access
to the vManage API endpoint, we did not experience one failed test on our side. However we
only tested the system for 24 hours.

C.5 Understandability

To be tested

1. A user not familiar with the application can understand it without a tutorial.

Test result

New user understands it A person not familiar with the application and the context the
application is built for had no problem to use all the provided features.

To really understand the different elements on the page however the person, who tested the
application, needed some background knowledge on the domain.

We consider the test as successful.

SD-WAN Topology Viewer 93

C.6. FAILURE MANAGEMENT

C.6 Failure management

To be tested

1. User is getting notified if an exception happens.

Test result

User is getting notified In a first step the system runs under normal circumstances. The
status display in the frontend shows the correct state.

Figure C.5: Sync state if system runs successful

If we remove the internet connection to prevent SDWANTV to fetch from the vManage API
the sync state changes.

Figure C.6: Sync is in error state

If we shutdown the backend we will receive a no sync state.

Figure C.7: Sync information could not be fetched

SD-WAN Topology Viewer 94

C.7. TIME BEHAVIOUR

C.7 Time behaviour

To be tested

1. Applying policy.

Test result

Applying policy The initial state is a full mesh topology and no policy is applied.

Figure C.8: Full match without policy applied

Over the vManage user interface we applied a policy. After the policy was applied to the
nodes 50s later the change was visible in our frontend.

Figure C.9: Policy applied 50s later

The 50s is below the required two minute threshold and therefore this test is successful.

SD-WAN Topology Viewer 95

C.8. RESPONSE TIME

C.8 Response time

To be tested

1. Initial render duration.

Test result

Initial render We measured the loading time with the chrome performance measuring tool
[9]. The result shows that the performance is far below the required threshold. The web
application shows the first render in only 100ms and after 1.6s we have rendered the whole
topology. So the initial render is much faster than the render of the topology.

Figure C.10: Render performance

SD-WAN Topology Viewer 96

C.9. SUPPORTABILITY

C.9 Supportability

To be tested

1. Complexity of the application.

Test result

Complexity of the application Because our project has only 4200 lines of code and a test
coverage of 72.5% we can assume that a developer still has the overview over the whole code
base. This enables an easy and fast support.

C.10 Portability

To be tested

1. 12 Factor are applied.

Test result

12 Factor are applied In section 4.2.3 we listed how we made our application cloud ready
and therefore portable.

C.11 Scalability

To be tested

1. Time difference if more resources are in the topology.

Test result

Time difference We let our tasks run under two different precondition. The first run we will
do with a full-mesh topology. The full-mesh will have 25 nodes and approximately 750 edges.
The second run has a policy applied, which will have 25 nodes and approximately 350 edges.
As we can see a full mesh takes approx. 18 seconds to run and a topology with only the half
of the resources takes only the half of the time to fetch with approx. 8 seconds.

Figure C.11: Full match fetching speed

Figure C.12: Applied policy fetching speed

SD-WAN Topology Viewer 97

Appendix D

Mockup & Wireframe

D.1 First Mockup

Figure D.1: Topology Viewer for User

SD-WAN Topology Viewer 98

D.1. FIRST MOCKUP

Figure D.2: Admin panel

Figure D.3: Add new user

SD-WAN Topology Viewer 99

D.2. MVP DESIGN WIREFRAME

Figure D.4: Login page Figure D.5: Register page

D.2 MVP Design Wireframe

2

1

1

35

25

4

3

5

8

8

6

3

12

Figure D.6: Full screen view

SD-WAN Topology Viewer 100

D.2. MVP DESIGN WIREFRAME

SDWAN Topology Viewer

4

10

SystemIP: 10.124.20.1

Name: FooBar-B3

Figure D.7: Zoomed in view

SDWAN Topology Viewer

4

10

From: 10.124.20.1

To: 10.124.20.2

From: 10.124.20.2

To: 10.124.20.1

Figure D.8: Click on connection

SD-WAN Topology Viewer 101

Appendix E

Risk analysis

E.1 Risk Analysis Table

SD-WAN Topology Viewer 102

E.1. RISK ANALYSIS TABLE

SD-WAN Topology Viewer 103

Appendix F

vManage API Request & Responses

F.1 Devices list response
{

"header":{

...

