INSTITUTE FOR OOST
SOFTWARE Fachhochsehle

Analysis Platform for
OpenStreetMap

Department of Computer Science
OST - University of Applied Science
Campus Rapperswil-Jona

Student Research Project
Autumn Term 2020

Authors: Marc Scherrer & Philipp Bolliger
Advisor: Prof. Stefan Keller

Project Partner: Institute for Software

Version: 1.0-62-gb6172e1

This document was typeset using KIEX
December 17, 2020

Abstract

Big Data analysis and especially geospatial data analysis can reveal useful information
about geographical phenomena and its own composition. One of the most commonly used
source in open source data science is OpenStreetMap. There are numerous community
tools to handle OpenStreetMap (OSM) data and to use it for an analytical approach. The
EOSMDBOne offers up-to-date OSM data from Switzerland and Liechtenstein. It uses tools
that are no longer maintained and has a sub optimal schema. The purpose of this project, is
to create a newer version of EOSMDBOne with an additional GraphQL API and a SQL web
frontend application.

First the domain of GIS, OSM and some OSM tools were researched and evaluated. Sub-
sequently a prototype was created for the core functionality. Then the GraphQL API was
created and tuned to work with the database. For the web application a design concept in
the form of wireframes and a proof of concept was created. The remaining time was dedi-
cated to increase the performance of the database itself. The developement of the SQL web
frontend application was continued outside of the project scope.

The resulting solution consists of a database with up-to-date OSM data called EOSMDBTwo
and a GraphQL API with a custom function, which allow users to make some case specific
queries.

The EOSMDBTwo in conjunction with the SQL web frontend application is ready to replace
the EOSMDBOne, although for reliability purposes, a query limit should be added. The
GraphQL interface offers a template for custom functions to add in the future.

Abstract in German

Big Data Analyse, und vor allem raumbezogene Datenanalyse kann nitzliche Informationen
Uber geografische Phdnomene und die eigene Datenkomposition liefern. Eine der meistbe-
nutzten Datensourcen in der open source Datenwissenschaft ist OpenStreetMap. Es gibt
viele Community-Werkzeuge welche das Nutzen von OSM Daten in einem analytischen
Ansatz vereinfachen. Die EOSMDBOne bietet aktuelle OSM Daten von der Schweiz und
Liechtenstein. Sie allerdings benutzt Werkzeuge, die nicht mehr gepflegt werden und hat
ein suboptimales Datenschema. Das Ziel dieses Projektes ist es, eine neue Version der
EOSMDBOne zu erstellen, mit einer zuséatzlichen GraphQL Application Programming Inter-
face (API) Anbindung und einer SQL Web Applikation.

In einem ersten Schritt wurde der Bereich von GIS, OSM und einigen OSM Werkzeugen
recherchiert und ausgewertet. Anschliessend wurde ein Prototyp mit der Kernfunktional-
itat erstellt. Danach wurde die GraphQL API erstellt und so eingerichtet, dass sie mit der
Datenbank kommuniziert. Fir die SQL Web Applikation wurden wireframes und eine kleine
Applikation als Proof of Concept erstellt. Die verbleibende Zeit wurde fir die Steigerung
der Performanz der Datenbank investiert. Die Entwicklung der SQL Web Applikation wurde
ausserhalb des Projektumfangs weitergefiihrt.

Die resultierende Lésung besteht aus einer Datenbank namens EOSMDBTwo, welche ak-
tuelle OSM Daten enthalt und eine GraphQL API bereit stellt, welche eine benutzerdefinierte
Funktionen enthalt, die es Benutzern erlaubt fallspezifische Queries auszufiihren.

Die EOSMDBTwo ist zusammen mit der SQL Web Applikation bereit, die EOSMDBOne
zu ersetzen, obwohl es fiir die Zuverlassigkeit noch sinnvoll ware, eine Query-Limitation
hinzuzufigen. Das GraphQL Interface bietet eine Vorlage fiir benutzerdefinierte Funktio-
nen, die in der Zukunft hinzugeflgt werden kénnen.

Management summary

Situation

Big data contains a lot of statistical information which can reveal interesting insights about its
domain. Geospatial data is no exception, which makes it attractive to run statistical analysis
on it. OSM provides such data open source. The efficient processing of such data remains
a big data problem. To accomplish that, a database which contains the data and some way
to query the information desired is required.

The Extended OSM Database One (EOSMDBOne) offers a database that contains geospa-
tial information from Switzerland and Liechtenstein and can be queried with modern SQL.
However, the schema used is sub optimal for certain geospatial queries, and it uses tools
that are no longer maintained. Additionally it offers an SQL Graphical User Interface (GUI)
tool called PostGIS Terminal.

This is the reason why a newer version of the EOSMDBOne is necessary.

In the context of this project, the Extended OSM Database Two (EOSMDBTwo), should
be created to replace the EOSMDBOne. The newer version should have a more sensible
and adaptable schema. Furthermore it should allow meaningful configuration options, es-
pecially considering the data sources. To guarantee the responsiveness and prevent the
EOSMDBTwo from being blocked from a single query, it should abort queries that take too
long and return a useful error code. GraphQL is an explorative alternative to a RESTful API,
which gained traction in the last few years, especially in the front end area. Therefore it
was decided that a GraphQL endpoint should be available to provide an alternative to query
the database. For educational purposes, demonstrations and exploration of gepgraphical
analysis, a SQL GUI tool that allows users to query and visualize geospatial data on a map,
should also be available. This was called OSM SQL Terminal.

There are several solutions that provide similar functionality. Googles Big Query Geographic
Information System (GIS) is highly performant and provides functionality to query geospatial
data from the whole world. However keeping the data up to date is the users concern, and
the solution is quite expensive.

Overpass(-turbo) operates on up-to-date OSM data. The query language of Overpass is
proprietary. It is not widely used, has a limit on complexity and also has poor performance.

The first few weeks of this project were dedicated to gain information on standards, tools and

other projects. With the gained knowledge, a first, simple version of EOSMDBTwo could be
created. The next step was to create the GraphQL endpoint, which is connected to the new

EOSMDBTwo. Once the GraphQL endpoint was up and running, the EOSMDBTwo schema
was improved to meet the needs of analytical applications. At this point only very little time
was left to create the OSM SQL Terminal and improve the performance and maintainability
of EOSMDBTwo. This is why it was decided to only create a simple proof of concept and
some wireframes for the GUI application. The rest of the time was dedicated to improve
performance and maintainability of the EOSMDBTwo. The development of the OSM SQL
Terminal was continued outside of the context of this project.

The possibility that none of the community tools provide the functionality that is needed for
this project, was a constant risk during the development. The occurrence of this risk would
mean, that an own solution for the problem had to be implemented. This would exceed the
defined scope of the project. Since both project members have very little experience with
OSM and its community tools, the risk of misjudging the time needed to implement certain
features could easily cause a deviation from the project plan.

The project members consist of Philipp Bolliger and Marc Scherrer. Professor Stefan Keller
supervised the whole project, helped with important decisions and provided information
about OSM and its community tools. Nicola Jordan was available for questions and helped
out with the setup of continuous integration and continuous deployment. Joél Schwab con-
tinued the development of the GUI application and was the first pilot user of the EOSMDBTwo.
The EOSMDBOnes source code was available to the project team as reference.

Results

The resulting systems can easily be deployed on any server via docker. A first version is
deployed on a server provided by the Institute for Software (IFS). The GraphQL endpoint
and a pgAdmin 4 instance are available. Its deployment is explained in figure 0.1.

The configuration of EOSMDBTwo can be done by simply changing a JSON file. The
EOSMDBTwo contains functionality for configuring the interval in which the data should be
updated as well as country extract and update sources. A program initializes the database
by downloading the data provided by the country sources and keeps the data up to date by
downloading the update files from the update sources. For each country a initial source and
an update source needs to be configured. Through experience with the EOSMDBOne, a
revised database schema was created. The database can be queried with modern SQL.To
improve query execution times, indices were created and the database configuration was
optimized for OSM data. An example query output is seen in figure 0.2.

Client device

SQL client

GraphQL client

Web browser

Server

Docker

Database updater

)

@ LAUEAp

Sehew

i i |OpenStreetMap data provider
i| |Docker :
: PostgreSQL :
! database ;
i Docker ‘
: GraphQL AP :
Docker
" OSM SQL Terminal - :

e -
a
= i
e TR B £ a
o a nigh 5 o a
R 0 - R e
& & ® 3 sy o8
B 8P o 2
s P w °
=4 a1 Ry
oo by] L)
o i . o
° i PRy Roitna %
P i) el
ok 2 :
~ % :
S E
) Ry
% E a
R . i : %
o
L
-
L e e

Figure 0.2.: All shops within 20 meters of a fuel station

Additionally a GraphQL API was created, providing functionality to query the EOSMDBTwo.
Since the GraphQL language is not as powerful as SQL, a custom function was provided
to allow for some case specific geospatial queries. This function can be seen in figure 0.3.
The function can be used as a template for further custom functions.

>
>
4
>
>
>
>

Explorer

planetOsmNode
planetOsmNodeById
planetOsmRel
planetOsmRelById
planetOsmWay
planetOsmwWayById
pointsWithinRangeOfPoints

¥ polygonsWithinRangeOfPolygons

The visual concept of the OSM SQL Terminal was used to continue its development.

after:
before:
> filter:
finsi:
M keygoal: "amenity "
Mkeyinrange: "shop”
last:
offset:
M radius: 0.02

Mvaluegoal: "fuel "

Mvalueinrange: "*"

P edges
¥ nodes
] geom
geojson
srid

X . :
? PostGraphiQL > Prettify

v b wN R

16

v query ShopsInRangeOfFuelStations {
polygonsWithinRangeOfPolygons (

keygoal: "amenity"
valuegoal: "fuel"
keyinrange: "shop"
valueinrange: "*"
radius: 0.02
{
nodes {

label

geom {

geojson

}

}

Figure 0.3.: GraphQL visualisation

]

Because of the limited time and resources, the query time is not restricted. This means,
that complex queries may take several minutes or more. This could lead to an overload of

the server even though only a few users are using it.

In conjunction with the GUI application, the EOSMDBTwo is ready to replace the EOSMD-
BOne.

\

Outlook

The EOSMDBTwo offers a lot of opportunities to expand. Certainly a limit on the query run
time should be added in the near future.

To guarantee constant availability of the database, it would be necessary to have multiple
instances running. A minimum of two instances have to be deployed. While some of them
are updating their data, others are handling user requests. A load balancer could ensure
that all user requests get routed to instances that are not currently updating.

Another interesting idea is to allow users to create collaborative tables that contain a specific
subset of the data in the database.

It would also be possible to include historical OSM data into the database. This would
allow even more analytical perspectives.

Vil

Task Definition

The Following is The task Definition, given to the team on the 13.10.2020: On the 10.11.2020,
a scope change was approved, due to lack of functionality from third party tools (namely
Osm2pgsql). Due to the focus on the EOSMDBTwo part of this project, the OSM SQL
Terminal was removed.

An Analysis Platform for OpenStreetMap with Spatial SQL and
GraphQL

 Student research project in autumn term 2020 Bachelor of Computer Science
« Authors: Philipp Bolliger and Marc Scherrer
» Supervisor: Prof. Stefan Keller, HSR Rapperswil

* Industry partners: -

Task Definition

Big Data is on everyone’s minds - and with OpenStreetMap there is comprehensive, open
data about the whole world. "Big Data" means that data is analyzed with complex, typi-
cally parallel loading operations and queries. This requires a high-performance software-
hardware platform. OSM already has an ecosystem of services and tools in place, but they
have great potential for improvement.

Here are some keywords for the required topics and activities of the project: Collect use
cases and complete requirements. Evaluation of existing technologies and open source
projects. Implementation of a platform for analysis of OSM data. Implementation of a web-
friendly API with frontend (GraphQL). Implementing a frontend using SQL.

", H "

Vil

Deliverables

1. Documentation, including text abstract (English and German), management summary
(English), technical report and software engineering project (English); appendices
(bibliography, content).

2. Operational platform, "Extended OSM Database Two" ("EOSMDBTwo") with two OSM
databases worldwide ("Planet") and here ("Switzerland and Liechtenstein").

3. GraphQL-Frontend (English) with GraphQL APl with an own, if necessary adapted,
connection to EOSMDBTwo.

5. The delivery objects required or recommended by the study course: Poster (digital
only), brochure abstract, no short video.

Specifications / Conditions

» Python 3, HTML5/CSS/Javascript, and PostgreSQL/PostGIS.

» Modern SW development (including unit testing, repositories/versioning, continuous
integration, docker), where appropriate.

» Non-functional requirement (NFR): Query duration no longer than 120 seconds.

Procedure and working methods: After consultation, students choose a procedure model
for software development. There are weekly meetings with prepared documents; exceptions
can be agreed upon.

Documentation

For documentation (see also delivery objects above):

» The submission is to be structured in such a way that the above contents are clearly
recognizable and findable (uniform numbering).

* Quotations must be marked, and the source must be indicated.

» Documents and literature used must be listed in a bibliography (do not list Wikipedia
links exclusively).

» Documentation of project progress, planning etc.

» Further documents (e.g. short description/abstract, declaration of independence, terms
of use) according to the requirements of the study course and in consultation with the
supervisor.

Form of documentation for the supervisor (see separate instructions for the study course):
Bound Report (1 copy). All documents and sources of the created software on a USB stick.

Evaluation

The usual regulations of the Computer Science study course apply, but with special empha-
sis on modern software development and executable and tested software, as follows:

* Project organization (weighting approx. 1/5).
» Report, structure, language (weighting approx. 1/5).
« Content: (executable) code (weighting approx. 2/5).

» Overall impression including communication with industrial partner (weighting approx.
1/5).

Other Parties Involved

¢ Nicola Jordan: Technical adviser

« Joél Schwab: Pilot user

Contents

1.

Technical Report

Introduction

1.1,
1.2,
1.3.

1.4.
1.5.

State of the Art

2.1.

2.2.

2.3.
2.4,
2.5.

2.6.

2.7.

2.8.
2.9.

Problem
Vision

Goals and Subgoals
1.3.1. EOSMDBTwo
1.3.2. GraphQL API
1.3.3. OSM SQL Terminal

Conditions, Environment, Definitions and Restrictions

Methods and Structure

Geospatial Data

2.1.1. Google, Apple, Bing, Etc. . . .

2.1.2. Admin Maps
2.1.3. OpenStreetMap

Existing Geospatial Analytical Applications

2.2.1. Google BigQuery GIS
2.2.2. Overpass
2.2.3. Extended OSM Database One
OSM Data Sources
Databases
OSM Loading Tools
2.5.1. Osmium

252, Osm2pgsql.

OSM Update Tools
2.6.1. Osmupdate
2.6.2. PyOsmium
Database Clients

2.7.1. GraphQL with Postgraphile
2.7.2. GraphQL with Hasura

2.7.3. pg_featureserv.

2.7.4. PostgREST
Frontend Technologies
Standards
2.9.1. OSM

Xl

2.9.2. PostGIS e 8

2.10.Conclusion 8
Evaluation 9
3.1. GraphQL APl Engine Evaluation 9
3.2. OSM Update Tool Evaluation 10
3.3. Frontend Framework Evaluation 11
ImplementaionConcept 13
Results 15
5.1. Achieved Goals 15
5.1.1. Continuous Updater 15
5.1.2. EOSMDBTWO e 15
51.3. GraphQL 15
51.4. OSMSQL Terminal 16

5.2. Future Prospects 17
5.2.1. Extenstion of Functionality 17
5.2.2. LimitingQueryLength 17
5.2.3. RESTfulClients 17
5.2.4. More Custom Functions 17
5.2.5. Collaborative Tables 18
5.2.6. Handling of Historical OSMData 18

5.3. Extensionof Performance Lo 18
5.3.1. Multiple Database Replications 18
5.3.2. Full Parallelisationof Updater 18
5.833. MoreEdge Cases 19
5.3.4. Distribution of Calculation 19
5.3.5. AnalyticalBackend 19

5.4. PersonalReports 19
5.4.1. PhilippBolliger. 19
5.4.2. MarcScherrer L 19

5.5. Acknowledgments Lo 20
Software Project Documentation 21
Requirements Analysis 22
6.1. Functional Requirements 22
6.2. Non-Functional Requirements 23
6.3. Restrictions 23
Analysis 25
7.1. DataModel 25
7114. OSMDataModel 25

Xl

7.1.2. PostGISDataModel 26

7.1.3. EOSMDBTwo DataModel 26

8. Design 31
8.1. Architecture 31
8.2. DataFlow 32
8.3. ImportantConcepts 34
8.3.1. OsmFile e 34

8.3.2. OsmFileService 34

8.3.3. CommandlineHelper 34

8.3.4. DatabaseUpdater 35

8.3.5. Eosmdb Processor 35

8.3.6. Communication Sequence 36

8.4. Architectural Descisions 36
8.4.1. Servicesplit 37

8.4.2. Loadingupdates 37

8.4.3. Implementingthedataflow 37

9. Testing e 38
10.Results and Further Development 39
10.1.Results 39
10.2.Further Development 39
10.3.Further Development Procedure 40
11.Continuous Integration / Continuous Deployment 41
12.Project Management 42
12.1.ProCess e 42
121.100ssUeS . . . L L 42
12.1.2.Collaboration 43

12.1.3. Time Tracking e 43
121.4.Reviews 43
12.2.Roles e 43
12.2.1.Developer e 43
12.2.2.ProjectOwner 44
12.2.3.Scrum Master 44
12.2.4.Supervisorand Customer Lo 44

12.2.5. Technical Adviser 44
12.2.6.PilotUser 44
12.3.ProjectPlan 44
12.4.Milestones e 44
12.4.1.Minimal Viable Product, 44
12.4.2.GraphQL APl 44
12.43.0SMSQL Terminal 45

Xl

124.4.EOSMDBTWO o 45

12.5.0terations L 45
12.6.Risks e 45
13.Project Monitoring 48
13.1.Timereport o e 48
13.2.Code Statistics 48
ACrONYMS L e 49
Glossary 49
Bibliography 52
Listof Figures e 53
Listof Tables 54
lll. Appendices 55
A. TestProtocols 56

XIV

Part I.

Technical Report

1. Introduction

1.1. Problem

Geospatial data is a classic example for big data and therefore contains a lot of statisti-
cal information. It is likely that a lot of correlations can be found in such a mass of data,
which means, that analyzing geospatial data can reveal interesting insights on modern civ-
ilization. The efficient processing of such data remains a big data problem to this day. In
order to query this data, a database is needed, which supports a query language powerful
enough to do meaningful queries and is able to return results in an acceptable time. Even
though there are some solutions available, there is no overall good option, which can be
queried with modern SQL and is up to date. This is why EOSMDBOne was created. It pro-
vides a PostgreSQL database with geospatial data of Switzerland and Liechtenstein, which
is updated every day. EOSMDBOne uses Osm2pgsql to load data into the PostgreSQL
database. When EOSMDBOne was created, Osm2pgsq|l did not yet support a customized
schema. This is why the EOSMDBOne schema is sub optimal for meaningful queries and
raises the need of an updated version.

1.2. Vision

This project should create a improved version of EOSMDBOne. A database to run meaning-
ful SQL queries on up-to-date geospatial data. It should support an easy way of deployment,
in order to easily deploy the database on a powerful server. Since not all servers offer the
same kind of performance, it is also desirable to have a simple way to configure which re-
gions should be saved within the database. Users can access this database over pgAdmin
4, a web application or even a GraphQL API. GraphQL is included, because it gained a lot
of support over the last few years.

1.3. Goals and Subgoals

1.3.1. EOSMDBTwo

The EOSMDBTwo is the central database. It saves up-to-date geo data and provides a
sensible schema with geospatial capabilities. Queries need to deliver a response within
120 seconds. If a query takes longer than the 120 seconds it needs to be aborted and a
appropriate response needs to be sent to the client.

1.3.2. GraphQL API

The GraphQL API is connected to EOSMDBTwo and allows users to query the data of
EOSMDBTwo with normal GraphQL queries.

1.3.3. OSM SQL Terminal

The OSM SQL Terminal is a web application where end users can query the EOSMDBTwo
with modern SQL and results are presented on a map. After the change request, the OSM
SQL Terminal was removed from the project scope. Nonetheless, wireframes and a tiny pro-
totype for it were created and Joél Schwab continued the OSM SQL Terminal concurrently
to this project.

1.4. Conditions, Environment, Definitions and Restrictions

It was requested, that the project is made from scratch. The EOSMDBOne sources were
available for reference.

According to the task definition, the developers used Python 3 as the programming lan-
guage and PostgreSQL in combination with PostGIS for the database. The developers were
free to choose the development environment.

Docker is used to enable an easy deployment of the product. The IFS provided a server
with a Portainer instance to deploy the product. The veracity of OSM data is no concern of
this project.

1.5. Methods and Structure

The project approach was very strongly influenced by Scrum, with 2 week sprints. In the
first phase, information about OSM and tools for transformation of data were gathered. Then
a first version of EOSMDBTwo was created, after which a GraphQL API was implemented.
Finally the EOSMDBTwo got improved with indices and schema changes.

2. State of the Art

In this chapter, already existing tools are discussed in the context of this project. These
range from fully fledged geospatial analytical database, over OSM to database tools, to
frontend technologies.

2.1. Geospatial Data

Having good geographical data is a must to succeed in this field. The evaluation of which
data source to use was not explicitly made, nonetheless the reasoning behind the choice
will be made more clear when listing the different kind of geographical data sources.

2.1.1. Google, Apple, Bing, Etc.

The most used geographical data source for private users is definitely Google Maps. Apple
and Bing also have a pretty reliable geographical data catalog. The reason why these ser-
vices are not used is that they are not open source, and in big data usage scenarios they
are pretty costly.