},

"data":[

{

"deviceId":"10.255.255.133",

"system-ip":"10.255.255.133",

"host-name":"Customer-king-Hawaii",

"reachability":"reachable",

"status":"normal",

"personality":"vedge",

"device-type":"vedge",

"timezone":"UTC +0000",

"device-groups":[

"\"king\""

],

"lastupdated":1604841099143,

"bfdSessionsUp":38,

"domain-id":"1",

"board-serial":"01DB3829",

"certificate-validity":"Valid",

"max-controllers":"0",

"uuid":"C1111X-8P-FGL2346L61N",

"bfdSessions":"38",

"controlConnections":"3",

"device-model":"vedge-C1111X-8P",

"version":"16.12.02r.0.23",

"connectedVManages":[

"\"10.255.255.1\""

],

"site-id":"32",

"ompPeers":"2",

"latitude":"19.5429",

"longitude":"-155.6659",

"isDeviceGeoData":True,

"platform":"x86_64",

"uptime-date":1597931460000,

"statusOrder":4,

"device-os":"next",

"validity":"valid",

"state":"green",

"state_description":"All daemons up",

"model_sku":"None",

SD-WAN Topology Viewer 104

F.2. IPSEC INBOUND RESPONSE

"local-system-ip":"10.255.255.133",

"total_cpu_count":"4",

"linux_cpu_count":"4",

"testbed_mode":False,

"layoutLevel":4

},

]

}

Listing F.1: Devices list sample response

F.2 IPsec inbound response
{

"header":{

...

},

"data":[

{

"dest-ip":"10.8.0.162",

"source-port":12406,

"vdevice-name":"10.255.255.162",

"vdevice-host-name":"RS-CapeTown-b",

"remote-tloc-address":"10.255.255.111",

"negotiated-encryption-algo":"AES-GCM-256",

"dest-port":12386,

"vdevice-dataKey":"10.255.255.162-10.255.255.162",

"local-tloc-address":"10.255.255.162",

"lastupdated":1604841086657,

"source-ip":"10.8.0.111",

"remote-tloc-color":"mpls",

"local-tloc-color":"mpls"

},

]

}

Listing F.2: Devices list sample response

SD-WAN Topology Viewer 105

F.3. EVENT AGGREGATION QUERY

F.3 Event aggregation query
{

"query": {

"condition": "AND",

"rules": [

{

"value": [

"2020-10-15T13:10:00 UTC",

"2020-10-15T14:21:00 UTC"

],

"field": "entry_time",

"type": "date",

"operator": "between"

},

{

"value": [

"BFD"

],

"field": "component",

"type": "string",

"operator": "equal"

}

]

},

"aggregation": {

"field": [

{

"property": "system_ip",

"order": "asc",

"sequence": 1

},

{

"property": "entry_time",

"order": "asc",

"sequence": 1

},

{

"property": "eventname",

"order": "asc",

"sequence": 1

},

{

"property": "component",

"order": "asc",

"sequence": 1

},

{

"property": "details",

"order": "asc",

"sequence": 1

}

]

}

}

Listing F.3: Events aggregation query

SD-WAN Topology Viewer 106

F.4. METRICS AGGREGATION QUERY

F.4 Metrics aggregation query
{

"query":{

"condition":"AND",

"rules":[

{

"value":[

"24"

],

"field":"entry_time",

"type":"date",

"operator":"last_n_hours"

},

{

"value":[

"10.255.255.133"

],

"field":"vdevice_name",

"type":"string",

"operator":"in"

}

]

},

"aggregation":{

"field":[

{

"property":"name",

"sequence":1,

"size":50

},

{

"property":"proto",

"sequence":2

}

],

"metrics":[

{

"property":"loss_percentage",

"type":"avg"

},

{

"property":"vqoe_score",

"type":"avg"

},

{

"property":"latency",

"type":"avg"

},

{

"property":"jitter",

"type":"avg"

},

{

"property":"rx_octets",

"type":"sum"

},

{

"property":"tx_octets",

"type":"sum"

}

]

}

SD-WAN Topology Viewer 107

F.5. METRICS RESPONSE

}

Listing F.4: Metrics aggregation query

F.5 Metrics response
{

"header":{

...