2.1.2. Admin Maps

Geographical data collected by the government would also be an option. This data is gen-
erally very reliable and complete, but not at all current. Another downside is that if you
wanted to build a GIS database over many countries, you have to know every administrative
geospatial data source.

2.1.3. OpenStreetMap

OpenStreetMap data is free, actual and globally available. They make no promises for
completeness, but the community is expanding and tackling these problems.

2.2. Existing Geospatial Analytical Applications

There are some existing GIS applications, all with their drawbacks.

2.2.1. Google BigQuery GIS

Googles BigQuery service with the BigQuery GIS functinality provides easy geospatial cal-
culation and loading functions. With an OSM file one could use the database easily for
geospatial analysis, at the cost of BigQuerys pricing. Additionally one has to keep the
database updated.

2.2.2. Overpass

Overpass(-turbo) offers a free API for analyzing geographical data, using its own query
language. However there are two very big downsides of this application. The first downside
is the speed. Overpass is pretty slow in contrast to a locally running database. The second
downside is its own query language which does not allow modern SQL queries and therefore
limits the query complexity

2.2.3. Extended OSM Database One

The EOSMDBOne is the first iteration of an analytical database used for data of Switzerland.
This is used in lectures and exercises by students.

2.3. OSM Data Sources

There are some OSM data sources, that all draw originally from planet.openstreetmap.com.
There are tools that can limit an extraction region from there, but it is way more performant to
use proprietary sources like download.geofabrik.de or download.openstreetmap.fr and get
specific countries or regions from there.

2.4. Databases

The most familiar and probably most used database for GISs is PostgreSQL with the Post-
GIS extension. Even Google Big Query GIS uses this, or at least the same notation. Another
option would be to use a Online Analytical Processing database like Apache Spark. This
would be an option for further development.

2.5. OSM Loading Tools

For loading the actual OSM data into the database, there exists multiple approaches. One
approach would be to use tools like Osmium in a program and decide for every OSM object
how to save it into the database. Another approach would be to use a tool like Osm2pgsql
that automatically does that, and also allows to give it specific rules on how to save it.

2.5.1. Osmium

Osmium is a C++ toolkit to process OSM data.

2.5.2. Osm2pgsq|

Osm2pgsql is a tool used to load OSM files into a PostgreSQL database. It is a C++ library,
that is maintained quite frequently and the development team and professor Keller contacted
one of the main contributors of Osm2pgsql for advice.

2.6. OSM Update Tools

For keeping the OSM data up to date, there are two ready made tools for it. One (Osmup-
date) is used by EOSMDBOne and another (PyOsmium) was made specifically for working
with Osm2pgsq|

2.6.1. Osmupdate

Osmupdate is a commandline tool to have up-to-date OSM data. It was not worked on since
24.01.2014.

2.6.2. PyOsmium

PyOsmium is a Python tool to process OSM files of different formats. For this project the
functionality to update an OSM file or create a new update file is especially interesting since
the goal is to have up to date OSM data. The main contributor of this tool is coincidentally
the same person as the contributor of the Osm2pgsqgl which we had contact with.

2.7. Database Clients

To actually use this updated data, a client for this database must be used or created.

2.7.1. GraphQL with Postgraphile

GraphQL is an explorative modern query language and Postgraphile is one implementation
of this. As is explained in the chapter 3, Postgraphile has the advantage that a PostGIS
extension exists and is pretty easy to use. The downside here is that in order to use PostGIS
functions, custom functions have to be created, since the extension only supports PostGIS
datatypes.

2.7.2. GraphQL with Hasura

Hasura is another GraphQL client, but has no easy way to customize its custom functions.

2.7.3. pg_featureserv

Pg_featureserv offers a RESTful API for a PostGIS database. It provides ressource and
hypermedia control.

2.7.4. PostgREST

PostgREST is also a RESTful API for a database, but offers no PostGIS support itself.
However, creating custom functions that use PostGIS should be no problem.

2.8. Frontend Technologies

To build a client with a GUI there are many technologies and libraries to consider. The
evaluation only considered three contenders: Node.js, Django and Flask. All of these are
web client libraries.

2.9. Standards

2.9.1. OSM

OpenStreetMap has created its own standard for abstracting geographical data into data.
To abstract geospatial data, everything is separated into three categories: nodes, ways and
relations.

With nodes OSM is able to represent objects that have no important size, with only the
exact location is important. Also, all ways use nodes to determine their start, end and cor-
ners. Examples for this would be single trees, lanterns or house corners.

Ways are used to represent objects with a length and/or a path. Examples would be streets,
trails or the trace of the outer wall of a house. A special kind of way is one that has its start
and endpoint at the same location and has an area. Examples would be houses, parks etc.

Relations could possibly be anything consisting of multiple nodes or ways. This could be
things like highways that consist of multiple sections, bus lines, campuses with buildings
and parks in it etc.

Every OSM object also has a list of key-value pairs called tags. In these tags information
like house number, building height, campus name etc. can be stored. Further information
about the OSM data model is given in chapter 7.1.1.

2.9.2. PostGIS

To store these OSM objects and other types of geographical data, PostGIS has a few geom-
etry and geography types. For nodes, PostGIS has the type point, for ways without area it
has line, and for ways with area it has polygon. As for relations, it is a bit more complicated.
If the relation consists of multiple nodes, PostGIS has a multipoint type, for multiple lines it
is a multilinestring and for multiple polygons a multipolygon.

Further information about the PostGIS data model is given in chapter 7.1.2.

2.10. Conclusion

In this project PyOsmium in conjunction with Osm2pgsqg| is used for loading the OSM data
and Postgraphile is used for the GraphQL API. The two RESTful clients are not used, as
they are not in the scope of this project.

3. Evaluation

3.1. GraphQL API Engine Evaluation

There are several ways to add a GraphQL API to a PostgreSQL database. Common tech-
nologies and tools to achieve this are Hasura, Postgraphile, Prisma in combination with
Apollo and the Node.js API Starter Kit. Most of which are very JavaScript heavy. Since
the stakeholders prefer a solution without JavaScript only Hasura Core and Postgraphile are
considered. In this chapter we look at some characteristics, that are important in the context
of the analysis platform to evaluate which of the two is more suitable.

Both are fairly easy to set up, have a good documentation, a solid user base, create a
GraphQL API based on the existing database, can be easily installed with docker and even
support PostGIS functions and types.

Other than Postgraphile, which completely relies on its CLI, Hasura provides a Ul for config-
uration. However, Postgraphile can be extended with custom plugins and reuses as much
functionality from PostgreSQL as possible. This includes roles, which are useful for access
control, whereas Hasura has its own role system. But the biggest difference is the hstore
support. Hasura has only little support for hstore, while Postgraphile provides a plugin for
basic hstore filter operations.

In the table 3.1 the most important characteristics are listed. For each characteristic a
weight is defined. The weight is a number from one to ten and indicates how important the
characteristic is in the context of the analysis platform. Both Hasura and Postgraphile get a
score for each characteristic. The score indicates how good the API fulfills the correspond-
ing characteristic. A score is a number from one to five. The final result in the last row equals
to the sum of the product of the score and the weight of each characteristic.

Postgraphile has the higher result value and therefore is chosen to provide the GraphQL
API for the analysis platform.

Characteristic Weight Hasura Postgraphile

[6)]
(6]

PostGIS support
hstore support

Ease of use

Reuses PostgreSQL
Extendability
Documentation

User base

Support

Ul for configuraion
Available with docker

— AN WU o oG
a2 whD Moo oA

OO WA OTWWO =

—_

Result 8 191

Table 3.1.: Evaluation of GraphQL API engines

3.2. OSM Update Tool Evaluation

From the countless ways to keep OSM data up to date, the most common suggested ways
are using either Osmupdate, Osmosis, or PyOsmium. Since we use Osm2pgsq|, it is sug-
gested in the manual [osma] that we use PyOsmium and specifically the 'pyosmium-get-
changes’ helper module. Nevertheless research about the other two options was under-
taken too.

Osmosis was quickly abandoned, since it has no functionality to automatically download
the corresponding update files. The effort to write the logic for that was deemed too expen-
sive. Osmosis was rejected before the evaluation.

Osmupdate is a rather slim, easy to use tool to have OSM files continuously updated. It
pretty much supports exactly our use case, with the caveat that it can either have a OSM file
up to date only within graphical borders, or it can create a change file, but not only within
graphical borders. However the biggest issue with this tool is that it was not maintained
since January 2014 [osmd].

Finally PyOsmium, which is recommended by the Osm2pgsql creators. It has the same
capabilities as Osmupdate, only without being able to restrict updates geographically. After
contacting the main contributor of PyOsmium it was established that it would not gain the
functionality to geographically constrain updates.

In the two tables 3.2 and 3.3 the most important characteristics are listed and weighted

as already described in section 3.1. Both strategies (keeping an OSM file up to date or
writing change files) were weighted separately to find the best possible setup.

10

For areas that are not countries or similar objects like cantons, PyOsmium would not suf-
fice. Since we want to use it for countries, we can circumvent the geographical constraint
using openstreetmap.fr with its minutely updates and get it from there (instead of open-
streetmap.com).

Characteristic Weight Osmupdate PyOsmium
Performance on large Countries 10 2 2
Future prospects 8 1 7
Performance on small Countries 6 8 8
Community 5 3 8
Result 91 154

Table 3.2.: Evaluation of OSM update tools updating a file

Characteristic Weight Osmupdate PyOsmium
Performance on large Countries 10 7 8
Future prospects 8 1 7
Performance on small Countries 6 7 7
Community 5 3 8
Result 135 218

Table 3.3.: Evaluation of OSM update tools using a change file

3.3. Frontend Framework Evaluation

Another evaluation has to be made for the frontend framework. It is clear that JavaScript has
to be used for asynchronous communication, so the only decision to make is what framework
to use to communicate with the database. In discussions, three contenders for this position
were made clear: Node.js, Flask and Django. As explained in the table 3.4 Flask would be
the winner, although only by a very small margin. An additional difference between those
three frameworks, which can not be put in numbers, would be what those framework were
built for. Node.js was built for event-driven applications, which would benefit this use case,
but in our experience this is a bit overkill for what is is used for in this project. Django is for
fast development of web-apps, which is not really what we want. Flask was the favorite from
the beginning, and was built for Web Server Gateway Interface applications.

11

Characteristic Weight Node.js Flask Django

Community (GitHub stars) 8 8 6 6
docker container size 7 3 9 8
Documentation 6 10 7 8
Ease of use 5 8 7 8
Templating 5 10 8 8
Testing 4 7 6 6
Functionality overview 3 5 9 7
Result 278 279 277

Table 3.4.: Evaluation of frontend frameworks

12

4.

Implementaion Concept

The following steps describe how the EOSMDBTwo gets initialized and how the data is kept
up to date. It is visualized in the figure 4.1

1.

Determine which countries or files should be in the database

This is done using a JSON configuration file. In the configuration file, a list of objects
containing the URL of OSM files and the replication URL of their corresponding update
files can be provided.

Download the OSM files.
The application wget is used to download all files.

Combine all OSM files
Osmium is used to combine all OSM files into one.

Load the OSM file into the database

Osm2pgsql with the new flex backend is used. The flex backend allows to create a
customized schema and process the data before writing it into the database.

. Create OSM update file

PyOsmium provides the functionality to find out which updates are missing, download
them and create an update file with those changes.

. Combine all OSM update files

Osmium combines all OSM update files into one.

. Loading the updates into the database

Osm2pgsql is used again to apply the changes to the database.

The steps 5,6 and 7 are then repeated at a given interval to keep the data up to date.

13

Initial Loading

wget wget psal

create user
download country_1.0sm.pbf download country_n.osm.pbf el e

country_1.osm.pbf country_n.osm.pbf
get. pyo get. osmium
create state file create state file merge countries 1..n
country_1.state country_n_state all_countries.osm.pbf
get pyo: get. osm2pgsql
create update file create update file —create

country_1-updates.osm.gz country_n-updates.osm.qg.

osmium
merge countries-updates 1 ..n

all-updates.osm.gz

osm2pgsql
—append

psal
create view(s)
create indices

Figure 4.1.: Data Flow Diagram

14

5. Results

5.1. Achieved Goals

5.1.1. Continuous Updater

The continuous updater is the component which ensures, that the data in the EOSMDBTwo
is up to date. Administrators have to opportunity to configure the data sources. For each
data source a download URL to the OSM file and a URL for the corresponding updates
needs to be provided. In normal conditions, the system uses its own database, but it is
possible to configure the updater to connect to another existing database. If the default pro-
jection interval is not suitable, it can be changed, by altering the projection number in the
configuration file. The default update interval can be change in the same way.

Time intensive operations are done in parallel if possible to minimize the initialization and
update time. The updater creates a table with meta data about its topicality and a function
to get the date and time of the latest update.

5.1.2. EOSMDBTwo

The resulting EOSMDBTwo is the central component of the whole system. It is tuned for
minimum query time. To achieve this, indices were created on every column and all the
tables are clustered by the label. Since every server has different capabilities, a database
configuration file allows administrators to easily change database settings in order to get the
best performance. The database contains a default user "guest" that may query the data,
but not change it in any way.

To use this database effectively with the GraphQL API, an assortment of PostGIS func-
tions was wrapped to enable the use from GraphQL. Additionally a few custom functions
that allow a GraphQL user to run complex queries in one function, were created.

5.1.3. GraphQL

The GraphQL API was implemented with Postgraphile and the Postgraphile PostGIS exten-
sion. It automatically connects to the EOSMDBTwo and creates a GraphQL API from the
public schema of the database, including all tables and functions.

15

5.1.4. OSM SQL Terminal

Since the OSM SQL Terminal was removed from the project scope, Joél Schwab dedicated
some time to create a first version. The wireframes created for it can be seen in figure 5.1.

 Tables
2
@ oo
N e
& eelsion

*

5| Examples

LS Selctalllies

1
A ekt the highest three moun tains
L]

‘Sakect all houses and thelr clasest
fire ycrant

ot

SELLLT ozn ad, name
51_Iranaforn(geom, 420}
TROM

| > Successfully run, Total query

i rimtine: 2 sece 390 meec ! i i v
L voes3zz rous atfeetea, = g n
e ENIAL L e e 2
e ——————— i AT 1 syl Sea i

Figure 5.1.: wireframes for the OSM SQL Terminal

A screen shot of the version at mid December 2020 can be seen in figure 5.2.

16

OSM SQL Terminalge:

The OSM SQL Temminal is an online browsar shall to quory tha
EOSMDBTWE using spatial SOL

The Rasult Columns with the datatype ‘geometry’ will be visualized on
the map. Every Geam Is saved i the projecton 4326, If the resulls
«contains a labal. id and/ar tyne # will bs displayad an a pop-up of the
tealure. If possible there will be & diect Bk of (hal leslure on
Opansireatmap

Database schema

osm_id - bigit [pamary key]

osm_version - intagar [not null]

osm_timastamp : imestamptz [not null]

nama : taxt

fabel - ext

tags - hstore.

geom - geometry(Pomt) [not null

e rer——

osm_id - bigint [primary key]

osm_version - intager [net null fagmie ,
osm_timestamp * Bimestamptz [not null] u_““z:rq:n;s
name ' text
fabel - fext

wares
8gs - hstore:
geom : geometiy(LineSting) (ol nuil)

Figure 5.2.: OSM SQL Terminal at 09.12.2020

5.2. Future Prospects

This chapter is dedicated to the potential of this product. The ideas were categorized either
as extension of functionality or extension of performance.

5.2.1. Extenstion of Functionality

5.2.2. Limiting Query Length

One of the first things to improve in the EOSMDBTwo is to limit the query length. This would
be to prevent one single query to block the whole database. This was a requirement for this
project, but could not be implemented due to time constraints.

5.2.3. RESTful Clients
Another interesting addition would be a RESTful client, in contrast to the GraphQL client. As
mentioned in the chapter 2, there exist some ready made tools for that.

5.2.4. More Custom Functions

The EOSMDBTwo currently offers a few custom functions, specifically for querying with the
GraphQL client. These functions can be used as templates for more custom functions, to
allow simpler usage of queries that get made often.

17

5.2.5. Collaborative Tables

The basic idea is that users of EOSMDBTwo can create custom tables consisting of OSM
data from the database. To clarify the idea, the following example is given: If a user wants
to select all highways, he has to select all roads, and from all roads filter the highways. Now
if users could make their own tables or views, such a select statement could be saved and
future users could just select this highway table and use it for their calculations.

The main consideration for this feature is how to save this user defined table. The three
main solutions are tables, views or materialized views. Tables are not a good idea, since
you would have to save how the table content is calculated and at that point it is just a ma-
terialized view. Materialized views would be pretty fast for querying, but would take a lot of
time updating, when the database is updated. Views don’t need to be updated, but would
be much slower while querying.

A hybrid solution could also be possible, but would either rely on the users decisions or
require separate input from an admin.

5.2.6. Handling of Historical OSM Data

The scope of this project handles the contemporary data, however OSM data could also
be analyzed through a historical lens. All the tools that were used in this project are not
designed for working with OSM history data, and must therefore be substituted in a database
for historical analysis.

5.3. Extension of Performance

5.3.1. Multiple Database Replications

To guarantee the responsiveness of the EOSMDBTwo, a setup with at least two databases
would be helpful. With such a setup, at least one database could always be handling user
queries, even if another database is currently updating its data. For a big user base this
approach could also yield better performance results when used in conjunction with a load
balancer.

5.3.2. Full Parallelisation of Updater

The continuous updater could benefit from parallelizing every task in some cases. This
could be achieved through extension of the existing code, or splitting it into multiple services.
Regardless, it would add a lot of complexity for a small performance boost.

18

5.3.3. More Edge Cases

Currently the dataflow is the same for every size of file. For some sizes it would be better if
the data flow would be modified. For example, for very small files, the first upload into the
database could contain the updated data. This would delay the initial upload of data, but cut
down the time needed to do the first load and update task.

5.3.4. Distribution of Calculation

PostGIS is currently not able to meaningfully distribute its calculations. Nonetheless some
tasks could be parallelizable, especially when they are geographically constrained. If you
only wanted to calculate something within a given border it would be quite easy to have
one independent database per region, and one scheduler that distributes tasks and collects
results. However, if something must be calculated beyond region borders, it is quite chal-
lenging.

A useful tool for distributing such a database could be Greenplum.

5.3.5. Analytical Backend

In the beginning of this project, the idea was to have the whole analytical database based
on an analytical tool, for example Apache Spark. This could greatly reduce the calcula-
tion speeds and offer a familiar environment for developers that are already accustomed to
Apache Spark.

5.4. Personal Reports

5.4.1. Philipp Bolliger

Even though the project was not what | expected, it was very interesting and | learned a lot.
It was very captivating to dive into the domain and learn about the common problems of the
field. Implementing the solution was most of the time very frustrating. This is because we
both had no experience with geospatial data and only little experience with databases, which
lead to a slow progression. Because of the frustrating process, the satisfaction was even
greater when we finally got something up and running, keeping me motivated to continue
working.

5.4.2. Marc Scherrer

Initially we expected something different when we signed up for this project. Nonetheless,
it became very interesting very fast. The deep dive into geospatial data and specifically the
OSM community was fascinating.

The implementation of these tools was fun at the beginning, but we had to spend much time
with correctly using community tools, comparing different functionalities of them and in the

19

end tracking bugs. This project was very consuming. Looking back at our results, they don’t
seem that big, but the constant rewriting of code was not easy.

5.5. Acknowledgments

We would like to take the opportunity to express our gratitude to everyone involved in this
project. To Stefan Keller for explaining the various OSM topics, helping with decision making
and taking the time to review our progress. To Nicola Jordan for setting up the continuous
deployment (CD) pipeline and being available for other dev-ops questions. To Joél Schwab
for taking over the OSM SQL Terminal and serving as pilot user of the EOSMDBTwo. To
Raphagl Das Gupta for the introduction to Python and answering several questions about it
and finally to Samuel Herzog for proof-reading the documentation. And last but not least to
Sarah Hofmann, for spontaneously helping with the usage of Osm2pgsql and PyOsmium.

20

Part Il.

Software Project Documentation

21

6. Requirements Analysis

The Requirements are taken from the task definition.

6.1. Functional Requirements

The functional requirements are classified as MUST, SHOULD or CAN. Requirements clas-
sified as MUST are mandatory, while requirements classified as SHOULD or CAN would be
nice to have, but not necessary. Requirements classified as SHOULD have a higher priority
than the those classified as CAN.

FR 001

FR 002

FR 003

FR 004

FR 005

FR 006

FR 007

FR 008

FR 009

FR 010

FR 011

FR 012

An administrator starts the system, which automatically downloads the OSM
data of Switzerland and Liechtenstein and inserts it into the database | MUST

The system updates the data (Switzerland and Liechtenstein) in an interval of
60 minutes | MUST

A user queries the SQL API to retrieve data | MUST
A user queries the GraphQL API to retrieve data | MUST
A user queries the GraphQL API with PostGIS functions | SHOULD

A user queries the web interface with PostGIS functions which are older than
1h | SHOULD

An administrator starts the system, which automatically downloads the OSM
data of the whole world and inserts it into the database | CAN

The system updates the data of the whole world in an interval of 1 day | CAN
A user queries the database in modern SQL (lateral join etc.) | SHOULD

A . oal hentication) - MUST
A-userlooks-atreturned-data-as-a-table -MUST

22

FR 013 A-userlooks-atreturned-data-as-amap|-SHOULD

6.2. Non-Functional Requirements
NFR 001 The system must deliver a response in 120 seconds to any user queries when

operating under normal conditions to ensure a good user experience.

NFR 002 The system needs to be able to handle 100 user queries at once under normal
operation.

NFR 003 95% of valid user queries deliver a response without any error messages.

NFR 004 The system has to deliver a response to user queries even if the database is
being updated to ensure a good user experience.

NFR 005 Users can only read from the database with the public user to prevent users
form modifying the database.