},

"data":[

{

"loss_percentage":0,

"latency":0,

"count":141,

"tx_octets":0,

"jitter":0,

"rx_octets":3661,

"proto":"IPSEC",

"name":"10.255.255.133:mpls-10.255.255.255:mpls",

"fecLossRecovery":"-",

"vqoe_score":10

},

]

}

Listing F.5: Metrics sample response

SD-WAN Topology Viewer 108

	Glossary and List of Abbreviations
	List of Figures
	List of Tables
	Technical Report
	Technical Report
	Introduction and Overview
	Problem
	Goals
	Limitations
	Work structure

	Evaluation
	Information acquisition

	Concept
	Solution
	Implementation

	Conclusion
	Forecast
	Non-technical improvements
	Technical improvements
	Technical debt

	Project Documentation
	Requirements Specification
	Thesis Requirements
	Actors
	Administrator
	Customer
	System

	Use Cases
	UC1: Monitoring the topology
	UC1.1: View the node information
	UC1.2: Display connection metrics
	UC1.3: Display bandwidth of IPsec Tunnels
	UC1.4: Toggle full screen
	UC2: Apply customer filter
	UC3: Manage users for companies
	UC4: Apply Connection filter
	UC5: Display of the path from router to the destination
	UC6: Manage Metric Alarms
	UC6.1: Send alarm to the external syslog server

	Non functional requirements
	Functionality
	Reliability
	Usability
	Efficiency
	Supportability
	Portability
	Scalability

	Analysis
	Domain model
	Data model
	auth_user
	auth_group
	edge
	metric
	node
	sync
	company

	Cisco vManage API analysis
	List devices
	OMP Services
	IPsec connections
	Events
	Metrics

	Architecture & Design Specification
	Scope
	Design
	Container Diagram
	Goals
	Twelve Factors

	Design Decisions
	Django Backend
	React Frontend
	PostgreSQL Database

	Software Architecture
	Frontend
	Communication
	Backend

	Sequence Diagrams
	Fetch topology
	Fetching metrics

	Deployment
	Client & SDWANTV Frontend
	Traefik
	Frontend Server
	Backend Server
	PostgreSQL Database
	Beat
	Redis
	Celery Task Engine
	vManage API
	Deployment with Docker-compose

	Tools & Frameworks
	Frontend
	Backend
	Communication
	Deployment

	UI-Design
	Tools
	Mock-up
	MVP design
	Prototype end of construction

	Implementation & Testing
	Implementation
	Python Django Backend
	Frontend

	Automated Testing
	Unit Tests
	Integration Tests
	Test Coverage

	Manual Testing
	System Tests
	Non functional Requirements Tests

	Project Management
	Project organization
	Project Meetings
	Process Model
	Software Development Process
	Releases
	Milestones
	Project Plan
	Risk Analysis
	Logging
	Time Report
	Quality Control
	Linting
	Definition of Done
	Coding Guidelines

	MVP

	Project monitoring
	Project reporting
	Working times
	Project phases
	Task types
	Milestones

	Code statistics

	Appendix
	User Manual
	Installation
	Deployment
	Deployment configuration
	Configure https certificates
	Operational tasks
	Docker configuration
	Termination
	Docker-compose Yaml
	Traefik config file

	Systemtest protocol
	UC1: Monitoring topology: Test 1
	UC1: Monitoring topology: Test 2
	UC1: Monitoring topology: Test 3
	UC1: Monitoring topology: Test 4
	UC1: Monitoring topology: Reported bugs
	UC1.1: View node information: Test 1
	UC1.2: Display connection metrics: Test 1
	UC1.4: Toggle fullscreen: Test 1
	UC2: Apply customer filter: Test 1
	UC4: Apply connecton filter: Test 1

	Non functional requirement testprotocol
	Security
	Fault tolerance, user data
	Fault tolerance, vManage data
	Maturity
	Understandability
	Failure management
	Time behaviour
	Response time
	Supportability
	Portability
	Scalability

	Mockup & Wireframe
	First Mockup
	MVP Design Wireframe

	Risk analysis
	Risk Analysis Table

	vManage API Request & Responses
	Devices list response
	IPsec inbound response
	Event aggregation query
	Metrics aggregation query
	Metrics response