NFR 006 The system does not allow more that 10 queries per minute per user to pre-
vent denial of service attacks.

NFR 007 The system must be prepared for the docker-compose environment, to ensure
a easy deployment.

NFR 008 The system needs to provide a documentation to ensure the maintainability
of the project. It should at least describe how to start and use the system.

NFR 009 The system must provide tests that can be executed to ensure that the system
meets the functional and non functional requirements.

6.3. Restrictions

According to the task definition, the following programming languages and technologies are
considered as mandatory:

* Python 3
» PostgreSQL
» PostGIS

The OSM history will not be loaded into the database. Additionally the veracity of OSM
data is not discussed and it is assumed that the data from the sources is correct. After the

23

scope change on 10.11.2020, the OSM SQL Terminal is no longer part of this project. The
developers only create a very simple Flask application which forwards an SQL statement to
the database as a proof of concept.

24

7. Analysis

7.1. Data Model

7.1.1. OSM Data Model

Is part of >
N
Node * lspartof> * Relation * <lspartof * Way
Id Id Id
Latitude 1 1
Longitude
has
1
Tag
has > * | Key * < has)
Value

Figure 7.1.: Conceptual data model of OSM as UML class diagram [RTO08]

The figure 7.1 shows the data model of OSM as it is relevant to the project. The node is the
most basic entity, which includes latitude and longitude. Ways consist of two or more nodes
and relations can contain several ways and nodes. Nodes, ways and relations can all have
several tags, which describe specific features about the elements, such as the height of a
building, speed limit of a road or simply a name. This information can be very useful when
querying the data, because it allows to search for specific key value pairs. [osme]

The ids are only unique for the specific element type. This means, that all nodes have
unique ids, but there are probably ways with the same id as some nodes.

Additionally to the Id there are several other meta data fields for nodes, ways and relations,
that were omitted on the figure for simplicity. Important for this project are the timestamp,
which gives information about when the element was changed the last time and the version,
which provides information about how many times the element already has been changed.

25

7.1.2. PostGIS Data Model

This project uses a PostgreSQL database with the PostGIS extension. The PostGIS turns
the PostgreSQL database into a spatial database by adding support for spatial types, in-
dexes and functions. [pos]

Spatial
Geometry Reference
System

Point Curve Surface GeometryCollection

7 il 7 !

LineString Polygon MultiSurface MultiCurve MultiPoint

T 7

MultiPolygon MultiLineString

Figure 7.2.: PostGIS geometry hierarchy [pos]

The figure 7.2 shows the geometry hierarchy of the additional data types added by the
PostGIS extension. These data types holds information about what projection is used, where
it is located and its shape.

7.1.3. EOSMDBTwo Data Model

With Osm2pgsql it is possible to transform data from OSM to PostGIS data. With the new flex
back end, it is even possible to write a customized Lua script, that specifies how every OSM
feature is processed. A custom Lua script was written to take advantage of this technology.
The script processes every OSM feature individually to create a database with the data
model described in figure 7.3

26

osm_point

osm_line

osm_id: bigint [primary key]
osm_version: integer [not null]
osm_timestamp: timestamptz [not null]
name : text

label : text

tags : hstore

geom : geometry(Point) [not null]

osm_id: bigint [primary key]
osm_version: integer [not null]
osm_timestamp: timestamptz [not null]
name : text

label : text

tags : hstore

geom : geometry(LineString) [not null]

osm_polygon

osm_boundary

osm_id: bigint [primary key]
osm_version: integer [not null]
osm_timestamp: timestamptz [not null]
name : text

label : text

tags : hstore

geom : geometry(Geometry) [not null]

osm_id: bigint [primary key]
osm_version: integer [not null]
osm_timestamp: timestamptz [not null]
name : text

label : text

tags : hstore

admin_level : integer

geom : geometry(Geometry) [not null]

Figure 7.3.: Analytic data model

OSM Feature Processing

Every entry in one of those tables in the resulting database origins from one OSM feature.
Depending on the type of the OSM feature and its values, it is added to a suiting table.

ID

Every table has the column osm_id as primary key. The osm_id is used for indexing
and to find the corresponding feature on OSM. For the tables osm_point, osm_line and
osm_boundary the osm_id is the same as the id of the OSM feature the column origins

27

from. Members of the table osm_polygon can be created from either a relation or a way.
Simply using the id of the OSM feature as osm_id would lead to loss of information and
lead to primary key collisions. Osm2pgsql solves this problem, by taking the negative id, if
the polygon originates from a relation.

For Ways : osm_id = osm.id

For Relations : osm_id = —osm.id

Name

The name is the value of the key name in the tags of the OSM feature. It was extracted from
the tags, because it is often used in queries and using the hstore would slow them down.

Label

The label is calculated depending on the chosen language. The algorithm to calculate the
label first gets the name in the chosen language from the tags. If no language is chosen, it
just uses the default name to proceed. If a value is available and is in latin script, it uses it
as label. Otherwise a fallback value will be calculated similar to OSMaxx [osmb]. It checks
the English, French, Spanish, German and International name in this exact order and uses
the first one as label which is present. If at this point still no value was found for the label,
the name is used.

28

label <+ NULL
if preferred language is set then
label < languageSpecificName
else
label < de faultName
end if
if label is not NULL and latin script then
return label
else
if English name is set then
return englishName
else if French name is set then
return frenchName
else if Spanish name is set then
return spanishName
else if German name is set then
return germanName
else if International name is set then
return internationalName
else
return defaultName
end if
end if

Figure 7.4.: Pseudo code of a function that calculates and returns the label.

Since it always checks, if the value of the name in the chosen language is in latin script, only
languages that only use latin script characters are usable.

Geometry

The geom is the geometrical information about the object. This is where the PostGIS data
types come into play. Every geom is saved in the projection that is given by the configuration.
For osm_point the geometry type Point is used. For osm_line the type MultiLineString
is used. The tables osm_polygon and osm_boundary use the general Geometry type. This
is because some polygons and boundaries consist of more than one part. In such cases
an object of the type MultiPolygon is created, which can only be saved in a Geometry,
GeometryCollection or MultiPolygon column. It would also be possible, to wrap every
single polygon in a GeometryCollection or MultiPolygon but since the occurrence of
cases, where a single polygon isn’t sufficient is very rare, this would be too much of an
overhead for both inserting and reading the data.

29

Location View

In addition to the tables, a view is provided, that combines points and polygons. For the
geom column the PostGIS type point is used. For polygons, the new geom is calculated by
using the PostGIS function st_centroid, which computes the geometric center of a geom-
etry.

The id is used to have a unique value and is calculated by multiplying the original OSM
id by ten. Then depending on the type of feature the object originates from, a number is
added. For nodes add zero, for ways add one and for relations add two. The resulting
number is the new poi_id.

For nodes : id = osm.id x 10
For ways : id = osm.id x 10 + 1

For relations : id = osm.id * 10 + 2

The osm_id is the normal id of the OSM feature the geometry origins from. The osm_type
shows from what OSM feature type the entry origins from. For this purpose an additional
enum with the values N for node, W for way and R for relation was created.

osm_location

id: bigint

osm_id: bigint

osm_type : enum(N,W,R)
osm_version: integer
osm_timestamp: timestamptz
name : text

label : text

tags : hstore

geom : geometry(Point)

Figure 7.5.: Additional location view

30

8. Design

8.1. Architecture

The project includes several components, which all run in separate docker containers. For
simplicity reasons it was decided, that for this project all containers run on the same server.
The database updater and the PostgreSQL database are the central components of this
project. Depending on the clients needs, he can either use the OSM SQL Terminal or the
GraphQL client to query the data.

fProject scope

:
|| Server
:

Docker

Database updater E 1
Client device ' | |OnenStreetMap data provider
1| |Docker H
SQL client ' PostgreSQL
: database
Docker
GraphQL client
=R GraphQL AP

Docker

Web browser

OSM saL Terminal

Figure 8.1.: Deployment diagram

The figure 8.2 captures the layers of the project. The Flask application and Postgraphile are
both in the Application Layer and Data Access Layer. That is the case because they mainly
access data from the PostgreSQL database and they do not contain much logic themselves.

31

SQL Fiddle SQL API GraphQl AP

/]

Presentation

continous_update

=
k=]
®
]
=
(=%
=
flask app Postgraphile {custom functions)
%1}
8 osmupdate
= oasm2pgsql 0smosis
g pyosmium

/
| L g

PG 0OSM Data (geofabrik/openstreetmap)

Figure 8.2.: Layer Diagram

8.2. Data Flow

The data flow itself had to be changed numerous times due to lack of in-depth knowledge of
the tools. After discussing directly and indirectly with the creator of PyOsmium the data flow
as shown in figure 8.3 is implemented.

The OSM files need to be combined before initializing the database, because the only other
option would be to load them one after the other, which would mean, that Osm2pgsql would
have to append the data for all OSM files but the first. Since the append mode is way slower
this would slow down the initialization by a significant factor.

32

Initial Loading

wiet
download country_1.0sm.pbf

wyet
download country_n.osm.pbf

create extensions

psql
create user

country_1.osm.pbf

pyosmium-get-changes
create state file

country_1.state

Y

”i

r

country_n.osm.pbf

pyosmium-get-changes
create state file

country_n.state

Y

pyosmium-get-changes
create update file

pyosmium-get-changes
create update file

Y

Y

I~

osmium
merge countries 1. n

all_countries_osm.pbf

osm2pgsql
—create

A

/ cou ntry_1-updates.osm.gz

country_n-updates.osm.gz

osmium
merge countries-updates 1. n

all-updates.osm.gz

osm2pgsql
—append

A

h

psql
create view(s)
create indices

Figure 8.3.: Data Flow Diagram

8.3. Important Concepts

8.3.1. OsmFile

OsmFile

+name: str

+url str

+ replication_url: str
+filename: str

+ changefile: sir

+ statefile: str

Figure 8.4.: OsmFile

The OsmFile represents the data source file. It does not contain and data itself, but rather
includes information about the data can be found. This includes the URL from where the
OSM file can be downloaded, the URL where the update files can be downloaded and paths
where the downloaded files are saved on the local machine. It is used to access the data
for handling the OSM file. For each country one OsmFile is created.

8.3.2. OsmFile Service

osmfile_service

+ download{OsmFile)
+ create_update_file(OsmPFile)
+ push{OsmFile}

Figure 8.5.: OsmFileService

The OsmpFileService provides functionality to download files, create update files and push
data to the database. It collaborates with the OsmFile to know where to download files and
where they are on the local machine.

8.3.3. CommandlineHelper

0sm2pgsql Pyosmium

+ push{OsmFile) + create_update(OsmFile)
+ create_state_file(OsmFile)

|
}

CommandlineHelper

+result: int
+command: str

+ execute()

Figure 8.6.: CommandlineHelper

34

The CommandlineHelper is an abstract class that is used to execute commands via the
commandline. For every tool or command a concrete class is implemented that wraps
the needed functionality. The OsmFileService uses implementations of the Commandline-
Helper.

8.3.4. DatabaseUpdater

Databaselpdater

+ initialize)
+ update()

Figure 8.7.: DatabaseUpdater

The DatabaseUpdater class is responsible for realizing the data flow. It uses the OsmFile
and OsmFileService to carry out the steps that are defined in the data flow.

The initialize function downloads the data from the source, pushes it into the database and
carries out the first update. The update function creates the update files and pushes them
into the database. This class also ensures that the database is ready to accept the data.
As soon as the data is pushed, it (re)creates indices, functions, etc. using the eosmdb
processor.

8.3.5. Eosmdb Processor

eosmdb_processing e
sq

+ pre_initialisation()
+ post_initialisation() + execute_script(script)
+ pre_update()

+ post_update(}

CommandlineHelper

+result int
+command: str

+executel)

Figure 8.8.: EosmdbProcessing

The Eosmdb processor provides functions for pre- and post initialisation as well as pre-
and post update processing. These include to creating users, creating indices, creating
functions, clustering tables, etc. The specific steps performed are defined in SQL scripts.

35

8.3.6. Communication Sequence

Specific
main DatabaseUpdater eosmdb_processing osmfile_service CommandlineHelper

——initialize(j—* 1 :
I download{OsmFile———————»
;

Woet.dewwnload(url, ﬁ!ename]—}'

pre_intialisationj—»

-
el

-
«

push{OsniFile)——————————»|

Osm2Pgsql.push(OsmFiej—|

~

post_initialisation }—DI
Ll
)

pre_update (]—P'

& '

&
el

|
create_update_f‘ée[OsmFﬂe}4b' I
—Pyosmium.create_update(ur, filename)—

r

F

H |
push_update(OsmFilej——— H
Osm2pgsql.push_updatelOsmFile —»

post_update [}—1

"
el

Figure 8.9.: Sequence Diagram

The sequence diagram for the initial loading of the data is shown in figure 8.9. Some steps
can be parallelized. The scale of this diagram is not in proportion with the time needed by
these steps.

8.4. Architectural Descisions

We used Olaf Zimmermanns "Y-Statements” [Zim20] approach to document and explain the
design decisions made in this project.

In the context of <use case and/or component>,

facing <non-functional concern>,

we decided for <option>,

and neglected <options>,

to achieve <quality>,

36

accepting the downside <consequence>.

8.4.1. Service split

In the context of how to define and split services, facing reliability and maintainability, we
decided for splitting services into four components, and neglected splitting services into one
service per one job or having a monolith, to achieve overview and not to have an elaborate
communication concept, accepting the downside that the continuous update component is
very big.

8.4.2. Loading updates

In the context of how to write updates into the database with Osm2pgsq|, facing update
speed and availability, we decided for "—append” for updates, and neglected "—create" with
the updated OSM files, to achieve reduced update time and increased data availability
throughout the update process, accepting the downside that pre- and post-update scripts
had to be written.

8.4.3. Implementing the data flow

In the context of implementing the download and update dataflow, facing i/o intensive tasks,
we decided for working with threads, and neglected strictly procedural programming, to
achieve less waiting time, accepting the downside of a bit more work and less clarity.

37

9. Testing

EOSMDBTwo is a combination of several tools and technologies, making it hard to create
automated tests, without having to create a lot of overhead by implementing mocks. There-
fore it was decided, that for this project testing shall be done completely manually. In order
to reproduce test results, test protocols are written, with detailed steps and expectations.
Each test protocol tests one specific feature, such that all test protocols together guarantee
a working system according to the functional and non functional requirements. Testing shall
be done before every merge from the development to the master branch.

The test templates can be found in the appendix and the completed tests can are in a
separate folder.

38

10. Results and Further Development

10.1. Results

The general results are mentioned in chapter "Results" 5.

To test the performance and how the system scales, the initial loading and the first up-
date was measured for four different countries. The countries were chosen such that the
next bigger one is approximately double the size (except the first one). Chosen candidates
were "Lichtenstein" with 2.3 MB size, "Switzerland" with 331 GB size, "Austria" with 601 GB
size and "Poland" with 1.2 GB size. These four countries were loaded sequentially and the

resulting load times were compared.

From the performance comparison plots 10.1, it is clearly visible that our solution scales

non-linearly with the size of the OSM file, but not quite logarithmically.

8000

6000

4000

2000

— Total

Load into database
—— Download
—— Database operations

o 200 400 600 800 1000 1200
size

(a) Performance scaled linearly

(b) Performance scaled logarithmically

— Total

Load into database
—— Download
—— Database operations

800 1000 1200

Figure 10.1.: Performance comparison plots

10.2. Further Development

The Ideas for further development are discussed in the chapter "Future Prospects” 5.2.

These include

« Limiting query length

« RESTful clients

39

» More custom fucntions

+ Collaborative tables

+ Handling historical OSM data
» Multiple database replications
« Parallelisation of the updater
» Handling more edge cases

+ Distribution

* Analytical backend

10.3. Further Development Procedure

The most pressing issue is certainly the limitation of query length. The best way would be
to limit it in the database. There it would affect all clients.

The custom functions can be modeled after the ones already implemented.

All other further developments would require more investigation then is done in this project.

40

11. Continuous Integration / Continuous
Deployment

For CI/CD GitLab Cl is used. GitLab uses a special file called ".gitlab-ci" which uses the
.yaml format to define Cl steps. In this project, there are mainly two task-chains, one for
the continuous deployment of the product itself and one for building and deploying the doc-
umentation pdf.

The documentation is quite easy to understand since there are only four transparent steps
that have to be made. In the first step the timereports are generated. The timereports were
used by the project members to track their time during the project. The second step simply
writes the Git information to a file which is later included in the pdf. In the third step the pdf
is generated from the latex source. The fourth step is then to publish the pdf with GitLab
pages ' through the "pages" job.

The deployment of the application is a bit more complicated. The technical adviser (Nicola
Jordan) has setup the pipeline and the developers have configured it with him. First the
product images are built and pushed to the GitLab images registry. Then a Portainer in-
stance is informed that a new version exists and it pulls the current images. Deployment
variables are defined separately in the Portainer service.

Documentation-Build

Create-

Timereports pages

Update-Gitinfo

Application-Deploy

Figure 11.1.: GitLab Cl DAG

Application-
Build

'GitLab Pages | Gitlab, accessed on 07.11.2020, https:/docs.gitlab.com/ee/user/project/pages/

41

12. Project Management

12.1. Process

Since this is a very exploratory project and it is very likely that requirements will change, we
decided to base our development approach on Scrum. The iteration length is two weeks.

Every Tuesday the development team meets with the customer. The team presents the
current state of the project and the customer can suggest changes and new ideas.

Afterwards the development team holds the retrospective, the product backlog refinement
and if its the beginning of a sprint, the sprint planning, as described in the Scrum guide. [scra]

12.1.1. Issues

Issues are managed using GitLab. Every issue is assigned to one or more labels to cate-
gorize the work that needs to be done. This is useful for the time report that can be found
in chapter 13.1. The full list of labels and their purpose can be found in the GitLab repository.

New issues may be created by developers at any time. Both project members are respon-
sible to create new issues from the suggestions of the customer. Newly created issues are
automatically added to the product backlog. The product backlog refinement consists of
estimating the new issues, splitting large issues into several smaller issues, as well as dis-
cussing if existing issues are still relevant and deleting those that are not, which in turn may
lead to new issues.

When estimating issues, the developers discuss what needs to be done and use this in-
formation to guess its size. Each size specifies how long it takes to complete an issue of
that size. An issue be categorized into one of the following sizes.

Size Time in hours

XS 1
S 2
M 4
8
6

L

XL 16+

Table 12.1.: Issue sizes and how long it takes to complete them

42

12.1.2. Collaboration

GitLab is used as Git-Repository manager to store all Files of the project. To ensure consis-
tent commit messages, the developer should use the following template:

if this commit is applied it should <commit message>

The developers also use a shared OneNote notebook for everything that does not belong
in the GitLab repository, like useful links, drawings, etc. For communication, the developers
frequently use discord to talk and share screens. Also Microsoft Teams is used to semi-
formally discuss issues with the adviser.

12.1.3. Time Tracking

To track the time the developers spend on the project, the GitLab time tracking tool is used,
where developers can simply book time on issues. There exists a special management
overhead issue, that is intended to book time for minor work, that does not fit to any other
issue and it’s not worth to make a specific issue for this task. An example would be a catch-
up discussion for developers. If time is booked on that issue, one must also write a comment
to explain what was done.

12.1.4. Reviews

Every tuesday, the developers and the adviser meet up and discuss the status of the project,
and try to answer questions that came up that week. As a preparation the developers send
an email to the adviser with the information on what was worked on that week, and what
problems they had.

Protocols with professor Keller are called "Meeting <date>" and protocols for the meet-

ing of the developers "Weekly <date>". All can be found on the repository as issues with
the "Meetings" tag at gitlab.dev.ifs.hsr.ch/sa2/osm-data-pipeline.

12.2. Roles

12.2.1. Developer
+ Philipp Bolliger

* Marc Scherrer

The developers are responsible for the creation and deployment of the product.

43

12.2.2. Project Owner

» Marc Scherrer
His duty is to create new issues, prioritize them and keep the backlog up to date. Since he
is both developer and project owner, he has to represent these roles interchangeably.
12.2.3. Scrum Master

Since the team only consists of two members, there is no Scrum master.

12.2.4. Supervisor and Customer
» Professor Stefan Keller

Prof. Stefan Keller initiated the project and is also responsible for the idea. As supervisor he
is responsible to control the project flow and its progress, while his role as customer is more
concerned about the product.
12.2.5. Technical Adviser

 Nicola Jordan

The technical adviser is at our disposal for any technical questions regarding the domain.

12.2.6. Pilot User
« Joél Schwab

The pilot user was assigned on the 2nd November and is here to try out the product. He
also continued the development of the OSM SQL Terminal

12.3. Project Plan

12.4. Milestones

12.4.1. Minimal Viable Product

The Minimal Viable Product (MVP) is a SQL-Database, filled with up to date OSM data of
Switzerland. The OSM data is updated every hour and stored as geometry types.

12.4.2. GraphQL API

This milestone is set very competitively, since all PostGIS functions have do be mapped in
GraphQL. The result is a GraphQL connection to the database, over which one can execute
ST_ functions from PostGIS.

44

12.4.3. OSM SQL Terminal

This is the first version for the terminal in which one should be able to query OSM data with
SQL and the PostGIS extenstion. This milestone was removed due to the scope change.

12.4.4. EOSMDBTwo

EOSMDBTwo is the heart of this project and because of this the OSM SQL Terminal was

cut out of this project.

12.5. lterations

lteration Start End Description Version
1 29.09.2020 13.10.2020 MVP 0.1

2 13.10.2020 27.10.2020 GraphQL API 0.2

3 27.10.2020 10.11.2020 GraphQL API Refinement 0.2.1

4 10.11.2020 24.11.2020 OSM-SQLTerminal EOSMDBTwo re- 0.3

finement
5 24.11.2020 8.12.2020 Overall Refinement 1.0
6 8.12.2020 18.12.2020 Documentation (shorter sprint due to 1.0

end of semester)

12.6. Risks

Table 12.2.: lterations

Following is a list of possible risks for this project.

1. Risk: Person gets sick for 1 week

* Measure: -

* Max. Damage: 17h

.

Probability: 10%
Weighted Damage: 2h
» Behavior: Scope reduction

2. Risk: Unfamiliar technologies require more time than expected

* Measure: Estimate time for training
* Max. Damage: 200h
* Probability: 10%

45

» Weighted Damage: 20h
» Behavior: Ask advisers or community for help

. Risk: Technologies do not provide desired functionality

» Measure: Evaluate technologies based on requirements

» Max. Damage: 200h

Probability: 7%

Weighted Damage: 14h

» Behavior: Use other technology, write own functionality or reduce scope

3

. Risk: Data loss due to shutdown of GitLab server
» Measure: have the repo locally

* Max. Damage: 250h

Probability: 0%

» Weighted Damage: Oh

» Behavior: Use GitHub

3

. Risk: Requirements change during the project
* Measure: Working agile

» Max. Damage: 50h

Probability: 50%

Weighted Damage: 25h

+ Behavior: Scope reduction, ask for help

3

. Risk: Communication problems

» Measure: Try to be as clear as possible

* Max. Damage: 50h

Probability: 30%

Weighted Damage: 15h

» Behavior: Use retrospectives at sprint ends to improve communication.

.

. Risk: Unrealistic scope

» Measure: Set small goals & always have a working product
* Max. Damage: 50h

Probability: 5%

Weighted Damage: 3h

» Behavior: Scope Reduction

3

46

8. Risk: OSM Standard changes

* Measure: -

* Max. Damage: 200h
Probability: 0.1%
Weighted Damage: Oh
» Behavior: Use old standard

3

9. Risk: Import times are too slow for fast evaluation
» Measure: Develop with small dataset
* Max. Damage: 20h

Probability: 20%

Weighted Damage: 4h

» Behavior: Work slower

3

10. Risk: Hardware request is not granted in time
» Measure: Work only with Switzerland
* Max. Damage: 40h

Probability: 10%

Weighted Damage: 4h

» Behavior: Scope reduction

3

During the development time the risk number three "Technologies do not provide desired
functionality" has occurred. As described in the behavior, the scope was changed as docu-
mented. The damage is very hard to estimate, but the scope reduction that was approved,
cut the project by approximately 80 hours.

47

13. Project Monitoring

13.1. Timereport

In the table 13.1 the hours spent per week is visualized. The numbers may fluctuate a bit
since the sprints started and ended on Tuesdays. Since the time tracking tool was not ready
at the beginning of the first week, it seems like not much time was invested.

Week Time spent
14.09.2020 - 20.09.2020 3h
21.09.2020 - 27.09.2020 38h
28.09.2020 - 04.10.2020 26h
05.10.2020 - 11.10.2020 33h
12.10.2020 - 18.10.2020 38h
19.10.2020 - 25.10.2020 34h
26.10.2020 - 01.11.2020 38h
02.11.2020 - 08.11.2020 30h
09.11.2020 - 15.11.2020 37h
16.11.2020 - 22.11.2020 31h
23.11.2020 - 29.11.2020 34h
30.11.2020 - 06.12.2020 36h
07.12.2020 - 13.12.2020 44h
14.12.2020 - 18.12.2020 26h
Total 444h

Table 13.1.: Time spent per week

During the project about 2/5 of the time was invested in the actual products, another 2/5 for
the documentation and 1/5 for meetings.

13.2. Code Statistics

The code consists of 52% Python code, 28% SQL scripts, 18% Lua and 2% HTML.

48

Acronyms

API Application Programming Interface. 1, Il, Ill, VI, VIII, IX, XI, XII, XIll, 2, 3, 5, 7, 8, 9, 10,
15, 22, 44, 50, 54, 73

CD continuous deployment. 1V, 20, 41

Cl continuous integration. IV, 41, 53
DAL Data Access Layer. 31

EOSMDBOne Extended OSM Database One. |, II, IlI, IV, VI, XI, 2, 3, 5, 6

EOSMDBTwo Extended OSM Database Two. I, II, lll, 1V, VI, VII, VIII, IX, XI, XII, XIII, XIV,
2,3,13,15,17, 18, 20, 26, 38, 45, 50

GIS Geographic Information System. I, 11, Ill, XI, 4, 5
GUI Graphical User Interface. lll, IV, VI, 7

IFS Institute for Software. IV, 3
MVP Minimal Viable Product. XllI, 44

OLAP Online Analytical Processing. 5

OSM OpenStreetMap. I, II, I, 1V, VI, VII, VIII, IX, XI, XII, XIll, 3, 4,5, 6,7,8,10, 11, 13, 15,
16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 34, 37, 39, 40, 44, 45, 47,
49, 50, 51, 53, 54, 57, 69

WSGI Web Server Gateway Interface. 11, 51

49

Glossary

GraphQL Is a Open-source data query and manipulation language. I, I, Ill, IV, VI, VIII, IX,
X1, Xll, X1, 2, 3, 6, 8,9, 10, 15, 17, 22, 31, 44, 51, 53, 54, 73

SQL Stands for "Structured Query Language". It is a Language for querying and creating
data and data structures. |, I, lll, IV, VI, VIII, IX, XI, XII, XIll, 2, 3, 5, 16, 17, 20, 22,
24, 31, 35, 44, 45, 48, 50, 53

wireframes Graphical sketches. |, 11, 1V, 3, 16, 53

PostGIS Is a PostgreSQL extension that adds geometry data types and functions. I, IX,
Xll, Xlll, 3, 5,6,7,8,9,10, 15, 19, 22, 23, 26, 29, 30, 44, 45, 51, 52, 53

RESTful A programming interface standard. REST is an Acronym for REpresentational
State Transfer. I, XIl, 7, 17, 39, 51

OSM SQL Terminal This is the Terminal where a user can query the EOSMDBTwo and
view the results. 11, 1V, VI, VIII, IX, XI, XII, XIII, 3, 16, 17, 20, 24, 31, 44, 45, 53

Overpass A API to query OSM data of the whole world. lll, XI, 5

docker Is a program for OS-level virtualization. IV, 12, 31, 56, 57, 59, 62, 66, 71, 73
pgAdmin 4 A frontend for PostgreSQL database connections. 1V, 2, 56, 57, 62, 66, 69
JSON A data-interchange format [jso]. IV, 13, 58

Osm2pgsql Is a program to create a PostgreSQL database from a OSM file. VIII, XI, 2, 5,
6, 8, 10, 13, 20, 26, 28, 32, 37, 69

PostgreSQL is a relational database implementation. IX, 2, 3, 5, 6, 9, 23, 26, 31, 50, 51

Osmium Is a library for processing OSM data. XI, 5, 6, 13

Osmupdate Is a tool [osmd] to keep .osm files up to date. XI, 6, 10, 11

PyOsmium Is a tool [pyo] for processing OSM data. XI, 6, 8, 10, 11, 13, 20, 32

50

Postgraphile A GraphQL application for PostgreSQL. XI, 6, 8, 15
Hasura A GraphQL application for PostgreSQL. XI, 6

pg_featureserv A lightweight RESTful web service for accessing a PostgreSQL database,
offering PostGIS support. XI, 7

PostgREST A lightweight RESTful web service for accessing a PostgreSQL database. XI,
7

Python Is a programming language. 3, 6, 20, 23, 48, 51

Portainer A docker container manager. 3, 41

Scrum Is a agile, iterative framework for developing complex and unpredictable products
[scrb]. 3, 42

Apache Spark Apache Spark is a unified analytics engine for large-scale data processing.
5,19

Node.js Is an asynchronous event-driven JavaScript runtime, Node.js is designed to build
scalable network applications [nod]. 7, 11, 12

Django Is a high-level Python Web framework that encourages rapid development and
clean, pragmatic design [dja]. 7, 11, 12

Flask Is a lightweight WSGI web application framework [fla]. 7, 11, 12, 24
JavaScript A common programming language. 9, 11
Osmosis Is a tool [osmc] for processing OSM data. 10

GitHub Is a Git repository manager, which provides time and issue tracking. 12, 46

Greenplum A parallel processing platform for PostgreSQL. 19
Lua A lightweight, high-level programming language. 26, 48
OSMaxx A tool to get OSM data in a specific format. 28

GitLab Is a Git repository manager, which provides time and issue tracking. 41, 42, 43, 46,
53

Git Is a version-control system, which helps collaborating. 41, 43, 51

ST_ functions "ST_"is the prefix of PostGIS’ geometry functions (e.g: ST_Buffer(geom) to
select a buffer zone around the geom). 44

PostGraphiQL Is a GraphQL front end application. 60

51

Bibliography

[dja]

[fla]
[iso]
[nod]

[osma]

[osmb]

[osmc]

[osmd]

[osme]

[pos]

[pyo]

[RTOS]

[scra]

[scrb]

The web framework for perfectionists with deadlines | django. https://www.
djangoproject.com/. Accessed: 2020-10-31.

Flask - pypi. https://pypi.org/project/Flask/. Accessed: 2020-10-31.
json.org. https://www. json.org/json-en.html. Accessed: 2020-11-21.
About | node.js. https://nodejs.org/en/about/. Accessed: 2020-10-31.

Osm2pgsq| manual. https://osm2pgsql.org/doc/manual . html#
getting-and-preparing-osm-data. Accessed: 2020-10-14.

Osmaxx data schema. https://github.com/geometalab/osmaxx/blob/
master/docs/osmaxx_data_schema.md. Accessed: 2020-11-15.

Osmosis - openstreetmapwiki. https://wiki.openstreetmap.org/wiki/
Osmosis. Accessed: 2020-10-14.

Osmupdate - openstreetmapwiki. https://wiki.openstreetmap.org/wiki/
Osmupdate. Accessed: 2020-10-12.

Tags. https://wiki.openstreetmap.org/wiki/Tags. Accessed: 2020-11-15.

PostGIS introduction. https://postgis.net/workshops/postgis-intro/
introduction.html. Accessed: 2020-11-22.

Pyosmium - osmcode. https://osmcode.org/pyosmium/. Accessed: 2020-10-
14.

Frederik Ramm and Jochen Topf. OpenStreetMap, pages 42—44. Lehmanns Me-
dia, 1. edition, 2008.

The scrum guide. https://www.scrumguides.org/scrum-guide.html. Ac-
cessed: 2020-10-06.

What is scrum? https://www.scrum.org/resources/what-is-scrum. Ac-
cessed: 2020-10-03.

[Zim20] Olaf Zimmermann. Y-statements. medium, 2020.

52

List of Figures

0.1. Deployment Diagram \
0.2. All shops within 20 meters of a fuel station. \
0.3. GraphQLvisualisation. e VI
4.1. DataFlow Diagram 14
5.1. wireframes for the OSM SQL Terminal 16
5.2. OSM SQL Terminal at 09.12.2020 oo 17
7.1. Conceptual data model of OSM as UML class diagram [RT08] 25
7.2. PostGIS geometry hierarchy [pos] 26
7.3. Analyticdatamodel L 27
7.4. Pseudo code of a function that calculates and returns the label. 29
7.5. Additional locationviewo 30
8.1. Deploymentdiagram 31
8.2. Layer Diagram 32
8.3. DataFlowDiagram 33
8.4. OsmFile 34
8.5. OsmFileService 34
8.6. CommandlineHelper 34
8.7. DatabaseUpdater 35
8.8. EosmdbProcessing 35
8.9. Sequence Diagram 36
10.1.Performance comparisonplots L. 39
111.GitLab CIDAG e 41

53

List of Tables

3.1. Evaluation of GraphQL APlengines 10
3.2. Evaluation of OSM update tools updatingafile 11
3.3. Evaluation of OSM update tools using a changefile 11
3.4. Evaluation of frontend frameworks L 12
12.1.Issue sizes and how long it takes to completethem 42
12.2.0terations e 45
13.1.Timespentperweek 48

54

Part Ill.

Appendices

55

A. Test Protocols

In this chapter all test protocol templates are listed. The completed protocols are in a sepa-
rate folder.

Requirements

For all test protocols the following preconditions are required:

« docker and docker-compose is installed
* repository cloned

* pgAdmin 4 is installed

Success condition

A test is considered successfully completed when all expected results match the actual
results

56

Starting the System

This test should verify, that the system automatically downloads OSM data from Switzerland
at start-up and writes the data into the database.

Date:
Branch:
Commit:
Tester:

Steps

Step 1

Open a terminal and navigate to the Product folder of the repository and run the command
sudo docker—compose up —build

to create and start the docker containers.

Expected Result:
Docker is able to build and start all containers without any errors. Within the logs of each
container no errors are to be found.

Actual Result:

Step 2

Start pgAdmin 4 and connect to the database with the user osmuser.

Expected Result:
The connection can be established, the tables osm_point, osm_line, osm_polygon and
osm_boundary and a view osm_location are present.

Actual Result:

Step 3

This step needs to be done for osm_point, osm_line, osm_polygon and osm_boundary and
osm_location individually. Open the query tool and run the following select statement:

SELECT count () FROM <name>;

57

Expected Result:

The number count is be greater than ten thousand for osm_point, osm_line and osm_polygon.
For the table osm_boundary it is be greater than ten. The sum of count of osm_point and
osm_polygon equals the count of osm_location.

Actual Result:

Step 4

This step needs to be done for osm_point, osm_line, osm_polygon and osm_boundary and
osm_location individually. In the query tool, replace the present statement with the following:

SELECT osm_id, ST_AsGeoJSON(geom) as geom FROM <name>;

Pick a random row and copy the value of the geom column into the JSON tab of https:
//geojson.io/.

Expected Result:
The resulting geometry is either in Liechtenstein or Monaco or not more than ten kilometers
from their borders.

Actual Result:

Test Result

58

Label Calculation

This test verifies that the label calculation works as intended.

Date:
Branch:
Commit:
Tester:

Steps
Step 1

Open a terminal and navigate to the Product folder of the repository and run the command

to create and start the docker containers.

Expected Result:

Docker is able to build and start all containers without any errors. Within the logs of each
container no errors are to be found.

Actual Result:

Step 2

Visithttp://localhost:5439/graphiql and run the following query:

Then search for name : en and choose the first result entry, where the name does not match
with the name: en in tags.

59

Expected Result:
The label matches the name:en in tags.

Actual Result:

Step 3
Find any entry, where the name is in latin script and no name : en is present.

Expected Result:
The label equals the name.

Actual Result:

Step 4

Go to the file config-dev. json in the continuous update folder and replace the content of
the countries array with a single entry for Bhutan. The URLs are:

URL:

http ://download.geofabrik .de/asia/Bhutan—latest.osm. pbf
Replication URL:

http :// download. geofabrik .de/asia/Bhutan—updates

It is also necessary, to change the PEFLANG=en to PEFLANG=es int the .evn file. Then run
the following commands to restart the docker containers with the new configuration:

sudo docker—compose down
sudo docker—compose up —build

After the containers are running again, rerun the query in PostGraphiQL to get the updated
data and search for 1466919186.

Expected Result:
One entry is found. The label equals the name. Both are clearly not latin script

Actual Result:

Step 5

Search for 1376501203

60

Expected Result:
The 1abel equals the name: es in tags.

Actual Result:

Step 6
Search for 1467096122

Expected Result:
The 1label equals the name:en in tags.

Actual Result:

Test Result

61

View
This test should verify, that the location view works correcily.

Date:
Branch:
Commit:
Tester:

Steps
Step 1

Open a terminal and navigate to the Product folder of the repository and run the command

to create and start the docker containers.

Expected Result:

Docker is able to build and start all containers without any errors. Within the logs of each
container no errors are to be found.

Actual Result:

Step 2

Start pgAdmin 4, connect to the database with the user osmuser and run the following query
in the query tool.

Expected Result:
The query returns no results.

Actual Result:

62

Step 3

Run the following query in the query tool.

Expected Result:
The query returns no results.

Actual Result:

Step 4

Run the following query in the query tool.

Expected Result:
There is only one row in the result set. The original is equalsto osm_id and the calculated
value equals

osm_id * 10

Actual Result:

63

Step 5

Run the following query in the query tool.

Expected Result:
There is only one row in the result set with a negative osm_id. The original value is equal
to the absolute value of osm_id and the calculated value equals

osm_id * 10 + 2

Actual Result:

Step 6

Run the following query in the query tool.

64

Expected Result:
There is only one row in the result set with a positive osm_id. The original value is equal
to osm_id and the calculated value equals

osm_id* 10+ 1

Actual Result:

Test Result

65

Locations Within Range of Locations Function

This test verifies that the function locations_within_range_of_locations works prop-
erly.

Date:
Branch:
Commit:
Tester:

Steps

Step 1

Open a terminal and navigate to the Product folder of the repository and run the command
sudo docker—compose up —build

to create and start the docker containers.

Expected Result:
Docker is able to build and start all containers without any errors. Within the logs of each
container no errors are to be found.

Actual Result:

Step 2

Start pgAdmin 4, connect to the database with the user osmuser and run the following query
in the query tool.

SELECT +«
FROM
locations_within_range_of_locations (
"shop’,
‘supermarket’ ,
‘amenity ’,
‘post_office ’,
25

);

Check the locations of the resulting geometries.

Expected Result:
All results are within 25 meter range of a post office.

66

Actual Result:

Step 3

Run the following query in the query tool.

Expected Result:
All results are within 25 meter range of an amenity location(bars, pubs, restaurants, parking,
car wash...)

Actual Result:

Step 4

Run the following query in the query tool.

Expected Result:
All results are within 25 meter range of a post office. All results have a tag with the key
"shop" but not all of them have the value "supermarket".

Actual Result:

67

Step 5

Run the following query in the query tool.

Expected Result:

All results are within 25 meter range of an amenity location (bars, pubs, restaurants, parking,
car wash...). All results have a tag with the key "shop" but not all of them have the value
"supermarket”.

Actual Result:

Test Result

68

Updating the System

This test should verify, that the system automatically downloads OSM updates from Switzer-
landand writes it into the database.

Date:
Branch:
Commit:
Tester:

Steps
Step 1

Open a browser and navigate to openstreetmap.com. Zoom to Switzerland and open the
"Chronik"/"Changes" Tab. Keep that tab open for later comparison. If the last change is older
than the timespan in the configuration file, this test may yield no valuable result. Additionally,
check the configuration, that the replication url is set to openstreetmap.fr, because that is
the minutely updates.

Expected Result:
Visible changeset.

Actual Result:

Step 2

As soon as the Osm2pgsgl command is finished, start pgAdmin 4 and connect to the
database with the user osmuser.

Expected Result:
The connection can be established, the tables osm_point, osm_line, osm_polygon and
osm_boundary and a view osm_location are present.

Actual Result:

Step 3

This step needs to be done after the second Osm2pgsgl command (write updates) is fin-
ished. If you have time in between the database writes, you can optionally compare the two
results. Run the following command and check if the latest update is at the same time and
date as the latest update on the openstreetmap.com tab.

69

SELECT +« FROM latest_osm_change ();

Expected Result:
the output matches the latest change in the openstreetmap.com tab.

Actual Result:

Test Result

70

Performance

This test should help monitor the performance cost of each component in the data flow.

Date:

Branch:
Commit:

Tester:
Countries:
Replication urls:

Steps
Step 1

Open a terminal and navigate to the Product folder of the repository and run the command
sudo docker—compose up —build

to create and start the docker containers.

Expected Result:

Docker is able to build and start all containers without any errors. Within the logs of each

container no errors are to be found.

Actual Result:

Step 2

After every update is in the database, execute the log graph (gantt_for_logs.py) and save
the graph.

Expected Result:
Graph that shows when each command was started and how much time it needed.

Actual Result:

Step 3

Analyze the most time consuming steps.

Expected Result:
The most time consuming steps should be the download or the osm2pgsql —create com-

71

mand. If you are working with smaller countries like monaco and get the updates from a
minutely replication url the update step can be lengthy too.

Actual Result:

Test Result

72

GraphQL API

This test should verify, that the GraphQL API works.

Date:
Branch:
Commit:
Tester:

Steps
Step 1
Open a terminal and navigate to the Product folder of the repository and run the command

sudo docker—compose up —build

to create and start the docker containers.

Expected Result:
Docker is able to build and start all containers without any errors. Within the logs of each
container no errors are to be found.

Actual Result:

Step 2

Open http://localhost:5439/graphiql in a web browser.
Expected Result:
The PostGraphiQL application is visible. In the explorer the following nodes are all present:

« allLastUpdates

» osmPoint

» osmPointByOsmid
+ allOsmPoints

» osmLine

» osmLineByOsmld
+ allOsmLines

» osmPolygon

» osmPolygonByOsmld

73

allOsmPolygons
osmBoundary
osmBoundaryByOsmld
allOsmBoundaries
allOsmLocations
planetOsmNode
planetOsmNodeByld
allPlanetOsmNodes
planetOsmWay
planetOsmWayByld
allPlanetOsmWays
planetOsmRel
planetOsmRelByld
allPlanetOsmRels
latestOsmChange
locationsWithinRangeOfLocations
stArea
stAreaGeography
stAsGeodson
stAsGeoJsonGeography
stBuffer
stBufferGeography
stBufferGeographySeg
stBufferSeg

stCentroid

stDWithin

stDWithinGeography

74

« stDistance

» stDistanceGeography

« stintersection

« stintersectionGeography
« stintersects

« stintersectsGeography
« stTransform

« stTransformFromTo

« stTransformToText

« stTransformFromText

« stWithin

Actual Result:

Step 3

Run the following query.

Expected Result:

The query returns statements. Copying the content of the geojson field into geojson.io
and removing the backslash characters results in single point in Liechtenstein or Monaco or
no more than 10 km away from the border of either of those country.

75

Actual Result:

Step 4

Add the following to the QUERY VARIABLES section.

Then run the following query.

Expected Result:

Actual Result:

Test Result

